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Abstract

In structural dynamics, load identification based on measured responses is referred to as
an “inverse” problem. In general, structures are dimensioned to withstand a given applied
load. For structures subjected to varying dynamic loads, an exact load evaluation may
be challenging. In order to properly monitor the structure during operation and thereby
ensure safety, it is essential to know the magnitude of the applied load. Updated lifetime
evaluations can then be done and maintenance needs may be met. For some structures,
direct measurements of the applied loads are challenging or sometimes impossible. The
loads may in such circumstances be obtained through inverse methods.

During recent years, inverse methods for load identification has gained an increased attention
in the “Digital Twin” technology. In this technology, the structure, or physical object is
represented by an identical virtual twin. Based on obtained sensor data of measured
responses, it is desirable to estimate the applied load through effective inverse methods.
Inverse methods have been proposed by scientists in different fields of engineering. Some
of the studies have been summarized in this thesis. The majority of the methods have
proved successful for linear systems, while a solution to nonlinear systems has not yet
received as much attention. As for the digital twin technology, a robust procedure to obtain
dynamic loads despite lack of system linearity is essential.

In this thesis, two of the presented load reconstruction methods have been numerically
tested in terms of a digital twin solution. The results showed that both methods were
successfully able to reconstruct the applied loads. However, parts of the reconstructed
loads were interfered by noise which should be dealt with by using filtering techniques or
regularization methods. No noticeable difference were observed for the load reconstruction
using displacement, velocity or acceleration responses. Whether or not the methods can be
applicable to nonlinear systems is yet to be investigated. Further research on the subject is
recommended.
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Sammendrag

Last identifikasjon basert på målte responser kalles et inversproblem i strukturell dynamikk.
Strukturer er generelt dimensjonert for å motstå en bestemt påført last, men en eksakt
last evaluering kan være utfordrende for strukturer som er utsatt for varierende dynamisk
last. For å kunne monitorere en struktur under operative forhold og dermed opprettholde
sikkerhet er det essensielt å vite størrelsen på den påførte lasten. Man kan da gjøre
oppdaterte kalkulasjoner av forventet levetid, i tillegg til å planlegge vedlikehold. For noen
strukturer kan en direkte måling av påført last være svært utfordrende eller umulig. Påført
last kan i slike tilfeller bli funnet gjennom inverse metoder.

Inverse metoder for last identifikasjon har fått økt oppmerksomhet i forbindelse med “Digital
Tvilling” teknologi. Denne teknologien går ut på at strukturen, eller det fysiske objektet,
er representert av en identisk, virtuell tvilling. Ved å bruke sensorer til å måle strukturens
responser, er det ønskelig å estimere påført last gjennom inverse metoder. Slike inverse
metoder har blitt utviklet av forskere fra ulike ingeniørfagfelt. Noen av disse studiene er
gjenfortalt i denne masteroppgaven. Mesteparten av metodene har vært vellykkede for
lineære systemer, mens løsninger for ikke-lineære systemer har fått mindre oppmerksomhet.
I forbindelse med digital tvilling teknologi er det ønskelig å utvikle en robust prosedyre for
å finne dynamisk last uavhenig av mangel på systemets lineæritet.

I denne masteroppgaven er to av de presenterte last identifikasjonsmetodene blitt numerisk
testet som en digital tvilling løsning. Resultatene viser at en riktig last var mulig å oppnå
gjennom begge metodene. Støy i måledataene ble observert og bør hindres ved bruk av
regularisering eller filtreringsteknikker. For last identifikasjon basert på forskyvnings-,
hastighets- eller akselerasjonsmålinger ble ingen bemerkningsverdige forskjeller observert.
Det gjenstår å se om metodene kan brukes for ikke-lineære systemer. Videre forskning er
anbefalt.
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1. Introduction

1.1 Background and Motivation

Engineering structures subjected to dynamic loads of unknown magnitude has been the
subject of several studies performed during recent years. Dynamic loads make important
boundary conditions for a system and are therefore of great importance in regards to ensure
safety and stability [9, 10]. There are several types of loads in structural dynamics, such as
periodic, shock and random loads. The magnitude of these loads may be obtained through
direct measurement [11]. However, for some applications such as tall buildings subjected
to wind loads or bridges subjected to moving vehicles, it is challenging or even impossible
to directly measure the dynamic loads [12, 13]. Hence, load identification methods have
been developed in order to properly identify loads on structural systems.

Obtaining dynamic load is an inverse process and thereby a so-called “inverse” problem.
Load identification methods are based on system properties and measured dynamic re-
sponses such as acceleration, displacement or strain measured at several accessible locations
on the structure [13]. The methods are divided into two main categories, namely frequency
domain methods and time-domain methods [14].

Solving inverse problems is highly relevant for a new and arising technology called the
“Digital twin” technology. A digital twin is commonly described as a virtual, digital
representation of a physical object [15]. This technology takes part in the Industrial Internet
of Things where an increased and automated communication between objects happens
without human interaction. The concept of twins for industrial use origins from NASA‘s
Apollo program where it was stated that “two identical space vehicles were built, allowing
the engineers to mirror the conditions of the space vehicle during the mission, the vehicle
remaining on earth being the twin [16, p. 63]”. This concept was later developed to include
a virtual representation of the twin, resulting in the idea of a digital twin. Digital twin
technology has been proved useful for several industrial purposes by different companies.
One example is the US Air Force which have used digital models to monitor each aircraft
[16].
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Chapter 1. Introduction

For some applications, only a limited number of sensors can be placed on the structure
[17]. It is desirable to optimize the number of sensors used for each object, in addition to
choose optimal sensor locations and yet being able to reconstruct the applied loads. This is
a challenge that must be overcome in the digital twin technology. As of today, many studies
have proposed sufficient methods for force reconstruction of linear systems. The study of
nonlinear dynamic structures is more complex and has not received as much attention.

1.2 Problem Description

A robust procedure for solving inverse problems is essential for the digital twin technology.
The objective of this thesis has been to look into existing inverse methods and test some of
the methods in regards to their usefulness in the digital twin technology. Finding working
methods despite system linearity has been the target, in addition to find and develop an
appropriate software tool.

1.3 Approach and Limitations

The study has been divided into two parts. Firstly, an overview of existing inverse methods
has been presented in a literature review. Secondly, two load reconstruction experiments
have been performed based on two of the methods presented in the first part. The ex-
periments were performed on simple mass-spring systems and have only been tested
numerically.

It is challenging to find a computer tool that proves successful for all proposed methods. In
this thesis, a software called Fedem has been used for the force reconstruction. Fedem is
an acronym for Finite Element Dynamics in Elastic Methanisms and supports digital twin
technology. The obtained results have been based on the capabilities of Fedem.

1.4 Thesis Structure

The thesis is structured as follows. Chapter 2 presents a literature review on proposed
inverse methods for load reconstruction. Chapter 3 presents regularization methods and
filtering techniques commonly used in the presented studies, followed by theory on basic
structural dynamics. In chapter 4, two load reconstruction experiments are presented. The

2



1.4 Thesis Structure

experimental results are shown in chapter 5, followed by a discussion of the results in
Chapter 6. Finally, concluding remarks and suggestions for further work will be presented
in Chapter 7.
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2. Literature Review

In this chapter, the inverse problem and its ill-posed nature is presented, followed by
proposed methods for inverse force reconstruction. At last, studies on determination of
force location has been briefly looked into.

2.1 The Inverse Problem

In structural dynamics, the theory used to solve the forward problem lies the foundation
of the solution to the inverse problem [12]. Therefore, both problems have been looked
into. The problems are illustrated in Figure 2.1. Identification of responses based on system
boundary conditions and inputs is defined as the forward problem. The inverse problem has
been divided into two classifications [1]:

1. Finding system inputs, based on given responses, boundary conditions and system
model (the inverse identification problem).

2. Finding the system model, based on given inputs, responses and boundary conditions
(the classical identification problem).
[1, p. 325]

Figure 2.1: Schematic representation of the forward and inverse problems. [1]

Methods for force identification based on system responses have been divided into three
categories; deterministic methods, stochastic methods and methods based on artificial intel-
ligence (AI) [1, 18]. Deterministic methods strongly rely on experimental measurements

5



Chapter 2. Literature Review

and their accuracy in regards to the inverse model identification. These methods are often
challenging to apply when dealing with strongly nonlinear systems because an accurate
nonlinear inverse model must be obtained. When using statistical models to recover the
inputs, a statistical relation between the inputs and the outputs is established by taking
measurements during operation. The methods based on AI are different kinds of algorithms
resulting from a learning process which finds a relation between the inputs and the outputs
[1].

In therms of system linearity, stochastic methods are not applicable for nonlinear systems.
In nonlinear systems, the forces cannot be added because the relationship between stress
and force is nonlinear. Therefore, the load history must be known as one cannot rely on
probability distribution. Deterministic and AI methods are applicable for both linear and
nonlinear systems. Further in this thesis, deterministic methods will be in focus.

2.2 The Ill-Posed Nature of the Inverse Problem

Inverse problems are highly subjected to measurement errors and are significantly more
affected by noise than forward problems. This results in ill-posed solutions, meaning the
solutions are often unstable and non-unique [19]. This is because the structure is limited
by a finite number of points in which it can be measured [13]. Even the smallest errors in
the identified inputs may cause considerable deviations in the results. Therefore, several
techniques have been proposed to obtain a numerically stable solution and thereby a well-
posed problem [18]. Well-posed problems are commonly defined in the sense of Hadamard
as shown in Appendix A.1 [19].

J. Sanchez and H. Benaroya [20] have divided force reconstruction techniques to deal with
the ill-posedness into three main categories, namely direct methods, regularization methods
and probabilistic/statistical methods. Direct methods use physical or mathematical models
to solve inverse problems. The general solution to the problem is often written as

u(x, t) =

∞∑
n=1

Φn(x)Γn(t) (2.1)

for linear models, where u(x,t) represents the displacement, Φn represents the mode shape
and Γn represents the time variation. Using this solution is often referred to as modal
superposition analysis. Direct methods often exhibit a certain degree of noise in the system
and require regularization methods to eliminate that effect. Methods belonging to the third
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category, probabilistic/statistical methods, are used to gain insight into the system’s driving
force. One such method is called adaptive estimation which will be looked into in the
following section.

2.2.1 Kalman Filter

The Kalman filter is a common type of adaptive estimation similar to adaptive estimation
systems used in control theory. In adaptive estimation, there is a measured signal of
unknown parameters. By using estimates for the unknown parameters, there is another
signal which estimates the state of the system. The unknown parameters are varied by
a control law until the signal reaches convergence. The adaptive estimators update the
unknown parameters by utilizing iterative control laws based on probabilistic or statistical
methods [20].

The filter is widely used in several fields of science and engineering and can be derived by
stochastic and deterministic methods. It is designed to recursively estimate the states of a
dynamic system in regards to system outputs affected by noise and disturbance. The system
is expressed in state-space form driven by a zero-mean white noise process. The use of the
state-space form is due to its ability to handle multivariate and time-varying systems [21].

C.K. Ma et al. [22, 23, 24] have proposed several studies on impact force reconstruction of
lumped-mass systems. They transformed the equation of motion into state-space equations,
and used an input estimation algorithm for the force reconstruction. The algorithm consisted
of a Kalman filter and a recursive least-squares algorithm which proved successful for
one-dimensional single degree of freedom (SDOF) and multiple degree of freedom (MDOF)
systems [22]. The method was also successfully used in linear numerical experiments on
beam structures subjected to five different types of input forces. Equation 2.2 and 2.3
were used for the Kalman filter over the discretized time k [23]. A discretized Kalman
filter is often divided into two steps; a prediction step (Equation 2.2) and a correction step
(Equation 2.3) [25].

