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Abstract
A flexure pattern increases the ability of a plate to undergo large elastic deformations.
It is characterized as a 2D mechanical metamaterial that consist of flexures configured
in a pattern that increase the compliance compared to the bulk material of which it
has been made. This work contributes to the basic understanding of flexure patterns by
describing the geometry, symmetries, principle deformation mechanisms and anisotropic
elastic properties, using of the computational homogenization technique. The criteria for
diagonal, orthogonal, tetragonal and isogonal elasticity is categorized though the minimal
symmetries found in the pattern. Various examples of auxetic (materials with negative
Poisson’s ratio), orthogonal and isogonal patterns are explored and the relations between
geometrical parameters and elastic properties are found. A set of design principles and
methods are compiled to a framework that enables creation of new patterns from a set of
desired behaviors.
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Sammendrag
Et bøyningsmønster øker platers evne til store elastiske deformasjoner og karakteriseres
som et 2D mekanisk metamateriale som består av fleksible elementer sammensatt i et
mønster som øker bøyeligheten, sammenlignet med det opprinnelige materialet det er
laget av. Denne oppgaven bidrar til å øke den grunnleggende forståelsen av geometrien,
symmetrien, prinsipielle deformasjonsmekanismer og de anisotrope egenskapene gjennom
homogenisering og elementmetoden. Kriteriet for diagonal, ortogonal, tetragonal og isog-
onal elastisitet er kategorisert gjennom det laveste antallet symmetrier et mønster kan ha.
Interessante eksempler av auxetiske (materialer med negativ Poisson’s tall), ortogonale
og isogonale mønster er vist i tillegg til effektene små endringer av geometrien kan ha for
stivheten. Designprinsipper og metoder er sammenfattet til et rammeverk som kan bli
brukt til å lage nye mønster med ønsket oppførsel.
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Preface

When first introduced to a physical copy of a flexure pattern, it is hard not to be fascinated.
The structure is particular decorative to the eye with all kinds of different symmetries
which makes it easy to get lost when trying to understand under which rules the pattern
repeats itself. It is also a rare case to encounter materials that are stiff and hard, but
behaves flexible and that has different properties in different directions. A flexure pattern
is also an effective way of integrating functionality into a material. Thus, it is a technique
which has shown great potential for making sophisticated designs and to make simpler
assemblies leading to reducing production costs and a more effective material use.

The qualities and properties of the technique highlighted above are some of the main
reasons the topic caught my attention about a year ago. Ever since my first encounter
with this concept, it has been an interesting journey to explore different aspects of flexure
patterns. Perhaps the biggest surprise after being working with this topic for a year, was
to find out how little is written about it. There are many related fields like the field of
compliant mechanisms and meta-materials, but the lack of publications that describes it
was also a great motivator for revisiting the simple concepts to describe a flexure pattern.

The path of exploring the different sides of flexure patterns starts with the geometrical
aspects. The interest in patterns are as old as civilization and have fascinated the human
mind ever since. Impressive geometrical patterns in mosaics and decorations found in
artifacts and architecture, date back to ancient times.

Within the field of mathematics, many aspects of geometric patterns and tilings have
been thoroughly studied. Kepler wrote on tilings in his book Harmonice Mundi in 1619,
but the work was largely forgotten for many centuries. Throughout the nineteenth century,
the field became popular again and is today a large field. In the case of flexure patterns,
some important concepts are borrowed from this in order to describe the topology of a
repetitive pattern.

Furthermore, the mechanical relations were to be investigated. Mechanics is the oldest
branch of physics and is probably the most intuitive to human beings. Simple principles
show the relations between different flexible members deflect and yet simple principles
govern the creation of more compound flexible mechanisms.

By digitizing the knowledge and models, one can make rapid changes and produce
large data sets within a short time. The efficiency of the computer was therefore the
chosen tool for discovering many properties of different flexure patterns. In this way it
also becomes an easy task to share the tools, so others can make use of them.

xiii
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Content and organization
This thesis is written in a multiple chapter format with the following chapters: an intro-
duction, which introduces the research topic, related concepts, as well as its relevance; a
background, which review relevant literature and theories, showing how this has informed
the research issue; a methodology chapter, explaining how the research has been designed
and why the research methods, data collection and analysis, have been chosen. A results
chapter, outlining the findings of the research itself; a discussion chapter, analyzing the
findings and discussing them in the context of the literature; and lastly a conclusion.

Throughout all chapters, three topics are visited and discussed in its respective sec-
tions. These are essential to understand - and effective to describe - various aspects of
flexure patterns. The topics are: the geometrical understanding of a repeating structure,
the mechanical response of compliant structures and computational techniques.

Objectives
In order to facilitate the further work for utilizing flexure patterns in applications the
following objectives are defined for this thesis:

1. Establish the geometry-symmetry conditions in order to (a) understand and (b)
create new patterns

2. Establish a numerical model to quantify the properties of any given pattern

3. Make a tool for adjusting parameters of new flexure patterns efficiently to make it
easier for people to make and utilize the patterns

Limitations
Within the topic of flexure patterns there are many things one could investigate. As a
result of having a limited time span for the thesis many potentially interesting approaches
are left out of. Some of the limitations are described bellow. These are however closely
related to the further work proposed in 5.7.

1. Linear elastic deformation: the predicted behaviour of flexure patterns do not ac-
count for non-linear effects that change the stiffness behaviour of the flexure pattern.
Effects like strength, fracture mechanics and fatigue probably play a significant role
for the durability of the flexure pattern in applications, but is not within the scope
of this study.

2. Numerical approach: the nature of solving a problems numerically instead of an-
alytically, implies there is a correlation between input parameters and output pa-
rameters. The results are not derived or proved, but a discussion on the reliability
of the results are done. Some validation of the numerical models was done in the
Project work of fall 2017, but physical testing is not within the scope of this study.

3. Geometry: there are numerous ways flexures can be combined in the plane. Here
only a few geometries are investigated.
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4. Implementation: there is a limit in how far the code is being implemented into a
finished product. The work that has been preliminary for making a program for
generating flexure patterns.
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Acronyms and symbols
Acronyms

ASI abaqus scripting interface

CA compliant array

CAD computer aided design

CAE computer aided engineering

CAM computer aided manufacturing

DOF degree of freedom

FEM finite element method

FEA finite element analysis

LEM lamina emergent mechanism

LET lamina emergent torsional hinge

MTP Department of Mechanical and Industrial Engineering

MDF Medium-density fiberboard

NTNU Norwegian University of Science and Technology

PMMA Poly methyl methacrylate

RVE Representative volume element
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Symbols

A area

Cij stiffness coefficients

E Young’s modulus

F force

G shear modulus

I moment of inertia

J moment of torsional inertia

k general stiffness component

K general geometric stiffness

L length of beam

M bending moment

N normal force

R radius

T torsion moment

U energy

V volume

u, v, w displacements components

x, y, z Cartesian coordinates

α angle of principal axes

γ shear strain

δ partial

∆ distance between points

ε normal strain

ϵ macroscopic strain

θ angle of rotation, counter clock-
wise

κ curvature

ν Poisson’s ratio

σ stress

Σ macroscopic stress

τ shear stress
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Matrices and vectors
Matrices and vectors are denoted with square brackets [•].

A laminate in plane stiffness

B laminate coupling stiffness matrix

C stiffness matrix

D laminate bending matrix

Q plane stress stiffness matrix

S laminate compliance matrix

ε strain vector

κ curvature vector



Chapter 1

Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of different flexure patterns.

1.1 What is a flexure pattern?
The term flexure pattern is used in this thesis for the concept of introducing specific cuts in
a plate in order to reduce the resistance to bending and stretching. The most characteristic
property of a flexure pattern is the ability to make a superelastic and flexible surfaces
from a hard material. The concept appeared first in various Maker Spaces and home at
hobbyists with access to a laser cutter and has been around for a decade ago.

1
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It is emphasized that this thesis introduces the definition of flexure patterns as it is a
term invented by the author and his co-authors from the project thesis in the autumn of
2017. Other terms like living hinge, lattice hinge, kerf bend and compliant array is also
used for the same concept. A discussion on the terminology is found in section 5.1.

In order to develop a language to describe the different elements of a flexure pattern
precise, a definition is needed:

A flexure pattern is characterized as a 2D mechanical metamaterial that consist of
flexures configured in a pattern that increase the compliance compared to the bulk
material of which it has been made. The flexures are patterned onto the plane
according to a set of rules.

Flexure patterns have a bending dominated structure. This is in opposition to lattice
truss materials where optimal design lead to a stretching dominated structure [2]. A
building block to achieve large deformation is the flexure which is a flexible member that is
engineered to be compliant in some DOFs. It rely on elastic deformation in various modes
like bending and torsion to achieve larger travel distances than what is achieved through
tensile or compression Th term flexibility is also used to describe the ability to bend. A
flexure region is the part of a flexure pattern that consists of a flexure or a configuration
of flexures. The flexure region is engineered to be compliant and is responsible for most of
the increased travel distances found in a flexure pattern. A flexure region can be a flexure
mechanism which is used synonymously to compliant mechanisms, or more generally as
a flexure configuration. A rigid region is the rigid part of a flexure pattern where flexures
meet to form a joint or a larger area of the flexure pattern where no flexures are present.
More background on flexure elements, configurations and compound flexure mechanisms
is given in section 2.3.

The term pattern is defined as a combination of qualities, acts, tendencies, etc., forming
a consistent or characteristic arrangement(...)[4]. When speaking of a periodic flexure
pattern one can define the elements for patterning the plane through two non-parallel
vectors: the unit of the pattern. The unit of the pattern corresponds to the smallest
region that preserves all symmetries of the pattern when translated under two non-parallel
vectors. The unit of the pattern is defined independently of the flexure configuration and
can sometimes seem a bit odd when describing the flexure pattern as we observe it. A
better method for describing a repeating region of a pattern is by the prototile. This
correspond to the tile or set of tiles that capture the whole flexure configuration as a
continuous piece and can be used to tile the plane though a translation in two directions.
More background on the terms of periodicity, unit and prototile is found in sections 2.1.3
and 2.1.1.

As a flexure pattern is defined as a mechanical metamaterial, it is interesting to look at
the bottom up approach for creating metamaterials. This includes constructing patterns
that can repeat with other rules than periodicity like a non-periodic manner like Voronoi
tilings or an aperiodic manner. The aim can be a structure that create equal curvature
for an uneven loaded plate. More information on meta materials is given in section 2.2.

1.1.1 Classification
By breaking a complex structure into its less complex constituents, it is possible analyze
and understand the governing principles. A flexure pattern is classified according to the
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flexure configuration and the plane symmetry groups. The plane symmetry groups are
used to classify the general symmetries present in the pattern and include periodicity,
reflections, rotations, and glide reflections. The flexure configurations are different ways
to combine flexures in arrays, or in compound mechanisms that involves multiple flexures.

An example of a classification is LET p4m. This refers to the flexure configuration of a
LET or lamina emergent torsion hinge and the plane symmetry group p4m. A schematic
representation of the different elements of a flexure pattern can be seen in figure 1.2.

Flexure Rigid areaFlexure configuration

Flexure region
Generating region

Unit and tile

Figure 1.2: Differents parts of a flexure pattern. Here presented for a LET p4m pattern.

1.1.2 Behaviour
When deformed, a complex system of flexible members work together to achieve a larger
deformation than would be impossible if it was not any cuts in the material.

The behaviour of flexure patterns are diverse and rely on the symmetry of the pat-
tern and the flexure configuration. The qualitative modes to bending and stretching are
obviously different, as well for the different response when deformed in a direction. Some
flexure patterns show equal behaviour in 2, 3, 4 or 6 directions while other show almost
no difference when bent or stretched in different directions. This anisotropy, the unequal
stiffness1 properties along different axes is discussed in section 5.2.2.

1The term stiffness is used in this thesis to describe the elastic resistance to a force or a moment.
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(a) A flexure pattern bent along one axis
and with a smooth surface.

(b) A flexure pattern bent along one axis,
but with parts sticking up.

(c) A flexure pattern that deforms in a step-
wise manner.

(d) The response of a flexure pattern with
double curvature.

Figure 1.3: Examples of responses of flexure patterns.

The behaviour of flexure patterns also vary when parameters that describe the geom-
etry, like length, thickness and width is varied. The trends of the quantitative response
is important to understand how to change the stiffness when designed to meet target
properties. This is discussed further in section 5.2.1.

In some cases the stretching trigger a rare behaviour where axial motion results in an
expansion of the pattern in the opposite direction. This is called an auxetic behaviour
and is characterized by a negative Poisson’s ratio and is discussed in section 5.2.3.

1.2 Manufacturing
A popular method for manufacturing flexure patterns is by CNC laser cutting. Even
though any material that can be cut with a laser cutter is suitable as a base for manufac-
turing flexure patterns, the popular choices are ply wood and medium-density fiberboard
(MDF) plates due to its low price and easy accessibility. Another popular material is ploy
methyl methacrylate (PMMA) because it is easily cut, but the brittle behaviour results
in the flexure pattern being at risk of cracking. The CNC laser cutting and ply wood /
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MDF combination takes short time to manufacturing and is relative cheap compared to
other techniques and materials.

Figure 1.4: The making of flexure patterns out of a MDF plate on a laser cutter.

Other possible subtractive manufacturing methods are: water cutting, milling and
plasma arc cutting. The advantages of these are primary the possibilities to cut thicker
materials and to cut metals. Within additive manufacturing 3D printing is a promising
candidate. As 3D printed products are often designed for a reduced assembly, flexure
patterns can be used to integrating functionality into the 3D printed product or to get
different material behaviour.

1.3 Applications
Flexure patterns have much potential and have shown its applicability in manufacturing
3 dimensional flexible objects from flat plates. Various blogs and sites from the maker
community promote several free designs like the ones seen in figure 1.5. Other architecture
projects with flexure patterns involve simple shapes and objects like enclosures, book
covers, chairs and lamps are some examples.

Figure 1.5: Some examples of free designs on pages for the maker community.

More engineering demanding applications are shape changing structures, surfaces of
double curvature and structures where deploy-ability and size is important. Double curva-
ture surfaces has long been a challenge in the boat hull design industry while deployable
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structures are of interest of space organizations as deployable solar panels [39] and in
research for human shelters [28]. Applications of shape-changing structures have been
introduced in wearable electronics where flexible lithium-ion batteries [34] flexible circuit
boards [38] are good examples.

1.3.1 Advantages
Flexure patterns can have advantages in product and material design compared to tra-
ditional solid plates of a soft material or rigid-body mechanisms. Many of the listed
advantages are shared with lamina emergent mechanisms (LEMS)[1]

Reduced assembly Products manufactured from one sheet are often monolithic; being
made of one piece. Techniques from origami inspired design can create folding
structures that require little assembly.

Planar manufacturing Flexure patterns are fabricated from flat materials which can
reduce costs while still remaining good tolerances.

Size and weight saving Products that can be stored flat allow saving costs in regards
of storage space or transportation, as the assembly can be done at a later time. This
can also be practical in aerospace, outdoor equipment, invasive surgery or space-
saving furniture or utilities in apartments. The space saving aspect combined with
the in-plane manufacturing also allows for emergency devices that do not take up
much space, for example self-assembling structures that activates remotely when
needed [12].

Double curvature surfaces Flexure patterns can introduce auxetic material properties
to a plate that otherwise do not show this behaviour. Auxetic materials deform such
that they easily can make domes, a shape that for solids usually require high stresses.
The ability to relieve these stresses allow for even more complex structures like three
dimensional objects like faces, helmets and shoes made from flat sheets [19] [11].

Different properties in different directions Moving plates might have desired direc-
tions of bending and stretching. Flexure patterns can be manufactured with prop-
erties according to the specific application.



Chapter 2

Background

The theory given in this chapter lays the foundation for the objectives with emphasis on:
(1) elaborating on the basic understanding by describing the deformation mechanisms
and (2) to obtain the properties of different flexure patterns. To accomplish the first,
plane geometry and the mechanics of flexible members play an important role. This
includes various ways of viewing the geometric patterns: as tiles, periodic patterns and as
flexible beams that undergo deformation. For the latter objective, plate theory, material
science and computational homogenization show to be especially useful. We investigate
some exciting fields of the new field of metamaterials but also go back to basics when the
constitutive equations are carried out.

2.1 Plane geometry
Symmetries and different possible ways to pattern the plane by shapes can be described
by logical and mathematical rules. This is the foundation in which the geometry of
flexure patterns can be understood and described from a scientific perspective. Here, are
an introduction to some concepts relevant to flexure patterns given. The classifications
and definitions are of great importance when the rules of the geometry are coded into a
computer program as well as it serves as good sources for inspiration when new patterns
are to be constructed.

The main sources for the fields of tiling and symmetry groups in the literature are the
works of Garcia [9] and Schattschneider [32] where the concepts are precisely described.

2.1.1 Tiling
Through tiling, one can study the different ways one can arrange the boundary flexure
configurations in the plane and study how the boundaries are connected. It is a simpli-
fication where the flexures are left out, and only the different ways to combine different
shapes are considering. A plane tiling 1 is a set of shapes that fits together. More for-
mally it is a countable family of closed shapes that covers the plane with no overlapping
or empty spaces [9]. By the plane we mean the Euclidean plane of elementary geometry
which preserves qualities like straightness, length, angle, area and congruence.

1The words tessellation, paving, mosaic and parqueting are used synonymously in other literature.

7
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The closed shapes are also known as tiles which generally can be considered a topolog-
ical disk whose boundary is a single simple closed curve. By this we mean a curve with
ends that join to form a loop with no crossings or branches. The intersections between
tiles are the points and arcs. A point laying in the intersection between three or more
tiles is called a vertex and the arcs between the vertices are called edges. The number of
edges that meet at a vertex is called the valence of the vertex. In general vertices, edges
and tiles are called the elements of a tiling.

A special type of tilings that is considered here, consists only of polygons. As polygons
often are referred to with edges and vertices, it could lead to confusion to use these terms
here, so the corresponding terms for a polygon will be corners and sides.

