
FPGA implementation of an efficient
high-speed DVB-S2X block-interleaver

Youri Vladimirovitch Vassiliev

Master of Science in Electronics

Supervisor: Kimmo Kansanen, IES

Department of Electronic Systems

Submission date: July 2018

Norwegian University of Science and Technology

Preface
This Master’s Thesis was written during the spring of 2018 at the Norwegian University of
Science and Technology (NTNU), located in Trondheim, in association with WideNorth,
as part of an Erasmus+ exchange program form Ghent University. This project has been
conducted under the supervision of Professor Dr. Kimmo Kansanen, Department of Elec-
tronic Systems and Bjarne Rislw from WideNorth

This thesis consists of 5 chapters. The first part is the introduction that talks about the
overarching project that this thesis is a part of. The second chapter gives background
information about the subject. The third chapter presents a theoretical design while the
forth chapter puts the theory into practice. The final chapter concludes the Master’s Thesis.

First and foremost I would like to thank my mother and father who have supported me
during my exchange to Norway. Without their help, I would not have succeeded.

I would also like to thank WideNorth for giving me this Master’s Thesis that has allowed
me to realise my potential.

And finally, I would like to thank Kimmo Kansanen, he might not realise it, but his simple
suggestions and tips have inspired many solution to all the problems that I faced in my
design.

Abstract
An overview of the DVB-S2 modem is given with the focus on the forward error cor-
rection block. The block-interleaver in the DVB-S2 and DVB-S2X standard is exam-
ined. Different interleaver configurations are evaluated. A suitable way to preform
the interleaving process with one block of memory is found. The concept is proven
with MATLAB models and implemented in VHDL. The entity has been verified and
exceeds the desired performance.

Table of Contents

Preface 1

Abstract 3

Table of Contents 6

List of Tables 7

List of Figures 10

Abbreviations 11

1 Introduction 1

2 Literature Review 3
2.1 DVB-S2 modem . 3
2.2 forward error correction . 4

2.2.1 coding theory . 4
2.2.2 coding and decoding of frames 5
2.2.3 LDPC in more detail . 5

2.3 the block-interleaver . 7
2.3.1 purpose . 7
2.3.2 the DVB-S2 and DVB-S2X standard 8

2.4 existing block-interleaver designs . 12
2.5 Stratix 10 SX . 14

2.5.1 high level overview . 14
2.5.2 Adaptive Logic Module . 14
2.5.3 20-kilo-bit memory block . 16

3 Interleaver design 19
3.1 project description . 19

3.1.1 objective . 19

5

3.1.2 performance goal . 19
3.1.3 design priorities . 20

3.2 testing methodology . 20
3.2.1 modeling the interleaver as a permutation operation 20
3.2.2 from model to hardware in steps 21
3.2.3 examples . 21

3.3 block-interleaver models . 21
3.3.1 the block-interleaver as a matrix transposition 21
3.3.2 memory block address generator as described in the literature . . 23
3.3.3 memory block address generator based on a linear congruential

generator . 25
3.3.4 expanding from examples to real use cases 28

3.4 block-interleaver with only one memory block 29
3.4.1 One-memory-block design explained 29
3.4.2 permutation groups . 31
3.4.3 challenge in frame size scalability 31
3.4.4 possible compromise for large frames 33
3.4.5 solving the frame size scalability issue 33
3.4.6 uninterrupted interleaving for one configuration 37
3.4.7 uninterrupted interleaving across all configurations 38
3.4.8 scalability of the one-memory-block design 40

3.5 de-interleaving . 41
3.6 processing multiple sequential bits at a time 41

3.6.1 subdividing the transposition operation 41
3.6.2 subdividing the interleaver . 42
3.6.3 row read order permutation . 44
3.6.4 challenge with indivisibility of words into columns 45
3.6.5 allowing variable word sizes . 47

3.7 the final design . 49

4 implementation and verification 51
4.1 big-interleaver implementation . 51
4.2 ModelSim simulation and verification 53
4.3 Quartus timing and resource usage analysis 61

5 Conclusion 65

Bibliography 67

Appendix 69

List of Tables

2.1 Block interleaver dimensions . 9
2.2 row read out order for small frames . 10
2.3 row read out order for normal frames 11

3.1 permutation group element count for each interleaver configuration 32
3.2 row-read-count pattern for all column sizes 44
3.3 column sizes when 16-bit words are used 46
3.4 column sizes when 20-bit words are used 46
3.5 column sizes when 18-bit words are used 47
3.6 column sizes when 30-bit words are used 47

4.1 big-interleaver maximum theoretical frequency 61
4.2 block resource usage . 61
4.3 routing resource usage . 62

7

List of Figures

2.1 functional block diagram of the DVB-S2 System 4
2.2 tanner graph representation of the parity check matrix 6
2.3 bit interleaved code modulation structure 8
2.4 8PSK bit interleaving of a normal frame 9
2.5 8PSK bit interleaving of a normal frame with coding rate of 3/5 10
2.6 interleaver memory block structure . 12
2.7 address generators for WiMAX interleaver 13
2.8 modified Finite State Machine (FSM) 13
2.9 block diagram of the proposed interleaver/de-interleaver 14
2.10 configurable FIFO structure . 14
2.11 Intel Stratix 10 FPGA architecture Block Diagram 15
2.12 Intel Stratix 10 FPGA ALM Block Diagram 15
2.13 Intel Stratix 10 LAB structure and interconnects overview 16
2.14 read-during-write data flow . 17
2.15 mixed-port read-during-write: old data mode 17

3.1 alternative configuration for the address generator, 8 Phase-Shift Keying
(PSK) . 24

3.2 Alternative configuration for the address generator, 16 Amplitude and Phase-
Shift Keying (APSK) . 24

3.3 block diagram of the simplified structure 26
3.4 representation of the input range divided in two regions 26
3.5 example of a sequences created by an LCG based generator 27
3.6 representation of the input range divided in two regions after modification 27
3.7 interleaver contents of example . 30
3.8 interleaver time efficiency . 33
3.9 initial memory contents . 34
3.10 memory contents after the first frame is read and the second frame is written 34
3.11 unwrapping the memory contents with the second frame inside of it . . . 35
3.12 memory contents after the second frame is read and the third frame is written 36

9

3.13 unwrapping the memory contents with the third frame inside of it 36
3.14 memory contents after the first frame is read and the second frame is writ-

ten under a different configuration . 39
3.15 unwrapping the memory contents with the second frame inside of it under

a different configuration . 39
3.16 block interleaver in a 6 column configuration for normal frames 43
3.17 first row of the big-interlear inside the small-interleaver 43
3.18 small-interleaver . 44
3.19 contents of the small-interleaver after the columns have been written in the

sequence of the inverse row permutation 45
3.20 interleaver in a 4 columns configuration for a normal frame 46
3.21 interleaver in a 3 column configuration for a word count of 3360 48
3.22 interleaver in a 4 column configuration for a word count of 3360 48
3.23 interleaver in a 5 column configuration for a word count of 3360 48
3.24 interleaver in a 6 column configuration for a word count of 3360 48
3.25 interleaver in a 7 column configuration for a word count of 3360 48
3.26 interleaver in a 8 column configuration for a word count of 3360 48

4.1 overview of the full interleaving process of 12 normal frames 58
4.2 overview of the full interleaving process of 12 small frames 58
4.3 start up behaviour for the small frame configuration 59
4.4 output small frame 0 and input small frame 1 59
4.5 output small frame 7 and input small frame 8 60
4.6 output small frame 8 and input small frame 9 60
4.7 big-interleaver implementation on the Field Programmable Gate Array

(FPGA) fabric . 62
4.8 the whole 1SX085HN3F43I3XG FPGA fabric 63

Abbreviations

ALM Adaptive Logic Module. 14, 16

APSK Amplitude and Phase-Shift Keying. 19, 21, 22, 24, 38, 40, 42, 44, 47, 49, 51, 65

AWGN Added White Noise Gaussian. 4

BCH Bose Chaudhuri Hocquenghem. 1, 3, 5

BICM Bit-Interleaved Coded Modulation. 1, 7

DAC Digital to Analogue Converters. 4

DSP Digital Signal Processor. 20

ESA European Space Agency. 1

FEC Forward Error Correcting. 1, 3

FIFO First In First Out. 12

FPGA Field Programmable Gate Array. 14, 20, 61–63

FSM Finite State Machine. 12, 13, 24, 27

Gbps gigabit per second. 19

Gs/s Giga-symbol-per-second. 1, 19

LAB Logic Array Block. 14, 16, 61

LCG Linear congruential Generator. 25, 27, 37

LDPC Low-Density Parity-Check. 1, 3, 5, 7–9

LUT Look-Up-Table. 14, 16, 29, 31, 32, 53, 61

M20K Memory 20-Kilo-bit. 14, 16, 29, 46, 61

MHz megahertz. 20, 38

MLAB Memory Logic Array Block. 14, 16

PSK Phase-Shift Keying. 19, 21, 22, 24, 27, 30, 34, 38, 42

VHTS Very High Throughput Satellite. 1

VSAT Very-small-aperture terminals. 1

Chapter 1
Introduction

The objective of this Master’s Thesis is to design a DVB-S2X compliant block-interleaver,
which will be used in a modem designed by WideNorth, for a research project commis-
sioned by the European Space Agency (ESA). The purpose of this research project is
to demonstrate a re-programmable wideband modem for Very High Throughput Satel-
lite (VHTS) networks through ultra-wideband Very-small-aperture terminals (VSAT). The
goal is to design a transmitter and receiver capable of handling a throughput of 1.4 Giga-
symbol-per-second (Gs/s), which is around 3 to 4 times what current modems are capable
of. The modem will be connected to various networks in a base station through an Eth-
ernet interface. Wireless point-to-point and point-to-multipoint communication will be
established through the existing VSAT satellite links that have a bent-pipe architecture.

The block-interleaver is only a part of the full Forward Error Correcting (FEC) block
in the modem. Its purpose is to break the correlation caused by symbol mapping as it
degrades the performance of the Low-Density Parity-Check (LDPC) decoder. The FEC
block, which consists of Bose Chaudhuri Hocquenghem (BCH) encoding, LDPC encod-
ing, and a block-interleaver, together with the constellation mapper form what is called a
Bit-Interleaved Coded Modulation (BICM) structure.

1

Chapter 1. Introduction

2

Chapter 2
Literature Review

In this chapter a brief description will be given of the DVB-S2 modem. In this modem an
overview is given of the FEC block. The function and importance of the block-interleaver
in the FEC chain will be explained. Existing designs found in the literature will be pre-
sented. Because the block-interleaver is to be implemented on an Intel Stratix 10 FPGA
its architecture will be studied.

2.1 DVB-S2 modem
In order for a message to be transmitted it needs to pass through the modem consisting of
the following modules[1]:

• Mode adaptation: This is the input stream interface. Here the data is synchronised,
null-packet are deleted and the resulting stream is encoded with CRC-8 coding.
Multiple streams are merged from multiple inputs and then sliced into data fields. A
Base-Band Header is appended in front of the data field to notify the receiver of the
input stream format and Mode Adaptation type.

• Stream adaptation: Zero padding is introduced when the available user data for
transmission is insufficient to completely fill up a Base-Band Frame.

• Forward Error Correction Encoding: Each frame is first encoded with BCH code
and then followed up by LDPC code. If the modulation scheme is either 8 PSK, 16
APSK or 32 APSK then the resulting message is interleaved in a block-interleaver.

• Mapping: The data-stream is then mapped into an I-Q data stream with the use of a
constellation mapper.

• Physical layer framing: Dummy frames are transmitted when no useful data is ready
to be sent. A slot is devoted to physical layer signalling such as start-of-Frame
delimitation and transmission mode definition. A regular raster of pilot symbols is
introduced to facilitate Carrier frequency recovery in the receivers.

3

Chapter 2. Literature Review

• Quadrature Modulation Base-Band Filtering: The I-Q data is modulated into a
waveform. This digital wave is filtered with a squared-root raised cosine filter that
has a roll-off factor of either 0.35, 0.25 or 0.20.

• Digital to analogue conversion: WideNorth has made the design choice of doing all
the filtering in the digital domain. By using state of the art high-speed Digital to
Analogue Converters (DAC) the signal is put directly onto the L-band for transmis-
sion [2].

A detailed overview of the entire DVB-S2 modem for transmission is seen in Figure 2.1.

ETSI

ETSI EN 302 307-1 V1.4.1 (2014-11) 15

BBFRAME FECFRAME PLFRAME

FEC ENCODING MODULATION PL FRAMING

BCH
Encoder
(nbch,kbch)

PL Signalling &
Pilot insertion

LDPC
Encoder

(nldpc,kldpc)

BB Filter
and

Quadrature
Modulation

Bit
mapper

into
constel-
lations

I

Q

QPSK,
 8PSK,

16APSK,
32APSK

rates 1/4,1/3,2/5
1/2, 3/5, 2/3, 3/4, 4/5,

5/6, 8/9, 9/10

α=0,35, 0,25,
0,20

to the RF
satellite
channel

MAPPING

BB

SCRAM

BLER

STREAM
ADAPTATION

PADDER

BB
Signalling

Merger
Slicer

MODE ADAPTATION

PL

SCRAM
BLER

Single
Input

Stream

Multiple
Input

Streams

BBHEADER
DATAFIELD

Bit
Inter-
leaver Dummy

PLFRAME
Insertion

Null-packet
Deletion

(ACM, TS)
CRC-8

Encoder
Input Stream
Synchroniser

Input
interface

Null-packet
Deletion

(ACM, TS)

Input Stream
Synchroniser

Input
interface

DATA

ACM
COMMAND

Dotted sub-systems are
not relevant for
single transport stream
broadcasting
applications

 CRC-8
Encoder

LP stream for
BC modes

Buffer

Buffer

Mode
Adaptation

Input
Interface
(optional)

Figure 1: Functional block diagram of the DVB-S2 System

4.3 System configurations
Table 1 associates the System configurations to the applications areas. According to table 1, at least "Normative"
subsystems and functionalities shall be implemented in the transmitting and receiving equipment to comply with the
present document Guidelines for mode selection are given in TR 102 376 [i.5].

Figure 2.1: functional block diagram of the DVB-S2 System [1]

2.2 forward error correction

2.2.1 coding theory
In 1948 Claude Shannon established a theory that is now known as the noisy-channel
coding theorem, but also referred to as the Shannon’s theorem. It states that for any Added
White Noise Gaussian (AWGN) channel, there exists a maximum rate for which data
can be transmitted error-free with the use of error correcting codes [3]. The theorem,
however, does not state what these error correcting codes are, only that such a code can
exist. This opened up a new field in computer science. Since then, scientists and engineers
have tried to come up with codes that reach this limit yet remain practical and feasible
to implement. Practical means that the algorithm that is to be implemented, grows in
polynomial complexity with respect to the message length.

4

2.2 forward error correction

2.2.2 coding and decoding of frames
In the DVB-S2 and DVB-S2X standard the message is encoded with BCH, afterwards it is
encoded again with LDPC [1, 4]. LDPC is currently the best coding scheme available as
it has the advantage of design flexibility, decoding simplicity, and a universally excellent
error correction performance over various channel types [5]. In a soft-decision approach
LDPC, encoded messages are decoded using a sum-product algorithm, also known as the
belief propagation algorithm. This algorithm needs multiple iterations in order for the
received data to converge to the most probable code-word. In certain cases, the maximum
amount of iterations is exceeded, and the algorithm is halted prematurely. The resulting
sub-optimal estimation is then passed through the BCH decoder. Here, the remaining
errors are corrected in a reliable time-frame. It is shown that this combination of BCH
and LDPC code provide excellent error correction performance and achieve an extremely
low bit-error rate [6]. Since the error-correcting performance is improved compared to
previous standards, it becomes possible to employ higher order modulation schemes to
increase the spectral efficiency and maximal data rate [6].

2.2.3 LDPC in more detail
LDPC code preforms bad under certain circumstances. In order to understand what these
circumstances are, a brief explanation is needed regarding the decoding process. The
LDPC code is in essence a linear block code[7]. This means that data is encoded using a
generator matrix and decoded using a parity check matrix. A property of this parity check
matrix is that it has more zeroes then ones. This sparseness guarantees a linear increase in
time complexity of decoding with increased block size [7, 8]. An example of such a parity
check matrix is provided below [7].