X̃k|k−1 = ΦX̃k|k−1

Pk|k−1 = ΦPk−1|k−1Φ
T + ΓQΓT

(2.2)
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Sk = HPk|k−1H
T + R

Ka,k = Pk|k−1H
TS−1k

Pk|k = [I−Ka,kH]Pk|k−1

Z̃k = Zk −HX̃k|k−1

X̃k|k = X̃k|k − 1 + Ka,kZ̃k

(2.3)

X̃ and P represent the state vector and the filters error covariance matrix respectively, Sk
and Z̃k are the innovation covariance and the innovation respectively, Ka is the Kalman gain
which stabilizes the filter, Γ and Φ are the input and state transition matrix respectively, Q
is the process noise covariance matrix, H is the measurement matrix, R is the measurement
noise covariance matrix, Z is the observation matrix and I represent the identity matrix.
[23][21]

Later, C.K. Ma and C.C. Ho extended the algorithm to be applicable for nonlinear structural
systems. Consideration of nonlinear systems presented a more real-case scenario. The
non-linearity was known to become stronger with an increasing response amplitude. In the
study, the Newmark-β method was used to predict the dynamic responses of the system and
an extended Kalman filter was introduced to the algorithm. The numerical experimental
results showed convergence after only a few time steps given an adequate choice of tuning
parameters. [24]

E.Lourens et al. proposed a study on an augmented Kalman filter which was used for force
reconstruction in a deterministic-stochastic setting. In the study, a standard Kalman filter
was applied to an augmented state-space model where the forces were added to an unknown
state-space vector. The use of an augmented Kalman filter was compared to a traditional
deterministic least-squares technique called Dynamic Programming. The two methods
showed different strengths and weaknesses. The augmented Kalman filter provided more
reliable results when collocated measurements were performed. However, as an optimal
regularization parameter for a specific period must be calculated, the augmented Kalman
filter was only applicable for off-line state estimation. [26]

Other common filtering techniques and regularization methods dealing with the ill-posedness
of the inverse problem are presented in Chapter 3.
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2.3 Force Reconstruction Strategies

Structural dynamic equilibrium equations may be solved in original degrees of freedom or
modal degrees of freedom. In literature, three main solution strategies have been proposed
to solve these equations [14]:

• a solution in time domain where the load and corresponding response development is
pursued stepwise for a sufficiently long period of time, in which case time series of
the structural response is obtained,

• an incremental stepwise state-space solution in time domain based on the Duhamel
integral and applying the fluctuating load as a consecutive sequence of short impulses,
or

• a solution where a Fourier transform is applied throughout the equilibrium equation
and the problem is transferred into a frequency domain description, in which case a
frequency domain spectral representation of the response is obtained.
[14, p. 229]

Originally, force identification problems were solved in the frequency domain, using the
frequency response functions of the structures. Later on, solutions in the time domain
became more prominent, following a more deterministic approach. There are also some
examples of studies using combined deterministic-stochastic techniques [26].

As the state space method is a solution in time domain, it will be included in the time
domain solution strategy further in this thesis. Hence, the two main solution strategies to be
presented in the next sections are time domain methods and frequency domain methods.

2.4 Time Domain Methods

A time domain response reconstruction may be performed explicit or implicit. An explicit
reconstruction is solely based on the known response history at time tk. An implicit
reconstruction accounts for the unknown future by assuming the response development or
equilibrium condition by looking at the development between time step tk and tk + ∆t [14].
For the displacements X and velocities Ẋ, the implicit-explicit solution may be written in
the following form [2]:

9
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X(tk + ∆t) = X(tk) + ∆tẊ(tk + α∆t)

Ẋ(tk + ∆t) = (1− α)Ẋ(tk) + αẊ(tk + ∆t)
(2.4)

for a solution parameter α. The explicit and implicit solution may thereby be defined as
follows [2].

• Explicit: it states the equilibrium at time t, with α = 0 . The displacement in the next
step is obtained depending on the velocity and displacement of the previous step.

• Implicit: it formulates the equilibrium at time (t+ât) with α =1. The displacement
in the next step is obtained depending on the current time velocity and on the
displacement of the previous step.
[2, p. 33]

Figure 2.2 represents common time domain methods in nonlinear structural dynamics in
regards to their implicit or explicit character.

Figure 2.2: Implicit and explicit methods for nonlinear systems. [2]

The most common method for inverse force identification in the time domain is the state
space method, mentioned in the previous section. It is a conditionally stable explicit time-
stepping method which often uses a reduced model to find the responses of a structure.
However, the method has some drawbacks due to a large discretization error when using
a low sampling frequency or a long sampling duration. As opposed to the state space
method‘s conditionally stable character, a method called the Newmark-β method is known
for its unconditionally stable character. This method has been widely used in forward
dynamic analyses, but seldom in inverse analyses. K. Liu et al. [27] proposed a study on
force identification where the state space method was compared to the Newmark-β method.
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In the study, the Newmark-β algorithm was transformed to an explicit form for the solution
of the Ax=B equations. For multiple sinusoidal and white noise excitations with 10 percent
measurement noise in the responses, the method proved more successful for identification
of force time histories as compared to the state space method.

The Newmark-β method and the state space method was also investigated in a dynamic force
reconstruction study done by V. Jayalakshmi et al. [18], based on measured acceleration
responses. Two time-domain algorithms were evaluated, the first was a direct method
derived from the Newmark-β time marching scheme while the second was an inverse
method using the state-space form of the same scheme. The latter proved more successful.
A modification to the Tikhonov regularization was also successfully proposed to account for
the ill-conditioning of the inverse problem . The Newmark-β method has been described in
Section 3.7.2.

A new time domain method called the time-domain Galerkin method (TDGM) was pre-
sented in a study by J. Liu et al. [10]. By looking into other time-domain studies they
identified the following shortcomings; an accurate identification of forces only applies for
small time intervals and the methods show a weak anti-noise performance. In the proposed
method, the time domain was discretized into a series of time elements. For each time
element, a variety of shape functions were used to find the dynamic load, kernel function
response and structural response by using the least-square fitting method. In the analysis,
the TDGM was compared to the Green kernel function method and proved more successful
in regards to the mentioned shortcomings.

2.4.1 Convolution

In time domain force reconstruction methods, the dynamic excitation forces and the dynamic
responses are often related in the form of convolution [1]. The convolution integral of the
convoluting signals k(t) and x(t) may be written as follows:

y(t) = k(t) ∗ x(t) =

∫ t

0

k(t− τ)x(τ)dτ (2.5)

where * represents the convolution of the signals, y(t) and x(t) represent the impulse
response and input signal respectively, and k(t) represents the kernel function. The kernel
function represents the system‘s response to the Dirac delta δ(t) function illustrated in
Figure 2.3. The digital form of the convoluting signals is illustrated in Figure 2.4. [28, 3]
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Figure 2.3: The Dirac delta function. [3]

Figure 2.4: The convolution of two signals. [3]

Convolution problems may be rewritten as inverse problems, also called deconvolution.
Such problems are often referred to as statistical inverse problems due to the presence of
random noise [29].

For an arbitrary deconvolution problem, x̃(t) represents the unknown input signals while
k(t) and y(t) are known signals. In the case of measured signals k(t) and y(t) represent the
known impulse response of the system and the measured signal respectively. Deconvolution
is then established by a reverse transformation of Equation 2.5. The deconvolution may
be written in matrix form for n = N-1 spectral lines and a shift in spectral lines, ∆, as
shown in Equation 2.6. For a damped system, some of the k-values in the lower left of
the matrix will become zero as the response from early pulse forces eventually will die
out. The deconvolution may also be written in terms of the Fourier transform as shown in
Equation 2.7. [3]
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(2.6)

X̃n =
IF [ReX̃(ejω) + jImX̃(ejω)]

∆
(2.7)

Time domain solution of deconvolution problems is especially suitable for early time
problems because only a few components of the force is reconstructed. A large time window
is required if deconvolution is to be solved using the frequency domain method which is
global and not limited to the elapse of the wave propagation time. Hence, frequency domain
deconvolutin is unfitted for early time problems [30]. In several time domain deconvolution
studies of linear systems, the Fourier transform is applied to Equation 2.5 which turns it
into the frequency domain. Nevertheless, the resulting excitation force is expressed in the
time domain, which makes it a time domain solution.

E. Jaquelin et al. [30] performed a deconvolution study on impact problems in the time
domain with the use of the Fourier transform. The deconvolution technique was investigated,
in addition to the problems that occurred. The study highlighted the measurement position’s
influence on the results, where a closer measurement performed a better reconstruction.
The effect of the measurement position in addition to the general ill-posedness of the
deconvolution problem were handeled by introducing different regularization techniques.
Adding a boundary condition forcing the solution to be non-negative was suggested, but
this regularization was limited to only be applicable to impact forces. Instead, they used
Tikhonov regularization and the TSVD method to get a stable solution for any force.

In a study by J. F. Doyle [31] a wavelet deconvolution method for impact force reconstruc-
tion was presented. The method was similar to the Fourier method, but overcame some
of the challenges related to the frequency domain method. The Fourier method provides
a one-to-one relation between frequencies and may therefore result in the loss of certain
frequency data. In wave propagation problems there is a prominent time delay between
the impact force event and the measured responses. Hence, a one-to-one relation between
forces and responses cannot be established which results in a retarded convolution relation.
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H. Kalhori et al. [32] studied on whether or not the transfer function in the convolution
integral required an explicit establishment in order to reconstruct an impact force. The
impact tests were performed on a steel-beam-reinforced concrete deck. The most successful
results were obtained without the use of an explicit transfer function. However, the method
always required regularization due to the ill-conditioned nature of the deconvolution.

In a study by B. Qiao et al. [33], a sparce deconvolution model was used for impact force
reconstruction. The study looked into some of the drawbacks of the Tikhonov regularization
method and the TSVD method. In regards to computational cost, these methods does not
perform well for large-scale ill-posed inverse problems. A large-scale sparse deconvolution
model was therefore constructed. The model was based on the primal-dual interior point
method and managed to successfully reconstruct an impact force acting on a wind turbine
blade.

2.4.2 Markov Parameters

Time domain techniques are often memory intensive due to the large number of inputs and
outputs involved in addition to thousands of datapoints. This drawback was accounted for in
a study by D. C. Kammer [34]. In the study, a time domain technique was used to estimate
unit force pulses acting on a structure by estimating its so-called Markov parameters. The
Markov parameters represent the systems response to unit force pulses at input locations and
include the dynamic properties of the structure. Under the assumption of system linearity,
forward Markov parameters were used to compute the inverse system Markov parameters.
The forward system was written as follows:

y(k) =

k∑
i=0

Hiu(k− i) (2.8)

for the inputs u, the outputs y, the time step k and the following Markov parameters:

H0 = H Hi = CAi−1D i = 1, 2, 3... (2.9)

The corresponding inverse system was written as:

u(k) =

k∑
i=0

hiy(k− i) (2.10)
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given that the inverse system Markov parameters hi could be derived.

The linear expression in Equation 2.11 shows the relation between the inverse system
Markov parameters and the forward system Markov parameters.

H0hk = −
k∑
i=1

Hihk−i (2.11)

for

h0 = H+
0 . (2.12)

Further, the Tikhonov regularization was used due to the ill-posed nature of the convolution
matrix, resulting in a slightly altered well-posed system. The convolution then gave out
a set of pseudo-forces which was applied back to the structure. The resulting structure
response was closely matching the sensor data measured when the actual force was applied
[34].

Later, Tadeusz Uhl [1] used the same principles for force reconstruction in the time domain.
By using Markov parameters for the solution of the state space equation, Equation 2.8 and
2.9 was expressed in block-matrix form as follows,
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y0
N−1
.

.

