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Effekten av ikke-lineære mellomrom under mekanisk vibrasjon  
 
Vibrations in mechanical assemblies are an important source of material fatigue, noise and 
discomfort. If allowed to act long enough, vibrations may very well cause mechanical failure. Many 
of these assemblies contain some form of joints or connections. The Norwegian Defence Research 
Establishment, herein FFI, conducts several experiments on behalf of the Norwegian Defence and 
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vibrational properties of the assembly and is the source of the observed anomaly. 
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nonlinearities were included.  
 
Note: The RIMFAX antenna is developed at the Norwegian Defence Research Establishment (FFI) 
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2020. The radar has the ability to penetrate to more than 10 meters depth depending on ground 
conditions. 
 
Tasks include: 
 

1. Study available literature on experimental testing of nonlinear vibrations. 
2. Propose and solve a first principles model using equations of motion and numerical solvers. 

Input from the literature study is considered natural. 
3. Plan and conduct experiments on nonlinear vibrations. The experiments will be conducted at 

the Environmental Lab at FFI. One or several test jigs has to be drawn and produced. 
4. Setup and run the same experiments with finite element analysis in MSC software. Investigate 

parameters and attempt to correlate simulation with physical experiments.  
5. Correlate the new test and simulated results with the previous RIMFAX shaker test results in 

order to explain the original problem.  
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Abstract

In this report, the vibration properties of nonlinear mechanical joints have been
explored. The nonlinearity is due to a clearance gap in the joint, which may arise
intentionally in design or through wear and tear. How gap affects the response
of the system has been investigated through numerical analysis, experimental tests
and finally by means of commercial finite element software. The numerical model
is based on solving the nonlinear second-order ordinary differential equation for the
system. This is done with Runge-Kutta solvers in MATLAB. The problem is solved
in the time domain and the result is transferred to the frequency domain by means
of a Fourier transformation. Various relationships have been looked into, especially
frequency response functions, Power spectrum density and the Coherence spectrum.
The experimental work is based on coupon tests of structures with a bolted connec-
tion of different gap distance and different coupon material. The coupon is excited
on a shaker table in the lab through harmonic, sine sweep and random vibration
input signal. Post-processing is done by means similar to what is done in the nu-
merical work. The work in finite element analysis proposes different formulations of
the problem and looks into how gap may be represented efficiently.

The experimental work displays a chaotic behavior. Averaging techniques on data
in the frequency domain show that the effective natural frequency - termed ωe in
this thesis, taken as the peak in power spectrum density, are reduced when clearance
gaps is introduced to the system. There is, however, no conclusive trend in terms of
the relationship between the amount of reduction in ωe and gap distance, excitation
amplitude or coupon geometry.
The numerical work in MATLAB and FEM display a good correlation with each
other, both show the same tendency - ωe is reduced by clearance. The work also
shows that an increase in gap distance reduces ωe. The stiffness in the system has
also been varied, the results indicate an increase in stiffness reduces the relative ωe.
More work in the field of topic is recommended for a deeper understanding.
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Sammendrag

I denne rapporten har vibrasjonsegenskapene til ikke-lineære mekaniske forbindelser
blitt undersøkt. Ikke-lineariteten kommer av klaring i forbindelsen, som kan komme
fra intensjon i design eller gjennom slitasje. Hvordan klaring p̊avirker responsen har
blitt undersøkt gjennom numerisk analyse, eksperimentelle forsøk og til slutt ved
bruk av kommersiell finite element programvare. Den numeriske modellen baserer
seg p̊a å løse den ikke-lineære andre ordens ordinære differensialligningen for sys-
temet. Dette gjøres ved hjelp av Runge-Kutta løsere i MATLAB. Problemet er løst
i tidsplanet og resultatene er overført til frekvensplanet ved hjelp av Fourier trans-
formasjon. Ulike sammenhenger er blitt sett p̊a, særlig frekvens-respons spekter,
Power spectrum density og koherens. Det eksperimentelle arbeidet baserer seg p̊a
kupongtesting av strukturer med en boltet forbindelse av ulik klaringsdistanse og
med ulikt kupongmateriale. Kupongene er eksitert p̊a et ristebord gjennom har-
monisk, sinus sweep og random input signal. Post-prosessering er gjort p̊a samme
måte som i det numeriske arbeidet. Arbeidet i finite element metoden foresl̊ar ulike
formuleringer av problemet og ser p̊a hvordan klaring kan bli representert p̊a en
effektiv måte.

Det eksperimentelle arbeidet viser en kaotisk oppførsel. Midlingsteknikker p̊a data i
frekvensplanet viser at den effektive egenfrekvensen - kalt ωe i denne oppgaven, tatt
fra toppen i power spectrum density, reduseres n̊ar klaring blir innført i systemet.
Det er derimot ingen direkte trend som kommer frem fra målingene hva gjelder sam-
menheng mellom mengde reduksjon og klaringsdistanse, eksitasjonsamplitude eller
kuponggeometri.
Det numeriske arbeidet i MATLAB og FEM har god korrelasjon seg i mellom, og
viser begge den samme tendensen - den effektive egenfrekvensen g̊ar ned ved klaring.
Arbeidet viser at ved å øke klaringsdistansen reduseres ωe. Stivhet i systemet har
ogs̊a blitt variert, og en øking av stivhet reduserer ogs̊a den relative ωe.
Mer arbeidet p̊a omr̊adet er anbefalt for å f̊a en dypere forst̊aelse.
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Chapter 1

Introduction

The aim of this chapter is to introduce the background, objective and structure of
this report.

1.1 Introduction

Vibrations in mechanical structures are an important source of material fatigue,
noise and discomfort. If allowed to act long enough, vibrations may very well cause
mechanical failure. In many practical applications, mechanical structures are joined
together in some fashion and excited to vibrate. The theory of linear systems,
systems where the joints are ideally joined together, i.e. no clearance is very well
understood. The principle of superposition holds and one can calculate vibration
properties such as eigenvalues and eigenvectors by means of known methods (such
as solving the eigenvalue problem from the stiffness matrix K). However, for real
system, these joints often exhibit some clearance or looseness. For instance, it may
be designed to allow for rotation or translation is one or several directions. Or
it may be designed to allow for thermal expansion. As a consequence, real joints
in mechanical structures that are designed to move about often become nonlinear.
The theory of nonlinear vibrations as a consequence of clearance or looseness is less
known and solutions techniques have to be chosen on a case-by-case basis.

Classical important applications of such problems are the automotive and marine
industry and gears with deadband. Also, other areas such as the aerospace or other
industries where special loadcases are more frequent. A fair amount of literature is
found on the topic.
The aim of this project is to perform vibration testing on several types of joints
with different clearances in order to map the joint behavior. Also, the same kind of
clearance will be modeled with differential equations and finite elements. This aims
to broaden the understanding on how clearance and gaps affect vibration.

1



1.2. BACKGROUND

1.2 Background

Figure 1.1: The various instruments on the Mars 2020-rover. RIMFAX on the aft-
left.

The Norwegian Defense Research Establishment (herein FFI1) has been appointed a
contract with the Jet Propulsion Laboratory (JPL) and NASA in conjunction with
their Mars 2020-mission, designing, manufacturing and testing an antenna named
RIMFAX. The Radar Imager for Mars’ subsurFAce eXperiment (RIMFAX) is a
ground-penetrating radar (GPR) instrument selected to fly on the 2020 Mars-rover
and designed to produce from the surface of Mars, for the first time, high resolution
stratigraphic information about the subsurface of the Red Planet. Specifically, RIM-
FAX supports and enhances the Mars 2020 investigation on the following, but not
limited, ways: assess the depth and extent of regolith; detect different subsurface lay-
ers and their relationship to visible surface outcrops; characterize the stratigraphic
section from which a cored-and-cached sample derives, including crosscutting rela-
tions and features indicative of past environments. The Department of Prototyping
at FFI is responsible for the mechanical design and production of the antenna, herein
mechanical testing.

1Norwegian acronym - Forsvarets forskningsinstitutt
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1.2. BACKGROUND

Figure 1.2: Manufactured prototype of the RIMFAX antenna.

NASA requires that the first natural frequency of the antenna is to be above 60
Hz. The design was simulated in MSC/Nastran and found to have a first natural
frequency of 62 Hz. Then a prototype antenna was tested on a shaker table at FFI
at which the experimental results yielded the first frequency to be 56 Hz. This was
believed to be due to two reasons. 1) the assembly process of the sheet metal struc-
ture is done by riveting and some assembly error were thought to cause looseness
in the rivets. 2) the whole RIMFAX structure is mounted to the Mars rover by
three joints, so-called “kinematic joints”. The kinematic joints allow for thermal
expansion and contracting, considering that the antenna will be mounted to the
rover at a temperature of 293K and that space is at 2.7K. Temperatures in opera-
tion on Mars may very from as much as 293K to 120K. Thus, temperature gradients
and thermal strain are of importance. There is in total three joints connecting the
RIMFAX to the rover, two of them having clearances to allow for contraction and
expansion. One has a radial clearance, while the second has a slot clearance (one
direction only).
The riveting assembly process became controllable and is no longer believed to cause
the anomaly in natural frequency. The modeling of kinematic joints, however, are.
They have for every simulation in Finite Element Analysis (FEA) been modeled as
“glued” making the structure linear, when it, in reality, is not. It is mostly this
erroneous assumption that this thesis will attempt to remedy.

The author made his project thesis work during the fall of 2017 [16]. Here a first
principles SDOF model was built from the ground up and the equations of motion
were solved numerical using a Runge-Kutta solver. The same model was built in
MSC/Nastran and both methods were solved in the transient time domain before
they were transformed into the frequency domain by FFT. The results yielded sim-
ilar results for the two, and in conclusion, it was found that introducing a clearance
nonlinearity lowered the effective natural frequency of the joint in comparison to a
“glued” joint without clearance. This indicates that the anomaly observed at FFI
ma, in fact, be due to a missing nonlinearity. To explore this conclusion further
through a deeper understanding as well as real-life experimental testing will be the
main goal of this project.
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1.3 Problem and Scope

Problem
If we assume that we would have to solve for the nonlinear transient response in
the time domain and then use a Fast Fourier Transform (FFT) to obtain the fre-
quency domain for the structure, the whole RIMFAX structure and its geometry is
extremely computationally expensive. The problem is broken down into two, and
solved for those two separately.

Scope
Some limitations have been set in consultation with the involved parties to manage
the project. The overall aim remains to test and model a replica of the two RIM-
FAX kinematic joints and compare. The outcome will be used to asses the effect of
clearances on structural joints in future projects with similar joint geometry. The
experiments has been limited to testing the joints separately and in the in-plane
and out-of-plane directions separately. This is to have more control and to make
simulations feasible. The whole antenna structure will not be simulated as it is be-
lieved that including the whole geometry and three different joints will add so many
degrees of freedom that accurate simulations as well as reliable experiments are not
possible (or at least adding unnecessary complexity to the problem).

1.4 Structure of the Report

The main thesis is divided into 8 chapters: Chapter 1, 2 and 3 introduces the reader
to the problem and subject as well as presents the necessary background, litera-
ture and theory to solve the problem. Chapter 4 presents the numerical approach.
Chapter 5 presents the experimental approach. Chapter 6 presents the finite element
approach. A general discussion of the various approaches and their contribution is
made in chapter 7. Finally, in chapter 8 concluding remarks are presented and sug-
gestions for further work is presented. Details and complete results are left in the
appendix and referred to in the text.

Figure 1.3: Render of the Mars 2020 rover.
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Chapter 2

Literature

The topic of this thesis is covered by many terms in the literature. Vibro-impact
dynamics, discontinuous dynamical systems, stick-slip motion, non-smooth mechan-
ics and nonlinear oscillators are examples. Regardless of the label, much work has
been conducted both in regards to mathematics, physics, dynamics and engineer-
ing. There is a rich dynamics to systems that inhabit the same properties as the
RIMFAX joints. However, much of the work is theoretical and there is little to none
work found applied to our specific problem.

Both old and recent research in the field of nonlinear vibrations has been reviewed.
We do not wish to devote much space to reviewing and settle by mentioning the
most important research to this thesis.

Books

• [18] is perhaps the single most relevant literature found on the topic. In this
book the author presents topic ranging from Hertzian contact formulation,
Grazing Bifurcations, and both one and two DOF as well as MDOF systems
under vibro-impact.

• [9] provides a thorough presentation of non-smooth mechanics and gives a
comprehensive reference list. The book is written from a control engineering
point of view but has a good review of the underlying physics before control
problems such as stability and feedback.

• [11] One of the classical works on mechanical vibrations. Includes two chapters
on Self-Excited Vibrations and Systems With Variable or Non-Linear Charac-
teristics. The problem of nonlinear springs is presented.

• [19] presents a thorough theoretical background on nonlinear ordinary differ-
ential equation. Stiffening springs (the later much cited Duffing equation) and
methods to investigate these are presented.
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Mathematical work on simple systems

• [13] [14] is a two-series article establishing and simulating the SDOF system
with clearance by splitting up and solving it as piecewise linear and for each
discontinuity using the previous boundary conditions to start the next linear
scheme. The second article in the series simulates the equation of motion and
present the dynamic response. This work confirms much of the work done in
the project thesis [16].

• [25] presents a rigorous mathematical background to solve the problem of a
piecewise linear forced oscillator. Phenomena as bifurcation, Poincaré maps,
period doubling, horseshoes and strange attractors are taken care of.

• [8] presents an overview of approaches for modeling the dynamics of mechanical
joints in assembled structures. Friction models are covered, together with how
to model joints in finite element analysis.

Experimental work

• [7] provides an equivalent SDOF model as the project thesis. Solves the prob-
lem by harmonic balance method and uses the numerical Newton-Raphson
method for solution. Validates the solution by means of a torsional model of
a gear pair.

• [6] looks at impact response and the influence of friction. They use a two-sided
impact stopper to limit the movement of a beam. An excellent reference list
is provided.

• [10] investigates random vibration conditions for a beam with impacting stops.

6



Chapter 3

Theory

The objective of this chapter is to introduce the theory needed to understand the
numerical model, the results and the engineering context.

3.1 The Fundamentals of Vibration

This section introduces the reader to the concepts and notation in general vibration
analysis. Much of this is derived with respect to linear systems and stead-state
response. A great deal of this is useful when we later explore nonlinear systems and
transient response.
The simplest vibrating system is described by its equation of motion:

mẍ+ cẋ+ kx = F (t) (3.1)

or for a MDOF system we use matrix notation:

M ẍ + C ẋ + K x = f (3.2)

where x or x represents the generalized coordinate position and a dot represents
differentiation with respect to time t. m or M indicates mass, c or C represents
damping and k or K represents the stiffness. Both equation 3.1 and 3.2 yields di-
rectly from Newton’s 2. law of motion. For more complicated systems it might be
tempting to use Lagrange’s equation to derive the EOMs (see [20] for an excellent
derivation of Lagrange’s and Hamilton’s equation).

Eq 3.1 has a solution on the form of two parts:

x(t) = xh(t) + xp(t) (3.3)

where xh denotes the solution to the homogeneous equation (F(t) = 0) and xp
denotes the particular solution. We introduce the following terms:

7



3.1. THE FUNDAMENTALS OF VIBRATION

ωn =
√

k
m

natural frequency

cc = 2mωn critical damping coefficient

ζ = c
cc

damping factor

ωd = ωn
√

1− ζ2 damped natural frequency

δst = F0

k
static deflection

r = ω
ωn

frequency ratio

Table 3.1: Fundamental terms of vibration.

By rearranging eq 3.1 we may write it as

ẍ+ 2ζωnẋ+ ω2
nx =

F0

m
sinωt (3.4)

We assume that we are in the oscillatory underdamped regime, ζ < 1.0. This is
necessary as we otherwise would have no motion after one period. Friction is the
main source of damping. Friction models is another topic of discussion, but in short
we may withing reason assume that the equivalent viscous damping factor ζeq < 1.0
for friction. The homogeneous solution is traditionally found by assuming xh = est

and then substituting in and solving via the characteristic equation. Every book
on vibration contains this derivation ([24], [11], [28]), and it is also found as the
solution to a homogeneous second order differential equation in other literature. We
skip the details and present the solution for ζ < 1:

xh(t) = e−ζωnt(C1 sinωd t+ C2 cosωd t) (3.5)

= Xhe
−ζωnt sin(ωd t+ φh) (3.6)

where C1, C2 are found through initial conditions and subscript h indicates homo-
geneous. Xh, φh is dependent on C1, C2 and is found through trigonometric identities

Given a excitation on the form F (t) = F0 sinωt. The particular solution is a steady-
state oscillation of the same frequency ω as the excitation. Assuming that

xp(t) = X sin(ωt− φ) (3.7)

X being the amplitude of oscillation, φ the phase of the displacement w.r.p exciting
force. By substituting eq 3.7 into the EOM eq 3.1 and using trigonometric relations
we may arrive at (see [24, p. 271] for details)

X =
F0√

(k −mω2)2 + c2ω2
(3.8)

and
φ = tan−1

( c ω

k −mω2

)
(3.9)
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3.1. THE FUNDAMENTALS OF VIBRATION

Dividing both numerator and denominator of eq 3.8 by k and making substitutions
we obtain

X

δst
=

1√
(1− (ω/ωn)2)2 + (2ζω/ωn)2

=
1√

(1− r2)2 + (2ζ r)2
(3.10)

and

φ = tan−1
( 2ζ r

1− r2

)
(3.11)

And we may thus conclude with the total solution of the problem x(t):

x(t) = δst
sin(ω t− φ)√

(1− r2)2 + (2ζ r)2︸ ︷︷ ︸
particular

+Xhe
−ζωnt sin(ωd t+ φh)︸ ︷︷ ︸

homogeneous

(3.12)

Figure 3.1: Plot of eq 3.10 for various damping and frequency ratios in terms of
amplitude (a) and in terms of phase angle (b).1

Fig 3.1 (a) is very useful for understanding the steady-state amplitude ratio M as
a function of how close to the natural frequency r the system of interest is. There
are several interesting general properties of vibration that can be found from 3.1.
The most prominent perhaps being the dramatic spike in response when r is close to
1. This is phenomena is termed resonance. Secondly, we observe that at a driving
frequency of approximately 0, the amplitude ratio is 1, meaning that the observed
amplitude is equal to the static deflection δst. This makes sense as there is nothing
to drive the system, hence it behaves statically. Thirdly, we may observe that for
r � 1 the amplitude ratio actually tends to zero. Physically this means that for
relatively high frequencies, the system response will be very small. One last inter-
esting observation is that damping, ζ, will lower the system response in the regime
0 < r <

√
2 while for r >

√
2 the response is increasing by increasing damping (see

[28, p. 65] for more.

1Image courtesy of [24, p. 296].
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3.1. THE FUNDAMENTALS OF VIBRATION

What is resonance?
Mathematically it is easy to explain resonance as “when the forcing frequency act-
ing on an oscillating system equals the natural frequency of the very same system”.
However, this does not really give us much in terms of understanding the concept
of resonance. Resonance may be thought of more conceptually like the following: a
swing with a child on it swings back and forth. The potential and kinetic energy
take turns in being the largest source of energy: kinetic on the bottom of the swing
and potential on the top of each side. In order to swing the child higher, in other
words, to put more energy into the system, we need to push the child at specific time
intervals - we have to push with the same oscillating frequency as the swing has. If
we push at the wrong time, we would not really change the height of the swing or we
may even slow it down (pushing in the opposite direction and acting effectively as
a damper). This is hopefully a more everyday-approach to the concepts explained
mathematically above.
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3.2. NONLINEAR VIBRATIONS

3.2 Nonlinear Vibrations

A great deal of the concepts and relations provided in the previous section (3.1)
serves to explain much of the behavior of oscillatory systems. However, in the real
world a number of oscillatory phenomena may not be predicted by means of linear
theory. Linear systems have a linear relation: if we double the load, the response is
doubled. For nonlinear systems this is no longer the case. It will later be presented
some force-displacement relations useful for clearance-type vibration. We shall not
reveal this yet, but common sense tells us that if we have a clearance there shall be
little or no force in that area whereas when it is in contact the force should be large.
I.e. a doubling of the displacement making us switch regime from the clearance
no-force to contact large-force is a nonlinear behavior.

The differential equation describing a nonlinear oscillatory system can have the
general form of [28, p.436]:

ẍ+ f(ẋ, x, t) = 0 (3.13)

In our case the forcing term f(ẋ, x, t) is dependent on displacement x through the
following f = k(x)x+ c(x)ẋ. It is k(x), c(x) which makes the system nonlinear.

Few nonlinear differential equations have an analytical solution ready, and to obtain
one the treatment is often difficult and require extensive mathematical study. A
large part of the solutions are based on numerical approximations, such as from the
Runge-Kutta method. However, much can be learned from studying the state space
and the motion presented in the phase plane [19].
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3.3 Vibro-Impact Systems

As stated by [18] vibro-impact systems have been known to human long before they
were considered in the scientific community. Throwing a skipping stone on water
or a woodpecker toy are common examples. ”Generally, vibro-impact systems in-
volve multiple impact interactions (...). In most cases, there is energy loss due to
impacts (...). The time scale involved during impact is much smaller than the time
scale of the natural frequency of the oscillator. The motion of vibro-impact systems
in the presence or absence of friction, is usually described by strongly nonlinear
non-smooth differential equations.” [18, p. 1]. It is the sudden change in velocity
prior to and after impact that is the origin for the nonlinearity and thus resulting in
what is nown as non-smooth dynamics [18, p. 7]. According to [18] there exist three
different techniques to transform non-smooth models into smooth models. These in-
clude power-law phenomenological modeling, the Zhuravlev and Ivanov non-smooth
coordinate transformations and the Hertzian contact law.