An overview of the different types of tilings are shown in figure 2.1.

Tilings

AperiodicPeriodic Non-
periodic

Uniform
Non-

regular Penrose Vonori Random

ArchemedianRegular k-uniform

Figure 2.1: An overview of different tilings.

Tiling with tiles of a few shapes

The simplest tiling can be said to be the ones which are made with only one shape. These
are called monohedral which means that every tile of the tiling is congruent. A familiar
example of monohedral tilings are the regular tilings as shown in figure 2.2. These are
tiles made from regular polygons where all edges, angles and vertices are equal. These
polygons are also the only regular polygons that tile the plane monohedrally. A simple
proof for this can be seen when inspection the interior angles of the polygons. As a tiling
has no gaps or overlaps, the angles at each vertex must add up to 360◦, thus the interior
angle must be a multiple of 360. The formula for a regular polygon is given in equation
2.1 where m∠ is the interior angle and nr is is the number of sides. From this, it becomes
evident that the triangle, square and hexagon are the only regular polygons to tile the
plane.
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m∠ = 180(nr − 2)
nr

generalformula (2.1)

m∠ = 180(3 − 2)
3

= 60◦ triangle (2.2)

m∠ = 180(4 − 2)
4

= 90◦ square (2.3)

m∠ = 180(5 − 2)
5

= 108◦ pentagon (2.4)

m∠ = 180(6 − 2)
6

= 120◦ hexagon (2.5)

Figure 2.2: The 3 regular tilings of the plane.

The regular tilings have all the same vertices. When cycled around the vertices, the
sides of the polygons that come together are listed. We say that the regular tilings are
of types 3.3.3.3.3.3, 4.4.4.4 and 6.6.6. A shorter notation often used is (36), (44) and (63).
Similar notation is used for for the uniform tilings. Figure 2.3 shows this for an Archime-
dian tiling.

333

4 4

Figure 2.3: A tiling notated as 3.3.3.4.4 or 33.42.

The problem of monohedral tilings becomes more complex when other polygons are
considered. An illustration of this is represented by the fact that we don’t know all the
different convex pentagons that tiles tile the plane monohedrally. The last tiling in figure
2.4 was discovered in 2015.

Sticking to regular polygons, the case gets much more interesting when multiple regular
polygons are considered to tile the plane. The criteria for a tiling with no gaps and overlaps
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Monohedral tilings with convex pentagons.

still remain: the sum of interior angles for each polygon at a vertex should equal 360◦.
Together with equation 2.1, the sum of these show that there are only 17 combinations
that satisfy the equation

n1 − 2
n1

+ ... + nr − 2
nr

= 2 (2.6)

Among these 17, four of the cases has two distinct ways in which the polygons can be
arranged, resulting in 21 possible types. In addition there are needed a few assertions to
not end up with infinite possibilities of possible tiles.

With the restrictions, the following result: there are precisely 11 distinct edge-to-edge
tilings by regular polygons such that all vertices are of the same type. These are (36),
(34.6), (33.42), (32.4.3.4), (3.4.6.4), (3.6.3.6), (3.122), (44), (4.6.12), (4, 82) and (63). These
are usually called the Archemedian tilings 2. A figure of the Archimedian tilings where
the regular tilings are left out is seen in figure 2.5.

All these tilings are isogonal which means that all its vertices are equivalent under
the symmetries of the figure 3. For this reason the tilings is also called uniform. This
distinction from means that not only does the vertices of the neighbouring vertices look
the same, but is also equivalent under the symmetry of the figure.

2some literature call these homogeneous or semi regular, even though they include the three regular
tilings.

3This implies that each vertex is surrounded by the same kinds of face in the same or reverse order,
and with the same angles between corresponding faces.
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Figure 2.5: The Archimedian tilings.

The observation that the Archemedian tilings are isogonal and therefore uniform,
point in the way of a generalization. An edge-to-edge tiling by regular polygons is called
k-uniform if its vertices form precisely k transitivity classes with respect to the group of
symmetries of the tiling. In other words: the arrangement of polygons are the same at
each k-vertex. It is interesting to know that there exists up to 7-uniform tilings and that
all possibilities are known, see table 2.1. There is however no point on elaborating the
concept more as only some of the Archemedian tilings are used later in this thesis to form
new flexure patterns, even though the possibilities are great.
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k-uniform number of tilings
k = 1 11 tilings
k = 2 20 tilings
k = 3 39 tilings
k = 4 33 tilings
k = 5 15 tilings
k = 6 10 tilings
k = 7 7 tilings
k = 8 no tilings

Table 2.1: Number of tilings for each k-uniform [9]. Regular tiling are k-uniform when
there are precisely k different kinds of tiling. k is the different kinds of vertices that shows
up in the tessellation.

Non-regular tiling

Non-regular polygons don’t follow the same strict rules, resulting in an infinite number of
different tiling possibilities. An example of a non-regular and non-uniform tiling is shown
in figure 2.6.

A B

Figure 2.6: A tiling consisting of non-regular triangles. Point A has four meeting polygons
while point B has eight.
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2.1.2 Symmetry and regularity
Many important mechanical properties of flexure patterns depend upon the idea of sym-
metry. In this section we explain what is meant by the term and give examples of flexure
patterns with various kind of symmetry.

An isometry or congruence transformation is any mapping of the Euclidean plane E2

onto itself which preserves all distances. A mapping is denoted as σ : E2 → E2 and
A and B are two points. Then the distance between A and B is equal to the distance
between the images σ(A) and σ(B). Less, formally it can be stated that an isometry is a
transformation of the pattern so it looks the same after the transformation.

It can be shown, but is never the less, intuitive that every isometry is of one of four
types, also seen in figure 2.7:

1. Rotation about a point O through an angle θ. The point O is the center of rotation.
In the case when θ = π the line joining A to σ(A) will be bisected by O, and in case
the mapping is called a 2-fold rotation, half turn, central reflection or reflection in
the point O.

2. Translation in a given direction through a distance d.

3. Reflection in a given line L, is called the mirror or line of reflection

4. Glide reflection where a reflection in a line is combined with a translation through
a given distance d parallel to the line.

The rotation and translation isometries are usually called direct because if point ABC
form the vertices of a triangle named clockwise, then the same is true for the transformed
image. The reflection and glide reflection will, however for the ABC triangle create a
new triangle with vertices named counterclockwise. They are therefore called indirect or
reflective isometries.

L

d

θ

L

O

d

Reflection

Rotation Glide reflection

Translation

Figure 2.7: The four shape preserving transformations.
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By a symmetry of a set S we mean an isometry σ that maps S onto itself. As an
example, any rotation about the center of a circular disk is a symmetry of the disk. In
the case of a square, as seen in figure 2.8, the reflections in the lines L1, L2, L3 and L4
are symmetries. The rotations of angle π/2, π, and 3π/2 about the center are also sym-
metries. The center is then called a center of 4-fold rotational symmetry. More generally
a symmetry by rotation of 2π/n about a point is a center of n-fold rotational symmetry.
Since centers of rotation of a pattern are mapped by translation to new centers of rotation,
only rotations of order 2, 3, 4, and 6 can occurs as isometries of a periodic pattern4.

L1

L2L3L4

O

π/2
π

3π/2

Figure 2.8: Example of the symmetries of a square. L1, L2, L3 and L4 are reflective lines,
while π/2, π, 3π/2 are rotational symmetries. Rotation of 2π is the identity symmetry.

The isometry that maps every point onto itself is known as the identity isometry. It
is a symmetry of every set. In the case of the square, it contains eight symmetries: four
reflections, three rotations and the identity isometry.

A motif of the pattern is a distinctive and reoccurring form. If a motif has any
symmetry in addition to the identity symmetry then it is called symmetric. If its symmetry
group contains at leas two translations in non-parallel directions, then the motif is called
periodic. By representing the two non-parallel translations by the vectors a and b. Then
the pattern contains all translations na + mb where n and m are integers. Starting from
any fixed point, the set of images under the set of translations na + mb forms the lattice.
It can then be stated that with every periodic pattern, there is associated a lattice, and
the point of the lattice can be regarded as the vertices of a parallelogram with the five
shapes shown in figure 2.9 where the two non-parallel sides represents the vectors a and
b.

4This is often referred to as the crystallographic restriction theorem
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(a) Parallelogram (b) Rhombic (c) Hexagonal

(d) Rectangular (e) Square

Figure 2.9: The five different lattice units. The rhombic lattice is given for both the
centered cell and the primitive cell being twice the area but with square corners.
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2.1.3 Plane symmetry groups
A plane symmetry group, also termed wallpaper group or plane crystallographic group
is a mathematical classification of a two dimensional repetitive pattern based on the
symmetries of the pattern. We define that a pattern which are invariant under linear
combinations of two linearly independent translations repeat at regular intervals in two
directions are the plane symmetry groups.

It is a type of topologically discrete group of isometries of the Euclidean plane. By
arguing the possible isometries for each of the five lattice types, it can be shown that
there are 17 distinct plane symmetry groups [32]. These are classified in terms of a unit,
as well as their internal symmetries, lattice and generating region.

The commonly used notation is the symbolism used in the International Tables for
X-ray Crystallography [12] and is shown in table 2.3. A complete list of these are given
in table 2.2. The symbols used for the names of the wallpaper groups are structured as
following:

• Letter p or c denotes primitive or centered cell.

• Integer n denotes highest order of rotation

• Symbol denotes a symmetry axis normal to the x-axis, where m denotes reflection,
g denotes a glide reflection and 1 denotes no symmetry

• Symbol denotes a symmetry axis at angle dependent on n the highest order of
rotation

Type Lattice Highest order Reflections Non trivial glide Generating
of rotation reflection region

p1 parallelogram 1 no no 1 unit
p2 parallelogram 2 no no 1/2 unit
pm rectangular 1 yes no 1/2 unit
pg rectangular 1 no yes 1/2 unit
cm rhombic 1 yes yes 1/2 unit

pmm rectangular 2 yes no 1/4 unit
pmg rectangular 2 yes yes 1/4 unit
pgg rectangular 2 no yes 1/4 unit
cmm rhombic 2 yes yes 1/4 unit
p4 square 4 no no 1/4 unit

p4m square 4 yes yes 1/8 unit
p4g square 4 yes yes 1/8 unit
p3 hexagonal 3 no no 1/3 unit

p3m1 hexagonal 3 yes yes 1/6 unit
p31m hexagonal 3 yes yes 1/6 unit

p6 hexagonal 6 no no 1/6 unit
p6m hexagonal 6 yes yes 1/12 unit

Table 2.2: Recognition chart for wallpaper groups [32].
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Symbol Meaning
======== Line of reflection

− − − Line of glide reflection
♢ Center of 2-fold rotation
△ Center of 3-fold rotation2 Center of 4-fold rotation7 Center of 6-fold rotation

Table 2.3: The symbols used to represent the symmetry elements in diagrams. Colors of
the symbols are also used to distinguish between different centers of rotation of the same
order.

Unit of the pattern

The smallest region of the pattern having the properties of all images under the translation
group covers the plane is called the unit of the pattern. This unit correspond to the lattice
unit of the same pattern. All units have its distinct symmetries, but their motifs can have
infinite variations. They are like tiles; laid in parallel rows and fill the plane without
gaps or overlaps. A diagram of the 17 units of a periodic pattern is given in figure 2.11.
Some examples of categorization of some flexure patterns by its plane symmetry groups
are found in figure 2.10. As one can see from this, not all units corresponds to the flexure
region as for the p4 and cmm pattern.
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(a) p4 (b) p4m

(c) p31m (d) cmm

Figure 2.10: Example of classification of some flexure patterns with the unit of the pattern
marked. The yellow region correspond with the generating region.
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Group generators

We call a generating region of a pattern the smallest region of the plane whose images
under the full symmetry group covers the plane5.

For geometric analysis these groups serve as the minimal set of generators that will
generate the unit or that will map the plane and is therefore preferred for creating a unit
with the least effort.

Chart 2.12, adapted from D. Schattchneider[32] shows two generators for each group.
The second set of generators given includes the translation vectors which form the sides
of the lattice unit.

5Crystallographers use the term asymmetric unit. Other terms are fundamental region or fundamental
domain
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Figure 2.12: The generators for the plane symmetry groups.

2.1.4 Curvature
Curvature correspond to our intuitive understanding of what it means for something to
be curved: spheres, cylinders and spiraling cables have curvature. Curvature is often
described in terms of curves travelling along a surface’ tangent at a point where the
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corresponding normal to the tangent is the curvature. This is a signed quality, meaning
the surface can be bent towards the normal or away from it, leaving a positive or negative
sign. An example of this is the difference of the curvature inside and outside of a torus.
The inside curvature is negative because it is pointing inwards, while the outside is positive
because it points outwards.

The maximum and minimum curvatures at a point is called the principal curvatures
κ1, κ2. A property derived from the maximum and minimum curvatures is the Gaussian
curvature given as κg = κ1κ2.

Zero-curvature surfaces has no curvature along one direction, meaning κ1 or κ2 is zero,
and are well studied in mathematics. They are called developable surfaces because they
can be developed into simple shapes and flattend out without stretching and tearing.
For instance, any piece of a cylinder is developable since the principal curvature is zero.
Different curvatures are seen in figure 2.13.

(a) A developable surface
with zero Gaussian curva-
ture.

(b) A saddle with negative
Gaussian curvature.

(c) A dome with positive
Gaussian curvature.

Figure 2.13: Three shapes with different curvature.
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2.2 Material
There are many similarities of how crystallography unifies the theoretical mathematics of
spacial symmetry groups with material science and how tilings and the plane symmetry
groups together describe the behaviour of different plane arrangements of elements. Dif-
ferent atoms arranges to form lattices that repeats through translation in 3-dimensional
space in crystallography. In the same way the 2-dimensional lattices are used to describe
repeating arrangements in 2 dimensions.

Material is a broad term for the chemical substance of which a thing is made of. By
describing a flexure pattern in terms of a material, one can make use of the developed
theories and models in order to classify and describe it. Some material classifications that
are good candidates for describing a flexure pattern are: mechanical metamaterials and
meso materials.

Mechanical metamaterials Material properties are governed by the chemical compo-
sition and the spatial arrangement of constituent elements at multiple length-scales.
This fundamentally limits material properties and generates certain trade-offs. An
example of this is how density and strength are inherently linked where the more
dense the material, the stronger it is in its bulk form.
A mechanical metamaterial is characterized as a material that inhibit effective prop-
erties determined from the internal structure, and not from the properties of the
bulk material [21]. This has lead to a shift of focus where internal degrees of free-
dom are engineered to create materials with a wide range of remarkable mechanical
properties such as high strength to weight ratio or auxetic behaviour. Due to the
design of the internal structure, a metamaterial is in a category between the classical
definition of a material and a device made from that material.
As mechanical metamaterials are highly ordered architectures in cellular solids,
crystallographic systems are often used to evaluate and categorize the unique geo-
metrical symmetries in three dimensions. For the simpler two dimensional case the
plane symmetry groups are sometimes used [18].

Meso materials originate from the word meso which means middle. It refers to the
length scale in which material properties can be observed. The term has been used
for describing material structures fabricated with additive manufacturing [33] and
in composite engineering where it has been proven to be a useful tool for predicting
the effective mechanical properties of woven fabrics [27].

Most models for predicting the stress-strain response in a material build on the con-
stitutive equations. The matices we arrive at in this section the laminate stiffness matrix
builds on plate theory.

2.2.1 Constitutive equations
Three dimensional constitutive equations

In this section we consider ways to write the linear elastic constitutive equations for the
effective (or average) response of compliant plates. The goal is to develop equations for
predicting the elastic constants required for the average stress-strain relationship, often
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referred to as Hooke’s law in addition to show the different notations and theories that
will later be used. The main source for this section is the book by Herakovich [13].

The generalized Hooke’s law, written with Einstein summation notation is

σij = Cijklεkl, i, j, k, l = 1, 2, 3 (2.7)

Cijkl a fourth-order tensor6 with 81 (34) elastic constants. Symmetries of the stress
and strain tensors reduces the constants to 36 where 21 are independent in the anisotropic
state. With this reduced number of constants, Hooke’s law can be written in contracted
notation as

σi = Cijεj, i, j = 1, 2, ..., 6 (2.8)

The symmetric stiffness Cij can be written with matrix notation as


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66


(2.9)

The inverted Hooke’s law can be written

εi = Sijσj, i, j = 1, 2, ..., 6 (2.10)

The coefficients in Sij is called the compliance coefficients. By this, it is evident that
the compliance matrix is the inverse of the stiffness matrix Sij = C−1

ij .

Plane stress

Plane stress corresponds to a condition in which all three out-of-plane components of
stress are zero throughout the region and is a good approximation for thin plates. When
plane stress conditions in the 1-2 plane are used in this thesis, it is assumed that the
components σ33, σ13 and σ23 are zero. It can be noted that the z-components of strain are
not necessarily zero in the plane stress condition.

When the plane stress conditions are applied to the stiffness matrix given in equation
2.9, Hooke’s law can be reduced to

 σ1
σ2
τ12

 =

 Q11 Q12 Q13
Q12 Q22 Q23
Q13 Q23 Q66


 ε1

ε2
γ12

 (2.11)

It must be noted that [Q] is the reduced stiffness matrix and is therefore distinguished
from [C].

6Tensors are mathematical representations of physical quantities and have components that change
from one coordinate system to another.
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Effective properties

Effective properties are engineering constants that determine the strain response to a plane
stress situation. These properties can be found for a plate by considering the equations
for plane stress  ε1

ε2
γ12

 =

 S11 S12 S13
S12 S22 S23
S13 S23 S66


 σ1

σ2
τ12

 (2.12)

The Young’s modulii E1 for a unidirectional loading is defined for a plane stress situ-
ation with σ1 ̸= 0 and σ2 = τ12 = 0 through the strain of the material with

ε1 = 1
E1

σ1 (2.13)

Which is equivalent to

ε1 = S11σ1 (2.14)

Similar arguments can be made for transverse modulus E2 and shear modulus G12.
Poisson’s ratio v12 is defined as the negative ratio of the lateral strain to the axial

strain associated with an applied stress. With the same considerations as for Effective
moudlii we get the expression

v12 = −ε2

ε1
= −S12

S11
(2.15)

The effective engineering constants are then

E1 = 1
S11

E2 = 1
S22

G12 = 1
S33

= ν12 = −S12

S11
(2.16)

Rotation about the 3 axis

Transformation matrices are used to transform tensors from one coordinate system to
another and is illustrated in figure 2.14. The construction of these matrices done through
direction cosines, but ant derivation is not carried out here.