.

y0
0


(2.13)

with (N + 1)2 matrix blocks of dimension n0 x ni in the upper-block-triangular matrix,
H. The input forces u were solved by the least-squares equation shown in Equation 2.14,
resulting in the inverse solution in Equation 2.15.

min
u
||H0u− ŷ||22 (2.14)

u = H+
0 ŷ0 (2.15)
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As Equation 2.15 produces an ill-posed result, the study introduced a restriction to the
solution in terms of an a priori bound ||Liu||2. The reformulation of the problem in the
least-square sense became:

E = min
u

{
||H0u− ŷ||22 + λ||Liu||22

}
(2.16)

for a regularization parameter λ that weights the restriction on u. The dynamic programming
solution can be read in its complete form in Appendix A.2, and is shortly summarized here.
The solution was based on the following function:

g(c) = min
fj

En(y0 , u) (2.17)

simulating the system from stage j = n to j = N, with yn = c and optimal inputs uj’s. When
applying minimization and the principle of optimality, the complete solution for one step
became:

gN−1(c) =
(yN−1 − c)2 + L(yN −H0 c)2

(L + 1)2 + [yN −H0 c − (yN −H0 c)/(L+ 1)]2
(2.18)

In the study, the method was used for off-line reconstruction of contact forces for an
operating rail vehicle. By basing the algorithm on Tikhonov’s regularization, the problem
became well-posed which resulted in a correct reconstruction of forces. The method is
applicable for both linear and nonlinear models. However, more complex simulation
methods are required for the latter in order to achieve correct results. [1]

2.5 The Frequency Domain Method

The frequency domain method often involves obtaining the frequency response functions
(FRFs) of a system. The FRFs give a mathematical representation of the relationship
between a systems inputs and outputs, and is often based on the Fourier transform.

A frequency domain solution of the forward problem, reconstruction of responses, is
often preferred for excitation loads of stochastic character. This is because a time domain
solution would require a time domain simulation of the load components at all nodes.
Reconstruction in the frequency domain may be obtained in original or modal degrees of
freedom, in which the latter is often far more convenient as the size of the relevant matrices
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becomes considerably smaller [14].

If Y(ω) represents the dynamic displacement amplitude, Z−1(ω) represents the inverse of
the dynamic stiffness matrix and F(ω) represents the external force amplitude, the following
equation can be established for a periodic MDOF system.

Y(ω) = Z−1(ω)F(ω) (2.19)

Writing the equation in terms of the inverse of the dynamic stiffness matrix, called the
receptance matrix or frequency response matrix, H(ω), yields [13, 14]:

Y(ω) = H(ω)F(ω) (2.20)

for
H(ω) = (−Mω2 + Ciω + K)−1. (2.21)

Lage et al. [17] proposed an algorithm for force identification using the frequency domain
method. The algorithm was based on a finite element (FE) model using the Bernoulli-Euler
beam theory and the measured dynamic responses of the structure. The force position
and quantification were evaluated, in addition to the effect of the measurement position
of the sensors. In the study, the system model was assumed known. They presented three
methods for force localization were one of them proved most efficient. Comparison of the
experimental and numerical FRFs showed a considerably good match. However, a few high
peaks, corresponding to the anti-resonances in the FRFs, occurred in the numerical results
due to the lack of damping.

2.5.1 Force and Displacement Transmissibility

There have been several attempts for obtaining dynamic transmissibility between applied
forces and reaction forces, and transmissibility between the corresponding dynamic dis-
placements. The relation between the transmissibilities depends on the dynamic system
to be investigated. For a single-degree-of-freedom (SDOF) system the dynamic force
transmissibility equals the dynamic displacement transmissibility. Force transmissibility
is defined as the ratio between the force amplitude transmitted to ground and the exter-
nal force amplitude. Displacement transmissibility is defined as the ratio between the
response displacement amplitude and the displacement amplitude at the foundation. For a
multiple-degrees-of-freedom (MDOF) system the transmissibilities are not equal. [4]
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The FE method (FEM) can be used to establish an expression for a transmissibility matrix
in the frequency domain. Figure 2.5 illustrates an arbitrary dynamic system subjected to
an external dynamic force of known value which causes a dynamic response of unknown
value. The subscript K is used for the known values and the subscript U is used for the
unknown values. If the forces are periodic they may be represented by the Fourier series.
Otherwise, the Fourier integral should be used [7].

Figure 2.5: An arbitrary dynamic system subjected to a dynamic force which causes a dynamic
response.

Y. E. Lage et al. [13, 4] have done several studies on the force transmissibility concept
for MDOF systems. The following paragraphs show the derivation of the transmissibility
matrix presented in two of their studies.

The system in Figure 2.5 has two nodes of interest; one where force is applied and one
reaction node. By using the same subscripts as before, that is, U for unknown reaction
forces and K for known applied forces, equation 2.20 becomes:

[
YK

YU

]
=

[
HKK HKU

HUK HUU

][
FK

FU

]
. (2.22)

By assuming zero displacement at the reaction point, that is YU= 0, the unknown reaction
force may be expressed as:

FU = −(HUU )−1HUKFK (2.23)

which results in the transmissibility matrix shown in Equation 2.24.
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(Tf )UK = −(HUU )−1HUK (2.24)

If the assumption of zero displacement does not hold, the relation becomes:

FU = (HUU )−1(YU −HUKFK). (2.25)

Inserting the transformation matrix established from equation 2.24 yields:

FU = (Tf )UKFK + (HUU )−1YU . (2.26)

Equation 2.23 and 2.26 give two solutions for FU . These give the solutions to the direct
problem where the applied load is a known value. For the inverse problem, the dynamic
stiffness matrix should be used, which leads to the following definition of the applied loads:

F(ω) = Z(ω)Y(ω) (2.27)

By using the same subscripts as above, that is, K for the external force and U for the
unknown displacement, in addition to a third subscript, C, which includes the remaining
nodes as illustrated in Figure 2.6, the relation becomes:

FKFU
FC

 =

ZKK ZKU ZKC

ZUK ZUU ZUC

ZCK ZCU ZCC


YKYU
YC

 (2.28)
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Figure 2.6: The location of coordinates U, K and C on arbitrary dynamic systems [4].

The equation may be simplified by including the subscripts K and C under the same
subscript E, which gives:

[
FE

FU

]
=

[
ZEE ZEU

ZUE ZUU

][
YE

YU

]
. (2.29)

Assuming zero displacement at the supports yields:

FE = ZEEYE (2.30)

FU = ZUEYE . (2.31)

Solving for FU by substituting YE results in:

FU = ZUE(ZEE)−1FE . (2.32)

Finally, the transmissibility matrix becomes:

(Tf )UE = ZUE(ZEE)−1. (2.33)

In one of the studies, two types of forces were considered in regards to the transmissibility
matrix [13]. The problems were defined as:
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1. reaction forces estimation (direct problem) with the objective to calculate a set of
unknown reactions using information from the known set of applied loads:

FU = (Tf )UKFK ; (2.34)

2. applied forces estimation (inverse problem) with the objective of calculating a set of
applied forces using information from the known set of reaction forces:

FK = ((Tf )UK)+FU , (2.35)

[13, p. 3]

where the subscript + represents the pseudoinverse. The pseudoinverse is limited to only
be applicable when the number of reactions is larger than or equal to the number of
applied forces. The solutions to Equation 2.34 and 2.35 were based on obtaining the
transmissibility matrix. The matrix was obtained both numerically and experimentally, and
showed acceptably consistent results [13].

In a third study by Y. E. Lage et al. [35], the load vector in Equation 2.19 was also
successfully reconstructed for a MDOF system by using the transmissibility concept. For a
simple case where all the responses Y in Equation 2.19 are known, corresponding to the
finite element discretization, the forces could be obtained by solving Equation 2.36.

F(ω) = H−1(ω)Y(ω) (2.36)

However, this is seldom the case. For complex structures, structures with a very large
number of coordinates or structures with inaccessible locations, the load vector cannot be
calculated directly. Hence, the study proposed a two-step methodology to obtain the load
vector based on the assumption that the system was completely known. In the first step,
the number of external loads and their locations were identified. Here, an algorithm based
on the response transmissibility concept was used to construct a transmissibility matrix
correspondent to the dynamics of the system. The number and location of the external loads
were known once the transmissibility matrix was constructed. In the second step, force
amplitude regeneration was performed based on the displacement transmissibility found
in the first step. The obtained frequency response function agreed well with the measured
experimental values.
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2.6 Determination of Force Location

For structural applications where the location of the dynamic load is unknown, there have
been several proposed methods on how to obtain the location of the applied loads in addition
to its magnitude.

Sifa Zheng et al. [9] have analyzed the coherence of the transfer function matrix, and
performed numerical simulations where the coherence analysis has been compared with
the minimum condition number method and the weighted condition number method. The
object of the study was a heavy truck cab. The dynamic forces acting between the cab
and suspension were identified during operation. The coherence analysis showed most
successful while the weighed condition number method provided most inaccurate results.

Bridges subjected to moving vehicles has been the subject of several force reconstruction
studies. In such a case, the position of the moving force is unknown. The moving vehicles
adds additional masses on the bridge which affects the eigenfrequencies of the system and
makes the mass distribution unknown. As a result, the system becomes non-linear. To
solve such a system, both the system and force must be identified. The systems are often
under-determined which makes it necessary to do some assumptions to stabilize them. L. Yu
and T. H. T. Chan [36] studied on moving force reconstruction for bridge-vehicle systems
were the bridge deck was modelled as an Euler beam. They used a frequency-time domain
method with the assumption of linearity to reconstruct the moving force. The Fourier
transform was performed in modal degrees of freedom. The study used two techniques for
calculation of the pseudo-inverse; direct calculation and calculation via the singular value
decomposition (SVD) technique. The SVD technique provided a reconstructed force with
an acceptable accuracy.

22



3. Theory

In this chapter, some regularization methods and filtering techniques dealing with the
ill-posed nature of the inverse problem will be presented. Next, basic structural dynamics
will be presented for SDOF and MDOF systems respectively.

3.1 Regularization Methods

Regularization methods are commonly used to obtain numerically stable solutions to inverse
problems. These methods often involve applying additional constraints to the system, often
in terms of physical or mathematical boundaries. [20]

Sensitivity to noise is often observed by analyzing the singular values of the systems transfer
function. A problem is ill-posed if the singular values gradually decay to zero. If there is a
well-defined gap between the singular values, the problem is also rank deficient [20]. One
solution may be to truncate the singular values, which is done in a method called the singular
value decomposition (TSVD). This method and a method called Tikhonov regularization
are the most traditional regularization methods [33]. For a regularized problem, these
methods give an exact solution in a finite dimension and in a finite number of operations up
to the rounded errors. However, they do not perform well for large-scale problems. The
matrices obtained after discretization in large-scale problems are often sparse. A solution
by Tikhonov regularization or the TSVD will result in a too large number of operations and
the structure of the matrices may be affected [37].

Other proposed regularization methods are optimization methods which seek to minimize
error estimates. These methods provide a single optimal solution to inverse problems by
employing improvements to the least-squares method. Examples of such methods are
the conjugate gradient method, also known as the iterative regularization method, and the
Levenberg-Marquardt iterative regularization method. The latter method is based on the
application of Newton’s method to the least-squares problem. The solution is written as
xk+1 = xk + s(xk ) for a solution to the problem xk at iteration k, and a solution xk+1 at
iteration k + 1. Defining the step function, s(xk ), is the main objective, which ensures
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that xk converges to its optimal solution. This method has been used for both linear and
non-linear systems. [20]

As the Tikhonov regularization method and the TSVD method are the most used methods,
they will be presented the following sections.

3.1.1 Tikhonov Regularization

Given the discrete linear equation m = Af + ε, the classical Tikhonov regularization is the
vector Tα(m) ε Rn that minimizes the following expression:

||ATα(m)−m||2 + α||Tα(m)||2 (3.1)

for a regularization parameter α < 0 [5]. The vector may then be defined as:

Tα(m) = arg min
zεRn

{
||Az−m||2 + α||z||2

}
(3.2)

The effect of the regularization parameter for a one-dimensional deconvolution problem is
illustrated in Figure 3.1.

