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Abstract

By using the density-functional theory and adopting the approach of Kohn
and Sham, together with the cluster expansion method for Monte Carlo
simulations, aluminum-magnesium alloys on a hcp lattice have been stud-
ied. The exchange-correlation energy functional mainly considered is the
Perdew-Burke-Ernzerhof functional which belongs to the class of gener-
alized gradient approximations. To perform calculations the open-source
density-functional theory Python code named GPAW has been used. This
in turn uses the projector-augmented wave method and the atomic simula-
tion environment ASE. In conclusion, this thesis highlights the ability of
the cluster expansion method combined with density-functional theory and
Monte Carlo simulations to predict phases of an alloy on a given lattice.
A cluster expansion model is developed for aluminum-magnesium alloys
on a hcp lattice ranging in concentration from 25 % to 100 % magnesium.
MC simulations reveal an Mg3Al phase emerging at temperatures below
300 K and its phase boundaries have been further studied in canonical and
grand-canonical ensembles.
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Sammendrag

Ved å benytte tetthetsfunksjonal teori og følge fremgangsmåten til Kohn og
Sham, sammen med cluster ekspansjons metoden og Monte Carlo simu-
leringer, har aluminium-magnesium legeringer arrangert i et hcp gitter blitt
studert. Exchange-correlation energi funksjonalet som hovedsakelig blir
brukt er Perdew-Burke-Ernzerhof funksjonalet som tilhører klassen gen-
eraliserte gradient approksimasjoner. For å gjøre beregninger benyttes den
åpne kildekoden for tetthetsfunksjonal teori beregninger kalt GPAW som er
skrevet i Python. Denne bruker igjen projector-augmented wave metoden
og det atomistiske simuleringsverktøyet ASE. Kort oppsummert fremhever
denne oppgaven cluster ekspansjons metodens evne kombinert med tet-
thetsfunksjonal teori og Monte Carlo simuleringer til å predikere faser av
en legering i et gitt gitter. En cluster ekspansjons modell blir utviklet for
aluminium-magnesium legeringer i et hcp gitter bestående av mellom 25 %
og 100 % magnesium. Monte Carlo simuleringer avdekker en Mg3Al fase
som dukker opp ved temperaturer under 300 K og dens fasegrenser har blitt
studert i det kanoniske og semi-store kanoniske ensemblet.
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Preface

This document is a master thesis which is mandatory for all students tak-
ing a Master of Science in Applied Physics at the Norwegian University
of Science and Technology (NTNU). It has been written during the spring
semester of 2018, corresponds to 30 ECTS credits and can be viewed as a
natural continuation of the mandatory 15 credit specialization project writ-
ten during the fall semester of 2017. In the specialization project, the goal
was to learn how to perform and get comfortable with density-functional
theory calculations, utilizing GPAW and ASE. In this thesis, this has been
used further to develop a cluster expansion model to perform simulations
of aluminum-magnesium alloys on a hcp lattice. The project is the idea of
my supervisor Prof. Jaakko Akola.
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Chapter 1
Introduction

In our time, metals are one of the most essential kind of materials used.
This is because common metals have the necessary properties to be consid-
ered for various applications, ranging in size from constructions and large
vehicles to electronics on the micro- or nano-scale. At the same time these
metals can be manufactured on a large scale and at a low cost because of
their natural occurrence on earth. The high demand for metals has devel-
oped the field of materials science into a huge industry always trying to
improve for example the durability and strength of the different metals pro-
duced. A way of producing better materials is through alloying, combining
a metal with other materials to obtain the desired properties for a specific
application.

A metal of high interest for alloying is aluminum, mainly because of
its light weight. In addition, recycling aluminum only requires a small per-
centage of the energy needed to manufacture it in the first place. By adding
small concentrations of alloying elements to aluminum the properties of the
resulting material can differ greatly from that of pure aluminum. Because
the resulting material is mainly made up of aluminum alloying retains this
light weight while being an easy way of altering the features of the material.
One example of an alloying element that is frequently used is magnesium
which when added can increase the strength of the alloy greatly because of
its structure being hard to deform. It is also possible to create aluminum-
magnesium alloys that are rich in magnesium. This is for example used in
the automobile industry [1].

As explained, the field of materials science is highly focused on the
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Chapter 1. Introduction

macroscopic properties of materials and their requirements in various ap-
plications. To better understand the behaviour of different materials and
how to obtain their desired properties it is paramount to study the link be-
tween the macroscopic properties and physical and chemical processes at
the electronic or atomic level. Not only does the chemical composition
determine the macroscopic properties, the microstructure is also of great
importance [2]. To study in detail the relationship between chemical com-
position, microstructure and macroscopic properties, computational meth-
ods are increasingly popular following the major escalation of computa-
tional power available during the last decades. The reason for this is that
instead of employing a method of trial and error for developing a mate-
rial in the lab, simulations can predict the outcome while saving both time
and resources. The computational methods for this purpose rely mostly
on density-functional theory (DFT) which is developing further and further
as a way of predicting properties of materials and has thus become a very
popular method [3].

The complexity of DFT calculations increase with the size of the system
and enormous computational resources have to be available to obtain results
that converge as the system size is increased. Moreover, the concentration-
temperature phase diagram of an alloy is often desired. To obtain this the
configurational space has to be sampled in great detail which can not be
done by only applying DFT calculations, as this is too computationally ex-
pensive. Computational methods such as Monte Carlo (MC) or molecular
dynamics simulations are thus needed.

To go from ab initio methods to simulations on atomic systems of con-
siderable size the cluster expansion (CE) method is often employed, in ef-
fect linking DFT calculations together with MC simulations. This is done
by first obtaining ground state energies for a given set of configurations
using DFT. The energy of a configuration can then be expanded in differ-
ent clusters of atoms and fitted to the calculated ground state energies with
effective cluster interactions (ECI) as expansion coefficients. Such a CE
model can be applied in large MC simulations of atomic systems as ener-
gies can be calculated more efficiently compared to DFT calculations of
the same, large systems. Different characteristics of a material can then be
inferred from the resulting energy calculations [4], such as phase diagrams
of different types of alloys [5] [6].

In this thesis, a CE model is developed to combine initial DFT cal-
culations with MC simulations to study aluminum-magnesium alloys. The

2



alloys studied here are rich in magnesium and have a crystal structure based
on the hcp lattice. To begin with, chapter 2 gives the theoretical background
for crystalline materials. In addition, it introduces several important con-
cepts for the calculations such as metallic bonding along with terminology.
Chapter 3 and 4 highlight the most relevant aspects of the theory behind
DFT calculations and the CE method, respectively. In chapter 5 the com-
putational methods are presented while the results and discussions are pre-
sented in chapter 6. In chapter 7 conclusions are drawn before the thesis
ends with suggestions to future work in chapter 8.
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Chapter 2
Crystalline materials

In this chapter the theory behind different properties of crystal
systems will be given. The focus will be on aluminum and mag-
nesium starting out with their crystal structure as these are the
materials studied in the thesis. The chapter is based on refer-
ence [7] which will function as the main reference for the entire
chapter.

2.1 The structure of crystals

An ideal crystal is made by repeating a group of atoms infinitely, each group
the same distance apart. The points in space where the groups are placed
are called the lattice of the crystal whereas the group is called the basis. A
three-dimensional lattice is defined by three vectors of translation, a1, a2

and a3, such that the crystal looks the same seen from the points r′ and r
defined by

r′ = r + n1a1 + n2a2 + n3a3, (2.1)

where n1, n2 and n3 are integers. In this way (2.1) defines the lattice. The
crystal axes are defined as a suitable choice of translation vectors a1, a2

and a3 for the crystal, depending on its structure. Having chosen this set
the position of the atoms in the basis can be defined for each lattice point
given by

ri = xia1 + yia2 + zia3, (2.2)

5



Chapter 2. Crystalline materials

where i can be any integer indicating that it is possible to have several atoms
in the basis. The three crystal axes can be used to define a unit cell of the
crystal with a volume given by

Vc = |a1 · a2 × a3|. (2.3)

The unit cell is called a primitive cell if it is the smallest cell possible to
construct, containing a single lattice point. To the single lattice point several
atoms can be attached at different positions, allowing more than one atom
in the primitive cell. Moreover, the length of the edges of the unit cell, a, b
and c not parallel to each other are denoted the lattice constants.

2.1.1 Face-centered cubic lattice for aluminum
The arrangement of the atoms in aluminum at room temperature and below
is a face-centered cubic (fcc) lattice. This is recognized as a cubic structure
with lattice points placed at each corner as well as in the middle of all the
facets of the cube, giving rise to a total of 4 lattice points per unit cell. With
a lattice constant at room temperature of a = b = c = 4.05 Å [7, p. 20] the
unit cell of the aluminum structure is given by

a1 = (
a

2
,
a

2
, 0), a2 = (

a

2
, 0,

a

2
) and a3 = (0,

a

2
,
a

2
), (2.4)

while the basis consists of a single aluminum atom located at the origin.

2.1.2 Hexagonal close packed lattice for magnesium
The arrangement of the atoms in magnesium at room temperature and be-
low is a hexagonal close packed (hcp) lattice. This is recognized as a hexag-
onal prism with lattice points placed at each corner. In addition, there is a
lattice point in the center of each of the two hexagonal facets of the structure
so that there are in total two lattice points per unit cell. The lattice constants
of the magnesium structure at room temperature are a = b = 3.21 Å and
c = 5.21 Å [7, p. 20] and the unit cell is given by

a1 = (
a

2
,−
√

3a

2
, 0), a2 = (

a

2
,

√
3a

2
, 0) and a3 = (0, 0, c), (2.5)

with a basis of two magnesium atoms, the first one at the origin and the
second one located at r2 = 2

3
a1 + 1

3
a2 + 1

2
a3.
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2.1 The structure of crystals

2.1.3 Reciprocal space
Because of the periodicity of the crystal lattice the different properties of
the system will follow the same periodicity. An example is the electron
density n(r) which because the crystal is invariant under a translation by
T = n1a1 + n2a2 + n3a3 satisfies the relation

n(r) = n(r + T). (2.6)

This periodicity makes Fourier analysis a very powerful tool and it becomes
useful to write the Fourier expansion

n(r) =
∑
p

np exp(iGp · r), (2.7)

where p runs over all integers and the coefficients np are complex numbers
satisfying n∗−p = np to keep n(r) real. The vectors Gp must then be a set
of vectors such that (2.7) is invariant under all translations T. This set can
be constructed by the vectors of the reciprocal lattice, defined as

b1 = 2π
a2 × a3

a1 · a2 × a3

, b2 = 2π
a3 × a1

a1 · a2 × a3

and

b3 = 2π
a1 × a2

a1 · a2 × a3

,
(2.8)

where b1,b2 and b3 are primitive vectors of the reciprocal lattice if a1, a2

and a3 are primitive vectors for the lattice of the crystal. Also, the reciprocal
vectors have the property

bi · aj = 2πδij, (2.9)

where δij is the Kronecker-delta symbol. Moreover, the reciprocal lattice
is the Fourier transform of the crystal lattice. The set of vectors G and
reciprocal lattice points are then given by the reciprocal lattice vectors

G = m1b1 +m2b2 +m2b2, (2.10)

where m1, m2 and m3 are integers.
In reciprocal lattice the Brillouin zone is defined as the volume in re-

ciprocal space around a reciprocal lattice point where the associated region
in k-space is closer to that point than any other reciprocal lattice point. An
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Chapter 2. Crystalline materials

equivalent definition exists for the crystal lattice in real space where the
corresponding volume is called the Wigner-Zeits cell. The Brillouin zone
for crystal structures has some critical points with high symmetry. These
points are often of interest and can be summarized for a fcc and hexagonal
lattice as follows:

Table 2.1: Critical points in the Brillouin zone of a fcc lattice.

Symbol Description
Γ Center of Brillouin zone
K Midpoint of an edge between two hexagonal surfaces
L Center of a hexagonal surface
U Midpoint of an edge between a square and a hexagonal surface
W Corner point
X Center of a square surface

Table 2.2: Critical points in the Brillouin zone of a hexagonal lattice.