The 2-D transformation equations for plane stress are simplifications of the 3-D trans-
formation equations used in solid mechanics. The [Tσ] matrix is used as the transforma-
tion matrix for stress [σ] = [Tσ][σ]′ and [Tε] matrix is used for transformation of strain
[ε] = [Tε][Q][ε]′ from a coordinate system x, y, z to coordinate system x′, y′, z.

[Tσ] =

 c2 s2 2cs
s2 c2 −2cs

−cs cs c2 − s2

 [Tε] =

 c2 s2 cs
s2 c2 −cs

−2cs 2cs c2 − s2

 (2.17)

where c = cos(θ) and s = sin(θ) are given for the angle θ in a counter clockwise
direction. For transforming the constitutive equation we combine the two transformation
matrices [Tσ] and [Tε]

[σ]′ = [T −1
σ ][Q][Tε][ε]′ (2.18)
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Figure 2.14: Material properties when rotated about the 3 axis

The stiffness matrix [Qθ] in the rotated coordinate system related to the stiffness [Q]
in the initial coordinate system is denoted by:

[Q]′ = [Tσ][Q][Tε] (2.19)

Which can be written as

[Q]′ =

 c4 c2s2 c3s
s4 cs3

Sym. c2s2

 [Q] (2.20)

The transformation is a tensor transformation of stiffness components from one coor-
dinate system to another and is independent from any scalars coupled with the stiffness
components. For this reason, [T ] is the same for transforming the both [A] and [D]
matrices.

2.2.2 Plate theory
In this subsection we want to describe the linear elastic response of a plate subjected to in-
plane loads and out-of-plane bending moments as seen in figure 2.15. Plate theory is used
on flat structural elements with a small thickness compared to the surface dimensions.
Assumptions of this theory are as follows:

1. The plate consists of homogeneous material with known effective properties

2. There plane stress

3. The plate deforms according to the following Kirchhoff-Love assumptions:

• Normals to the midplane remain straight and normal to the deformed midplane
after deformation

• Normals to the midplane do not change length

The total x-displacement of a generic point can be written as the sum of the midplane
displacement, u0 plus the rotation α of the normal to the midplane. Likewise consideration
of the y-displacements.
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x y

z
Nx NyNxy

Nxy Mxy

Mx
My Mxy

Figure 2.15: Plate element with load components.

εx = ∂u

∂x
= ∂u0

∂x
− z

∂2w

∂x2 = ε0
x + zκx

εy = ∂v

∂y
= ∂v0

∂y
− z

∂2w

∂y2 = ε0
y + zκy

γxy =
(

∂u

∂y
+ ∂v

∂x

)
= ∂u0

∂y
− 2z

∂2w

∂x∂y
+ ∂v0

∂x
= γ0

xy + zκxy

(2.21)

Where κ is the curvature for small slopes and the inverse of the curve radius. Deflection
is given by w.

κx = 1
Rx

= −∂2w

∂x2 , κy = 1
Ry

= −∂2w

∂y2 , κxy = 1
Txy

= − ∂2w

∂x∂y
(2.22)

Combing the previously equations we arrive at the strain relation in matrix form
 εx

εy

γxy

 =

 ε0
x

ε0
y

γ0
xy

+ z

 κx

κy

κxy

 (2.23)

or more simply

[ε] = [ε0] + z[κ] (2.24)

Coupling this with the stress we can write the stress state in the material as

σ = [Q]ε0 + [Q]zκ (2.25)

The in-plane forces per unit length Nx, Ny, Nxy are defined as the integral of the planar
stresses in the plate over the plate thickness.

Nx =
H∫

−H

σxdz, Ny =
H∫

−H

σydz, Nxy =
H∫

−H

τxydz (2.26)

Substituting the stresses from (2.25) into (2.26) gives the expression for forces per unit
length.

[N ] = [A][ε0] + [B][κ] (2.27)

where [A] and [B] represents the in-plane stiffness and the bending-stretching coupling
matrix defined as
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[A] = [Q](zH − z−H)

[B] = 1
2

[Q](z2
H − z2

−H)
(2.28)

The moments per unit length Mx, My, Mxy are defined as the integral of the forces
σdz times the moment arm z integrated over the plate thickness.

Mx =
H∫

−H

σxzdz, My =
H∫

−H

σyzdz, Mxy =
H∫

−H

τxyzdz (2.29)

Substituting the stresses from (2.25) into (2.29) gives the expression for moments per
unit length.

[M ] = [B][ε0] + [D][κ] (2.30)
where [D] is the bending stiffness matrix defined as

[D] = 1
3

[Q](z3
H − z3

−H) (2.31)

We now combine equations and arrive at the fundamental equation for describing plate
behaviour [

N
M

]
=
[

A B
B D

] [
ε0

κ

]
(2.32)

or in the expanded form

Nx

Ny

Nxy

Mx

My

Mxy


=



Axx Axy Axs Bxx Bxy Bxs

Axy Ayy Ays Bxy Byy Bys

Axs Ays Ass Bxs Bys Bss

Bxx Bxy Bxs Dxx Dxy Dxs

Bxy Byy Bys Dxy Dyy Dys

Bxs Bys Bss Dxs Dys Dss





ε0
x

ε0
y

γ0
xy

κx

κy

κxy


(2.33)

This result is derived only from Kirchhoffs assumptions on displacements and is there-
fore independent of the material of choice. This means [Q] has a linear relationship to
the stiffness components of [A], [B] and [D].

2.3 Mechanical behaviour of compliant elements
This section explores the different mechanical elements that can be used to make compliant
structures with specific properties.

Many fields study the behaviour of different compliant elements and structures. The
most dominant field is called compliant mechanisms and describes a mechanism that ”gain
at least some of its mobility from the deformation of flexible members rather than from
movable joints only”[14]. A subset of compliant mechanisms are LEMs, lamina emergent
mechanisms. These are mechanisms that focus on out-of-plane motions. The closest
field of study to a flexure pattern is the Compliant Array (CA) which consist of a single
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unit that is patterned in series and parallel, but lack a good description or method for
extending the concept to new patterns [25] [20].

The governing principle for a flexure pattern is however only the deformation of flexible
members (flexures) and especially the blade flexure. The blade flexure is synonymously
with the flexure strip and the mechanical properties of this will therefore be the main
focus. Due to the adoptions made from the fields of compliant mechanisms and LEMs,
there is given an overview of the important principles and definitions as well as some
examples in figure 2.16.

(a) A compliant array. (b) A compliant mechanism. (c) A LEM.

(d) A blade flexure (similar
to a flexure strip). (e) A notch flexure.

Figure 2.16: Example of various types and classification of elements that gain their mo-
bility through the deformation of flexible members.

Compliant mechanisms primarily gain their flexibility from deflection of flexible mem-
bers rather than a movable joint in order to transfer or transform motion [14].
The benefits of using compliant mechanisms are mainly the lack of backlash for high
precision movement, spring behaviour for desired force-deflection relations, in plane
manufacturing, part reduction leading to simpler assemblies and compact design.
This is described in further details in other papers [16]

Lamina emergent mechanism (LEM) is a subset of compliant mechanisms manu-
factured form sheet goods with out of plane properties [15]. In-plane properties
like compression and tension are important to make non-developable surfaces, also
known as surfaces with double curvature.

Compliant arrays (CA) are engineered from an array of subelements, most often a
compliant mechanism, that combine to produce a response that is typically not
available from a flat panel made of a single material. For this reason it fits the
definition of a metamaterial from section 2.2. It is formally defined as panels with
geometry consisting of a compliant mechanism that is patterned in parallel and series
to achieve target material properties, particularly out-of-plane bending stiffness [25].
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The fundamental unit of a CA is the compliant mechanism. In the case of the CA
belonging to a rectangular lattice, the centered unit consisting of two units and not
the minimal area unit is often used to preserve its parallelism with the translations.

Flexures are flexible members, or compliant joints that gain their motion through the
elastic properties of the joint material. Basic flexure elements make up compound
compliant mechanisms when combined in different configurations. The basic flexures
are the pin flexure, notch flexure and blade flexure, here referred to as a flexure strip.
Notch flexures are much used in plastic containers as hinges 7 while the flexure strip
is the dominant building block of LEMs. The flexure strip rely on bending for a
translative motion [16] and torsion for an angular displacement.
The mechanical advantages of such elements are primary the lack of friction, back-
lash and wear in comparison to other mechanisms that rely on the interaction of
multiple rigid moving parts to transfer motion. The primary disadvantages are re-
lated to material yielding and fatigue in ares with stress raisers as well as it can
give challenges in the design of applications due to its restrictions in geometry. The
concept is present in several applications with the typical example being precision
instruments where no backlash is crucial. Other mechanisms that use flexures are
bi stable mechanisms, compliant parallelogram mechanisms and thermo mechanical
in-plane microactuators.

2.3.1 Mechanics of a simple flexure strip
The flexure strip, illustrated in figure 2.17 is a general compliant flexure element [15] and
modelled as a rectangular beam. Its compliant degrees of freedom (DOF) are controlled
by the complete flexure configuration, but a thin beam is often regarded as compliant in
three DOFs: one translative, one bending and one twist. The tension, as also included
in figure 2.18 is not regarded as a compliant since the travel distances are much shorter
than for bending. Within the fields of complaint mechanism the flexure strip is modelled
as a spring with spring constant keq. Superscript denotes angular (θ) or translative (u)
displacement.

The spring constant keq for a bending or torsion moment is M, T and force F is given
as

M = T = kθ
eqθ F = ku

equ (2.34)
For the different deformation modes is keq = K where subscript denotes the response

force force tension (t), bending (B) or torsion (T ).

7Notch flexures are often referred to as living hinges.
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E, I, J, K

Figure 2.17: A flexure strip with dimensions, material and geometrical properties.

F u
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Figure 2.18: A flexure strip with two three deformation modes shown: stretching by
tension, translative displacement by bending and angular displacement by bending.

Tension

The tension mode appear when a flexure strip is subjected to an axial force and results
in an elongation. The stiffness Ku

t is given by

Ku
t = EA = Ewt (2.35)

As one can see it is only dependent on the Young’s E modulus and the cross section
area A.

Bending

In plane and out of plane deflection can be achieved through bending. Two common
modes are the fixed-guided and the fixed-free constraints.

The equations for the axial stiffness Ku
B to a force and the angular stiffness Kθ

B to a
moment is given by the equations:
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Ku
B = cEI

L3 Kθ
B = cEI

L
(2.36)

Factor c is the bending mode given by the boundary conditions and can range from
3 for a fixed-free beam to 192 for a fixed-fixed beam, with c = 12 being the case for a
fixed-guided beam [16]. I is the moment of inertia for a rectangular cross section and is
dependent on the axis of bending and is given as I = wt3

12 or I == w3t
12 .

The equation shows that the bending stiffness of a member is decreased though: an
increasing of L, reduction of moment of inertia I through the variables w and t, or by
choosing a less stiff material through E. The parameter c is also an effective way of
increasing the compliance, but is given by the compound flexure configuration.

Torsion

Torsion of a flexure strip transfer angular displacement of the flexure strip, as seen in figure
2.19, and can only occur as an out-of-plane motion in a flexure pattern. The stiffness Kθ

T

for a member is given by the equation

Kθ
T = JG

L
(2.37)

where G is the modulus of rigidity and J is a parameter associated with the cross
section geometry and is analogous to the the polar moment of inertia for circular cross
sections. For an isotropic material G is given as G = E

2(1+ν) . The analytically models for
a beam with circular cross-sections are very good, while for rectangular cross-sections,
effects like warping come into play. A formula for approximating J where w > t for
rectangular cross sections are given as [29]:

J = wt3
(

1
3

− 0.21 t

w

(
1 − t4

12w4

))
(2.38)

A simplification of the formula can be done by eliminating the higher order terms

J = wt3
(1

3
− 0.21 t

w

)
= wt3

3
− 0.21w2t2 (2.39)

By substituting this equation into equation 2.37 we can see that the compliance ST

is linearly dependent on the materials’ modulus of rigidity G (or elasticity E) and the
length of L, while J gives a relation involving multiple powers. Increased compliance is
achieved by reducing G and increasing L.
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L
θ

Kθ
T , G

Figure 2.19: Torsion of a flexure strip.

Cross section and resistance to deflection

The cross section with the height to width ratio is an important parameter for the resis-
tance to deflection for different modes. The moment of inertia, or its equivalents can be
compared for the different modes: I for bending and J for torsion. This is done in figure
2.20 where one can see that the resistance to bending will increase much more than the
resistance to torsion after a h/w = 3/2 ratio.
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Figure 2.20: Normalized difference of height to width ratio for I and Kf = J .

2.3.2 Mechanics of compound flexures
Combinations of the flexure strip implies different boundary conditions and can reduce
or increase the DOFs as well as the compliance. We take a look at some common config-
urations that can be utilized in a flexure pattern. When compliant elements are added
in series, the total compliance Seq is increased, total deflection ueq and angular deflection
θeq is increased, total force Feq is unchanged and stored energy Ueq is increased. On the
other hand, compliant elements in parallel will result in a less compliant structure and
other quantities as one can see from the equations in table 2.4.

Flexures can be combined in symmetric, antisymmetric or asymmetric configurations.
The symmetries of the compound flexure and the symmetries of the loading determine the
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k1

k2

k1 k2
a)

b)

Figure 2.21: a) Springs in series, b) Springs in parallel.

Series Parallel
1/keq = 1/k1 + 1/k2 + ... + 1/kn keq = k1 + k2 + ... + kn

Seq = S1 + S2 + ... + Sn 1/Seq = 1/S1 + 1/S2 + ... + 1/Sn

ueq = u1 + u2 + ... + un ueq = u1 = u2 = ... = un

θeq = θ1 + θ2 + ... + θn θeq = θ1 = θ2 = ... = θn

Feq = F1 = F2 = ... = Fn Feq = F1 + F2 + ... + Fn

Ueq = U1 + U2 + ... + Un Ueq = U1 + U2 + ... + Un

Table 2.4: The systems of springs coupled in series or parallel.

mechanical response. Symmetric structures with symmetric loading are more stable as the
response in the structure will cancel out some forces internally. For an antisymmetric or
asymmetric structure this is not the case, resulting in a response that triggers additional
moments which creates higher stresses.

Figure 2.22 shows three compound flexure mechanisms that are used in this thesis to
make different flexure patterns. A short description of these follows:

Switchback A switchback configuration consists of several flexure elements in series,
where the next flexure is a horizontal reflection (or two-fold rotation in a point) of the
other. An odd number of flexure elements, results in a antisymmetric configuration,
as seen in figure 2.23, while an even number results in a symmetric configuration. By
adding more elements, longer travel distance, angular displacement (seen in figure
2.24) and more compliance is achieved.

Lamina emergent torsion joint (LET) The LET joint is a compliant joint for out-
of-plane bending and is build from four flexure elements that are combined in a
symmetric configuration of two in parallel and two in series. The two possible ways
it can be combined are called an outside-LET or inside-LET configuration. The
reflective lines ensures symmetric loading when subjected to tensile displacement
(seen in figure 2.25) or out of plane bending and is the reason for it being a popular
choice in LEMs[16].
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Coil A coil configuration of the flexure strip wraps around itself to a central point. This
can also be viewed as two switchbacks where a switchback in opposite direction is
inserted in the middle. The long flexure along the outer edges results in multiple
bending modes being present when deformed. The configuration is antisymmetric
with a 2-fold rotation center in the middle and results in an asymmetric responses
when a symmetric force is imposed. Since the coil has all parts in a series, the total
stiffness is enhanced,

(a) LET joint.

(b) Switchback. (c) Coil.

Figure 2.22: Three compound flexures.

Figure 2.23: The tensile and compression response for a symmetric switchback.
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Figure 2.24: The addition of angular displacements when a switchback with three flexure
elements in series is twisted

Figure 2.25: The tensile and compression response for a LET.

2.4 Computational geometry
The field of computational geometry forms the basic tools for applications like: robotics,
game development, Geospatical Information System, computed aided design (CAD), com-
puter aided manufacturing (CAM), computational fluid dynamics (CFD), finite element
analysis (FEA) and many more.

Manipulation of geometrical data sets are most often done with linear algebra. For
this reason some transformation matrices are presented in this section to describe parts
of the underlying theory that is coded into the programs used or made in this thesis.

2.4.1 Geometrical representation
A spatial data model consists of objects defined in the geometrical space. Most spacial
models can represent simple geometric objects like points, curves and surfaces while more
complex models handle complex structure like 3 dimensional objects. These types are
implemented in classes. The most basic representation of a curve is through linear splines.
A rounded patch is then represented by regions bounded by linear splines. More advanced
curves are the Bezier curve or non-uniform rational B-spline (NURBS). Operations on a
spacial data model are important for objects to interact with each other such as calculating
the union, intersection and the affine transformations.

In order to describe the 2 dimensional objects a set of features: interior, boundary
and exterior are used.

Points has topological dimension of 0. Its interior consists of exactly one point. It has
an interior set of exactly one point, a boundary set of no points and an exterior set
of of all other points.

Curves has topological dimension of 1 and consists of infinitely many points along its
length (imagine a point dragged in space). The boundary set consists of the two
end points and an exterior set of all other points.
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Surfaces has topological dimension of 2 and has an interior, exterior and boundary. The
interior is the infinitely many points within (imagine a curve dragged in space to
cover an area), a boundary consisting of one or more curves, and an exterior set of
all other points including those within holes that might exist in the surface.

