


Chapter 6. Results and discussion

MC steps are performed. The results for β∆G as a function of magnesium
concentration are shown in Figure 6.19 and Figure 6.20 for high and low
temperatures, respectively.
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Figure 6.19: β∆G as a function of magnesium concentration for T = 300 K, T =
275 K and T = 250 K.

For high temperatures as shown in Figure 6.19, the global minimum in
free energy agree well with the line at µ = −1.056 eV/atom from Figure
6.18 just as expected. When going from T = 275 K to T = 250 K a local
minimum in free energy appears at a lower concentration of magnesium
and a higher value of β∆G compared to the global minimum.

For lower temperatures as shown in Figure 6.20, a transition occurs.
As the temperature reaches the range where clustering of Mg3Al happens,
two separate minima in free energy are seen just as for T = 250 K in Fig-
ure 6.19. The difference is that now, at temperatures of T = 225 K and
below the global minimum is located at a lower concentration of magne-
sium approaching 75 % as the temperature is reduced further. This global
minimum is separated from a local minimum at higher concentrations of
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Figure 6.20: β∆G as a function of magnesium concentration for T = 225 K, T =
200 K and T = 175 K.

magnesium by a barrier in free energy. Thus, the global minimum in free
energy as a function of concentration has shifted from high to lower con-
centrations of magnesium indicating that Mg3Al becomes the most ener-
getically favourable phase for temperatures at T = 225 K and below. This
agrees well with the previous results and the global minimum at each tem-
perature lies outside the phase boundaries shown in Figure 6.18, as they
should. One can also note that the local minimum at higher concentrations
of magnesium moves further and further towards pure magnesium as the
temperature is decreased.

The reason for the system cooling down at µ = −1.056 eV/atom not
reaching the most energetically favourable phase, but instead approaching
pure magnesium and staying inside the phase boundaries can be explained
from these free energy barriers. At T = 250 K the system is at a concen-
tration of about 90 % magnesium as expected from the global minium in
free energy at this temperature. When reaching a temperature of T = 225
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K the global minimum is located at about 75 % magnesium. The system
is then instead of going towards Mg3Al trapped at the local minimum at
a higher concentration of magnesium because of the free energy barrier
between the two minima. In other words, the system actually favours a
different phase, but it does not have the necessary energy or time to cross
the free energy barrier and reach the phase Mg3Al. The system stays at
the local minimum in free energy at high concentrations of magnesium as
the temperature is decreased further as lowering the temperature only de-
creases the energy of the system, making it even harder to cross the free
energy barrier. Moreover, it is these local minima that correspond to the
line lying within the phase boundaries as seen when comparing with Figure
6.18. Thus, the discrepancy of the previous section has been explained and
the phase boundaries found previously have one less reason to be doubted.

An important point is that redoing the cooling down in the semi-grand
canonical ensemble at µ = −1.056 eV/atom the system could might as
well go to the correct phase Mg3Al instead of being trapped at the local
minimum in free energy at higher concentrations of magnesium. It could
be an artifact of the discretization of the temperature range and for further
calculations the steps in temperature should be smaller. This is especially
important in the range where the transition from pure magnesium to Mg3Al
occurs. Another point is that these results have not been seen in previous
calculations of free energy in this thesis. This is because before the prop-
erty considered was the free energy of formation and not the free energy.
Finally, as the temperature is lowered one sees that β∆G becomes a less
smooth function of the magnesium concentration. This is because at lower
temperatures the probability of accepting a new state after a MC step de-
creases as evident from (5.2). Having less MC steps accepted the statistical
results from the MC simulation get worse. Thus, the number of MC steps
needed for getting a smoothly varying β∆G increases as the temperature is
lowered.

The quantity β∆G is also calculated along the phase boundary between
pure magnesium and Mg3Al using some of the values for µ and T from
the results shown in Figure 6.16. The results using 2 000 000 semi-grand
canonical MC steps in each of in total 30 concentration windows are shown
in Figure 6.21.