Symbol Description
Γ Center of Brillouin zone
A Center of a hexagonal surface
H Corner point
K Midpoint of an edge between two rectangular surfaces
L Midpoint of an edge between a rectangular and a hexagonal surface
M Center of a rectangular surface

2.2 Electronic properties

Many of a materials properties stem from how its electrons behave. An
example of this can be if the material is classified as a conductor or an
insulator [7, p. 181]. Some important theoretical aspects of these electronic
properties will now be presented.
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2.2 Electronic properties

2.2.1 The Fermi level
From the exclusion principle of Pauli [8] it is possible to have a maximum
of two electrons in the same state, one with spin up and one with spin down.
At temperatures approaching T = 0 K the electrons will occupy the states
with the lowest possible energy. At absolute zero for a non-interacting sys-
tem of electrons the Fermi energy is defined as the kinetic energy of the
highest occupied state. Increasing the temperature will add thermal en-
ergy to the electrons, giving them the possibility of reaching higher energy
states. The Fermi-Dirac distribution f(ε), given by

f(ε) =
1

e(ε−µ)/kBT + 1
(2.11)

then gives the probability of having an occupied state at the energy ε, at
thermal equilibrium. Here, kB is the Boltzmann’s constant and µ is the
Fermi level, defined as the chemical potential for the electrons. The Fermi
level can also be considered as an energy state for an electron so that the
probability of finding an electron in this energy state, ε = µ, is fifty percent.
In contrast to the Fermi energy, the Fermi level is defined for all tempera-
tures and interacting systems as well.

2.2.2 Bloch-Waves
Because of the periodicity of crystal structures the potential that the elec-
trons experience can be modeled as a periodic potential stemming from the
positively charged ions, with the same periodicity as the crystal lattice. This
potential can be expanded using a Fourier series written as

V (r) =
∑
G

VG exp(iG · r), (2.12)

where G is given by (2.10) and VG are expansion coefficients. By solving
the Schrödinger equation for a single electron,[

− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r), (2.13)

F. Bloch showed [7, p. 167] that the solutions must be on the form

ψnk(r) = unk(r) exp(ik · r), (2.14)

9



Chapter 2. Crystalline materials

called a Bloch wave, and that each of these solutions is an energy eigenstate.
Here, n denotes the energy state, k is the wave vector and unk(r) has the
same periodicity as the crystal.

As shown, for each value of k there exists multiple energy states, de-
noted by n and often called the band index. Each of these energy states
have energies that vary smoothly with varying k which can be used to ob-
tain a dispersion relation En(k) for the electrons in a band n. The wave
vectors k can be any point in the Brillouin zone. As the Brillouin zone is
three-dimensional it is common to show En(k) for values of k at straight
lines between the critical points of the Brillouin zone. Representations like
these are used to illustrate the electronic band structure of a crystal. The
electronic band structure is among other things used to classify different
materials. For metals the Fermi level is located inside an electronic band,
while for semiconductors and insulators it lies inside a band gap where no
electronic states occur.

2.2.3 Metallic bonding

For elements with one, two or three valence electrons the interaction be-
tween the nucleus and these valence electrons becomes weak. Putting to-
gether many such atoms in a bulk the valence electrons will become dis-
located from their corresponding atom because of the weak bonding and
contribute to a common cloud of electrons [9]. Losing their valence elec-
trons the atoms end up being positively charged cations held together by the
negatively charged electron cloud. Both aluminum and magnesium, with
respectively three and two valence electrons, form metals through such a
metallic bonding. Moreover, it is this bonding that orders aluminum and
magnesium in their respective fcc and hcp structures and determines how
much energy it takes to form the lattices. It should be noted that both alu-
minum and magnesium are simple metals in terms of having no semi-core
states contributing to the valence electrons.

Cohesive energy

The cohesive energy of a system of atoms is defined as the energy gained by
arranging the atoms in its crystal structure compared to keeping the atoms
far apart. It is a measure of the strength of the bonds and thereby often

10



2.2 Electronic properties

called the binding energy and can be given for a structure of N atoms as

Ec = N · Es
t − Eb. (2.15)

Here, Ec denotes the cohesive energy, Es
t is the energy of an individual

atom of type t and Eb is the total energy of the bulk of atoms. It is im-
portant to note that the energy Es

t is calculated for the single atom when
it is separated far from any other atom and not a part of the bulk, denoted
by the superscript s. The cohesive energy is often given per atom, denoted
εc, which for a bulk containing N aluminum and M magnesium atoms be-
comes

εc =
Ec

N +M
=
N · Es

Al +M · Es
Mg − Eb

N +M
. (2.16)

Here, Es
Al and Es

Mg denotes the energy of a single aluminum and magne-
sium atom, again kept far apart from any other atom.

Formation energy of a vacancy

In addition to the cohesive energy the metallic bonding determines the for-
mation energy of a vacancy, Evf . This can be defined as the amount of
energy needed to form a vacancy in a bulk of atoms and thought of as re-
moving one of the atoms and breaking the bonds to its nearest neighbours
in the process. The total energy of the bulk containing N atoms is as men-
tioned denoted Eb and can be given as

Eb =
N∑
i=1

Eb
i = NEb

a. (2.17)

Here, Eb
i is the energy of a single atom when being a part of the bulk and

Eb
a denotes the average energy of a single atom in the bulk. In a similar

manner Ev denotes the total energy of the same bulk but with one of the
atoms replaced with a vacancy, given by

Ev =
N−1∑
i=1

Ev
i = (N − 1)Ev

a , (2.18)

summing up the energy of each of the N − 1 atoms given by Ev
i . Here, Ev

a

is the average energy of a single atom in the bulk with the vacancy. The

11



Chapter 2. Crystalline materials

formation energy of a vacancy is then defined as

Evf = (N − 1)(Ev
a − Eb

a) = Ev −
N − 1

N
Eb, (2.19)

the difference in average energy per atom for the bulk with and without the
vacancy times the number of atoms in the bulk with the vacancy.
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Chapter 3
The theory behind
density-functional theory
calculations

In this chapter the main ideas and a short theoretical back-
ground of DFT will be presented. Before this, however, adopt-
ing the idea of reference [10], the fundamental Schrödinger
equation and the Hartree-Fock (HF) method is introduced. The
main references for this chapter are references [11] and [12].

3.1 The Schrödinger equation

In electronic many-body structure calculations the Born-Oppenheimer ap-
proximation [13] is used. In this approximation the nuclei of the struc-
ture are assumed to be at fixed positions, giving rise to a static potential
for the electrons. A many-body electronic wave function ψ(r1, ... , rN)
is then used to describe a stationary electronic state. The starting point of
DFT calculations is the non-relativistic, time-independent many-electron
Schrödinger equation [14] given by

Ĥψ =

[
− ~

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

]
ψ = Eψ (3.1)
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for a system of N electrons which the electronic wave function ψ must
satisfy. In this equation, Ĥ is the Hamiltonian, ~ is the reduced Planck
constant or Dirac constant and m is the mass of an electron. Moreover,
V (ri) is the potential stemming from the interaction between the atomic
nuclei and an electron at position ri and U(ri, rj) is the potential resulting
from the interaction between two electrons located at positions ri and rj . E
denotes the energy of the ground state of the system of electrons. Important
to note when later considering DFT is that the electronic wave function
ψ is depending on three coordinates for each electron, giving in total 3N
variables for a system ofN electrons and making the exact solution of (3.1)
computationally expensive for increasing N .

3.2 Hartree-Fock method
A strategy to reduce the complexity of finding the correct many-body wave
function is to approximate it by what is known as the Hartree product [15].
The approximation starts out by considering wave functions for the indi-
vidual electrons given by χ(x) and referred to as a spin-orbital. Here, x de-
notes the coordinates of the electron including both the spatial coordinates
r and spin coordinate s and the spin-orbitals are assumed to be orthonor-
mal. The Hartree product is then defined as the product of the individual
electron spin-orbitals,

ψ(x1,x2, ... ,xN) = χ1(x1)χ2(x2)...χN(xN). (3.2)

Although (3.2) reduces the complexity of the problem drastically, the Hartree
product violates the Pauli exclusion principle and is thus not expected to
give correct results. The violation is due to the fact that the expression is
not antisymmetric when interchanging two of the electrons. This must be
the case when considering fermions [8] as all states must be antisymmetric,
which is an alternative way of expressing the exclusion principle. Formu-
lated mathematically all wave functions must satisfy

ψ(x1,x2, ... ,xN) = −ψ(x2,x1, ... ,xN). (3.3)

The obvious fault of the Hartree product not satisfying (3.3) can be fixed
by taking the linear combination of both sides of the equation, giving

ψ(x1,x2) =
1√
2

[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)] (3.4)

14
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when considering a system of only two electrons. Generalized to a system
of N electrons it reads

ψ(x1,x2, ... ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

...
... . . . ...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣ , (3.5)

which is known as the Slater determinant [16] and is the approximation
of the electronic wave function in the HF method [17]. The advantage of
this over the Hartree product is that it in addition to only considering spin-
orbitals satisfies (3.3). Because of this it is expected to better describe the
many-body electron system. By following this approximation (3.1) can be
rewritten as a set of equations for the single-particle states [12, p. 71], given
by [

− ~
2m
∇2 + V (r) + VH(r)− VEx(r)

]
χi(x) = εiχi(x) (3.6)

and commonly referred to as the HF equations. Here, ε denotes the energy
of the spin-orbital.

The potential from the interaction between the electrons is evidently
replaced by a Hartree potential VH and an exchange term VEx. The Hartree
potential is given by

VH(r) = e2

∫
n(r′)

|r− r′|
dr′, (3.7)

where e is the charge of an electron and n(r′) is the electron density, defined
by

n(r) =
N∑
i=1

χ∗i (r)χi(r) (3.8)

where the explicit spin dependence has been omitted. The Hartree poten-
tial VH is the average Coulomb repulsion that a particle with charge ewould
feel from the N electrons in the system. It should be stressed that the elec-
trons are assumed to move independently and thus, VH depends on the aver-
age position of the electrons. This averaged Coulomb repulsion, and not the
instantaneous forces between the electrons, is what affects the electrons via
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Chapter 3. The theory behind density-functional theory calculations

VH . Another important point is the number of electrons which VH depends
on, namely N . One might expect it only to depend on the average of N − 1
electron charges as the electron does not interact with itself. This unphys-
ical part of the Hartree potential is however eliminated by a corresponding
part in VEx [18, p. 88].

Regarding the exchange term one can note that it has no simple, phys-
ical interpretation. It appears solely because the Slater determinant is used
as the approximation for the wave function. It has its name from the an-
tisymmetric requirement of the wave function that one can exchange two
electrons and only change the sign of the wave function. No further math-
ematical discussion of the exchange term will be given. An approximation
for the spin-orbitals is needed to numerically solve (3.6). By expanding on
a suitable and finite basis set of M functions, {φ}, with expansion coeffi-
cients c, the spin orbitals can be approximated by a linear combination

χi(x) =
M∑
j=1

ci,jφj(x). (3.9)

The numerical approach of the HF method is first to guess the form of
the spin-orbitals. After this, (3.6) is solved iteratively until the spin or-
bitals are reproduced within an acceptable convergence criterion. Because
of this way of approaching the solution, by iterating until the solution re-
produces itself from the last step, the method belongs to what is called the
self-consistent field (SCF) methods. As the HF method is not exact the en-
ergies obtained from the calculations are not expected to be correct and the
difference between the exact ground-state energy and the HF ground-state
energy is called the correlation energy [12, p. 70]. The name comes from
the fact that the HF method assumes uncorrelated electrons. Ignoring the
correlation can give results for the energy that are too low, leading to wrong
results as for example a vanishing single-electron density of states near the
Fermi level for a uniform electron liquid [12, p. 83]. Because of this and
that the HF method can be computationally expensive for relatively large
systems the focus should be turned towards a better approach. In other
words, the stage is now set for DFT.
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3.3 Density functional theory

3.3 Density functional theory
The main idea behind DFT is to use the density of the electrons instead
of the wave function to describe the system under consideration, hence the
name of the theory. One of the advantages for numerical calculations is that
this reduces the complexity of the system substantially since the electron
density is a single three-dimensional object no matter what the number of
electrons is. This chapter is largely based on reference [12] and will give a
short theoretical introduction to the theory behind DFT calculations.