The previous section presents the response of a forced, damped mass-spring sys-
tem, let us look into vibro-impact systems. The author’s project thesis [16] derived
the EOMs for the simplest vibro-impact system. We shall repeat the results here as
an initial foundation to the problem.

m

k

c

a

k

c

a

F(t)

x

Figure 3.2: Mass-spring damper with clearance.

The problem is reduced as seen on fig 3.2. The mass is oscillating between to springs
with stiffness k and with a gap a. This makes the problem vibro-impact in nature.
k is formulated as eq 3.14. The damping term c may also be discontinuous and
nonlinear, but for this purpose we will keep it linear. One practical application of
having the presence of damping is for instance friction.

k(x) =

{
0 − a < x < a

k else
(3.14)
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3.3. VIBRO-IMPACT SYSTEMS
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Figure 3.3: Force-displacement curve for a discrete k-formulation. a = 0.5 mm.

Figure 3.4: CAD revealing the kinematic joints on RIMFAX. 1) radial: allows radial
expansion, 2) rigid joint, 3) slot: allows translation in one direction.
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3.4. POWER-LAW PHENOMENOLOGICAL MODELING

3.4 Power-Law Phenomenological Modeling

This is one of several ways of modeling the phenomena observed in fig 3.2. It models
the spring force on a power-law based formulation. Consider a particle with mass
m moving between two walls positioned at x = ± a. If we assume rigid impact the
constraint becomes x ≤ |a|, x being the particle displacement. We want to express
the spring force as being very weak (in fact close to zero) in between the walls, and
fast growing in the proximity of x = ± a. We represent this as:

Fs = κ
(x
a

)2n−1

(3.15)

where κ is a positive constant, usually based on experiments, and n >> 1 is an
integer. This formulation is inspired by [18, p. 8]. Figure 3.6 shows the spring
force as a function of the dimensionless coordinate x/a for different values of n. We
observe that as n → ∞ we get the case of completely rigid impact. By adjusting
n we can adjust the nonlinearity of the problem, high n giving a strongly nonlinear
formulation of the problem.

Figure 3.5: Plot of eq 3.15 in dimensionless form. [18, p. 8]

The damping term may be formulated in a similar way:

Fd = c
(x
a

)2p

ẋ (3.16)

c being the constant coefficient also determined experimentally as κ, and p >> 1 an
integer. The equations of motion will thus take the form

mẍ+ κ
(x
a

)2n−1

+ c
(x
a

)2p

ẋ = F (t) (3.17)
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3.4. POWER-LAW PHENOMENOLOGICAL MODELING

The solution of eq 3.17 may be solved numerically according to [16] by reducing it
to a set of first order differential equations. Given a set of initial conditions it is
possible to solve the problem by use of for instance Runge-Kutta methods. ode15s
is a function which implements RK-methods for stiff 2 differential equations in MAT-
LAB.
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Figure 3.6: Normalized Power-law formulation.
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Figure 3.7: Force-displacement curve for Power-law formulation

2Stiff differential equations are classified by that a small change in time step gives rise to a
large change in forces/acceleration. In this particular case, the differential equations are stiff in
the proximity of the walls - a small change in time and the acceleration changes from zero to a
high value.
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3.5. FRICTION AND CONTACT MODELS

3.5 Friction and Contact Models

Friction models are important in the sense that they describe the state of stick / slip
and determine whether we have micro or macroslip. The literature typically classify
friction models into phenomenological and constitutive. The former representing the
friction force as a function of the relative displacement and the latter being based
on interface physics in the contact area [15].

Why spend time on friction models?
The following pages will spend some time on presenting a few different friction mod-
els. These models are important in a sense that they provide the current state of
work on the topic and that they may be used later. In our later analysis (Section 3
and onward) we have not been so advanced in that we have implemented the follow-
ing models. The reason for this being that we are assuming a full macroslip-regime.
However, if we later want to examine the transition from stiction to slip we might
want to look further into some of the later models hereby presented.

Phenomenological friction models

A friction interface in a joint connection is considered. The friction force acts as
an internal force in the tangential direction of the contacting surfaces. Below a
critical value, the force is causing no relative motion between the surfaces. At a
critical value, the force obeys a constitutive equation such as Coulomb’s law and act
in opposite direction to the relative velocity. The required force to keep the joint
moving depends on relative velocity and many other factors. [15] also separates
between static and dynamic friction models. The Signum-Friction or Coulomb’s law
is an example

F = Fc sgn(v) = µFN sgn(v) (3.18)

FN being the normal load (mg) and µ the friction coefficient and v the velocity.

sgn(v) =


−1 v < 0

0 v = 0

+1 v < 0

(3.19)

[15] also includes dynamic friction models in their study. (3.18) is a static friction
model. A drawback of classical, static models are their inability to describe the
elastic deformation in the joint surfaces before slip occurs. Recognizing that friction
is a dynamic problem remedies this. The LuGre model being one of two dynamic
models, it is based on the force generated by solid-to-solid contact. At the micro-
scopic level, surfaces are irregular and make contact at a number of asperities which
can be considered contact between bristles. The bristles deflect like springs and cre-
ate the friction force when a tangential force is applied. The model is based on the
average behavior of bristles, since the contact surfaces have high irregularities. The
model was designed reproduce all observed friction phenomena over a wide range of
operating conditions. We leave the interested reader to dive into the literature (i.e.
[15]) as this is not considered the scope of this report.
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3.5. FRICTION AND CONTACT MODELS

Constitutive contact models

Constitutive models establish a relationship between stress and displacement fields.
Continuum mechanics is used as the framework for this. There are several ways to
describe this relationship. [15, p. 96] bases laws of normal and tangential contact
on the basis of a statistical surface model. The surface being rough and only having
contact at asperities. As both [15, p. 96] and [8, p. 2805] mentions, the Hertz
contact theory can be used to describe normal contact of such asperities on a micro
scale. Constitutive contact models are for instance used in resolving the contact of
two surfaces. The CGAP element in NASTRAN is an example of such a formulation.
As this project work focus more towards nonlinear springs than contact per se, we
will limit the topic of discussion here - albeit the field of constitutive contact is wast
it is not considered as relevant here.

Energy dissipation

Damping is present in all oscillatory systems. Its effect is to remove energy from the
system. Energy in a vibrating system is either dissipated into heat or radiated away.
For instances, to surfaces sliding against each other get warm and an object given a
sharp blow radiates sound ([28]). Energy dissipation is the conversion of mechanical
energy into heat. If non-conservative forces are acting on a system and excerting
work, they are a source of energy dissipation. When kinetic energy is reduced due
to friction through heat generation, we call friction a energy dissipator.

Friction solved by equivalent viscous damping

One of the early, classical works on mechanical vibration is the work of den Hartog
[11]. The last chapter in this book is devoted to nonlinear systems. Here, a model
for forced vibration with nonlinear damping is proposed. This is very relevant as
it serves a the simplest case for our problem. [24, p. 149 and 250] derives this in
detail. We skip the most basic free-body derivation of the equations of motion and
continue to the case of forced vibration with Coulomb damping for a single degree
of freedom (SDOF) system:

mẍ+ kx+ Fc sgn(ẋ) = F0 sinωt (3.20)

k

m

Fc

F(t)

Figure 3.8: Forced vibration of SDOF system with Coulomb damping.

The sgn(ẋ) indicating that when the motion is positive, Fc acts in the negative
direction and vise versa.
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3.5. FRICTION AND CONTACT MODELS

An exact solution of (3.20) is fairly extensive. Assuming that Fc is large compared
to F0, the displacement of mass will be discontinuous. That implies that for small
dry friction damping - small Fc - the steady state solution is expected to be nearly
harmonic. The most general method replaces the friction damping term (Fc sgn ẋ)
with an equivalent viscous viscous damping ratio, ceq. These assumption simplify
the derivation and clarify the first principles. We find this ratio by acknowledging
that the work done by ceq has to be equal that of dry friction. Let the motion be
assumed to be x = X sinωt. For a general damping force f(ẋ) the work dissipated
per cycle T is:

∆W =

∫
f(ẋ) dx =

∫ T

0

f(ẋ)ẋ dt = x0

∫ 2π

0

f(ẋ) cosωt d(ωt) (3.21)

In our case f(ẋ) = ±Fc. Also, recognizing that we can split the integral in quarter
and multiply we get

∆W = 4X

∫ π/2

0

Fc cosωt d(ωt) = 4FcX (3.22)

The energy dissipated by a general viscous force Fd = cẋ is

∆W =

∫ 2π/ω

0

cẋ dt =

∫ 2π

0

cX2ω cos2 ωt d(ωt) = πcωX2 (3.23)

Equating (3.22) and (3.23) we get

ceq =
4Fc
πωX

=
4µmg

πωX
(3.24)

And following the familiar definition of damping ratio ζ:

ζeq =
ceq
ccrit

=
4µmg/πωX

2mωn
=

2µg

πωωnX
(3.25)

This general procedure may be applied to any type of damping, even if its law is
given merely in curve form, where the integral 3.22 must be evaluated graphically.
We use the ceq in the familiar EOM for a forced viscously damped mass-spring
system and eq 3.20 becomes:

mẍ+ kx+ ceqẋ = F0 sinωt (3.26)

Eq 3.26 has readily steady state- and transient solutions. From textbooks on me-
chanical vibrations ([28, p. 30], [24, p. 143], [11, p. 45] we know that damped
systems has the damped natural frequency

ωd = ωn
√

1− ζ2 (3.27)

For most practical situations however, the damped natural frequency is the natural
freqency, ωd ≈ ωn as a realistic damping ratio is in the vicinity of ζ < 0.1 and so
(for ζ = 0.1) ωd = 0.995ωn.
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3.6. DUFFING EQUATION

3.6 Duffing Equation

We may approximate this thesis’ problem by use of the Duffing equation. Presented
by German Georg Duffing (1861-1944), the equation represents mass on a cubic
spring.

mẍ+ cẋ+ kx+ µx3 = F cos ωt (3.28)

This is in fact very close to the power-law formulation we saw in eq 3.15. Duffing
presents Fs = kx + µx3 while power-law formulation yields Fs = κ(x/a)2n−1. If we
let the Duffing equation be to the power of (2n − 1) (any odd integer, not just 3)
and we term k a “relaxation stiffness” k = kr and kr � 1. We need also alter the
power-law formulation somewhat. The term (x/a) is in reality just a variable we
may choose however we like. x/a is a neat, clear formulation as ± 1 indicates the
“walls”, but we may as well choose to use x ∈ [−a, a]. Finally we equate µ = κ
and end up with Fs powerlaw ≈ Fs duffing. Thus we may conclude that with the correct
valued parameters, the Duffing equation describes the motion of our system. This is
highly useful as much work as research is already conducted on the Duffing equation.

We now wish to explore to different solution techniques that may be used to solve
the Duffing equation. We initially simplify and then add terms and complexity as
we go on.

Perturbation method
This method is used when a small parameter µ is associated with the nonlinearity,
such as in our case with the Duffing equation. The solution is a series development
in the neighborhood of the solution, based in terms of µ. We assume that if the so-
lution of the linearized problem is periodic and µ small, then the perturbed solution
is also periodic. We wish to show that the period is a function of the amplitude of
vibration. This derivation is based on the works of [28, p. 445-451] [19, p. 149-180].
First, consider the free oscillation of an undamped spring:

ẍ+ ω2
nx+ µx3 = 0 (3.29)

with initial conditions x(0) = A and ẋ(0) = 0. For µ = 0 we get the well known
linear spring and the frequency of oscillation is that of the linear system ωn =

√
k/m.

Wee seek a solution in on the form

x = x0(t) + µx1(t) + µ2x2(t) + . . . (3.30)

As we have assumed that frequency of nonlinear oscillation ω is dependent on am-
plitude we may write this in series of µ:

ω2 = ω2
n + µα1 + µ2α2 + . . . (3.31)

αi is a yet undefined function of amplitude and ω is the frequency of nonlinear
oscillation. For the familiar linear case of free oscillations, we know that ω = ωn.
For the nonlinear case, we keep these apart, ωn still denotes the natural frequency
of the linear system.
Consider only the first two terms of the previous two equations and substitute into
eq 3.29 to obtain:
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3.6. DUFFING EQUATION

ẍ0 + µẍ1 + (ω2 − µα1)(x0 + µx1) + µ(x3
0 + 3µx2

0x1 + . . . ) = 0 (3.32)

As the perturbation parameter µ may be chosen arbitrarily, the coefficients of the
various powers of µ must equal to zero. This leads to:

ẍ0 + ω2x0 = 0 (3.33)

ẍ1 + ω2x1 = α1x0 − x3
0 (3.34)

The solution to the first equation, considering the initial conditions is x0 = A cos ωt.
This is in the literature termed the generating solution. Substituting this into the
right hand side of the second equation we get

ẍ1 + ω2x1 = α1A cos ωt− A3 cos3 ωt (3.35)

=
(
α1 −

3

4
A2
)
A cos ωt− A3

4
cos 3ωt (3.36)

Here the identity cos3 ωt =
(

3
4

cos ωt + 1
4

cos 3ωt
)

is used. Note that the term
cos ωt would lead to t cos ωt in the solution of x1. This will become a condition
of resonance which violates the initial assumption of periodic motion. Hence, the
following condition is imposed:

α1 −
3

4
A2 = 0

thus

α1 =
3

4
A2 (3.37)

is the relation we stated above that α is a function of A. With the term cos ωt
eliminated, the solution for x1 is

x1 = C1 sin ωt+ C2 cos ωt+
A3

32ω2
cos 3ωt (3.38)

ω2 = ω2
n +

3

4
µA2 (3.39)

Imposing x1(0) = ẋ1(0) = 0 we get C1, C2:

C1 = 0 C2 = − A3

32ω

which yields

x1 =
A3

32ω2

(
cos 3ωt− cos ωt

)
(3.40)

and the total solution x = x0 + µx1 is

x = A cos ωt+
A3

32ω2

(
cos 3ωt− cos ωt

)
(3.41)

ω = ωn

√
1 +

3µA2

4ω2
n

(3.42)

The solution is found to be periodic and the fundemental frequency ω is increasing
with amplitude A.
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Method of Iteration
Method of iteration is a process of successive approximation, where an assumed so-
lution is substituted into the differential equation, this is then integrated to obtain
a solution with higher accuracy. The procedure may be repeated several times to
achieve the desired accuracy. It differs from the preceding perturbation method in
that we assume a solution and then iterate on that until we are satisfied with the ac-
curacy. The perturbation method is linearizing the problem by a series development
with the use of µ. For illustration, let us first consider the case without damping,
such that eq 3.28 becomes:

ẍ+ ω2
nx+ µx3 = F cos ωt (3.43)

We seek a solution to eq 3.43 and uses the technique of [28, p. 448]. The solution
we seek is steady-state harmonic, and we use the method of iteration.

Let us assume the first solution to on the well known form of:

x0 = A cos ωt (3.44)

and substitute this into the differential equation 3.43:

ẍ = ω2
nA cos ωt− µA3

(3

4
cos ωt+

1

4
cos 3ωt

)
+ F cos ωt

=
(
− ω2

nA−
3

4
µA3 + F

)
cos ωt− 1

4
µA3 cos 3ωt

We integrate this. Setting the integration constants to zero to obtain a harmonic
solution with period τ = 2π/ω. The improved solution is then

x1 =
1

ω2

(
ω2
nA+

3

4
µA3 − F

)
cos ωt− · · · (3.45)

and higher order harmonic terms are neglected.

We may proceed if wanted, but Duffing reasoned that if the first and second approx-
imations are reasonable the coefficients of cos ωt must not differ greatly. In other
words:

A =
1

ω2

(
ω2
nA+

3

4
µA3 − F

)
(3.46)

which may be solved for ω2:

ω2 = ω2
n +

3

4
µA2 − F

A
(3.47)

As a check of consistency we observe that if the nonlinear parameter µ = 0 we end
up with:

A =
F

ω2
n − ω2

(3.48)

which is the exact linear system solution we previously observed in eq 3.8 (let c = 0).
For µ 6= 0 ω is a function of µ, F,A. For F = 0 we get:
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ω2

ω2
n

= 1 +
3µA2

4ω2
n

(3.49)

We observe that frequency ω increases with amplitude. One important notice here
is that ωn is the linear natural frequency

√
k/m while ω is the frequency of oscilla-

tion. For the case of no forcing term F = 0, ω will thus be the nonlinear natural
frequency. We will keep calling this for ω. The result above is the same as we previ-
ously obtained from the perturbation method. This proves that the two techniques
solve the problem.

We can map the amplitude-frequency response diagram for the Duffing equation.

Figure 3.9: Frequency response of the Duffing equation. Here the steady-state
response is x(t) = z cos(ωt − φ) + . . . , α = ω2

n = 1, γ = F = 1 and β = µ. Image
courtesy of 3.

There are several interesting elements from fig 3.9. Most prominently is perhaps
the fact that the nonlinear natural frequency is amplitude dependent. A higher
amplitude, the more we will move up the force-displacement diagram and the higher
natural frequency. See trend line in fig 3.10.

3Image courtesy of [1].
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Figure 3.10: Frequency ω in the Duffing relation as a function of amplitude A from
eq 3.49.

3.7 Mapping of Bifurcations

Bifurcation theory investigates the effect an alteration of a differential equation has
on the equilibrium points of that differential equation. A way of visualizing this
effect is through a bifurcation diagram which will plot the equilibrium points along
the y-axis and the bifurcation parameter being altered along the x-axis. This will
for many dynamic systems reveal when the system go from one to several equilib-
rium points and in some cases (e.g. nonlinear differential equations). Bifurcation
occurs when a small change to a parameter causes a qualitative change in the way
the solution looks like (e.g. number of equilibrium points change).

Grazing bifurcations and C-bifurcations
”The bifurcation associated with zero velocity just at the barrier is referred to as
grazing bifurcation. Of particular interest of grazing impact bifurcation is its map-
ping. This chapter presents the basic concept of grazing bifurcation and the dis-
continuity mappings. It also addresses another type in which the fixed point or a
periodic orbit may cross or collide one of the boundaries and this type is referred to
as border-collision or C-bifurcation” [18, p. 31].

Poincaré map
A Poincaré map or Poincaré section is a method of visualizing the chaotic behav-
ior of nonlinear systems. The method is based upon investigating the state-space
representation of the system. For oscillatory system this is typically done by use of
the phase portrait, where displacement (x-axis) is plotted against velocity (y-axis).
This reveals the trajectories of the dynamical system. Imagine the systems trajec-
tory being an orbital path. It is orbiting in the state-space. We extract a subsection
(Poincaré section) of the data everytime the orbit crosses for instance θ = 0. Ev-
ery time the systems orbital crosses θ = 0 we sample a point of x, ẋ. For chaotic
systems, the orbit will not cross θ = 0 with the same x, ẋ which makes it possible
to generate rather interesting plots, or Poincaré maps. It is possible to not only let
time t be a variable (this gives rise to the numerous passings of θ = 0) but we can
also vary θ, going around the orbit. Based on this it is possible to make a range of
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Poincaré maps into an animation to study the system.

Period doubling
Period doubling is a phenomena where a slight change in a parameter causes the
system to behave in a manner with twice the period of the original system. In rela-
tion to the current topic, a slight change in forcing amplitude may cause the system
to oscillate at twice the original frequency.
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3.8 Nonlinear Finite Element Analysis

A brief background on the topic of dynamic problems under nonlinear conditions
with transient response will be given for the reader to posses the essential under-
standing.

The first thing to notice is that the problem is dynamic, it changes over time. The
bushing is moving back and forth in the given play inside the joint. Secondly, the
stiffness k is nonlinear as previously seen. As one term in the EOM is nonlinear,
the whole problem becomes nonlinear. Thus, the principle of superposition is not
applicable and we need to solve the problem with different methods. Thirdly, in
order to replicate the response from the experiment, we will be using a time-varying
input force F (t). This will not yield a steady-state solution, and we must calculate
the transient response of the structure. Combining all of this and using finite ele-
ment analysis to solve the problem, we are dealing with nonlinear transient dynamic
finite element analysis.

There are two conceptually different solution methods to choose from: explicit or
implicit. The most profound difference is that explicit methods obtains its solution
in terms of known quantities while implicit methods obtains the solution in terms
of unknown quantities. What we mean by this is that for explicit methods the dis-
placement at time tn+1, Dn+1 is obtained from the equilibrium conditions at one or
more preceding time steps without solving an equation system. The displacement
values are obtained from information already known to us. For implicit methods
Dn+1 is obtained from the equilibrium conditions at time tn+1 - equation solving
is required. One very popular explicit method is the central differences method. It
requires little computational effort during each step since equation solving is not
necessary.

Explicit Implicit

+ Equation solving is not neces-
sary. Computationally inexpensive
time steps

+ Equilibrium iterations not neces-
sary. Convergence is not an issue

+ Ideal for high-speed dynamic sim-
ulations where small time increments
are required

+ Usually reliable for problems with
discontinuous nonlinearites such as
contact, buckling and material failure.

- Conditionally stable. Requires very
small time steps

+ Method is unconditionally stable.
Time increment size is not limited and
fewer increments required to complete

+ Ideal for problems where response
period is long and/or where nonlin-
earites are smooth (such as plasticity)

- Algebraic equations must be solved
at each time step. Each increment is
computationally expensive.