Figure 3.1: Classical Tikhonov regularization for four different regularization parameters with
corresponding percentage error of reconstructions. [5]
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For a generalized Tikhonov regularization, a priori information is given about the solution.
Say the vector f represents a continuous function f, with f(sj) = fj. The derivative of the
continuum can than be discretized by:

df

fs
(sj) ≈

f(sj+1)− f(sj)

∆s
=

fj+1 − fj
∆s

, (3.3)

resulting in the discrete differentiation matrix:

L =
1

∆s



−1 1 0 0 0 . . . 0

0 −1 1 0 0 . . . 0

0 0 −1 1 0 . . . 0

. . . .

. . . .

. . . .

0 . . . 0 −1 1 0

0 . . . 0 0 −1 1

1 . . . 0 0 0 −1


. (3.4)

Using the discrete differentiation matrix in the reconstruction computations yields for a
generalized Tikhonov regularization as shown in Figure 3.2. The generalized reconstruction
is smoother and has a more non-zero reconstruction at α = 10−2. [5]
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Figure 3.2: Generalized Tikhonov regularization for four different regularization parameters with
corresponding percentage error of reconstructions. [5]

The expression for the generalized Tikhonov vector becomes:

Tα(m) = arg min
zεRn

{
||Az−m||2 + α||Lz||2

}
. (3.5)

If the convolution between two signals is written in terms of the Fourier transform as
follows,

Y = KX, (3.6)

for a response signal Y, an input signal X and a kernel function K, the Tikhonov regular-
ization will then revolve around defining a smoothing norm, shown in Equation 3.7, and a
trade off between the smoothing norm and the residual norm in Equation 3.6 [30].

Ω(X) = ||KX||2 (3.7)

The expression for the regularization then becomes:

minX
{
||KX− Y||2 + αΩ(X)

}
. (3.8)
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Choosing an optimal regularization parameter, α, is extremely challenging. On the one
hand, a low value of α singles out the minimum of the residual norm and thereby results in
an unstable solution. One the other hand, a great value of α filters out large frequencies
resulting in a too smooth solution [30]. The Morozov’s discrepancy principle can be used
if the parameter is to be decided based on data noise level. The L-curve method is useful
for balancing the norm of the smoothing term and the norm of the residual term. Only the
latter method is applicable for the generalized regularization method [5].

3.1.2 The Truncated Singular Value Decomposition Method

The singular value decomposition (SVD) method has been commonly used for linear inverse
problems. Theoretically, the decomposition gives a simple solution to the least squares
problem [37].

The TSVD may be derived as follows. If fε Rn, mε Rk and A is of size k x m, the equation
Af = m may be solved by A+m if A is written in the form of its SVD as A = UDVT . V
ε Rkxk and V ε Rnxn are orthogonal matrices and U ε Rkxn is a diagonal matrix. The
subscript + denotes the pseudoinverse. The singular values are ordered from large to small,
where r is defined as the largest index for a nonzero singular value as follows [5]:

r = max
{
j|1 ≤ j ≤ min(k ,n), dj > 0

}
(3.9)

for

d1 > 0, d2 > 0, ...dr > 0, dr+1 = 0, ...dmin(k ,n) = 0. (3.10)

The minimum norm solution of Af = m is then given by A+m as follows:

A+m = V D+UTm (3.11)

for
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D+ =



1/d1 0 . . . . . . 0

0 1/d2 .

. . .

. . .

.

1/dr

0

. . .

. . .

. . .

0 . . . . . . 0



εRnxk . (3.12)

If f is written as a linear combination of f =
∑n

j=1 ajVj = V a, finding the coefficients
a1, ..., an will give the minimum norm solution of f [5]. Setting m’ = UTm yields:

||Af−m||2 = ||UDV T a− Um′||2

= ||Da−m′||2

=

r∑
j=1

(djaj −m′j )
2 +

k∑
j=r+1

(m′j )
2

(3.13)

when using the orthogonality of U, that is, ||Uz|| = ||z|| for any vector z εRk . The minimum
is defined when aj = m’j /dj for j = 1,...,r. The least-square solution of f becomes:

f = V



d1
−1m′1
.

.

.

dr
−1m′r
ar+1

.

.

.

an



. (3.14)

This solution fulfills Hadamard’s existence and uniqueness condition, but not the continuity
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condition shown in Appendix A.1. Therefore, the truncated SVD must be introduced [5].
The TSVD is defined as A+

α = VD+
αU

T for any α > 0, where

D+
α =



1/d1 0 . . . . . . 0

0 1/d2 .

. . .

. . .

.

1/drα
0

. . .

. . .

. . .

0 . . . . . . 0



εRnxk (3.15)

and

rα = min

{
r,max

{
j|1 ≤ j ≤ min(k ,n), dj > α

}}
. (3.16)

By defining a reconstruction function Lα as:

Lα(m) = V D+
αU

Tm, (3.17)

all three conditions for a well-posed problem holds. The reconstruction function, Lα :
Rk → Rn , is a well-difined, single-valued linear mapping with norm:

||Lα|| = ||V D+
αU

T || ≤ ||V ||||D+
α ||||UT || = ||D+

α || = d−1rα (3.18)

implying continuity. [5]

3.2 Filtering Techniques

The ill-posedness of inverse problems may also be handled through filtering techniques.
Digital filtering techniques are used to filtrate unwanted frequencies, such as high frequency
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areas arising due to noise in the system inputs or outputs. Butterworth, Chebyshev, Cauer,
and Bessel are the most common types of digital filters [38].

A low-pass filter is generally used to filter out high frequencies and is often based on the
Fourier transform. The filter may be converted into high-pass, bandpass and bandstop filters
by using appropriate transformations. For an ideal low-pass filter in a distortion-less system
of harmonic input signals the following relationship may be established for an input and
output signal of x(t) and y(t) respectively, and a signal multiplication factor k [38].

y(t) = kx(t− t0) (3.19)

By applying the Fourier transform, the transform function may be written as follows for a
frequency variable jω [38].

H(jω) =
Y (jω)

X(jω)
= ke−jωt0 (3.20)

For Butterworth, Chebyshev, Cauer, and Bessel filters the RLC network structure is bounded,
meaning a maximum value exists for the filter transfer function. This is accounted for by
assuming transfer functions of squared magnitude as shown in Equation 3.21. [38]

| H(jω) |2 =
1

1 + | K(jω) |2
(3.21)

The function K(jω) assumes low values between ω=0 and the filter cutoff frequency ω0,
and increases rapidly above the cutoff frequency [38]. The Butterworth filter is briefly
described in the nest section.

3.2.1 Butterworth Filter

Butterworth filters of N filter orders may be expressed as follows:

| H(jω) |2 =
1

1 +
ω

ωc

2
N
. (3.22)

By introducing a complex frequency P and the so-called Butterworth polynomial, Bn(P),
the Butterworth filter may be simplified to:
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H(P ) =
1

Bn(P )
(3.23)

for

Bn(P ) = (P − P∞1)(P − P∞2)....(P − P∞N ). (3.24)

A 1st order Butterworth filter is shown in Equation 3.25. [38]

H(P ) =
1

1 + P
(3.25)

3.3 Linear SDOF Systems

A SDOF mass-spring system is illustrated in Figure 3.3. The spring stiffness is defined
by k, the viscous damping is defined by c and the mass of the specimen is defined by m.
The displacements u(t) and x(t) illustrates the motion of the wall and the motion of the
specimen respectively. For such a system subjected to an external force, the damping causes
a resistance force Fd that will, in addition to the spring force Fs, work against the external
force Fext as illustrated in the figure.

Figure 3.3: Idealized damped SDOF system.

By using Newton‘s second law of motion, the following dynamic equilibrium expression
can be established for a damped mass-spring system.

Fext(t)− Fs(t)− Fd(t) = mẍ (3.26)

The viscous damper force Fd is proportional to the velocity of its elongation as shown in
Equation 3.27.
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Fd = cẋ (3.27)

The spring force Fs is proportional to its elongation as shown in Equation 3.28.

Fs = kx (3.28)

Given a harmonic, perfectly resonant external load, Fext can be expressed as follows.

Fext = F0sin(ωnt) (3.29)

The displacement x(t) is defined by the motion of the wall and the elongation of the spring
as follows.

x(t) = u(t) +
Fspr(t)

k
(3.30)

Based on these equations an expression for the unknown external force can be established.

Fext(t) = m[ü(t) +
F̈s(t)

k
] + c[u̇+

Ḟs
k

] + ku+ Fs (3.31)

For a rigid body analysis it is reasonable to assume zero spring deflection. This will in turn
result in a theoretically infinite stiffness, reducing equation 3.30 and 3.31 as follows.

x(t) ≈ u(t) (3.32)

Fext(t) = mü(t) + cu̇+ ku+ Fs (3.33)

By connecting the expressions for the spring force from Equation 3.30 and 3.26, a third
equation set can be established.

mẍ+ kx = Fext + ku− Fd (3.34)
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3.4 Nonlinear SDOF Systems

For nonlinear systems, the viscous damping force and the spring force are no longer assumed
proportional to the velocity and displacement respectively. When dealing with nonlinear
systems the forces are usually expressed as functions of higher order displacements and
velocities [24].

For systems of nonlinear behavior the equation of motion becomes:

mẍ+ f(x, ẋ, t) = 0. (3.35)

There have been several studies on approximating the transient response of a system from
first-order nonlinear equations. The methodology used is often based on the Runge-Kutta
Methods and the Multistep Methods. Numerical integration methods used to solve second-
order nonlinear differential equations are often based on step-by-step procedures. For
second-order nonlinear equations at times ti and ti+1 = ti + ∆ti the equation of motion
becomes [7]:

mẍi + Fdi + Fsi = Fext,i

mẍi+1 + Fd(i+1) + Fs(i+1) = Fext,i+1.
(3.36)

For nonlinear systems, the spring force and damping force are of nonlinear behavior. The
forces may be written with the following approximations:

∆Fsi ≈ ki∆ui
∆Fdi ≈ ci∆u̇i

(3.37)

where ki and ci equals the tangent slope at ui and the tangent slope of Fd versus u̇ at curve
u̇i respectively. These two tangent slopes should be evaluated at the start of each time step
in a step-by-step integration. [7]

The acceleration at time ti, üi, may be calculated from Equation 3.38 or 3.39 for both linear
and nonlinear systems.

∆üi =
4

∆t2i
(∆ui − u̇i∆ti)− 2üi (3.38)
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ui+1 = ui + ∆ui

u̇i+1 = u̇i + ∆u̇i

üi+1 = üi + ∆üi

(3.39)

In order to obtain dynamic equilibrium for nonlinear systems, c and k should remain
approximately constant over the time step ∆ti. Therefore, it is essential that the time step is
small enough to minimize the difference between a linear solution and a nonlinear solution
[7].

In a load reconstruction study by Sundermeyer [39], an iterative scheme for nonlinear
systems was presented. The scheme was based on Equation 3.32, 3.33 and 3.34 for linear
systems, but became applicable to nonlinear systems by considering the stiffness as k(u). If
u(t), Fs, k and m were considered known values, the iterative representation for finding the
unknown values x(t) and Fext was expressed schematically as:

x1(t) = u(t)

Fnext = mẍn + Fs

mẍn+1 + kxn+1 = Fnext + ku

(3.40)

.

When including a damping term, c(u), resulting in a damping force Fd, the extended iterative
scheme becomes:

x1(t) = u(t)

Fnext = mẍn + Fd + Fs

mẍn+1 + kxn+1 = Fnext + ku+ Fd

(3.41)

.

3.5 Undamped SDOF systems

An undamped mass-spring system is highly sensitive to an external load with a frequency
equal to the systems natural frequency. A systems natural frequency is defined as the point
where the system is not subjected to an external force. Figure 3.4 illustrates the damping
effect for the ratio between the forcing frequency, ω, and the systems natural frequency, ωn.
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For an undamped system where the ratio
ω

ωn
equals one, we have resonance. At this point,

the dynamic amplification factor goes to infinity. [6]

Figure 3.4: Amplification ratio versus frequency ratio for a SDOF system of harmonic oscillations.
[6]

3.6 MDOF Systems

SDOF systems does not always provide sufficient description of a structures dynamic
behavior. Therefore, real systems are more commonly analyzed in terms of MDOF [7]. The
dynamic equilibrium expression for an MDOF system in matrix form is shown in Equation
3.42.