H =


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 (2.1)

This LDPC decoder takes 8 bits of input and is constrained by 4 linear equations.
These linear equations are:

f1 = C2 + C4 + C5 + C8(mod2) = 0

f2 = C1 + C2 + C3 + C6(mod2) = 0

f3 = C3 + C6 + C7 + C8(mod2) = 0

f4 = C1 + C4 + C5 + C7(mod2) = 0

(2.2)

Another way to represent this parity check matrix is by visualising it in a Tanner graph
as seen in Figure 2.2. The C-nodes are the variable nodes that contain the received data.
The f-nodes are the check nodes where each linear equation result is calculated. The edges
represent an addition of the C-node in the f-node.

5

Chapter 2. Literature Review

C1 C2 C3 C4 C5 C6 C7 C8

f1 f2 f3 f4

Figure 2.2: tanner graph representation of the parity check matrix [7]

C ·HT = 0 (2.3)

Consider C to be the received data. If equation 2.3 is satisfied, then the data contains
no errors. Another way to phrase this is that for each linear equation in 2.2, the amount of
bits that are 1 in each equations must be even. In other words, f1 through f4 must be 0.
When a message contains an error, the condition in equation 2.3 is not satisfied, iterative
decoding will takes place. For instance, lets assume that the received code-word from C1
through C8 is 10110100. The linear equations 2.2 become:

f1 = 0 + 1 + 0 + 0(mod2)

f2 = 1 + 0 + 1 + 1(mod2)

f3 = 1 + 1 + 0 + 0(mod2)

f4 = 1 + 1 + 0 + 0(mod2)

⇐⇒


f1 = 1

f2 = 1

f3 = 0

f4 = 0

(2.4)

In this example the equations for f1 and f2 are not satisfied, therefore, the C-nodes in
the Tenner graph, that are connected to both the check-nodes f1 and f2, must change. In
this case C2 becomes 1. The final correct code-word then becomes 10110100. This is
the essence of the bit-flipping algorithm. If multiple bits are wrong, then the bit-flipping
process is repeated until equation 2.3 is satisfied. In bigger coding schemes, a C-node is
flipped if the majority of the f-nodes it is connected to are 1. The Bit-flipping algorithm
is essentially a message passing algorithm. The C-nodes broadcast their data to their f-
nodes. In turn the f-nodes broadcast their parity-check information back to their C-nodes.
The C-nodes change their value based on majority consensus [8]. These steps are repeated
until equation 2.3 is satisfied.

When a message is received, the symbols are de-mapped into a word consisting of
bits that are all binary. This is called a hard-decision approach. A better approach would
be to do a log-likelihood estimation and infer both the chance of bit x being a 1 and a 0.
P (x = 1) is 1 − P (x = 0) so both probabilities can be described by a single value. This
value is the logarithm of the proportion of P (x = 1) over P (x = 0) as per the following
formula:

L(x) = log

(
P (x = 1)

P (x = 0)

)
(2.5)

6

2.3 the block-interleaver

This values is used as a metric to determine whether or not bit x is closer to being a 0
or a 1 [8].

The decoder will thus receive real-valued probabilities instead of bits. This approach
is much more computationally heavy, but yields much better results. The best performing
algorithm for this problem is the sum-product algorithm [3]. Just like the bit-flipping
algorithm, the sum-product algorithm is also a message passing algorithm.

In the first part of the iteration the C-nodes broadcast their normalised probabilities to
the f-nodes. The f-nodes sum up all the values they receive. In the second step these f-
node broadcast their results back to the C-nodes. Each individual C-node subtracts its own
contribution to the sums before multiplying everything they receive. The current values
are replaced by the products. In order to verify if the message is error-free, the f-nodes
threshold the incoming C-node values between step one and two. Anything smaller then
0.5 is considered to be a 0 and anything above is considered to be a 1. These values are
then put through equations 2.3 and checked for parity. If the parity conditions are met
then the message is done with the decoding process, if not, the algorithm proceeds to step
two and loops back to step one. The probabilities themselves will eventually converge
after multiple iterations. This process continues until the parity is satisfied or until the
maximum allowed iterations is reached.

Both the soft-decision and hard-decision approach have something in common. If more
then one received bit is wrong then the algorithm suddenly needs more iterations in order
to successfully reconstruct the message. LDPC works therefor best in environments where
errors are uncorrelated and the channel memory-less[6]. More information regarding the
topic of decoding can be found here [3, 7, 8].

2.3 the block-interleaver

2.3.1 purpose
When information is transmitted, it is chopped into smaller messages where multiple bits
are mapped into to one symbols. It stands to reason that when one symbol is incorrectly
received, that multiple bits are affected by the distortion. In case of a soft-decision archi-
tecture, the individual bits that made up that symbol, receive a smaller certainty when the
symbols are de-mapped. Grouping together of bits into symbols is a source of correlation.
Where if one bit is affected then the surrounding bits are more likely to be affected as well.

The purpose of an interleaver is to rearrange the bit ordering of a message, so that the
bits that become correlated through symbol mapping, are spread out throughout the whole
message. Whenever an error does occur, the surrounding bits will be uncorrelated and
unaffected after the deinterleaving process. This makes the bit stream memory-less and
uncorrelated [6]. An interleaver enhances the ability of the decoder to correct the errors
in a message. A soft-decision LDPC decoder requires less iterations to correct multiple
regions with small uncertainties, then one region with a big uncertainty. This is because
the error is now dilute across multiple linear equations [6]. Bit-interleaving of LDPC code
guarantees good performance [6]. A configuration that uses error correcting code together
with an interleaver that covers its shortcomings is a BICM scheme. Such a configuration
is shown in Figure 2.3.

7

Chapter 2. Literature Review

Figure 2.3: bit interleaved code modulation structure [5]

Interleaving can also happen between different messages. Bits from multiple messages
can be swapped between each other. These messages are then send across different chan-
nels. This makes transmissions more robust in scenarios where channel fading is an issue.
In this process the correlation of data caused by transmission across an individual channel
is broken up by sending the data across multiple channels and assembling the data back
together at the destination. In case of DVB-S2 and DVB-S2X , this type of interleaving is
not necessary as the sender and receiver will be stationary.

2.3.2 the DVB-S2 and DVB-S2X standard
The interleaver that follows the LDPC encoder in the DVB-S2 and DVB-S2X standard is
a Block-interleaver [1, 4]. There are two types of frames that need interleaving, a nor-
mal frame that is 64800 bits wide, and a short frame that is 16200 bits wide. There is
also a medium frame that is 32400 bits wide, but that one doesn’t need to be interleaved.
Whether or not a normal or small frame needs to be interleaved, depends on the modulation
scheme. In the DVB-S2 specification, normal and small frames that have to be transmitted
over 8PSK, 16APSK and 32APSK need to be interleaved. In the DVB-S2X extension,
additional modulation schemes for the normal frame have been added, for which inter-
leaving also needs to take place. These modulation schemes are 64APSK, 128APSK, and
256APSK. The block interleaver is not a fixed implementation whereby every frame is
subject to an identical operation. Different modulation schemes require different block
dimensions. 8PSK, 16APSK 32APSK, 64APSK, 128APSK, and 256APSK respectively
encode 3,4,5,6,7, and 8 bits of date. The amount of columns that are present in the block-
interleaver for each modulation scheme, is equal to the amount of bits each modulation
scheme encodes. For example the block interleaver for 8PSK would have 3 deep columns
while the block interleaver for 256APSK would have 8 shallower columns. The incoming
data stream is written vertically, column-wise from top to bottom, starting with the left-
most column, and progressing from left to right. When the block is full, the data is read
horizontally, row-wise from left to right, starting from the topmost row, and progressing
from top to bottom. This process is visualised in Figure 2.4 in the case of 8PSK modula-
tion. Because the column count is chosen to be the same size as the symbol bit size, whole
rows can be taken to the constellation-mapper as they are.

8

2.3 the block-interleaver

ETSI

ETSI EN 302 307-1 V1.4.1 (2014-11) 26

5.3.3 Bit Interleaver (for 8PSK, 16APSK and 32APSK only)

For 8PSK, 16APSK, and 32APSK modulation formats, the output of the LDPC encoder shall be bit interleaved using a
block interleaver. Data is serially written into the interleaver column-wise, and serially read out row-wise (the MSB of
BBHEADER is read out first, except 8PSK rate 3/5 case where MSB of BBHEADER is read out third) as shown in
figures 7 and 8.

The configuration of the block interleaver for each modulation format is specified in table 8.

Table 8: Bit Interleaver structure

Modulation Rows (for nldpc = 64 800) Rows (for nldpc = 16 200) Columns

8PSK 21 600 5 400 3
16APSK 16 200 4 050 4
32APSK 12 960 3 240 5

Column 1

MSB
of BBHeader

WRITE READ

Column 3

Row 1

Row 21600

LSB
of FECFRAME

MSB
of BBHeader

read-out
first

Figure 7: Bit Interleaving scheme for 8PSK and normal FECFRAME length (all rates except 3/5) Figure 2.4: 8PSK bit interleaving of a normal frame [1]

A summary of all the block-dimensions can be found in Table 2.1 for both the normal
and the small frames.

Table 2.1: Block interleaver dimensions [1, 4]

Modulation 8PSK 16APSK 32APSK 64APSK 128APSK 256APSK
column size 3 4 5 6 7 8
normal 21600 16200 12960 10800 (9258) 8100
small 5400 4050 3240 N/A N/A N/A

When one tries to divide 64800 bits equally into 7 columns, he or she will find that the
bit-size of each column becomes 9257,143. In the specification it is stated that for the case
of 128APSK, an additional 6 bit padding is introduced after the LDPC encoder, in order
to achieve an integer amount of symbols for the interleaver and constellation mapper [4].

Frames can be coded in a variety of coding rates. The ordering in which individual bits
inside each row need to be read out, is tied to the coding rate. In the DVB-S2 standard,
the read order of a row, for the case of 8PSK with a coding rate of 3/5, is reversed. This is
depicted in Figure 2.5.

For the DVB-S2X standard the story is a bit more complicated as every coding rate
comes with a custom read-order. All the read orders for the small frame and normal frame
can be found in Table 2.2 and 2.3 respectively. As an example, the bit interleaver pattern
102 means that for each row, the middle entry (1) is read out first, followed by the leftmost
entry (0), and finally the rightmost entry (2) [4].

9

Chapter 2. Literature Review

ETSI

ETSI EN 302 307-1 V1.4.1 (2014-11) 27

Column 1

MSB
of BBHeader

WRITE READ

Column 3

Row 1

Row 21600

LSB
of FECFRAME

MSB
of BBHeader
read-out third

Figure 8: Bit Interleaving scheme for 8PSK and normal FECFRAME length (rate 3/5 only)

5.4 Bit mapping into constellation
Each FECFRAME (which is a sequence of 64 800 bits for normal FECFRAME, or 16 200 bits for short FECFRAME),
shall be serial-to-parallel converted (parallelism level = ηMOD 2 for QPSK, 3 for 8PSK, 4 for 16APSK, 5 for 32APSK)

in figures 9 to 12, the MSB of the FECFRAME is mapped into the MSB of the first parallel sequence. Each parallel
sequence shall be mapped into constellation, generating a (I,Q) sequence of variable length depending on the selected
modulation efficiency ηMOD.

The input sequence shall be a FECFRAME, the output sequence shall be a XFECFRAME (compleX FECFRAME),
composed of 64 800/ηMOD (normal XFECFRAME) or 16 200/ηMOD (short XFECFRAME) modulation symbols. Each

modulation symbol shall be a complex vector in the format (I,Q) (I being the in-phase component and Q the quadrature
component) or in the equivalent format ρ exp(jφ) (ρ being the modulus of the vector and φ being its phase).

5.4.1 Bit mapping into QPSK constellation

For QPSK, the System shall employ conventional Gray-coded QPSK modulation with absolute mapping (no differential
coding). Bit mapping into the QPSK constellation shall follow figure 9. The normalized average energy per symbol
shall be equal to ρ2 = 1.

Two FECFRAME bits are mapped to a QPSK symbol i.e. bits 2i and 2i+1 determines the ith QPSK symbol, where i = 0,
1, 2, …, (N/2)-1 and N is the coded LDPC block size.

Figure 2.5: 8PSK bit interleaving of a normal frame with coding rate of 3/5 [1]

Table 2.2: row read out order for small frames [4]

Modulation coding rate read sequence
8PSK 7/15 102
8PSK 8/15 102
8PSK 26/45 102
8PSK 32/45 012
4+12APSK 7/15 2103
4+12APSK 8/15 2103
4+12APSK 26/45 2130
4+12APSK 3/5 3201
4+12APSK 32/45 0123
4+12+16rbAPSK APSK 2/3 41230
4+12+16rbAPSK APSK 32/45 10423

10

2.3 the block-interleaver

Table 2.3: row read out order for normal frames [4]

Modulation coding rate read sequence
8PSK 23/36 012
8PSK 25/36 102
8PSK 13/18 102
4+12APSK 26/45 3201
4+12APSK 3/5 3210
8+8APSK 18/30 0123
4+12APSK 28/45 3012
4+12APSK 23/36 3021
8+8APSK 20/30 0123
4+12APSK 25/36 2310
4+12APSK 13/18 3021
4+12+16rbAPSK 2/3 21430
8+16+20+20APSK 7/9 201543
8+16+20+20APSK 4/5 124053
8+16+20+20APSK 5/6 421053
2+4+2APSK 100/180 012
2+4+2APSK 104/180 012
8+8APSK 90/180 3210
8+8APSK 96/180 2310
8+8APSK 100/180 2301
4+12APSK 140/180 3210
4+12APSK 154/180 0321
4+8+4+16APSK 128/180 40312
4+8+4+16APSK 132/180 40312
4+8+4+16APSK 140/180 40213
16+16+16+16APSK 128/180 305214
4+12+20+28APSK 132/180 520143
128APSK 135/180 4250316
128APSK 140/180 4130256
256APSK 116/180 40372156
256APSK 20/30 01234567
256APSK 124/180 46320571
256APSK 128/180 75642301
256APSK 22/30 01234567
256APSK 135/180 50743612

11

Chapter 2. Literature Review

2.4 existing block-interleaver designs
Before setting of on a journey to create an interleaver that will take over the world, some
existing designs will be studied first.

In paper [9] a block-interleaver is created that can be used in both the WiMax and
WLAN standard. In both cases a block of data is subject to two permutations as seen in
equation 2.6 and 2.7.

Mk =

(
N

d

)
× (k%d) +

⌊
k

d

⌋
(2.6)

Jk = s×
⌊
Mk

s

⌋
+

((
Mk +N −

⌊
d× Mk

N

⌋)
%s

)
(2.7)

Here d represents the number of columns, Mk is the output of the first permutation
while Jk is the output of the second permutation, both are indexed by k from 0 to N − 1
in which N represents the message bit-size, and finally s is the maximum of 1 and N/2.
Two memory blocs are used in this design. While data is written to the first block, the
second block is being read from using the generated permutations as addresses, afterwards
the roles reverse. A similar design is proposed in paper [10]. The memory block setup is
depicted in Figure 2.6 taken from the paper.

Figure 2.6: interleaver memory block structure [10]

In this architecture the address is generated locally by a rather complicated circuit
network, accompanied by a rather complicated FSM, as seen in Figure 2.7 and 2.8 respec-
tively, taken from the paper.

In paper [11] a similar block interleaver is designed, but instead of using memory
blocks as a storage units, the author uses a First In First Out (FIFO) structure to store
the data as depicted in Figure 2.9 and 2.10. This design is faster and more flexible but
consumes more power [11].

12

2.4 existing block-interleaver designs

Figure 2.7: address generators for WiMAX interleaver [9]

Figure 2.8: modified FSM [9]

13

Chapter 2. Literature Review

Figure 2.9: block diagram of the proposed interleaver/de-interleaver [11]

Figure 2.10: configurable FIFO structure [11]

2.5 Stratix 10 SX
WideNorth hasn’t fully decided yet on what FPGA will be used in the final product, but it
will most likely be the Stratix 10 SX FPGA series from Intel. The interleaver that will be
designed in this Master’s thesis, will therefore be geared towards, and optimised for, this
particular FPGA series. The resources available on the Stratix 10 SX series will now be
discussed.

2.5.1 high level overview
A high level overview of the chip can be seen in Figure 2.11. Here the HPS is a Quad
ARM Cortex-A53 Hard Processor System, the SDM is a Secure Device Manager, and the
EMIB is an Embedded Multi-Die Interconnect Bridge [12].