3.3.1 A variational principle for the density
A step of great importance in DFT is to obtain a variational principle for the
density which is best shown with the Levy-Lieb constrained search algo-
rithm [19]. The well-known Rayleigh-Ritz variational principle [20, p. 31]
for the many-body wave function finds an upper energy-bound, E, for the
energy of the ground-state, E0, by searching for the lowest possible expec-
tation value of Ĥ when altering ψ, written as

E = min
ψ
〈ψ|Ĥ|ψ〉 . (3.10)

The system considered is a N -electron system where the Hamiltonian is
written as Ĥ = T̂ + Ĥe−e + V̂ . Here, T̂ is the kinetic energy, Ĥe−e is the
interaction between the electrons and V̂ is the potential energy. The last
term which stems from a local, external potential V (r) can be written

V̂ =

∫
V (r)n̂(r)dr, (3.11)

where n̂(r) is the density operator. To formulate a variational principle for
the density the first step is to choose a density n(r) and minimize the energy
via (3.10) for antisymmetric wave functions ψ that give the same, chosen
density, resulting in

EV [n] = min
ψ→n(r)

〈ψ|T̂ + Ĥe−e|ψ〉+

∫
V (r)n(r)dr. (3.12)

The solution of (3.12) defines the functionals EV [n] and F [n] where the
last functional denotes the first term on the right hand side of the equation.
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The second and last step of the algorithm is to also minimize with respect
to the density, giving the required variational principle as

E = min
n(r)

[
F [n] +

∫
V (r)n(r)dr

]
. (3.13)

If now for any positive number η and variation in the density δn(r),

lim
η→0

F [n+ δn]− F [n]

η
=

∫
D(r)δn(r)dr (3.14)

is true, the functional derivative of F [n] with respect to the density is D(r).
As D(r) is independent of δn(r) it is itself a functional of the density and
can be written

D[n] =
δF [n]

δn(r)
. (3.15)

Assuming the existence of D[n], a small variation of n(r) will give a vari-
ation of EV [n] as

EV [n+ ηδn]− EV [n] = η

∫ [
δF [n]

δn(r)
+ V (r)

]
δn(r)dr +O(η2). (3.16)

As seen from (3.13) the first term on the right hand side of (3.16) vanishes
for the density of the ground-state and this density must therefore satisfy

δF [n]

δn(r)
= −V (r), (3.17)

showing that the functional derivative of F [n] yields the potential V (r).

3.3.2 The Hohenberg-Kohn theorems
The Hohenberg-Kohn theorems are fundamental to the starting point of
DFT showing that, in principle, all properties of the ground-state of a many-
body system can be determined by the ground-state electron density [21].
The two theorems concern any system of electrons moving in an external
potential and can be given as follows [21]:

Theorem 1 - The external potential and hence the total energy, is a
unique functional of the electron density.
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Theorem 2 - The functional that gives the ground-state energy of the
system, gives the lowest energy if and only if the input density is the
true ground state density.

In short, these theorems state a one-to-one correspondence between the
electron density and the many-body wavefunction of the ground-state and
a way of finding this density via a variational principle.

Since the ground state density in principle determines all properties of
the system (3.13) and (3.17), taking the Hohenberg-Kohn theorems into
consideration, provide a way to calculate them. However, the exact func-
tional F [n] is not known. It could be approximated entirely, but in some
cases, one being that of the non-interacting electron system, the calculations
can be done within a greatly simplified framework. The desired approach is
thus the one that will give the correct results for the non-interacting system
no matter which approximations are applied later.

3.3.3 The Kohn-Sham equations
The approach based on non-interacting electrons was established by Kohn
and Sham (KS) in 1965 [22]. The first step is to use the density of the
ground-state of a non-interacting system in some external, local potential
VKS(r) to represent the density of the ground state of the interacting sys-
tem. After this, the density is found by minimizing the energy-functional of
the non-interacting system, denoted E(0)

VKS
[n], using a superscript (0) which

hereafter indicates that it is the ground-state. The minimization is given by

E
(0)
VKS

[n] = min
ψ→n(r)

〈ψ|T̂ |ψ〉+

∫
VKS(r)n(r)dr, (3.18)

where the first term on the right hand side, denoted Ts[n], is the kinetic
energy of the non-interacting system with ground-state density n(r). This
density must from (3.17) satisfy

δTs[n]

δn(r)
= −VKS(r). (3.19)

The next step is to decompose the unknown functional F [n] as

F [n] = Ts[n] + EH [n] + Exc[n], (3.20)
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introducing the Hartree energy functional

EH [n] =
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
dr′dr (3.21)

and the exchange-correlation (xc) energy functional, denoted Exc[n] and
defined by (3.20). By yet again using (3.17) one obtains

δTs[n]

δn(r)
= −V (r)− VH(r)− Vxc(r). (3.22)

Here, VH(r) is the Hartree potential and Vxc(r) is an xc potential given by

Vxc(r) =
δExc[n]

δn(r)
. (3.23)

Equation (3.22) can now be used together with (3.19) to give the KS poten-
tial VKS(r) as

VKS(r) = V (r) + VH(r) + Vxc(r). (3.24)

Since minimizing E(0)
VKS

[n] by definition of (3.18) corresponds to finding
the density of the ground-state of the non-interacting system in VKS(r),
this density is calculated by solving the KS equations given by[

− ~2

2m
∇2 + V (r) + VH(r) + Vxc(r)

]
φα(x) = εαφα(x). (3.25)

Here, α ranges from 1 to N and φα are known as the KS orbitals. It should
be noted that this is an eigenvalue equation and that these orbitals do not
have any formal physical interpretation, but still reflect the properties of
real single-particle states remarkably well. They can be used to obtain the
density of the ground-state as

n(r) =
N∑
α=1

∑
s

|φα(r, s)|2. (3.26)

There are several advantages by taking this approach. The first is that, as
earlier mentioned as a desired property, (3.25) gives correct results for a
non-interacting system. The second advantage is that the kinetic energy
Ts[n] and the Hartree energy EH [n] can be calculated without much dif-
ficulty. Thus, only the term containing the xc energy, Exc[n], needs to
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be approximated to calculate the functional F [n] along with its functional
derivative Vxc(r). Lastly, the single-particle KS equations from (3.25) are
less complicated to solve than the Schrödinger equation (3.1) for a system
of many electrons.

Equations (3.25) are solved iteratively after making an approximation
for the xc potential Vxc(r). The first step is to make a guess for the density
n(r) which determines Vxc(r). Then, (3.25) is solved using (3.26) to obtain
a new density which can be used as a better guess and to recalculate the
approximation of the xc potential. This cycle is repeated until the density
is self-consistent, in effect reproduced within an acceptable convergence
criterion. The final density is used to calculate ground-state properties. The
fundamental property is the ground-state energy and to compute this it is
important to note that the non-interacting functional for the kinetic energy
is by construction given as

Ts[n] =
N∑
α=1

εα −
∫
VKS(r)n(r)dr. (3.27)

By inserting this expression for F [n] into (3.20) and using the result in the
variational principle from (3.12) the expression for the ground-state energy
becomes

E =
N∑
α=1

εα−
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
dr′dr−

∫
n(r)Vxc(r)dr+Exc[n]. (3.28)

3.4 Approximating the exchange-correlation func-
tional

If the xc functional was known exactly the KS approach would give exact
results. However, as it still remains unknown the functional has to be ap-
proximated. There are several ways of doing this and this is a crucial step
in terms of the correctness of DFT calculations. In this chapter two differ-
ent types of approximations will be presented, known as the local-density
approximation (LDA) and the generalized gradient approximation (GGA).
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3.4.1 The local-density approximation
LDA denotes approximations to the xc energy functional that only depend
on the electron density by assuming a slowly varying density across space.
By this, approximations which for example also include derivatives of the
density are excluded. LDA makes use of the fact that the form of the xc
functional is known for the uniform electron gas. The real, inhomogeneous
system under consideration is divided into small volumes of infinitesimal
size, treating the electron density as a constant in each of these volumes.
Then, the xc energy for the uniform electron gas at this density is used as
an approximation to the true xc energy for each volume. This leads to an
expression for the total exchange-correlation energy as [23]

ELDA
xc [n] =

∫
n(r)εxc(n(r))dr. (3.29)

Here, εxc(n(r)) is the xc energy of the uniform, interacting electron gas at
density n(r), per particle.

Real systems can have large variations in the electron density and it is
largely these variations that give materials their different properties, im-
plying that LDA is of little value. However, the approximation can give
reasonable results even with a rapidly varying density. One example is the
separation distance between atoms at equilibrium which LDA reproduces
with only a few percent of error [24]. Still, LDA is quite a naive approxima-
tion and to get better results for various types of calculations the generalized
gradient approximation is necessary.

3.4.2 The generalized gradient approximation
The difference between LDA and GGA is that the latter includes infor-
mation not only about the local density, but also about its local gradient.
Containing more information this in some cases leads to better results com-
pared to LDA, with slightly increased computational cost. There are many
ways to include information about the gradient of the electron density, but
all methods can be written as [12, p. 355]

EGGA
xc [n] =

∫
f(n(r),∇n(r))dr. (3.30)

Several forms of the function f which depends on both the electron density
n(r) as well as its gradient ∇n(r) can give good results for properties of
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different systems. Examples include total energies, excitation and ioniza-
tion potentials where GGAs can be said to be superior to LDA [25].

The xc energy functional can be separated,

EGGA
xc [n] = EGGA

x [n] + EGGA
c [n], (3.31)

with the terms on the right hand side denoting the exchange and correlation
part, respectively. With this separation the exchange part can be written as

EGGA
x [n] =

∫
n(r)εLDAx (n(r))Fx(s)dr. (3.32)

Here, εLDAx (n(r)) is the same as for LDA when separating into exchange
and correlation parts for εxc(n(r)) in (3.29). The function Fx(s) is called
the enhancement factor over the LDA exchange. It is a function of the
dimensionless, reduced gradient of the density, s, given as [26]

s =
|∇n(r)|

(24π2)1/3n(r)4/3
. (3.33)

The other part of the separation of EGGA
xc , namely EGGA

c , is very complex
and not as easily presented. The forms of EGGA

c and the enhancement fac-
tor Fx(s) vary for the different approximations belonging to the class of
GGAs. One example of a popular GGA is the BLYP functional which has
its name from the exchange part developed by Becke [27] and the corre-
lation part developed by Lee, Yang and Parr [28]. Another example is the
Perdew-Burke-Ernzerhof (PBE) functional [29]. This functional is used ex-
tensively in this thesis because calculations with this functional in general
give good results for a wide range of physical systems [30]. For brevity, the
functionals will not be given here and the references should be consulted
for more details.
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Chapter 4
The cluster expansion method

The CE method will be presented in this chapter starting out
with the theoretical framework based on reference [31] and
[32]. After presenting the theory, a way of evaluating a given
cluster expansion is discussed. More details about its imple-
mentation will be given in chapter 5 which concerns computa-
tional methods.