Mẍ + Cẋ + Kx = Fext(t) (3.42)

M, C and K represent the mass, viscous damping and stiffness matrices respectively. Fext(t)
equals the external load vector. x(t), ẋ(t) and ẍ(t) equals the displacement, velocity and
acceleration time history responses respectively.
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There are generally three strategies for obtaining dynamic responses for MDOF systems
as shown in Figure 3.5. The mode-superposition methods are only applicable for linear
systems. When looking into nonlinear systems or systems with coupled damping, the direct
integration method is more appropriate [7]. The direct integration method will be presented
in the following section.

Figure 3.5: Strategies for obtaining dynamic responses in MDOF systems. [7]

3.7 Direct Integration

Three methods have been proposed for carrying out step-by-step numerical integration
of second-order MDOF systems, namely the Central Difference Method, the Newmark-
β method and the Wilson-θ Method. The two former methods are used for the direct
integration of linear systems, while the latter method is applicable for some classes of
nonlinear systems. [7]

3.7.1 The Central Difference Method

The Central Difference Method is commonly used in structural dynamics due to its sim-
plicity and ability to be implemented into more complex algorithms. The foundation of
the central difference algorithm is expressed in Equation 3.43, and its second derivative in
Equation 3.44. [7]

ẋn =
xn+1 − xn−1

2h
(3.43)

ẍn =
{xn+1 − 2xn + xn−1}

h2 (3.44)

By substituting the two mentioned equations to the equation of motion (Equation 3.42), the
following expression can be established:
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(
1

h2 M +
1

2h
C
)

xn+1 +

(
K− 2

h2 M
)

xn +

(
1

h2
M− 1

2h
C
)

xn−1 = fn (3.45)

The algorithm is stable if the time step h is smaller than a critical time step hcr. This
requires a certain qualitative knowledge of the response frequencies for the system in order
to select an appropriate time step. [7]

3.7.2 The Newmark-β Method

The Newmark-β Method is known for its unconditionally stable character. It is implicit and
based on Taylor series approximation. The linear method is based on Equation 3.46 and
3.47.

ẋn+1 = ẋn + [(1− γ)ẍn + γẍn+1]︸ ︷︷ ︸
weighted average

h (3.46)

xn+1 = xn + ẋnh + [(1− 2β)ẍn + 2βẍn+1]︸ ︷︷ ︸
weighted average

h2

2
(3.47)

By substituting the two equations with the equation of motion (Equation 3.42), the expres-
sion for the Newmark-β method becomes:

Mẍn+1 + Cẋn+1 + Kxn+1 = fn+1 = f(tn+1) (3.48)

3.7.3 The Wilson-θ Method

The Wilson-θ Method is based on the assumption that each component ür of the acceleration
vector ü is linear in relation to time during an extended time step si = Θ∆ti. Equation 3.49
and 3.50 results from the assumption of linearity as follows:

∆sẋ(ti) = siẍ(ti) +
si

2
∆sẍ(ti) (3.49)

∆sx(ti) = siẋ(ti) +
s2i
2

ẍ(ti) +
s2i
6

∆iẍ(ti) (3.50)
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where

∆sx(ti) = x(ti + si)− x(ti)

∆sẋ(ti) = ẋ(ti + si)− ẋ(ti)

∆sẍ(ti) = ẍ(ti + si)− ẍ(ti)

(3.51)

When solving for ∆sü(ti) and ∆su̇(ti) and substituting into the equation of motion (3.42),
the following equation can be established:

M∆sü(ti) = C(ti)∆su̇(ti) + K(ti)∆su(ti) = f̂(ti + si)− f(ti) (3.52)

for

f̂(ti + si) = f(ti) + Θ[f(ti + ∆ti)− f(ti)] (3.53)

3.8 Damping

In structural dynamics is it known that for any linear elastic system of free unloaded motion
the oscillating motion will eventually stop. Thus, such systems are always subjected to
a certain amount of damping forces. Damping forces may originate from stress-strain
fluctuations in the material, friction in joints, resistance due to the surrounding environment,
etc [14]. The exact nature of damping in dynamic structures is often unknown. Therefore,
structures are generally assumed to exhibit viscous damping [7]. For simple structures of
nonlinear behavior, the damping results from the development of viscous forces proportional
to the velocity. For complex structures of same behavior, the viscosity term is often time-
dependent [2].

The expression for the generalized damping matrix is shown in Equation 3.54 for a physical
damping matrix C, a damping matrix of principal coordinates C and a modal matrix of
undamped normal modes Φ. [7]

C = ΦTCΦ (3.54)

In nonlinear structural dynamics, a physical damping matrix should be used. This applies
for the direct integration strategy. A physical modal damping matrix may be attained by
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using Rayleigh damping or modal damping [7]. Every elastic part in an arbitrary mechanism
of nonlinear behavior are typically subjected to Rayleigh damping. In addition, every joint
exhibit discrete damping. The combined effects result in a complex damping matrix.

3.8.1 Rayleigh Damping

Rayleigh damping defines a system damping matrix of proportional damping. If K repre-
sents an initial tangent stiffness matrix or C is modified with each change in stiffness for a
nonlinear system, the Rayleigh damping could be written as shown in Equation 3.55 [7].

C = a0M + a1K (3.55)

The two constants, a0 and a1, define the modal damping factors for two selected modes.

In generalized form, the Rayleigh damping matrix becomes:

C = ΦTCΦ = diag(a0 + a1ω
2
r)Mr = diag(Cr) = diag(2ζrωrMr) (3.56)

for a system damping ratio, ζr, defined as:

ζr =
1

2
(
a0
ωr

+ a1ωr) (3.57)

The damping ratio as a function of change in frequency is illustrated in Figure 3.6. For
lower frequencies, the Rayleigh damping will mainly be defined by a mass-proportional
model (α1 = 0), while as larger frequencies are mainly defined by a stiffness-proportional
model (α0 = 0) [40].
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Figure 3.6: Damping ratio as a function of frequency. [8]

3.8.2 Modal Damping

A modal damping matrix is useful when a limited number of lower-frequency modes
make important elements for calculation of structural responses. Equation 3.58 shows the
expression for the modal damping matrix, C. [7]

C =

Nc∑
r=1

2ζrωr
Mr

(Mφr)(Mφr)
T (3.58)

The above equation applies for modal damping φr up to Nc frequency modes. For higher-
frequency modes (Nc + 1, Nc + 2, ...) the damping matrix modifies to [7]:

C = a1K +

Nc−1∑
r=1

2ζ̂rωr
Mr

(Mφr)(Mφr)
T (3.59)

for

a1 =
2ζNc
ωNc

ζ̂r = ζr − ζNc
ωr
ωNc

(3.60)

The modal damping will then be defined as
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ζr =

value specified, r = 1, 2, ..., Nc

ζNc
ωr
ωNc

, r = Nc + 1, Nc + 2, ..., N
(3.61)
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In this chapter, two tests on simple mass-spring systems have been performed. The
tests were based on previously discussed time domain load reconstruction methods. The
reconstructed loads were of periodic and impulse character respectively, and the experiments
were performed in Fedem. All units have been expressed in terms of SI units.

4.1 Periodic Load Reconstruction

The periodic load reconstruction experiment was based on Sundermeyer’s force reconstruc-
tion study presented in Section 3.4. Unlike Sundermeyer’s study, this study also looked
into the effect from structural damping. Thus, the extended iterative scheme presented in
Equation 3.41 has been used as a basis for the study.

The experiment was performed on a simplified excavator. It is challenging to directly
measure the load carried by an excavator, which makes it a good subject for an inverse load
reconstruction experiment. During the experiment, all properties were of linear behavior.
Excavators are typically of non-linear behavior in relation to position, but may be considered
linear during sufficiently small time intervals. Sundermeyer’s study is not restricted to a
certain linearity and should perform equally for linear and nonlinear systems.

4.1.1 Model Setup

The excavator was modelled in a 2-dimensional environment as illustrated in Figure 4.1.
The frame of the excavator was modelled as a 2 meter long beam element connected to
ground in one end. The joint was given a free rotation in y-direction and fixed in all other
directions. An external load acting in the negative z-direction was applied to a triad on the
opposite end of the frame as shown. The frame was supported by a spring illustrated with
purple color. The spring was connected to the beam by a triad and to ground by a fixed
joint.
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Figure 4.1: 2-dimensional excavator.

The excavator was given the dynamic properties listed in Table 4.1. Some of these val-
ues have been changed during the experiments to emphasize their influence in the load
reconstruction. However, the ones listed may be considered as standard values used in all
simulations unless stated otherwise. The system’s eigenfrequencies are listed in Table 4.2.

Table 4.1: Dynamic properties assigned to the excavator.

Properties Value

Spring stiffness [N/m] 105

Constant spring deflection 0
Stiffness proportional damping 0.0001
Mass proportional damping 0

Scaling of dynamic properties:

Stiffness [N/m] 100
Mass [kg] 0
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Table 4.2: The eigenfrequencies of the excavator

Eigenfrequencies [Hz]

8.21767E+00
5.17489E+01
1.99566E+02
3.19812E+02
4.84409E+02
8.82548E+02
9.50520E+02
1.70020E+03
1.73288E+03
2.75460E+03

In order to perform the iterative experiment, three independent and equal models of the
simplified excavator were made. If the experiment was performed on a physical excavator
in stead of a virtual, only two models would be required, representing two digital twins.
A third model was included in this experiment to represent the physical excavator. The
physical excavator would in reality be equipped with sensors measuring the dynamic
responses. The dynamic responses would be given in terms of dynamic spring deflection
and dynamic spring force as these parameters are usually measurable for the structure
in question. For simplicity, this process was done in the third model. Thus, the spring
deflection and spring force were given directly from the Fedem simulation. The third model
will be referred as the “physical excavator”.

The responses attained from the physical excavator were used as inputs to the digital twins,
referred to as Twin 1 and Twin 2. In Twin 1, the spring was given a pre-defined stress free
length equal to the spring deflection from the physical excavator. To avoid additional spring
influence in the system, the spring was given a considerably larger stiffness than the spring
used in physical excavator. In Twin 2, the spring was not assigned any stiffness and was
solely acting based on the spring force exported from the physical excavator. The dynamic
properties deviating from the ones used for the physical excavator are listed in Table 4.3.
For a given applied load, these properties remained the same through each experiment.
The applied load was considered unknown in Twin 1 and Twin 2, as the load was to be
reconstructed in the experiment. The excavator models used in Twin 1 and Twin 2 are equal
to the one presented earlier, and are shown in Figure 4.2 and 4.3 respectively.
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Table 4.3: Dynamic properties assigned to the digital twins.

Twin 1 Twin 2

Spring stiffness [N/m] 109 0

Scaling of dynamic properties:

Stiffness [N/m] 1000 100

Figure 4.2: Excavator model - Twin 1. Figure 4.3: Excavator model - Twin 2.

4.1.2 Iteration Process

Twin 1 and Twin 2 were subjects for the iteration process. The process evolved around
obtaining values from a triad located at the top of the excavator frame at the expected
position of the external load. The triad had two measurements of interest; displacement and
force. The triad displacement has been termed “position in z-direction” and the triad force
has been termed “estimated force”. Figure 4.4 illustrates the iteration process, explained
in terms of the parameters listed in Table 4.4. In the first iteration, Twin 1 and Twin 2
read the cylinder deflection and cylinder force from the physical excavator respectively.
These parameters were used in every iteration, but were only initialized in the first iteration.
When running the simulation, the output from Twin 1, us, was given as an input in Twin
2. Twin 2 estimated an applied load that was compared with the previously estimated
load. If the loads corresponded, convergence was reached and the iteration process would
stop. Otherwise, iteration would continue until correspondence was achieved. All time
integrations in Fedem were calculated by the Newmark-β algorithm [41].
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Start simulation
Assume Fest = 0

Twin 1
Apply Fest.