- Equilibrium iterations are necessary,
convergence must be obtained for each
increment

Table 3.2: Explicit vs implicit solution method
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The case of this thesis requires solving the response in the time domain for a period
of several tens of seconds (a sine sweep in the lab takes anywhere from 1 to 6 minutes
depending on the frequency range and the ramp speed in octaves/min). Taking into
consideration the fact that we need to avoid aliasing, the Nyquist frequency rule
fs = 2f where fs is the sampling frequency and f is the frequency we are interested
in sampling. So for instance if we wish to look at response of our structure up to
1000 Hz, we must sample at 2000 Hz in order to represent the signal sufficiently.
And so if we sweep from 0-1 kHz at fs = 2 kHz over a time period of 60s we would
need 120,000 data points. And so it reasonable to request to have a) varying time
steps and b) possibly large time steps. The implicit method may be the most ap-
plicable here.
One widely used numerical time-stepping scheme for solving implicitly is the predictor-
multicorrector form of the Newmark family of methods for the integration of equa-
tions which govern nonlinear transient dynamic problems [17, p. 285]. It may be
summarized as follows:
1. Predict velocities and displacement using the “explicit” (we know at time tn)
approximation4

¨̃
dn+1 = 0

˙̃dn+1 = dn + (1− γ)∆t d̈n

d̃n+1 = dn + ∆t ḋn + (1/2− β)∆t2d̈n

2. obtain correction to displacement from the linearised equilibrium equation written
at time tn+1:

∆dn+1 = K−1r(dn+1) (3.50)

where the effective stiffness matrix is given as

K̂ = K +
γ

β∆t
C +

1

β∆t2
M

3. increment displacement, velocity and acceleration:

dn+1 = d̃n+1 + ∆dn+1

ḋn+1 = ˙̃
dn+1 +

γ

β∆t
∆dn+1

d̈n+1 =
1

β∆t2
∆dn+1

4. increment time n = n+ 1, t = t+ ∆t and go back to step 1.

4β and γ are free parameters. Average acceleration: β = 1/4, γ = 1/2 w/ unconditional
stability. Linear acceleration: β = 1/6, γ = 1/2 w/ conditional stability
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3.8.1 Time Step Selection

For both explicit and implicit time integration schemes, the time step has to be
selected appropriately. The critical time step for making the Newmark method
conditionally stable is

∆tcr ≤
Ωcr

ωmax
(3.51)

where ωmax corresponds to the highest natural frequency of the corresponding eigen-
value problem. The critical sampling frequency Ωcr is given as

Ωcr =
ζ
(
γ − 1

2

)
+
√

γ
2
− β + ζ2

(
γ − 1

2

)2

γ
2
− β

(3.52)

where ζ = c/ccr. A conservative value for Ωcr is obtained by setting ζ = 0:

Ωcr = (γ/2− β)−1/2 (3.53)

For explicit analysis with undamped material the critical time step becomes

∆tcr ≤
2

ωmax
(3.54)

Where ωmax is said to be the highest frequency of the FE mesh, i.e. the highest mode
of interest. For nonlinear problems, all modes might not be known a priori. In that
case a reasonable ωmax in the frequency area of interest may be chosen. In general,
for all types of integration schemes, ∆t must be small enough that information does
not propagate more than the distance between adjacent nodes during a single time
step. See among others [23] for more information.
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3.9. FAST FOURIER TRANSFORM

3.9 Fast Fourier Transform

Fourier transforms are widely used in this thesis. The problem at hand is as stated
earlier nonlinear and cannot be solved by modal techniques in MSC/NASTRAN
(SOL 103, 111) and thus we must use direct techniques. This implies solving in the
time domain. However, in order to analyze the data we would very much like to
operate in the frequency domain. The time domain shows how amplitude varies over
time whereas the frequency domain shows how much of the amplitude (displacement,
velocity or acceleration in our case) lies within each given frequency band. The input
signal we are applying to the jig through the shaker table consist of sine waves of
many different frequencies and so will the response as well. These frequencies are
however not easily perceived in the time domain. The solution to this is well known
and widely used in science engineering and mathematics for a vast range of problem,
and consists of applying a fast Fourier transform (FFT) on the data set when we
post-process it.
A fast Fourier transform is an algorithm that samples a signal over a period of time
and divides it into its frequencies components [2]. Many different algorithms exist,
this thesis uses the built in function fft in MATLAB .

Figure 3.11: Illustration of how data in the time domain (red) is transformed into
the frequency domain (blue) by splitting up the quantity of each frequency5.

A signal in the time domain f(t) may be transformed into the frequency domain
F(ω) by the following:

F(ω) =
1√
2π

∫ ∞
−∞

f(t)e−iωt dt (3.55)

and the inverse transformation:

f(t) =
1√
2π

∫ ∞
−∞
F(ω)eiωt dt (3.56)

5Image courtesy of [3].
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3.10. DESCRIPTIVE STATISTICS

A FFT computes the discrete Fourier transform of a signal. The discrete FT
approximates an infinite series with infinite values into a definite series:

Yk =
1

N

N−1∑
n=0

yne
−i 2π

N
kn (3.57)

where yn are the values in the time domain ranging from n = 0, 1, . . . , N −1. Yk are
the computed values in the frequency domain with k = 0, 1, . . . , N − 1 [27].

For vibration analysis FFT is important as it easily displays the amount of re-
sponse at any sampled frequency. A frequency which displays a significant peak in
amplitude may be assigned to be a natural frequency of the system as the system
experience resonance and thus a large response in measured amplitude.

3.10 Descriptive Statistics

Descriptive statistics gives an overview of data that has been contained from re-
peated measurements. The simplest, standard deviation and variance, are calcu-
lated to give an overview of the distribution of data. . Consider a finite sequence of
data xn

N
n=1. Its mean value is given as

x̄ =
1

N

N∑
i=1

xi (3.58)

Standard deviation σ =
√
σ2 is a measure of deviation from the mean

Variance σ2 is the expectation of the squared deviation in a distribution. It is
given by

σ2 =
1

N

N∑
i=1

(xi − x̄)2 = x2 − x2 (3.59)

Max-min values are sometimes interesting to evaluate extreme events. Max(xi) or
min(xi) are calculated.
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Chapter 4

Numerical Approach

This chapter presents the numerical models used to solve the thesis problem. The
overall aim is to model the problem as accurate as necessary yet as computationally
inexpensive as possible.
MATLAB is an efficient tool for solving differential equations, doing post-processing
and other general computing tasks. A study of the nonlinear equations of motion has
been conducted in MATLAB and serves as an idealized introduction to the solution.

The structure of this chapter is:

• Present the numerical method in MATLAB. This includes reduction of order in
the equations of motion (EOMs), the structure of the script and other relevant
aspects in MATLAB

• Present the results from solving the EOMs

• Discuss the validity of the numerical method and results

4.1 Method

The author’s project thesis built a set of MATLAB scripts and functions to solve
the EOMs. This has been elaborated in this thesis through Power-law modeling in
chapter 3.4 and Duffing equation in chapter 3.6. This extension of the previously
developed scripts has been simulated.

MATLAB is utilized with its implemented Runge-Kutta solvers in order to find
solutions of the differential equations of motion. Care must be taken in order to
solve the equations properly. The nature of our problem is that when the mass
comes in contact with the hard spring, a small time/displacement step results in
a large force/acceleration difference. In other words, a small input difference leads
to large output difference, hence the difference equation is stiff. In order to resolve
this correctly, a very small step size has to be performed in the area of contact/no
contact. MATLAB provides two useful ODE-solvers for stiff differential equations
ode15s, ode23s [12]. In order to use these we have to reduce our EOM to a set of
first order differential equations. Duffing eq 3.28 rearranged and taking into account
nonlinear k, c looks like
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4.1. METHOD

ẍ =
1

m

(
F (t)− krx− µx3 − cẋ

)
(4.1)

From this we may wish to experiment with different types of EOM. The author knows
from the project thesis that if we wish to compare identically with MSC/Nastran
we must include a relaxation stiffness kr as Nastran does not allow for complete
zero force at the deadband. This is easily solved by letting the relaxation stiffness
approach zero. For most of the MATLAB simulations kr =1E-05. kr operates for
all x. By writing it as two first order differential equations we get:

f1 = ẋ (4.2)

f2 = ḟ1 = ẍ =
1

m

(
F (t)− kr x− µx3 − cẋ

)
(4.3)

this being the core of the work in MATLAB, it is implemented as a function in the
following way:

function f = duffing_func(t, x)

global m c a krelax kappa n A w

%DUFFING FUNCTION Mass-spring damper excited at mass by force

f = zeros(2,1);

f(1) = x(2);

f(2) = (1/m)*(A*sin(w*t) - krelax*x(1) - kappa*(x(1)/a)^(3) - c*x(2));

end

We could obviously add or subtract from this, adding for instance friction laws, base
excitation formulations and more. A function that uses an array as the forcing term
allows for non-harmonic input. This opens up for sine sweep, random excitation or
even copying the input on the experimental shaker by using the output from the
control accelerometers.

A main script, named duffing solver.m, deals with setting the parameters such
as a, k, m and others. It also calls on the function above and export the results. A
third MATLAB script deals with the post-processing. It imports the results from
duffing solver.m and executes an FFT on the data set, plot the Power Spectrum
Density and Frequency Response Function as well as phase-plane and time history
plots. The numerical approach is illustrated in fig 4.1:

Input signal F(t)

MATLAB model

ODE15s

Displacement

Velocity

Output:

MATLAB operations:
Time domain output

FFT

Phase plot

Calculate acceleration 

based on above output

Figure 4.1: Flowchart of numerical analysis.
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4.2 Results

This section presents the key results from the numerical simulation work.

Summary of results from project thesis

The author’s project thesis [16] made an extensive study of the discrete formulation
of k (i.e. a deadband for x < a < a and a linear stiffness k else). Damping was
included for all values of x. The system was excited at the mass by a sine sweep
input. The gap distance a, the stiffness k and the damping ζ was varied. The
results was post-processed in the same manner as described above. The peak in in
the PSD and FRF plot was considered to be the new “effective natural frequency”
and termed ωe. Then the effect of a, k and ζ on ωe was studied. The following plots
also show the results for a = 0 i.e. the linear system as well as the MSC/Nastran
results.
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Figure 4.2: Results from varying gap dis-
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Figure 4.3: Results from varying damp-
ing ζ

Figure 6.12 shows that increasing a decreases the effective natural frequency. Figure
4.3 shows that increasing damping ζ decreases the effective natural frequency ωe.
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Figure 4.4: Results from varying stiffness
k

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Stiffness [N/m]

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

e
/

n
 [

-]

MATLAB

NASTRAN
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Figure 6.13 shows that increasing k increases the effective natural frequency. This
result is however not that interesting as the natural frequency should increase with
k. If we plot the relative difference ωe/ω we will however see the behavior relative
to ω. This is illustrated in fig 6.14 and shows that increasing k will give a relatively
lower ωe.

The main conclusion in the project thesis was that the nonlinearities introduced
in the EOMs through a discrete k gives rise to an overall decrease in the effective
natural frequency. It was also concluded that this is supporting the behavior the
Department of Prototyping at FFI observed with the shaker test of RIMFAX, as it
too lowered its natural frequency when nonlinear gaps were introduced.

Free oscillation of Duffing equation and effect of power law

Perhaps the simplest type of vibration is the case of free oscillation. We impose
the following initial conditions on the system and solve the equations of motion in
MATLAB.

x(0) = a ẋ(0) = 0 (4.4)

We alter the nonlinearity of our system by means of n in eq 3.17.
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Figure 4.6: PSD of n = 1.

0 20 40 60 80 100 120 140 160 180

Frequency (Hz)

-50

-40

-30

-20

-10

0

10

20

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

m
2
/H

z
) 

[/
H

z
]

Periodogram Using FFT n = 21

Figure 4.7: PSD of n = 21.

Several plots for n have been excluded here for the purpose of clarity. The trend in
the PSD plots is that the peak is split into several peaks from n = 1 to n = 3 (see
fig 4.6 and then from there and upwards to n = 21 the PSD peaks are “smoothed”
out as we can see on fig 4.7 where there is starting to become difficult to point
out a single eigenvalue. It is therefor useful to separate between the fundamental
frequency (the first natural frequency, or the first peak in the PSD plot) and the
natural frequencies. A 1DOF system should only have one natural frequency but as
we saw in chapter 3.6 nonlinear system does not obey this.
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Figure 4.8: Free oscillation n = 3

The first peak on the PSD plot is extracted at termed the “new effective natural
frequency” ωe. This is plotted against all n-values in fig 4.9. A clear trend is that
increasing the nonlinearity increases ωe. It is also interesting to see that introducing
nonlinearity to the system (i.e. n > 1 for n odd) gives rise to subharmonics or
several natural frequencies which is in line with what we saw from the theory on
the Duffing equation.
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Figure 4.9: ωn as function of n.
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Effect of gap size a

The case of free oscillation for the Duffing equation was studied further by varying
the gap size a. It is clear that larger gaps are less noisy and the peaks of the PSD
plot are more distinct. See fig 4.10 4.11. All simulations are with n = 3, κ = 10.
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Figure 4.10: PSD of a = 0.01 mm.

0 2 4 6 8 10 12 14 16 18 20

Frequency (Hz)

-30

-20

-10

0

10

20

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

m
2
/H

z
) 

[/
H

z
]

Periodogram Using FFT a = 10.00 (mm)

Figure 4.11: PSD of a = 10 mm.
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Figure 4.12: ωn as function of a.

As we see from figure 4.12, introducing a gap a to the system lowers ωe, and in-
creasing a lowers ωe further.

36



4.2. RESULTS

Effect of forcing amplitude A

We investigate the case of forced oscillations. The equations of motion are written
as

mẍ+ cẋ+ kx+ κxn = A sin ωt (4.5)

and we vary the forcing term parameters A and ω. The initial conditions are

x(0) = 0 ẋ(0) = 0.1 (4.6)

We begin with a forcing frequency of ω = 0.5ωn where ωn is taken as the linear
natural frequency of the system, calculated ωn =

√
κ/am. We vary A bringing us

further up the force-displacement curve as seen in fig 4.13.
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Figure 4.13: Force-displacement curve for Duffing equation. Forcing amplitude de-
pcited as red dotted lines, A = 25 N.
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Figure 4.14: PSD of forced oscillation
A = 20 N.
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Figure 4.15: PSD of forced oscillation
A = 15 N.
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Figure 4.16: ωn as function of forced amplitude A.

It is clear from fig 4.16 that the problem of nonlinear vibration is amplitude depen-
dent. This is in-line with theory previously presented.

Effect of forcing frequency ω

We now let A = 15N be constant and vary the forcing frequency ω by means of the
frequency ratio r = ω/ωn where ωn is estimated as before. ωe is now not really the
natural frequency. It is more the frequency at the system responds with the most
energy in the PSD plot1. The results display as follows:
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Figure 4.17: PSD of forced oscillation r =
1.
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Figure 4.18: PSD of forced oscillation r =
0.1.

1One way of looking at PSD plots is as the amount of energy in the system at a given frequency.
Classically, we have the most energy at resonance and thus we may extract the natural frequency
from the PSD plot.
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Figure 4.19: ωn as function of forced amplitude r.

4.3 Discussion

Discussion of numerical approach.

Free oscillation of Duffing equation and effect of power law

Even this simple case proved to be sensitive to especially a) damping and b) solver.
For “soft” nonlinearities, such as n = 3, 5, 7 the ode15s proved significant different
results than the standard ode45. This is in line with numerical simulations done
by the author in the fall of 2017 with different numerical solvers in MATLAB used
to characterize the difference between them. We also see that the damping value c
has a fairly large effect. As the spring constant is really given as κ/an we see that
as n increases the effective k increases drastically as well. This effects the damping
value c as this is given as c = ζccr where ccr is a function of k. This was overcome
by using κ (which is invariant of n) to calculate ccr.
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Chapter 5

Experimental Approach

This chapter presents the experimental method used to solve the thesis problem.
The overall aim is to design an experiment representative for the RIMFAX problem
but simplified where possible.

This thesis conducts two different of experiments to validate the physical nature
of the joint. First, the joint is assembled and its stiffness is characterized through
a tensile test. This gives the Force-Displacement relation needed in the numerical
simulation. Secondly, the joint is mounted on a shaker table to characterize its vi-
bration properties. The results from the shaker test are to be post-processed and
then compared with numerical simulations.

5.1 Method

5.1.1 Reductions and Assumptions

The experiment is designed with the numerical simulation in mind, as it is highly
time-consuming (nonlinear, transient). The basic concept has been to design an
experiment which is easily meshed, symmetric, no large multi-part assembly, easy
to produce and last but not least - controllable in the sense that we test only the pa-
rameters we want to. In doing this, we distance ourselves slightly from the RIMFAX
problem. This is thought to be necessary in order to solve the problem. It is also
believed that by using the identical joint geometry, we may still be on par with RIM-
FAX in order to solve the initial problem. Full scale testing on the whole RIMFAX
antenna structure is discarded. This is due to several reasons. The main one being
that the structure is superfluous to the joint clearance behavior. It is beneficial to
have a model both in finite element software and experimentally which is as simple as
possible yet represents the problem. Therefore we discard the antenna structure and
focus on the joints. This alters the stiffness and mass of structure being investigated.

Another alteration is the material used. The RIMFAX antenna and its joints are
made of expensive materials such as titanium grade 5 and a material prone to galling1

- aluminium 6082. In RIMFAX, to remedy galling around the bushing/joint area,
the area is anodized. We use a more reliable choice: a standard steel alloy (SS355).
This is both cheaper (compared to titanium) and is not prone to galling (compared

1Galling - a form of wear caused by adhesion between sliding surfaces

41



5.1. METHOD

to aluminium). It is also easier to produce as we exclude the anodizing proce-
dure. The material of choice is not irrelevant, but we allows ourselves to do this
as we have already distanced ourselves slightly from RIMFAX. The cost benefit is
regarded to be significant. For reasons we will later see, the thermoplastic POM C
(polyoxymethylene copolymer) has also been used as coupon material

The solution is as follows: two types of circular coupons machined for either ra-
dial clearance or slot clearance. The circular design allows for symmetry, making
it easy to mount accelerometers to the coupons. The coupons have the following
features:

• Production: easy to machine, only specified tolerances where need be. Lathing
and 3-axis milling.

• Assembly: one-part solution

• Symmetrical: making it independent of mounting direction and in some sense
geometrical invariant. This is wanted as the problem at hand is the joint
clearance, not so much the structure around.

• Cost: relatively inexpensive (compared to full RIMFAX antenna)

• Design allows for testing of the two principal directions out-of-plane and in-
plane on the same coupon.
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5.1.2 Characterizing Stiffness

From Chapter 3.2 it was established that the joint stiffness k is nonlinear in nature.
Several ways of representing k was presented. In order to compare experiments
with numerical simulations, we need to quantify k for later input in the numerical
software. One very effective way of obtaining the stiffness / force-displacement re-
lation is to put the joint in a tensile test jig and pull it while measuring force and
displacement. This will directly yield results we may use in the numerical software
later.

The following components are made in conjunction with the tensile test and repre-
sents the tensile test jig assembly:

• Tensile jig fork (2 pcs)

• Tensile base

In addition two clamps from the tensile machine manufacturer is used to clamp the
pieces in the machine.

The tensile test consist of the following:

1. Zwick BZ2.5 TN1S at a load rate of 10 N/s.

2. Coupon assembled with bushing and tensile jig

3. Nuts, bolts and washers
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Figure 5.1: Setup of tensile test. 1) Coupon speciment 2) Test jig fork and base
connected by bolts 3) Upper and lower clamps 4) Zwick BZ2.5 tensile machine.

Each coupon type - slot and radial - is tested 5 times for a representative sample
size. The coupons are pulled, released and repeated 5 times. The steel S355 coupons
were loaded to 500 N while POM C coupons were loaded to 200 N. This was done
based on estimates on the load case for the shaker test, as well as considering the
yield strength of the materials. We obviously need to avoid any plastic deformation
in the tensile tests as the specimens are to be used in shaker tests later. Only loading
to 200 - 500 N has especially one weakness. Such a small load value allows for small
movements and spurious movements in the test jig / tensile machine may affect the
results to a larger extent compared to loading at higher values. This was a trade
off. The results may be found in section 5.2.1.

As the results from the experimental test where not to be trusted (see section 5.3.1
for elaboration) a series of numerical simulations where ran in order to give a better
estimate as well. We present the method in the section for FE Approach. The linear
static FEA became an ad hoc solution to the tensile test for characterizing stiffness.
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5.1.3 Shaker Experiment Design

The shaker table experiment’s objective is the following:

• Measure the accelerometer response of in-plane vibration of both the radial
and slot-type clearance. This is done by mounting the coupons vertically to
a jig. The jig is then mounted to the shaker table which is translating in the
vertical direction. This yields an in-plane vibration of the coupon.

• Measure the accelerometer response of out-of-plane vibration of both the radial
and slot-type clearance. This is done by mounting the coupons horizontally
to a jig. The jig is then mounted to the shaker table which is translating in
the vertical direction. This yields an out-of-plane vibration of the coupon.

The experiment consist of the following parts:

1. Shaker table

2. Jig fixture

3. Coupon with specified machined clearance

4. Two-part bushing, identical to RIMFAX

5. Three accelerometers per coupon

6. Accelerometer on jig fixture to control the input signal

Figure 5.2: Experimental setup on shaker table. Image courtesy of 2.

2Image courtesy of Petter Østby, Rainpower AS which used the thesis’ setup in conjunction
with a report in the course UNIK4910 at the University of Oslo.
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Figure 5.4: Location of accelerometers
out of plane orientation. Excites in and
out of paper.