4.1 Theoretical framework
Consider a binary, crystalline material containing N lattice points in total.
To each point p in the lattice a discrete configurational variable σ is as-
signed, which take values 1 or −1 for a binary system depending on the
type of atom located at p. Thus, any configuration of the system can be
described by the vector

σ = {σ1, σ2, ..., σN}. (4.1)

Consider now a point cluster within the system containing only one lattice
point, making the configurational space one-dimensional. Given two func-
tions depending on the configuration of the point cluster, f(σ) and g(σ),
their inner product in the configurational space is defined as

〈f, g〉 =
1

2

∑
σ=±1

f(σ)g(σ). (4.2)
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The configurational variable σ spans the one-dimensional space and an or-
thonormal and complete basis for this space can be constructed to represent
the different possibilities at each lattice point of a binary system. This basis
is given by two polynomials ϕ0(σ) and ϕ1(σ) as

ϕ0(σ) = 1 (4.3a)
ϕ1(σ) = σ, (4.3b)

where the subscript denotes the order of the polynomial. From these an
orthogonal basis can be constructed for a cluster of any given size. This is
done by noting that for a cluster α = {p1, p2, ..., pnα}, where nα denotes the
number of lattice points in the cluster, its configurational space corresponds
to the product of all its subspaces [32]. The basis for a cluster α is thus
given by

Φα(σα) =
∏
i∈α

ϕ1(σi), (4.4)

containing all possible products of the polynomials in (4.3). This is called
the characteristic function for the cluster and its orthogonality follows from
the orthogonality of the polynomials ϕi(σ). The inner product between two
functions of the configuration of cluster α then becomes

〈f, g〉 =

(
1

2

)nα ∑
σ1=±1

· · ·
∑

σnα=±1

f(σα)g(σα). (4.5)

Now, any function of the configuration of the cluster can be expanded in
the basis or characteristic function of the cluster. An important example is
the configurational energy of the cluster which becomes

E(σ) =
∑
α

VαΦα(σ). (4.6)

The coefficients Vα are the effective cluster interactions, given by the in-
ner product of the characteristic function and configurational energy of the
cluster,

Vα = 〈Φα, E〉. (4.7)
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4.2 Evaluating the cluster expansion and select-
ing the effective cluster interactions

A crucial step in the CE method is to determine ECI by fitting them to
calculated energies. A conventional way of doing this is by starting out
with a few geometrically optimized input structures. Then, an optimal set
of clusters within the structures is found by minimizing the cross-validation
(CV) score [33], given by

CV =
1

n

n∑
i=1

(Ei − Êi)2, (4.8)

by fitting of ECI to the energy of the different configurations. Here, Êi is
the energy of structure i, predicted by a fit to the (n − 1) other energies
while Ei is the calculated energy for that structure by DFT calculations.
Historically, stepwise and ridge regression [34] has been used to a large
extent for such regression purposes although they have some issues. One
problem with stepwise regression is that it is not guaranteed to give better
predictions except for some cases. Regarding ridge regression which aims
to minimize overfitting by reducing the coefficients, this method does not
set any ECI to zero and the model obtained can thus be complicated to
understand. A method of regression that both guarantees better accuracy
and performs a selection of the variables by setting some of them to zero is
the least absolute shrinkage and selection operator (LASSO) method [35].
A sample of size N is considered where each case i in the sample has one
outcome yi. Furthermore, each case depends on k variables given by the
vector xi = (x1, x2, ..., xk)

T . The LASSO method can then be expressed as
solving

min
β0,β

[
1

N

N∑
i=1

(yi − β0 − xTi β)2

]
(4.9)

subject to the condition
k∑
j=1

|βj| ≤ t. (4.10)

Here, β is a vector containing k elements which for the CE method corre-
sponds to ECI that should be determined, while t is the regularizing, free
parameter. Using the LASSO method when determining ECI thus gives a
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set of non-zero ECI possibly much smaller than the total number of ECI,
making the CE model easier to interpret while at the same time minimizing
the CV score. It can be useful to rewrite (4.9) and (4.10) into one equation.
Let y be a vector of the possible outcomes yi and X be a matrix so that
Xij = (xi)j . Finally, by writing the lp norm as

||β||p =

(
N∑
i=1

|βi|p
) 1

p

, (4.11)

the LASSO method can be written in a Lagrangian form as

min
β∈Rk

[
1

N
||y −Xβ||22 + λ||β||1

]
, (4.12)

where λ is a free parameter. This parameter is related to t, but their rela-
tionship depends on the data and is not given generally.
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Computational methods

In this chapter, important computational details regarding GPAW
and ASE as well as the CE and MC methods used will be pre-
sented. Additional theoretical aspects will also be given.

5.1 GPAW and ASE

As mentioned previously DFT has become a very popular choice for doing
calculations on the atomic scale. There exists many ways to implement this
formalism and to perform DFT calculations for this project the open-source
DFT Python [36] code named GPAW [37] is employed. This program is
based on the projector-augmented wave (PAW) method [38] and the atomic
simulation environment ASE [39].

5.1.1 Density functional theory calculations

GPAW is based on the PAW method with element-specific functions and
parameters from the GPAW library. By using the PAW method the KS or-
bitals, or wave functions, which oscillate rapidly near the nuclei are trans-
formed to more smooth pseudo wave functions. GPAW is implemented
within ASE. The way this is done is that GPAW utilizes ASE for setting up
the domain of the calculation via the unit cell and the position of the differ-
ent atoms as well as geometrically optimizing the structure. GPAW, being a
calculator for DFT caculations perform several computational approxima-
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tions to make it possible to calculate different quantities within an accept-
able time frame. There is a tradeoff between the speed and the accuracy
of a calculation and having too low accuracy in the calculations will typi-
cally give a systematic under- or overestimation of the energies. There are
several parameters that can be specified for the calculations in GPAW af-
fecting both the accuracy and computational cost, but the majority of them
are kept at their default values in this thesis. One approximation is which
xc functional to use which in this thesis is set to the PBE functional unless
explicitly stated otherwise. Another one is the number of electronic bands
to include for each spin, denoted NBands, with a default value equal to the
number of atomic orbitals in the setup. Important to note is that if NBands is
negative the calculation will include a number of unoccupied bands in the
calculation equal to the absolute value of that negative number in addition
to all the occupied ones. The sampling of the Brillouin zone is also impor-
tant where the default value is to only sample the Γ-point. In the calcula-
tions the Monkhorst-Pack [40] sampling is used by specifying the number
of k-points in each direction. The smearing of the occupation numbers can
also be controlled, following the Fermi-Dirac distribution given by (2.11)
by setting the value for kBT in the equation with a default value of kBT =
0.1 eV when using periodic boundary conditions. It should be stressed that
the fictitious temperature electrons corresponds to 0.1 eV, but the real tem-
perature is 0 K in the calculations. Lastly, several convergence criteria can
be set for the calculation cycles to be considered as self-consistent. For ex-
ample, the default criterion for energy is that the difference over the three
last iterations must be lower than 0.5 meV per valence electron whereas
the difference in electron density has to be less than 0.0001 electrons per
valence electron.

5.1.2 Plane-wave mode
GPAW represents the wave functions by using a real space grid of three
dimensions. Although a real space grid implementation parallelizes very
efficiently for large systems it is often faster for small systems to expand
the wave functions in plane-waves in the k-space. GPAW supports this
plane-wave mode and as it is expected to work well for crystals because of
their periodic structure this mode is used for the calculations in this project.
Here, every quantity is represented by its corresponding Fourier transform
where the Fourier transform is taken over the periodic unit cell. Moreover,
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periodic boundary conditions are required giving bulk materials instead of
molecules when using a small unit cell. The plane-waves used in the calcu-
lations are restricted by a kinetic energy cutoff, ECut, including only plane-
waves with |G + k|2/2 < ECut where ECut is 340 eV by default but can also
be specified to other values.

5.1.3 Structure optimization
The different atomic structures are set up by using ASE and then geomet-
rically optimized with GPAW and ASE. The algorithm used for optimizing
structures in this project is called the preconditioned LBFGS algorithm. It
is a linearized version of the BFGS algorithm [41] with limited memory.
Moreover, it is a local optimization algorithm that converges when

max
a
|Fa| < fmax. (5.1)

Here, a runs over all the atoms, Fa is the force experienced by atom a and
fmax is a criterion set by the user which in the following calculations is
set to fmax = 0.05 eV/Å. For each iteration of the algorithm it uses two
quantities to determine where the atoms should be moved towards. The
first quantity is the calculated force on each atom. The second is the ma-
trix containing δE2

δxiδxj
, the second derivatives of the energy with respect to

the coordinates of the nuclei called the Hessian matrix. For the LBFGS
algorithm the inverse of the Hessian matrix, not the matrix itself, is up-
dated at each step. By preconditioning [42] the optimization can be done
in less time, where this advantage increases with the size of the system.
It is possible to optimize both the unit cell as well as the atomic positions
simultaneously or one at a time. Finally, it should be noted that optimizing
the unit cell and atomic positions effectively changes the lattice constants
of the structure and reduces the pressure to zero.

5.2 Cluster expansion
In this thesis the CE implementation developed at DTU is used [43]. In
chapter 4 the cluster expansion method was introduced along with the eval-
uation of it and the selection of ECI. Here, the conventional way of de-
veloping the trial CE is given which is used in this project and based on
[44].
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5.2.1 Selection of additional structures for developing the
cluster expansion

The structures used for DFT calculations and the clusters chosen within
them determines the effectiveness and the precision of the CE method. Hav-
ing obtained a trial CE which denotes the set of clusters chosen through the
selected ECI, it should be evaluated using structures that do not belong to
the initial set of input structures. This is because the trial CE gives better
predictions for structures similar to the input structures as the CV score is
calculated from this set. Hence, additional structures are needed for the
evaluation of the trial CE. The conventional way of doing this is to predict
near-ground and ground states of different compositions, optimize them and
validate the trial CE by including the structures. The trial CE is developed
in this way until the predicted ground states converge, adding the predicted
near-ground and ground state structures to the initial set. The near-ground
and ground states are predicted by simulated annealing [45] which is devel-
oped from the Markov chain MC method called the Metropolis-Hastings
algorithm [46]. This method starts out with a structure at a given composi-
tion, random configuration and high temperature T . Using the analogy of
annealing of metals the temperature is then decreased slowly. At each tem-
perature NMC MC steps are performed where each step can be divided into
two. The first is swapping the positions of two randomly selected atoms
and computing the energy difference ∆E between the two different config-
urations by using the trial CE. The second is to accept the new state with a
probability of

min
(

1, e
− ∆E
kBT

)
. (5.2)

In this way, by decreasing the temperature and repeating the process, the
system will approach the near-ground or ground state of the desired com-
position as predicted by the trial CE.

5.3 Monte Carlo simulations

Having obtained a set of ECI from the CE method, MC simulations can be
used for calculations. In this thesis, MC simulations are implemented in
both the canonical and semi-grand canonical ensemble. These ensembles
will be introduced here along with how to calculate enthalpy of formation,
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free energy of formation, phase boundaries and free energy barriers. The
ensembles are just briefly introduced as the focus is on their implementation
in the MC simulations and further details are found in reference [47] and
[48]. Most of the MC simulations in this thesis are performed based on the
work by David Kleiven [49], except calculations of the free energy barriers.
Hence, the algorithm for computing these barriers will be given in greater
detail.

5.3.1 Canonical ensemble
A canonical ensemble is the statistical collection of the possible micro-
scopic configurations of a system. Furthermore, the system is surrounded
by a heat bath which the system is in thermal equilibrium with, at a given
temperature T . For such a system both the volume V and the number of
particles N are kept fixed. The temperature is the principal variable of
the system, determining the probability of occupying each of the possible
microscopic configurations and the fluctuations in the total energy of the
system.

MC simulations can be performed in this ensemble to search for ground
states and obtain a representative selection of configurations from the sta-
tistical distribution. This is done using the Metropolis-Hastings algorithm
just as in simulated annealing for obtaining additional structures for the
trial CE. It is thus necessary to highlight some important differences be-
tween obtaining new structures for the CE and performing MC simulations
using the final CE. A key difference is that for simulated annealing only
ground states are searched for, letting T approach zero. For MC simula-
tions using the final CE, not only the ground states at zero temperature can
be approximated. In addition, as the Metropolis-Hastings algorithm is used,
each MC step at each temperature makes the distribution of configurations
approximate more and more the actual, desired distribution at that given
temperature. Thus, both the ground state structures and and a representa-
tive selection of finite temperature simulations can be obtained, for example
the total energy as a function of magnesium concentration in an alloy. An-
other difference is that for developing the trial CE, all additional structures
should have the same total number of particles as the initial set and ECI are
altered as each new set of structures is added. This is different from MC
simulations using the final CE where the simulations can be performed for
any desired number of particles as long as it is kept fixed. Also, ECI used

33



Chapter 5. Computational methods

are given by the final CE and not altered as calculations are performed.
The last important difference is the number of MC steps, NMC , per-

formed at each temperature which is set to a certain value in simulated
annealing. This is handled in another way for the subsequent MC simula-
tions. In the canonical ensemble the energy is considered, taking a value
Ei at each MC step i. An estimator of the expectation value of the energy
is the average over M steps and given by

E[1,L] =
1

M

M∑
i=1

Ei. (5.3)

Then, M is found by periodically estimating the variance of E[1,L] [50] and
end the simulation when this estimate satisfies

V ar(E[1,L]) ≤

(
p

√
2

π

∫ 1−α

0

e−t
2

dt

)2

. (5.4)

Here, p is a precision in the energy set by the user and α is the confidence
level. For example, wanting the precision pwith a probability of 99 % gives
α = 0.01. When stating the precision of a MC simulation in this thesis the
parameter p is meant.