Calculate position
in z-direction.

Fest−prev = Fest

Twin 2
Prescribe position

in z-direction.
Calculate

estimated load.

Fest =
Fest−prev?

Stop

Physical Excavator
xz

initialize us

initialize Fs

Fest

yes

no

Fest

Figure 4.4: Iteration process flow chart. Blue ellipse illustrates process start and end. Blue blocks
illustrates the process steps. Blue diamond illustrates decision.
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Parameter Description Unit

uz Cylinder deflection mm
xs Position in z-direction mm
Fs Cylinder force N
Fest Estimated load N
Fest−prev Previously estimated load N

Table 4.4: Iteration parameters.

During the experiment, the effect from varying properties like spring stiffness and structural
damping was looked into for certain applied load frequencies. For this purpose, only one
iteration was run each time. The load applied to the physical excavator was given a constant
amplitude of 100 N during the entire experiment while the effect of change in frequency
was looked into. Load estimation was performed for applied load frequencies below the
first eigenfrequency, at resonance and above the first eigenfrequency. All simulations were
run with a time step of 0.001 seconds and a total time period of 5 seconds. A relatively long
time period was chosen due to the interference of noise during the first few seconds.

4.1.3 Variation in Spring Stiffness

The effect from changing the spring stiffness in the physical excavator was looked into. An
external load frequency of 3.0 Hz was used in the physical excavator, and two simulations
were run with a spring stiffness of 105 N/m and 107 N/m respectively. A relatively large
increase in stiffness was chosen to make the change more prominent. The estimated load
from the simulation using a spring stiffness of 105 N/m is shown in Figure 5.5 and 4.6. The
estimated load from the simulation using a spring stiffness of 107 N/m is shown in Figure
4.7 and 4.8.
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Figure 4.5: Estimated load in a 5 seconds time interval, using a spring stiffness of 105 N/m.

Figure 4.6: Estimated load at area of convergence, using a spring stiffness of 105 N/m.
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Figure 4.7: Estimated load in a 5 seconds time interval, using a spring stiffness of 107 N/m.

Figure 4.8: Estimated load at area of convergence, using a spring stiffness of 107 N/m.

As observed, the second simulation had a shorter high frequency area in the beginning of
the simulation but generally an increase in noise in the entire curve. This was also observed
for applied loads of higher frequencies as shown in Appendix A.3. The former simulations

50



4.1 Periodic Load Reconstruction

gave a smoother graph after convergence.

4.1.4 Variation in Structural Damping

The effect of increasing the structural damping was investigated in order to find an appro-
priate amount of damping which gave the most accurate estimated load. The structure
was assumed to exhibit Rayleigh damping. The relative damping was therefore given
by Equation 3.55 presented in the theory presented in the previous chapter. Due to the
structure’s relatively large eigenfrequency, the Rayleigh damping was mainly defined by
the stiffness proportional area in Figure 3.6. The value for the stiffness proportional was
therefore changed in the excavator and the digital twins for each simulation. The relative
damping for each chosen stiffness proportional and for an α0 equals zero gave the values
presented in Table 4.5.

Table 4.5: Relative damping for each chosen stiffness proportional

Stiffness Proportional Relative damping

0.0001 0.00258
0.0003 0.00774
0.0009 0.0232

The variation in structural damping at the point of convergence for an applied load of
frequency 3.0 Hz is shown in Figure 4.9, 4.10 and 4.11. The same time interval was chosen
for each curve to emphasize the effect from an increased damping proportional.
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Figure 4.9: Load reconstruction for an applied load frequency 3.0 HZ and a stiffness proportional
equal to 0.0001.

Figure 4.10: Load reconstruction for an applied load frequency 3.0 HZ and a stiffness proportional
equal to 0.0003.
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Figure 4.11: Load reconstruction for an applied load frequency 3.0 HZ and a stiffness proportional
equal to 0.0009.

The same simulations were performed for an applied load of frequency 13.0Hz in order
to see if the structural damping had a different effect for a higher frequency. The point of
convergence for the estimated loads of same time interval are shown in Figure 4.12, 4.13
and 4.14.

Figure 4.12: Load reconstruction for an applied load frequency 13.0 HZ and a stiffness proportional
equal to 0.0001.
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Figure 4.13: Load reconstruction for an applied load frequency 13.0 HZ and a stiffness proportional
equal to 0.0003.

Figure 4.14: Load reconstruction for an applied load frequency 13.0 HZ and a stiffness proportional
equal to 0.0009.
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4.1.5 Load Reconstruction And Noise Reduction

Load reconstruction was performed using the following applied load frequencies; below
eigenfrequency, at resonance and above eigenfrequency. The reconstructed load versus the
applied load for each simulation is shown in the next chapter.

A large amount of noise was observed in the estimated load curves. This is illustrated in
Figure 4.15, 4.16 and 4.17 for three iterations of an applied load of frequency 3.0 Hz. The
blue area in the graphs were due to areas of high frequency. As shown, there is a tendency
of an increasing noise at the beginning of each curve. Due to the large amount of noise,
further iterations failed to solve.

Figure 4.15: First iteration.
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Figure 4.16: Second iteration.

Figure 4.17: Third iteration.

A low-pass filter was applied to the estimated load in an attempt to reduce the large amount
of noise in the system. The low-pass filter equal to a first order Butterworth filter was made
in the control editor and is schematically presented in Figure 4.18. The amplification factor,
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K, was set to 1 in all iterations. The time constant, T, was decided based on the bandwidth
in the high frequency areas.

Figure 4.18: Low-pass filter applied to the estimated load.

Three different values of T were used for the filter in order to emphasize the difference
of a larger value as compared to a smaller value. The chosen values were T = 0.007, T
= 0.02 and T = 0.06 resulting in the estimated loads shown in Figure 4.19, 4.20 and 4.21
respectively.

Figure 4.19: A filter with a time constant of 0.007.
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Figure 4.20: A filter with a time constant of 0.02.

Figure 4.21: A filter with a time constant of 0.06.

The larger the value of T, the faster convergence was achieved. However, a large value of T
also seemed to lower the low frequency area. Based on the tested filters, the one with T
equal to 0.007 was used further. It did not filtrate all high frequencies but an exact force
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reconstruction was achieved. The use of filter made it possible to perform several iterations
than before. This was done in order to see how the noise evolved in each iteration. Seven
iterations using filtrated estimated loads were performed as illustrated in Figure 4.22.

Figure 4.22: Seven iterations using filter for load estimation of an applied load of frequency 3.
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Using a time constant of 0.007 was also tested on an applied load of frequency 13.0 Hz.
The estimated filtrated load is shown in Figure 4.23. As shown, the time constant that
proved successful for a lower frequency did not perform well for a higher frequency. The
filter affected the low frequency area, and an amplitude of 100 N was not reached.

Figure 4.23: A filter with a time constant of 0.007 and an applied load frequency 13.0 Hz.

Choosing an optimal time constant was challenging as it also seemed to affect the low
frequency area. It was therefore hard to tell whether or not the estimated load at convergence
was affected by the filter. A time constant of 0.007 proved successful for a low frequency
and was therefore used in the results presented in the next chapter. All other frequencies
was not filtered as finding an optimal time constant was challenging.

4.2 Impulse Load Reconstruction

The deconvolution method based on superposition, proposed by T. Uhl in section 2.4.2 was
used for an impulse load reconstruction. The method is mainly applicable to linear systems.
It was tested on a SDOF mass-spring system and on the excavator presented in the previous
section.
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4.2 Impulse Load Reconstruction

The method was based on obtaining the Markov parameters, H, and the displacements, x,
in order to solve Equation 4.1 for an applied load, F.

[H][F] = [x] (4.1)

4.2.1 Example

In the proposed study, the applied load was assumed to be one impulse load and the Markov
parameters were obtained from the impulse response. The impulse load assumption was
supported by the concept of normal linear interpolation. Say the system was subjected to an
applied load of maximum value 1 N between 0.1 and 0.3 seconds. By using normal linear
interpolation, the three impulse loads shown in Figure 4.24 may be used to reconstruct
the applied load. If the impulse loads were numbered from 1 to 3, starting with the upper
impulse, each impulse may be defined as N1f1, N2f2 and N3f3 respectively. The total
load would then be given by

∑
fiNi as shown in Figure 4.25.

Figure 4.24: Assumed impulse load example.
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Figure 4.25: Applied impulse load example.

4.2.2 SDOF System

The first impulse load reconstruction experiment was performed on a simple SDOF mass-
spring system. The idealized system is shown in Figure ?? and the corresponding model
created in Fedem is shown in Figure 4.27. The system model consisted of two nodes; one
fixed node and one node with free movement in x-direction. The latter node was subjected
to a mass of 10kg and an external impulse load acting in x-direction. The two nodes were
connected by a spring and a damper, both of linear behavior. The applied impulse load was
considered unknown during the experiment, and was only used to evaluate consistency with
the final reconstructed load in the results presented in the following chapter. All simulations
were run with a time increment of 0.005 seconds and a total time period of 20 seconds. The
system was given the properties listed in Table 4.6 and had an eigenfrequency of 0.159155
Hz.

Table 4.6: Dynamic properties assigned to SDOF mass-spring system.

Property Magnitude

Spring stiffness [N/m] 10
Damping coefficient 5.0
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4.2 Impulse Load Reconstruction

Figure 4.26: Idealized SDOF system.

Figure 4.27: System model in Fedem.

The displacements in Equation 4.1 may be obtained from a strain gauge placed on a physical
object, measuring the position in x-direction. The time variation in velocity and acceleration
may also be generated from the strain gauge measurements. In this experiment, this was
solved numerically. The responses used to reconstruct the applied load were obtained from
Fedem. The response time histories resulting from the applied load will further be termed
sensor response, and the response time histories resulting from the assumed impulse load
will be termed impulse response.

During the experiment, different assumed impulse loads and number of readout points were
tested. The assumed loads were made as a poly line force in Fedem, with a maximum load
of 1 N at a time equal to the first readout point. Time steps of of 0.01 seconds, 0.05 seconds
and 0.1 seconds for a total time period of 1 second were tested, resulting in 100, 20 and
10 readout points respectively. The assumed impulse loads for each time step is shown in
Figures 4.28, 4.29 and 4.30 respectively.
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Figure 4.28: Assumed impulse load using a time step of 0.01 seconds.

Figure 4.29: Assumed impulse load using a time step of 0.05 seconds.
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Figure 4.30: Assumed impulse load using a time step of 0.1 seconds.

Firstly, the estimation using 100 readout points and 20 readout points will be presented.
The displacement measurements using an assumed impulse load with maximum value
at 0.01 seconds and 0.05 seconds are shown in Figures 4.31 and 4.32 respectively. The
corresponding readout points in a time interval of 1 second is shown in Appendix A.5.

Figure 4.31: Displacement measurements assuming maximum impulse load at 0.01 seconds.
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Figure 4.32: Displacement measurements assuming maximum impulse load at 0.05 seconds.

The estimated load using 100 readout points is shown in Figure 4.33. As shown, a large
amount of noise arises at the end of the curve. An upper and lower bound of 5 N was
therefore introduced in order to investigate the area with less noise interference, as shown
in Figure 4.34. The figure shows a reconstructed load up to approximately 0.2 seconds,
before the reconstruction is interfered with random noise. Instead of using regularization
methods or filtering techniques, a smaller amount of readout points was tested. Thus, the
number of readout points was reduced to 20 and the assumed impulse load was changed
correspondingly.
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4.2 Impulse Load Reconstruction

Figure 4.33: Estimated load using 100 readout points.

Figure 4.34: Estimated load with an upper and lower limit, using 100 readout points.

The estimated load using 20 readout points is shown in Figure 4.35. Compared to the
previous load reconstruction, less noise interference was observed at the end of the curve.
However, an upper an lower bound was still needed, resulting in the estimated load shown
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in Figure 4.36. As shown, a larger part of the load was reconstructed, but the curve was still
affected by noise.