The Nine-intersection model (9IM) or Egenhofer-Matrix model is a method for com-
puting the spatial relationships between geometries through a 3x3 matrix. The model
considers two objects (A and B) with its respective interiors, boundaries and exteriors
and analyzes the intersections of these nine objects parts for their relationships of the
intersection geometries.

Interior(B) Boundary(B) Exterior(B)
Interior(A) dim(I(A) ∩ I(B)) dim(I(A) ∩ B(B)) dim(I(A) ∩ E(B))
Boundary(A) dim(B(A) ∩ I(B)) dim(B(A) ∩ B(B)) dim(B(A) ∩ E(B))
Exterior(A) dim(E(A) ∩ I(B)) dim(E(A) ∩ B(B)) dim(E(A) ∩ E(B))

Table 2.5: The 3x3 9IM relationship matrix where I is interior, B is boundary and E is
exterior.

Topological predicates are spatial relationships described by the 9IM in table 2.5.
These Boolean functions test the 8 relationships: equal, disjoint, intersects, touches,
crosses, within, contains and overlaps[36] between the geometries. A furhter explanaiton
of these relationships are found in table 2.6. Each relationship is identified with a special
characteristic of the 3x3 relationship matrix.

Topological predicate Meaning
Equals Geometries are topologically equal
Disjoint Geometries have no point in common

Intersects Geometries have at least one point in common
Touches Geometries have at least one boundary point in com-

mon, but no interior points
Crosses Geometries share some but not all interior points, and

the dimension of the intersection is less than that of at
least one of the geometries.

Overlaps Geometries share some but not all points in common,
and the intersection has the same dimension as the ge-
ometries themselves

Within Geometry A lies in the interior of geometry B
Contains Geometry B lies in the interior of geometry A (the in-

verse of within)

Table 2.6: Topological predicates

2.4.2 Affine transformations
The affine space has the generalized properties of the Euclidean space. An affine trans-
formation preserves points, straight lines and planes, and sets of parallel lines, remain
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parallel after a transformation. As we will see, an affine transfomation does not nec-
essarily preserve angles between lines or distances between points, but it preserve the
ratio of distances between points lying on a straight line. A figure of the most important
transformations are seen in figure 2.26.

Figure 2.26: Affine transformations of an object. From top left: original motive, reflection
along x-axis, rotation by θ = 45◦, stretching by a factor 2 in x-direction and shearing by
θx = 30◦.

The general affine transformation can be written as following in equation 2.40 x′

y′

1

 =

 a b ∆x
c d ∆y
0 0 1


 x

y
1

 (2.40)

Where x′, y′ are the transformed coordinates and x, y are the initial coordinates,
a, b, c and d are transforming coefficients and ∆x and ∆y are the translation coefficients.

Examples of 2D affine transformations

Translation by a distance ∆x and ∆y is done through the matix T1

T1 =

 1 0 ∆x
0 1 ∆y
0 0 1

 (2.41)

Reflecting T2 about the x- or y axis is done for the case where a = −1 or c = −1
respectively.

T2 =

 −1 0 0
0 −1 0
0 0 1

 (2.42)

Rotation a rotation in origo by an angle θ is done through the matrix T3

T3 =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.43)
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Rotation an arbitrary point Since all transformations take basis in a transformation
around an origin in origo. A transformations around an arbitrary point is done by com-
bining a translation to origo before and a translation back to the original point after the
rotation.

T4 = T1T2T
−1
1 (2.44)

Glide reflection In order to create a Glide reflection transformation about origo, there
is needed the combination of a mirroring and a translation

T5 = T3T1 (2.45)

Stretching is achieved when the coefficients b = c = 0. An elongation is done for a
a > 1 while a compression is done for a < 1. A matrix associated with a stretch by a
factor a > 0 along the x-axis is given by: a 0 0

0 1 0
0 0 1

 (2.46)

Similarly, a stretch by a factor b along the y axis is given by a = 1 and c > 0.

Shearing by a given angle θ is done with a = d = tan(θ) for a skew deformation along
the x- or y-axis respectively. The affine transformation matrix is 1 tan(θx) 0

tan(θy) 1 0
0 0 1

 (2.47)

2.5 Multi-scale computational homogenization
Most materials are used on a macro-scale, while the understanding of its fundamental
mechanisms are established on a micro-, nano-, and atomic level. Multi-scale methods
tries to predict the general material properties by using models or information on one scale
on another. In this sense it plays an important role in connecting the field of mechanics
of materials to the field of material science 8.

There are many ways of applying multi-scale methods in a general setting. Some
used are the asymptotic homogenization method (AHM), eigenvalue expansion-variational
method (EEVM) and the computational homogenization technique, which is presented
there. This technique is also the most accurate technique in upscaling the non-linear
behaviour of a well-characterized microstructure [10].

The first homogenization dates back to 1985 and is devoted to general considerations
on representative volume elements (RVE), statistical volume elements (SVE), averaging
micromechanics and linear problems [30]. With increasing computational power, the con-
cept is further developed and transferred to many fields, especially through FE analysis.

8The general difference of these fields are that mechanics of materials tries to understand how the
materials behave, while material science focuses on understanding how materials are build.
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2.5.1 Basic theory
In order to establish the macroscopic properties of a hetrogeous medium, the RVE or
SVE has to be defined. The two scales that are involved are called the macroscopic scale
where the hetrogeneties are small and the microscopic scale which is the scale of the
hetrogeneties. In the homogenization theory of a periodic media, the RVE is the unit
cell, which generates by periodicity the entire structure. This unit can be considered a
paralellogrammice block and and is similar to the unit of the pattern described for the
wallpaper groups in section 2.1.3.

The assumption of separation of scales must be emphasized that the microscopic scale
is much smaller than the characteristic length where the macroscopic loading varies. In
most cases this implies

Ldiscrete ≪ Lmicroscopic ≪ Lmacroscopic (2.48)

At each scale there are associated different variable types: on the macroscopic scale,
the material properties are the variables we are looking for and on the microscopic scale
we find the idealized variables. We distinguish

Σ, ϵ macroscopic stress and strain tensors
σ(y), ε(y) microscopic stress and strain tensors

The homogenization techniques assumes that linear displacements are applied on the
macroscopic scale as well as there is a periodic structure. Then it is only necessary to
consider a periodic structure Vrve, which forms the RVE. The following boundary value
problem (BVP) has to be solved:

∂
∂xi

σij = 0, x ∈ Vrve

ui(x) − ε0
ijxj periodic on ∂Vrve

(2.49)

Where ε0
ijxj are the given macroscopic strain tensor, u the displacement of the struc-

ture and ∂Vrve is the boundary of the RVE. The first condition in the equation preserves
elastic deformation of the RVE while the periodic condition ensures continuity of neigh-
bouring cells. The applied loads on the structure makes it possible to derive the constraint
equations

u
Xa

j

i − u
Xb

j

i = ε0
ijxj(x

Xa
j

j − x
Xb

j

j ) (2.50)

The values u
Xa

j

i and u
Xb

j

i are the ith displacement components on the boundary surface
of the cell. The locations in which the values are calculated, are characterized by an offset
in xj direction as illustrated in figure 2.27.

The effective homogenized coefficients of the stiffness tensor, which represents the
macroscopic behaviour of the material, are calculated by:

⟨σij⟩ = Ceff
ijkl⟨εkl⟩ (2.51)

where the expressions ⟨•⟩ represents the average functions of the stress and strain on
macro scale. Since ε0

kl is the given macro strain tensor, the following equation holds.
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x
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j − x
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Figure 2.27: Constraint equation componentes and relationships.

⟨σij⟩ = 1
|Vrve|

∫
Vrve

σijdx

⟨εkl⟩ = 1
|Vrve|

∫
Vrve

εkldx = ε0
kl

(2.52)

The stiffness coefficients are calculated from

Ceff
ijkl = ⟨σij⟩

⟨εkl⟩
(2.53)

2.5.2 RVE for thin structures
Computational homogenization of shells and plates is useful if complex substructures
exists which cannot be captured in a layered-wise composite shell approach. An in-plane
periodicity of the substructure is found in flexible elements and electronics, sandwich
panels, ship hull core structures etc. Like other computational homogenization problems,
microscopical kinematical quantities like in-plane membrane strains ε and out-of-plane
curvature κ are passed to the micro-scale to conduct the boundary value problem.

[u]∗ = f([u], ε, κ) (2.54)
The formulation relies on a through-thickness representative volume element where

the top and bottom surface of the shell are physically incorporated at the RVE level.
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MACRO

MICRO

shell continuum

resultant tangents: M, N → [C]

prescribed deformations: ε, κ

boundary value problem DISCRETE

Figure 2.28: Multi scale computational homogenization of shells with a through thickness
RVE.

2.5.3 Numerical model and algorithm

Because of finite element discretization, the integrals in equation 2.52 are changed to sums
with σe

ij and εe
kl are averaged element values for tensor stress and strain and |Ve| is the

volume of the finite element.

⟨σij⟩ = 1
|Vrve|

∑
e

σe
ij|Ve|

⟨εkl⟩ = 1
|Vrve|

∑
e

εe
kl|Ve|

(2.55)

When the prescribed unit displacements are set, the calculated stiffness components
correspond to the forces and derived quantities that can be measured at the boundary
nodes.

Ceff
ijkl = ⟨σij⟩

⟨εkl⟩
for i, j, k, l = 1, 2, 3 k = l

Ceff
ijkl = ⟨σij⟩

2⟨εkl⟩
for i, j, k, l = 1, 2, 3 k ̸= l

(2.56)
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2.6 Statistics

2.6.1 Simple linear regression
Simple linear regression is a linear model with one independent and one dependent variable
and is used extensively in practical applications. This is because models which depend
linearly on their unknown parameters are easier to fit than models which are non-linearly
related to their parameters.

Fitting the regression line is done with the model function that describes a line with
slope β and y-intercept α

y = α + βx (2.57)

For a set of data pairs (xi, yi), the relationship between xi and yi together with an
error term εi can be described by

yi = α + βxi + εi (2.58)

The goal is to find estimated values for α̂ and β̂ which provides the best fit of the data.
The best fit is determined by the least squares approach which is a line that minimizes
the sum of the residuals ε̂i that is the difference between the actual and the predicted
values of the dependent variable. The values of α̂ and β̂ are found by the equations where

• x̂ and ŷ are the average of xi and yi

• rxy is the sample correlation coefficient between x and y

• sx and sy is the uncorrelated sample standard deviations of x and y

α̂ = ȳ − β̂ x̄,

β̂ =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 = rxy

sy

sx

(2.59)

The coefficient of determination R squared is equal to r2
xy and describes the proportion

of the variance in the dependent variable that is predictable from the independent variable.

Nonlinear regression

Nonlinear regression is a form of regression analysis where a nonlinear combination of the
model parameters are dependent on one or more independent variables.

A nonlinear regression model is on the form where x is the independent variable and
y is the dependent variable.

y ∼ f(x, β) (2.60)



44 CHAPTER 2. BACKGROUND

Linearization Some functions, such as the exponential or logarithmic functions, can be
transformed so that they become linear. When transformed, standard linear regression
can be performed but must be applied with caution. The influences of the data values
will change, as well as the error structure of the model.

The non-linear regression problem with parameters a and b and with multiplicative
error term U can be transformed by taking the logarithm of both sides

y = a lnbx U ln (y) = ln (a) + bx + ln U (2.61)

The equation can be fitted with the simple linear regression model where y = ln y, α =
a, β = b and ε = ln U .



Chapter 3

Method

This chapter explains how the research has been designed, how the results are obtained
and how it is implemented into a program. It is centred around two main objectives: (1)
a method for creating new flexure patterns by using tiles as design strategy and (2) a
method for calculating the mechanical properties with the use of finite element analysis
and repetitive boundary conditions. A discussion of the proposed methods are found in
section 5.4. Before diving into the descriptions of the specific methods, some terms and
tools used are presented.

Computational tools Making repeating patterns while convenient ways of varying
parameters, calculating stiffness and exchange information is done through computational
tools. The generation and export of patterns is done in Python though the use of open
source software. The simulations are done in Abaqus CAE. The software packages used
to build the tools are listed bellow.

Abaqus is a proprietary commercial software suite for finite element analysis and computer-
aided engineering. Abaqus CAE is used for both the modeling and analysis of
mechanical components and assemblies (pre-processing) and visualizing the finite
element analysis result (post-processing). The Python code takes advantage of the
Abaqus Scripting interface (ASI) to communicate with Abaqus. ASI is an extension
of the Python 2.7 language and provides a convenient interface to the models.

Pyhton is a high-level programming language for general-purpose programming. It is
implemented in C as CPython. One of the biggest strengths of the language is
the large standard library and provides tools for many tasks. The syntax is simple
which makes it fast to rapid prototype solutions. The language is free and open
source.

Shapely is a Python package for geometrical manipulations outside the context of a
database. It is build on GEOS, a useful object oriented C++ library in order to
make and manipulate geometrical figures. This includes capabilities for defining
geometries, predicate intersects, touches, overlaps etc., and to do operations like
union, difference, buffer and the affine transformations. Shapely is available under
the BSD-licence which is a family of permissive free software licenses, imposing
minimal restrictions on the use and redistribution of covered software. The credits
of this library goes to Sean Gillies, Aron Bierbaum and Kai Lautaportti.

45
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Matplotlib is a plotting library that provides an object-oriented API for embedding
plots into applications using general GUI toolkits. It is designed to be as usable
as MATLAB, with the ability to use Python, and the advantage of being free and
open-source.

Numpy is a library for the Python programming language, adding support for large,
multi-dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays. The ancestor of NumPy, Nu-
meric, was originally created by Jim Hugunin.

Pandas is an open source BSD-licensed library for Python, offering data structures and
operations for manipulating numerical tables and time series. It is an easy-to-use
tool that is good at handling large amounts of data.

3.1 Creating new flexure patterns
This section introduce a design strategy for making new flexure patterns with compatible
compliant tiles. A need for a method for creating new flexure patterns comes from the
fact that the unit of the pattern only considers the symmetries of the pattern and not the
flexure regions which is a more intuitive way of looking at a flexure pattern. The method
also serve as a systematization where a flexure pattern is build from basic elements and
simple principles that ensure good compliant behaviour.

A compatible compliant tile share many properties with ordinary tiles, but has some
additional features. For any tilings the rule is simple: the tiles should fit together with
no gaps or overlaps. The features of the method are conveniently summarized in three
words that starts with a C : compliant, connected and continuous , where each word has
its own set of strategies.
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Flexure mechanism

Basic tiles

Archemedian tilings

Flexure patterns

Figure 3.1: Overview of the proposed method for creating new flexure patterns.

3.1.1 Continuous
Choose a tiling

Like tilings, flexure patterns has no gaps or overlaps along the unit boundaries, which
makes them continuous. By taking a tiling as a starting point one can ensure that the
final flexure pattern tiles the plane. Among the k-uniform tilings there are 135 tilings
with regular polygons.

Partition the tile into triangles

As most flexure mechanisms transfer motion from one point to another, it is desired to
make a pattern where the points can meet and transfer the motion.
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All convex polygons can be represented by a set of triangles. By taking center point
inside the boundary to serve as a vertex, triangles can be created inside this point and
two neighbouring vertices of the polygon. This triangle can be the region where a flexure
mechanism is mapped, either direct or through a natural extension. When representing a
regular polygon with triangles, all triangles will be congruent. Non-regular polygons will
be represented by multiple different triangles. A figure of the method is shown in figure
3.2.

Figure 3.2: Partition a triangle, square and a convex polygon into trangles.

3.1.2 Connected
Matching connection point

The tiles must have a common connection point in order to be a continuous structure. The
connection is dependent on which edges that meet and the placement of the connection
point. The simplest connection points are symmetric points along the edge. This is
illustrated by the arrows in figure 3.3.

Figure 3.3: Example of two symmetrical and one example of asymmetrical connection
points in a triangle.

In the case of a non-symmetric connection point, the corresponding connection must
be a mirror. Ensuring that all edges in a tiling is connected, is not a trivial manner and is
not carried out for all uniform tilings. For triangles and squares, mirror tiles can be used
to create a continuous pattern in the case where the edges are not symmetric. These are
shown in figure 3.4 for a 36 and 44 tiling. An example of a symmetric edge is seen for the
LET p4m tile.
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(a) Triangular switchback flexure configu-
ration of a 36 tiling. The symmetry group
p31m is marked.

(b) Square switchback flexure configuration
of a 44 tiling. The symmetry group p4g is
marked.

Figure 3.4: Mirror tiles are used to make a connected flexure pattern. The different colors
represent the two mirrored tiles.

3.1.3 Compliant
Choose flexure mechanism

All compliant tiles need to have flexible members that increases the compliance and the
configuration will determine many of the properties.

The two deformation modes: bending and torsion increase the travel length as seen
in section 2.3.2. Bending modes are the only possible deflection modes to increase the
compliance in plane. Bending also works out of plane, but will often create a surface
where flexures are sticking out, creating a serrated surface. Torsion modes are effective
for achieving out of plane deflection.

The flexure configurations LET, Switchback and Coil are the flexure configurations
used in this thesis.

Array of flexures and natural extension

The natural extension is when a flexure or flexure mechanism is being repeated in order
to fill an area with an other shape. The flexure can repeat in parallel, series and be scaled
to fill the space given by the boundary. By patterning flexures in series, the compliance
is increased, while flexures in parallel decrease the compliance according to equations 2.4.

When this method is combined with partition the polygon into triangles, compliant
tiles can be made as seen in figure 3.5. Different tiles with the same flexure mechanism and
the same polygon also share the same symmetries even though it contains more flexures
in the array. These tiles belong to the same family as seen in figure 3.6.

It is necessary to avoid inactive flexures because it increases the manufacturing time
without contributing much to the compliance. When patterned in an array, the flexures
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+

Figure 3.5: A LET extended and patterned in series to fill a new boundary condition.