Figure 5.3 and 5.4 show the location of the accelerometers for the two different
shaker orientations. Dotted circle marks translation in and out of the paper plane.
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5.1.4 Test Pieces and Tolerances

Steel S355
To mimic the material in the RIMFAX joint, 6 different gap sizes a were machined
for both the radial and slot-type coupon in steel S355.

POM C
After initial tests with coupons in S355 were done and found to be too stiff as well
as generating too much noise in regards to the steel-to-steel contact (clash sound)
it was decided to make the three smallest gap sizes 0.00, 0.05 and 0.10 mm in POM
C for the slot and radial type (an elaborate discussion on this follows).

All the parts were machined in-house at the Department of Prototyping, FFI. The
coupons and bushings were measured in the Measurement Lab at the Department of
Prototyping (FFI) using inside and outside micrometers, gauge pins and a precision
measuring table. The following tables (table D.3, D.5, D.4 and D.6) show the results
of the various parts. The tables show a base value which is the specified value on the
machine drawing. The difference measure shows how far of the measured distance is
from the base value. All parts are within specified tolerances (see machine drawings
in Appendix E for more details). The given values are the values which are driving
for the clearance in-plane and out-of-plane for the problem.

We also have a small variation in the manufacturing of the cylindrical and slot
bushings. This makes it possible to somewhat adapt the measurements to different
parts to obtain the desired clearance size. The measurements from table D.3 and
D.4 are matched to get desired size, and measurements from table D.5 and D.6 are
matched.

Property S355 POM C Unit

Young’s modulus, E 210,000 2,800 MPa
Yield strength, σy 355 67 MPa
Poisson’s ratio, ν 0.3 0.44 –
Density, ρ 7850 1410 kg/m3

Table 5.1: Properties of steel S355 and POM C.
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5.1.5 Equipment and Experiment Procedure

Equipment
All of the following equipment was used from the Environmental Testing Lab at
FFI:

1. Shaker table, type LDS V830 with shaker control software “ShakerControl”

2. Jig fixture, appendix E for drawing

3. Coupon with specified machined clearance, appendix E for drawings

4. Two-part bushing, identical to RIMFAX

5. Three accelerometers per coupon, PCB 352C23

6. Two accelerometers on jig fixture to control the input signal, PCB XX

7. Computer with log system National Instruments Signal Express 2015

8. Link box National Instruments cDAQ-9172 with 2 modules

9. Battery power supply

10. Cables for accelerometers

Procedure
The shaker test procedure is as follows:

1. Mount jig to head-expander on shaker table

2. Mount two control accelerometers on opposing sides of head expander

3. Mount coupon on jig by means of one M6 hex bolt

4. Mount three accelerometers on specified locations on coupon. For in-plane test
accelerometers are mounted on the edge, for out-of-plane they are mounted on
the flat facing side. Beeswax is used as adhesive.

5. Connect accelerometers to link box

6. Connect link box to external log computer

7. Turn power supply, air supply and control systems on

8. Start logging via NI SignalExpress on external log computer

9. Commence test on control systems computer with specified input (sine sweep
or random, g-value, ramp speed in octaves / min and sensitivity of control and
measurement accelerometers)

10. Stop logging NI SignalExpress when test finishes.

11. Save auto-generated spectrum-plot from control systems software

12. Save logged .tdms-file from NI Signal Express

13. Begin new test
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Figure 5.5: Experimental setup on shaker table. 1) Shaker table 2) Jig cube for dif-
ferent mounting orientations 3) Coupon-bushing assembly 4) Control accelerometer
1 out of 2 5) Log accelerometers 2 out of 3.

Figure 5.6: Detail of POM C coupon.
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5.1.6 Input Signal

The shaker control software allows for a range of different input signals on the shaker
head. This thesis have utilized the following three forms of input signal:

Sine sweep
The sine sweep signal is an input where the acceleration is given as

a(t) = a0 cos ω(t)t (5.1)

where ω(t) is a linearly increasing function that yields the “sweeping” aspect. For
instance we may wish to sweep from 1-60 Hz at a constant acceleration amplitude
a0 = 1g = 9.81m/s2. Fig 5.7 shows how this specific sine sweep is generated in MAT-
LAB using the chirp function. The Bruel and Kjær controller software generates
this for us in the experiment. We only need to specify start and end frequency, rate
of change in octaves / minute (generally chosen to be 1 oct/min) and the amplitude
in g.
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Figure 5.7: Spectogram of the linearly increasing sine sweep input signal. From 1
Hz to 60 Hz over 60s. Sampling frequency of 1000 Hz.

A sine sweep signal has the advantage that a range of frequencies are swept over and
one measures the response for every frequency continuously. It is therefore efficient
for determining frequencies of interest in one run. One disadvantage is that the
sweep has to have a controlled feedback for every frequency in order to complete the
sweep. If there exist frequencies that make the system unstable (i.e. the feedback
controllers on the shaker software are struggling to achieve the desired input) this
may compromise that run. One remedy of this is to first sweep up to the problem
frequency and then sweep downwards from the highest desired frequency down to
the problem frequency. This will require to stitch the data sets afterwards.
Another sine sweep method is the step-sine sweep which is similar but for excitation
at each frequency is considerably longer period so that full amplification of each
frequency in the response can be seen. It is more accurate, but also more time-
consuming.
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Random white signal
Specifically, band-limited multisine excitation. Consists of the sinusoidal waves for
all frequencies in the frequency band of excitation at any time. Random vibration
is widely used in the industry as it is well suited for product qualification tests and
characterizing a structure’s dynamics. As it excites all frequency at the same time
it will also excite all the natural frequencies at the same time. This causes a more
“harsh” test on the test object compared to sine sweep which for most cases excites
one natural frequency at a time. Particularly for validation or destructive testing,
random vibration is a better input form than sine sweep. In this thesis random
vibration is used to complement the other experiments.

Harmonic input
A standard harmonic forcing term on the form

F = a0 sinωt (5.2)

has also been used in the experiments. It is specified through its amplitude a0

and frequency ω. The harmonic input is useful when isolation of one frequency
is interesting. In this thesis it is used to investigate what other frequencies than
the forcing frequency are excited and we discuss why these frequencies occur and
what they may be attributed to. Signal noise and chaos in the system were early
hypothesis’ that is believed to be important to have an understanding of.
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5.1.7 Post-Processing

The post-processing consists of handling the .tdms data files that are the output
from NI Signal Express. FFI has supplied a MATLAB-script for reading the files
into MATLAB. The rest of the work uses scripts written by the author in MATLAB.
In general, as much as the workflow as possible has been automated. The general
procedure is as follows:

1. Run master tdms.m. This script takes in the tdms-file, sorts out the columns
of interest, locates where the test started and stopped and crops the data there-
after. It plots the time series so the user may check if the crop is reasonable
and finally export the data in MATLAB .mat format for further processing.

2. post processing tdms.m. This script handles all the advanced post-processing.
In general it loops through the data series from master tdms.m and calculates
the PSD, FRF and Coherence spectrum with Welch averaging. Finally it
prints the figures in the correct folder and export the post-processed data.

Both scripts may be found in the Appendix.

Power Spectral Density and Welch’s Method

The power spectral density (PSD) is defined as the square Fourier transformation
of the time signal per unit time

Sxx(ω) = |F{x}|2 (5.3)

We may interpret the value of Sxx as the energy density of the signal at each fre-
quency. If the signal x is read from an accelerometer, the dimension of the PSD
is givens as g2/Hz. The estimation of the PSD in this thesis is based on averaging
methods from Welch. Basics on signal processing, with references to Welch may
be seen in chapter 13 in [28] and chapter 6 in [27]. Welch’s overlapped segment
averaging (WOSA) is very useful when the signal has noise and high resolution in
frequency is not needed. If we average the PSD over N consecutive and equally
sized frequency intervals it will reduce the variance of the PSD by a factor of 1/

√
N

within each frequency. The PSD calculated by Welch’s method is less noisy and
easier to interpret. We use a log10 scale along the y-axis and a linear scale along the
x-axis for the PSD plot. The log10 is to densify the peaks of the PSD somewhat.
A linear scale along the y-axis would make the peaks especially large. We do not
choose a log10 scale on the x-axis (although this is common in vibration analysis)
because this densifies details for high x-values too much in the author’s opinion. A
lin-scale provides the same detail for all x-values (frequency values).
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Coherence Spectrum

The coherence between to signals x, y is given by

Cxy =
|Sxy|2

SxxSyy
(5.4)

where Sxy is the cross spectral density between signals x, y. It has a maxima at
frequencies where the two signals have high correlation. The coherence spectrum
Cxy gives a value between 0 and 1 and expresses the relation between x, y. A value
close to zero indicates no relation while close to 1 indicates that the signals follow
each other. We would like to examine the coherence spectrum between the control
accelerometers (input) and the various measurement accelerometers (output). A
value between 0 and 1 indicates that the assumption of linearity between x, y is
wrong or that there are noise sources which affect the system or measurements.
So, in our case a value between 0 and 1 may indicate nonlinear behavior or poor
measurements. The first is wanted, the second is not. A weakness in this procedure
is that we do not know what causes the value.
It is worth noticing that calculating coherence without averaging gives Cxy = 1
which is trivial.
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5.2 Results

This section presents the key results from the experimental work. The structure of
this chapter is as follows:

• Present the results from the tensile test characterizing the stiffness k

• Present the results from the shaker table experiments, including initial runs,
high acceleration load runs, S355 coupons and POM C coupons.

• As there exists a fair amount of data to be discussed, it has been decided to
execute the discussion of the results directly below the relevant table or plot.
This is to reduce the need for the reader to browse back and forth pages far
apart.

• In the end, an executive discussion of the most important results is presented.
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5.2.1 Static Experiment: Tensile Test
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Figure 5.8: All 6 specimens from slot-
type a020 coupon.
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Figure 5.9: The last three specimens
which showed consistency.

Coupon and load case Material F (N) ke (N/mm)

Slot 1st principal POM C 200 2670
Slot 2nd principal POM C 200 2772
Slot 1st principal S355 500 2821

Table 5.2: Estimates of k based on the last three stable runs.

Figure 5.8 shows the complete 6 runs. Figure 5.9 shows only the last three, which
is the basis of the average value seen in table 5.2. Notice of the POM C and S355
yields almost the same numerical value, indicating that we are measuring the test
setup stiffness, rather than the joint stiffness. A complete discussion of this follows
in chap 5.3.1.
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5.2.2 Dynamic Experiment I: Initial Shaker Tests

Fundamental mode from zero clearance

In order to quantify the modes of the coupon as well as verify the FE analysis (see
chapter 6) the Radial a = 0 coupon was used together with a standard washer which
ensured no clearance in any direction (out-of-plane or in-plane). The structure was
excited with a sine sweep sequence.

Figure 5.10: Sine sweep of fixed coupon radial a = 0. Fundamental mode is seen at
1900 Hz.

Initial runs

A set of initial runs with the S355 coupons were done in order to characterize
areas of interest. This showed no conclusive trend. Experimentation with different
frequency ranges, acceleration amplitudes (and thus displacement amplitude), sine
sweep rate of changes (octaves/minute), coupon orientations and both joint types
were conducted.

Figure 5.11: Radial a = 0. Out of plane. 0.5 g.
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Figure 5.12: Radial a = 0. Out of plane. 1.0 g.

Figure 5.11 and 5.12 show how the g-load displays to different behavior regimes.
The 0.5g load seen in fig 5.11 is not enough to displace the bushing sufficiently to
impact the joint on both sides. It is therefore resting on one side of the joint and
following the joint’s motion. We do observe events at 100, 200 and 550 Hz. This
is believed to be rocking motions of the coupon (as it has both in-plane and out of
plane clearance it is free to tilt or rock about). When increasing the acceleration
amplitude to 1.0 g as seen in fig 5.12 we see a much more chaotic behavior especially
at f > 200 Hz.

Figure 5.13: Slot a = 0.40 mm. In-plane 1.25 g.

Figure 5.13 shows seemingly complete chaos in the frequency response results.
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High acceleration load

The sine sweep generated in the Bruel & Kjær Shaker control systems software is
a signal that keeps the amplitude of acceleration constant. In order to do this, the
displacement and velocity has to be varied. Given that

a(t) = a0 cosω t

is the form of the input signal on the shaker. a0 is given as the amplitude, in number
of g. a0 = n g = n× 9.81m/s2 for n > 0. The displacement x(t) on the shaker may
be found by integrating twice

x(t) =
a0

4πf 2
cosω t

Here we have used that ω = 2πf . The amplitude of displacement A as a function
of the increasing frequency f is thus

A =
a0

4π2f 2
(5.5)

It is easily seen from this that when we sweep upward and increase f the dis-
placement amplitude A is lowered. The interesting aspect of this is that our given
clearance a is constant. And so we may start out with an A large enough to cover
our clearance range and impact the joint in both directions. However, as the fre-
quency is increased A will at some point become smaller than a. Thus, the vibrating
bushing will not impact in both direction and will oscillate “for itself” inside the
joint without acting any force on the coupon structure.
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Figure 5.14: Displacement as a function of excitation frequency for different g. A
clearance of a = 0.10 mm is chosen for illustration.

Figure 5.14 shows how narrow the permissible area above the dashed line is in order
to ensure full impact on every oscillation. As we see, lowering the clearance will
significantly increase the permissible area as well as make the driven g-load useful
for a broader frequency range.
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This was confirmed by using the Slot a 0 20 coupon. A range from a0 = 0.2g
to a0 = 20g was tested as well as a variety of sine sweep ranges. Based on audible
feedback from the experiment one could hear when there was “full double impact”
between bushing and coupon and when it was not. The behavior was similar for
every test: a clear rattling sound was produced up to a certain frequency where
the sound of rattling was more random indicating that full impact occurred for
some time interval, for then to go back to oscillate inside the clearance-deadband
x ∈< −a, a >. For even higher forcing frequencies the random rattling stopped, in-
dicating that the displacement amplitude A was so small that there is no possibility
of impacting both sides. As the test environment includes gravity it is likely that the
coupon is “resting” on the bushing at these frequencies and oscillating just slightly.
For instance, at 400 Hz and a0 = 1g the shaker is oscillating at A = 0.00155mm
which is clearly not even close to initiate contact in the slot joint (a = 0.2mm, or 0.1
mm on each side of the bushing). Increasing a0 confirms this. The distinct sound of
rattling is now audible to a higher frequency, indicating that the shaker is able to
oscillate at higher A and exert full impact on the joint for a wider frequency range.

S355 Coupon runs

As the S355 coupons yielded too much rattle noise, they were not continued. Below
is an example of post-processed results with the following properties

Property Value

Joint type S355 Slot
Clearance a 0.20 mm
Orientation In plane
Frequency sweep 40-3000 Hz
Acceleration amplitude 1.0 g

Sampling frequency 5688.9 Hz
Welch window 1024
Welch overlap 512

Table 5.3: Shaker test of S355 with post-processing properties
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Figure 5.15: PSD without Welch averag-
ing
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Figure 5.16: FRF without Welch averag-
ing
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Figure 5.17: PSD with Welch averaging
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Figure 5.18: FRF with Welch averaging
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Figure 5.19: Coherence plot

From the preceding figures it is clear that the averaging methods provided by Welch
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are working properly, but no conclusive trend is shown. When this was realized, the
thesis work focused more on POM C coupons.

61



5.2. RESULTS

5.2.3 Dynamic Experiment II: POM C Shaker Tests

An initial test with POM C slot a 0 20 was conducted. The signals were signifi-
cantly less noisy compared to S355. As the first modes of the structure was still
high (about 580-590 Hz theoretical from Nastran) the thickness was reduced.

The thickness was reduced to nominal t = 2.60 mm. This yields the three first
modes theoretically to be 314, 364 and 411 Hz. See table 6.5. This was con-
firmed experimentally by the same means as earlier with S355, see fig 5.20, 5.22.
Power spectrum density (PSD), coherence spectrum and frequency response func-
tion (FRF) have been used to post-process the results. Unless otherwise specified
the following post-processing parameters were used:

Property Value

Sampling frequency 5688.9 Hz
Welch window 1024
Welch overlap 512

Table 5.4: Post-processing parameters.

In total, 92 shaker tests of various excitation methods, orientations and clearances
have been conducted. The following sections present the results from these. The
complete list of plots may be found in Appendix F. A complete table of the tests
with the corresponding load and frequency range is specified in Appendix F, table
F.1. The positioning of the accelerometers (channel 3, 4, 5) for the two different
orientations is seen in figure 5.3 and 5.4. The positioning is consistent for the 92
tests.

Sine sweep

A total of 72 sine sweep tests have been conducted. The latest POM C coupon
(t = 2.60 mm) were swept in the following six manners:

g (m/s2) Sweep (Hz) Octave rate (oct/min)

0.5 5-500 1.0
1.0 15-500 1.0
2.0 15-500 1.0
5.0 25-500 1.0
10.0 50-500 1.0
15.0 50-500 1.0

Table 5.5: Sweep routines.

Every coupon was swept in both in-plane and out-of-plane directions. Both the
radial and the slot joint was tested with 3 different clearances (a = 0.00, 0.05, 0.10
mm). This makes in total 72 tests. The variation in sweep ranges compensate
for the displacement limits on the shaker (higher g-loads have higher displacement
amplitude at lower frequencies, topic previously discussed - see fig 5.14).
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Fundamental mode from zero clearance
As a benchmark, the new POM C coupon was fixed by the same means as in sec
5.2.2. Both sine sweep (5-500 Hz, 0.5 g) and random vibration (5-1000 Hz) was
run. The results are consistent with the theoretical modal analysis. Fig 5.20 show a
small peak at 316 Hz and a distinct peak at 367 Hz. It is believed that the first two
modes (314) are more difficult to excite than the third (364), hence the difference
in magnitude response.
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Figure 5.20: PSD of sine sweep test #45.
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Figure 5.21: Coherence of sine sweep test
#45
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Figure 5.22: PSD of random test #44.

100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coherence Spectrum Test #44

Ch 3

Ch 4

Ch 5

Figure 5.23: Coherence of random test
#44.

We observe consistency between the random and sine sweep vibration. It should
therefore be possible to use both sine and random in post-processing. The random
has the advantage of ranging to 1000 Hz without being time consuming. The results
in fig 5.20 - 5.23 serves as a benchmark for comparison for the rest of the analysis.
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Sine sweep tests with clearance
The sine sweep results separate into two different regimes. The first regime is where
the coupon is excited out of plane. This orientation excites the first modes of the
system, giving rise to distinct peaks in the PSD and FRF plots (as would be expected
in a linear system excited the same orientation). The coupons excited in-plane do
not manage to excite these modes and thus does not display the same behavior in
the PSD and FRF plots. This is the second regime. This difference generates two
different approaches to post-processing the results. For the coupons out of plane, it
is interesting to see how the natural frequency shifts as we vary clearance. Especially
the value of the first 3 modes. For the coupons in-plane, a peak in PSD / FRF would
indicate the joint frequency in itself. The fact that the joint has a natural impact
frequency of its own was the main hypothesis to begin with.
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Figure 5.24: PSD and FRF of test #1: in-plane.
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Figure 5.25: PSD and FRF of test #9: out of plane.
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The two different regimes are clearly seen in fig 5.24 and 5.25 which are both radial
a = 0.00mm, 0.5 g but out of plane and in-plane, respectively. Notice the difference
in magnitude, for example for the FRFs. This makes sense as the system is much
more flexible in the out of plane direction than in-plane. It is in general difficult to
say anything clear from the in-plane results. The “joint frequency” as previously
referred to and the hypothesis is not visible from the results in these experiments.
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Figure 5.26: Coherence of test #1.
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Figure 5.27: Coherence of test #9.

Figure 5.27 shows how channel 3 has a perfect coherence with the input signal. This
makes sense as there is no clearance and since the system is fairly stiff in the in-
plane direction, accelerometer 3 should follow the input. Comparing test #9 with
test #42 (maximum clearance a = 0.10, maximum load g = 15.0.) we get
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Figure 5.28: PSD of test #42.
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Figure 5.29: Coherence of test #42.

Observing in fig 5.29 that the coherence is dropping with increasing frequency, signif-
icantly after the third mode, f = 366 Hz. Comparing this to out of plane excitation
with the same setup we observe a quite different behavior.
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Figure 5.30: PSD test #35. 15g.
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Figure 5.31: Coherence test #35.
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Figure 5.32: 2g

50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
S

D
 l
o
g

1
0
(g

2
/H

z
)

PSD Test #33

Ch 3

Ch 4

Ch 5

Figure 5.33: 5g
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Figure 5.34: 10g

Figures 5.32-5.34 and 5.30 show an interesting phenomenon. As the g-load increases,
the shaker manages to have full impact on both sides of the clearance for a higher
frequency. This is why we see the sudden drop in the PSD-plot. This is completely
in line with the displacement amplitude versus frequency we previously discussed
in fig 5.14. The phenomena were clearly audible during the experiments. The peak
shifts from 170 Hz at 2g to 270 at 15g.
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Random vibration

All the 6 coupons were in both directions also excited by random vibration. This
makes up 12 tests. Parameters in the shaker control software for random vibration
allows specification of the load in gn2/Hz and from there it is able to read off the
g-load. A load of 0.0002 gn2/Hz was read to be 0.4464 g. The random vibration
had the following test properties:

Load Freq range (Hz)

0.0002 gn2/Hz 5-1000

Table 5.6: Random vibration parameters.
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Figure 5.35: PSD of random test #8. Ra-
dial out of plane, a = 0.00.
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Figure 5.36: PSD of random test #15.
Radial in-plane, a = 0.00.
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Figure 5.37: PSD of random test #36.
Radial out of plane, a = 0.10.
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Figure 5.38: PSD of random test #43.
Radial in-plane, a = 0.10.
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Figure 5.39: PSD of random test #68.
Slot out of plane, a = 0.10.
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Figure 5.40: PSD of random test #89.
Slot in-plane, a = 0.10.