Figure 4.35: Estimated load using 20 readout points.

Figure 4.36: Estimated load with an upper and lower limit, using 20 readout points.
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In an attempt to get a perfectly reconstructed load without noise interference, the number
of readout points was reduced to 10. Correspondingly, the assumed impulse load had a
maximum value at 0.1 seconds. The measured displacement responses are shown in Figure
4.37 and the readout points are shown in Figure 4.38.

Figure 4.37: Displacement measurements assuming maximum impulse load at 0.1 seconds.

Figure 4.38: Displacement readout points.
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Figure 4.39 shows the reconstructed load based on 10 readout points. As shown, no noise
interference was observed. The estimated load has been compared to the applied load in
the following chapter.

Figure 4.39: Estimated load using 10 readout points.

Load reconstruction was also performed based on velocity and acceleration responses to
investigate whether or not there were any deviations when using different measurement
parameters. The obtained velocity responses are shown in Figure 4.40, and the readout
points for a time interval of 1 seconds are shown in Figure 4.41.
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Figure 4.40: Velocity measurements assuming maximum impulse load at 0.1 seconds.

Figure 4.41: Velocity readout points.

The measured acceleration responses are shown in Figure 4.42, and the readout points for a
1 second time period is shown in Figure 4.43.
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Figure 4.42: Acceleration measurements assuming maximum impulse load at 0.1 seconds.

Figure 4.43: Acceleration readout points.

Load reconstruction based on displacement, velocity or acceleration using 10 readout points
was identical. Thus, the estimated load in Figure 4.39 was representative for all.
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4.2.3 Simplified Excavator

The use of Markov parameters was also tested on the 2-dimensional excavator used in the
periodic load reconstruction experiment. The excavator was given the same properties as in
the periodic load reconstruction experiment, and are listed in Table 4.1. The spring forces
resulting from the applied load and the impulse load were used as dynamic responses to
solve Equation 4.1. The impulse load was assumed to have a maximum value of 1 N at 0.1
seconds. The Markov parameters and sensor responses were chosen for a total time period
of 1 second, resulting in 10 readout points. The spring responses are illustrated in Figure
4.44, and the readout points are illustrated in Figure 4.45.

Figure 4.44: Excavator spring force response from impulse load and applied load.
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Figure 4.45: Spring force readout points.

The estimated load has been compared with the applied load in the following chapter.

4.2.4 Matrix Solution

A Python script was used to solve Equation 4.1 for the unknown forces based on the
response measurements from Fedem for the SDOF system and the simplified excavator.
The script is shown in Appendix B.
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5. Results

In this chapter, the estimated periodic load and the estimated impulse load are compared
with the applied load in each case.

5.1 Periodic Load Reconstruction

The results from the periodic load reconstruction were based on a chosen spring stiffness of
105 N/m in the physical excavator and a stiffness proportional of 0.0001 for the physical
excavator and the digital twins. The actual estimated loads had an opposite direction than
the applied load. The estimated loads were therefore multiplied by -1 in order to make them
consistent with the applied loads.

5.1.1 Frequency Below Eigenfrequency

The estimated load versus the applied periodic load after one iteration is shown in Figure
5.1. As shown, the load seemed to reach convergence after about 3 seconds, however, at
maximum and minimum it was still somewhat affected by noise. Even though the low-pass
filter applied in the previous chapter did not prove sufficient for all frequencies, it gave
accurate results for the frequency below eigenfrequency given an appropriate choice of
time constant. When applying the low-pass filter with a time constant of 0.007, the noise
at convergence was eliminated as shown in Figure 5.2. An earlier convergence was also
observed. The filtrated load converged at about 2.75 seconds. The reconstructed load at
convergence perfectly corresponded to the applied load with an amplitude of 100 N and a
frequency of 3.0 Hz. A correct load was achieved after one iteration. Therefore, no further
iterations were necessary. In fact, further iterations gave an increasing degree of inaccurate
results as can be seen i Appendix A.4.
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Figure 5.1: Load comparison without filter for an applied load frequency below eigenfrequency.

Figure 5.2: Load comparison with filter for an applied load frequency below eigenfrequency.
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5.1.2 Frequency at Resonance

The results from the load reconstruction at a 5 seconds time interval for an applied load
of frequency equal to the first eigenfrequency are shown in Figure 5.3. There was a large
amount of noise in the curve during the first 1.5 seconds. When looking at the low frequency
area in Figure 5.4 one can see that the frequency of 8.21767 Hz of the applied load was
reached, but with a small shift to the right. The amplitude of the load did not converge,
hence, the estimated load did not correspond to the applied load.

Figure 5.3: Estimated load at resonance for a 5 seconds time interval.
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Figure 5.4: Load comparison at resonance showing the low-frequent area.

5.1.3 Frequency Above Eigenfrequency

The estimated load for an applied load frequency above eigenfrequency is shown in Figure
5.5. As shown, there was a high frequency area due to noise in the curve during the first 1.5
seconds. The high frequencies gradually decreased and the load almost reached convergence
at about 3.0 seconds as illustrated in Figure 5.6. When comparing the estimated load to
the applied load in Figure 5.7, an almost perfect correlation was observed. However, there
were some high frequency peaks at the maximum and minimum values of the estimated
load due to noise. The estimated load frequency seemed to perfectly correspond.
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Figure 5.5: Estimated load for an applied load frequency above eigenfrequency in a 5 seconds time
interval

Figure 5.6: Estimated load at area of convergence for an applied load frequency above eigenfre-
quency.
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Figure 5.7: Load comparison at area of convergence for an applied load frequency above eigenfre-
quency.

5.2 Impulse Load Reconstruction

The estimated load for the SDOF system was equal for the displacement, velocity and
acceleration measurements. The applied load versus the estimated load in all cases when
using 10 readout points at a 1 second time interval is shown in Figure 5.8. The resulting
estimated loads versus the applied loads when using 20 and 100 readout points are shown
in Appendix A.6.
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Figure 5.8: Applied impulse load versus estimated impulse load for the SDOF system.

The applied load versus the estimated load for the MDOF system is shown in Figure 5.9.

Figure 5.9: Applied impulse load versus estimated impulse load for the excavator.
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6. Discussion

In this chapter, the results presented in the previous chapter will be discussed in addition
to the methodology used to obtain the results. The two experiments will be discussed
separately, followed by a brief evaluation of the software performance.

6.1 Periodic Load Reconstruction

The results from the periodic load reconstruction showed a considerably good mach in
regards to the applied load after only one iteration. This was expected as all properties
were of linear behavior. The opposite direction of the estimated load can be explained by
Newton’s third law. Multiplying the obtained results by -1 was therefore reasonable as the
applied load was to be reconstructed.

For the applied load frequency below eigenfrequency, an exact load was achieved using
a low-pass filter in the area of convergence. Achieving an exact load was expected, as an
applied load of a relatively low frequency does not bring much energy into the system. The
low-pass filter seemed to provide sufficient filtration in the low frequency area of the curve.
As for the high frequency area, it was not capable of filter out all the high frequencies.

At the point of resonance, the system experienced the most possible energy as, at this
frequency, the dynamic amplification factor goes to infinity. The estimated load did not
converge, still, the attained amplitudes did not deviate entirely from the expected amplitude
of 100 N. The frequencies of the estimated load and the applied load seemed to correspond
except from a small shift in the data.

The results from an applied load of frequency above the first eigenfrequency were slightly
influenced by noise at the maximum and minimum values of the amplitude. This resulted in
a slightly larger amplitude than expected. The estimated load frequency and the applied load
frequency were identical. Hence, one can say that the load was successfully reconstructed.

Sundermeyers method proved successful for reconstruction of a frequency below and above
eigenfrequency. Even though the load estimation at resonance did not entirely match the
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applied load, the deviation was not too large. This experiment was performed numerically,
which may have lead to “perfect” data measurement responses. If a real physical excavator
had been used in stead, the measurements may have been more influenced by noise or other
parameters, and thereby made the reconstruction more challenging.

6.1.1 Noise Interference

An increase in energy, resulting in noise interference, was observed during the first 1.75
seconds in all curves before the estimated load stabilized. The applied low-pass filter
proved weak for the iteration method. Despite the choice in time constant, the filter did
not filter out all the high frequencies in the beginning of the graph. When running a
simulation with a relatively large time constant, the filter seemed to also be dampening the
low frequency area to a certain degree. Thus, the estimated load at convergence became too
low. The time constant of 0.007 seemed to work well for load estimation of an applied load
frequency below eigenfrequency, but it damped the low frequency area for the frequency
above eigenfrequency. Choosing an optimal time constant prooved challenging with no
prior knowledge of the magnitude of the applied load.

When performing several iterations to illustrate the changing pattern of the noise, there was
a trend of an increase in noise during each iteration process. The noise seemed to expand
like a “wave” through the simulation time period after each iteration before it seemed to
stabilize and converge again. However, the amplitude of the new convergence area did not
equal the applied load. Hence, one should avoid the ”noise wave” when performing several
iterations. The presence of noise should therefore be dealt with. The existence of noise
is likely due to the ill-conditioning of the inverse problem. Other filtering techniques or
regularization methods should be tested before moving forward with the study.

6.1.2 Varying Properties

As opposed to Sundermeyers method, this experiment also included the damping term,
and the effect of variation in structural damping was looked into. Generally, the structural
damping used for the digital twins should represent the structural damping in the physical
system as good as possible. Considering damping is essential in order to stabilize a system
for an applied dynamic load, as it may be both physically and numerically challenging to
have a system of not sufficient damping. For a system with no damping at all, all energy due
to an applied load remains in the system and the responses may continue in eternity. It is
therefore important to consider damping. A large amount of damping may in many cases be
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beneficial for the system in order to avoid harming components. In regards to the numerical
problem, the numerical noise in the system increases when there is not sufficient damping
present. This was illustrated in the experiment when changing the stiffness proportional.
Hence, the numerical noise may to a certain degree be handled by choosing an appropriate
amount of damping. A large amount of damping may thereby lead to an earlier convergence
if noise is not reduced by other methods. It was proved that the damping was mainly defined
by the stiffness proportional area as a change in stiffness proportional had an influence in
the results.

For steel constructions the relative damping should generally be 5-10% of the systems
critical damping. The different relative damping used in this experiment was only 0.3%,
0.7% and 2.3% of critical damping. The former was used as basis trough the experiment.
These damping values were too low and did not provide sufficient damping to the system.
As this experiment was performed numerically it did not seem to have any effect on the
results. However, the stiffness proportional could definitely be increased in this experiment
which again would result in less numerical noise. Even though an increased damping may
provide an earlier convergence, filtering or regularization methods should also be used in
future experiments in order to attain stable results.

In addition to the structural damping, the spring stiffness in the digital twins should also
represent the one used in the physical excavator in order to get a situation as close to the
real situation as possible. In the experiment, the effect of increasing the spring stiffness was
looked into. It resulted in arising high frequencies in the low frequency area. Hence, it was
an increase in energy in the system. A spring stiffness of 105 N/m and 107 N/m were both
affected by noise during the first few seconds of the simulation. However, the results using
the lowest stiffness got an estimated load which accurately corresponded to the original
applied load. Using a larger stiffness produced generally more noise, also at the end of the
simulation, and a smooth curve was not achieved.

6.1.3 Linearity

Sundermeyers method is not restricted to a certain linearity. In Sundermeyers study, the
inverse method was successfully tested on non-linear systems. However, for a non-linear
system, one iteration is most likely not sufficient to reconstruct the external load. Several
iterations should then be performed in order to get stable results.
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6.2 Impulse Load Reconstruction

The results showed that the estimated load corresponded perfectly with the applied load for
the SDOF mass-spring system when 10 readout points were used. T. Uhl’s method showed
a potential drawback when it came to choose an optimal amount of readout points and an
appropriate impulse load assumption. The method required a certain amount of readout
points, but still not too many. 10 readout points turned out to be an optimal amount for the
system in question. When performing load reconstruction with 20 and 100 readout points,
the reconstruction was not complete due to noise interference. It should be mentioned
that Tikhonov regularization was used in T. Uhl’s study, but it was not considered in this
experiment.