Figure 3.6: A family of tiles with the flexure mechanism patterned in series, forming a
natural extension.

should not inhibit other flexures to deform which is the opposite to a truss structure where
different members are constructed to inhibit motion.

An example of a flexure pattern found on the internet is the bastian pattern that
consists of a triangular configuration of LETs. The LETs are connected in a truss triangle
that inhibit motion to be transferred to the inner flexures of the triangle. A figure of the
pattern with the bend mode is seen in figure 3.7a.

(a) Bastian pattern found on
http://fabacademy.org. The
flexures inside the red area
are concealed and wont in-
crease the compliance.

(b) Bent form of the Bastian
pattern.

Figure 3.7: Example of a flexure pattern with inactive flexures.

3.1.4 Summary and example of the method
The method is demonstrated to make a triangle tile. Other new flexure patterns created
by this method are found in section 4.1.

Continuous Make a continuous pattern configuration from junction point to junction
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point that transfers the deformation mode

• Choose a tiling.
• Make triangles from center of area to the vertices or other polygons from center

to the middle of edges.

Connected The corresponding edges must have a common connection point.

• Connections meet at the same place and with the same length; is various for
symmetric and asymmetric edge.

Compliant Use a flexure mechanism as deformation mechanism

• Choose deformation modes for out of plane deformation: torsion has no parts
sticking up, while bending has.

• Make an array of flexures to increase compliance: consider the natural exten-
sion of the flexure mechanism.

• Avoid interlocking regions; either make a flexure region or a rigid region.

Figure 3.8: The regular polygons can be represented with the natural extension of a
compliant mechanisms.

3.1.5 Python implementation
This subsection describes the creation of flexure patterns with Python code. To run this
code, Python 2.7 or newer, Numpy, Matplotlib, Pandas and Shapely libraries are required.
Particular challenges for making the classes robust are the handling of geometry where
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relationships are represented by irrational numbers, as seen in appendix B.1.4. Example
code implementations are found in appendix B.

The essential classes are the Polygon, GeneratingRegion and Unit:

Polygon The basic geometrical object is provided by the Shapely library which also
contains a set of useful predicates and operations.

GeneratingRegion inherent form the Polygon class. It provides the smallest regions of
what a unit or a tile is created from. The main attribute is the generating_region
which holds the geometry of the parameterized generator.

Unit inherent from the GeneratingRegion class and is the repeating unit that map the
plane through translation. The main attribute is the unit which holds the geometry
of the generating region. There are methods based on the affine transformations
described in 2.4.2 that generates a unit from the generating region according to the
right symmetry group. There is also a method that makes a flexure pattern to the
requested size. Another method generates an output .svg file.

An inheritance ULM diagram of the classes that are created is shown in figure 3.9.
The framework is based on the classification of wallpaper groups and tilings.
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3.2 Calculating mechanical properties
This section describes the procedure of taking a unit of a pattern or a tile, and calculating
the properties using Abaqus CAE with the computational homogenization technique. As
Abaqus do not have a built in unit system, the consistent units given in table 3.1 are
used:

Mass 1 kilogram (kg)
Length 1 meter (m)
Time 1 second (s)
Force 1 Newton (N)
Moment 1 Nm
Stress 1 Pascal (Pa)
Energy 1 Watt (W)

Table 3.1: Consistent units

Where material data is needed the Young’s’ modulus E is set to 1000 and Poisson’s
ratio ν is set to 0.3 for all simulations.

3.2.1 Abaqus implementation of a plate RVE
Constrained equations in Abaqus

The linear multi point constraint (MPC) in Abaqus requires that a linear combination of
nodal variables is equal to zero. It is defined by the equation

A1u
P
i + A2u

Q
j + ... + ANuR

k = 0 (3.1)
where uP

i is the nodal variable at node P, with degree of freedom i and AN are the
coefficients that define the relative motion of the nodes or set of nodes.

The constrained equation for computational homogenization is a nonhomogeneous case
where the length between two corresponding nodes are equal to the prescribed elongation
û = ∆εi.

A1u
P
i + A2u

Q
j = û (3.2)

By rewriting this equation and introducing a node, Z, that is not attached to any
element in the model we can control the nonhomogeneous constraint through Z with a
suitable degree of freedom m.

A1u
P
i + A2u

Q
j − ûZ

m = 0 (3.3)
In the FE model, a reference point (RP) in x, y and z direction (RPX, PRY and RPZ)

is created to impose the prescribed unit deformations. The strains and curvatures are set
as input variables for each load case, e.g for load case one:

(εxx, εyy, γxy, κxx, κyy, κxy) = (1, 0, 0, 0, 0, 0) (3.4)
For a rectangular unit, the nonhomogeneous part of the equation for the nodes on the

sides with x-normals can be written as:
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ûRP X
1 = (+)∆x(εxx + zκxx)

ûRP Y
2 = (+)1

2
∆x(γxy + zκxy)

ûRP Z
3 = (−)1

2
∆x(yκxy)

(3.5)

The nodes with y-normals are written in the same way but with κyyand∆y as variabels.

Over-constraining the unit

The concept of over-constraining a cell is illustrated in figure 3.10. If we consider the
homogeneous case for four constrained equations Cq along the corners of the unit we get

Cq12 : u2 − u1 = 0
Cq14 : u4 − u1 = 0
Cq43 : u3 − u4 = 0
Cq23 : u3 − u2 = 0

(3.6)

If the following equations are investigated, one can see that Cq23 can be written in
terms of the other three equations

−Cq12 + Cq14 + Cq43 = −(u2 − u1) + u4 − u1 + u3 − u4 = u3 − u2 = 0 (3.7)

This is an important aspect, as over-constraining a system will cause the simulation
to abort.

u1 u2

u3u4

Cq12

Cq14

Cq43

Cq23

Figure 3.10: Dependent constrained equations. Dotted lines are constrained equations not
represented by symbols, while the dashed lines are represented through the Cq.. notation.
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Obtaining results

By prescribing a strain, or curvature, the sum of the resultant forces or moments along
the edges is equal to the stiffness component. Figure 3.11 show the forces and along the
different sides. 

Nx

Ny

Nxy

Mx

My

Mxy


=



Axx 0 0 0 0 0
Axy 0 0 0 0 0
Axs 0 0 0 0 0
Bxx 0 0 0 0 0
Bxy 0 0 0 0 0
Bxs 0 0 0 0 0





1
0
0
0
0
0


(3.8)

For nods found on side X and Y . B components will equal zero for plane strain and
for plain curvature.

Axx =
∑

F X
x

∆Y

, Axy =
∑

F Y
y

∆X

Axs =
∑

F Y
y /∆x +∑

F X
x /∆y

2

Bxx =
∑

MX
x

∆y

, Bxy =
∑

MY
y

∆x

Bxs =
∑

MX
xy/∆y +∑

MY
xy/∆x

2

(3.9)

Where moments are given as:

MX
x =

∑
F X

x z, MY
y =

∑
F Y

y z, MX
xy =

∑
(F X

y z − F X
z y)

MY
xy =

∑
(F Y

x z − F Y
z x)

(3.10)

For a prescribed curvature κx, the components are calculated the same but the com-
ponents are ordered differently.

Bxx =
∑

F X
x

∆y

, Bxy =
∑

F Y
y

∆x

Bxs =
∑

F Y
y /∆x +∑

F X
x /∆y

2

Dxx =
∑

MX
x

∆y

, Dxy =
∑

MY
y

∆x

Dxs =
∑

MY
xy/∆x +∑

MX
xy/∆y

2

(3.11)

By repeating this process each load case, the full stiffness matrix can be found.
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∆x
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Figure 3.11: The directions of of the nodal forces.

Simulation program

This section explains the basic form of the Python code that controls the Abaqus simu-
lation. The code can be accessed through the menu in Abaqus/CAE: File → Run Script,
or in the terminal with the command abaqus cae script.py

A flowchart of the implementation is shown in figure 3.12. The different steps are also
visualized in the Abaqus GUI in figure 3.13. The full code is carefully documented and
can be found in appendix B.2.The load cases with prescribed strains on a simulated unit
can be seen in in figure 3.14.

Part module Creates a part from the coordinates of a Unit object. It partitions it so
that there is a node in the middle.

Material and Section module Sets the material properties of the part. In this simu-
lation the material is set to a linear elastic material.

Mesh and assembly module Seeds and creates a mesh on the part. Makes and as-
sembly instance and creates assembly sets that are used to reference the nodes later
in the post processing module.

Step module Creates a static step and sets the prescribed displacements to the reference
points.

Job module Prepares a job for the specific load case.

Post processing module Reads the output database and takes the sum of the nodal
forces and calculates the stiffness components. Writes all data to a text file.
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Part module Geometry unit object

Material and
Section module Material properties

Mesh and as-
sembly module

Assembly sets,
size of the mesh
and element type

Step and boundary
conditions module

Field output request,
load case, constraints

Job module Abaqus solver

Post-processing
module Output data

Figure 3.12: Representation of the Python code for computing the stiffness components
of the RVE.
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(a) Part module (b) Material and Section module

(c) Mesh and assembly module (d) Step and boundary conditions module

(e) Step and boundary conditions module:
constrained equations

(f) Post processing module after ended Job
simulation

Figure 3.13: The different Abaqus modules necessary for obtaining numerical results. The
Job module from the flowchart is not visualized.
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Figure 3.14: Strain state of a RVE of a flexure pattern.
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3.2.2 Evaluation of numerical model
The model can be checked against a solid plate where the stiffness is known beforehand.
From figure 3.15 we can observe that the model experiences uniform strain in all cases
with the same magnitude as the prescribed strains. The stiffness components of a plate
with E1 = 1000 and v12 = v21 = 0.3 is given by the equations:

A11 = A22 = h
E1

1 − v12v21
A12 = h

v12E1

1 − v12v21
A66 = hG12 = h

E1

2(1 + v)

D11 = D22 = h3

12
E1

1 − v12v21
D12 = h3

12
E1

1 − v12v21
D66 = h3

12
G12 = h

12
E1

2(1 + v)

(3.12)

A comparison between results from the simulated and the analytically calculated equa-
tions are shown in table 3.2. This show that the results has a small error of ±0.05 when
a solid plate is considered.

Stiffness component Analytic calculation Simulated result
A11 1098.90 1098.90
A12 329.67 329.67
A66 384.62 384.62
D11 91.58 91.58
D12 27.47 27.47
D66 32.05 32.05

Table 3.2: Comparison between analytically calculated and simulated stiffness compo-
nents.
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Figure 3.15: Stain states of a plain plate.
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Element convergence test

There are two independent parameters to study when generating a mesh: element type
and element size.

Different element types capture the different deformation modes at different accuracy
and is chosen for different models. In this model, solid elements are chosen to capture the
resultant moments which distribute along the thickness of the edges.

The convergence test is needed to determine the size of elements. It is carried out
by refining the element size until there is no difference in FEA results. The number of
element is relevant for time used to conduct an analysis. For this reason the combination
of element type and element size is relevant when choosing the mesh size. Stress analyses
need finer mesh for capturing correct stress while resultant forces are being captured more
correctly by a courser mesh.

The solid elements tested are:

C3D8 linear brick element with 8 nodes

C3D20 quadratic brick element with 20 nodes

C3D20R quadratic brick element with 20 nodes with reduced integration

The expression full integration refers to the number of Gauss points required to inte-
grate the polynomial terms in an element stiffness matrix exactly when the element has
a regular shape.

Reduced-integration elements use one fewer integration point in each direction than
the fully integrated elements. Linear reduced-integration elements tend to be too flexible
because they suffer from their own numerical problem called hourglassing.

Linear elements with full-integration tend to be stiffer for bending since they capture
bending with a shear like distortion. When bending deformation is present these are
recommended to be avoided.

The model geometry and loading determine the different deformations: tension, com-
pression, shear, uniaxial, plane strain etc. and are relevant for the result. The best is to
use the actual model for determination of mesh size because small details in the model
can render the mesh dependent. Due to the large number of different models, the LET
cmm that captures all deformation modes is used. Here A11 capture tension, A22 capture
bending, A66 capture shear, D11 capture bending, D22 capture torsion, D66 capture twist.

The best result is obtained by choosing the right element type and to reduce the
element size. Some of the meshes used, can be seen in figure 3.17 and the results can be
seen in figure 3.16. From this we observe that C3D8 elements show a stiffer behaviour
than C3D20 and C3D20R and C3D20R is less stiff than C3D20. 2 elements across the
cross section results in C3D20 and C3D20R being 0.02 from the result with 5 elements
for all components except for twist of D66 where the error is 0.12. Sufficient results for
D66 is obtained with 4 elements across the cross-section.

Computation time is also a relevant factor when many simulations are ran. A minimum
of 2 elements across the cross-section, can be good enough for most results if the errors
for D66 is acceptable.
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Figure 3.16: Convergence of results for different components with different elements and
sizes. X-axis is number of elements across cross-section of the LET, y-axis is error calcu-
lated relative from the last result of a C3D20 element.
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Figure 3.17: Mesh size of LET during convergence test.

3.2.3 Multi-variable simulations
The described computational models are used to simulate a variety of different flexure
patterns. The steps to obtain data are briefly summarized:

1. Geometrical variations of flexure patterns are generated through the Python Unit
class.
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2. The stiffness matrix is calculated with the computational homogenization method
and saved to a .csv file.

3. The results are analyzed and plotted with the use of Pandas, Matplotlib and statistic
regression models.

Relating numerical and analytically stiffness

For comparing the numerical results from the simulations with the expressions for the
flexure strip, we want to describe the spring stiffness K given in section 2.3.1 as plate
stiffness components in the principal directions. We note that the coupling terms are not
taken into the results, but will play a significant role for some patterns. The form the
stiffness components with no coupling can be written as

Ni = Aiiεi Mi = Diiκi (3.13)
where Ni and Mi are given as force and moment per unit length li (as seen in figure

4.3) and i = 1, 2. ε is related to the axial displacement u and the length of the unit length
li. κ is related to the angular displacement θ and the curvature of the simulated unit li.

u = εli θ = κli (3.14)
By inserting these into the equation 2.34 for F and M we obtain.

Ni = Kuliεi = Aiiεi Mi = Kθliκi = Diiκi (3.15)

The LET cmm flexure pattern is a good candidate to investigate how the change
of geometrical parameters effect the stiffness. This because the deformation modes are
closely related to the bending of a flexure strip and occur separated for the different
stiffness components. When comparing analytically results with the simulated results,
one have to be careful on the axes for I and J as these are different for the various
bending modes. From this we expect:

• A11 to be a governed by axial tension stiffness Ku
t .

• A22 to be governed by bending mode with stiffness Ku
B. that is dependent on both

thickness and length for the cross-section

• D11 to be governed by a bending mode of a beam Kθ
B.

• D22 to be governed by the torsion of a beam Kθ
T .

With the assumption of the flexure length being approximately the length of the
simulated units, L ∼ li for D11 the proportions between the stiffness components and the
parameters are:

A11 ∝ (E, w, t)
A22 ∝ (E, w3, t, L−3)
D11 ∝ (E, w, t3)
D22 ∝ (E, J(w, t), L−1)

(3.16)
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The full expressions contains more dependencies between the variables like like li which
is influenced by the width or length of the flexure as well as the rigid regions. These are
not considered and will cause some error.



Chapter 4

Results

4.1 New flexure patterns
This section presents the geometry of some new flexure patterns found using the design
strategies described in 3.1. Table 4.1 show these flexure patterns with interesting charac-
teristics and describes the patterns by flexure type, symmetry group and regular tiling.
All flexure patterns belongs to a family (as described in 3.1.3) and can be extended with
more flexures.1. Illustrations of the flexure patterns are found in figures 4.1 and 4.2.

Flexure type Symmetry group Regular tiling Comment
LET p4m 44

LET p6m 36

LET p6m 63

Switchback cmm - non regular tiles
Switchback p4 44

Switchback p4g 44 mirror tiles
Switchback p31m 33 mirror tiles
Switchback p6 36

Switchback p6 63

Coil cmm 44

Skew coil p6 63 skew +30◦

Skew coil p6 63 skew −30◦

Table 4.1: List over new flexure patterns

1Switchback cmm is only observed with one switchback. The general version is therefore presented
here as a new flexure.
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(a) LET p4m. (b) LET p6m (triangular).

(c) LET p6m (hexagonal). (d) Coil cmm.

(e) Coil p6 (skew −30◦). (f) Coil p6 (skew +30◦).

Figure 4.1: New flexure patterns corresponding to table 4.1.
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(a) Switchback cmm. (b) Switchback p4.

(c) Switchback p4g (d) Switchback p31m

(e) Switchback (hexagonal) p6 (f) Switchback (triangular) p6

Figure 4.2: New flexure patterns corresponding to table 4.1.
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4.2 Mechanical behaviour
The stiffness matrix of the flexure patterns in table 4.4 are calculated with the method
described in section 3.2. The results are presented in terms of anisotropy and the variation
of geometrical parameters. In addition, some special behaviour and properties of the
stiffness matrices are highlighted. The simulated thickness is set to 1, if not else is
commented, and gives the relationship [A] = [Q].

4.2.1 Principal deformation mechanisms
The relations between basic geometrical parameters of flexures and the principal equations
for determining the properties of the laminate stiffness matrix is showed for a LET cmm.
The simulations are done with the values and variables for given in table 4.2 and a
description of the measurements are found in figure 4.3.

flexure_width
thickness

flexure_length

stem_widthstem_height

y

z

x

l1

l2

Figure 4.3: Dimensions of the generating region for the LET.

Simulation Flexure length Flexure width Stem length Stem width Thickness Data points
1 [1.0, 32.0] 1.0 1.0 1.0 1.0 6
2 5.0 [0.2, 3.0] 1.0 1.0 1.0 10
3 1.0 1.0 [1.0, 6.0] 1.0 1.0 6
4 1.0 1.0 1.0 [1.0, 6.0] 1.0 6
5 5.0 1.0 1.0 1.0 [0.5, 8.0] 8

Table 4.2: Dimensions of the simulated LET cmm. Variation of parameters is given in an
interval [ - ].