Again, we observe that there is a distinct difference in the response of the different
orientations (notice that ch 3 is the accelerometer measuring in the excitation direc-
tion). As the results are very similar for the in-plane excitation, we do not report
every run here. The interested reader is referenced to the Appendix F.

For the out of plane orientation the peak is approximately at the same frequency
for all runs, at f = 250 Hz. It is interesting that the peak in PSD drops 126 Hz by
introducing a clearance in the system. There is also some behavior at 400 Hz worth
noticing. It is noteworthy that the PSD-peak at 250 Hz is common regardless of
joint type or clearance.

Harmonic input and notch filtering

A total of 8 tests were run with harmonic input (single frequency excitation). The
objective of the harmonic input is to understand 1) the potential noise in the exper-
imental setup and 2) the chaos generated by the nonlinear gap. The radial a 0 10
coupon was chosen as it turns out to be the coupon-bushing combination with the
most clearance. It was excited at 50 (low frequency), 250 (peak in PSD from test),
315 (1. natural frequency from Nastran) and 366 Hz (2. natural frequency from
Nastran). The coupon was tested at 1.0 and 10.0 g, representing low and high
amplitudes from the previous sine sweep testing. For the 1.0 g we have previously
experienced little rattling chaos while for 10.0 g the tests have overall yielded chaos.
The Welch averaging parameters were changed to increase resolution.

Property Value

Sampling frequency 5688.9 Hz
Welch window 2048
Welch overlap 1024

Table 5.7: Post-processing parameters for harmonic input.
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Figure 5.41: Time series segment #93.
0.5g.
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Figure 5.42: Time series segment test
#95. 10g.

Figure 5.41 and 5.42 show a representative time series segment that spans over two
periods of the excitation frequency (in this case fe = 50 Hz and so T = 1/50 =
0.04s). The time series data has been notch filtered or attenuated, at the excitation
frequency. This is clearly visible at fig 5.41 where the coupon is excited at 1 g.
However, for the 10 g load we see the resulting time series segment is by far more
chaotic than at 1g and has seemingly no periodic motion at 50 Hz as the filtered and
unfiltered signals are almost the same. This result follows the general notion that
a certain g-load is necessary in order to have full impact on both sides of the joint
under excitation. The results also show that at 10g the behavior is highly chaotic
and even a low excitation frequency excites much higher response frequencies in the
system.
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Figure 5.43: PSD #93. 0.5g.
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Figure 5.44: PSD test #95. 10g.

The observation of one excitation frequency manifesting itself in the response through
several higher and lower frequencies, or period doubling, is seen in fig 5.43 and 5.44.

The idea behind the harmonic input is to also have a quantified opinion on noise in
the system. Here, noise in the sense that chaos is introduced through the nonlin-
earities of impact vibration. For instance, the response displayed in fig 5.43 may be
considered noise if we want to follow our previous logic. As the system in test 93
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is believed to be linear as the g-load is too low to initiate full double impact, the
resulting response after we have notch-filtered the excitation frequency should be
noise. However, it is difficult to be absolutely certain the system behaves linearly
even under 1g. Regardless, the magnitude of the response in the PSD plot of test
93 is very low, indicating that noise might very well not play a large role at these
loads anyway.

Using peaks to find trends

Although it is interesting to look at the complete PSD or FRF plots, it is in essence
the frequency at peak value that indicates the natural frequency. Using the built-in
function findpeaks in MATLAB we can easily find the numerical value of peaks in
different data sets. Three scripts have been written to accommodate for automation
of this process. This makes it easy to process through a number of tests, finding
the peak value and the corresponding frequency and then lastly plotting the values
against each other in order to investigate any trends. We call the peak in the PSD
plot for the effective natural frequency ωe. Then we explore how ωe varies as we
vary different parameters.

• ωe vs a in random excitation (fig 5.45)

• ωe vs g-load in different coupons (fig 5.46, 5.47)

• ωe vs a in all the radial joint tests combined. Similarly for the slot joint (fig
5.48, 5.49)

By varying the gap distance and looking at the random excitation results we find:
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Figure 5.45: ωe as a function of a in random excitation. Both radial and slot type
joint.
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Figure 5.46: ωe as a function of g-load in
slot a = 0.10.
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Figure 5.47: ωe as a function of g-load in
radial a = 0.10.

Figure 5.46 and 5.47 show little or no conclusive trend on ωe.
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Figure 5.48: ωe as a function of a in every radial out of plane test.
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Figure 5.49: ωe as a function of a in every slot out of plane test.

Figure 5.48 together with 5.49 is perhaps the most elaborate plots of them all from
the shaker tests. They each display 18 tests in one single plot, giving the essence
of the results from the radial and slot joint tests, respectively. There is however
difficult to claim any conclusive trend from the data.

Although we can not clearly give any correlation between ωe and the test parame-
ters, there is clear that the peak in PSD has been reduced for every out of plane test
when nonlinearity was introduced. We wish to be careful in making claims based
on such inconclusive data, but this fact might indicate that clearance lowers the
natural frequency - which was the behavior the Department of Prototyping, FFI
experienced with the RIMFAX in the first place.
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5.3 Discussion

The objective is to summarize and discuss the most important aspects of the results
from the experimental work.

5.3.1 Characterizing Stiffness

The S355 steel parts turned out to have a hardness and surface finish such that
it could not be clamped properly. Thus the surface is partly knurled in order to
increase grip. This process turned out to be an inexpensive remedy of the problem,
but we observe that the different runs are getting increasingly stiffer. This is believed
to be due to the grips “come into place” more and more during the runs. This is
way run 1-3 is discarded and we only consider run 4,5 and 6 for the estimate on
stiffness. After testing for several times and with different joint types (slot, radial)
we observed the following:

• The results converge by stiffening. The first two runs typically have a large
displacement. 2-3 additional runs are needed to have converged and consistent
runs. It is reasonable to believe that this is due to poor jig-design and that
the jig needs some amount of force to “set”. When this is done one may start
to record real results.

• The results for every coupon, slot and material yields the same ke. This is
believed to be due to the slipping of the specimen in the grips. Thus what we
really measure is the “slipping stiffness” in the grips and not at all the joint
contact stiffness. This renders the results practically useless.

• The test does not yield the same results for k for the same specimen when it is
remounted in the tensile jig. We were not able to reproduce the same results

• When loading the specimen to more than the target load of 500N, we observed
more of the “grips come into place”-behavior. This indicates that the grips
have not in fact “come into place” for loads under 500N. Thus, the specimen
is still slipping.

These observations question the integrity of the tensile test completely.

The tests were run and the results can be found in fig 5.9. If we compare the
results (tab 5.2) to the linear static finite element results (tab 6.4) we observe a
difference in the order of 103. Consequently, the results from the stiffness test are
only reported - not used any further.
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5.3.2 Dynamic Experiment I: Initial Shaker Tests

Initial Runs

The sine sweep tests of the steel S355 coupons were in the beginning hard to ana-
lyze. The problem is, as we are aware of, amplitude-dependent. This is confirmed
through sine sweeps of varying the acceleration amplitude value g in the values
of [0.2, 0.25, 0.5, 0.75, 1.0, 1.1, 1.4, 2.0, 3]. They all yield different results. The most
prominent observation from the amplitude variation is that for g > 1.1 the coupon
starts to translate in the joint. For g < 1.1 the coupon is moving along with the jig,
providing a much “cleaner” plot - although not giving us the physical joint behavior
we are seeking. A lot of time was spent investigating by trial and error how the
coupon behaved.

The stiffness of the S355 coupon is assumed to be too high for use in practical
experiments. This is supported by the normal modes analysis in chap. 6.2.2. The
first eigenvalue is 1953 Hz. This makes the analysis more difficult than necessary
mainly because of:

• The shaker is operational from 5-3000 Hz. Having eigenvalues so close to the
max operational frequency implies that we have less room to experiment with.

• When exciting at high frequencies, the Nyquist frequency increases. This cor-
responds to larger data sets. This in itself is no real concern as both the
computers available and the post processing software MATLAB is capable of
large data sets. However, when we want to compare our results with MSC/-
Nastran, the case becomes drastically more computational expensive if we have
to sample at 4 kHz instead of for instance 1 kHz or so. The step size decreases
and thus the problem becomes more computationally expensive.

• Considering the amplitude-frequency relation seen in fig 5.14 we see that ex-
citing at frequencies above 400 Hz or so makes it necessary to have extremely
tight tolerances to enable the double impact behavior we seek. Exciting only
at frequencies below e.g. 400 Hz makes the task much more manageable.

Fundamental mode from zero clearance

The classical experimental modal testing for finding the linear natural frequency
was done on both S355 and POM C and they show both excellent correlation with
the finite element analysis.
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5.3.3 Dynamic Experiment II: POM C Shaker Tests

The POM C shaker tests yielded much more clear results, mainly because of the
following:

• The ringing noise experienced with the metal-to-metal contact in S355 coupons
is eliminated in POM C.

• The natural frequency was drastically reduced, down to 314 Hz. This is a
much easier frequency area to operate in, as reasons mention above indicate.

• The S355 coupon tests served as a good indication of what worked and what
did not. Subsequently, the POM C tests were more targeted and efficient as
the author already had previous experience.

The highlights from the POM C shaker tests results as previously discussed are:

• There is a significant difference in response comparing out of plane and in-
plane excitation. The system is too stiff in-plane to display any noticeable
effect of clearance. The response is flat.

• The out of plane excitation shows that the peak in Power spectrum density
drops from 367 to approximately 250 Hz by introducing clearance. This drop
is similar for all clearances and joint types.

• Variation of the g-load confirms the belief that there is a clear correlation
between the shaker displacement amplitude and whether or not the system has
double impact or not. The displacement is inversely proportional to frequency,
so the bushing does after a certain frequency not displace the gap completely.
Hence, impact is not achieved and the system is much less chaotic. Higher g-
loads have a higher displacement at the same frequency and manages to keep
the full impact behavior for a longer frequency range.

• Harmonic input and notch filtering of the excitation frequency displays inter-
esting results when it comes to chaos and noise in the system.
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Chapter 6

Finite Element Approach

This chapter presents the numerical models used to solve the thesis problem. The
overall aim is to model the problem as accurate as necessary yet as computationally
inexpensive as possible.
FFI use the software package from MSC Software containing of MSC/Patran (herein
Patran) and MSC/NASTRAN (herein NASTRAN or Nastran). Part of the thesis
work is to solve the problem for FFI in this software package.

The structure of this chapter is thus:

• Present some general prerequisites and provide the underlying assumptions for
consistency.

• Present the approach used in MSC/NASTRAN for the static and various dy-
namic analysis. This includes evaluation of alterations or simplifications re-
quired, different numerical schemes, element types and post-processing tech-
niques.

• Present the results of the said analysis.

• Discuss the said results.
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6.1 Method

6.1.1 Finite Element Prerequisites

Units

As with other comparable finite element software packages, Nastran employs the
user to be consistent in their use of units. In this thesis the following units are
chosen:

Property Unit

Length m
Mass kg
Mass density kg/m3

Force N
Elastic modulus Pa (N/m2)

Output

Displacement m
Acceleration m/sec2

Stress Pa

Table 6.1: FEA unit consistency.

Damping

Damping may come from several sources such as viscous effects (dashpot, shock
absorber), internal friction (i.e. hysteresis), external friction (slippage in structural
joints) and/or structural nonlinearities (plasticity). Nastran cosideres two different
damping types: viscous and structural [26, p. 9.3-4]. Viscous damping use dis-
crete elements such as CVISC or CDAMPi. They are mainly used to model actual
damping components in a structure, such as hydraulic damper and other viscous
interfaces. Structural damping is a global damping proportional to the stiffness. A
realistic value is between 0.5% and 4%. According to [26, p. 9.3-5] the relation
between viscous and structural damping is

c = g ωnm =
g

ωn
k (6.1)

or
g =

c ω

k
= 2ζ

ω

ωn
(6.2)

which at resonance is equivalent to

g = 2ζ (6.3)

Notes on SOL400

The project thesis used SOL129 Nonlinear transient response. As this is a legacy
solver the improved SOL400 in Nastran is used. SOL400 includes the functionality
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of SOL129 as well as more. SOL400 is an implicit nonlinear solver recommended as
default by MSC Software. The nonlinear problems are classified into three categories:
geometric, material and contact. The formulation and setup utilized in this thesis
implies a material nonlinearity (i.e. the stiffness k). See [22], [5], [21] and [4] for
more on Nastran.

Relevant Element Formulations

One key part of this thesis is navigating in the vast number of different elements
and properties in NASTRAN which we may use in order to represent the nature of
the problem.

CVISC Viscous damper element. 1D. Possible to define
Extensional (C1) and Rotational (C2) Viscous Co-
efficient.

CBUSH 1D Scalar bush element. Versatile spring-damper
element. Various definitions of spring stiffness,
both constant, frequency dependent and force-
displacement relation directly. Possibility for
spring-damper in 6 directions.

CBUSH2D 1D-2D Linear/nonlinear bush element.

CGAP Gap or friction element. Intended for nonlinear
static analysis. Functions like a contact element
and intended for contact analysis. Tweaking of
contact spring parameters is required for conver-
gence. Not suited for dynamic analysis with nu-
merous opening and closing of gaps.

CELASi CELAS1 or CELAS2. Scalar spring element. Need
to define Spring Constant and DOF at node 1 and
2.

CDAMPi CDAMP1 or CDAMP2. Scalar damper element.
Need to define Damping Coefficient (force per unit
velocity) and DOF at node 1 and 2.

CONM CONM2, Concentrated Mass Element Connection.
Defines a concentrated mass at a grid point. De-
fined by a mass value and a mass moment of inertia
measure Iij. Also possible to use the more general
CONM1 element, where a 6x6 mass matrix serves
as input.

Table 6.2: Element formulations in Nastran.
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6.1.2 Static Analysis

As we saw in sec 5.1.2 the experimental approach did not yield valid results. A
linear static finite element analysis was run to attempt to remedy this.
The coupon CAD-files were altered with split lines in order to create surfaces which
is to be used for applying loads and boundary conditions in MSC/Patran. The
geometry was exported through parasolid .xt and then imported into MSC/Patran.
A load of 500N in the first principal direction was applied as seen in fig 6.1 and a
boundary condition of u1 = u2 = u3 = 0 (fixed) was applied to the rim of the
coupon1. In order to remedy for possible out-of-plane displacement, an u2 = 0
condition was applied to the faces with a normal vector in the y-direction. The max
displacement was read and through this, an estimated ke is given by Hooke’s law:

ke = F/u (6.4)

Figure 6.1: FE model of slot for linear static analysis

1This is not identical to the experimental setup. When it was realized that the experimental
tensile test was flawed it was decided to use a more desired approach in FEM. If we were to do the
test again we would like to apply the same boundary condition on the rim.
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6.1.3 Dynamic Analysis I: Normal Modes Analysis

Initially, a normal modes analysis in NASTRAN using SOL103 was conducted in
order to classify the normal modes of the structure we might observe during the
shaker tests. The analysis was done with geometry created in Patran for the radial
joint. This creates triparametric geometry which makes it possible to mesh using
Patrans IsoMesh-algorithm. Both a thin-shell formulation and a 3D solid formula-
tion was used and compared. Both models had encastre2 boundary conditions at
the elements inside Ø16.7 mm of the center. This is where the bolt and bushing
flange have contact with the coupon.

The modal analysis was limited to find only the first 10 modes and up to 3000
Hz (we are not interested in higher modes).

2ui = θi = 0 i = 1, 2, 3 No translation or rotation.
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6.1.4 Dynamic Analysis II: Spring-Damper Model

Objective
The objective of this model is to propose a finite element formulation that serves as
an initial solution on the problem. The initial goal of the finite element modeling
was to correlate experimental results with a finite element model and in best case
fine-tune parameters (within sensible bounds) such that one has a good correlation
between simulation and experiments. However, as the experimental work yielded
results much more chaotic and less clear the objective has shifted. After discussion,
it is believed that attempting to replicate the phenomena we saw through the Duff-
ing oscillator in Theory and through the numerical results in MATLAB, is more
interesting. If we can display the period doubling and drop in natural frequency we
saw when adding clearance to the system, we have come some way. Thus, the finite
element approach for dynamic analysis is an iteration on the formulation that was
used in the project thesis.

Model
The model is based on the model from the project thesis. We see the need to reduce
the computational effort in order to run the problem on a standard office computer.
The coupons are represented by a CONM2 element with prescribed mass and inertia.
Intertia is given by a 3x3 matrix. The mass has been scaled to 1kg, and the inertia
for the coupon is scaled correspondingly. The resulting I is 3:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

633
633

1256

 kg mm2 (6.5)

One node represents the ground, and one node represents the coupon. The two
nodes are connected through a bar element. The CONM2 property is linked to a
point element. In total there are two nodes and two elements in the model.

1 CBUSH

1 2

2 CONM

3 CVISC

F(t)

Figure 6.2: Nastran model. Elements in red and nodes in blue.

The CBUSH element spring stiffness Fs is defined through

Fs = κ (x/a)n (6.6)

where n = 3.

Constraints
The node for ground is constrained to no translation (ui = 0 for i = 1, 2, 3). The
node for coupon is constrained to no translation in u3 as the problem is considered
to be in R2.

3The values of I is calculated in SolidWorks from the coupon geometry and mass properties.
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Solution method
SOL400 is used. The following values are set in Step parameters - Load increment
parameters.

Property Value

Increment type Adaptive
Trial time step size 0.005
Time step scale factor 1.1
Min step size 5E-05
Max step size 0.05
Max # of steps 29999
Total time 30.0
# of steps of output 15000

Table 6.3: Load increment parameters SOL400.

The solution convergence is quantified and monitored through the .sts file generated
by Nastran in real-time. The .f06 file is routinely checked for any error messages.

Mesh
The model is 2D and uses bar and point elements. As we have modeled the coupon
as a lumped mass CONM2 element, we are left with a very small mesh consisting
of only two nodes and two elements.

Input signal
We use a sine sweep signal generated using chirp in MATLAB, see Appendix C.
The signal sweeps linearly from 0-30 Hz over 30s. We sample the signal at fs = 1000
Hz for input to Nastran. As the chirp signal only sweeps up to 30 Hz and we plan
to sample output at much lower than fs/2 we should not encounter aliasing in any
link of the process..

Output request
We request displacement, velocity and acceleration for the point mass at 15000
instances. This yields a fs = 30/15000 = 500 Hz.
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6.2 Results

This section presents the key results from the numerical simulation work. The
section presents the static and dynamic results previously discussed.

6.2.1 Static Analysis: Characterizing Stiffness

6 linear static finite element analysis’ with different coupons and different load cases
were conducted in NASTRAN. The simulation is set up according to sec 6.1.2. The
results are

Coupon and load case Material F (N) u (mm) ke (N/mm) fn (Hz)

Slot 1st principal POM C 500 3.22E-02 1.553E+04 2679
Slot 2nd principal POM C 500 2.91E-02 1.718E+04 2818
Radial 1st principal POM C 500 2.59E-02 1.931E+04 2987

Slot 1st principal S355 500 4.67E-04 1.071E+06 9509
Slot 2nd principal S355 500 4.43E-04 1.129E+06 9763
Radial 1st principal S355 500 4.26E-04 1.174E+06 9956

Table 6.4: Numerical results from linear static analysis in NASTRAN.

The natural frequency fn is calculated as

fn =
1

2π

√
ke
m

where ke is in [N/m].

Figure 6.3: Deformation plot. Figure 6.4: Detail of contact area

If the hypothesis of a “joint natural frequency” is true, this may be estimated from
table 6.4. In the vicinity of 2700-3000 Hz for POM C and almost 10,000 Hz for S355
makes the frequency area of interest extremely high and rarely observed in reality.
It is also way above the natural frequency of the coupon structure as we shall soon
see.

We wish to elaborate and problematize the concept of finding a joint stiffness. This
both in regards to experimental and finite element methods. From the experimental
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6.2. RESULTS

point of view, we are dealing with very small deformations. Imagine, we are oscillat-
ing the bushing inside the joint but not really exerting a force on the joint contact
area. The contact event is of impact in nature. Thus, to measure the stiffness we
need to measure small deformations. This requires a test jig and test equipment
which are designed to operate at such small magnitudes. Neither did this in our
case. Small clearances in nuts, bolts and other contact areas in this thesis’ jig make
the total deformation measure the sum of several contact deformations and it is with
the current jig impossible to separate them apart. Also, a more accurate measure-
ment device than the tensile machine in itself is required. Perhaps an extensometer
would be an improvement. Otherwise, very high resolute cameras may be able to
capture the small deformation (imagine a setup like DIC 4). In general, the complete
test setup has to be designed with small deformations in mind - from the FE analysis
we estimate an order of magnitude of 1E-04 mm for steel.
From the finite element point of view there are certain improvements that should
be done. First and foremost a proper contact analysis must be done. Here it is
important that both the joint and the bushing are deformable. The question of
where to measure the total deformation from arises. Also, the analysis will be
both mesh and material dependent. The reason a contact analysis is not conducted
in this thesis is that it is not considered to be in the scope as this work revolves
more around the oscillatory properties. However, a true description of the problem
will likely involve a proper evaluation of the stiffness both experimentally and in FE.

Overall, the idea of characterizing the joint stiffness on basis on the methods given in
this thesis was initially thought to be “good enough”. However, the author realized
that this was not the case as the analysis’ were conducted. Time was a limiting
factor, and the method and results are presented “as is” - that being with great
disclaim when it comes to the usability of the results. They are meant as merely a
guideline.