5.3.2 Semi-grand canonical ensemble
The semi-grand canonical ensemble is similar to the canonical ensemble,
but the crucial difference is that the chemical potential µ is allowed to vary.
Thus, the volume and total number of particles are fixed at a given temper-
ature, but the composition may change during a simulation. In practice the
difference is that at each MC step, instead of swapping the atomic position
of two atoms a randomly selected atom is replaced with an atom of an-
other type. In a binary alloy of aluminum and magnesium this corresponds
to changing one of the aluminum to a magnesium atom or the other way
around. This new state is then accepted with a probability given by (5.2)
as before. Doing MC simulations in this ensemble can as in the canonical
ensemble both be used to search for ground states and obtain representative
selections of configurations from the statistical distribution.

The number of MC steps needed for the simulation is determined in
almost the same way as in the canonical ensemble. The only difference

34



5.3 Monte Carlo simulations

is that in addition to the energy, the estimated variance of the chemical
composition must satisfy the same requirement as for the energy.

5.3.3 Enthalpy of formation
A property of interest when doing MC simulations is the enthalpy of for-
mation which is a measure of how much energy is needed or released when
an alloy is formed from its elements via a chemical reaction. It can thus be
used to examine whether a given alloy is more stable than the pure phases.
The enthalpy itself is given by

H = U + pV, (5.5)

where U is the internal energy, p is the pressure and V is the volume. The
enthalpy of formation is then defined as the change in enthalpy when form-
ing a substance from its elements. The enthalpy of formation for a given
reaction can thus be expressed as

HFormation =
∑

HProducts −
∑

HReactants, (5.6)

in effect the difference in enthalpy between the reactants and products. By
optimizing the structures involved the pressure becomes zero and it is pos-
sible to calculate the enthalpy of formation for a given reaction by simply
using total DFT energies. Given an alloy of two different elements, Na

atoms of type a and Nb atoms of type b, the enthalpy of formation can be
expressed as

HFormation = EAlloy −
Na

N
Ea −

Nb

N
Eb. (5.7)

Here, EAlloy is the total energy of the alloy, Ea and Eb is the total energy of
a bulk of N atoms of respectively type a and b and N = Na +Nb.

5.3.4 Free energy of formation
Another property considered here is the free energy of formation. Changes
in free energy for a physical system help decide the direction of its reactions
as at a constant temperature a material will minimize its free energy. It is
therefore a useful quantity to calculate. The Gibbs free energy is expressed
as

G = U + pV − TS. (5.8)

35



Chapter 5. Computational methods

Here, S is the entropy of the system. If the structures used are optimized
the pressure becomes zero and (5.8) emerges as the Helmholtz free energy,

F = U − TS. (5.9)

Calculating the Helmholtz free energy for an alloy of Na atoms of type a
and Nb atoms of type b, in total N atoms, the free energy of formation is
then expressed as

FFormation =
∑

FProducts −
∑

FReactants = FAlloy −
Na

N
Fa −

Nb

N
Fb. (5.10)

Here, FAlloy is the free energy of the alloy and Fa and Fb is the free energies
of bulks of N atoms of type a and b, respectively. Since the configurational
entropy is zero in the pure phases the second term in (5.9) vanishes and the
free energy of formation can be expressed using total DFT energies for the
pure phases, as

FFormation = FAlloy −
Na

N
Ea −

Nb

N
Eb. (5.11)

The remaining step is to calculate FAlloy. Consider the partition function
in the semi-grand canonical ensemble, Z, the sum over the possible mi-
crostates of the system [48]. This is related to the free energy via

e−βG = Z, (5.12)

where β = 1
kBT

and G is equivalent to F when the pressure is zero. By
taking the natural logarithm of both sides, differentiating and using that
U = −∂ lnZ

∂β
[51, p. 56] this can be rewritten as

d(βF ) = Udβ. (5.13)

Integrating this equation on both sides yields

β1F1 = β0F0 +

∫ β1

β0

Udβ. (5.14)

Letting T0 approach infinity the second term in (5.9) for F0 becomes dom-
inant and F0 can be approximated as −T0S0. The quantity S0 is given by

S0
T0−→∞−−−−→ −kB

∑
i

xi lnxi, (5.15)
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known as the entropy of mixing. Here, xi is the fraction of atoms of type i
given as the number of atoms of type i, Ni, divided by the total number of
atoms in the alloy, N . Thus, β1F1 can be expressed as

β1F1 =
∑
i

xi lnxi +

∫ β1

0

Udβ (5.16)

which can be integrated numerically. Note that letting T0 approach infinity
makes the lower limit of the integral become zero. Finally, the free energy
of formation becomes, combining (5.11) and (5.16),

FFormation = kBT1

[∑
i

xi lnxi +

∫ β1

0

Udβ

]
− Na

N
Ea −

Nb

N
Eb (5.17)

which has to be evaluated at a given temperature T1.

5.3.5 Phase boundary tracing

To determine the phase diagram of a system it is less computationally ex-
pensive to trace the boundaries of a phase compared to finding the whole
region where this phase is stable. Here, a method of finding the boundary
of a equilibrium of two phases when knowing a point where a first-order
transition occurs is presented based on reference [50]. To begin with, the
thermodynamic potential per atom in the semi-grand canonical ensemble is
defined as

φ(β, µ) = − 1

βN
ln

(∑
i

e−βN(Ei−µxi)

)
, (5.18)

where µ is the chemical potential and Ei is the energy per atom of type
i. Assume that at a known value of β and µ the system is separated in a
mixture of the two phases α and γ. At this known point the thermodynamic
potential given by (5.18) has to be the same for the two phases. The key
idea of phase boundary tracing is then to find the change in µ needed to keep
the thermodynamic potential of the two phases equal as β increases by dβ.
Repeating this, µ(β) is approximated which again can be used to obtain
the different concentrations in each phase at different temperatures. The
equation which needs to be numerically solved is found by differentiating
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βφα = βφγ , which is true along the phase boundary. After taking the total
differential the result can be rewritten as

dµ

dβ
=

Eγ − Eα
β(xγ − xα)

− µ

β
, (5.19)

where xα and Eα is the concentration and energy evaluated at a given µ and
β for the phase α, and likewise for the other phase γ. To numerically solve
(5.19) MC simulations in the semi-grand canonical ensemble can be used
to calculate all the necessary values.

5.3.6 Free energy barriers
For a given alloy the minimum in free energy as a function of the con-
centration of an atom, G(x), indicates the most energetically favourable
composition. It is possible to have local minima in free energy in addition
to the global one, separated by higher levels of energy which are denoted
free energy barriers. One can calculate the difference in free energy as a
function of the concentration of an atom and thus the free energy barriers
in the semi-grand canonical ensemble. In this ensemble the partition func-
tion is given by (5.12). As mentioned earlier it is also the sum over the
possible microstates of the system, given by

Z = e−βG =
∑
{σ}

e−β(E(σ)−µx(σ)). (5.20)

Here, x is the concentration of a chosen type of atoms and σ is a given
configuration of the system of atoms. The sum is thus performed over all
possible configurations of the system. Now, the free energy of a given
concentration x̃ can be calculated by taking the sum over all configurations
giving this concentration,

e−βG(x̃) =
∑
{σ}∈Qx̃

e−β(E(σ)−µx̃) (5.21)

where Qx̃ is the set of configurations giving the concentration x̃. This can
be rewritten as

e−βG(x̃) =
∑
{σ}

δ(x(σ)− x̃)e−β(E(σ)−µx(σ)) (5.22)
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where δ(x− y) is 1 for x = y and 0 otherwise. This can again be rewritten
as

e−βG(x̃) = Z〈δ(x(σ)− x̃)〉 (5.23)

where 〈...〉 denotes the thermodynamic average

〈A〉 =
1

Z

∑
{σ}

A(σ)e−β(E(σ)−µx(σ)). (5.24)

The difference in free energy between two concentrations x̃1 and x̃2 is thus
found via

e−βG(x̃1)

e−βG(x̃2)
=
Z〈δ(x(σ)− x̃1)〉
Z〈δ(x(σ)− x̃2)〉

. (5.25)

Defining ∆G = G(x̃1)−G(x̃2) this becomes

e−β∆G =
〈δ(x(σ)− x̃1)〉
〈δ(x(σ)− x̃2)〉

(5.26)

which is independent on Z. Doing a MC simulation in the semi-grand
canonical ensemble a histogram H counting the number of times the sys-
tem visits the different concentrations can be obtained by analyzing the
trajectory of the simulation. What is sampled in the simulation is thus
〈δ(x(σ) − x̃)〉 for all concentrations which can be used to calculate the
differences in free energy via (5.26). In this manner, ∆G can be found for
all concentrations.

The problem with this approach is that the system quickly goes towards
the most favourable state and poor results are obtained for the regions of
concentration where the probability of occupation is low. This is solved by
applying the umbrella sampling method [52]. With this method, the total
range of concentration of interest is divided into a set of N concentration
windows. Each window contains a given number of bins such that there is
a one-to-one correspondence between every concentration and bin in that
window. The first window at one end of the range of concentration contains
M bins. All the other N −1 windows contain M + 1 bins, assigned to each
concentration such that the first bin in each window corresponds to the last
bin in the previous window. This is illustrated in Figure 5.1.

In each window n a given number of MC steps is performed, obtaining
a histogram Hn for calculating ∆G in that window. By requiring that ∆G
is a continuous function of the concentration the overlapping concentra-
tions/bins for every two following windows are used to merge ∆G between
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Figure 5.1: Schematic figure of the windows and bins in umbrella sampling.

them. This is illustrated in Figure 5.2. In this fashion ∆G can be obtained
for all concentrations, also expecting good statistics in the ranges of con-
centration with a low probability if being occupied as the MC simulation is
forced to perform a given number of steps inside each concentration win-
dow.

Figure 5.2: Illustration of the merging of ∆G between different windows.
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Chapter 6
Results and discussion

This chapter includes presentations and discussions of the re-
sults in the thesis. First, some results for the convergence of
energy calculations using different values for the parameters in
GPAW and calculations of the lattice constant of aluminum and
magnesium using different xc functionals are presented. After
this, calculations of cohesive energy and the formation energy
of a vacancy follow. All of these were obtained for the special-
ization project, but are included here to explain the choice of
parameters for the DFT calculations and show that they give ad-
equate results. After this follows a presentation of the final CE
developed for aluminum and magnesium in a hcp lattice. MC
simulations including phase boundaries and free energy barri-
ers based on the final CE are then presented and discussed.

6.1 Convergence of energy calculations

The purpose of this section is to find suitable choices for the different pa-
rameters in GPAW depending on the size of the system. This is done by
calculating the total energy divided by the number of atoms varying each
parameter at a time for one system of 1 aluminum atom and another one
of 64 aluminum atoms. The structures are not optimized so as to speed up
the calculations. It is often more interesting to look at energy differences,
and moreover they tend to converge faster because of the systematic under-
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or overestimation of the individual energy calculations. Here, individual
energy calculations are used. This is because they are expected to converge
more slowly than energy differences. Thus, the convergence criteria 1 they
give for the different parameters are believed to be stricter than what is ob-
tained for energy differences. An important point is when a calculation is
said to be converged. The energy calculated at step i is denotedEi where an
increase in i will increase the accuracy. Roughly speaking, the calculation
will then be considered converged at step i− 1 if the difference between Ei
and Ei−1 is negligible. The fixed values for the different parameters when
checking the convergence in energy for a set of values for another param-
eter are summarized in Table 6.1a and Table 6.1b for a system of 1 and
64 aluminum atoms, respectively. When specifying the number of k-points
the cube root of this will be the number of k-points in both the x-, y- and
z-direction. The calculations are performed using the PBE functional.