The most important blocks for the interleaver design are the following: Adaptive Logic
Module (ALM), Logic Array Block (LAB), Memory Logic Array Block (MLAB) and
Memory 20-Kilo-bit (M20K) blocks. These will be discussed in more detail.

2.5.2 Adaptive Logic Module
The ALM is a block where combinatorial logic is realised. It contains two adaptive Look-
Up-Table (LUT), two two-bit full adders, four multiplexers, and four latched outputs that
can be bypassed. The structure of the ALM can be seen in Figure 2.12.

14

2.5 Stratix 10 SX

SoC Subsystem Feature Description

NAND flash controller • 1 ONFI 1.0, 8- and 16-bit support

General-purpose I/O (GPIO) • Maximum of 48 software programmable GPIO

Timers • 4 general-purpose timers
• 4 watchdog timers

Secure Device
Manager

Security • Secure boot
• Advanced Encryption Standard (AES) and authentication

(SHA/ECDSA)

External
Memory
Interface

External Memory Interface • Hard Memory Controller with DDR4 and DDR3, and
LPDDR3

1.4 Intel Stratix 10 Block Diagram

Figure 2. Intel Stratix 10 FPGA and SoC Architecture Block Diagram

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Va
ria

ble
-P

re
cis

ion
, H

ar
d F

loa
tin

g-
Po

int
 D

SP
 Bl

oc
ks

M
20

K E
m

be
dd

ed
 M

em
or

y B
loc

ks

Ha
rd

 M
em

or
y C

on
tro

lle
rs,

 I/
O

PL
Ls

 G
en

er
al-

Pu
rp

os
e I

/O
 Ce

lls
, L

VD
S

Hy
pe

rFl
ex

 Co
re

 Lo
gic

 Fa
br

ic

HPS

Va
ria

ble
-P

re
cis

ion
, H

ar
d F

loa
tin

g-
Po

int
 D

SP
 Bl

oc
ks

M
20

K E
m

be
dd

ed
 M

em
or

y B
loc

ks

Hy
pe

rFl
ex

 Co
re

 Lo
gic

 Fa
br

ic

SDM Ha
rd

 M
em

or
y C

on
tro

lle
rs,

 I/
O

PL
Ls

 G
en

er
al-

Pu
rp

os
e I

/O
 Ce

lls
, L

VD
S

Va
ria

ble
-P

re
cis

ion
, H

ar
d F

loa
tin

g-
Po

int
 D

SP
 Bl

oc
ks

M
20

K E
m

be
dd

ed
 M

em
or

y B
loc

ks

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Tra
ns

ce
ive

r T
ile

(2
4 C

ha
nn

els
)

PC
Ie

Ge
n3

 H
ar

d I
P

EM
IB

Package Substrate

HPS: Quad ARM Cortex-A53 Hard Processor System
SDM: Secure Device Manager
EMIB: Embedded Multi-Die Interconnect Bridge

Hy
pe

rFl
ex

 Co
re

 Lo
gic

 Fa
br

ic

Hy
pe

rFl
ex

 Co
re

 Lo
gic

 Fa
br

ic

1.5 Intel Stratix 10 FPGA and SoC Family Plan

(1) The number of 27x27 multipliers is one-half the number of 18x19 multipliers.

1 Intel® Stratix® 10 GX/SX Device Overview

S10-OVERVIEW | 2017.10.30

Stratix 10 GX/SX Device Overview
11

Figure 2.11: Intel Stratix 10 FPGA architecture Block Diagram [12]

Figure 9. Intel Stratix 10 FPGA and SoC ALM Block Diagram

Reg

Reg

1

2

3

4

5

6

7

8

Reg

Reg

4 Registers per ALM

Full
Adder

Full
Adder

Adaptive
LUT

Key features and capabilities of the ALM include:

• High register count with 4 registers per 8-input fracturable LUT, operating in
conjunction with the new HyperFlex architecture, enables Intel Stratix 10 devices
to maximize core performance at very high core logic utilization

• Implements select 7-input logic functions, all 6-input logic functions, and two
independent functions consisting of smaller LUT sizes (such as two independent 4-
input LUTs) to optimize core logic utilization

The Intel Quartus Prime software leverages the ALM logic structure to deliver the
highest performance, optimal logic utilization, and lowest compile times. The Intel
Quartus Prime software simplifies design reuse as it automatically maps legacy
designs into the Intel Stratix 10 ALM architecture.

1.14 Core Clocking

Core clocking in Intel Stratix 10 devices makes use of programmable clock tree
synthesis.

This technique uses dedicated clock tree routing and switching circuits, and allows the
Intel Quartus Prime software to create the exact clock trees required for your design.
Clock tree synthesis minimizes clock tree insertion delay, reduces dynamic power
dissipation in the clock tree and allows greater clocking flexibility in the core while still
maintaining backwards compatibility with legacy global and regional clocking schemes.

1 Intel® Stratix® 10 GX/SX Device Overview

S10-OVERVIEW | 2017.10.30

Stratix 10 GX/SX Device Overview
24

Figure 2.12: Intel Stratix 10 FPGA ALM Block Diagram [12]

15

Chapter 2. Literature Review

3 Intel Stratix 10 LAB and ALM Architecture and Features
The following sections describe the LAB and ALM for Intel Stratix 10 devices.

3.1 LAB

The LABs are configurable logic blocks that consist of a group of logic resources. Each
LAB contains dedicated logic for driving control signals to its ALMs. The MLAB is a
superset of the LAB and includes all the LAB features. There are a total of 10 ALMs in
each LAB, as shown in the LAB and MLAB Structure for Intel Stratix 10 Devices figure.

Figure 1. Intel Stratix 10 LAB Structure and Interconnects Overview
This figure shows an overview of the Intel Stratix 10 LAB and MLAB structure with the LAB interconnects.

Direct-Link
Interconnect from
Adjacent Block

Direct-Link
Interconnect to
Adjacent Block

Row Interconnects of
Variable Speed and Length

Column Interconnects of
Variable Speed and LengthLocal Interconnect is Driven

from Either Side by Column Interconnects and LABs,
and from Above by Row Interconnects

Local
Interconnect

LAB

Direct-Link
Interconnect from

Adjacent Block

Direct-Link
Interconnect to
Adjacent Block

ALMs

MLAB

C2/C3/C4 C16

R24

R10/R4/R2

Related Links

MLAB on page 5

3.1.1 MLAB

Each MLAB supports a maximum of 640 bits of simple dual-port SRAM. You can
configure each ALM in an MLAB as a 32 (depth) x 2 (width) memory block, resulting in
a configuration of 32 (depth) x 20 (width) simple dual-port SRAM block.

UG-S10LAB | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

Figure 2.13: Intel Stratix 10 LAB structure and interconnects overview [13]

The ALMs are grouped together in groups of 10 into what is called a LAB [13]. The
full structure can seen in Figure 2.13. This makes it easy to create fast and complex com-
binatorial structures, by feeding the output of one one ALM into the input of an adjacent
ALM, through a dedicated local interconnect. Adjacent ALMs have their full-adder carry
bit daisy-chained between each other to create ripple-adders of arbitrary length. Over a
quarter of all LABs can be used as bit-addressable memory block that are of 640 bits in
size. This structure is referred to as an MLAB. This is achieved by using modified LUTs
as addressable storage space [13].

2.5.3 20-kilo-bit memory block
The M20K is a dedicated memory unit that can store 20,480 bits of data [14]. These blocks
are flexible in how the input-size versus address space can be configured. The following
options are possible: 512 x 40-bit, 1024 x 20-bit and 2048 x 10-bit. 8-bit, 16-bit, and 32-
bit is not natively supported, this means that 20% of the total storage space will be wasted.
Bigger address space or input size can be achieved by combining multiple M20K blocks
together with multiplexers. M20K blocks can be configured as up to two true port and 4
simple port configuration. A true dual port allows one to read and write independently of
each other, to two different addresses, on the same clock-cycle. On a simple dual port, one
can read and the other one can write, but are excluded from both reading and both writing
at the same time. On a four simple port configuration, only two reads and two writes are
allowed each clock cycle.

16

2.5 Stratix 10 SX

It is possible to both read and write the same address during one clock-cycle. The
behaviour however depends on whether or not a single port or a mixed dual port con-
figuration is chosen [14]. If a single port solution is chosen, then the output of the read
operation during a write, can be configured to output either the new data or don’t care
values on the next clock cycle. In a dual port, each port has its own output. In a mixed
port configuration it is possible to cross the outputs. In essence, the read result of port B
can be routed through the output of port A and vice versa. A mixed port configuration is
visualised in Figure 2.14.

Figure 11. Read-During-Write Data Flow
This figure shows the difference between the two types of read-during-write operations available: same port
and mixed port.

Port A
data in

Port B
data in

Port A
data out

Port B
data out

Mixed-port
data flow
Same-port
data flow

FPGA Device

3.2.1 Same-Port Read-During-Write Mode

The same-port read-during-write mode applies to a single-port RAM or the same port
of a true dual-port RAM.

Table 14. Output Modes for Embedded Memory Blocks in Same-Port Read-During-Write
Mode
This table lists the available output modes if you select the embedded memory blocks in the same-port read-
during-write mode.

Output Mode Memory Type Description

New Data M20K The new data is available on the rising edge of the same
clock cycle on which the new data is written.

Don't Care M20K, MLAB The RAM produces Don't Care values for a
read-during-write operation.

Figure 12. Same-Port Read-During-Write: New Data Mode
This figure shows sample functional waveforms of same-port read-during-write behavior in the New Data
mode.

clk_a

address

rden

wren

byteena

data_a

q_a (asynch)

A123 B456 C789 DDDD EEEE FFFF

A123 B456 C789 DDDD EEEE FFFF

0A 0B

11

3 Intel Stratix 10 Embedded Memory Design Considerations

UG-S10MEMORY | 2017.12.04

Intel Stratix 10 Embedded Memory User Guide
24

Figure 2.14: read-during-write data flow [14]

In this mixed port configuration, the output of a read during write to the same address,
can now either be the newly written data, or the old data that is currently being overwritten
[14]. In the latter configuration it is possible to take out stored data from memory, use it
in the next block, and have it overwritten with new data, all in one clock cycle. This is
comparable to a bit shift operation, but on a larger scale. This behaviour can be seen in the
wave form in Figure 2.15.

Output Mode Memory Type Description

Note: In M20K's true dual port operation, you will experience getting
new data value during the mix-port read-during-write mode in
simulation. When you set the output mode as Don't Care, the
simulation value should treat it as a junk value.

New_a_old_b M20K This mode applicable only in simple-quad port for M20K where the read-
during-write operation to different ports causes the RAM output to reflect
new data at port A and old data at port B.

Figure 14. Mixed-Port Read-During-Write: New Data Mode
This figure shows a sample functional waveform of mixed-port read-during-write behavior for the New Data
mode.

XXXX

11

clk_a&b

address_a

wren_a

byteena_a

rden_b

data_a

q_b (synch)

address_b

AAAA BBBB CCCC DDDD EEEE FFFF

A0 A1

A0 A1

AAAA BBBB CCCC DDDD EEEE FFFF

Figure 15. Mixed-Port Read-During-Write: Old Data Mode
This figure shows a sample functional waveform of mixed-port read-during-write behavior for the Old Data
mode.

clk_a&b

address_a

wren_a

byteena_a

rden_b

data_a

q_b (asynch)

address_b

A0 A1

AAAA BBBB CCCC DDDD EEEE FFFF

11

A0 A1

A0 (old data) AAAA BBBB DDDD EEEEA1 (old data)

3 Intel Stratix 10 Embedded Memory Design Considerations

UG-S10MEMORY | 2017.12.04

Intel Stratix 10 Embedded Memory User Guide
26

Figure 2.15: mixed-port read-during-write: old data mode [14]

17

Chapter 2. Literature Review

18

Chapter 3
Interleaver design

In this chapter the design goal is stated along with its constraints. The metrics that will
be used to benchmark the performance of the interleaver will be specified. The design
process begins with a mathematical model using MATLAB, that proves the correctness of
a concept. In the final part of this chapter, the mathematical model is broken up into a
sequence of smaller independent operations that can easily be implemented in hardware.

3.1 project description

3.1.1 objective
The objective consists of creating a DVB-S2 compliant block-interleaver that can handle
normal and small frames that are destined for 8 PSK, 16 APSK, and 32 APSK modula-
tion. An added bonus objective is to make it expandable to the DVB-S2X standard, where
the interleaver would additionally have to support normal frames that are destined for 64
APSK, 128 APSK and 256 APSK modulation. Subsequent frames have no gaps in be-
tween them and each subsequent frame can be destined for a different modulation scheme,
that in turn requires all frames to be interleaved under different interleaver configurations.
This means that the interleaver must be capable of accepting frames as a never ending
streaming data and be able to reconfigure itself on the fly. There is an exception when it
comes to transitioning between frame types, from normal to small and vice versa. It is
tolerable to delay the incoming frame in order to read out the current frame from the block
of memory and reconfigure the interleaver for a different frame size.

3.1.2 performance goal
The goal of the research project is to create a DVB-S2 transmitter and receiver capable of
handling 1.4 Gs/s. Each 32 APSK symbol encodes 4 bits. Therefore the target throughput
should be 1.4 × 4 = 5.6 gigabit per second (Gbps). The design choice has been made to
process 16 bits in parallel every clock cycle at a clock-speed of 350 megahertz (MHz) to

19

Chapter 3. Interleaver design

reach this throughput. The addition of the DVB-S2X standard, that allows higher order
modulation, would push the maximum throughput over that limit.

3.1.3 design priorities
The metrics that are important in this design are simplicity, engineering time and time to
market. This means that code simplicity, design simplicity, human resource, and ease of
integrating the module into the system is valued over FPGA resource use and energy usage
to a certain degree so long as the performance goal is met.

3.2 testing methodology
An analogy can be made in the way that the interleaver model is verified with the method
by which a Digital Signal Processor (DSP)-system is verified. A DSP-system is tested by
introducing a Dirac-impulse at the input and measuring the impulse response on the output.
The reason for this is that the Dirac-impulse is a neutral element to the system. What flows
out of the output is the function that identifies the operation done by the system. The tests
that will be preformed on the mathematical models of the interleaver are similar in nature.

3.2.1 modeling the interleaver as a permutation operation
The operation done by the block-interleaver as described in section 2.3.2 can be described
by a permutation. A vector will be used to represent a frame. A permutation that repre-
sents the interleaving process, is applied to this vector. The resulting vector represents the
interleaved frame after the interleaving process. The neutral element of a permutation is
the identity permutation.

The permutation that is preformed by the interleaver will from henceforth be denoted
as P , the identity permutation as 1, and the bit-size of the input as N. The normal frame
has an N of 64800 and the short frame has an N of 16200. A permutation can be written
in two ways. One of those is the Cauchy’s two-line notation. Permutation P and 1 can be
seen in this notation in Equation 3.1 and 3.2 respectively.

P =

(
0 1 2 . . . m− 1
P(0) P(1) P(2) . . . P(N − 1)

)
(3.1)

1 =

(
0 1 2 . . . N − 1
0 1 2 . . . N − 1

)
(3.2)

For this Master’s Thesis a custom permutation notation will be used. This is for the sake
of simplicity and because it corresponds to the output given by the MATLAB code. The
custom notation is the Cauchy’s two-line notation but without explicitly writing down the
first row. Instead, the first row is always implied to go from 0 to N-1 and omitted from
the notation. This notation can be seen in equation 3.3 and 3.4 for F and 1 respectively.
Because the notation is essentially becomes a vector the permutations will henceforth be
referred to as permutation vectors.

P = [P(0),P(1),P(2), . . . ,P(m− 1)] (3.3)

20

3.3 block-interleaver models

1 = [0, 1, 2, . . . ,m− 1] (3.4)

3.2.2 from model to hardware in steps
The first step of the design process is to create a high-level model that will serve as a
definition of the interleaver operation. This model will be used to define the permutation
vector P . The next step is to break up the high-level model into a model that consists of a
sequence of smaller operations that can easily be translated into hardware operations. The
validity of this lower-level model can be verified by comparing it to the original high-level
model that serves as the definition. Consider the following low level-model that realises a
permutation F .

1× Psys = Pout (3.5)

1×Fsys = Fout (3.6)

These two models consisting of operationPsys andFsys are equal if and only if the outputs
Pout and Fout from a neutral element are equal. This way of testing guarantees that the
low-level model, destined for translation into hardware, is correctly implemented. This
will serve as mathematical proof of correctness of the system.