4DIC - digital image correlation: an optical technique where imaging and tracking of material
points are used to quantify deformation or strain

85



6.2. RESULTS

6.2.2 Dynamic Analysis I: Normal Modes

Natural frequencies and modes with a = 0

The numerical model was built by using a standard thin-shell 5 A total of 1600
CQUAD4 elements with a constant width of 2.6 mm represents the coupon. The
inner elements are fixed in u1, u2, u3 translation. SOL 103 Normal Modes Analysis
in NASTRAN yields ωn1 = 314 Hz = ωn2 (mode shapes are identical, eigenvectors
directed in different planes), ωn3 = 364 Hz, ωn4 = 410 Hz.

Figure 6.5: Mode 1 &2, 314 Hz. Mode 2 at same frequency but with eigenvector in
YZ-plane instead of XZ as shown here.

Figure 6.6: Mode 3, 364 Hz.

Figure 6.7: Mode 4, 410 Hz.

We observe from the experimental results in fig 5.20 that the first natural frequency
is located at 316 Hz. This corresponds well with the numerical wn1. Thus we
conclude that peaks occurring in the vicinity of 314 and 364 Hz are the coupons
natural frequency and not the joint frequency.

5Thickness-to-span ratio of 1/20 which makes it borderline formulation.
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Mode no. Eigenvalue
Shell

Material Joint type Mode shape

1 314 POM C Radial

2 314 POM C Radial

3 364 POM C Radial

4 410 POM C Radial

5 412 POM C Radial

6 (Torsion) 851 POM C Radial

Table 6.5: 6 first modes from normal modes analysis of radial coupon of POM C
t = 2.6 mm from NASTRAN. Shell elements depicted.

We report the value of S355 for comparison (although not used when the switch
to POM C was made).
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Mode no. Eigenvalue
Solid/Shell

Material Joint type Mode shape

1 2030.7/2024.9 S355 Radial

2 2030.7/2024.9 S355 Radial

3 2329.9/2332.5 S355 Radial

4 2898.7/2908.1 S355 Radial

5 2897.7/2908.1 S355 Radial

6 (Torsion) 4456.7/4793.2 S355 Radial

Table 6.6: 6 first modes from normal modes analysis of radial coupon in steel S355
(t = 5 mm ) from NASTRAN. Solid elements depicted.
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6.2.3 Dynamic Analysis II: Spring-Damper Model

Vary gap distance a

We vary the gap distance a in the spring stiffness formulation Fs. The input signal is
the sine sweep presented above, but with an amplitude of 5 N. a = [0.1 0.25 0.5 1.0].

Parameter Value

κ 10
ζ 0.01
c 0.06324
m 1

Table 6.7: Fixed parameters for gap simulations.
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Figure 6.8: Time history and phase plane plots of a = 0.5.
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Figure 6.9: Power spectrum density a = 0.5.
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Figure 6.10: Peak in PSD

The results above are similar to the results from the project thesis. The most
prominent difference between this formulation and the formulation in the project
thesis is 1) the usage of SOL400 instead of the legacy SOL129 and 2) the use of the
cubic Duffing spring stiffness. Otherwise the workflow is comparable as seen in fig
6.11.

Input signal F(t)

MSC/NASTRAN model

Nonlin transient response 

SOL129

Displacement

Velocity

Acceleration

Output nodal:

Import output 

in MATLAB

MATLAB operations:
Time domain output

FFT

Phase plot

MATLAB model

ODE15s

Displacement

Velocity

Output:

MATLAB operations:
Time domain output

FFT

Phase plot

Calculate acceleration 

based on above output

Compare 

Figure 6.11: Flowchart of the Nastran/Matlab workflow

We take the liberty to discuss the most important results from the project thesis as
they are very much linked to the current formulation.

90



6.2. RESULTS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Gap distance a [mm]

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

e
 [
H

z
]

MATLAB

NASTRAN

Figure 6.12: Results from varying gap distance a.

ωe decreases with increasing gap distance a, similar to fig 6.10.
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Figure 6.13: Results from varying stiff-
ness k
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Figure 6.14: Results from varying stiff-
ness k considering the relative frequency

Figure 6.13 shows that increasing k increases the effective natural frequency. This
result is however not that interesting as the natural frequency should increase with
k. If we plot the relative difference ωe/ω we will however see the behavior relative
to ω. This is illustrated in fig 6.14 and shows that increasing k will give a relatively
lower ωe.

The main conclusion in the project thesis was that the nonlinearities introduced
in the EOMs through a discrete k give rise to an overall decrease in the effective
natural frequency. It was also concluded that this is supporting the behavior the
Department of Prototyping at FFI observed with the shaker test of RIMFAX, as it
too lowered its natural frequency when nonlinear gaps were introduced. The work
done here is consistent with that.
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6.3 Discussion

Values for Stiffness and Damping

The stiffness values used in this FE analysis are nowhere near being correct as the
tensile test experiment is not valid. Ideally, a proper tensile test experiment should
yield approximate results to be used in FEA later. In order to continue the thesis
progress, more or less arbitrary values have been set and the general effect of stiffness
has been investigated as a parameter study. This is the same as for the differential
equation analysis conducted in MATLAB presented earlier. Ideally, the parameters
used in FEA should only need tuning in order to provide correlation.
In order to improve the values for stiffness and damping, see the discussion in chap.
5.3.1 and chap. 6.2.1.

Relevance to the Experiments

An inherent challenge in the solution of the thesis problem is that the experimental
and numerical work is highly intertwined. When the experimental work does not
provide reliable estimates on input (such as stiffness, damping) for the analysis, it
is difficult to claim a clear connection between simulated results in Nastran and ex-
periments the other way around afterward. Unreliable input values yield unreliable
output.
The author considers the numerical and finite element approaches to be an indica-
tion, rather than a truth. There are indications that reappear in all approaches, but
the direct link between experiments and analysis is not present. Nor was intended
to be, when the experimental results were investigated.

Expanding to Higher Dimensions

For a complete understanding of the problem, an expansion to higher dimension
(2D, 3D models) is believed to be necessary. However, the author believes that one
should fully grasp the lower order dimension before tackling the undoubtedly more
complex 3D problems. One should maybe reduce the number of DOFs in the real
world experiments as much as possible and try to correlate those two cases (1-2 DOF
experimental and FEA) first. If expanding to higher dimensions where the problem
becomes mesh dependent, a mesh convergence study is a natural task to include.

The Next Steps

In regards to the finite element modeling the author suggests the following steps in
order to further the work:

• Ideally, one should not solve the problem in the time domain. The author
has tried to find methods of solving directly in the frequency domain but was
unsuccessful. This does not imply that there is none. If there is developed
methods to handle this, it should greatly reduce the computational effort and
make it possible to efficiently tackle more complex problems. The 2 node, 2
element model we have discussed in this thesis have a solution time of 600 s
on an average desktop computer 6. It may be outside the scope of a Master’s

616 GB RAM, 8 core processor, SSD
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thesis to develop the numerical scheme and finite element solver to do this.
The author believes that finding the work of others (and maybe build on it)
is the way to go for a Master’s thesis.

• In regards to the current developed model, more iterations would be useful. A
broader characterization of parameters as well as input signals (free oscillation,
harmonic, sine, random) could perhaps give new insight.

• Although most of the post-processing in this thesis has been automated through
for and while loops in Matlab, it would be effective to automate the genera-
tion of Nastran input files (.bdf-files) for looping through a range of iterations.
As the problem at hand is sensitive to numerous parameters (e.g. a, k, ζ) as
well as amplitude dependent, there is need for a greater number of simulations
to better map the system’s behavior.
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Chapter 7

Discussion

This chapter summarizes the discussions made throughout the thesis. It attempts
to give a more clear description of what has been observed, why and how it may be
relevant or irrelevant to pursue further.

7.1 Experimental Results and Method

The following bullet points will summarize the findings and shed light on the most
important difficulties encountered throughout experimental work of this project.

• Overall, it is difficult to be conclusive about the shaker test results. A drop
in the peak response is seen through Power spectrum density and frequency
response function when clearance is introduced. This is seen in all out of plane
shaker tests.

• The main reason for the inconclusiveness is assumed to be an excessive number
of degrees of freedom in the experiment. Creating an experimental setup with
fewer degrees of freedom will hopefully remedy this. Then it will be more clear
what kind of behavior one is actually observing. In general, the experimental
setup for the shaker tests has too many unknown variables.

• The influence of peak in PSD was investigated through several parameters
(excitation form, g-load, gap distance, joint type) but no clear trend is found.

• Using steel is difficult as the material hardness creates a ringing sound on im-
pact. This creates excessive noise for the output signals. Also, using a material
with a high Young’s modulus increases the natural frequency - making it more
difficult to both run experiments, post-process and match with simulation. All
of this was corrected by using a material with lower Young’s modulus, thinner
geometry and lowering the clearance.

• It is challenging to have full double-impact1 as the displacement is inversely
proportional to the frequency. This significantly limits the frequency range

1Double impact - where the coupon is excited in such a manner that the excitation displacement
exceeds the clearance distance. It makes it possible for the coupon to contact both limits of the
clearance. When the excitation displacement is lower than the clearance distance, the coupon is
observed to not impact both limits of the clearance.
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where double impact is possible. This relates to the above, emphasizing the
importance of low natural frequency.

• The tensile jig experiment is severely flawed in that it does not measure one
single contact stiffness, but several stiffness’ for the whole system - as well as
some assumed slippage in the clamps. It is also not suitable for measurement
accuracy needed for joint contact stiffness.

For a detailed discussion, the reader is referred to the relevant chapters and sections.
Materials, test jig (DOFS), post-processing, tensile jig, frequency / g-range.

7.2 Numerical Results and Method

The following bullet points will summarize the findings and shed light on the most
important difficulties encountered throughout numerical and finite element work of
this project.

The MATLAB and FEA in Nastran show correlation in the following parameter
variations:

• Increasing the gap distance a lowers the effective natural frequency ωe, see fig
6.10 and fig 6.12.

• Increasing the stiffness k lowers the relative ωe, see fig 6.13.

• Increasing damping ratio ζ, lowers ωe, see fig 4.3.

Further we may point out the following related to the numerical work in Matlab:

• Through the solution of the Duffing equation we find that exciting at one
frequency generates subharmonic solutions, as predicted by the literature.

• We also saw that the system is amplitude dependent, also in accordance with
predictions.

• The system in Matlab is sensitive to the variation of parameters.

For the finite element approach:

• The CBUSH is an efficient element formulations, capable of nonlinear stiffness
definitions.

• Even a model with very few DOFs such as the one in this project demand
a long compute time (600 s). This does not seem viable for practical use on
large models.

• The finite element approach should be mapped further when it comes to vari-
ation of parameters.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

Gaps and clearances and other forms of nonlinear stiffness formulations of mechan-
ical joints are found in many aspects in the real world. From poorly torqued bolts
and irregular riveting to thermal expansion and contraction in joint elements, gen-
eral wear and tear - among others. How to account for these effects in design and
construction through analysis, experiments and simulation may in some applications
be of great use. This thesis has developed the theoretical framework for the case
of an impact oscillator. The model is used to look at how the vibration properties
change when clearance is introduced - through experiments and simulation.

The numerical model investigates the second-order nonlinear differential equation,
Duffing equation - classically used to model softening or hardening springs. Solving
the Duffing equation in the time domain and transforming the acceleration to the
frequency domain through a Fast Fourier transform shows that the peak in power
spectrum density shifts towards the left when clearance is introduced - indicating
a lower eigenvalue compared to a zero-clearance linear system. The solution also
shows phenomena such as period doubling, where a 1 DOF system excited at 1 fre-
quency yields a response consisting of several frequencies.

The experimental work has conducted shaker tests on joints similar to those on
the RIMFAX antenna. Two different joint types have been tested with 3 different
clearance distances in two different directions. Several different load amplitudes
have been run, together with different ways of input signal (harmonic, sine sweep
and random). In total, 92 tests have been reported through 3 one-axis accelerome-
ters. Numerous shaker tests served as initials runs for calibration and gauging. Both
steel S355 and the polymer plastic POM C has been used. The experimental results
have been post-processed by the same means as the numerical work - through FFT
and investigation of power spectrum density and frequency response functions. Also,
the coherence spectrum has been used. The results overall show that introducing
clearance to the system lowers the effective natural frequency by 30 %.
The in-plane vibration shows no peak in PSD. Also, the experimental test does have
a fair degree of uncertainty associated as the number of degrees of freedom is more
than necessary.
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A finite element model has been proposed. The model shows good correlation with
the numerical simulations. The FE-model is not attempted correlated with the ex-
perimental data as the input values for stiffness obtained through tensile tests are
invalid. The model does represent the problem and is able to be expanded to several
dimension through the CBUSH-card in the FEA-solver NASTRAN. The FE-model
is fairly time-consuming as one 2 node, 2 element 30.0 s simulation with 15,000
output steps on a standard desktop computer have a run time of 600 s. Also, the
finite element analysis shows that introducing clearance lowers the natural frequency.

The thesis has discussed several aspects revolving around the weaknesses and possi-
ble remedies for further work. Both the numerical, experimental and finite element
approach shows a clear reduction of natural frequency from gaps. The methods used
in this thesis indicates that there is a causality between nonlinear stiffness and nat-
ural frequency. Some work is however left in order to effectively apply the methods
to real-life problems.
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8.2 Recommended Further Work

From the author’s point of view there are several possible improvements for further
work on this topic of research:

• Focus exclusively on one of the following areas: experimental, numerical (the-
oretical modeling and Matlab simulations) or finite element analysis. Each of
these areas may be greatly improved in terms of accuracy.

• For the experimental work: create a setup where the DOFs are as few as
possible. Limit the motion to one direction. Use materials and geometry
which lowers the first eigenvalue even further. The contact stiffness-task should
investigate high accuracy measurement techniques such as DIC.

• For the numerical work: explore the theory even further. Vary more parame-
ters and look into introducing friction models.

• For the FEA: try to implement the CBUSH-formulations in 3D-models. Find
computationally cost-effective ways of conducting the analysis.

• Thermal effects on natural frequency. The original reason this thesis came
about is due to thermal strain in joints. It would be very interesting conduct-
ing shaker experiments on joints with very small clearances using a thermal
chamber. In the Environmental Testing Laboratories at FFI there is such
equipment, fully able to run thermal cycles while on a shaker table. Running
various thermal cycles while doing random over a prolonged period of time is
a proposal of such an experiment. If one is able to have accurate control on
the thermal strains in the coupon one could easily test a range of clearances
using only one test specimen.

It is in the author’s belief that the topic of research in this thesis has a vast range of
interesting, unsolved problems with practical applications. Additionally, the prob-
lems require a broad multidisciplinary perspective in order to be fully understood
and solved. All of this makes the potential learning and knowledge gain substantial,
in the author’s opinion.
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Appendix A

NASTRAN Code

Dynamic Analysis II: Spring-Damper Model
$ MSC.Nastran input file created on June 16, 2018 at 13:06:22 by

$ Patran 2017.0.2

SOL 400

CEND

$ Direct Text Input for Global Case Control

ECHO = NONE

SUBCASE 1

STEP 1

$ Direct Text Input for this Step

ANALYSIS = NLTRAN

NLSTEP = 1

SPC = 2

IC = 1

DLOAD = 2

DISPLACEMENT(PRINT,PUNCH,SORT1,REAL)=ALL

VELOCITY(PRINT,PUNCH,SORT1,REAL)=ALL

ACCELERATION(PRINT,PUNCH,SORT1,REAL)=ALL

BEGIN BULK

$ Direct Text Input for Bulk Data

PARAM POST 1

PARAM PRTMAXIM YES

PARAM LGDISP 1

NLSTEP 1 30.

ADAPT 15000 29999

NLSTRAT 1 IKUPD 29999

$ Elements and Element Properties for region : M

CONM2 2 2 1.

633.07 633.07 1265.02

$ Elements and Element Properties for region : Bush-Spring

PBUSHT 1 KN 1

PBUSH 1 K .01

$ Pset: "Bush-Spring" will be imported as: "pbush.1"

CBUSH 1 1 1 2

$ Elements and Element Properties for region : Damper_elem

PVISC 2 .06324

$ Pset: "Damper_elem" will be imported as: "pvisc.2"

CVISC 3 2 1 2

$ Nodes of the Entire Model

GRID 1 0. 0. 0.

GRID 2 1. 0. 0.

$ Loads for Load Case : Default

SPCADD 2 1

$ Initial Velocities of Load Set : Init_vel

TIC 1 2 1 4.

TLOAD1 4 3 2

DLOAD 2 1. 1. 4

$ Displacement Constraints of Load Set : Base_fixed

SPC1 1 123 1

$ Nodal Forces of Load Set : Forcing_term

FORCE 3 2 0 1. 1. 0. 0.

$ Referenced Dynamic Load Tables

$ Dynamic Load Table : Duffing_K
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TABLED1 1

[Table of Duffing_spring input (600 data points)]

$ Dynamic Load Table : Force

TABLED1 2

[Table of Force input (30,000 data points)]

$ Referenced Coordinate Frames

ENDDATA 1a313e46

Post-processing .pch files
% This script takes in the results.mat file generated in punch_import.m and

% post-process (PSD, FRF). Averaging techniques is used.

clc

close all

clear variables

iter = ’10’;

% mat_path = (’E:\Master\Nastran NTNU\Dynamic Analysis\SOL400\Iter_a\a_0_05’);

loadpath = sprintf(’E:\\Master\\Nastran NTNU\\Dynamic Analysis\\SOL400\\Iter_a\\a_0_%s\\results_a_0_%s.mat’, iter, iter);

load(loadpath);

load(’E:\\Master\\Nastran NTNU\\Dynamic Analysis\\SOL400\\Iter_a\\sinesweep_input_5A.mat’); %Load input vector for FRF

in = interp1(tspan’,y1,time);

%% Global parameters

tend = time(end); %

N = length(time);

Fs = N/tend;

fs = Fs;

% freq = 0:Fs/length(time):Fs/2; % Frequency range based on Nyquist

f0 = 0; % Start frequency known from meta-file

fend = 30; % End freq known from meta-file

freq = linspace(0,fs/2,N/2+1); % Frequency range based on meta-file

%% Welch’ Method for Averaging

window = 1024*2; % Window length

noverlap = window/2; % Number of overlapped samples

nfft = []; % Number of DTF points

% see help pwelch for more

pxx = zeros(1,window/2+1); % Placeholder Welch PSD vector

fi = zeros(1,window/2+1); % Placeholder Welch frequency vector

[pxx, f] = pwelch(acc, window,noverlap,nfft,Fs);

[pyy, fy] = pwelch(in,window,noverlap,nfft,Fs); % PSD of input

fi = linspace(0,fs/2,length(pxx));

printpath = ’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\LaTeX\Chapters\Finite_Element_approach\Finite_Element_Results\vary_a’;

printpath_png = ’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\LaTeX\Chapters\Finite_Element_approach\Finite_Element_Results\vary_a\PNG’;

%% Welch plot

figure; hold on;

plot(fi,log10(pxx),’LineWidth’,1.125,’DisplayName’,’Acc’)

grid on

title(sprintf(’PSD a = 0.%s’,iter))

xlabel(’Frequency (Hz)’)

ylabel(’PSD log_1_0(g^2/Hz)’)

legend(’show’)

xlim([f0 fend])

hold off

printname_a_PSD = sprintf(’%s\\PSD_a_0_%s’,printpath,iter);

print(printname_a_PSD,’-depsc’)

printname_a_PSD = sprintf(’%s\\PSD_a_0_%s’,printpath_png,iter);

print(printname_a_PSD,’-dpng’)

figure; hold on;

plot(fy,pxx./pyy,’LineWidth’,1.125,’DisplayName’,’Acc’)

grid on

title(sprintf(’FRF a = 0.%s’,iter))

xlabel(’Frequency (Hz)’)

ylabel(’In/Out’)

legend(’show’)

xlim([f0 fend])
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hold off

%% Time history and phase plane plots

figure; hold on;

% subplot(1,3,[1,2])

subplot(’Position’,[0.1, 0.45, 0.6, 0.4])

plot(time,disp)

xlabel(’Time (s)’)

ylabel(’Displacement (m)’)

title(sprintf(’Time history a = 0.%s’,iter))

ylim([1.1*min(disp) 1.1*max(disp)])

grid on

% subplot(1,3,3)

subplot(’Position’,[0.8, 0.45, 0.15, 0.4])

plot(disp,vel)

xlabel(’Displacement (m)’)

ylabel(’Velocity (m/s)’)

title(’Phase plane’)

ylim([1.1*min(vel) 1.1*max(vel)])

xlim([1.1*min(disp) 1.1*max(disp)])

grid on

hold off;

printname_a_timehist = sprintf(’%s\\timehist_a_0_%s’,printpath,iter);

print(printname_a_timehist,’-depsc’)

printname_a_timehist = sprintf(’%s\\timehist_a_0_%s’,printpath_png,iter);

print(printname_a_timehist,’-dpng’)
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Appendix B

MATLAB Code for Numerical
Method

This includes the Duffing equation solver scripts and post-processing.

Duffing func

function f = duffing_func(t, x)

global m c a krelax kappa n A w

%DUFFING FUNCTION Mass-spring damper free oscillation

% Aproximated by a power-law

f = zeros(2,1);

f(1,1) = x(2);

f(2,1) = (1/m)*(A*sin(w*t) - krelax*x(1) - kappa*(x(1)/a)^(n) - c*x(2));

end

Duffing solver script

clear all

close all

clc

%% Author Anders Hauglid

% Duffing oscillator. Excites the mass with a force F(t) = A cos(w*t).