Table 6.1: Fixed values for ECut, k-points, NBands and kBT in the convergence
tests.

(a) For a system of 1 aluminum atom.

Parameter Fixed value
ECut [eV] 340
k-points 512
NBands −2
kBT [eV] 0.1

(b) For a system of 64 aluminum atoms.

Parameter Fixed value
ECut [eV] 400
k-points 27
NBands −10
kBT [eV] 0.1

Figure 6.1 shows the total energy per atom of the two different struc-
tures for a set of cutoff energies where the other parameters are kept at their
fixed values. From this, a value of ECut = 800 eV for 1 atom and ECut '
500 eV for 64 atoms is considered to give highly accurate results. The sys-
tematic mismatch is understandable based on the difference in sampling of
the k-space. Figure 6.2 shows the total energy per atom of the two different
structures calculated with a varying number of k-points and the rest of the
parameters at fixed values. Here, the number of k-points that must be used
to have accurate results are found to be 512 and 64 for 1 and 64 atoms,
respectively. One can see that with intensive sampling in k-space the same

1Not to be confused with the term convergence criteria in chapter 5.1.1.
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result is obtained. Figure 6.3 shows the total energy per atom of the two
different structures as a function of kBT used in the Fermi-Dirac distribu-
tion given by (2.11), keeping the other parameters at fixed values. To get
convergent results, kBT = 0.1 eV for the smearing parameter seems to be
good enough for both structures of 1 and 64 atoms.

Figure 6.1: Total energy per atom as a function of ECut for a system of 1 and a
system of 64 aluminum atoms.

Thus, a rule of thumb has been established for the value of the differ-
ent parameters when performing DFT energy calculations depending on
the size of the system. However, it should be noted that computing other
quantities than energies may require a different set of parameters for fully
convergent results.
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Figure 6.2: Total energy per atom as a function of the number of k-points for a
system of 1 and a system of 64 aluminum atoms.

Figure 6.3: Total energy per atom as a function of kBT for a system of 1 and a
system of 64 aluminum atoms.
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6.2 Lattice constants for different functionals
The lattice constants for bulk aluminum and magnesium are estimated us-
ing the LDA, BLYP and PBE xc functionals. This is done by optimizing the
materials primitive unit cell using each of the functionals where the dimen-
sions of the optimized cell are used to obtain the calculated lattice constant.
The results for the three functionals as well as the experimental values pre-
viously introduced are given in Table 6.2a for aluminum and Table 6.2b for
magnesium. The results agree well with previous calculations of the same
type [53] which indicates that the set of parameters for systems of a few
atoms found in section 6.1 gives accurate results also for optimizing struc-
tures and estimating lattice constants. Considering the LDA functional, a
tendency to underestimate the lattice constants is observed which can be
expected based on previous calculations with this functional [24]. More-
over, the size of the error can be explained by the fact that LDA is the
simplest type of approximation for the xc functional. The BLYP and PBE
functionals perform better, where the latter is seen to fit best with experi-
mental values. Although the choice of the PBE functional for this thesis
is not based on these results it is reassuring that this functional gives good
results for the lattice constants.

Table 6.2: Lattice constants, experimentally and estimated using the LDA, BLYP
and PBE exchange-correlation functionals.

(a) For bulk aluminum.

a [Å]
Experimental 4.05 [7]
LDA 3.983
BLYP 4.112
PBE 4.04

(b) For bulk magnesium.

a [Å] c [Å]
Experimental 3.21 [7] 5.21 [7]
LDA 3.126 5.124
BLYP 3.203 5.3
PBE 3.186 5.223

6.3 Cohesive energy
Returning to energy calculations where the convergence of the results de-
pending on the different parameters has been studied thoroughly in chapter
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6.1, the cohesive energy per atom is investigated. A calculation is done for a
system of 56 aluminum and 8 magnesium atoms placed in a bulk fcc struc-
ture using the lattice constant of aluminum. The total energy of the bulk
as well as for a single aluminum and magnesium atom is needed for the
calculation. Important to note is that the single atom calculations should be
performed in large unit cells to keep them separated from replicated copies.
First, both the cell and atomic positions of the bulk of in total 64 atoms is
optimized and the total energy is calculated. Reusing the same unit cell,
the single atom is placed inside which ensures enough space between it
and its nearest neighbours which are present because of periodic boundary
conditions. The structures used are illustrated in Figure 6.4. Calculating
the energy of both single-atom structures in addition to the bulk the desired
cohesive energy per atom can be obtained from (2.16).

(a) The optimized bulk. (b) The single aluminum
atom.

(c) The single magne-
sium atom.

Figure 6.4: The structures used in the calculation of cohesive energy.

The theoretical values for bulk aluminum and magnesium are εAl
c =

3.39 eV per atom and εMg
c = 1.51 eV per atom [7, p. 50]. A crude estimate

of the calculation can be obtained via interpolation of the theoretical values
giving εEc = 3.16 eV per atom, where the superscript E denotes that it is
an estimate. The calculated result for the structure under consideration is
even closer to the value for aluminum, at εc = 3.32 eV per atom. The
positive sign which is expected shows that it is energetically favourable for
the structure to be arranged in a fcc lattice as compared to separate atoms.

The calculation is repeated for another structure consisting of 48 alu-
minum and 16 magnesium atoms in a fcc bulk. Via interpolation the es-
timated cohesive energy is εEc = 2.92 eV while the calculated result is
εc = 3.05 eV. Again, the calculated value is higher than the crude estimate
and the positive sign shows that the arrangement is energetically favourable.
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The reason for both results here being closer to the theoretical value of alu-
minum is that both structures are rich in aluminum. Thus, both structures
favour a fcc structure and the magnesium bulk reference value is far off
in terms of structure and density. This makes the cohesive energy become
closer to the theoretical value of aluminum than the linear interpolation.
These results together with previous calculations for the cohesive energies
of aluminum [54] and magnesium [55] with the PBE functional give us
confidence that the DFT simulations give results of good quality.

6.4 Formation energy of a vacancy
Another total energy calculation performed is the formation energy of a
vacancy. The calculation is done by first creating a bulk structure of the
desired composition and optimizing both the unit cell and atomic positions
before calculating the total energy. After this, the same structure is cre-
ated, but one of the atoms is removed which creates a vacancy. This new
structure is also optimized and the total energy is calculated. The formation
energy of a vacancy can then be calculated via (2.19). This is done for a
bulk fcc structure of aluminum as well as for a bulk hcp structure of mag-
nesium. The method is illustrated for aluminum in Figure 6.5, showing the
structures used where the vacancy can be observed at the bottom of Figure
6.5b.

(a) The optimized bulk. (b) The optimized bulk
with a vacancy.

Figure 6.5: The structures used in the calculation of the formation energy of a
vacancy.

The results are summarized in Table 6.3 including experimental results
for aluminum and magnesium. As seen, the calculations are very good
compared to previous experiments although a trend of obtaining slightly
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higher values can be seen. These results shows that the parameters for
GPAW found in section 6.1 are adequate for energy calculations.

Table 6.3: Formation energy of a vacancy in eV for bulk fcc aluminum and bulk
hcp magnesium.

Evf Experimental
Al 0.67 0.64 [56]
Mg 0.83 0.81 [57]

6.5 Cluster expansion
A CE model is constructed from an initial set of structures of aluminum
and magnesium of in total 64 atoms and varying concentration. The atoms
are arranged in a hcp lattice corresponding to that of magnesium and the
atomic positions are randomized. For all structures in both the initial and
final set the composition varies from 25 % to 100 % magnesium and the
structures as well as lattice constants are optimized. The reason for setting
a limit at 25 % concentration of magnesium is that it improves the CV score
of the CE. Also, as pure aluminum is arranged in a fcc lattice it does not
fit well in the hcp lattice which is used here. The CE is developed from
the initial set by repeatedly using simulated annealing to predict new sets
of ground and near-ground states until converged. In addition, all possible
configurations of a structure of 8 atoms replicated to 64 atoms are included,
giving in total 101 structures. The DFT calculations of the energies are
performed with ECut = 500 eV, 64 k-points, kBT = 0.1 eV, Nbands equal
to 1.2 times the number of occupied bands and using the PBE functional.
Finally, the configurational variable σ takes values 1 for aluminum and -1
for magnesium.

The evaluation of the final cluster expansion is shown in Figure 6.6.
Here, the predicted energy of each structure using the ECI of the final CE is
shown with red circles together with a line indicating that predicted energies
correspond to energies calculated via DFT. Red circles exactly at the black
line thus show that CE and DFT calculations match excellently with a CV
score of 3.2 meV/atom. The CV score and the root-mean-square error [58]
is also included in the figure.
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6.5 Cluster expansion

Figure 6.6: Evaluation of the final cluster expansion. The red circles are energies
predicted by the CE and the black line indicates where EDFT = ECE.

The ECI obtained from this cluster expansion are given in Figure 6.7
while Figure 6.8 shows the same ECI, not including the zero- and one-
body clusters. For detail, the ECI are also given numerically in Table 8.1 in
Appendix A.

The zero- and one-body ECI are not interesting when looking at which
configurations are energetically favourable because they are trivial. Also,
the four-body ECI are hard to interpret. Thus, the most interesting ECI to
examine further are the two-body ECI c2 1414 1 00 as well as the two dif-
ferent three-body ECI as these are the largest remaining ECI. Their clusters
are shown in Figure 6.9 whereas the rest of the clusters are shown in Figure
8.1 in Appendix A. The two-body cluster shown in Figure 6.9a is made up
of two atoms at a second nearest neighbour distance in the hcp lattice. The
first three-body cluster, c3 1000 1 000 shown in Figure 6.9b, consists of
three atoms all in nearest neighbour distance to each other in a hcp lattice.
The other three-body cluster, c3 1414 1 000 shown in Figure 6.9c, consists
of three atoms in a hcp lattice as well. Here, all interatomic distances cor-
responds to the nearest neighbour distance except one which corresponds
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Figure 6.7: The effective cluster interactions obtained from the final cluster ex-
pansion.

Figure 6.8: The effective cluster interactions obtained from the final cluster ex-
pansion, not showing the zero- and one-body clusters.
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to the second nearest neighbour distance.

(a) c2 1414 1 00. (b) c3 1000 1 000. (c) c3 1414 1 000.

Figure 6.9: The three most important clusters of the ECI, illustrated using alu-
minum atoms.

The clusters of the three ECI highlighted here can be used to get an
impression of which structures are energetically favorable for aluminum-
magnesium alloys in a hcp lattice. This is done by combining (4.6) and
the sign of the ECI for one cluster and deduce which configurations are
favourable, as the system will try to minimize its energy. As mentioned,
the configurational variable σ is 1 for aluminum and -1 for magnesium and
the ECI of the two-body cluster c2 1414 1 00 is negative. To get negative
contributions to the configurational energy a positive characteristic function
is needed which is only possible by putting equivalent atoms in the cluster.
This is an indication that it is energetically favourable to have a second
nearest neighbour distance between equal atoms, for both aluminum and
magnesium atoms in this system. In the same manner, the three-body clus-
ter c3 1000 1 000 gives negative contributions to the energy for three alu-
minum atoms or one aluminum and two magnesium atoms, all in a nearest
neighbour distance. For the cluster c3 1414 1 000, negative energy contri-
butions occur when either two aluminum and one magnesium atom or three
magnesium atoms are assigned to the cluster.

The calculated lattice constants a and c from the optimization of the hcp
structures in the DFT calculations for the CE are also analyzed. These are
given in Figure 6.10. The red line represents a linear regression which is
obtained from the experimental results reported in [59]. Moreover, the root-
mean-square errors for the two different lattice constants when compared
with the obtained regression line are indicated.