The mathematical model can accept integers, but the eventual hardware will interleave
binary data. In order to verify the correct implementation of the entity in hardware, the
MATLAB model will generate an input frame using a random number generator. This
frame is interleaved using the high level model that serves as the definition. In a test bench,
the generated frame is fed to the input of the device. The output will then be compared to
the expected output that was created by the high level model.

3.2.3 examples
For the sake of simplicity, small examples will be given to demonstrate the different mod-
els and ideas. Later on, the concepts are extrapolated to larger structures that will serve as
a basis for the hardware design. In these limited example the frame size N is 12 and the
supported modulations are 8 PSK and 16 APSK. This means that the example interleaver
has two configurations. For 8 PSK it is configured as a block consisting of 3 columns of
size 4 and for 16 APSK it is configured as a block consisting of 4 columns of size 3.

3.3 block-interleaver models

3.3.1 the block-interleaver as a matrix transposition
The block-interleaver as described in section 2.3.2 can be seen as a matrix transposition.
Data is written to the block from top to bottom and from left to right. The data is then read
from left to right and from top to bottom. The relationship between the reading sequence
and the writing sequence is that they are a transposition of each other. If the data inside the
matrix is transposed then the reading sequence needs to be transposed as well to preserve
the function. Transposing the reading sequence will result in it becoming equal to the
writing sequence. Because the reading and writing sequence become equal they do not

21

Chapter 3. Interleaver design

contribute anymore to the permutation. The only operation left is the transposition of the
data. This implies that the interleaving process can be translated to a transposition of the
data. This is significant as the problem of implementing an interleaver has been translated
in to the implementation of a transposition operation. The permutation of an interleaver is
therefore equal to the permutation realised by a matrix transposition.

In reality no real transposition operation will happen inside the memory modules.
What will happen instead is that the elements of the permutation vector will be used as
an address. The memory will thus be accessed in a sequence defined by the permutation
vector.

Consider the following neutral element in equation 3.7. This frame will be interleaved
in both configurations of the interleaver. First the frame is written to the block as can be
seen in equation 3.9 and 3.8 for the case of 8 PSK and APSK respectively. Afterwards the
data is transposed as can be seen in equation 3.11 and 3.10. Afterwards the data is read
and the results can be seen in equation 3.12 and 3.13.

1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11] (3.7)

Interleaver(8PSK)(1) =


0 4 8
1 5 9
2 6 10
3 7 11

 (3.8)

Interleaver(16APSK)(1) =

0 3 6 9
1 4 7 10
2 5 8 11

 (3.9)

InterleaverT(8PSK)(1) =

0 1 2 3
4 5 6 7
8 9 10 11

 (3.10)

InterleaverT(16APSK)(1) =


0 1 2
3 4 5
6 7 8
9 10 11

 (3.11)

P(8PSK) = [0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11] (3.12)
P(16APSK) = [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11] (3.13)

The MATLAB code that was used to demonstrate these operations can be found in Listing
3.1.

Listing 3.1: MATLAB code that realises the interleaver as a transposition operation

1 f r a m e s i z e = 1 2 ;
2 co lumn coun t = 3 ;
3 c o l u m n s i z e = f r a m e s i z e / co lumn coun t ;
4 input = 0 : (f r a m e s i z e −1); %n e u t r a l e l e m e n t

22

3.3 block-interleaver models

5
6 I n t e r l e a v e r A = reshape (input , [] , co lumn coun t) ;
7 I n t e r l e a v e r B = I n t e r l e a v e r A ’ ;
8 i d e a l p e r m u t a t i o n v e c t o r = reshape (I n t e r l e a v e r B , 1 , []) ;
9

10 di sp (input) ;
11 di sp (I n t e r l e a v e r A) ;
12 di sp (I n t e r l e a v e r B) ;
13 di sp (i d e a l p e r m u t a t i o n v e c t o r) ;

Storing a full permutation vector for small frames is simple but expensive.The most
straight forward solution for this problem is to recognise that there is a patter that can be
exploited. This way it is possible to generate the addresses as they are needed.

3.3.2 memory block address generator as described in the literature
One way of generating this permutation vector is by using equation 2.6 [9, 10, 11]. This
equation has been modified a bit to suit the example.

Pi = V × (i%H) +

⌊
i

H

⌋
(3.14)

H stands for horizontal and represents the column count while V stands for vertical and
represents the column depth. This permutation vector is generated by the use of a counter,
this counter value is represented by i and goes from 0 to N. Equation 3.14 can be split into
two parts along the sum operation. The first part iterates over the rows. This is done by
moving in steps that are the size of a column width, which is achieved by the multiplication
of the counter value i with V . The counter value i wraps around and continues back at the
beginning of the row duo to the modulo operation. The second part determines what row
is being accessed by providing an offset value. This is done by dividing the counter value
by the column count and rounding it down. When the first part is finished traversing a row,
the second part will increase the offset by one so that the first part will will start traversing
the next row. The MATLAB code that puts this theory into action can be seen in Listing
3.2

Listing 3.2: MATLAB code that generate address with a modulo of an index

1 f r a m e s i z e = 1 2 ;
2 co lumn coun t = 3 ;
3 c o l u m n s i z e = f r a m e s i z e / co lumn coun t ;
4 input = 0 : (f r a m e s i z e −1) ; %n e u t r a l e l e m e n t
5
6 p e r m u t a t i o n = z e r o s (1 , f r a m e s i z e) ;
7 f o r i = 0 : (f r a m e s i z e −1)
8 i n d e x = c o l u m n s i z e ∗ mod (i , co lumn coun t) + f l o o r (i /

co lumn coun t) ;
9 p e r m u t a t i o n (i +1) = input (i n d e x +1) ;

10 end
11
12 di sp (input)

23

Chapter 3. Interleaver design

0 4 8

+1

1 5 9

2 6 10

3 7 11

+4 +4

+4

+4

+4

+1

+1

+4

+4

+4

Figure 3.1: alternative configuration for the address generator, 8 PSK

0 3 6 9

+1

1 4 7 10

2 5 8 11

+3 +3

+3

+3

+1

+3

+3

+3

+3

+3

Figure 3.2: Alternative configuration for the address generator, 16 APSK

13 di sp (p e r m u t a t i o n)

This generator does its job well, but the multiplication and division operation are ex-
pensive to implement in hardware. The modulo operation on the other hand is simply not
synthesizable unless it is a power of 2 or a custom implementation.

The same function, however, can be implemented using a counter, a full adder and
a FSM for some needed intelligence. The counter will be used to offset the row. The
adder copies the counter value and repeatedly adds the column size value to it in order
to traverse the row. At the end of the row the counter is increased by one and serves as
the next address. Afterwards the adder takes over the address generation. This continues
until the counter reaches a threshold where it resets back to zero for the next frame. This
operation is visualised in Figure 3.1 for the case of 8 PSK and in Figure 3.2 for the case
of 16 APSK. To switch from one configuration to the next the, the only parameters that
would have to change are the counter threshold and the column size value that is used in
the addition.

24

3.3 block-interleaver models

3.3.3 memory block address generator based on a linear congruential
generator

Another way to generate the addresses is by using a Linear congruential Generator (LCG)
that recursively generates all the elements of the permutation. An LCG is usually used as a
simple random number generator. In this case it will be appropriated to generate addresses
in an orderly fashion by constructing what would generally be called a bad and predictable
random number generator. The general formula has three parameters and looks as follows:

xn+1 = a×Xn + b mod m (3.15)

Parameter a is set to one because no multiplication is needed to achieve the goal. Parameter
b is set to the column size value in order to traverse the row. Parameter m is set to N −1.
When the last element of the first row is accesses, the next address after the addition
becomesN , the remainder after the modulo operation becomes 1. This serves as the offset
for the next row and accumulates with other remainders as the generator progresses. After
adjusting the formula in equation 3.15, the new formula now looks as follows:

Pi+1 = Pi + column size mod (N − 1) (3.16)

The permutation vector that this formula generates, however, is incomplete. This is be-
cause N − 1, which is supposed to be the final value in the permutation, becomes a 0 duo
to the modulo operation and ends the cycle one element short. It is therefore necessary to
pause the sequence and hard-code the final address at the end of every sequence. Luck-
ily this address is always the same regardless of the configuration of the interleaver. The
MATLAB code that demonstrates this formula can be seen in Listing 3.3.

Listing 3.3: MATLAB code that generate addresses recursively

1 f r a m e s i z e = 1 2 ;
2 co lumn coun t = 3 ;
3 c o l u m n s i z e = f r a m e s i z e / co lumn coun t ;
4 input = 0 : (f r a m e s i z e −1) ; %n e u t r a l e l e m e n t
5
6 o u t = z e r o s (1 , f r a m e s i z e) ;
7 i n d e x = 0 ;
8 f o r i = 0 : f r a m e s i z e −1
9 o u t (i +1) = input (i n d e x +1) ;

10 i n d e x = mod ((i n d e x + c o l u m n s i z e) , f r a m e s i z e −1) ;
11 end
12 o u t (f r a m e s i z e) = input (f r a m e s i z e) ;
13
14 di sp (input)
15 di sp (o u t)

This recursive calculation consists of two operations, a sum operation and a modulo oper-
ation. The modulo operation can be simplified when taking into account the fact that the
input range is always constrained to a certain interval. Consider the following case where

25

Chapter 3. Interleaver design

Pi ∈ [0,m− 1] and column size ∈ [0,m− 1], in which m stands for the modulo value.
The sum of both lies in the interval of [0, 2(m−1)]. A modulo operation can be realised as
a conditional subtraction with m if the input is within the interval of [0, 2m− 1]. Because
the interval of the sum is a subset of the simplified modulo interval, it is possible to apply
this simplification. The result of the subtraction of m from the sum would result in Pi+1

ending up in the interval of [0,m− 2], which is a subset of the original input Pi, meaning
that the maximum value that the simplified modulo can accept, is never exceeded in all
subsequent iterations of this formula. Keep in mind that the value of m is defined as N-1.

The next simplification that can be achieved is by combining the addition and condi-
tional subtraction into a single operation. Instead of checking whether or not the sum is
greater then or equal to modulo m, the input is compared with a value µ which is defined
as:

µ = m− column size (3.17)
= N − 1− column size (3.18)

If the value of Pi is smaller then µ, then the result of the sum will be smaller then m. If
Pi, on the other hand, is greater than or equal to µ, then an addition with column size
followed by a subtraction of m is concatenated into a single subtraction of the value µ. In
other words, depending on whether or not the input value is smaller then µ, the input will
receive either an addition with the column size value or a subtraction with the µ value.
A block diagram of this construction can be seen in Figure 3.3 where the ADD register
contains the value column size and the SUB register contains the same value as µ that is
defined in equation 3.17. Figure 3.4 gives an overview of the two different intervals and
the arithmetic operation being done the each interval.

ADDRESS

<μ ADD SUB
+

-+
+

01

Figure 3.3: block diagram of the simplified structure

0 1 2 3 μ-1 μ μ+1 N-3 N-2 N-1

ADD SUB

μ-2 μ+2 N-4

Figure 3.4: representation of the input range divided in two regions

As stated earlier, this generator can not generate the final address in the permutation
vector that is needed to access the final element. Consider the simple example in the case

26

3.3 block-interleaver models

of 8 PSK modulation, for which the permutation vector is defined as equation 3.12. As it
stands now, the way that the current LCG based generator creates the addresses is depicted
in Figure 3.5 where the full lines represent the generated sequence. In this case the second

0
1

2

3

4

5
6

7

8

9

10

11

Figure 3.5: example of a sequences created by an LCG based generator

to last element, that is generated before going back to zero, is 7. In the ideal case it would
have gone from node 7 to node 11 before going back to node 0 as depicted by the dotted
lines in Figure 3.5. In order to achieve this, an intervention at the end of the cycle needs
to happen. This can be done by applying the following trick. The subtraction is still done
by µ, but the input will not be compared with µ anymore but with µ+ 1. The address µ is
the final address that is generated in the sequence and goes to 0 in the next iteration duo to
it being subtracted with µ itself. By offsetting the compare value by one, the address that
is currently µ will be summed with the column size value and become N − 1, which is
the modulo value and the correct final address. Figure 3.6 shows how the intervals of the
summation and subtraction have shifted.

0 1 2 3 μ-1 μ μ+1 N-3 N-2 N-1

ADD SUB

μ-2 μ+2 N-4

Figure 3.6: representation of the input range divided in two regions after modification

The trouble now is that address 0 will be skipped. This is because the address that
is now equal to N − 1, will be subjected to a subtraction of µ, which will result in the
second element of the permutation. By comparing the current address value with N − 1 it
is possible to reset the address on that condition and force it to 0 to restart the sequence.

This design is much more simpler then the design suggested in section 3.2.3 because it
contains no FSM. The address is generated deterministically based on the previous value.
Because of this, the choice has been made to go forward with this design. Simplicity of
course is not the only consideration, later on it will become clear why this design is so
powerful.

27

Chapter 3. Interleaver design

3.3.4 expanding from examples to real use cases
All the above designs have been explained using small examples. What follows now is
MATLAB code that proves these concepts on the same scale of the application with real
input sizes and real interleaver configurations. Each frame will be accompanied by two
data fields. The first one is frame select, it will tell if the interleaver is dealing with a nor-
mal frame or a small frame. The second one is the APSK select, it tells the interleaver
what modulation scheme will be used for the transmission of this frame. The column con-
figuration of the interleaver depends on what modulation scheme sill be used as explained
in section 2.3.2. A neutral element is is interleaved using the first high level model and
compared to the two lower level models for all valid configurations. The exception is the
128APSK that needs to be verified separately in a separate MATLAB script because of
the added zero padding that increases the input size to 64806 bits. The full MATLAB test
script can be seen in Listing 3.4

Listing 3.4: MATLAB script that compares all the modles

1 c l o s e a l l ; c l e a r a l l ; c l c
2 m a x d i s p s i z e = 9 ;
3 %% p a r a m e t e r s
4 f r a m e s e l e c t = 0 ;
5 % 0 −> 64800 b i t s
6 % 1 −> 16200 b i t s
7 APSK se lec t = 0 ;
8 % 0 −> 8 PSK
9 % 1 −> 16 APSK

10 % 2 −> 32 APSK
11 % 3 −> 64 APSK
12 % 4 −> 128 APSK
13 % 5 −> 256 APSK
14 %% c o n s t a n t s
15 f r a m e s i z e = [64800 , 1 6 2 0 0] ; % 20 b i t wide i n p u t
16 co lumn coun t = [3 , 4 , 5 , 6 , 7 , 8] ;
17 c o l u m n s i z e = [[21600 , 16200 , 12960 , 10800 , 0 , 8 1 0 0] ,
18 [5 4 0 0 , 4050 , 3240 , 0 , 0 , 0]] ;
19 f r a m e s i z e = f r a m e s i z e (f r a m e s e l e c t +1) ;
20 co lumn coun t = co lumn coun t (APSK se lec t +1) ;
21 c o l u m n s i z e = c o l u m n s i z e (f r a m e s e l e c t +1 , APSK se lec t +1) ;
22 input = 0 : (f r a m e s i z e −1) ; %n e u t r a l e l e m e n t
23 %% High l e v e l model o f t h e b l o c k i n t e r l e a v e r u s i n g m a t r i x

t r a n s p o s i t i o n .
24 I n t e r l e a v e r A = reshape (input , [] , co lumn coun t) ;
25 I n t e r l e a v e r B = I n t e r l e a v e r A ’ ;
26 i d e a l p e r m u t a t i o n v e c t o r = reshape (I n t e r l e a v e r B , 1 , []) ;
27 di sp (” i d e a l p e r m u t a t i o n v e c t o r ”) ;
28 di sp (i d e a l p e r m u t a t i o n v e c t o r (1 : m a x d i s p s i z e))
29 di sp (i d e a l p e r m u t a t i o n v e c t o r (f r a m e s i z e−m a x d i s p s i z e +1:

f r a m e s i z e))
30 %% f o r loop g e n e r a t i o n
31 l o o p p e r m u t a t i o n v e c t o r = z e r o s (1 , f r a m e s i z e) ;

28

3.4 block-interleaver with only one memory block

32 f o r i = 0 : (f r a m e s i z e −1)
33 i n d e x = c o l u m n s i z e ∗ mod (i , co lumn coun t) + f l o o r (i /

co lumn coun t) ;
34 l o o p p e r m u t a t i o n v e c t o r (i +1) = input (i n d e x +1) ;
35 end
36 di sp (” l o o p p e r m u t a t i o n v e c t o r . Equal t o i d e a l : ”+ i s e q u a l (

i d e a l p e r m u t a t i o n v e c t o r , l o o p p e r m u t a t i o n v e c t o r)) ;
37 di sp (l o o p p e r m u t a t i o n v e c t o r (1 : m a x d i s p s i z e))
38 di sp (l o o p p e r m u t a t i o n v e c t o r (f r a m e s i z e−m a x d i s p s i z e +1: f r a m e s i z e

))
39 %% L i n e a r Congruent Genera tor (LCG) p e r m u a t i o n model
40 L C G p e r m u t a t i o n v e c t o r = z e r o s (1 , f r a m e s i z e) ;
41 i n d e x = 0 ;
42 f o r i = 0 : f r a m e s i z e −1
43 L C G p e r m u t a t i o n v e c t o r (i +1) = input (i n d e x +1) ;
44 i n d e x = mod ((i n d e x + c o l u m n s i z e) , f r a m e s i z e −1) ;
45 end
46 L C G p e r m u t a t i o n v e c t o r (f r a m e s i z e) = input (f r a m e s i z e) ;
47 di sp (” L C G p e r m u t a t i o n v e c t o r . Equal t o i d e a l : ”+ i s e q u a l (

i d e a l p e r m u t a t i o n v e c t o r , L C G p e r m u t a t i o n v e c t o r)) ;
48 di sp (L C G p e r m u t a t i o n v e c t o r (1 : min (m a x d i s p s i z e , f r a m e s i z e)))
49 di sp (L C G p e r m u t a t i o n v e c t o r (f r a m e s i z e−m a x d i s p s i z e +1: f r a m e s i z e)

)

3.4 block-interleaver with only one memory block
All the design so far have assumed that a double memory buffer is used. Such a con-
figuration can be seen in Figure 2.6. With this configuration it is possible to interleave
subsequent frames under different configurations. A frame can be read from one block
with one configuration, afterwards the address generator switch to another set of register
values using a LUT, and then reads the other frame in the other block under a different
configuration. High performance interleaving has always being done by alternating two
memory blocks, until now.