Along the boundary in the µ-T plane separating Mg3Al and pure mag-
nesium the two phases should coexist. In other words, the free energy as a
function of magnesium concentration should have two local minima at dif-
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Figure 6.21: β∆G as a function of magnesium concentration along the phase
boundaries of Mg3Al.

ferent concentrations. One of them should move towards 75 % magnesium
and the other towards 100 % magnesium as the temperature is lowered.
This is also what is seen in Figure 6.21. However, the two local minima
should be located at equal values of β∆G as along the phase boundary
both phases are equally favoured. This is not the case here, where the min-
imum at high concentrations of magnesium is lower, corresponding to pure
magnesium being preferred and indicating that there may be a systematic
error when calculating phase boundaries due to the chosen precision.

As explained earlier, (5.19) is used to obtain the phase boundaries. This
equation is hard to solve numerically and the calculations are computation-
ally expensive resulting in a precision of 10−3. Recalculating β∆G for a
given temperature and varying the chemical potential until the local mini-
mum at approximately 75 % magnesium becomes the global one the error
in µ when calculating the phase boundaries at the precision of 10−3 can
be estimated. This is done for T = 212.72 K, corresponding to the third
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line from below in Figure 6.21 where the calculated chemical potential is
µ ' -1.0576 eV/atom. The result is shown in Figure 6.22 using 1 000 000
semi-grand canonical MC steps for µ = -1.0569 eV/atom and µ = -1.0568
eV/atom.
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Figure 6.22: β∆G as a function of magnesium concentration at T = 212.72 K
with µ = -1.0569 eV/atom and µ = -1.0568 eV/atom.

As seen here, changing the chemical potential to µ = -1.0569 eV/atom
makes the minimum at approximately 75 % magnesium become the global
one. Thus, the correct chemical potential along the phase boundary is lo-
cated somewhere between µ = -1.0569 eV/atom and µ = -1.0568 eV/atom.
The estimate of the error in µ when calculating phase boundaries via (5.19)
at a precision of 10−3 thus becomes 0.07 %. Although the difference in
β∆G at the calculated chemical potential for the phase boundaries differ
by certain amount, the error is relatively small. The obtained phase bound-
aries are thus believed to be correctly calculated.
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6.6.5 Visualization of cluster formation
As shown above, the Mg3Al phase starts to form at a critical temperature
range between 200 K and 300 K in a hcp lattice. It is helpful to visualize
this process of clustering which will be done here. This is done by perform-
ing a MC simulation in the canonical ensemble for cooling down a system
of 1000 atoms in a hcp lattice. The magnesium concentration is set to 95
% such that it is impossible for the whole system to transform into Mg3Al.
At each temperature 100 000 MC steps are performed instead of setting a
precision as this simulation just serves as an illustration of the clustering
process. At every 5 steps the largest connected cluster of aluminum atoms
is found. After performing all MC steps at a temperature the largest con-
nected cluster found at this temperature is stored, with periodic boundary
conditions in mind. The results for four different temperatures are shown in
Figure 6.23. The temperatures chosen are one temperature lying well above
(542 K), two temperatures inside (247 K and 210 K) and one temperature
well below (136 K) the critical temperature range where clustering starts
happening. The green, almost transparent atoms are magnesium atoms.
The grey and dark blue atoms are aluminum atoms where the latter indi-
cates that they belong to the largest connected cluster of aluminum atoms.

As seen here, at 542 K the aluminum atoms are placed quite randomly
around in the lattice. The largest connected cluster contains approximately
half of the available aluminum atoms. Lowering the temperature a transi-
tion occurs and more and more aluminum atoms become clustered together
to form the phase Mg3Al, just as expected for 247 K and 210 K. The forma-
tion of Mg3Al can be seen by the majority of aluminum atoms clustering
together at distances corresponding to the double of the nearest neighbour
distance just as in Figure 6.12. Finally, at 136 K almost all the aluminum
atoms are connected in one large cluster also with distances between alu-
minum atoms equal to the double of a nearest neighbour distance. Thus,
Mg3Al has been formed.
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(a) 542K (b) 247K

(c) 210K (d) 136K

Figure 6.23: Largest cluster of aluminum at four different temperatures during a
Monte Carlo simulation in the canonical ensemble, highlighted by blue atoms.
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Chapter 7
Conclusion

To summarize, aluminum and magnesium alloys on a hcp lattice rich in
magnesium have been studied. The convergence of total energy calcula-
tions is ensured to obtain a reasonable set of input parameters for different
system sizes in DFT calculations. Where comparisons are possible the re-
sults agree well with either theory, experimental results or previously per-
formed calculations. An example of this is the calculation of the lattice pa-
rameters for aluminum and magnesium. These calculations also show that
the PBE functional performs better than the BLYP and LDA functionals, at
least in these cases. Also, the calculated formation energy of a vacancy in
bulk aluminum and magnesium are as mentioned earlier in good agreement
with previous results. Thus, DFT calculations with the PBE functional are
believed to work well for studying electronic and structural properties of
metals and alloys and the set of input parameters obtained can be consid-
ered as sufficiently accurate.