As seen, the calculated lattice constants depend linearly on the con-
centration just as in the experimental results, both decreasing with higher
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Figure 6.10: Calculated lattice constants a and c of the hcp lattice with root-mean-
square errors, from the optimization of the structures used in the cluster expansion.

amount of aluminum. Also, the numerical results have root-mean-square
errors that correspond to a 1.21 % and 1.29 % deviation, for a and c re-
spectively, from the theoretical values of pure magnesium. This means that
the numerical results match well with the experimental ones. A last ob-
servation is that both lattice constants seem to be slightly underestimated
resulting in a overestimation of the density, especially for high concentra-
tions of magnesium. This is not in agreement with previous results as given
in Table 6.2b where the PBE functional is seen to overestimate the lattice
constant c. This indicates a difference in the lattice constants calculated
via optimization of structures when using a primitive or a larger unit cell.
However, since periodic boundary conditions are applied the difference is
believed to be due to the difference in input parameters, especially the sam-
pling of k-space, for DFT calculations of small versus large structures.
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6.6 Monte Carlo simulations

Having developed a final CE model the ECI obtained are further used to do
MC simulations in both the canonical and semi-grand canonical ensemble.

6.6.1 Cooling down at constant chemical potential

A set of MC simulations is performed by cooling down a system of 1000
atoms to 50 K at a constant chemical potential in the semi-grand canonical
ensemble. This is done for 41 different values of the chemical potential µ,
ranging between -0.99 and -1.06 eV/atom and with a precision of 10−3 ef-
fectively determining the simulation length via (5.4). These limits are used
because for these values pure aluminum and pure magnesium are formed,
respectively, as the simulation approaches 0 K. The results are shown in
Figure 6.11.

Figure 6.11: Monte Carlo simulations in the semi-grand canonical ensemble,
cooling down a system of 1000 atoms to 50 K for different chemical potentials.

53



Chapter 6. Results and discussion

The magnesium concentration ranges from 0 to 1, indicating the mo-
lar fraction in the system. These results show that for high or low enough
values of µ the system tends to go towards pure aluminum and pure mag-
nesium, respectively. For many of the chemical potentials close to -0.99
the system goes towards an alloy rich in aluminum, but still containing a
bit of magnesium. This is probably an artifact of the final CE model where
the ECI are obtained from structures of 25 % magnesium or more. In ad-
dition to pure aluminum and magnesium, for some chemical potentials the
system goes towards a structure of 75 % magnesium which indicates that
this is another stable phase for aluminum and magnesium alloys in a hcp
lattice. This transition to the Mg3Al phase occurs slightly below 300 K
for chemical potentials between -1.0546 and -1.0420 eV/atom. All final
structures from the MC simulation which end up at 75 % magnesium are
equal. This structure is shown in Figure 6.12 and it is compatible with some
of the implications derived earlier for the different ECI. Magnesium atoms
are placed, although not exclusively, at second nearest neighbour distances
which is an implication from the two-body cluster. Moreover, one can ob-
serve three-body clusters of nearest neighbours consisting of one aluminum
and two magnesium atoms which is consistent with the three-body clus-
ter c3 1000 1 000. As indicated by the three-body cluster c3 1414 1 000,
clusters of three magnesium atoms with all distances equal to the nearest
neighbour distance except one being that of the second nearest neighbour
are observed as well. A final observation is that at high temperatures the
magnesium concentration tends to go towards 50 %, showing that there is
no clustering and aluminum and magnesium are mixed together randomly.
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Figure 6.12: The final structure for Monte Carlo simulations in the semi-grand
canonical ensemble ending up at 75 % magnesium.

6.6.2 Cooling down at constant concentration of magne-
sium

A set of MC simulations is also performed in the canonical ensemble. In
each simulation a system of 1000 atoms is cooled down to 100 K at a con-
stant concentration of magnesium. This is done for 17 different concetra-
tions ranging from 25 % to 100 % magnesium as these are the limits in the
final CE model. The precision used is 10−5. From these simulations the
enthalpy of formation as well as the free energy of formation can be calcu-
lated at each temperature and concentration. The results for the enthalpy of
formation are shown in Figure 6.13. Again, the magnesium concentration
indicates the molar fraction in the system.

As mentioned earlier, the enthalpy is zero for pure elements, also shown
in these results for magnesium. At high temperatures, as the system seeks
to minimize its enthalpy, a mixture of pure aluminum and pure magnesium
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Figure 6.13: Enthalpy of formation calculated using Monte Carlo simulations
in the canonical ensemble, cooling down a system of 1000 atoms to 100 K for
different concentrations of magnesium.

in segregated phases is thus what can be expected based on these results.
This is because structures of other concentrations are not favourable to form
in terms of enthalpy. However, as the temperature is lowered a transition
occurs slightly below 300 K. Here, structures containing 75 % suddenly get
a significantly lower enthalpy of formation. Decreasing the temperature
further, approaching 200 K, the enthalpy of formation becomes negative
and in effect lower than for the pure elements. Thus, for temperatures below
200 K the system will try to form distinct regions containing a concentration
of 75 % magnesium in addition to the pure elements. Cooling the system
down to 100 K the final structure obtained at 75 % magnesium is exactly
the same as the one given in Figure 6.12. Thus, the MC simulations in the
semi-grand canonical ensemble and the canonical ensemble both predict a
stable phase for low temperatures in addition to the pure elements, namely
Mg3Al.
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The data from the MC simulations in the canonical ensemble is also
used to calculate the free energy of formation via (5.17). The results are
shown in Figure 6.14.
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Figure 6.14: Free energy of formation calculated using Monte Carlo simulations
in the canonical ensemble, cooling down a system of 1000 atoms to 100 K for
different concentrations of magnesium.

As shown here the phase Mg3Al is favourable in terms of free energy
of formation. This is the case for low temperatures up to about 250 K, indi-
cated by the minimum in the free energy of formation at 75 % magnesium.
Increasing the temperature, the minimum at 75 % magnesium disappears
and the minimum shifts gradually towards a concentration of 50 %. This
is more clear in the high temperature limit which is shown in Figure 6.15
where the free energy of formation is calculated from a MC simulation at
20 000 K. Here, the minimum is clearly located at 50 % magnesium as
expected based on entropy of mixing. Hence, these results are consistent
with the previous ones giving the phase Mg3Al at temperatures lower than
around 250 K and a mixture of aluminum and magnesium above the same
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temperature. Here however, aluminum and magnesium form an alloy at a
finite temperature. This is in contrast to the conclusions based on enthalpy
which misses the contribution from the entropy of mixing. The alloy obtain
when considering the free energy and not the segregated, pure elements is
the correct physical picture.
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Figure 6.15: Free energy of formation calculated using Monte Carlo simulations
in the canonical ensemble, for a system of 1000 atoms at 20 000 K for different
concentrations of magnesium.

6.6.3 Phase boundary tracing
By performing MC simulations in the semi-grand canonical ensemble all
quantities necessary to trace the boundaries of the phase Mg3Al via (5.19)
are calculated. This is done 100 times with a precision of 10−3 as higher
precision would be too expensive in terms of computational time. Each
simulation performed takes about 6-8 hours on a standard computer. In
Figure 6.16 the average temperature as a function of ∆µ is shown together
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with its standard deviation [58], starting at µ = −1.058 eV/atom and T =
100 K. Along this line the two phases Mg3Al and pure magnesium coexist
in the hcp lattice.

Figure 6.16: Average temperature as a function of ∆µ for the phase boundary
tracing. The grey area indicates the standard deviation.

In Figure 6.17 the average temperature as a function of magnesium con-
centration is shown together with its standard deviation for the two phase
boundaries. Between these boundaries one can expect a co-existence of
the pure magnesium phase, with aluminum atoms placed randomly around,
and regions richer in aluminum corresponding to the phase Mg3Al. On the
right side of the blue line, in effect for very high concentrations of mag-
nesium, the phase Mg3Al is not expected to be seen. It is not possible to
draw any conclusions about what happens to the left of the orange line, in
effect at magnesium concentrations lower than 75 %. This is because the
algorithm used finds the boundary between pure magnesium and Mg3Al
in the µ-temperature plane corresponding to the two phase boundaries in
the concentration-temperature plane. The phase boundaries observed here
do not necessarily coincide with experimental phase diagrams. The reason
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for this is that the phases considered here are restricted to a hcp lattice and
could thus be metastable. As experimental phase diagrams only show sta-
ble and not metastable phases, the phase boundaries can differ significantly
from what is observed here. In fact, it is possible that the phase Mg3Al does
not show up at all. Another point is that the results are relying on a fixed
lattice model whereas real materials vibrate and expand with temperature.

Figure 6.17: Average temperature as a function of magnesium concentration for
the two phase boundaries from phase boundary tracing. The grey area indicates
the standard deviation.

The phase boundaries are also plotted together with the results from the
cooling down at constant chemical potential in the semi-grand canonical
ensemble. This is shown in Figure 6.18 with red lines indicating the phase
boundaries and the grey lines corresponding to those of cooling down in
the semi-grand canonical ensemble. Here, one of the grey lines lie inside
the phase boundaries, corresponding to a constant chemical potential of
µ = −1.056 eV/atom. This line is indicated by an arrow. This is not as
expected, as all lines following a constant chemical potential should be lo-
cated outside the phase boundaries. In other words, this chemical potential
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is expected to give the phase Mg3Al. In summary, the result indicates that
the phase boundaries found numerically are correct except the one line in-
side the phase boundaries which should be expected to end up in the phase
Mg3Al. This discrepancy will be studied further in the following section.

Figure 6.18: The phase boundaries, indicated by the red lines, shown together
with some of the results from the cooling down at constant chemical potential in
the semi-grand canonical ensemble.

6.6.4 Free energy barriers
By using the method of umbrella sampling, the free energy as a function of
magnesium concentration is calculated via (5.26). This is done for several
temperatures at a chemical potential of µ = −1.056 eV/atom for a system
of 1 000 atoms. The magnesium concentration ranges from 100 % to 70 %
with 30 concentration windows. Each window contains 11 bins, except the
first which contains 10 bins, to get a one-to-one correspondence between
every bin and concentration while maintaining an overlap between each
window. In each concentration window 2 000 000 semi-grand canonical
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MC steps are performed. The results for β∆G as a function of magnesium
concentration are shown in Figure 6.19 and Figure 6.20 for high and low
temperatures, respectively.
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Figure 6.19: β∆G as a function of magnesium concentration for T = 300 K, T =
275 K and T = 250 K.

For high temperatures as shown in Figure 6.19, the global minimum in
free energy agree well with the line at µ = −1.056 eV/atom from Figure
6.18 just as expected. When going from T = 275 K to T = 250 K a local
minimum in free energy appears at a lower concentration of magnesium
and a higher value of β∆G compared to the global minimum.

For lower temperatures as shown in Figure 6.20, a transition occurs.
As the temperature reaches the range where clustering of Mg3Al happens,
two separate minima in free energy are seen just as for T = 250 K in Fig-
ure 6.19. The difference is that now, at temperatures of T = 225 K and
below the global minimum is located at a lower concentration of magne-
sium approaching 75 % as the temperature is reduced further. This global
minimum is separated from a local minimum at higher concentrations of
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Figure 6.20: β∆G as a function of magnesium concentration for T = 225 K, T =
200 K and T = 175 K.

magnesium by a barrier in free energy. Thus, the global minimum in free
energy as a function of concentration has shifted from high to lower con-
centrations of magnesium indicating that Mg3Al becomes the most ener-
getically favourable phase for temperatures at T = 225 K and below. This
agrees well with the previous results and the global minimum at each tem-
perature lies outside the phase boundaries shown in Figure 6.18, as they
should. One can also note that the local minimum at higher concentrations
of magnesium moves further and further towards pure magnesium as the
temperature is decreased.

The reason for the system cooling down at µ = −1.056 eV/atom not
reaching the most energetically favourable phase, but instead approaching
pure magnesium and staying inside the phase boundaries can be explained
from these free energy barriers. At T = 250 K the system is at a concen-
tration of about 90 % magnesium as expected from the global minium in
free energy at this temperature. When reaching a temperature of T = 225
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K the global minimum is located at about 75 % magnesium. The system
is then instead of going towards Mg3Al trapped at the local minimum at
a higher concentration of magnesium because of the free energy barrier
between the two minima. In other words, the system actually favours a
different phase, but it does not have the necessary energy or time to cross
the free energy barrier and reach the phase Mg3Al. The system stays at
the local minimum in free energy at high concentrations of magnesium as
the temperature is decreased further as lowering the temperature only de-
creases the energy of the system, making it even harder to cross the free
energy barrier. Moreover, it is these local minima that correspond to the
line lying within the phase boundaries as seen when comparing with Figure
6.18. Thus, the discrepancy of the previous section has been explained and
the phase boundaries found previously have one less reason to be doubted.