In this Master’s thesis an attempt is made at creating an interleaver that uses one mem-
ory block for the interleaving process without sacrificing all the capabilities of a double
memory block interleaver.

3.4.1 One-memory-block design explained
The inspiration of using only one memory block came from reading the Stratix 10 memory
documentation [14]. As explained in section 2.5.3, the M20K modulo is capable of doing a
concurrent read and write to the same address. The idea is to read out a piece of the current
frame, while at the same time writing a piece of the new frame to the same address. In
a larger sense, current frames are constantly swapped out with new frames, as if it was a
giant shift register. As a demonstration, a 12 bit frame will be interleaved using a 4 by 3
block configuration for 8 PSK modulation. The contents of the interleaver in each step can

29

Chapter 3. Interleaver design

be seen in Figure 3.7. At first, the interleaver memory block is empty, this is visualised

step 0
0 0 0
0 0 0
0 0 0
0 0 0


empty

step 1
0 4 8
1 5 9
2 6 10
3 7 11


frame 1

step 2
0 1 2
3 4 5
6 7 8
9 10 11


frame 2

step 3
0 3 6
9 1 4
7 10 2
5 8 11


frame 3

step 4
0 9 7
5 3 1
10 8 6
4 2 11


frame 4

step 5
0 5 10
4 9 3
8 2 7
1 6 11


frame 5

Figure 3.7: interleaver contents of example

at step 0 with the memory block initialised to zero. The first frame, which is represented
by a neutral element, is written sequentially into the memory. (Please note that the linear
addressing of the matrix, in a sense what element is selected by a given address, coincides
with the way that the neutral element is written to in step 1. In other words, accessing
address 5 would return 5 at step 1.) The correct permutation vector to read and interleave
frame 1 is given by equation 3.12. At the same time that frame 1 is read from memory,
frame 2 will be stored to memory. Elements 0, 4 and 8 in the first row at step 1 are read,
while at the same time, elements 0, 1 and 2 of frame 2 are stored in their place. The same
goes for all the remaining elements of frames 1 and 2. Frame 1 is interleaved and frame 2
is now stored in memory, as can be seen in Figure 3.7 at step 2. Frame 2 is interleaved by
reading addresses number 0, 5,and 10, which will access all the elements of the first row,
while at the same time, elements 0, 1 and 2 of frame 3 are stored in their place. The same
goes for all the remaining elements of frames 2 and 3. This cycle would ideally repeat
indefinitely. In this case it does because reading out frame 5 in step 5, in the sequence of
the unity permutation 1, while storing the next frame, would put the interleaver contents
in the same state as step 1. There are some challenges that need to be overcome in order
for this idea to work. The big question is: What permutation vector is needed to read out
frame 2. The bigger question is: What permutation vector is needed to read out all the
subsequent frames. The biggest question is: how would one generate these permutation
vectors?

It has been confirmed that when writing a frame to memory in the sequence of 1, which
is the unity permutation or in this case linear addressing, the frame can be interleaved by
reading it in the sequence of P . When a frame that has been written in the sequence of P ,
like frame 2 in step 2, through experimentation with MATLAB it has been found that, it
can be read and interleaved by reading it in the sequence of P ×P = P2. Frames that are
written in a sequence of P2 can be correctly interleaved by reading them in the sequence
of P3. In general frames can be interleaved by writing them in the sequence of Pn and
reading them in the sequence of Pn+1

30

3.4 block-interleaver with only one memory block

3.4.2 permutation groups
The permutation vectors needed to read all the subsequent frames are listed below.

1 =
[
0 1 2 3 4 5 6 7 8 9 10 11

]
(3.19)

P =
[
0 4 8 1 5 9 2 6 10 3 7 11

]
(3.20)

P2 =
[
0 5 10 4 9 3 8 2 7 1 6 11

]
(3.21)

P3 =
[
0 9 7 5 3 1 10 8 6 4 2 11

]
(3.22)

P4 =
[
0 3 6 9 1 4 7 10 2 5 8 11

]
(3.23)

P5 = 1 (3.24)

Pn = Pn−5 n ∈ [5,∞[(3.25)

What has been stumbled upon is actually permutation group with a neutral element 1 and
a seed element P . As empirical evidence, one could manually read out the contents of
the interleavers in Figure 3.7 by using the above mentioned permutation vector in order
to interleave the individual frames and check the validity for themselves. Through experi-
mentation with MATLAB it has been found that all the permutations in and of themselves
can be generated using the same structure as described in section 3.3.3. The generator
would now look as follows:

Pn
i+1 = Pn

i + b(n) mod (N − 1) (3.26)

b(n) = [1, 4, 5, 9, 3] (3.27)

Vector b in equation 3.27 is a look up table that stores all the second elements of all the
permutations in a LUT. The address generator that can be used is the same as the one
depicted in Figure 3.3. If the current permutation vector is Pn then in order to generate
vector Pn+1, b(n+1) is put into the ADD register, N − 1− b(n+1) is put into the SUB
register, N − 1− b(n+ 1) + 1 is put into the µ register, and the address is reset to zero.

3.4.3 challenge in frame size scalability
The previous example has demonstrated the possibility of using the concurrent read and
write operations, to interleaver subsequent frames with the use of only one memory block.
The theory has been proven to work with small frames, where all the parameters needed
to generate the full permutation group, can be stored in a small LUT. For larger frames,
however, the permutation groups become larger, which in turn means that the LUT would
have to store a significantly larger amount of parameters.

Because every permutation can be generated from the second element, it can therefore
be used as a unique key, that identifies the full permutation vector. It is therefore possible
to count all the permutation vectors in a group by comparing only the second elements.
Counting all the elements is done by preforming permutations until the neutral element is
encountered, which has a second element of 1. All the permutation group sizes for all the
valid interleaver configurations can be seen in Table 3.1. They have been counted using
the MATLAB code found in Listing: 3.5

31

Chapter 3. Interleaver design

Table 3.1: permutation group element count for each interleaver configuration

Modulation 8PSK 16APSK 32APSK 64APSK 128APSK 256APSK
column size 3 4 5 6 7 8
normal 27767 6941 27767 9255 (995) 4627
small 3983 1991 7967 N/A N/A N/A

Listing 3.5: MATLAB script that counts all the elements of all the used permutation groups

1 c l o s e a l l ; c l e a r a l l ; c l c
2 m a x d i s p s i z e = 9 ;
3 %% p a r a m e t e r s
4 f r a m e s e l e c t = 0 ;
5 % 0 −> 64800 b i t s , 1 −> 16200 b i t s
6 APSK se lec t = 1 ;
7 % 0−> by pa s s 1 −> 8 PSK
8 % 2 −> 16 APSK 3 −> 32 APSK
9 % 4 −> 64 APSK 5 −> 128 APSK

10 % 6 −> 256 APSK
11 %% c o n s t a n t s
12 f r a m e s i z e = [64800 , 1 6 2 0 0] ; % 64806 i n case o f 128APSK
13 co lumn coun t = [3 , 4 , 5 , 6 , 7 , 8] ;
14 c o l u m n s i z e = [[21600 , 16200 , 12960 , 10800 , 0 , 8 1 0 0] ,
15 [5 4 0 0 , 4050 , 3240 , 0 , 0 , 0]] ;
16 f r a m e s i z e = f r a m e s i z e (f r a m e s e l e c t +1) ;
17 co lumn coun t = co lumn coun t (APSK se lec t +1) ;
18 c o l u m n s i z e = c o l u m n s i z e (f r a m e s e l e c t +1 , APSK se lec t +1) ;
19 input = 0 : (f r a m e s i z e −1) ; %n e u t r a l e l e m e n t
20 %% High l e v e l model o f t h e b l o c k i n t e r l e a v e r u s i n g m a t r i x

t r a n s p o s i t i o n .
21 I n t e r l e a v e r A = reshape (input , [] , co lumn coun t) ;
22 I n t e r l e a v e r B = I n t e r l e a v e r A ’ ;
23 i d e a l p e r m u t a t i o n v e c t o r = reshape (I n t e r l e a v e r B , 1 , []) ;
24 di sp (” i d e a l p e r m u t a t i o n v e c t o r ”) ;
25 di sp (i d e a l p e r m u t a t i o n v e c t o r (1 : m a x d i s p s i z e))
26 %% c o u n t i n g t h e p e r m u t a t i o n group e l e m e n t s
27 c o u n t = 0 ;
28 e l e m e n t = i d e a l p e r m u t a t i o n v e c t o r ;
29 whi le (e l e m e n t (2) ˜= 1)
30 e l e m e n t = e l e m e n t (i d e a l p e r m u t a t i o n v e c t o r +1) ;
31 c o u n t = c o u n t + 1 ;
32 end
33 di sp (e l e m e n t (1 : m a x d i s p s i z e))
34 di sp (c o u n t) ;

To do uninterrupted interleaving for all configurations, a total of 91293 parameters of
16 bit need to be saved in a LUT, which comes down to 1460688 bits of data, which is
around the size of 22.54 normal frame. Storing this much data would defeat the initial
purpose of cutting down on memory usage.

32

3.4 block-interleaver with only one memory block

3.4.4 possible compromise for large frames
One way that this design can be salvaged is by breaking off after the first few iterations
and reset the interleaver. This will slightly lower the maximum throughput but would
otherwise make for an excellent low cost interleaver that can handle data in bursts.

It takes a full time-frame for a frame to be both written to and read from memory.
When only one frame is interleaved, the time efficiency drops to 50% as only one frame
is processed every two time-frames. Traditional block-interleavers would therefor use two
memory block in order to a achieve a full throughput. Interleaving consecutive frames
using the above mentioned design will net a higher time efficiency because it takes n+ 1
time-frames to process n frames. The formula for efficiency can be seen in equation 3.28
along with the graph of the first 16 values of n in Figure 3.8.

η =
n

n+ 1
(3.28)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.4

0.5

0.6

0.7

0.8

0.9

1

number of seamless consecutive interleaving

ef
fic

ie
nc

y
η

Figure 3.8: interleaver time efficiency

The efficiency has a diminishing return, but it is possible to achieve a maximum
throughput of 94.1% with only 16 values for each configuration. In order for this inter-
leaver to work continuously, however, a buffer at the input and output is needed to smooth
out the inconsistencies duo to the need for a periodic reset. This again defeats the purpose
of cutting down on memory usage, if it means that multiple buffers must be introduced.

3.4.5 solving the frame size scalability issue
At first glance there seems to be no structure in all the second elements of all the permu-
tation that can be exploited. This is because the structure is obfuscated by the modulo
operator that wraps around all the elements, making it look like everything is random. In
order to see the structure one would have to unwrap all the elements of the permutation
vector by undoing the modulo operation. Consider the following case where a 12 bit frame

33

Chapter 3. Interleaver design

is interleaved for 8 PSK modulation. Figure 3.9 gives a representation of the memory con-
tents. The horizontal axis represents the frame elements and the vertical axis represents
the memory location these elements are stored at. The current situation of the interleaver
is comparable to step 1 in Figure 3.7.

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9
10
11

0

1

2

3

4

5

6

7

8

9

10

11

elements

m
em

or
y

ad
dr

es
s

Figure 3.9: initial memory contents

Frame 1 is read from and frame 2 is written to memory using the permutation vector
P in Equation 3.20. The result of this action can be seen in Figure 3.10 and is comparable
to step 2 of Figure 3.7.

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9
10
11

0

1

2

3

4

5

6

7

8

9

10

11

elements

m
em

or
y

ad
dr

es
s

Figure 3.10: memory contents after the first frame is read and the second frame is written

34

3.4 block-interleaver with only one memory block

The address space of the interleaver will now be unwrapped and projected onto a vir-
tual address space. The relation between the two is that taking the modulo of the virtual
adders space will give back the real address space. This virtual address space can be seen
in Figure 3.11 on the left vertical axis while the real address space can be seen on the right
vertical axis. Notice how all the elements of the next frame are ordered in the sequence of
permutation P .

0 1 2 3 4 5 6 7 8 9 10 11

0
4
8
12
16
20
24
28
32
36
40
44

0

1

2

3

4

5

6

7

8

9

10

11

elements

fir
st

vi
rt

ua
lm

em
or

y
ad

dr
es

si
ng

0
4
8
1
5
9
2
6
10
3
7
11

m
em

or
y

ad
dr

es
s

Figure 3.11: unwrapping the memory contents with the second frame inside of it

It is possible to conclude that all the consecutive elements of a frame are now spaced
out in steps of 4, which is the column size value. This comes from the fact that the
generator had to traverse the memory in steps of 4 to iterate over each row in the matrix
representation. Because the permutation takes elements in steps of 4 and all the elements
are spaced out in steps of 4 in the virtual address space, the generator now has to traverse
the virtual address space in steps of 4 by 4, which comes down to 16, in order to achieve the
interleaving of the second frame. Through the modulo operation it is possible to achieve
the same result by traversing the real address space in steps of 5 as it is the modulo 11 of
16.

The contents of the interleaver after reading out frame 2 and writing frame 3 to mem-
ory, are depicted in Figure 3.12 and is comparable to step 3 of Figure 3.7. Again, the
first virtual address space is unwrapped and projected onto a second virtual adders space,
which can be seen in Figure 3.13 on the left vertical axis. The first virtual address space
along with the real address space can be seen on the two right vertical axes. Notice how
all the elements of the next frame are ordered in the sequence of permutation P2.

In general, the permutation simply expands the distance between the elements by a
factor of column size. The modulo operations confines the address space and serves as
a projection from one address space to the next. Using this knowledge it is now possible
to predict how the next permutation vector looks like based on the current permutation
vector. The second element of each permutation vector, which is used for the generation

35

Chapter 3. Interleaver design

of the whole vector, can be constructed by using the formula in Equation 3.29.