%% Solver conditions and init conditions

global m c crelax a keff krelax tend x0 kappa n A w

tend = 20; % [s]

tspan = linspace(0, tend, 1000*tend);

a = 0.001; % Gap size [m]

x0 = [a; 0.1]; % x0(1) = init_disp x0(2) = init_vel [m m/s]

m = 1; % Mass [kg]

krelax = 1E-05; % Relaxation spring stiffness [N/m]

n = 15; % Nonlinearity factor in Power-law (must be odd)

kappa = 10; % Spring stiffness in Power-law

keff = kappa/a; % Spring stiffness [N/m]

A = 25; % Force amplitude [N]

w = 20; % Circular forcing freq [rad/s]

f_forcing = w/(2*pi); % Forcing freq [Hz]

wn = sqrt(keff/m); % Assumed natural frequency [rad/s]

fn = wn/(2*pi); % [Hz]

c_crit = 2*m*(sqrt(kappa/m)); % Assumed critical damping [Ns/m]

zeta = 0.01; % Damping ratio [--]

c = c_crit*zeta; % Damping value used in funcs [Ns/m]
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crelax = 1E-05; % Relaxtion damping coefficient [Ns/m]

t_crit = 2/wn; % Critical time step [s]

%% Solving

[t1, x1] = ode15s(@(t,x) duffing_func_free(t, x), tspan, x0);

% Change out tspan with [0:2*pi:tend*fs] to sample for every period

%% Plot

figure; hold on;

plot(t1,x1(:,1),’DisplayName’,’Response’)

ylim([-1.5*a 1.5*a])

grid on

legend(’show’)

title(sprintf(’A = %d \\omega = %d \\kappa = %d \\zeta = %0.3f’, A, w, kappa, zeta))

hold off;

%% Plot Duffing Force

xspan = linspace(-1.5*a,1.5*a,500); % Span of x-values

Duff_F = xspan.*krelax + (kappa/a^n)*(xspan).^n; % Spring force

figure; hold on;

plot(xspan,Duff_F,’LineWidth’,1.5)

plot([-1.5*a, 1.5*a],[A, A],’--r’,[-1.5*a, 1.5*a],[-A, -A],’--r’,’LineWidth’,1.5)

grid on

xlabel(’Displacement (m)’)

ylabel(’Spring force (N)’)

title(sprintf(’Spring force with \\kappa = %d and n = %d’, kappa, n))

hold off;

%% Exporting data

disp = x1(:,1);

vel = x1(:,2);

time = t1;

acc = diff(vel)./diff(time);

acc = [acc; 0]; % Append 0 to get size of acc = disp, vel, time;

y1 = A*sin(w.*tspan);

%% True export

savename = sprintf(’C:\\Users\\ahh.NTU.000\\Dropbox\\NTNU\\Vaar 18\\Master\\MATLAB\\Duffing\\Results\\vary_n\\n_%d.mat’,n);

save(savename,’disp’,’vel’,’acc’,’time’,’y1’,’fn’,’kappa’,’keff’,’a’,’zeta’,’f_forcing’,’tend’);

Post-processing Duffing

clear all

close all

%% POST-PROCESSING

% This script post-process all the data from the ODE-solution and

% MSC/NASTRAN solution.

% 1) Import .mat-files consisting of disp, vel and acc

% 2) Plot time history and phase plane directly from .mat

% 3) Do FFT-analysis producing PSD and FRF plots

% 4)

%% Importing

% MATLAB iteration

% load(’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\MATLAB\Power-law approximation\Results\results_mass__excit.mat’)

% MATLAB sandbox

load(’C:\Users\ahh.NTU.000\Dropbox\NTNU\Vaar 18\Master\MATLAB\Duffing\Results\sandbox_results.mat’)

%% NASTRAN iteration

% load(’E:\Patran\1D-iteration\vary_zeta\results\z_0_01.mat’)

% load(’E:\Patran\1D-iteration\template\sinesweep_input.mat’)

% fn = 1/(2*pi)*sqrt(1000);

%%

int_data = acc; % What data set interest us? disp, vel, acc?

%% FFT (PSD)

tend = tend; % Imported from solver

N = length(time);
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Fs = N/tend;

xdft1 = fft(int_data);

xdft1 = xdft1(1:N/2+1);

ydft = fft(y1);

ydft = ydft(1:N/2+1);

psdy = (1/(Fs*N)) * abs(ydft).^2;

psdy(2:end-1) = 2*psdy(2:end-1);

psdx1 = (1/(Fs*N)) * abs(xdft1).^2;

psdx1(2:end-1) = 2*psdx1(2:end-1);

freq = 0:Fs/length(int_data):Fs/2;

%% FFT plots (PSD anf FRF)

[pks_psd, n_e_psd] = findpeaks(10*log10(psdx1),’MinPeakDistance’,0.999*length(psdx1)); % For which value of freq-vector does max occur?

[pks_frf, n_e_frf] = findpeaks(psdx1./psdy’,’MinPeakDistance’,0.999*length(psdx1));

fe_psd = freq(n_e_psd); % Natural freq from PSD-plot

fe_frf = freq(n_e_frf); % Natural freq from FRF-plot

% PSD

figure; hold on;

subplot(1,2,1)

plot(freq,10*log10(psdx1),[fn,fn],[-500,100] ,’DisplayName’,’Acc’)

grid on

title(’Periodogram Using FFT’)

xlabel(’Frequency (Hz)’)

ylabel(’Power/Frequency (m^2/Hz) [/Hz]’)

% legend(’show’)

xlim([0 10*fe_psd])

ylim([min(10*log10(psdx1))+20 max(10*log10(psdx1))+20])

% Frequency response function (FRF)

subplot(1,2,2)

plot(freq,psdx1./psdy’,[fn,fn],[0,5000]) % PSD of output/ PSD of input

grid on

title(’Frequency response function (FRF)’)

xlabel(’Frequency [Hz]’)

ylabel(’Output / input’)

ylim([0 2*psdx1(n_e_psd)/psdy(n_e_psd)]) % Scaling plot

xlim([0 10*fe_frf])

hold off;

% print(’C:\Users\Anders\Dropbox\NTNU\Host 17\UNIK4910 Vibrasjonsanalyse\matlab\free gaps\plots\vary_k\k_5000_FRF_PSD’,’-depsc’)

% print(’E:\Patran\1D-iteration\plots\vary_zeta\z_0_01_FRF_PSD_patran’,’-depsc’)

%% Time history and phase plane plots

figure; hold on;

% subplot(1,3,[1,2])

subplot(’Position’,[0.1, 0.45, 0.6, 0.4])

plot(time,disp)

xlabel(’Time (s)’)

ylabel(’Displacement (m)’)

title(’Time history’)

ylim([1.1*min(disp) 1.1*max(disp)])

grid on

% subplot(1,3,3)

subplot(’Position’,[0.8, 0.45, 0.15, 0.4])

plot(disp,vel)

xlabel(’Displacement (m)’)

ylabel(’Velocity (m/s)’)

title(’Phase plane’)

ylim([1.1*min(vel) 1.1*max(vel)])

xlim([1.1*min(disp) 1.1*max(disp)])

grid on

hold off;

% print(’C:\Users\Anders\Dropbox\NTNU\Host 17\UNIK4910 Vibrasjonsanalyse\matlab\free gaps\plots\vary_k\k_5000_time_hist_pp’,’-depsc’)

% print(’E:\Patran\1D-iteration\plots\vary_zeta\z_0_01_time_hist_pp_patran’,’-depsc’)

% save(’C:\Users\Anders\Dropbox\NTNU\Host 17\UNIK4910 Vibrasjonsanalyse\matlab\free gaps\results\post_processed\vary_k\k_5000.mat’, ’fn’,’fe_psd’,’fe_frf’,’freq’,’psdx1’,’psdy’)
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% save(’E:\Patran\1D-iteration\results\post_processed\vary_zeta\z_0_01.mat’,’fn’,’fe_psd’,’fe_frf’,’freq’,’psdx1’,’psdy’)

Sine sweep generator
clear all

close all

tend = 100; % End time [s]

fs = 1000; % Sampling frequency [Hz]

fn = fs/2; % Nyquist frequency [Hz]

tspan = linspace(0, tend, tend*fs);

f0 = 5; % Start frequency [Hz]

t1 = tend/2; % Time at which f1 occurs [s]

f1 = 100; % End frequency [Hz]

y = chirp(tspan, f0, t1, f1, ’linear’);

figure; hold on;

plot(tspan, y)

grid on

xlabel(’Time (s)’)

ylabel(’Input amplitude’)

hold off;

no_DFT = 256; % Number of DFT points

no_samp = 250; % Number of samples of overlap

l_hamm = 256; % Hamming windows length

figure; hold on;

spectrogram(y,no_DFT, no_samp, l_hamm, fs, ’yaxis’)

hold off

% print(’C:\Users\Anders\Dropbox\NTNU\Host 17\UNIK4910 Vibrasjonsanalyse\matlab\free gaps\plots\force_input\sinesweep’,’-depsc’)

y1 = y; % Displacement vector

y2 = diff(y1)./diff(tspan); % Velocity vector

y2 = [y2 0]; % Append 0 to get size of y2 = y1;

tspan = tspan’;

y1 = y1’;

y2 = y2’;

yexport = [tspan y1 y2];

export_data_disp = [tspan y1];

export_data_vel = [tspan y2];

%% Saving input

save(’sinesweep_input.mat’, ’yexport’)

% save(’E:\Patran\1D-iteration\template\sinesweep_input.mat’, ’tspan’,’y1’,’y2’)

%

%

% csvwrite(’E:\Patran\1D\01 Common files\sinesweep_dispinput.csv’, export_data_disp);

% csvwrite(’E:\Patran\1D\01 Common files\sinesweep_velinput.csv’, export_data_vel);

% csvwrite(’E:\Patran\1D-iteration\template\sinesweep_force.csv’, export_data_disp);
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Appendix C

MATLAB Code for
Post-Processing Experiments

Tensile test script

clear all

close all

clc

%% TENSILE TEST SCRIPT

% This script imports .mat-files, process them and export plots for the

% tensile tests done

coup = ’Slot’;

mat = ’S355’;

dir = ’1st’;

filename = sprintf(’C:\\Users\\ahh.NTU.000\\Dropbox\\NTNU\\Vaar 18\\Master\\Experiments\\Lab\\Tensile_lab\\Mat_files\\%s_%s_dir_cellarray_%s.mat’,coup, dir, mat);

load(filename);

figure; hold on;

for i = 1:length(spec)

plot(spec{i}(:,1),spec{i}(:,2),’LineWidth’,1.5,’DisplayName’,sprintf(’Run %d’,i))

legend(’-DynamicLegend’)

end

xlabel(’Displacement (mm)’)

ylabel(’Force (N)’)

ylim([0 1.2*spec{end}(end,2)])

grid on

legend(’Location’,’southeast’)

legend(’show’)

title(sprintf(’%s A020 %s %s dir.’,coup,mat,dir))

hold off;

printname1 = sprintf(’C:\\Users\\ahh.NTU.000\\Dropbox\\NTNU\\Vaar 18\\Master\\LaTeX\\Chapters\\Experimental_results\\plots\\tensile\\%s_%s_dir_all_%s’,coup,dir,mat);

print(printname1,’-depsc’)

%% Estimating k based on the 2 last runs

disp_sample = zeros();

f_sample = zeros();

for i = length(spec)-2:length(spec)

disp_sample(i) = spec{i}(200,1);

f_sample(i) = spec{i}(200,2);

end

disp_mean = mean(disp_sample);

f_sample_mean = mean(f_sample);

k_est = f_sample_mean/disp_mean;

wn_est = sqrt((k_est*10^3)/(0.307));

sprintf(’%s %s dir %s. The estimated k is %0.1f N/mm’,coup, dir, mat, k_est)

sprintf(’The estimated k is %0.2d N/m’,k_est*10^(3))

figure; hold on;

for i = length(spec)-2:length(spec)

plot(spec{i}(:,1),spec{i}(:,2),’LineWidth’,1.5,’DisplayName’,sprintf(’Run %d’,i))
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legend(’-DynamicLegend’)

end

xlabel(’Displacement (mm)’)

ylabel(’Force (N)’)

ylim([0 1.2*spec{end}(end,2)])

grid on

legend(’Location’,’southeast’)

legend(’show’)

title(sprintf(’%s A020 %s %s dir. k = %0.0f (N/mm)’,coup,mat,dir,k_est))

hold off;

printname2 = sprintf(’C:\\Users\\ahh.NTU.000\\Dropbox\\NTNU\\Vaar 18\\Master\\LaTeX\\Chapters\\Experimental_results\\plots\\tensile\\%s_%s_dir_true_%s’,coup,dir,mat);

print(printname2,’-depsc’)

Importing .tdms acceleration data
clear all

close all

clc

%% MASTER FILE FOR IMPORT OF .TDMS%%

% Created by Anders for own use.

% Objective: chose file, import, plot time series, PSD.

% Sampling freq set to 5.6 kHz. Calculated to be 5688.89 Hz. We use this.

fs = 5688.89; % [Hz]

% testnumber =[54 61 68 75 82 89];

testnumber = [89];

%% Choose file to be imported

for count = 1:length(testnumber)

t = testnumber(count);

path = ’\Users\ahh.NTU.000\Desktop\Master\Lab\Raw data\Thin POM C’;

filename = sprintf(’%s\\Test_%d\\Acceleration.tdms’,path,t);

%% Import

my_struct = TDMS_readTDMSFile(filename);% Import the whole struct

tot_acc = []; % Empty 10x10 placeholder

for i = 3:7

tot_acc(i,:) = my_struct.data{1,i}; % Channel 3-7

end

l_tot = length(tot_acc(1,:)); % Total length of the acc data series

tend = l_tot/fs; % End time [s]

tspan = linspace(0, tend, tend*fs); % Time vector from t = 0 [s] to t = end [s]

fspan = logspace(log10(30),log10(3000),l_tot);

% Ch 3 = Control accelerometer 1

% Ch 4 = Control accelerometer 2

% Ch 5 = Input 1

% Ch 6 = Input 2

% Ch 7 = Input 3

%% Manually clip data (in case of spike / noise in beginning)

% If data has spikes, use this. May need some greasing to work.

c_a = 4.186*1e05; % After noise, before start

c_b = l_tot; % After test end, before definite end

c_length = c_b - c_a; % Cut-out length

tot_acc_c = zeros(7,c_b-c_a);

tot_acc_c(3:7,:) = tot_acc(3:7,c_a:c_b-1);

tot_acc = tot_acc_c;

l_tot = length(tot_acc(3,:));

tend = c_length/fs;

%% Locate where test started and stopped

threshold = 0.45; % Threshold value for acceleration [m/s2]

ch = 4; % Use this channel for check

j = 1;

while tot_acc(ch,j) < threshold

j = j + 1;

end
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start_val = j;

k = l_tot;

while tot_acc(ch,k) < threshold

k = k - 1;

end

stop_val = k;

tend = (stop_val+1)/fs;

tstart = start_val/fs;

l = stop_val-start_val-1;

time = linspace(0,(tend-tstart),(tend-tstart)*fs); % (tend-tstart) is correct length of run

a = start_val;

b = stop_val; % Typically also -1

%% Making vectors even

vector_l = b-a+1; % b-a+1 is length of a:b

if vector_l > length(time) % vector_l > length of time

time = [time, time(end)]; % Add 1 to time

elseif vector_l < length(time)

b = b + 1; % Add 1 to b (vector_l 1 larger)

end

figure; hold on;

for i = 3:4

plot(tot_acc(i,:),’DisplayName’,sprintf(’Ch(not acc) = %d’,i))

legend(’-DynamicLegend’);

legend(’show’)

end

% plot(tot_acc(ch,:),’DisplayName’,sprintf(’Check ch = %d’,ch))

plot([start_val,start_val],[-1,1],’LineWidth’,2.0)

plot([stop_val,stop_val],[-1,1],’LineWidth’,2.0)

grid on

ylabel(’Acceleration g (m/s^2)’)

xlabel(’Elapsed timestamp’)

title(sprintf(’Location of stop and start time Test = %d used Ch = %d’,t,ch))

hold off

%% Plot data

figure; hold on;

for i = 5:7

plot(time,tot_acc(i,a:b),’DisplayName’,sprintf(’Accelerometer %d’,i-2));

ylabel(’Acceleration g (m/s^2)’)

xlabel(’Elapsed time (s)’)

legend(’-DynamicLegend’);

legend(’show’)

title(sprintf(’Time series of saved data Test = %d’,t))

end

hold off

%% Exporting true measured data.

% Ch 1-5, from time of approx run start to run end

data_accel = [];

for j = 1:5

data_accel(j,:) = tot_acc(j+2,start_val:stop_val);

end

%% Converting to post_processing.m

acc = data_accel(3,:); % Output accel

y1 = data_accel(1,:); % Input accel

savepath = ’C:\Users\ahh.NTU.000\Desktop\Master\Lab\Mat files\Thin POM C’;

savename = sprintf(’%s\\Test_%d.mat’,savepath,t);

save(savename,’data_accel’,’time’,’fs’)

end
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Post-processing .tdms
clc

close all

clear variables

%% POST-PROCESSING TDMS

% This script post-process data from TDMS files processed in master_tdms.m

% 1) Import .mat-files consisting of acc

% 2) Plot time history and phase plane directly from .mat

% 3) Do FFT producing PSD (and FRF plots)

set(0,’defaulttextinterpreter’,’tex’) % Standard font in figures

%% Importing

% number = [1 23 30 46 55 62]; % 0.51g out of plane

% number = [2 24 31 47 56 63]; % 1g out of plane

% number = [3 25 32 48 57 64]; % 2g out of plane

% number = [4 26 33 49 58 65]; % 5g out of plane

% number = [5 27 34 50 59 66]; % 10g out of plane

% number = [7 28 35 51 60 67]; % 15g out of plane

number = [54 61 68]; % Random

for count = 1:length(number)

mat_path = (’E:\Master\Experiments FFI\Mat files shaker\Thin POM C’);

% mat_path = (’C:\Users\ahh.NTU.000\Desktop\Master\Lab\Mat files\Thin POM C’);

loadpath = sprintf(’%s\\Test_%d.mat’,mat_path,number(count));

load(loadpath);

%% Making vectors even numbered

% This makes N/2 = an integer

even = mod(length(time),2); % = 0 if even, = 1 if odd

if even ~= 0 % If not even

time = [time, time(end)]; % Append the last value of time to itslef (duplicate)

data_accel = [data_accel, data_accel(:,end)];% Append the last value of data_accel to itself (duplicate)

end

%% Global parameters

tend = time(end); %

N = length(time);

Fs = N/tend;

% freq = 0:Fs/length(time):Fs/2; % Frequency range based on Nyquist

f0 = 5; % Start frequency known from meta-file

fend = 1000; % End freq known from meta-file

freq = linspace(0,fs/2,N/2+1); % Frequency range based on meta-file

%% Looping through data set "data_accel" for accelerometers

% xdfti = zeros(5,round(N/2)+1); % Empty placeholder. Possible +1

% psdxi = zeros(5,round(N/2)+1); % Possible +1

%

% for i = 1:5 % i = 1 and 2 are control accelerometers

% int_data = data_accel(i,:); % What data set interest us?