A plot of the results from simulation 1 is shown in figure 4.4. Simulation 5 is shown in
figure 4.5. All plots are found in Appendix C. A complete table of the estimated slope of
the linear- or logarithmic regression line is shown in table 4.3 together with the statistical
R2 values. The table show only the values for the best fitted regression method.

A proportional increase of all parameters while keeping the thickness constant was
simulated on a YdX pattern and is seen in figure 4.6.
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(b) Logarithmic plot.

Figure 4.4: The change of stiffness when flexure length is increased of LET cmm. Variable
l1 in the plot is proportional to flexure length.
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Figure 4.5: The change of stiffness when flexure thickness is increased of a LET cmm .
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Simulation 1 Slope R-value Reg
A11 -0.045 0.94185 log
A22 -2.868 0.97837 log
A66 -1.475 0.98010 log
D11 -0.055 0.97146 log
D22 -1.284 0.97697 log
D66 -0.457 0.99495 log

Simulation 2 Slope R-value Reg
A11 0.658 0.98584 log
A22 2.849 0.99973 log
A66 1.947 0.96521 log
D11 0.642 0.98439 log
D22 1.921 0.95164 log
D66 1.138 0.98655 log

Simulation 3 Slope R-value Reg
A11 -0.837 0.99793 log
A22 0.478 0.99794 log
A66 -1.258 0.98631 log
D11 -0.822 0.99779 log
D22 0.187 0.98629 log
D66 0.851 0.99129 linear

Simulation 4 Slope R-value Reg
A11 0.215 0.99721 log
A22 -0.951 0.99995 log
A66 -5.455 0.57298 linear
D11 0.205 0.99117 log
D22 -0.688 0.97774 log
D66 -1.918 0.44502 linear

Simulation 5 Slope R-value Reg
A11 351.112 0.99999 linear
A22 2.078 0.99980 linear
A66 9.509 0.99987 linear
D11 2.987 0.99999 log
D22 1.968 0.99361 log
D66 2.355 0.99620 log

Table 4.3: Slope, R-value and best fitted regression model for variation of different stiffness
components when parameters are variation of the LET cmm flexure pattern.
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Figure 4.6: A YdX pattern scaled proportionally, while keeping the thickness constant.
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4.2.2 Elastic anisotropy
With the rotation matrices given in section 2.2.1, considering an angular rotation θ of
the unit cell from its internal reference coordinate system, around the out-of-plane axis.
The change in the elastic stiffness matrix with coordinate rotations was observed for the
stiffness matrix for the patterns in table 4.4. More detailed results are found in appendix
C.

The periodic anisotropy is discussed for matrix [A], but the same periodicity is present
for matrix [D] in not else is mentioned. The polar plots are given for matrix components
A11 and D11 respectively.

The term n = 0, 1, 2, 3... describes the n-fold rotation in which a term in the stiffness
matrix is repeated. The phase-shift is denoted by ϕ.

Flexure type Symmetry group
Misc p1
Misc p2
Misc pm
Misc pg
LET cmm
Switchback cmm
Ydx cmm
Coil cmm
Switchback p4
Coil p4
LET p4m
Switchback p4g
LET p6m

Table 4.4: List over simulated flexure patterns

A p1 pattern

The simulated p1 pattern is done mainly to observe the response of a pattern with only
translative symmetry. The stiffness matrix of the p1 pattern is:

A11 A12 A16 0 0 0
A12 A22 A26 0 0 0
A16 A26 A66 0 0 0
0 0 0 D11 D12 D16
0 0 0 D12 D22 D26
0 0 0 D16 D26 D66


(4.1)

The simulated unit and a polar plot for A11 and D11 values is seen in 4.8. The values
of the rotated stiffness matrix is seen in figure 4.7 with the following observed response:

• A11, A22, A16 and A26 repeat with a 180◦n period, A12 and A66 repeat with a 90◦n
period.

• A12 and A66 are symmetric with 45◦n period.
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• A11 and A22 have the same magnitude with a phase shift of ϕ = 90◦ .
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Figure 4.7: The anisotropic response of a rotated stiffness matrix of the p1 pattern.

(a) Simulated unit.
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(b) A11 and D11.

Figure 4.8: A p1 flexure pattern.

A p2 pattern

The simulated p2 pattern is done mainly to observe the response of a pattern with only
translative and 2-fold rotational symmetry. The simulated unit and a polar plot is seen in
4.9. The properties of the stiffness matrix are in principal the same as for the p1 pattern.
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(a) Simulated unit.
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(b) A11 and D11.

Figure 4.9: A p2 flexure pattern.

A pm pattern

The simulated pm pattern is done mainly to observe the response of a pattern with only
translative and mirror symmetry. The stiffness matrix for a pm pattern is observed to be:

A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66


(4.2)

The simulated unit and a polar plot for A11 and D11 values is seen in 4.11. The values
of the rotated stiffness matrix is seen in figure 4.10 with the following observed response:

• A16 and A26 appear for θ ̸= 90◦n.

• A11, A22, A16 and A26 repeat with a 180◦n period, A12 and A66 repeat with a 90◦n
period.

• A11 and A22 have the same magnitude with a phase shift of ϕ = 90◦ .

• Extreme values are symmetric for A11, A22 and found at θ = 90◦n

• When A16 = 0 an extreme value of A22 is found, and when A26 = 0 an extreme
value of A11 is found.
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Figure 4.10: The anisotropic response of a rotated stiffness matrix of the pm pattern.

(a) Simulated unit.
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(b) A11 and D11.

Figure 4.11: A pm flexure pattern.

A pg pattern

The simulated pm pattern is done mainly to observe the response of a pattern with only
translative and glide-reflection symmetry. The simulated unit and a polar plot is seen in
4.12 and repeats with 180◦ intervals. There are two axes of symmetry.
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(a) Simulated unit.
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(b) A11 and D11.

Figure 4.12: A pg flexure pattern.

cmm patterns

The stiffness matrix for a typical cmm is the same as given in matrix 4.2. Polar plots for
A11 and D11 and some additional graphs are given for the following flexure patterns:

LET cmm with flexure length as free variable is given in figure 4.13. A more detailed
study of the parameters is seen in figure C.9 for increased flexure length and in
figure C.8 for increased flexure width.

Switchback cmm with cut width as free variable is given in figure 4.14.

Coil cmm with cut width as free variable is given in figure 4.16

YdX cmm with flexure angle as free variable is given in figure 4.15.
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(b) A11 and D11.

Figure 4.13: A LET cmm flexure pattern where flexure length is increased.
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(a) Simulated unit.
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Figure 4.14: A Switchback cmm flexure pattern where cut width is increased.
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Figure 4.15: A YdX cmm flexure pattern where flexure angle is increased.
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Figure 4.16: A Coil cmm flexure pattern where cut width is increased.
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p4 patterns

A p4 flexure pattern that is parallel with its principal axes has the stiffness matrix

A11 A12 0 0 0 0
A12 A11 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D11 0
0 0 0 0 0 D66


(4.3)

An anisotropic response is seen in figure 4.17 and is from a switchback p4. The following
properties are observed for the rotated stiffness matrix:

• All properties repeat with a 90◦n period.

• All components are symmetric about its extreme values which repeat with a 45◦n
period.

• The extreme values are shifted with an angle ϕ for A11, A12, A22 and A66 where
A16 = A26 = 0, and ϕ + 22.5◦ for A16 = A26

• There is a change of ϕ with a change of geometry.

• A16 and A26 are non-zero for θ ̸= ϕ + 45◦n

Polar plots for A11 and D11 is given together with the principal axes for the following
flexure patterns:

Switchback p4 with cut width as free variable is given in figure 4.18. The simulated
unit is parallel with the flexures, but the stiffness matrix is shifted an angle ϕ.

Coil p4 with cut width as free variable is given in figure 4.19



4.2. MECHANICAL BEHAVIOUR 81

0 45 90 135 180
[ ]

1

0

1

2

3

4

5

[N
/m

]

In-plane

A11
A12
A16
A22
A26
A66

0 45 90 135 180
[ ]

5

0

5

10

[N
]

Out-of-plane

D11
D12
D16
D22
D26
D66

Figure 4.17: Anisotropic in-plane stiffness components for a p4 switchback .

(a) Simulated unit.
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(b) A11 and D11.

Figure 4.18: A switchback p4 flexure pattern where cut width is increased.

(a) Simulated unit.
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Figure 4.19: A Coil p4 flexure pattern where cut width is increased.
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A p4m pattern

The stiffness matrix for a typical p4m flexure pattern with coordinate system parallel to
two of the reflection symmetry lines is the same as for the p4 flexure pattern but with no
shift of phase angle ϕ. When the parameters of the geometry is varied, the results show
that only the amplitude changes, and no phase shift angle is observed.

Polar plots for A11 and D11 is given for the LET p4m with junction length as free
variable is given in figure 4.20.
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(b) A11 and D11.

Figure 4.20: A LET p4m flexure pattern where junction length is increased.

A p4g pattern

The stiffness matrix for a typical p4g flexure pattern with with coordinate system 45◦

offset from the reflection symmetry lines is the same as for the p4 flexure pattern but
with no shift of phase angle ϕ.

Polar plots of A11 and D11 with flexure width as free variable for Switchback p4g is
given in figure 4.21. When the parameters of the geometry is varied, the results show that
only the amplitude of all components of the stiffness matrix shifts scales, and no phase
shift angle is observed.
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(b) A11 and D11.

Figure 4.21: A switchback p4g flexure pattern where junction length is increased.

A p6m pattern

The stiffness matrix for a typical p6m flexure pattern with coordinate system parallel
with two perpendicular lines of reflection symmetry is
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

A11 A12 0 0 0 0
A12 A11 0 0 0 0
0 0 A11−A12

2 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D11 0
0 0 0 0 0 D11−D12

2


(4.4)

Figure 4.22 shows the transformed properties of the LET p6m flexure pattern. This
shows little variation in the transformed stiffness and a transverse isotropic behaviour.
Figure 4.23 shows the simulated unit and a polar plot of the rotated stiffness.
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Figure 4.22: Isotropic stiffness for a LET p6m.

(a) Simulated unit.
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Figure 4.23: A LET p6m flexure pattern.
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Negative Poisson’s ratio

The YdX pattern showed great increase of the negative Poisson’s ratio when the angle of
the flexure was changed as shown in figure 4.24. The result can be seen in table 4.5.

Figure 4.24: YdX cmm where interior angle is varied.

θ νxy νyx

20 -0.12 -5.22
30 -0.24 -3.08
40 -0.41 -1.90
50 -0.64 -1.21
60 -0.95 -0.78
70 -1.33 -0.50
80 -1.71 -0.30

Table 4.5: Change of Negative Poisson’s ratio with change of angle of the internal flexure
in YdX cmm.

Degree of anisotropy

Degree of anisotropy ηA and ηD for in-plane and out-of-plane anisotropy is calculated as
the ratio between the maximal and minimal value of the 11-component for the rotated
stiffness matrix for A11 and D11.

ηA = Amin
11

Amax
11

ηD = Dmin
11

Dmax
11

(4.5)

As seen by the polar plots, the degree of anisotropy varies for the different patterns.
Table 4.6 shows the maximum and minimum degree of anisotropy for different patterns
for all simulated variations for values of the [A] and [D] matrix.
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Flexure pattern ηA ηD

LET cmm [4.5, 11000] [2.0, 200.5]
Switchback cmm [1.14, 137.6] [1.1, 1064.6]
Ydx cmm [9.0, 2.8] [1.3, 9.0]
Coil cmm [1.1] [1.1, 1.4]
Switchback p4 [1.1, 1.4] [1.5, 3.7]
Coil p4 [1.1] [1.1, 1.4]
LET p4m [1.1, 4.1] [2.3, 23.6]
Switchback p4g [1.1, 1.2] [1.1, 1.4]
LET p6m [1.0] [1.0]

Table 4.6: Some calculated values of η for different flexure patterns.

Detailed variation of geometry

Some variation of parameters are shown in the polar plots. But to capture the complete
variation of the stiffness, all terms in the stiffness matrix most be considered. The fol-
lowing graphs in figure 4.25 show the anisotropic response of a YdX cmm flexure pattern
where the flexure angle is varied. For more detailed variations, see appendix C.
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Figure 4.25: Anisotropic stiffness for a YdX cmm flexure pattern where flexure angle is
varied from 20◦ to 80◦.
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4.3 Flexure pattern design tool
A Python program that generates flexure patterns according to user input is made. The
program has the following capabilities:

• Generate the geometry of 11 unique flexure patterns where all parameters can be
varied.

• Methods for generating units from 7 of the plane symmetry groups are implemented

• Generate a flexure pattern with the desired number of units.

• Output a .svg file that can be used for manufacturing.

The capabilities of the Python program is demonstrated in appendix B.1. The class
methods plot(), set_unit_para(), make_pattern() and save_svg() are important
methods (functions) for manipulating the Unit object. The lattice related attributes
(variables) are important for making the pattern and to determine the boundaries when
the is sent to a simulation in a FEA program.

A list of attributes and methods is found in table 4.7 and 4.8.
The full code is found on the GitHub page https://github.com/oddvinostmo/patterns-code

[40] and is free and open source.

Attributes Comment
unit.name unit name
unit.unit geometry of unit
unit.generating_region geomety of generating region
unit.para parameters for geometry
unit.lattice_type
unit.center center of lattice
unit.l1 lattice length 1-direction
unit.l2 lattice length 2- direction
unit.angle lattice angle
unit.flexure_pattern geometry of flexure pattern

Table 4.7: Central attributes of the Unit class.

Methods Comment
unit.set_unit_name() sets custom name
unit.plot() plots unit in coordinate system
unit.set_unit_para() changes parameters and updates geometry
unit.make_pattern() creates a flexure pattern
unit.save_svg() creates a .svg file of the flexure pattern
unit.batch_save_svg()

Table 4.8: Central methods of the Unit class.





Chapter 5

Discussion

5.1 Definition
The new term flexure pattern describes the same concept as living hinge[26],
lattice hinge[7], kerf bend [26] and compliant array[25], but in a broader sense. Flexure
refers to the basic building component that is a fundamental way of introducing flexibility
into a material. Pattern refers to the concept of something being repeated in the plane
according to some rules. Subjectively speaking, the term flexure pattern is more catchy
and I argue that this term is better than the other names found.

Living hinge is originally the term for a thin flexible hinges that connect two rigid pieces
together in a pivoting motion. It is extensively used in injection molding of plastics
containers, but have been adopted as a term to describe a flexure pattern as well.

Lattice hinge creates the notion of a lattice structure of strips usually arranged to form
a diagonal pattern of open spaces between the strips [4] and hinge being the motion
of pivoting.

Kerf bend is originally the term for the concept where slots are almost cut through the
material in order to let it be bent.

Compliant array consists of compliance which is synonymously with flex and array
being ”a regular order or arrangement; series” [4]. It refers to the usual rectangular
arrangement of shapes in rows and columns. I argue the word pattern is a better
word as it does not lay any restrictions of how it is repeated. This means it can
include periodic patterns but also aperiodic or non-periodic patterns and gives the
possibility of bottom-up metamaterials that have changing structure according to
the desired properties in the specific region.

This thesis characterizes a flexure pattern as a 2 dimensional mechanical metamate-
rial that consists of flexures configured in a pattern that increase the compliance compared
to the bulk material of which it has been made. The flexures are patterned onto the plane
according to a set of rules.

The reason that patterned is specified as ”according to a set of rules” is because this
does not constrain it do be done in a repetitive manner. One can imagine a complex
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(a) Voronoi diagram. (b) Grain boundaries. (c) Dragonfly wing.

(d) Leaf structure. (e) Penrose tiling.

Figure 5.1: Various patterns that are not not periodic, but occurring in nature as a
localized optimization.

surface where local variations of the stiffness are desirable, and this pattern needs to be
patterns according to some rules that describes the local geometry and not just the global.

This local customization also fits good with the definition of a bottom up meta material.
Other ways to pattern the plane according to other rules are Voronoi tiling and aperiodic
tiling. Voronoi tiling, as seen in figure 5.1, is popular in some optimization problems and
occur spontaneously in nature.

Mechanical metamaterials is an interesting due to their high strength to weight ratios.
Flexure patterns are in many ways related to the flexible 2D truss lattice which is defined
as a meta material [8].

5.1.1 New flexure patterns

The criterion to call the proposed flexure patterns new are: they are unique to any other
flexure patterns I have found after research on the internet. Due to long traditions for
making decorative patterns, there are numerous different motifs and some might be of
the same design claimed to be new in this thesis.
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5.2 Interpretation of results
5.2.1 Principal deformation mechanisms and numerical results
By comparing the expected values from the equations 3.16 with the simulated values in
table 4.3, one can discuss the relations between the geometric parameters and the stiffness
components of the LET cmm.

When the flexure length was varied in simulation 1 one could see from the graph in
figure 4.4 a logarithmic relationship between the flexure length and the stiffness. When
w and t is held constant, the expected relations are:

A11 ∝ L0, A22 ∝ L−3, D11 ∝ L0, D22 ∝ L−1 (5.1)
The simulated results versus the analytically expected values are seen table 5.1. The

only differing significantly is D22 which is the torsion mode of a flexure strip. As com-
mented in section 2.3.1 other effects like warping may occur for rectangular cross-sections.

Component Simulated slope Expected slope Difference
A11 -0.04 0 0.04
A22 -2.97 -3 0.03
D11 -0.05 0 0.05
D22 -1.28 -1 0.28

Table 5.1: Logarithmic regression slope from simulations and the analytically expected
for some stiffness components when the flexure length is varied.

When the flexure width was increased in simulation 2, is was expected that all
stiffness components increase as seen in appendix C. The simulated results compared
to the analytically expected values are seen table 5.2. When L and t is constant, the
expected relations are:

A11 ∝ w, A22 ∝ w3, D11 ∝ w, D22 ∝ J(w) (5.2)

Component Simulated slope Expected slope Difference
A11 0.66 1 0.34
A22 2.85 3 0.15
D11 0.64 1 0.36
D22 1.92 - -

Table 5.2: Logarithmic regression slope from simulations and the analytically expected
for some stiffness components when the flexure width is varied.