A CE model is developed for aluminum and magnesium on a hcp lattice
from 25 % to 100 % magnesium by fitting ECI to the total energies of DFT
calculations resulting in a CV score of 3.18 meV/atom. By interpreting
the ECI the model is seen to favour equal atoms in a second nearest neigh-
bour distance. Moreover, clusters of three atoms all in a nearest neighbour
distance are favoured with either three aluminum or one aluminum and two
magnesium atoms. The CE model predicts a new phase Mg3Al which starts
to form somewhere below 300 K. This is seen from the calculated minima
in enthalpy of formation and free energy of formation. The boundaries of
this phase are also found and they agree well with the canonical and semi-
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grand canonical MC simulations performed in this thesis, apart from the
one simulation with a fixed chemical potential of µ = −1.056 eV/atom
in the semi-grand canonical ensemble. However, this discrepancy is ex-
plained by calculating the free energy barrier separating Mg3Al and pure
magnesium. The new phase Mg3Al could be hard to find experimentally
considering that it starts to form below 300 K. One could imagine a sce-
nario where one heats up an alloy of aluminum and magnesium to a very
high temperature before cooling it down below 300 K almost instantly. This
would leave the alloy unstable with many defects where Mg3Al could start
to form spontaneously, easier than if the alloy has an ideal hcp lattice. Still,
it is no guarantee that Mg3Al will appear as this thesis only examines a fixed
hcp lattice and the phonon and thermal expansion contribution are not con-
sidered. Other configurations in another lattice could be more energetically
favourable, in which case Mg3Al is just a metastable phase.

Finally, the results show that the CE method combined with DFT cal-
culations and MC simulations makes a powerful tool for examining alloys
on different lattices. It should be noted that for other types of lattices the
CE model needs to be trained all over again. The estimate of the error in µ
when calculating phase boundaries is small at a value of 0.07 %.
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Chapter 8
Future work

As mentioned, the phase Mg3Al could be metastable and only appearing
when the hcp lattice is the only lattice considered. A natural way forward
would thus be to study alloys of aluminum and magnesium on other lattices,
for example the fcc lattice. As pure aluminum forms in a fcc lattice this
would be expected to cover more aluminum rich parts of the concentration
range. Other lattices should also be examined as aluminum and magnesium
combined could have stable phases on other types of lattices than what is
found for their pure phases. One can in principle obtain information about
the whole phase diagram by considering the different lattices and combin-
ing this knowledge. It is also possible to study metastable phases as here to
get information about nucleation and precipitation. Another possibility is
to introduce a third component in the alloy.

Experimentally, one could study whether Mg3Al is stable or not by heat-
ing an aluminum and magnesium alloy up and rapidly cooling it down as
mentioned earlier. If Mg3Al does not start to form after this process, this
would implicate that it is only stable on a hcp lattice.
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Appendix A

Table 8.1: Numerical values of the effective cluster interactions from the final
cluster expansion.

ECI Value [eV/atom]
c0 − 2.6357104336220036
c1 0 − 1.0477578743973592
c2 1000 1 00 1.9704034169076734× 10−5

c2 1414 1 00 − 0.0086207715025969599
c3 1000 1 000 − 0.0068774873140020742
c3 1414 1 000 0.01663724158871387
c4 1000 1 0000 0.001447359159530979
c4 1414 1 0000 0.0051126797326320134
c4 1414 2 0000 0.00034941577797427485
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(a) c1 0. (b) c2 1000 1 00. (c) c4 1000 1 0000.

(d) c4 1414 1 0000. (e) c4 1414 2 0000.

Figure 8.1: The remaining clusters of the effective cluster interactions.
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