% % FFT (PSD)

% xdft = fft(int_data);

% xdft = xdft(1:N/2+1);

% psdx = (1/(Fs*N)) * abs(xdft).^2;

% psdx(2:end-1) = 2*psdx(2:end-1);

%

% xdfti(i,:) = xdft;

% psdxi(i,:) = psdx;

% end

%% Welch’ Method for Averaging

window = 512*2; % Window length

noverlap = window/2; % Number of overlapped samples

nfft = []; % Number of DTF points

% see help pwelch for more

pxxi = zeros(5,window/2+1); % Placeholder Welch PSD vector

fi = zeros(5,window/2+1); % Placeholder Welch frequency vector

for i = 1:5

[pxx, f] = pwelch(data_accel(i,:),window,noverlap,nfft,Fs);

pxxi(i,:) = pxx;
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fi(i,:) = linspace(0,fs/2,length(pxx));

end

% Coherence Spectrum

Cxyi = zeros(5,window/2+1); % Placeholder for Welch’d Coherence vector

fxyi = zeros(5,window/2+1); % Placeholder for Welch’d Coherence frequency vector

input = (data_accel(1,:)+data_accel(2,:))/2; % Input is average of control acc 1 and 2.

for i = 3:5

[Cxy, fxy] = mscohere(data_accel(i,:),input,hamming(window),noverlap,window,Fs);

Cxyi(i,:) = Cxy;

fxyi(i,:) = fxy;

end

% print_path = ’C:\Users\ahh.NTU.000\Desktop\Master\Lab\PNG’;

print_path = ’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\LaTeX\Chapters\Experimental_approach\Experimental_results\plots\shaker\ThinPOMC_EPS’;

filename = sprintf(’%s\\Test_%d’,print_path, number(count));

%% FFT plots (PSD anf FRF)

% % PSD

% figure; hold on;

% for i = 3:5

% plot(freq,log10(psdxi(i,:)),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

% legend(’-DynamicLegend’)

% end

% grid on

% title(’Periodogram’)

% xlabel(’Frequency (Hz)’)

% ylabel(’PSD log_1_0(g^2/Hz)’)

% legend(’show’)

% xlim([f0 fend])

% hold off

% printname_PSD = sprintf(’%s_PSD_nowelch’,filename);

% % print(printname_PSD,’-depsc’)

%

%

% % Frequency response function (FRF)

% psdy = (psdxi(4,:) + psdxi(5,:))./2; % Average PSD of input signal

% figure; hold on;

% for i = 3:5

% plot(freq,psdxi(i,:)./psdy,’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i)) % PSD of output/ PSD of input

% legend(’-DynamicLegend’)

% end

% grid on

% title(’Frequency response function (FRF)’)

% xlabel(’Frequency (Hz)’)

% ylabel(’S_x_x / S_y_y’)

% xlim([f0 fend])

% hold off;

% printname_FRF = sprintf(’%s_FRF_nowelch’,filename);

% % print(printname_FRF,’-depsc’)

%% Welch plot

figure; hold on;

for i = 3:5

plot(fi(i,:),log10(pxxi(i,:)),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

legend(’-DynamicLegend’)

end

grid on

title(sprintf(’PSD Test #%d’,number(count)))

xlabel(’Frequency (Hz)’)

ylabel(’PSD log_1_0(g^2/Hz)’)

legend(’show’)

xlim([f0 fend])

hold off

printname_PSD = sprintf(’%s_PSD’,filename);

print(printname_PSD,’-depsc’)

pxxy = (pxxi(1,:) + pxxi(2,:))./2; % Average PSD of input signal

figure; hold on;

for i = 3:5

plot(fi(i,:),pxxi(i,:)./pxxy,’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i)) % PSD of output/ PSD of input

legend(’-DynamicLegend’)
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end

grid on

title(sprintf(’FRF Test #%d’,number(count)))

xlabel(’Frequency (Hz)’)

ylabel(’S_x_x / S_y_y’)

xlim([f0 fend])

hold off;

printname_FRF = sprintf(’%s_FRF’,filename);

print(printname_FRF,’-depsc’)

figure; hold on;

for i = 3:5

plot(fxyi(i,:),Cxyi(i,:),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

legend(’-DynamicLegend’)

end

grid on

title(sprintf(’Coherence Spectrum Test #%d’,number(count)))

xlabel(’Frequency (Hz)’)

ylabel(’’)

xlim([f0 fend])

hold off;

printname_coher = sprintf(’%s_coher’,filename);

print(printname_coher,’-depsc’)

% Subplot (FRF, PSD and choherence in one)

figure; hold on;

subplot(1,2,1)

for i = 3:5

plot(fi(i,:),log10(pxxi(i,:)),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

hold on;

% legend(’-DynamicLegend’)

end

grid on

title(sprintf(’PSD Test #%d’,number(count)))

ylabel(’PSD log_1_0(g^2/Hz)’)

% legend(’show’)

xlim([f0 fend])

subplot(1,2,2)

for i = 3:5

plot(fi(i,:),pxxi(i,:)./pxxy,’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i)) % PSD of output/ PSD of input

hold on;

legend(’-DynamicLegend’)

end

grid on

title(sprintf(’FRF Test #%d’,number(count)))

ylabel(’S_x_x / S_y_y’)

xlim([f0 fend])

% subplot(1,3,3)

% for i = 3:5

% plot(fxyi(i,:),Cxyi(i,:),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

% hold on;

% legend(’-DynamicLegend’)

% end

% grid on

% title(sprintf(’Coherence Spectrum Test #%d’,number(count)))

% ylabel(’’)

% xlim([f0 fend])

hold off

printname_2in1 = sprintf(’%s_2in1’,filename);

print(printname_2in1,’-depsc’)

%% Exporting data to matfile

% freq = fi(1,:); % Welch frequency vector, there is enough with one column

% PSD = pxxi(3:5,:); % Welch PSD vector for ch 1-5

% FRF = pxxi(3:5,:)./pxxy; % Average of PSD input signal

% Storing the data in a processed_struct

proc_struct(number(count)).freq = fi(1,:);

proc_struct(number(count)).PSD = pxxi(3:5,:);

proc_struct(number(count)).FRF = pxxi(3:5,:)./pxxy;

116



proc_struct(number(count)).f0 = f0;

proc_struct(number(count)).fend = fend;

savepath = ’E:\Master\Experiments FFI\Mat files shaker\Thin POM C Processed’;

savename = sprintf(’%s\\Test_%d_processed.mat’,savepath,number(count));

save(savename,’proc_struct’)

end

Finding peaks

clc

close all

clear variables

%% PEAK PSD

% This script finds the peak in several PSD-plots and plot the values

% againts each other

%% Importing pre-processed .mat files froom post_processing_tdms

% number = [1 23 30 46 55 62 ...

% 2 24 31 47 56 63 ... % 1g out of plane

% 3 25 32 48 57 64 ... % 2g out of plane

% 4 26 33 49 58 65 ... % 5g out of plane

% 5 27 34 50 59 66 ... % 10g out of plane

% 7 28 35 51 60 67]; % 15g out of plane

number = [8 29 36 54 61 68]; % Random

for count = 1:length(number)

mat_path = (’E:\Master\Experiments FFI\Mat files shaker\Thin POM C Processed’);

loadpath = sprintf(’%s\\Test_%d_processed.mat’,mat_path,number(count));

load(loadpath);

freq = proc_struct(number(count)).freq;

PSD = proc_struct(number(count)).PSD;

FRF = proc_struct(number(count)).FRF;

f0 = proc_struct(number(count)).f0;

fend = proc_struct(number(count)).fend;

% Shortening the data

% We wish to look at data below 1000 or 500 Hz. freq(end) = 5689/ = 2844 Hz and

% so freq

freql = round(length(freq)/2); % Should limit to 569 Hz

% Finding the peak

psd_data = log10(PSD(2,1:freql));

frf_data = FRF(1,1:freql);

[pks_psd, n_e_psd] = findpeaks(psd_data,’MinPeakDistance’,0.49*length(psd_data)); % For which value of freq-vector does max occur?

[pks_frf, n_e_frf] = findpeaks(frf_data,’MinPeakDistance’,0.4*length(frf_data),’MinPeakHeight’,5);

fe_psd = freq(n_e_psd); % Natural freq from PSD-plot

fe_frf = freq(n_e_frf) ; % Natural freq from FRF-plot

toDelete = fe_psd < 25; % Only pass freqs over 20 Hz

fe_psd(toDelete) = [];

figure; hold on;

plot(freq,log10(PSD(:,:)))

plot(freq(n_e_psd(1)),pks_psd(1),’o’) % We’re only interested in the first mode

xlim([f0 fend])

title(sprintf(’PSD Test #%d, peak = %0.1f’,number(count),freq(n_e_psd(1))))

grid on

hold off

figure; hold on;

plot(freq,FRF(:,:))

plot(freq(n_e_frf(1)),pks_frf(1),’o’) % We’re only interested in the first mode

xlim([f0 fend])

title(sprintf(’FRF Test #%d, peak = %0.1f’,number(count),freq(n_e_frf(1))))

grid on

hold off
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peak_struct(number(count)).fe_PSD = fe_psd;

peak_struct(number(count)).fe_FRF = fe_frf;

peak_struct(number(count)).test_no = number(count);

end

peak_struct_random = peak_struct;

save(’peak_struct_random.mat’,’peak_struct_random’)

% save(’peak_struct.mat’,’peak_struct’);

Notch filter

%% Post processing with Notch filtering

% This script samples out a portion of the time series data of the harmonic

% input files (#90-98) and use a Notch filter to filter out the driving

% frequency

clc

close all

clear variables

%% Importing

number = [93 95];

for count = 1:length(number)

mat_path = (’E:\Master\Experiments FFI\Mat files shaker\Thin POM C’);

loadpath = sprintf(’%s\\Test_%d.mat’,mat_path,number(count));

load(loadpath);

%% Making vectors even numbered

% This makes N/2 = an integer

even = mod(length(time),2); % = 0 if even, = 1 if odd

if even ~= 0 % If not even

time = [time, time(end)]; % Append the last value of time to itslef (duplicate)

data_accel = [data_accel, data_accel(:,end)]; % Append the last value of data_accel to itself (duplicate)

end

%% Global parameters

tend = time(end); %

N = length(time);

Fs = N/tend;

% freq = 0:Fs/length(time):Fs/2; % Frequency range based on Nyquist

f0 = 5; % Start frequency known from meta-file

fend = 500; % End freq known from meta-file

freq = linspace(0,fs/2,N/2+1); % Frequency range based on meta-file

%% Welch’ Method for Averaging

window = 512*4; % Window length

noverlap = window/2; % Number of overlapped samples

nfft = []; % Number of DTF points

% see help pwelch for more

%% FILTER DESIGN

filter_freq = 50;

filter_freqlow = filter_freq-1;

filter_freqhigh = filter_freq+1;

d = designfilt(’bandstopiir’,’FilterOrder’,2, ...

’HalfPowerFrequency1’,filter_freqlow,’HalfPowerFrequency2’,filter_freqhigh, ...

’DesignMethod’,’butter’,’SampleRate’,Fs);

% Filtering

data_accel_filt = [];

for i = 3:5

data_accel_filt(i,:)= filtfilt(d,data_accel(i,:));

end

% print_path = ’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\LaTeX\Chapters\Experimental_approach\Experimental_results\plots\shaker\NotchFiltered’;

print_path = ’C:\Users\Anders\Dropbox\NTNU\Vaar 18\Master\Experiments\Lab\PNG’;

filename = sprintf(’%s\\Test_%d_Notch’,print_path, number(count));
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%% Compare Unfiltered / filtered

figure; hold on;

plot(time,data_accel(3,:),’DisplayName’,’Unfiltered’)

plot(time,data_accel_filt(3,:),’DisplayName’,’Filtered’)

grid on

legend(’show’)

title(sprintf(’Time series segment Test #%d @ %d Hz’, number(count), filter_freq))

xlabel(’Time (s)’)

ylabel(’Acceleration (m/s^2)’)

xlim([round(tend/2) round(tend/2) + 2*(1/filter_freq)])

hold off

printname_timeser = sprintf(’%s_timeser’,filename);

print(printname_timeser,’-dpng’)

%% Welch Averaging

pxxi = zeros(5,window/2+1); % Placeholder Welch PSD vector

fi = zeros(5,window/2+1); % Placeholder Welch frequency vector

for i = 1:2

[pxx, f] = pwelch(data_accel(i,:),window,noverlap,nfft,Fs);

pxxi(i,:) = pxx;

fi(i,:) = linspace(0,fs/2,length(pxx));

end

for i = 3:5

[pxx, f] = pwelch(data_accel_filt(i,:),window,noverlap,nfft,Fs);

pxxi(i,:) = pxx;

fi(i,:) = linspace(0,fs/2,length(pxx));

end

% Coherence Spectrum

Cxyi = zeros(5,window/2+1); % Placeholder for Welch’d Coherence vector

fxyi = zeros(5,window/2+1); % Placeholder for Welch’d Coherence frequency vector

input = (data_accel(1,:)+data_accel(2,:))/2; % Input is average of control acc 1 and 2.

for i = 3:5

[Cxy, fxy] = mscohere(data_accel_filt(i,:),input,hamming(window),noverlap,window,Fs);

Cxyi(i,:) = Cxy;

fxyi(i,:) = fxy;

end

%% Plot Welch

figure; hold on;

for i = 3:5

plot(fi(i,:),log10(pxxi(i,:)),’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i))

legend(’-DynamicLegend’)

end

grid on

title(sprintf(’PSD Test #%d, Notch filter @ %d Hz’,number(count), filter_freq))

xlabel(’Frequency (Hz)’)

ylabel(’PSD log_1_0(g^2/Hz)’)

legend(’show’)

xlim([f0 fend])

hold off

printname_PSD = sprintf(’%s_PSD’,filename);

print(printname_PSD,’-dpng’)

pxxy = (pxxi(1,:) + pxxi(2,:))./2; % Average PSD of input signal

figure; hold on;

for i = 3:5

plot(fi(i,:),pxxi(i,:)./pxxy,’LineWidth’,1.125,’DisplayName’,sprintf(’Ch %d’,i)) % PSD of output/ PSD of input

legend(’-DynamicLegend’)

end

grid on

title(sprintf(’FRF Test #%d, Notch filter @ %d Hz’,number(count), filter_freq))

xlabel(’Frequency (Hz)’)

ylabel(’S_x_x / S_y_y’)

xlim([f0 fend])

hold off;

printname_FRF = sprintf(’%s_FRF’,filename);

print(printname_FRF,’-dpng’)
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Appendix D

Measured Dimensions of
Manufactured Parts

POM C

Name Base d (mm) Meas. d Diff. t (mm)

a 0 00 9.80 9.85 0.05 2.54
a 0 05 9.85 9.85 0.00 2.49
a 0 10 9.90 9.90 0.00 2.50

Bushing 9.80 9.80 0.00 2.69

Table D.1: POM C: Measurements for the manufactured radial coupons.

Name Base l (mm) Meas. l Diff. b t (mm)

a 0 00 13.820 13.82 0.00 8.830 2.50
a 0 05 13.870 13.87 0.00 8.840 2.51
a 0 10 13.920 13.90 -0.02 8.820 2.50

Bushing 13.820 13.82 0.00 8.820 2.69

Table D.2: POM C Measurements for the manufactured slot coupons.
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S355

Name Base d (mm) Meas. d (mm) Diff. t (mm)

a 0 00 9.800 9.830 -0.03 4.700
a 0 05 9.850 9.840 0.01 4.700
a 0 10 9.900 9.880 0.02 4.695
a 0 15 9.950 9.940 0.01 4.700
a 0 20 10.000 9.980 0.02 4.700
a 0 40 10.200 10.180 0.02 4.710

Table D.3: S355: Measurements for the manufactured radial coupons.

Name Base d (mm) Meas. d (mm) Diff. t (mm)

1 9.800 9.790 0.01 4.980
2 9.800 9.780 0.02 4.990
3 9.800 9.780 0.02 4.980
4 9.800 9.790 0.01 4.990
5 9.800 9.790 0.01 4.990

Table D.4: S355 Measurements for the manufactured cylindrical bushing.

Name Base l (mm) Meas. l Diff. b t (mm)

a 0 00 13.820 13.840 -0.02 8.830 4.690
a 0 05 13.870 13.880 -0.01 8.830 4.690
a 0 10 13.920 13.940 -0.02 8.830 4.690
a 0 15 13.970 13.990 -0.02 8.830 4.680
a 0 20 14.020 14.040 -0.02 8.830 4.700
a 0 40 14.220 14.230 -0.01 8.830 4.670

Table D.5: S355 Measurements for the manufactured slot coupons.

Name Base l (mm) Meas. l Diff. b t (mm)

1 13.820 13.810 0.010 8.830 5.000
2 13.820 13.840 -0.020 8.830 5.000
3 13.820 13.830 -0.010 8.830 5.000
4 13.820 13.825 -0.005 8.830 5.000
5 13.820 13.830 -0.010 8.830 5.000

Table D.6: S355 Measurements for the manufactured slot bushings.
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Appendix E

Production Drawings
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Appendix F

Shaker Test Log

This appendix show what parameters each test was exposed to. Notice that some
tests were discarded due to operation error and thus the total number of tests (92)
does not match the numerical value of the last test in this table (98).

ID Coupon and
clearance

Orientation g Freq Comment

Test1 Radial a 0 00 Out of plane 0.5 5-500
Test2 Radial a 0 00 Out of plane 1.0 15-500
Test3 Radial a 0 00 Out of plane 2.0 15-500
Test4 Radial a 0 00 Out of plane 5.0 25-500
Test5 Radial a 0 00 Out of plane 10.0 50-500
Test6 Radial a 0 00 Out of plane 15.0 50-500 Test discarded
Test7 Radial a 0 00 Out of plane 15.0 50-500
Test8 Radial a 0 00 Out of plane 0.0002 5-1000 Random vib

Test9 Radial a 0 00 In plane 0.5 5-500
Test10 Radial a 0 00 In plane 1.0 15-500
Test11 Radial a 0 00 In plane 2.0 15-500
Test12 Radial a 0 00 In plane 5.0 25-500
Test13 Radial a 0 00 In plane 10.0 50-500
Test14 Radial a 0 00 In plane 15.0 50-500
Test15 Radial a 0 00 In plane 0.0002 5-1000 Random vib

Test16 Radial a 0 05 In plane 0.5 5-500
Test17 Radial a 0 05 In plane 1.0 15-500
Test18 Radial a 0 05 In plane 2.0 15-500
Test19 Radial a 0 05 In plane 5.0 25-500
Test20 Radial a 0 05 In plane 10.0 50-500
Test21 Radial a 0 05 In plane 15.0 50-500
Test22 Radial a 0 05 In plane 0.0002 5-1000 Random vib

Test23 Radial a 0 05 Out of plane 0.5 5-500
Test24 Radial a 0 05 Out of plane 1.0 15-500
Test25 Radial a 0 05 Out of plane 2.0 15-500
Test26 Radial a 0 05 Out of plane 5.0 25-500
Test27 Radial a 0 05 Out of plane 10.0 50-500
Test28 Radial a 0 05 Out of plane 15.0 50-500
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Test29 Radial a 0 05 Out of plane 0.0002 5-1000 Random vib

Test30 Radial a 0 10 Out of plane 0.5 5-500
Test31 Radial a 0 10 Out of plane 1.0 15-500
Test32 Radial a 0 10 Out of plane 2.0 15-500
Test33 Radial a 0 10 Out of plane 5.0 25-500
Test34 Radial a 0 10 Out of plane 10.0 50-500
Test35 Radial a 0 10 Out of plane 15.0 50-500
Test36 Radial a 0 10 Out of plane 0.0002 5-1000 Random vib

Test37 Radial a 0 10 In plane 0.5 5-500
Test38 Radial a 0 10 In plane 1.0 15-500
Test39 Radial a 0 10 In plane 2.0 15-500
Test40 Radial a 0 10 In plane 5.0 25-500
Test41 Radial a 0 10 In plane 10.0 50-500
Test42 Radial a 0 10 In plane 15.0 50-500
Test43 Radial a 0 10 In plane 0.0002 5-1000 Random vib

Test44 Radial a 0 00 Out of plane 0.0002 5-1000 Fixed w/ washer
Test45 Radial a 0 00 Out of plane 0.5 5-500 Fixed w/washer

Test46 Slot a 0 00 Out of plane 0.5 5-500
Test47 Slot a 0 00 Out of plane 1.0 15-500
Test48 Slot a 0 00 Out of plane 2.0 15-500
Test49 Slot a 0 00 Out of plane 5.0 25-500
Test50 Slot a 0 00 Out of plane 10.0 50-500
Test51 Slot a 0 00 Out of plane 15.0 50-500
Test52 Test discarded
Test53 Test discarded
Test54 Slot a 0 00 Out of plane 0.0002 5-1000 Random vib

Test55 Slot a 0 05 Out of plane 0.5 5-500
Test56 Slot a 0 05 Out of plane 1.0 15-500
Test57 Slot a 0 05 Out of plane 2.0 15-500
Test58 Slot a 0 05 Out of plane 5.0 25-500
Test59 Slot a 0 05 Out of plane 10.0 50-500
Test60 Slot a 0 05 Out of plane 15.0 50-500
Test61 Slot a 0 05 Out of plane 0.0002 5-1000 Random vib

Test62 Slot a 0 10 Out of plane 0.5 5-500
Test63 Slot a 0 10 Out of plane 1.0 15-500
Test64 Slot a 0 10 Out of plane 2.0 15-500
Test65 Slot a 0 10 Out of plane 5.0 25-500
Test66 Slot a 0 10 Out of plane 10.0 50-500
Test67 Slot a 0 10 Out of plane 15.0 50-500
Test68 Slot a 0 10 Out of plane 0.0002 5-1000 Random vib

Test69 Slot a 0 00 In plane 0.5 5-500
Test70 Slot a 0 00 In plane 1.0 15-500
Test71 Slot a 0 00 In plane 2.0 15-500
Test72 Slot a 0 00 In plane 5.0 25-500
Test73 Slot a 0 00 In plane 10.0 50-500
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Test74 Slot a 0 00 In plane 15.0 50-500
Test75 Slot a 0 00 In plane 0.0002 5-1000 Random vib

Test76 Slot a 0 05 In plane 0.5 5-500
Test77 Slot a 0 05 In plane 1.0 15-500
Test78 Slot a 0 05 In plane 2.0 15-500
Test79 Slot a 0 05 In plane 5.0 25-500
Test80 Slot a 0 05 In plane 10.0 50-500
Test81 Slot a 0 05 In plane 15.0 50-500
Test82 Slot a 0 05 In plane 0.0002 5-1000 Random vib

Test83 Slot a 0 10 In plane 0.5 5-500
Test84 Slot a 0 10 In plane 1.0 15-500
Test85 Slot a 0 10 In plane 2.0 15-500
Test86 Slot a 0 10 In plane 5.0 25-500
Test87 Slot a 0 10 In plane 10.0 50-500
Test88 Slot a 0 10 In plane 15.0 50-500
Test89 Slot a 0 10 In plane 0.0002 5-1000 Random vib

Test90 Radial a 0 10 Out of plane 1 250
Test91 Radial a 0 10 Out of plane 1 315 1st mode
Test92 Radial a 0 10 Out of plane 1 366 2nd mode
Test93 Radial a 0 10 Out of plane 1 50
Test94 Test discarded
Test95 Radial a 0 10 Out of plane 10 50
Test96 Radial a 0 10 Out of plane 10 250
Test97 Radial a 0 10 Out of plane 10 366
Test99 Radial a 0 10 Out of plane 10 315

Table F.1: Shaker Test Log

Plots of all tests from table F.1

As many of the in-plane experiments display very much the same response, not all
of the in-plane results are attached.
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