The simplification predicts a slope of 1 fore A11 and D11 components. A more realistic
estimate is related to the proportion of the simulated unit containing a flexure w/l2 → 1
and will therefore asymptotically approach a limit in the stiffness. With an exponent of
0.64 and 0.66 gives an asymptotic curve for the values < 1.
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A22 is expected to behave like a beam with the second moment of inertia increasing
in a cubic fashion with the increased height. For D22 the approximations in section 2.3.1
on J have to be considered. This contains several higher order terms that gives it an
non-trivial logarithmic relation. The contention w > t in the formula should result that
the smallest gets increases the stiffness by a power of three and the largest increases the
stiffness by a power of one. Tho regression shows however that a power of 2.18 fits the
results good.

When the thickness increases in simulation 5, all A- components increases linearly
with the slope of the stiffness; hence a doubling in the thickness doubles the in-plane
stiffness. For the D-components the stiffness increases logarithmic with a factor 3 for
D11 . This is similar behaviour of what we would expect as seen in table 5.3. For D22
varying the thickness results in the same conclusion as for the increased flexure width.
Both simulations gives a slope close to 2 which means that the results corresponds with
each other.

The opposite case of changing the stiffness and remaining the other dimensions con-
stants is to keep the thickness constant and scale the unit. The expected outcome will
then be that the in-plane stiffness remains the same, while the out-of-plane stiffness in-
creases with the same factor. This was observed for the YdX cmm and is seen in figure
4.6..

A11 ∝ t, A22 ∝ t, D11 ∝ t3, D22 ∝ J(t) (5.3)

Component Simulated slope Expected slope Difference
A11 1.00 1 0.00
A22 1.02 1 0.02
D11 2.99 3 0.01
D22 1.97 - -

Table 5.3: Logarithmic regression slope from simulations and the analytically expected
for some stiffness components when the flexure thickness is varied.

The stem width and stem height are categorized as ”stiff areas” in the analytically
models and would not contribute to any stiffness reduction from increased deformation
modes. The results points in the direction that the parameters have opposite effects on
the stiffness, but the mechanisms are not self evident at this point. Increase of stem width
contributes to a wider unit, which means that the resultant forces will distribute over a
longer length and results in a less stiff unit. This is also consistent with the results as
A11 and D11 decreases for increased stem width and A22 and D22 decreases with a longer
stem width.

It must however be commented that D22 proportion to J(t) is expected a linear
relation for the simplest approximation when the thickness or the width of the flexure is
increased and is investigated through the graph in figure 2.20. Both simulations showed
close to a quadratic relationship which was not predicted by the model. Further work
could focus on describing these relationship further.
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More sophisticated models for the flexure strip, that encounter non-linearities are
investigated analytically in other studies [23]. A full derivation of the stiffness of the LET
is also done by [17] where the results are compared with physical experiments.

5.2.2 Anisotropic elasticity
The results indicates that most flexure patterns inhibit anisotropic elasticity and some
inhibit isotropic elasticity. This is best seen when the stiffness matrix is rotated about an
angle and reveals the change of properties. The fact that many of the stiffness matrices
had the same form, point in the direction that there are some general cases that gives
similar properties.

The question about anisotropy is essentially a question about the mathematical eigen-
values of the stress tensors and are thoroughly studied on a mathematical level since L.A
Cauchy. This is done by defining a set of invariants that the general Hooke’s law must
satisfy. A derivation of the 2D cases is done [37], but without referencing it to the plane
symmetry groups.

The 2D stress tensors accept only four symmetry classes [31] diagonal (Z2), orthogonal
(D2), tetragonal (D4) and isotropic (O(2)) and correspond to the crystallographic groups:
triclinic, orthotropic (and monoclinic), tetragonal and hexagonal.

The criterion for being an orthotropic material in 3D is stated as having three mu-
tually, perpendicular planes of reflective symmetry. The case for the 2D case is maybe
surprisingly only one plane of reflective symmetry. But as the simulation show, a glide-
reflection gives the same result. While not being an of crystallography and not having
complete overview, the result of a glide reflection being enough symmetry to make an
orthogonal 2D material is something I have not found in the literature.

The minimal symmetries present in a pattern for becoming an other category is pre-
sented in figure 5.2.

Z2

D2

D4

O(2)

reflection or glide reflection

4-fold rotation

3-fold rotation

Figure 5.2: Minimal symmetries for tensor category.
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Symmetry group Symbol Category Simulated
p1 Z2 Diagonal Yes
p2 Z2 Diagonal Yes
pm D2 Orthogonal Yes
pg D2 Orthogonal Yes
cm D2 Orthogonal No

pmm D2 Orthogonal No
pmg D2 Orthogonal No
pgg D2 Orthogonal No
cmm D2 Orthogonal Yes
p4 D4 Tetragonal Yes

p4m D4 Tetragonal Yes
p4g D4 Tetragonal Yes
p3 O(2) Isogonal No

p3m1 O(2) Isogonal No
p31m O(2) Isogonal No

p6 O(2) Isogonal No
p6m O(2) Isogonal Yes

Table 5.4: Categorization of tensor properties from symmetry group.

Diagonal

The tested flexure patterns belonging to p1 and p2 fitted this category. These showed
180◦ periodicity and had no principal axes. The observed stiffness matrices for a diagonal
material has five independent terms for both [A] and [D] matrices A11 A12 A16

A12 A22 A26
A16 A26 A66

 (5.4)

A physical interpretation of the 180◦ periodicity is that all forces must have an equal
counter force in the opposite direction. By rotating anything by 180◦ you are basically
measuring the specimen upside down.

The 180◦ periodicity being the minimal form for symmetry for any flexure pattern can
be seen from the transformation operation in equation 2.20. From this one can see cos(θ)
and sin(θ) is 360◦ periodic while cos3(θ)sin(θ) and cos(θ)sin3(θ) are 180◦ periodic, and
cos2(θ)sin2(θ) are 90◦ periodic. A visualization is seen in figure 5.3.
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Figure 5.3: The terms of the transformation matrix visualized.

Orthogonal

The tested flexure patterns belonging to pm, pg and cmm fitted this category with only
one reflection or glide reflection present. Since these patterns has a reflection the principal
axes will follow these and no offset was observed. The observed stiffness matrices for these
are consistent with an orthogonal material will have the form A11 A12 0

A12 A22 0
0 0 A66

 (5.5)

Tetragonal

The tested flexure patterns belonging to p4, p4m and p4g fitted this category. The
symmetry groups with reflective symmetry had a natural basis parallel to to the reflection
axes.

The tetragonal stiffness tensor parallel to the natural basis has the form with three
independent variables.  A11 A12 0

A12 A11 0
0 0 A66

 (5.6)

As [A] and [D] matrices are related to different bending modes, they do not need to
have the principal axes in the same directions. The phase angle ϕ is calculated by [8].

tan(4ϕD4) = 2
√

2 C16

C11 − C66 − C12
(5.7)

From the switchback p4 in table 5.5 one can see that the equation fits the results
shown in figure 5.4 good. An interesting thing to note is that the natural basis for in-
plane properties and out-of-plane properties are different for the same geometry.
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ϕD4
[A] ϕD4

[D]
−14.60◦ −0.23◦

−11.70◦ −0.49◦

−9.683◦ −0.25◦

−7.667◦ −0.48◦

−6.209◦ 0.67◦

Table 5.5: Phase shift ϕD4
[A] and ϕD4

[A] for switchback p4.
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Figure 5.4: A11 and D11
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Isogonal

Isogonal in 2D corresponds to transverse isotropic in 3D. The finding that p6m patterns
had an isotropic behaviour for both stretching and bending was an interesting result. This
makes it a preferred choice when the goal is to equally reduce the stiffness of a plate in
all directions.

It is however not likely that the material strength of the material is isotropic. Other
studies found on symmetric lattice structures showed that the structures that showed
isotropic stiffness also showed anisotropic strength [6].

The expected for a transverse isotropic material is 5 independent constant in 3D and
2 in 2D [35]. The stiffness matrix is: A11 A12 0

A12 A11 0
0 0 (A11 − A12)/2

 (5.8)

A numerical check for a simulated stiffness matrix,

58.46 −1.44 0 0 0 0
−1.44 58.71 0 0 0 0

0 0 30.09 0 0 0
0 0 0 12.71 −0.44 0
0 0 0 −0.44 12.71 0
0 0 0 0 0 6.55


(5.9)

A66 = 58.46 − −1.44
2

= 29.95 ≈ 30.09 D66 = 12.71 − −0.44
2

= 6.58 ≈ 6.55 (5.10)

which is a very close fit with the predicted characteristic.
Even though there are many symmetry groups with 3-fold rotations that was not

simulated, these are expected to be 2D isotropic as well. This is from the fact that
all except one (p3) has three planes of symmetry, which is a criterion for transverse
isotropic materials and they have no reason to be any of the other categories like diagonal,
orthogonal and tetragonal.

Anisotropic differences for [A] and [D]

The deformation mechanisms for the two cases are different, but share much of the
anisotropic behaviour. In-plane components for [A] only rely on tension and bending,
while [D] rely on torsion and bending.

The simulations show that the principal axes are the same for the in-plane and out-
of-plane properties when a reflection or glide reflection is present, but does not have to be
true for the p4 pattern as seen in the figures 4.18 and 4.19. It is hard foresee where these
axes will occur, but there is no reason for them to occur at the same place, as they are
dependent on different deformation modes and the geometry does not have any reflection
symmetries.

The anisotropic behaviour differs also with the proportional scaling of the geometry
where the thickness is constant. This results in a change in [D] while [A] is constant, as
seen in figure 4.6.
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5.2.3 Special behaviour
Coupling A12 and D12

The coupling terms 1 describe the interaction between the deformations and the forces
(and moments) in the lateral direction when a plate is subjected to a unidirectional strain
or curvature. With unidirectional strain, the coupling component A12 describe the trans-
verse stress components and with unidirectional curvature D12 describe the transverse
bending moment. The related terms in the compliant matrix S describes the same but
for the transverse strain or curvature when subjected to an axial force or moment.

The different relations for what effect the coupling terms have on a plate deformed
axially with tension or curvature is summarized in table 5.6. Pictures of the zero-
(devalopable), postive- (synclacstic) and negative (anticlastic) Gaussian curvatures is
shown in figure 2.13.

Close to zero Negative Positive
A12 No lateral strain Lateral expansion Lateral contraction
D12 Zero Gaussian curvature Positive Gaussian curvature Negative Gaussian curvature

Table 5.6: Response of a material when subjected to pane starain or curvature in axial
direction for with different values of A12 and D12.

It must be pointed out that A12 and D12 is anisotropic for diagonal, orthogonal and
tetragonal patterns and change with rotation. In other directions than the principal
directions shear or twist coupling terms, A16, A26, D16 and D26 will appear and introduce
shear forces or twist moments.

No coupling A flexure pattern having close to zero coupling (and therefore close to
zero Poisson’s ratio) has little, or non-existing strain and stress coupling. These can
be interesting for applications where the different forces and deformations in different
directions should not effect each other. They also make good specimens for tensile testing
of plates, as no lateral strain will influence the stiffness.

Poisson’s ratio For a material with no present shear coupling terms, A16 and A26, the
coupling term A12 describe the same as the Poisson’s ratio for isotropic and orthotropic
materials.

Normal values for the Poisson’s ratio are within the range [0.1, 0.5]. Materials that
exhibit a negative, near to zero or above 0.5 Poisson’s ratio can be characterized as
special and negative Poisson’s ratio materials are often classified as a subset of mechanical
metamaterials. Table 5.7 shows a summary of the Poisson’s ratios that are found in some
of the flexure patterns studied and shows special behaviour.

The YdX cmm pattern showed an extreme Poisson’s ratio when subjected to stretching.
A closer look at the geometry reveal similarities with a reentrant honeycomb pattern as
seen in figure 5.5. The reentrant honeycomb pattern is vastly studied and a version more
similar to the modified version that also contains stiff regions is found in [22]. It is however

1The described terms should not be confused with the [B] matrix for a laminate that is called the
coupling matrix. Since the simulated patterns are both symmetric and balanced, [B] = 0 and no coupling
is present between in-plane and out-of-plane deformations.
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Pattern ν12 ν21
LET cmm [0.01, 0.12] [0.53, 1.62]
LET p4m [0.00, 0.05]
LET p6m [-0.02]
Switchback cmm [-0.13, 0.29] [-0.14, 0.01]
Switchback p4 [0.00]
Switchback p4g [-0.62, 0.01]
Coil cmm [-0.03, -0.08]
Coil p4 [-0.08, -0.04]
YdX cmm [-1.70, -0.20] [-5.20, -0.30]

Table 5.7: Poisson ratio of some flexure patterns pattern. Where ν21 is not listed, the
value is the same as for ν12.

Figure 5.5: The YdX pattern with the modified reentrant honeycomb pattern drawn for
visualization.

a good chance that the knowledge of this property being present in the pattern is unknown
for most users and it has not been seen in the context of a pattern cut in plates.

The other auxetic patterns are not found in review articles [5], but some show simi-
larities like the Coil cmm.

Degree of anisotropy

Table 4.6 is generated on the basis of the database of results from the other simulations and
not as a designed experiment to compare the degree of anisotropy and can not be compared
quantitatively in between. There exists most likely many variation of the patterns that
shows higher or smaller degree of anisotropy.

Practically speaking, large degree of anisotropy results in distinctive compliant and
stiff directions, while small degree of anisotropy results in more similar properties in all
directions and behaves close to an isotropic material. These properties can be utilized in
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different applications depending on what you need.
The results point, however out some interesting trends of some of the different patterns:

• Patterns with with tension axes can achieve very high degree of anisotropy because
the deformation mode changes from tensile to bending for A11 and changes from
torsion to bending for D11. An example of this is the LET cmm.

• Coil and switchback flexure configurations show very little degree of anisotropy
and behave close to isotropic in some special cases like for the Coil p4, Coil cmm
and switchback p4g. This can be a result from the flexure mechanisms having few
restricted DOFs.

• LET flexure configurations show high degree of anisotropy and can come from the
fact that the LET joint has a symmetric flexure configuration that restricts many
DOFs. A good example of this is the LET p4m that show relative large anisotropy
for D11.

5.2.4 Numerical error
The results from all simulations will have numerical noise. This comes from various
sources like numerical integration, interpolations, bad shaped elements, and the fact that
the FE model has finite precision in describing numbers. The simulated geometries are in
most cases different from the one in the convergence test in section 3.2.2 and variations of
the same model will have different meshes. This means that the error will also be different
for the different components. The requirement of minimum two C3D20 elements across
a cross-section is however maintained though out all simulations, but the number is in
many cases larger. This can be a source to some error seen in the regression analysis.

5.3 Design principles
The following principles are proposed to achieved target properties:

• Increase compliance: reduce flexure width increase flexure length, reduce plate thick-
ness.

• Keeping in-plane stiffness, but increase out-of-plane compliance: proportionally
scale the geometry while remaining the same thickness of the plate.

• Axis of compliance different for in-plane and out-of-plane: choose a p4 pattern with
only rotations present.

• Have orthogonal stiffness: choose a pattern with at least one axis of reflection or
glide reflection (pm, pg, cm, pmm, pmg, pgg, cmm).

• Have transverse isotropic stiffness: choose pattern with 3-fold symmetry or more
(p3, p3mi, p31m, p6 or p6m).

• Low degree of anisotropy: chose a flexure configuration with many DOFs like the
Switchback or Coil.



5.4. OBJECTIVES AND APPROACH 101

• High degree of anisotropy: choose a flexure configuration with few DOFs like the
LET.

When the same length of a flexure mechanism is considered in an natural extension
(see section 3.1.3), the switchback will allow larger travel distances than the LET, because
it has longer flexure length as discussed in section 2.22. This makes it generally a better
alternative for making compliant patterns.

The authors recommended patterns for introducing compliance in different directions:

• Orthogonal, one compliant axis: LET cmm

• Tetragonal, two compliant axes: switchback p4g

• Isotropic: switchback p6

5.4 Objectives and approach
The objectives defined in the preface tries to cover different aspects of the use and utilizing
of flexure patterns and demand different approaches. Part of the difficulty in choosing an
appropriate approach for studying the different objectives is to make it coherent with a
the other objectives and to find common ground.

Part of the difficulty in choosing an appropriate approach for studying the relations
between symmetry, geometry and mechanical behaviour of a flexure pattern is the vari-
ation of methods of the fields of crystallography, mathematics and physics, that try to
describe the principles for determining properties of material structures.

In general, this thesis tries to describe the fundamentals from a mathematical and
physical point of view but does not carry a detailed discussion from the stress tensors. I
will give some comments with the chosen approaches with respect to the given objectives.

Establish the geometry-symmetry conditions in order to -

(a) understand patterns This objective focuses on the qualitative aspects of flex-
ure patterns and want to describe the governing theories, concepts and terms
that can be used to describe flexure patterns. To accommodate this, a search in
the literature is necessary to find relevant fields and research that can supple-
ment and be build upon for flexure patterns. When the classification methods
for flexure patterns are implemented, an effort is made to make it coherent
with the related fields. Fields that have been found to be related and useful
for describing flexure patterns are: plane symmetry groups, compliant mecha-
nisms, metamaterial and crystallography. The background for these fields are
presented in the background before elaborated on in the method. For describ-
ing the different unique patterns the 17 wallpaper groups and the different
compliant mechanisms has served as useful concepts to classify by.

(b) create new patterns This objective is fundamentally a creative problem-
solving process of searching for an original and previously unknown solution
to a problem. This problem, has no limit to the number of possible patterns
solutions as there are infinitely possibilities for repeating motifs.
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My solution to the objective is the procedure of creating compatible compliant
tiles which builds on the definition, and the obtained knowledge about compli-
ant mechanisms and concepts within group theory. The method opens up for
new patterns by considering other shapes and symmetries than the repetitive
rectangular element often presented as a pattern.
As recognized, the unit of the pattern defined by the wallpaper groups don’t
serve as an intuitive repeating cell because it might partition the flexure mech-
anism at strange places. For this reason the method uses tilings that serve as
a better way of looking at the patterns of compliant mechanisms.