0 1 2 3 4 5 6 7 8 9 10 11

0
4
8
12
16
20
24
28
32
36
40
44

0

1

2

3

4

5

6

7

8

9

10

11

elements

fir
st

vi
rt

ua
lm

em
or

y
ad

dr
es

si
ng

0
4
8
1
5
9
2
6
10
3
7
11

m
em

or
y

ad
dr

es
s

Figure 3.12: memory contents after the second frame is read and the third frame is written

0 1 2 3 4 5 6 7 8 9 10 11

0
16
32
48
64
80
96

112
128
144
160
176

0

1

2

3

4

5

6

7

8

9

10

11

elements

se
co

nd
vi

rt
ua

lm
em

or
y

ad
dr

es
si

ng

0
16
32
4
20
36
8
24
40
12
28
44

fir
st

vi
rt

ua
lm

em
or

y
ad

dr
es

si
ng

0
5
10
4
9
3
8
2
7
1
6
11

m
em

or
y

ad
dr

es
s

Figure 3.13: unwrapping the memory contents with the third frame inside of it

Pn
2 = column sizen mod (N − 1) (3.29)
= b(n) (3.30)

36

3.4 block-interleaver with only one memory block

3.4.6 uninterrupted interleaving for one configuration
Calculating the next ADD value, which is the second element of the next permutation,
is not easy. Expensive hardware is needed to preform a 32-bit (16 × 16) multiplication
followed by a modulo operation. The good news is that this value needs to be calculated
only ounce for every frame. This allows for area efficient solution that can use multiple
pipeline stages or multicycle paths.

A major simplification can be made, however, if the multiplication is broken up into a
series of additions. Doing this for Equation 3.29 gives the following result:

Pn+1
2 = column sizen+1 mod (N − 1) (3.31)

=

column size∑
i=0

column sizen mod (N − 1) (3.32)

=

column size∑
i=0

Pn
2 mod (N − 1) (3.33)

The operation done is Equation 3.33 can be done by using the same structure as dis-
cussed in subsection 3.3.3. This means that interleaving at full throughput is possible by
using only one memory block and two LCG-based generators.

As simple as this design already is, it can be simplified down even further. This is be-
cause the generator that generates all the second elements for all the permutations, and the
generator that generates all the elements of each permutations from these second elements,
can be unified into one generator. Consider the following formula, which is a rewrite of
Equation 3.16.

Pn
i+1 = Pn

i + Pn
2 mod (N − 1) (3.34)

The kth element in the permutation vector Pn can be redefined as:

Pn
k = k × Pn

2 mod (N − 1) (3.35)

The multiplication in equation 3.35 can be expanded as a sumation of Pn
2

Pn
k =

k∑
i=0

Pn
2 mod (N − 1) (3.36)

By extension the column sizeth element will be defined as follows:

Pn
column size =

column size∑
i=0

Pn
2 mod (N − 1) (3.37)

Substitution of Equation 3.37 in Equation 3.33 gives the following result:

Pn+1
2 = Pn

column size (3.38)

37

Chapter 3. Interleaver design

There is no need to have a second generator as the same calculation is already pre-
formed by the address generator. The only addition would be a counter that counts from 1
to the current column size value and captures the column sizeth address. Subsequently,
the next ADD, SUB and µ register values will be updated using the captured values ac-
cording to their corresponding formula as described in section 3.3.3. With this design it
is now possible and practical to seamlessly interleave frames at full throughput by using
only one memory block instead of two.

Another way to explain it is that the second element of permutation P from Equation
3.20 is 4. When preforming P × P , the 5th element of P is taken and it becomes the
second element in the result. When preforming P2×P , then again, the 5th element of P2

is taken and it becomes the second element in the result. This behaviour can be verified in
Equations 3.20 through 3.23.

This generator iterates through all the permutations in the permutation group. Accord-
ing to Table 3.1, the configurations that employ the biggest permutation groups are that
of normal frames for 8 PSK and 32 APSK. Both contain 27767 different permutation and
each permutation contains 64800 elements. The size of the longest loop that is perpetually
generated is L = 27767× 64800 = 1799301600. At 350 MHz it would take roughly 5.14
second to iterate through all the addresses of all permutations.

Even though this is a good design, it is not up to the challenge as it can not switch
interleaver configurations on the fly. When for example, an 8 PSK frame is followed by a
16 APSK frame, the interleaver has to read out the current frame and reconfigure itself for
the next frame.

3.4.7 uninterrupted interleaving across all configurations
In order to solve this problem, consider going back to Figure 3.11. The first frame was
interleaved using a 3 column configuration, this means that the current frame is also stored
according to the same configuration. The current frame, however, needs to be interleaved
using a 4 column configuration. In a 4 column configuration the step size between elements
is 3, this is in order to traverse the rows in the matrix representation. Because the distance
between the elements in the virtual address space is 4 and the generator has to take the
elements in steps of 3, the generator would have to traverse the virtual adders space in
steps of 4 by 3, which is 12. Doing this will interleaver the current frame and write the
next frame in its place, this can be seen in Figure 3.14. The first virtual address space is
unwrapped and projected onto a third virtual adders space, which can be seen in Figure
3.15 on the left vertical axis. The first virtual address space along with the real address
space can be seen on the two right vertical axes. Notice how all the elements of the next
frame are ordered in the sequence of permutation P8PSK × P16APSK . The fact that it
becomes a unity permutation will be attributed to coincidence as it has not been studied
any further.

In general, when the current frame was written to memory under a previous configura-
tion in the sequence of permutation oldPn, it is possible to interleave the current frame by
reading it in the sequence of permutation oldPn ×new1 P . When the next frame is written
in sequence of permutation oldPn ×new1 P , it is possible it interleaver it under another
configuration by reading it in the sequence of oldPn ×new1 P ×new2 P

38

3.4 block-interleaver with only one memory block

0 1 2 3 4 5 6 7 8 9 10 11

0
4
8
12
16
20
24
28
32
36
40
44

0

1

2

3

4

5

6

7

8

9

10

11

elements

th
ir

d
vi

rt
ua

lm
em

or
y

ad
dr

es
si

ng

0
4
8
1
5
9
2
6
10
3
7
11

m
em

or
y

ad
dr

es
s

Figure 3.14: memory contents after the first frame is read and the second frame is written under a
different configuration

0 1 2 3 4 5 6 7 8 9 10 11

0
12
24
36
48
60
72
84
96
108
120
132

0

1

2

3

4

5

6

7

8

9

10

11

elements

se
co

nd
vi

rt
ua

lm
em

or
y

ad
dr

es
si

ng

0
12
24
36
4
16
28
40
8
20
32
44

fir
st

vi
rt

ua
lm

em
or

y
ad

dr
es

si
ng

0
1
2
3
4
5
6
7
8
9
10
11

m
em

or
y

ad
dr

es
s

Figure 3.15: unwrapping the memory contents with the second frame inside of it under a different
configuration

39

Chapter 3. Interleaver design

A more general form of Equations 3.31 through 3.33 can be found below:

(oldPn × newP)2 = oldPn
2 × newP2 mod (N − 1) (3.39)

= column sizenold × column sizenew mod (N − 1) (3.40)

=

column sizenew∑
i=0

column sizenold mod (N − 1) (3.41)

=

column sizenew∑
i=0

oldPn
2 mod (N − 1) (3.42)

A more general form of equation 3.37 is the following:

oldPn
k =

k∑
i=0

oldPn
2 mod (N − 1) (3.43)

By extension the column sizenewth element will be defined as follows:

oldPn
column sizenew =

column sizenew∑
i=0

oldPn
2 mod (N − 1) (3.44)

Substitution of Equation 3.44 in Equation 3.42 gives the following result:

(oldPn × newP)2 = oldPn
column sizenew (3.45)

When the interleaver configuration data is clocked in along with the first bit of the
frame, the counter would counts up to the threshold value set by the configuration. When
the frame is fully written, the interleaver will configure itself according to the captured
value and read out the frame according to the new configuration. Meanwhile, the next
frame will set its own threshold value in order to be interleaved in the next iteration.

This new system does not iterate through a single permutation group, but through a
direct product of multiple permutation groups. Each next permutation is deterministically
calculated based on the needed configuration and the current permutation vector.

With this design it is now possible to seamlessly interleave a stream of frames under a
mix of different configuration. The only limitation of this design is that it can not handle a
stream of frames with varying frame sizes. This is not much of a problem as it is tolerated
to have some delay in switching between frame sizes in this project. The zero padding
introduced by the 128 APSK will, however, introduce some problems for this structure,
this problem will be solved later on.

3.4.8 scalability of the one-memory-block design
The block interleaver consists of two main components, the memory block and the ad-
dress generator. The area usage of full-adders, comparators, and registers scale log2(O)
in proportion to the input size. Because the address generator consists of only full-adders,
comparators, and registers, it will scale similarly with respect to the frame size. The mem-
ory block on the other hand, scales linearly with respect to the frame size. This makes

40

3.5 de-interleaving

the cost of the address generator negligible compared to the cost of the memory block for
larger frame sizes.

Because of the simplicity of the address generator, it can generate addresses at higher
frequencies. The combinatorial path from the address generator and the data to the mem-
ory block is shorter. This is because it does away with a full memory block and the
(de-)multiplexers that come along with it. This implies that less memory-access-pipeline-
stages are needed to achieve higher frequencies.

3.5 de-interleaving
De-interleaving is done by writing the frame to memory in the sequence of the permuta-
tion vector P−n and reading it out of memory in the sequence of the permutation vector
P−n−1. The permutation group that is used for interleaving is a cyclic group, this means
that every permutation has an inverse permutation that belongs to the same group.

Everything that has been established for the interleaver so far is the result of the prop-
erties of the permutation group. The de-interleaver uses the same permutation group. This
means that everything that is established so far for the interleaver, is also applicable to the
de-interleaver, and thus the same hardware structure can be used for the de-interleaving
operation.

The interleaver increments the current address by the column size value. The de-
interleaver, on the other hand, increments the current address by the column count value.
The counter treshold is also set at the column count value. For example, if the de-
interleaver is configured for 5 columns, then the ADD value and counter threshold are
both set to 5.

An interesting hypothesis that arises from this is that it would be possible to process a
mixed stream of frames that are destined for both interleaving and de-interleaving under
different configurations and still use only one memory block. This would have been an
interesting study if more time was given to do the Master’s Thesis.

3.6 processing multiple sequential bits at a time
In order to archive high throughput, multiple sequential bits of a frame can be clocked-in
for interleaving. It is necessary to exploit some properties of the transposition operation in
order to expand the interleaver design in this direction.

3.6.1 subdividing the transposition operation
Transposing a matrix can be done explicitly by swapping out bits from the upper triangle
part of the matrix with the lower triangle part of the matrix. Another option is to do
it recursively. First, the matrix is divided up into smaller submatrices, as can be seen
in Equation 3.46. Then, the submatrices from the upper triangle part of the matrix are
swapped with the submatrices of the lower triangle part of the matrix. Finally, all the
submatrices themselves are to be transposed. The result can be seen in Equation 3.47.

41

Chapter 3. Interleaver design

A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

 (3.46)

AT =


AT

11 AT
21 . . . AT

m1

AT
12 AT

22 . . . AT
m2

...
...

. . .
...

AT
1n AT

2n . . . AT
nm

 (3.47)

3.6.2 subdividing the interleaver
In order for the interleaver to accept multiple consecutive bits, it needs to be broken up into
two parts. The first part is the big interleaver. It takes in words that consist of consecutive
bits and interleaves the words, without touching the contents, the same way it would inter-
leave individual bits. The second part is the small interleaver. It takes in a small number of
interleaved words and interleaves the individual bits inside these words. The small inter-
leaver would have to interleave multiple groups of words before a full frame is eventually
interleaved.

For example, Figure 3.16 shows a block interleaver of a normal frame that is destined
for 64 APSK modulation. A normal frame is 64800 bit wide and thus consist of 4050 16-
bit words. Consequently the address space N for the big interleaver becomes 4050 and the
column size value becomes 675. The permutation addresses are generated the same way as
before, but now with smaller numbers. In this example the words have been sequentially
written to memory. In order to achieve an intermediate form of interleaving, the words
need to be read out in the sequence of the generated permutation.

As can be observed in Figure 3.16, the words of consecutive bit are actually pieces of
a column. Before multiple bits were packed into words, reading out a full row from the
interleaver would give a vector that has the same size as the column count, that can be
taken directly to the constellation mapper. Now with consecutive bits packed into words,
which represent pieces of a column, reading out a row from the big-interleaver would
give back a matrix that has the dimension of word size by column count. This matrix
contains a word size amount of symbols, but, because the matrix is read from the big
interleaver in columns, the small interleaver would have to write these columns into its
own memory, before it is able to extract the rows, which can then be directly fed to the
constellation mapper. In Figure 3.17, the contents of the small interleaver can be seen after
after the first row has been written from the big interleaver to the small interleaver.

In order to keep up with the throughput, multiple rows would have to be read out at the
same time. This amount depends on the column count value. As an example, a 3 column
block-interleaver for 8 PSK modulation is taken. In order to sustain a 16 bit throughput,
the small interleaver has to output 16/3 = 5.333 rows each clock cycle. This can be
achieved by reading out rows in a 5-5-6 pattern. This means that 5 rows will be read on
the first two clock cycles while 6 rows will be read on the third clock cycle. This will

42

3.6 processing multiple sequential bits at a time

come down to an average throughput of (5 + 5+ 6)/3 = 5.333 symbols. All the different
row-read-count patters for all the valid configurations can be seen in Table 3.2.

⋮

⋮

⋮

⋮

⋮

⋮

⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮
10816 21616 32416 43216 54016

32384 53984

⋮ ⋮
43184 64784

⋮ ⋮

21584

54000

54015

54031

64768

64785

64799

⋮

⋮

⋮
43199

43200

43215

43231

53968

53985

53999

21615

21631

32368

32385

32399

32400

32415

32431

43168

43185

10799

10784

10785

10768

10800

10815

10831

21568

21585

21599

v v v v v

0

15

16

31

21600

v

⋮

Figure 3.16: block interleaver in a 6 column configuration for normal frames

54015

54012

54013

54014

54009

54010

54011

54006

54007

54008

21615 32415 43215

54001

54002

54004

21613 32413 43213

21614 32414 43214

21611 32411 43211

21612 32412 43212

21609 32409 43209

21610 32410 43210

21607 32407 43207

21608 32408 43208

21605 32405 43205

21606 32406 43206

10814

10815

21601 32401 43201

21602 32402 43202

21604 32404

10808

10809

10810

10811

10812

10813

12

13

14

15

10801

10802

10804

10805

10806

10807

5

7

9

11

1

2

4

6

8

10

3 10803 21603 32403 43203 54003

0 10800 21600 32400 43200 54000

43204

54005

Figure 3.17: first row of the big-interlear inside the small-interleaver

43

Chapter 3. Interleaver design

Table 3.2: row-read-count pattern for all column sizes

column size 3 4 5 6 7 8
symbol rate 5.333 4 3.2 2.666 2.286.. 2

pattern 5-5-6 4 3-3-3-3-4 2-3-3 2-2-2-2-2-3-3 2

The trick of doing a concurrent read and write will not work for the small interleaver,
it will therefore be a dual memory block configuration, where the memory blocks alternate
between writing full columns and reading multiple rows. In order to achieve the neces-
sary reading and writing flexibility, the memory blocks would have to be emulated with
registers. This is not much of a concern because the memory blocks themselves are small.
The memory is of dimension word size by maximum column count, which in this case
comes down to 16 by 8. A memory block would thus consist of 8 registers of size 16.
This small interleaver can be seen in Figure 3.18. By giving each register an address, it is
possible to write the columns that come from the big interleaver to the appropriate place.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.18: small-interleaver

3.6.3 row read order permutation
As described in section 2.3.2, the sequence in which the bits of a row must be read is
different depending on the chosen modulation scheme and coding rate. The read sequences
can be found in Table 2.2 for the small frames and 2.3 for the normal frames. The correct
read sequence can be achieved by writing the columns to the small interleaver according
to the inverted read sequence. In this example a normal frame with a modulation scheme
of 16+16+16+16 APSK and a coding rate of 128/180 is taken. According to Table 2.3, the
read sequence F is:

F =

(
0 1 2 3 4 5
3 0 5 2 1 4

)
(3.48)

Inverting this permutation gives the following result:

F−1 =

(
3 0 5 2 1 4
0 1 2 3 4 5

)
(3.49)

=

(
0 1 2 3 4 5
1 4 3 0 5 2

)
(3.50)

44

3.6 processing multiple sequential bits at a time

Writing the columns in the sequence of [1,4,3,0,5,2], as they come from the big-
interleaver, will achieve a read sequences of [3,0,5,2,1,4] when the row is read from left to
right. This can be seen in Figure 3.19 for the first row of the big interleaver.