An important point is that redoing the cooling down in the semi-grand
canonical ensemble at µ = −1.056 eV/atom the system could might as
well go to the correct phase Mg3Al instead of being trapped at the local
minimum in free energy at higher concentrations of magnesium. It could
be an artifact of the discretization of the temperature range and for further
calculations the steps in temperature should be smaller. This is especially
important in the range where the transition from pure magnesium to Mg3Al
occurs. Another point is that these results have not been seen in previous
calculations of free energy in this thesis. This is because before the prop-
erty considered was the free energy of formation and not the free energy.
Finally, as the temperature is lowered one sees that β∆G becomes a less
smooth function of the magnesium concentration. This is because at lower
temperatures the probability of accepting a new state after a MC step de-
creases as evident from (5.2). Having less MC steps accepted the statistical
results from the MC simulation get worse. Thus, the number of MC steps
needed for getting a smoothly varying β∆G increases as the temperature is
lowered.

The quantity β∆G is also calculated along the phase boundary between
pure magnesium and Mg3Al using some of the values for µ and T from
the results shown in Figure 6.16. The results using 2 000 000 semi-grand
canonical MC steps in each of in total 30 concentration windows are shown
in Figure 6.21.

Along the boundary in the µ-T plane separating Mg3Al and pure mag-
nesium the two phases should coexist. In other words, the free energy as a
function of magnesium concentration should have two local minima at dif-
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Figure 6.21: β∆G as a function of magnesium concentration along the phase
boundaries of Mg3Al.

ferent concentrations. One of them should move towards 75 % magnesium
and the other towards 100 % magnesium as the temperature is lowered.
This is also what is seen in Figure 6.21. However, the two local minima
should be located at equal values of β∆G as along the phase boundary
both phases are equally favoured. This is not the case here, where the min-
imum at high concentrations of magnesium is lower, corresponding to pure
magnesium being preferred and indicating that there may be a systematic
error when calculating phase boundaries due to the chosen precision.

As explained earlier, (5.19) is used to obtain the phase boundaries. This
equation is hard to solve numerically and the calculations are computation-
ally expensive resulting in a precision of 10−3. Recalculating β∆G for a
given temperature and varying the chemical potential until the local mini-
mum at approximately 75 % magnesium becomes the global one the error
in µ when calculating the phase boundaries at the precision of 10−3 can
be estimated. This is done for T = 212.72 K, corresponding to the third
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line from below in Figure 6.21 where the calculated chemical potential is
µ ' -1.0576 eV/atom. The result is shown in Figure 6.22 using 1 000 000
semi-grand canonical MC steps for µ = -1.0569 eV/atom and µ = -1.0568
eV/atom.
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Figure 6.22: β∆G as a function of magnesium concentration at T = 212.72 K
with µ = -1.0569 eV/atom and µ = -1.0568 eV/atom.

As seen here, changing the chemical potential to µ = -1.0569 eV/atom
makes the minimum at approximately 75 % magnesium become the global
one. Thus, the correct chemical potential along the phase boundary is lo-
cated somewhere between µ = -1.0569 eV/atom and µ = -1.0568 eV/atom.
The estimate of the error in µ when calculating phase boundaries via (5.19)
at a precision of 10−3 thus becomes 0.07 %. Although the difference in
β∆G at the calculated chemical potential for the phase boundaries differ
by certain amount, the error is relatively small. The obtained phase bound-
aries are thus believed to be correctly calculated.
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6.6.5 Visualization of cluster formation
As shown above, the Mg3Al phase starts to form at a critical temperature
range between 200 K and 300 K in a hcp lattice. It is helpful to visualize
this process of clustering which will be done here. This is done by perform-
ing a MC simulation in the canonical ensemble for cooling down a system
of 1000 atoms in a hcp lattice. The magnesium concentration is set to 95
% such that it is impossible for the whole system to transform into Mg3Al.
At each temperature 100 000 MC steps are performed instead of setting a
precision as this simulation just serves as an illustration of the clustering
process. At every 5 steps the largest connected cluster of aluminum atoms
is found. After performing all MC steps at a temperature the largest con-
nected cluster found at this temperature is stored, with periodic boundary
conditions in mind. The results for four different temperatures are shown in
Figure 6.23. The temperatures chosen are one temperature lying well above
(542 K), two temperatures inside (247 K and 210 K) and one temperature
well below (136 K) the critical temperature range where clustering starts
happening. The green, almost transparent atoms are magnesium atoms.
The grey and dark blue atoms are aluminum atoms where the latter indi-
cates that they belong to the largest connected cluster of aluminum atoms.

As seen here, at 542 K the aluminum atoms are placed quite randomly
around in the lattice. The largest connected cluster contains approximately
half of the available aluminum atoms. Lowering the temperature a transi-
tion occurs and more and more aluminum atoms become clustered together
to form the phase Mg3Al, just as expected for 247 K and 210 K. The forma-
tion of Mg3Al can be seen by the majority of aluminum atoms clustering
together at distances corresponding to the double of the nearest neighbour
distance just as in Figure 6.12. Finally, at 136 K almost all the aluminum
atoms are connected in one large cluster also with distances between alu-
minum atoms equal to the double of a nearest neighbour distance. Thus,
Mg3Al has been formed.
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(a) 542K (b) 247K

(c) 210K (d) 136K

Figure 6.23: Largest cluster of aluminum at four different temperatures during a
Monte Carlo simulation in the canonical ensemble, highlighted by blue atoms.
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Conclusion

To summarize, aluminum and magnesium alloys on a hcp lattice rich in
magnesium have been studied. The convergence of total energy calcula-
tions is ensured to obtain a reasonable set of input parameters for different
system sizes in DFT calculations. Where comparisons are possible the re-
sults agree well with either theory, experimental results or previously per-
formed calculations. An example of this is the calculation of the lattice pa-
rameters for aluminum and magnesium. These calculations also show that
the PBE functional performs better than the BLYP and LDA functionals, at
least in these cases. Also, the calculated formation energy of a vacancy in
bulk aluminum and magnesium are as mentioned earlier in good agreement
with previous results. Thus, DFT calculations with the PBE functional are
believed to work well for studying electronic and structural properties of
metals and alloys and the set of input parameters obtained can be consid-
ered as sufficiently accurate.

A CE model is developed for aluminum and magnesium on a hcp lattice
from 25 % to 100 % magnesium by fitting ECI to the total energies of DFT
calculations resulting in a CV score of 3.18 meV/atom. By interpreting
the ECI the model is seen to favour equal atoms in a second nearest neigh-
bour distance. Moreover, clusters of three atoms all in a nearest neighbour
distance are favoured with either three aluminum or one aluminum and two
magnesium atoms. The CE model predicts a new phase Mg3Al which starts
to form somewhere below 300 K. This is seen from the calculated minima
in enthalpy of formation and free energy of formation. The boundaries of
this phase are also found and they agree well with the canonical and semi-
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grand canonical MC simulations performed in this thesis, apart from the
one simulation with a fixed chemical potential of µ = −1.056 eV/atom
in the semi-grand canonical ensemble. However, this discrepancy is ex-
plained by calculating the free energy barrier separating Mg3Al and pure
magnesium. The new phase Mg3Al could be hard to find experimentally
considering that it starts to form below 300 K. One could imagine a sce-
nario where one heats up an alloy of aluminum and magnesium to a very
high temperature before cooling it down below 300 K almost instantly. This
would leave the alloy unstable with many defects where Mg3Al could start
to form spontaneously, easier than if the alloy has an ideal hcp lattice. Still,
it is no guarantee that Mg3Al will appear as this thesis only examines a fixed
hcp lattice and the phonon and thermal expansion contribution are not con-
sidered. Other configurations in another lattice could be more energetically
favourable, in which case Mg3Al is just a metastable phase.

Finally, the results show that the CE method combined with DFT cal-
culations and MC simulations makes a powerful tool for examining alloys
on different lattices. It should be noted that for other types of lattices the
CE model needs to be trained all over again. The estimate of the error in µ
when calculating phase boundaries is small at a value of 0.07 %.
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Chapter 8
Future work

As mentioned, the phase Mg3Al could be metastable and only appearing
when the hcp lattice is the only lattice considered. A natural way forward
would thus be to study alloys of aluminum and magnesium on other lattices,
for example the fcc lattice. As pure aluminum forms in a fcc lattice this
would be expected to cover more aluminum rich parts of the concentration
range. Other lattices should also be examined as aluminum and magnesium
combined could have stable phases on other types of lattices than what is
found for their pure phases. One can in principle obtain information about
the whole phase diagram by considering the different lattices and combin-
ing this knowledge. It is also possible to study metastable phases as here to
get information about nucleation and precipitation. Another possibility is
to introduce a third component in the alloy.

Experimentally, one could study whether Mg3Al is stable or not by heat-
ing an aluminum and magnesium alloy up and rapidly cooling it down as
mentioned earlier. If Mg3Al does not start to form after this process, this
would implicate that it is only stable on a hcp lattice.

71



Chapter 8. Future work

72



Bibliography

[1] A. I. Taub and A. A. Luo, “Advanced lightweight materials and
manufacturing processes for automotive applications,” MRS Bulletin,
vol. 40, no. 12, pp. 1045–1054, 2015.

[2] G. Lütjering, “Influence of processing on microstructure and mechan-
ical properties of (α+β) titanium alloys,” Materials Science and En-
gineering: A, vol. 243, no. 1, pp. 32–45, 1998.

[3] A. Pribram-Jones, D. A. Gross, and K. Burke, “DFT: A theory full
of holes?” Annual Review of Physical Chemistry, vol. 66, no. 1, pp.
283–304, 2015.

[4] Q. Wu, B. He, T. Song, J. Gao, and S. Shi, “Cluster expansion method
and its application in computational materials science,” Computa-
tional Materials Science, vol. 125, no. 0927-0256, pp. 243 – 254,
2016.

[5] J. Teeriniemi, J. Huisman, P. Taskinen, and K. Laasonen, “First-
principles modelling of solid Ni–Rh (nickel-rhodium) alloys,” vol.
652, no. 1, pp. 371–378, 2015.

[6] J. Teeriniemi, P. Taskinen, and K. Laasonen, “First-principles investi-
gation of the Cu–Ni, Cu–Pd, and Ni–Pd binary alloy systems,” Inter-
metallics, vol. 57, no. 1, pp. 41–50, 2015.

[7] C. Kittel, Introduction to Solid State Physics, 8th ed. New York:
John Wiley & Sons, Inc, 2005.

73



[8] W. Pauli, “Nobel lecture: Exclusion principle and quantum mechan-
ics,” Nobel Lectures, Physics, pp. 1942–1962, 1946.

[9] P. F. Lang and B. C. Smith, “Metallic structure and bonding,” World
Journal of Chemical Education, vol. 3, no. 2, pp. 30–35, 2015.
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Appendix A

Table 8.1: Numerical values of the effective cluster interactions from the final
cluster expansion.

ECI Value [eV/atom]
c0 − 2.6357104336220036
c1 0 − 1.0477578743973592
c2 1000 1 00 1.9704034169076734× 10−5

c2 1414 1 00 − 0.0086207715025969599
c3 1000 1 000 − 0.0068774873140020742
c3 1414 1 000 0.01663724158871387
c4 1000 1 0000 0.001447359159530979
c4 1414 1 0000 0.0051126797326320134
c4 1414 2 0000 0.00034941577797427485
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(a) c1 0. (b) c2 1000 1 00. (c) c4 1000 1 0000.

(d) c4 1414 1 0000. (e) c4 1414 2 0000.

Figure 8.1: The remaining clusters of the effective cluster interactions.
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