Establish a numerical model to quantify the properties of any given pattern The
objective focuses on quantifying aspects of flexure patterns, meaning gathering data.
The chosen approach takes basis in plate theory to describe the different behaviour
in order to make a FE model that could calculate the properties of various geome-
tries. The plate theory is in many ways a better way of describing the behaviour of
flexure patterns as it captures the coupling between axial and transverse properties,
which is missed by other authors [25].

Make a tool for adjusting parameters of new flexure patterns efficiently to
make it easier for people to make and utilize the patterns. Where the
previous objectives focuses on expanding the knowledge of flexure patterns, this
objective focuses on the utility of the thesis. Integrating flexure patterns into a
design is, a laborious process of drawing the desired patterns and is suitable for
automating. The approach chosen is to parameterize some patterns so they can be
generated according to the required specifications. In order to utilize the patterns,
an output vector file (.svg) need to be created in order to export it to the software
that is used to manufacture the flexure patterns.

On the choice of different approaches for the objectives, I must admit that there are
several other ways of answering the objectives. The resulted methods are a result of
making a choice upon the information obtained within the semester and the synthesis of
this.

5.5 Relevance
Over all this study contribute to clarify the concept and basic behaviour of flexure pat-
terns. The wish is that this will serve as an inspirational source for other people to make
innovative and aesthetic products with functionality. It can ultimately be whatever the
designer can produce, from jewelry pieces to clothing, toys, games, or artistic designs.

More industrial applications can be within packaging, shelters but also more general
as a technique for manipulating properties of a plate that can be useful for prototyping
with only one material available in stock.

5.6 Critics
The stress tensor theory is often presented by group theory experts for the crystallographic
groups [3], while the development of new non-symmetric structures are driven by the
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potential of making metamaterials with special properties are driven by scientists and
engineers without this expertise [24]. This can lead to confusion and incorrect use of the
theory.

The theory for fully understand the relationship between crystallographic restrictions
and mechanical properties is the essence for understanding the properties of different
flexure patterns. To give a complete description of the consequences of the mechanical
properties of all symmetry groups is extensive work that should be given to persons with
such expertise. This study is limited to discuss some findings for some flexure patterns
classified by the plane symmetry groups and not an extensive deduction of the criterions.

Part of the difficulty in reading from various sources on a diverse topic, is the variation
of terminology used by the authors. Not only are different terms used to identify the same
object, but sometimes the same terms are employed to identify different objects. I have
tried to use the correct terms when referencing to other studies and to point out what
terms that are used synonymously.

It can also be relevant to mention that flexible materials are not always the answer to
creating flexible products, especially when the designer is also looking to create a product
that is also very strong.

5.7 Further work
Whereas some progress has been made since the start of this thesis, a lot of open issues
are yet to be tackled within flexure patterns:

• Strength analysis

• Topology optimization

• Making numerical models for parallelogrammic shaped units and compliant tiles of
other shapes to calculate the stiffness properties of all repeating patterns.

• Make a program for end user

• Custom flexure patterns for bottom up metamaterials





Chapter 6

Conclusions

Through geometrical modelling, FEM simulations and by studying the possible symme-
tries, a classification, the mechanical behaviour and design principles for achieving ex-
treme stretchability and flexibility in stiff plates via the introduction of flexure patterns,
has been explored.

The term flexure pattern has been established for describing the concept of introducing
compliant properties to stiff plates by manufacturing a pattern of flexures. It is character-
ized as a 2D meta material that consists of flexures patterned according to a set of rules,
increasing the compliance compared to the bulk material. It is categorized by the flexure
configuration and the two dimensional symmetry groups which have been the basis on
which they have been studied in this thesis. The elastic behaviour is favourably described
by a stiffness matrix on which the anisotropy is studied.

Design principles

The design principles are summarized by the method of making compatible compliant
tiles that are compliant, continuous and connected. The method borrows concepts from
compliant mechanisms, tiling, and the plane symmetry groups and synthesize some of
the physical constraints with the vast opportunities for making new unique designs. Fa-
cilitating for bending or torsion modes in the pattern showed to be the most effective
method for achieving in-plane and out-of-plane compliance, while the method of making
a continuous and connected pattern address some of the geometrical constraints.

To demonstrate the design principles, new flexure patterns with different geometries
that belonged to different plane symmetry groups were created. These showed favorable
compliant properties in multiple directions and distinguishes from previously found flexure
patterns as better alternatives when compliance is required along multiple axes.

Mechanical behaviour

The computational homogenization technique using the finite element method was suc-
cessfully implemented for obtaining the elastic stiffness matrix of different patterns. Fur-
thermore, the continuum approach was utilized to study the anisotropic characteristics
of the flexure patterns by transforming the reference coordinate system. The elastic re-
sponse was found to be highly dependent upon the geometrical orientation and loading
directions. According to these observations, the following conclusions are made:
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1. The elastic behavior of flexure patterns are generally orientation dependent. This
dependency is directly related to the geometric configuration of the flexures, as well
as the topological symmetry of the pattern

2. Flexure patterns have generally an ordinarily anisotropic (diagonal) behavior. How-
ever, symmetries of the pattern change the response:

• One glide reflection or reflective symmetry leads to an orthogonal response.
• A 4-fold rotation symmetry leads to a tetragonal response.
• A flexure pattern is isotropic when six reflective symmetries exist1.

3. There is no obvious dependency between in-plane and out-of-plane stiffness and
the principal axes can be offset by an angle for patterns with no reflective or glide
reflection symmetry.

4. The compliance of a flexure pattern is increased by making the flexures more slender
and is achieved by increasing the length/width or length/thickness ratio. Logarith-
mic regression models fit many of the changes of compliance we variation of some of
the between geometrical parameters and the compliance is present when the vari-
ation of one parameter is studied seems to describe the . The compliance is also
increased when there are fewer flexures present per length of the unit of the pattern.

Computational resources

Python code program able to generate 11 different flexure patterns based on the method
described is presented. It can output a .svg file with the requested parameters that can
be used for manufacturing. A compatible finite element script can determine the stiffness
matrix of all square or rectangular lattice flexure patterns. The simulated data can be
used to make a choice of the right pattern for an application.

The design principles proposed in this work can be applied to a wide range of flexure
pattern and help to get a conceptual understanding of how the concept can be further
developed. The quantification of the characteristics is of importance for engineering appli-
cations but a strength analysis should be conducted before using it in critical applications.
I believe this work can expand the potential applications of flexure patterns.

1The not simulated flexure patterns with 3-fold rotation symmetry is expected to be the same



Appendix A

Metamaterials

Inverse approach of creating materials
When talking about invert design of materials, we also have to look at the conventional
way of design. The conventional way of designing is to pick a material and then make a
product with the desired properties. This approach also uses trial and error to iterative
towards a optimum solution of the design of the product that is desired.

Inverse design first declare the functionality that is needed for an application, and
then find the material that has that functionality. The inverse design approach takes
benefits of being able to predict the behaviour of a certain material configurations or
structures and then use data computation to investigate numerous possibilities for making
such new materials as shown in figure A.1. The predicting of properties builds on the
fundamental understanding that was developed in order to understand the materials used
in the conventional way for designing applications. The exploration of possibilities is done
thorough different algorithms that can run through a large amount of solutions. Some
much used algorithms are topology optimization or genetic algorithms.

A third important aspect of the inverse approach is to test its validity. As the results
are new materials with a desired functionality it is essential to test if it actually behaves
according to the models.

Desired properties

Inverse approach

Conventional approach

Materials

Figure A.1: A comparison between the traditional and inverse approach for material
properties.
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Code

B.1 Flexure pattern design tool
from patternGeneratorClass import Unit

# Set initial parameters
flexure_type = 'switchback'
wallpaper_group = 'p4g'
unit = Unit(flexure_type, wallpaper_group)

# Display name
unit.name
>>'switchback_p4g'

# Set name
unit.set_name('test')
unit.name
>>'switchback_p4g-test'

# Display svg representation of object geometry
unit.unit
>>

# Plot object with dimensions
unit.plot()
>>

# Display parameters
>>unit.para

{'cut_width': 1.0,
'flexure_width': 1.0,
'junction_length': 2.0,
'num_flex': 1,
'side_cut': 'default',
'stem_width': 'default'}
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# Set new parameters, name must match
unit.set_unit_para(cut_width=0.5)
>>{'cut_width': 0.5,

'flexure_width': 1.0,
'junction_length': 2.0,
'num_flex': 1,
'side_cut': 'default',
'stem_width': 'default'}

# Various variables can be accessed through
unit.lattice_type
>>'square'
unit.l1 # lattice length 1-direction
>>10.606801717798216
unit.l2 # lattice length 2-direction
>>10.606801717798216
unit.angle # lattice angle
>>90
unit.center # center tuple
>>(-1.1124368670764584, 1.210786437626905)
unit.unit_coords # corner coordinates
>>[(-6.415837725975567, -4.092614421272203),

(4.190963991822651, -4.092614421272203),
(4.19096399182265, 6.514187296526013),
(-6.415837725975566, 6.514187296526013)]

unit.unit.area # area of unit
>>82.34255857559613
unit.unit.length # contour length of unit
>>141.3153084989848
list(unit.unit.exterior.coords) # access list of all geometry coordinates
>>[(-5.165637725975566, 2.4608864376269066),

(-4.8122257567385285, 2.4608864376269066),
(-1.3623368670764584, 5.910775327288978),
...]

# Creates a 3-column, 2-rows flexure pattern
unit.make_pattern(3,2)
unit.flexure_pattern
>>

# Save flexure pattern as SVG
unit.save_svg()
>>

# Save flexure pattern, unit and generating region as SVG
unit.batch_save_svg()
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>>

B.1.1 Geometrical representation
Polygon object

The basic object is the shapely Polygon object. This supports geometrical manipulations
are provided by the Shapely library. The pseudo code describes the syntax of the relevant
operations on a Polygon object.

from shapely.geometry import Polygon
from shapely.affinity import affine_transform, rotate, scale, translate
from shapely.obs import unary_union
# Creates a Polygon object
geom = Polygon(coords)
# Transforms polygon
transformed = affine_transform(geom, matrix)
transformed = scale(geom, xfact=, yfact=, origin=())
transformed = translate(geom, xoff=xoff, yoff=yoff)
transformed = rotate(geom, angle=, origin=())
# Union of
union = shapely.obs.unary_union([geom_list])

B.1.2 GeneratingRegion object
The Polygon object is implemented in the GeneratingRegion object for representing the
geometry.

import shapely.geometry

def make_generating_region(flex_para):
# create the x and y coordinates of the desired pattern
x = [x1, x2, ..., xn]
y = [y1, y2, ..., yn]
# make a list of coordinate tuples
coords = list(zip((x,y)))
# create a shapely polygon object
return shapely.geometry.Polygon(coords)

B.1.3 Unit object
The repeating unit consists of a generating region in which have been copied through
transformation functions. To make one unit cell out of several regions a union operator
is used.

The transformation library from shapely are accessed though the header import shapely.affinity .
An example of the method for generating a p4m unit is given. The unit has attribute

self.unit.



112 APPENDIX B. CODE

def p4m(self):
generating_unit = self.generating_region
xmin, ymin, xmax, ymax = generating_unit.bounds
# reflect the generating region along a line paralell to the y-axis
mirrored_y = shapely.affinity.scale(generating_unit, xfact=-1, yfact=1, origin=(xmax,ymax))
# create a list for polygons to union
poly_list = []
# 4-fold rotation on the original and mirrored generating region
for i in range(0,4):

poly_list.append(shapely.affinity.rotate(generating_unit,angle=(90*i), origin=(xmax,ymax)))
poly_list.append(shapely.affinity.rotate(mirrored_y,angle=(90*i), origin=(xmax,ymax)))

# union the list of polygons into one object
self.unit = shapely.ops.cascaded_union(poly_list)

B.1.4 Handling numerical precision
A problem encountered when working with numerical geometric representation is that the
the union of polygons will not always create a continuous geometry. This happens when
the geometry is represented through irrational numbers like

√
2 or

√
3.

# sqrt(2)^2 should be perfectly 2
(2**0.5)**2
>>>> 2.0000000000000004

# sqrt(3)^2 should be perfectly 3
(3**0.5)**2
>>>> 2.9999999999999996
% # Square root of two
% 2**0.5
% >>>> 1.4142135623730951
% In[3]: 3**0.5
% Out[3]: 1.7320508075688772

An example of this is illustrated by the following code where a hexagon is created
from a union of six equilateral triangles. The code results in the polygon shown in B.1
where some of the sides don’t align. The solution to this is to extend the geometry so
that it becomes a little larger, making the unconnected regions connect. The function
buffer increases the polygon so it gets rid of the numerical flaws in the geometry.

from shapely.affinity import rotate
from shapely.ops import cascaded_union
from shapely.geometry import Polygon

# Create an equilateral triangle
triangle = Polygon([(0,0), (1,0), (0.5, 3**0.5/2)])
# Creates an empty list for storing transformed triangles
triangles = []
# Rotate it six times and appends to list
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for i in range(6):
triangles.append(rotate(triangle, angle=60*i, origin=(0,0)))

# Union the list of rotated triangles
hexagon = cascaded_union(triangles)

# .bounds returns the boundary coordinates xmin, ymin, xmax, ymax of the object
# Size of flawed geometry
hexagon.bounds
>>>>
(-0.9999999999999999,
-0.8660254037844389,
1.0,
0.8660254037844387)
#Increase boundaries with buffer
hexagon.buffer(0.00001, resolution=1).bounds
>>>>
(-1.0000086602540377,
-0.8660354037844389,
1.000008660254038,
0.8660354037844387)

Figure B.1: Imperfect polygon created with a union of equilateral triangles where numer-
ical imperfection counteracts the formation of a perfect hexagon.

B.2 Abaqus RVE program
The important parts of the main code that is run is the following:

def runLoadCases(abaqus_para, unit):
# Creates model and part
RVEModel, RVEPart = makePartFromShapely(abaqus_para, unit)
# Set material properties
setMaterialProperties(RVEModel, RVEPart, abaqus_para)
# Mesh part and create instance
meshPart(RVEModel, RVEPart, abaqus_para, unit)
# Create assembly sets
createAssemblySets(RVEModel, abaqus_para, unit)
# Create step and boundart conditions
stepAndBC(RVEModel, abaqus_para, unit)



114 APPENDIX B. CODE

# Create loadcases
loadcases = [

(1, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 1)
]

resultArray = list()
for num, loadcase in enumerate(loadcases):

# Make new model name
newModelName = abaqus_para['modelName']+'-'+str(num)
# Copy model
copyModel(RVEModel, newModelName)
# Create constraint equations
constraintEquations(newModelName, loadcase, abaqus_para, unit)
# Create job
jobName = createJob(newModelName, submit=True)
# Calulate stiffness matrix
resultArray.append(getLoadCaseResult(jobName+'.odb', workdir, unit))
# Create a countour picture of the model
printModel(abaqus_para, jobName, workdir, components=False)

# Write result to file
writeResultToFile(resultFileName, resultArray, abaqus_para, unit)

# SYSTEM SETUP
workdir = 'C:/Temp/'
os.chdir(workdir)
resultFileName = 'Result-test.txt'

# UNIT SETUP
unit = Unit('let', 'cmm')

# ABAQUS PARAMETERS
# Set up abaqus simulation parameters
abaqus_para = {}
abaqus_para['modelName'] = 'RVE'+unit.name
abaqus_para['partName'] = 'RVEPart'
abaqus_para['instanceName'] = 'RVEInstance'
abaqus_para['elementSize'] = 0.5
abaqus_para['elementType'] = C3D20
abaqus_para['tolerance'] = abaqus_para['elementSize']*0.1
abaqus_para['youngsModulus'] = 1000.0
abaqus_para['poissonsRatio'] = 0.3
abaqus_para['thickness'] = 1.0
abaqus_para['contourComponent'] = 'E'
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# Run main program
runLoadCases(abaqus_para, unit)
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Figure C.5: Anisotropic stiffness for a Switchback cmm flexure pattern where all geomet-
rical parameters are varied.
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Figure C.6: Anisotropic stiffness for a LET cmm flexure pattern where all geometrical
parameters are varied.
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Figure C.7: Anisotropic stiffness for a Coil cmm flexure pattern where cut width is in-
creased.



125

0 45 90 135 180
[ ]

100

200

300

400

500

600

700

800
A 1

1

0 45 90 135 180
[ ]

50

100

150

200

250

A 1
2

0 45 90 135 180
[ ]

100

50

0

50

100

A 1
6

0 45 90 135 180
[ ]

100

200

300

400

500

600

700

800

A 2
2

0 45 90 135 180
[ ]

75

100

125

150

175

200

225

250

A 6
6

0 45 90 135 180
[ ]

100

50

0

50

100

A 2
6

(a) In-plane components.

0 45 90 135 180
[ ]

20

30

40

50

60

70

D
11

0 45 90 135 180
[ ]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

D
12

0 45 90 135 180
[ ]

10

5

0

5

10

D
16

0 45 90 135 180
[ ]

20

30

40

50

60

70

D
22

0 45 90 135 180
[ ]

15

20

25

30

35

D
66

0 45 90 135 180
[ ]

10

5

0

5

10

D
26

(b) Out-of-plane components.

Figure C.8: Anisotropic stiffness for a LET cmm flexure pattern where flexure width is
decreased.
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Figure C.9: Anisotropic stiffness for a LET cmm flexure pattern where flexure length is
increased.
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Figure C.10: Anisotropic stiffness components for a p4 switchback when flexure length is
increased.
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Figure C.11: Anisotropic stiffness for a LET p4m flexure pattern where flexure length is
increased.
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