Whether the responses were obtained in terms of displacement, velocity or acceleration
made no observable difference in regards to the load reconstruction when 10 readout points
were used. Whether or not it would have made any difference in regards to noise using a
larger amount of readout points was not looked into.

For the excavator experiment, the load reconstruction failed and only one impulse corre-
sponding to the assumed impulse load for obtaining the Markov parameters was possible
to obtain. The load reconstruction was based on 10 readout points. Whether or not it was
possible to reconstruct the load using more or less readout point was not looked into.

Methods for choosing an optimal amount of measurement positions and an optimal amount
of readout points for a given time interval was not considered in this thesis. However, it is
a matter that should be investigated further. In order to optimize this choice, one should
have prior information about the load and the eigenfrequencies in order to capture the time
variations of the response.

6.3 Software Performance

The software, Fedem, proved sufficient for the load reconstruction experiments performed
in this thesis. All simulations were solved within a short time period due to an efficient
model reduction function used in the software. Only one load was applied to each system.
Whether or not Fedem is equally capable of performing load reconstruction on systems
subjected to several loads has not been investigated.
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7. Concluding Remarks

In this thesis, the aim was to look into proposed methods for load reconstruction and
find methods that could be used in the digital twin technology. Here, the study will be
summarized and main findings will be presented, followed by suggestions for further work.

7.1 Summary and Conclusions

In this theses, several proposed load reconstruction methods have been summarized in
a literature review. The methods were classified into solutions in the time domain and
solutions in the frequency domain. The former methods were often based on the concept of
deconvolution and were useful for all systems, despite system linearity. The latter methods
were often based on the Fourier transform and thereby restricted to linear systems. Due to
the ill-posed nature of the inverse problem, common regularization methods and filtering
techniques were presented. The most common regularization technique was the Tikhonov
regularization which was used in many of the presented studies. Basic structural dynamics
for SDOF and MDOF systems was looked into, in addition to structural damping effects.

Based on two of the proposed methods, two load reconstruction experiments with solutions
in the time domain were performed using a software called Fedem. The experiments were
based on the work of Sundermeyer and T. Uhl respectively. The experiments and results
from each experiment will be explained separately.

Based on the work of Sundermeyer, an extended iterative scheme for MDOF systems was
used to reconstruct a periodic load acting on a simplified excavator. The load was obtained
through measured responses in terms of cylinder force and cylinder displacement using
two virtual representations of the excavator, thus, two digital twins. Applied loads with
frequencies below, above and equal to the first eigenfrequency of the system were tested.
From the results, the following trends were observed:

• For a frequency below eigenfrequency, the estimated load equals the external load
after only one iteration.
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• For a frequency equal to the first eigenfrequency, convergence was not achieved
and an exact applied load was not established. However, the estimated load and the
applied load did not deviate entirely.

• For a frequency above eigenfrequency, an exact reconstruction was achieved.

• During the iterative process, there was an increasing high-frequent area during the
first few seconds of the curves. The applied low-pass filter did not prove successful.

• Increasing the structural damping led to a faster convergence and less noise interfer-
ence.

In the second experiment, a method based on the use of the so-called Markov parameters
presented by T. Uhl was used for an impulse load reconstruction. The load acting on
a SDOF mass-spring system was reconstructed using 10 readout points from measured
responses in terms of displacement, velocity or acceleration. The Markov parameters were
obtained from the responses resulting from an assumption that the applied load was equal
to one impulse with maximum value at the time equal to the first readout point. The applied
impulse load was successfully reconstructed. No notifiable difference was noticed using
the different responses. The method showed a drawback in terms of choosing an optimal
amount of readout points. A complete load reconstruction failed when using more than
10 readout points due to noise interference. Tikhonov regularization was used in T. Uhl’s
study to eliminate noise. Regularization was not used in this experiment.

The softwere, Fedem, was successfully able to reconstruct the applied load in each experi-
ment.

7.2 Suggestions for Further Work

The experiments performed in this thesis were based on 2-dimensional models, and were
only performed numerically. Whether or not the same results are possible to achieve using
3-dimensional models and physical objects with digital twins should be looked into.

Both experiments highlighted the ill-posed nature of the inverse problem and the need for
regularization methods or filtering techniques. Common methods used for inverse problems
have been presented in theory and may be applicable to the experimental systems used
in this thesis. As Tikhonov regularization proved successful in T. Uhl’s study, it is likely
that it is capable of eliminating the noise observed for force reconstruction of the SDOF
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7.2 Suggestions for Further Work

mass-spring system. In regards to T. Uhl’s study, finding an optimization to the choice of
Markov parameters is also suggested.
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A. Additional Information

A.1 Well-Posed Problems

Well-posed problems are often defined in terms of Hadamard as follows [19]:

Let an operator A map a topological space Q into a topological space F (A : Q→ F). For
any topological space Q, letO(q) denote a neighbourhood of an element q ∈ Q. Throughout
what follows, D(A) is the domain of definition and R(A) is the range of A.

The problem Aq = f is well-posed on the pair of topological spaces Q and F if the following
three conditions hold:

1. for any f ∈ F there exists a solution qe ∈ Q to the equation Aq = f, i.e., R(A) = F (the
existence condition);

2. the solution qe to the equation Aq = f is unique in Q (the uniqueness condition);

3. for any neighbourhood O(qe) ⊂ Q of the solution qe to the equation Aq = f, there is
a neighbourhood O(f ) ⊂ F of the right-hand side f such that for all fδ ∈ O(f ) the
element A−1fδ = qδ belongs to the neighbourhood O(qe), i.e., the operator A−1 is
continuous (the stability condition).

[19, p. 24]

A.2 Dynamic Programming Solution Using Markov Pa-
rameters

T. Uhl [1] made the following algorithm to solve inverse problems using Markov parameters:

The dynamic programming solution to the inverse identification problem is based on
minimization of the following function:
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g(c) = min
fj

En(y0 , u) (A.1)

This function represents the minimum value of En , given the formula (Equation 2.16 in
section 2.4.2) starting at any stage j = n with yn = c and simulating the system to j = N
with the optimal inputs uj ’s. The important item to emphazise are that c is considered to
be arbitrary and that n can represent any value between 1 and N. Applying the principle of
optimality leads to the following recurrence formula:

gn−1 (c) = min
gn−1

[(yn−1 − c)2 + Lu2
n−1 + gn(H0 c + un−1 )] (A.2)

The minimum at any point is determined by selecting the decision variable (fn−1) that
minimizes the cost function (A.1) and the remaining cost resulting from the previous value
of the decision variable (the third term in (A.2)). The decision variable in the previous step
will be the result in the next state, H0c + un−1. The solution should be obtained by starting
from the end of the process n = N and working backward to n = 1. At the end point, n = N,
the minimum value of E is given by:

gN (c) = min
gN

[(yN − c)2 + Lu2
N ] (A.3)

The force uN that minimizes this expression is uN = 0, which gives:

gN (c) = (yN − c)2 (A.4)

This is interpreted to mean that, if there has only one stage and yN = c, then the error is only
related to yN . This is the advantage of starting from the end point; the optimum solution
is easy to determine at this point. To solve the inverse identification task, there is only
one variable to be determined, the initial state, denoted by c. This value can be found by
considering the recursive formula:

gN−1 (c) = min
gN−1

[(yN−1 − c)2 + Lu2
N−1 + gN (H0 c + uN−1 )] (A.5)

Since gN has been determined from (A.1) for an arbitrary argument, Eq. (A.2) becomes:
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gN−1 (c) = min
gN−1

[(yN−1 − c)2 + Lu2
N−1 + (yN −H0 c + uN−1 )2] (A.6)

Minimizing (A.6), the optimum value of the excitation (the force u*) can be obtained from
the following:

u∗N−1 =
(yN −H0 c)

(L + 1)
(A.7)

Substituting the expression (A.7) for u∗N−1 in (A.6) gives:

gN−1 (c) =
(yN−1 − c)2 + L(yN −H0 c)2

(L + 1)2 + [yN −H0 c − (yN −H0 c)/(L+ 1)]2
(A.8)

At this point we have a complete solution for one step. If the iteration process started at N -
1 with yN−1 = c, then the optimal choice for force uN−1 is calculated using (A.5).

[1, p. 329-330]
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A.3 The Effect of an Increase in Spring Stiffness

Figure A.1 and A.2 show the estimated load for a spring stiffness of 107 in the main file,
and an external load frequency of 8.21767Hz.

Figure A.1: Estimated load at resonance in a 5 seconds time interval, using a spring stiffness of 107

N/m.
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Figure A.2: Zoom at area of convergence.

Figure A.3 and A.4 show the estimated load for a spring stiffness of 107 in the main file,
and an external load frequency of 13.0Hz.

Figure A.3: Estimated load for an applied load frequency above eigenfrequency in a 5 seconds time
interval, using a spring stiffness of 107 N/m.
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Figure A.4: Zoom at area of convergence.

A.4 Several Iterations

The point of convergence or closest to convergence in the chosen time period for an applied
load of frequency 3.0Hz is shown in Figure A.5, A.6 and A.7.
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Figure A.5: Estimated load at convergence after one iteration.

Figure A.6: Estimated load at convergence after two iterations.
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Figure A.7: Estimated load after three iterations.

A.5 Readout Points SDOF system

Force reconstruction with the use of 20 and 100 measurement readout points is shown in
Figure A.8 and A.9 respectively.
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Figure A.8: 20 readout points.

Figure A.9: 100 readout points.
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A.6 Impulse Load Reconstruction

Figures A.10 and A.11 shows the resulting estimated loads and the applied loads when
using 20 and 100 readout points respectively.

Figure A.10: Estimated load versus applied load based on 20 readout points.

Figure A.11: Estimated load versus applied load based on 100 readout points.
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B. Python Code

The code used to solve the estimated load using Markov parameters is shown in Figure B.1.
The H matrix consists of the Markov parameters attained from the impulse load. The x
matrix consists of the displacement read out points from the applied load. All values were
obtained from Fedem, and deviated in each simulation, depending on the structure and the
applied load.

Figure B.1: Python script.

107


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Problem Description
	Approach and Limitations
	Thesis Structure

	Literature Review
	The Inverse Problem
	The Ill-Posed Nature of the Inverse Problem
	Kalman Filter

	Force Reconstruction Strategies
	Time Domain Methods
	Convolution
	Markov Parameters

	The Frequency Domain Method
	Force and Displacement Transmissibility

	Determination of Force Location

	Theory
	Regularization Methods
	Tikhonov Regularization
	The Truncated Singular Value Decomposition Method

	Filtering Techniques
	Butterworth Filter

	Linear SDOF Systems
	Nonlinear SDOF Systems
	Undamped SDOF systems
	MDOF Systems
	Direct Integration
	The Central Difference Method
	The Newmark- Method
	The Wilson- Method

	Damping
	Rayleigh Damping
	Modal Damping


	Experiment
	Periodic Load Reconstruction
	Model Setup
	Iteration Process
	Variation in Spring Stiffness
	Variation in Structural Damping
	Load Reconstruction And Noise Reduction

	Impulse Load Reconstruction
	Example
	SDOF System
	Simplified Excavator
	Matrix Solution


	Results
	Periodic Load Reconstruction
	Frequency Below Eigenfrequency
	Frequency at Resonance
	Frequency Above Eigenfrequency

	Impulse Load Reconstruction

	Discussion
	Periodic Load Reconstruction
	Noise Interference
	Varying Properties
	Linearity

	Impulse Load Reconstruction
	Software Performance

	Concluding Remarks
	Summary and Conclusions
	Suggestions for Further Work

	Bibliography
	Appendix
	Additional Information
	Well-Posed Problems
	Dynamic Programming Solution Using Markov Parameters
	The Effect of an Increase in Spring Stiffness
	Several Iterations
	Readout Points SDOF system
	Impulse Load Reconstruction

	Python Code