43211

43212

43213

43214

43215

54001

54002

54003

54004

54005

54006

54007

54008

54009

54010

54011

54012

54013

54014

54015

43202

43203

43204

43205

43206

43207

43208

43209

43210

21615

32401

32402

32403

32404

32405

32406

32407

32408

32409

32410

32411

32412

32413

32414

32415

14

15

10801

10802

10803

10804

10805

10806

10807

10808

10809

10810

10811

10812

10813

10814

10815

21601

21602

21603

21604

21605

21606

21607

2

3

4

5

6

7

8

9

10

21608

21609

21610

21611

21612

21613

21614

11

12

13

1 43201

32400 0 54000 21600 10800 43200

Figure 3.19: contents of the small-interleaver after the columns have been written in the sequence
of the inverse row permutation

The read sequences has now been detached from the actual reading of the row. Be-
cause of this, the outputs of the registers in the small interleaver can be hardwired to the
constellation mapper through a much smaller multiplexer network. The column selection
operation is something that has to happen regardless and consists of simple register trans-
fers, the total complexity is therefore smaller compared to an explicit bit permutation at
the output. Writing to the second block of memory can be achieved by adding an offset of
8.

3.6.4 challenge with indivisibility of words into columns
Packing consecutive bits into words has some problems associated with it. This is because
not every configuration has an integer amount of words that can fit in a column. For
instance, when dividing 4050 16-bit words across 4 columns, the word size becomes
1012.5, this means that a each column has to consist of 1012 full words and one half of
a word. How this looks like can be seen in Figure 3.20. Here, the first column of the
interleaver has 1012 words written to it. The 1013th word would have to be split into two
pieces, where the first part is stored separately. All the subsequent memory contents of
the second column contain the tail of the previous word, concatenated with the head of the
next word. Eventually, the second column is also full. The remaining tail from the last
word is also stored separately. The same process repeats for the remaining two columns.

45

Chapter 3. Interleaver design

1012

V V V V

0,5

Figure 3.20: interleaver in a 4 columns configuration for a normal frame

The column sizes of all the different configurations for 16-bit words can be seen in
Table 3.3. Notice how a lot of these configurations have to deal with the same problem.

Table 3.3: column sizes when 16-bit words are used

word count column count 3 4 5 6 7 8
4050 normal 1350 1012.5 810 675 578.625 506,25

1012,5 short 337,5 253,125 202,5

One way to reduce the amount of problem cases is to chosen am alternative word size
and repackage the consecutive bits into bigger vectors. In Table 3.4 the column sizes of
different configurations can be seen after 16-bit words were repackaged into 20-bit words.
This reduces the bad cases to only 2 different configuration. On top of that the memory
efficiency is greater as the M20K memory module are be configured to 20-bit input either
way.

Table 3.4: column sizes when 20-bit words are used

word count column count 3 4 5 6 7 8
3240 normal 1080 810 648 540 462.9 405
810 short 270 202,5 162

46

3.6 processing multiple sequential bits at a time

It is possible to do even better by compromising on memory efficiency by repackaging
the 16-bit words into 18-bit words. The resulting column sizes from the different con-
figurations can be seen in Table Table 3.5. Now only the 128 APSK case remains to be
solved.

Table 3.5: column sizes when 18-bit words are used

word count column count 3 4 5 6 7 8
3600 normal 1200 900 720 600 514,333 450
900 short 300 225 180

Another similar sweet spot can be found by repacking 16-bit words into 30-bit words.
The resulting column sizes from the different configurations can be seen in Table 3.6. This
can be used if a decision is made to increase the amount of sequential bits being processed
at each clock cycle to increase bandwidth. The downside to this arrangement however is
that the small interleaver would have to be bigger in order to support 30-bit columns.

Table 3.6: column sizes when 30-bit words are used

word count column count 3 4 5 6 7 8
2160 normal 720 540 432 360 308,333 270
540 short 180 135 108

3.6.5 allowing variable word sizes
When using fixed word sizes that are equal to or bigger then 16 ,it will never be possible to
seamlessly interleave a 128 APSK normal frame with other frames. One reason is that this
particular frame is bigger duo to the introduction of zero padding. Another reason is that
the prime factors of 64806 are 2, 3, 7 and 1543. This makes it impossible to divide 64806
into words bigger then 16 and still have an integer division of 7. In order to seamlessly
interleave all the normal frames, variable word-sizes are needed to. Chopping off parts of
the frame and storing them separately will not work because the frames then become too
small. One solution is to design a word count in such a way that it is divisible by 3 all the
way through 8. This can be done by doing a prime factorisation of all the numbers it needs
to be divided by and multiplying all the unique prime factors with the highest exponent.
The result is 840, this word count can be divided by numbers 3 trough 8. Now a multiple
of this number is taken so it would be closer to but below 4050, which is the 3360 in this
case. Dividing 64800 bits of a frame (64806 for 128 APSK) into 3360 words gives a word
size of 19,28571429 (19,2875 for 128 APSK). This can be achieved by have on part of the
words be 16 bits in length and another part of the words be 20 bits in length. In the case
of 128 APSK there will be one additional word that is 18 bits in size in each column. All
the column sizes and word size distributions can be seen in Figures 3.21 trough 3.26.

47

Chapter 3. Interleaver design

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
2
0

1
6
-b
it

5
5
2

2
0
-b
it

1
0
0

1
6
-b
it

4
6
0

2
0
-b
it

1
6
-b
it

2
0
0

2
0
-b
it

9
2
0

1
5
0

1
6
-b
it

6
9
0

2
0
-b
it

Figure 3.21: interleaver in a 3 column configu-
ration for a word count of 3360

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

1
5
0

1
6
-b
it

6
9
0

2
0
-b
it

Figure 3.22: interleaver in a 4 column configu-
ration for a word count of 3360

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
2
0

1
6
-b
it

5
5
2

2
0
-b
it

1
0
0

1
6
-b
it

4
6
0

2
0
-b
it

1
6
-b
it

2
0
0

2
0
-b
it

9
2
0

1
5
0

1
6
-b
it

6
9
0

2
0
-b
it

Figure 3.23: interleaver in a 5 column configu-
ration for a word count of 3360

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
2
0

1
6
-b
it

5
5
2

2
0
-b
it

1
0
0

1
6
-b
it

4
6
0

2
0
-b
it

1
6
-b
it

2
0
0

2
0
-b
it

9
2
0

1
5
0

1
6
-b
it

6
9
0

2
0
-b
it

Figure 3.24: interleaver in a 6 column configu-
ration for a word count of 3360

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
8
-b
it

7
5

1
6
-b
it

3
4
5

2
0
-b
it

8
5

1
6
-b
it

3
9
4

2
0
-b
it

Figure 3.25: interleaver in a 7 column configu-
ration for a word count of 3360

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
8
-b
it

7
5

1
6
-b
it

3
4
5

2
0
-b
it

8
5

1
6
-b
it

3
9
4

2
0
-b
it

Figure 3.26: interleaver in a 8 column configu-
ration for a word count of 3360

48

3.7 the final design

In order for this to work, a flexible repackaging network is needed in front of the
big-interleaver and a flexible small-interleaver, that can deal with varying column lengths,
after the big-interleaver. Introducing these entities increases the total complexity of the
interleaver, but it is necessary if the 128 APSK configuration is a requirement.

3.7 the final design
The final design will consist of a repackaging network followed by a big-interleaver and
finally the small-interleaver. It has been agreed upon, for efficiency purposes, that the
small interleaver would be incorporated into the constellation mapper itself. A repackaging
network has been designed, but duo to a lot of recent developments it is too outdated to be
relevant for this design, it has therefore been dropped from the Master’s thesis entirely.

49

Chapter 3. Interleaver design

50

Chapter 4
implementation and verification

The big-interleaver has evolved a great deal over the course of the master thesis. The most
recent implementation of the big interleaver will be presented and its performance results
evaluated.

4.1 big-interleaver implementation
The VHDL implementation of the big-interleaver can be seen in Listing 4.1. This im-
plementation works with a fixed 18-bit word size and is design to be compliant to only
the DVB-S2 standard, it can be expanded to the DVB-S2X standard, but only if the 128
APSK modulation is excluded. The full interleaver can be considered complete if the big-
interleaver is combined with a 16-bit to 18-bit repackager network and a small interleaver.

Listing 4.1: VHDL code for the big-interleaver

1 l i b r a r y IEEE ;
2 use IEEE . s t d l o g i c 1 1 6 4 .ALL ;
3 use IEEE . n u m e r i c s t d .ALL ;
4 e n t i t y D V B i n t e r l e a v e r 1 8 b i t i s
5 port
6 (c l k : in s t d l o g i c ;
7 e n a b l e : in s t d l o g i c ;
8 r e s e t : in s t d l o g i c ;
9 f r a m e s e l e c t : in s t d l o g i c v e c t o r (0 downto 0) ;

10 APSK se lec t : in s t d l o g i c v e c t o r (2 downto 0) ;
11 d a t a i : in s t d l o g i c v e c t o r (17 downto 0) ;
12 d a t a o : out s t d l o g i c v e c t o r (17 downto 0)
13) ;
14 end D V B i n t e r l e a v e r 1 8 b i t ;
15 a r c h i t e c t u r e c o n c u r r e n t r e a d w r i t e of D V B i n t e r l e a v e r 1 8 b i t i s
16 type M20K block i s array (0 to 64800−1) of s t d l o g i c v e c t o r (17

downto 0) ;

51

Chapter 4. implementation and verification

17 type modulo LUT i s array (0 to 1) of i n t e g e r ;
18 type ADD LUT i s array (0 to 1 , 0 to 3) of i n t e g e r ;
19 c o n s t a n t LUT modulo : modulo LUT := (0 => 3599 , 1=> 899) ; −− N−1
20 c o n s t a n t LUT add : ADD LUT := (0 => (0=> 1 , 1 => 1200 ,

2 => 900 , 3 => 720) , −− normal
21 1 => (0=> 1 , 1 => 300 , 2 => 225 , 3 => 180)) ; −−

s m a l l
22 −− 0=>bypass , 1 => 8PSK , 2 => 16APSK , 3 => 32APSK , 4=>64

APSK
23 s i g n a l i n t e r l e a v e r : M20K block ;
24 s i g n a l modulo : i n t e g e r range LUT modulo (1) to

LUT modulo (0) ;
25 s i g n a l a d d r e s s : i n t e g e r range 0 to LUT modulo (0) ;
26 s i g n a l n e x t a d d : i n t e g e r range 1 to LUT modulo (0) ;
27 s i g n a l add : i n t e g e r range 1 to LUT modulo (0) ;
28 s i g n a l sub : i n t e g e r range 1 to LUT modulo (0) ;
29 s i g n a l compare : i n t e g e r range 1 to LUT modulo (0) ;
30 s i g n a l c o u n t e r : i n t e g e r range 1 to LUT add (0 , 1) +1;
31 s i g n a l t h r e s h o l d : i n t e g e r range LUT add (0 , 0) to

LUT add (0 , 1) ;
32 s i g n a l e n a b l e c o u n t i n g : s t d l o g i c ;
33 s i g n a l f r a m e l a t c h : i n t e g e r range 0 to 1 ;
34 begin
35 main : p r o c e s s (c l k)
36 v a r i a b l e var APSK : i n t e g e r range 0 to 3 ;
37 v a r i a b l e v a r f r a m e : i n t e g e r range 0 to 1 ;
38 begin
39 i f (r i s i n g e d g e (c l k)) then
40 i f (e n a b l e = ’ 1 ’) then
41 d a t a o <= i n t e r l e a v e r (a d d r e s s) ;
42 i n t e r l e a v e r (a d d r e s s) <= d a t a i ;
43 i f (a d d r e s s = modulo) then
44 a d d r e s s <= 0 ;
45 add <= n e x t a d d ;
46 sub <= modulo − n e x t a d d ;
47 compare <= modulo − n e x t a d d + 1 ; −− +1 t r i c k
48 e l s i f (a d d r e s s = 0) then
49 var APSK := t o i n t e g e r (u n s i g n e d (APSK se lec t)) ;
50 t h r e s h o l d <= LUT add (f r a m e l a t c h , var APSK) ;
51 e n a b l e c o u n t i n g <= ’ 1 ’ ;
52 a d d r e s s <= a d d r e s s + add ;
53 e l s i f (a d d r e s s < compare) then
54 a d d r e s s <= a d d r e s s + add ;
55 e l s e
56 a d d r e s s <= a d d r e s s − sub ;
57 end i f ;
58 i f (e n a b l e c o u n t i n g = ’1 ’) then
59 c o u n t e r <= c o u n t e r + 1 ;
60 i f (c o u n t e r = t h r e s h o l d) then
61 e n a b l e c o u n t i n g <= ’ 0 ’ ;

52

4.2 ModelSim simulation and verification

62 c o u n t e r <= 1 ;
63 n e x t a d d <= a d d r e s s ;
64 e l s e end i f ;
65 e l s e end i f ;
66 e l s e −− e n a b l e = 0
67 i f (r e s e t = ’ 1 ’) then −− numbers v a l i d f o r e v e r y

c o n f i g u r a t i o n .
68 v a r f r a m e := t o i n t e g e r (u n s i g n e d (f r a m e s e l e c t)) ;
69 f r a m e l a t c h <= v a r f r a m e ;
70 modulo <= LUT modulo (v a r f r a m e) ;
71 add <= 1 ; −− l i n e a r f i l l up
72 sub <= LUT modulo (v a r f r a m e)−1; −− add−mod , b u t

add = 1 and s i g n r e v e r s e d
73 compare <= LUT modulo (v a r f r a m e) ; −− (add−mod) +1

b u t add=1 and s i g n r e v e r s e d
74 a d d r e s s <= 0 ;
75 e l s e end i f ;
76 end i f ;
77 e l s e end i f ;
78 end p r o c e s s ;
79 end c o n c u r r e n t r e a d w r i t e ;

Upgrading this interleaver to accept variable word lengths is easy, transforming this
interleaver to a de-interleaver is also easy. The only difference is in the input and output
vector size, and what values are stored in the LUT. The problem here, however, is that
there wasn’t much time left for the full verification process.

4.2 ModelSim simulation and verification
The theory has been mathematically proven to work, now it is time to test if the imple-
mentation matches the theoretical design. Multiple random frames are generated as input,
these frames are then interleaved using the high-level model from subsection 3.2.1, this
will then serve as the expected output. All the configurations, inputs and expected outputs
are written to a text file. This file is then read by the test bench, the input is given to the
big-interleaver and its output is compared to the expected output. The MATLAB code
that generates the testing data can be found in Listing 4.2. The test bench that does the
verification of the big-interleaver is found in Listing 4.3. Figures 4.1 trough 4.6 show the
simulation results form the test bench.

Listing 4.2: MATLAB code that generates the input and expected output

1 %% p a r a m e t e r s
2 f r a m e s e l e c t = 0 ;
3 % 0 −> normal f rame % 1 −> s h o r t f rame
4 APSK se lec t = [0 , 1 , 2 , 3 , 2 , 1 , 0 , 3 , 1 , 2 , 0 , 1] + 1 ;
5 % 0 −> by pa s s % 2 −> 16APSK
6 % 1 −> 8PSK % 3 −> 32APSK
7
8 %% c o n s t a n t s

53

Chapter 4. implementation and verification

9 b i t s i n w o r d = 1 8 ;
10 a d d r e s s s p a c e = [3 6 0 0 , 9 0 0] ; % 18 b i t wide i n p u t
11 a d d r e s s s p a c e = a d d r e s s s p a c e (f r a m e s e l e c t +1) ;
12 c o l u m n s i z e = [[3 6 0 0 , 1200 , 900 , 720] ; [9 0 0 , 300 , 225 , 180]] ;
13 c o l u m n s i z e = c o l u m n s i z e (f r a m e s e l e c t + 1 , :) ;
14 co lumn coun t = [1 , 3 , 4 , 5] ;
15 map = [” 0 0 0 ” , ”001” , ”010” , ” 0 1 1 ”] ;
16 f r a m e c o u n t = s i z e (APSK selec t , 2) ;
17
18 %% i n t e r l e a v e r
19 input = r a n d i ([0 , 1] , [f r a m e c o u n t , a d d r e s s s p a c e , b i t s i n w o r d]) ;
20
21 f i l e I D = fopen (’ T e s t i n p u t i n t e r l e a v e r . t x t ’ , ’w’) ;
22 f p r i n t f (f i l e I D , ’%d %d\n ’ , f r a m e c o u n t , f r a m e s e l e c t) ;
23 f o r i = 1 : f r a m e c o u n t
24 f p r i n t f (f i l e I D , ’%s ’ , map (APSK se lec t (i))) ;
25 f p r i n t f (f i l e I D , ’%d ’ , pe rmute (input (i , : , :) , [3 , 2 , 1])) ;
26 f p r i n t f (f i l e I D , ’ ’) ;
27 i n t e r l e a v e r = reshape (input (i , : , :) , [c o l u m n s i z e (APSK se lec t (i)

) , co lumn coun t (APSK se lec t (i)) , b i t s i n w o r d]) ;
28 i n t e r l e a v e r = permute (i n t e r l e a v e r , [2 1 3]) ;
29 f p r i n t f (f i l e I D , ’%d ’ , pe rmute (reshape (i n t e r l e a v e r , [1 ,

a d d r e s s s p a c e , b i t s i n w o r d]) , [3 , 2 , 1])) ;
30 f p r i n t f (f i l e I D , ’\n ’) ;
31 end
32 f c l o s e (f i l e I D) ;
33 di sp (” done ”) ;

Listing 4.3: VHDL testbench code for the big-interleaver

1 l i b r a r y IEEE ;
2 use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
3 use IEEE . n u m e r i c s t d .ALL ;
4 use STD . t e x t i o . a l l ;
5 use IEEE . s t d l o g i c t e x t i o . a l l ;
6 e n t i t y t b i s end e n t i t y ;
7 a r c h i t e c t u r e t e s t of t b i s
8 s i g n a l EndOfSim : b o o l e a n := f a l s e ;
9 c o n s t a n t h a l f c l k : t ime := 10 ps ;

10 component D V B i n t e r l e a v e r 1 8 b i t
11 port
12 (c l k : in s t d l o g i c ;
13 e n a b l e : in s t d l o g i c ;
14 r e s e t : in s t d l o g i c ;
15 f r a m e s e l e c t : in s t d l o g i c v e c t o r (0 downto 0) ;
16 APSK se lec t : in s t d l o g i c v e c t o r (2 downto 0) ;
17 d a t a i : in s t d l o g i c v e c t o r (17 downto 0) ;
18 d a t a o : out s t d l o g i c v e c t o r (17 downto 0)
19) ;
20 end component ;

54

4.2 ModelSim simulation and verification

21 type f r a m e s i z e a r r a y i s array (0 to 1) of i n t e g e r ;
22 c o n s t a n t f r a m e s i z e : f r a m e s i z e a r r a y := (0 => 64800 , 1 =>

16200) ;
23 c o n s t a n t a d d r e s s s p a c e : f r a m e s i z e a r r a y := (0 => 3600 , 1 =>

900) ;
24 c o n s t a n t i n p u t s i z e : i n t e g e r := 1 8 ;
25 s i g n a l c l k : s t d l o g i c := ’ 0 ’ ;
26 s i g n a l e n a b l e : s t d l o g i c := ’ 0 ’ ;
27 s i g n a l r e s e t : s t d l o g i c := ’ 0 ’ ;
28 s i g n a l f r a m e s e l e c t : s t d l o g i c v e c t o r (0 downto 0) ;
29 s i g n a l APSK se lec t : s t d l o g i c v e c t o r (2 downto 0) ;
30 s i g n a l d a t a i : s t d l o g i c v e c t o r (i n p u t s i z e −1 downto

0) ;
31 s i g n a l d a t a o : s t d l o g i c v e c t o r (i n p u t s i z e −1 downto

0) ;
32 s i g n a l e x p e c t e d : s t d l o g i c v e c t o r (i n p u t s i z e −1 downto

0) ;
33 s i g n a l s t a r t r : s t d l o g i c ;
34 s i g n a l c o r r e c t : s t d l o g i c ;
35 f i l e t e s t i n g d a t a : t e x t ;
36 begin
37 d u t : D V B i n t e r l e a v e r 1 8 b i t
38 port map
39 (c l k => c lk ,
40 e n a b l e => enab l e ,
41 r e s e t => r e s e t ,
42 d a t a i => d a t a i ,
43 d a t a o => d a t a o ,
44 f r a m e s e l e c t => f r a m e s e l e c t ,
45 APSK se lec t => APSK se lec t
46) ;
47 c l o c k : p r o c e s s −− c l o c k g e n e r a t o r , t o g g e l c l k e v e r y h a l f p e r i o d e

.
48 begin
49 i f EndOfSim then wai t ; end i f ;
50 c l k <= not c l k ;
51 wait f o r h a l f c l k ;
52 end p r o c e s s ;
53 main : p r o c e s s
54 v a r i a b l e r e a d l i n e : l i n e ;
55 v a r i a b l e f r a m e c o u n t : i n t e g e r ;
56 v a r i a b l e M f r a m e s e l e c t : s t d l o g i c v e c t o r (0 downto 0) ;
57 v a r i a b l e i n t f r a m e s e l e c t : i n t e g e r ;
58 v a r i a b l e M APSK SELECT : s t d l o g i c v e c t o r (2 downto 0) ;
59 v a r i a b l e M INPUT : s t d l o g i c v e c t o r (0 to f r a m e s i z e

(0) − 1) ;
60 v a r i a b l e M OUTPUT : s t d l o g i c v e c t o r (0 to f r a m e s i z e

(0) − 1) ;
61 v a r i a b l e f r a m e c o u n t e r : i n t e g e r ;
62 v a r i a b l e i n p u t c o u n t e r : i n t e g e r ;

55

Chapter 4. implementation and verification

63 v a r i a b l e i n p u t : s t d l o g i c v e c t o r (i n p u t s i z e −1
downto 0) ;

64 v a r i a b l e o u t p u t : s t d l o g i c v e c t o r (i n p u t s i z e −1
downto 0) ;

65 v a r i a b l e l ower bound : i n t e g e r ;
66 v a r i a b l e uppe r bound : i n t e g e r ;
67 begin
68 f i l e o p e n (t e s t i n g d a t a , ” T e s t i n p u t i n t e r l e a v e r . t x t ” ,

read mode) ;
69 r e a d l i n e (t e s t i n g d a t a , r e a d l i n e) ;
70 r e a d (r e a d l i n e , f r a m e c o u n t) ;
71 r e a d (r e a d l i n e , M f r a m e s e l e c t) ;
72 i n t f r a m e s e l e c t := t o i n t e g e r (u n s i g n e d (M f r a m e s e l e c t)) ;
73 r ep or t ” f r a m e c o u n t = ” & i n t e g e r ’ image (f r a m e c o u n t) ;
74 wait u n t i l f a l l i n g e d g e (c l k) ;
75 e n a b l e <= ’ 0 ’ ;
76 r e s e t <= ’ 1 ’ ;
77 f r a m e s e l e c t <= M f r a m e s e l e c t ;
78 wait u n t i l r i s i n g e d g e (c l k) ;
79 wait u n t i l f a l l i n g e d g e (c l k) ;
80 e n a b l e <= ’ 1 ’ ;
81 r e s e t <= ’ 0 ’ ;
82 f r a m e c o u n t e r := 0 ;
83 −− f i r s t l oop t h a t w r i t e s f ram es
84 whi le f r a m e c o u n t e r < f r a m e c o u n t +1 loop
85 i f (f r a m e c o u n t e r < f r a m e c o u n t) then
86 r e a d l i n e (t e s t i n g d a t a , r e a d l i n e) ;
87 r e a d (r e a d l i n e , M APSK SELECT) ;
88 r e a d (r e a d l i n e , M INPUT(0 to f r a m e s i z e (i n t f r a m e s e l e c t)−1))

;
89 r ep or t ” Frame : ” & i n t e g e r ’ image (f r a m e c o u n t e r) & ”

M APSK SELECT = ” & i n t e g e r ’ image (t o i n t e g e r (u n s i g n e d (
M APSK SELECT))) ;

90 e l s e end i f ;
91 −−second loop t h a t w r i t e s words
92 i n p u t c o u n t e r := 0 ;
93 whi le i n p u t c o u n t e r < (a d d r e s s s p a c e (i n t f r a m e s e l e c t)) loop
94 lower bound := i n p u t s i z e ∗ i n p u t c o u n t e r ;
95 uppe r bound := i n p u t s i z e ∗ (i n p u t c o u n t e r +1)−1;
96 −− w r i t e i n p u t (don ’ t w r i t e a t t h e end)
97 i f (f r a m e c o u n t e r < f r a m e c o u n t) then
98 APSK se lec t <= M APSK SELECT ;
99 d a t a i <= M INPUT (lower bound to uppe r bound) ;

100 e l s e
101 d a t a i <= (o t h e r s => ’U’) ;
102 end i f ;
103 wait u n t i l r i s i n g e d g e (c l k) ;
104 −− w r i t e e x p e c t e d o u t p u t (don ’ t w r i t e a t t h e

b e g i n n i n g)
105 i f (f r a m e c o u n t e r >0) then

56

4.2 ModelSim simulation and verification

106 e x p e c t e d <= M OUTPUT(lower bound to uppe r bound) ;
107 e l s e end i f ;
108 wait u n t i l f a l l i n g e d g e (c l k) ;
109 i n p u t c o u n t e r := i n p u t c o u n t e r + 1 ;
110 end loop ;
111 i f (f r a m e c o u n t e r < f r a m e c o u n t) then
112 r e a d (r e a d l i n e , M OUTPUT(0 to f r a m e s i z e (i n t f r a m e s e l e c t)−1)

) ;
113 e l s e end i f ;
114 s t a r t r <= ’ 1 ’ ;
115 f r a m e c o u n t e r := f r a m e c o u n t e r + 1 ;
116 end loop ;
117 f i l e c l o s e (t e s t i n g d a t a) ;
118 s t a r t r <= ’ 0 ’ ;
119 e n a b l e <= ’ 0 ’ ;
120 wait f o r 10 ∗ h a l f c l k ;
121 EndOfSim <= t r u e ;
122 r ep or t ” s i m u l a t i o n f i n i s h e d s u c c e s s f u l l y ” s e v e r i t y FAILURE ;
123 wait ;
124 end p r o c e s s ;
125 t e s t i n g : p r o c e s s
126 begin
127 wait u n t i l f a l l i n g e d g e (c l k) ;
128 i f (s t a r t r = ’ 1 ’) then
129 i f (e x p e c t e d = d a t a o) then
130 c o r r e c t <= ’ 1 ’ ;
131 e l s e
132 r ep or t ”ERROR: i n c o r r e c t ” ;
133 wait f o r 4∗ h a l f c l k ;
134 r ep or t ”ERROR: e x i t i n g ” s e v e r i t y FAILURE ;
135 c o r r e c t <= ’ 0 ’ ;
136 end i f ;
137 end i f ;
138 end p r o c e s s ;
139 end a r c h i t e c t u r e ;

57

Chapter 4. implementation and verification

Figure 4.1: overview of the full interleaving pro-
cess of 12 normal frames

Figure 4.2: overview of the full interleaving pro-
cess of 12 small frames

58

4.2 ModelSim simulation and verification

Figure 4.3: start up behaviour for the small
frame configuration

Figure 4.4: output small frame 0 and input small
frame 1

59

Chapter 4. implementation and verification

Figure 4.5: output small frame 7 and input small
frame 8

Figure 4.6: output small frame 8 and input small
frame 9

60

4.3 Quartus timing and resource usage analysis

4.3 Quartus timing and resource usage analysis
WideNorth has not yet decided on what FPGA will be used, but it will most probably be
the Intel Stratix 10 FPGA, The particular device choice ranges from the SX 850 to the SX
2800. Out of this range, 1SX085HN3F43I3XG has been chosen as the target device for
compilation and verification. It is the slowest, low power SX 850 device, this is needed in
order to have a good worst-case scenario.

The design, as can be found in Listing 4.1, has been compiled in Quartus Prime Pro
Edition v18.0 with a trail licence. The timing results can be found in Table 4.1. As can
be seen from the results, under the worst performing scenario, the maximum frequency
this design can operate at is 476.87 MHz. This design exceeds the 350 MHz target by an
additional 126,87 MHz. It can be said that this design has successfully reached its goal by
a large margin. A good portion of this performance, however, can be given credit to the
fact that the Stratix 10 is the fastest and most state-of-the-art FPGA series currently on the
market. A direct comparison to other designs is not possible duo them being implemented
on other devices and silicon processes.

Based on the top failing paths analysis it is possible to increase the speed even further.
One way is to duplicate the modulo LUT for the reset part of the interleaver. Another
way is to calculate the next ADD and compare values as soon as the appropriate address
is captured instead of at the end of each frame.

A summary of the block resource usage and routing resource usage can be seen in
Table 4.2 and 4.3 respectively. On the chip planner it is possible to see where all the
used resources are located. Figure 4.7 shows the occupied M20K and LAB blocks on the
FPGA fabric, Figure 4.8 shows the whole FPGA fabric for reference. With these results it
is possible to conclude that this design is very resource efficient.

Table 4.1: big-interleaver maximum theoretical frequency

corner model temperature max freq (MHz)
slow 100C 501.5
slow -40C 476.87
fast 100C 696.38
fast -40C 768.05

Table 4.2: block resource usage

block resource usage usage available relative
logic utilization (in ALMs) 93 284,96 <1%
total dedicated logic registers 85
total block memory bits 73,728 71,208,960 <1%
total RAM Blocks 4 3,477 <1%

61

Chapter 4. implementation and verification

Table 4.3: routing resource usage

routing resource type usage available relative
block input muxes 18 361,828 <1 %
block interconnects 485 4,381,776 <1 %
C16 interconnects 29 108,864 <1 %
C2 interconnects 57 653,184 <1 %
C3 interconnects 65 1,325,376 <1 %
C4 interconnects 141 851,904 <1 %
CLOCK INVERTs 2 4,032 <1 %
DCM muxes 1 1,088 <1 %
direct links 140 <1 %
GAP Interconnects 59 173,376 <1 %
GAPs 0 29,304 0%
HIO Buffers 23 145,152 <1 %
horizontal Buffers 12 115,776 <1 %
horizontal clock segment muxes 6 4,032 <1 %
programmable inverts 22 195,696 <1 %
R10 interconnects 86 1,216,008 <1 %
R2 interconnects 75 1,088,640 <1 %
R24 interconnects 94 152,064 <1 %
R24/C16 interconnect drivers 36 217,728 <1 %
R4 interconnects 86 1,574,496 <1 %
row clock tap-offs 14 350,352 <1 %
switchbox clock muxes 22 23,04 <1 %
vertical seam tap muxes 11 12,096 <1 %

Figure 4.7: big-interleaver implementation on the FPGA fabric

62

4.3 Quartus timing and resource usage analysis

Figure 4.8: the whole 1SX085HN3F43I3XG FPGA fabric

63

Chapter 4. implementation and verification

64

Chapter 5
Conclusion

The goal of this Master’s Thesis is to implement a high speed DVB-S2 compliant block-
interleaver with the possibility to extend it to the DVB-S2X standard. The interleaving
process was equated to a permutation operation that realises a matrix transposition. Two
MATLAB models have been evaluated. The first one was based on what was already
present in the literature. The second one is an entirely new proposition. Both designs
have been evaluated and the second design has been chosen as being the better one suited
for this application. With this new design it is possible to seamlessly interleave consec-
utive frames with only one memory block. arguments, proofs, and demonstrations have
been given in order to back up that claims. Multiple challenges have been solved such as,
switching between configurations without having to reset the interleaver, handling multi-
ple consecutive bits in high throughput applications, and handling slightly different frame
sizes, which was needed to allow 128 APSK modulation. the end result is that the inter-
leaver has been split up into three pieces. The first piece is the words repackaging network
that has to repackage consecutive bits in varying word sizes, it has not been implemented
successfully duo to a lack of time. The second part is the Big interleaver that achieves
intermediate interleaving by interleaving the words themselves instead of their contents.
The final part is the small-interleaver that reads in multiple words, which can be seen as
columns, into a matrix in order to then read out all the rows to finish the interleaving pro-
cess. This part will be incorporated into the constellation mapper. A slightly older, but still
relevant version of the big interleaver has been implemented and verified. A ModelSim
simulation and a Quartus timing and resource usage analysis was preformed. The prede-
fined performance goal of 350 MHz was exceeded by an additional 126,87 MHz. This
new way of doing block-interleaving is practical to implement and scales very well duo to
its simplicity.

65

Chapter 5. Conclusion

66

Bibliography

[1] Digital Video Broadcasting (DVB); Second generation framing structure, channel
coding and modulation systems for Broadcasting, Interactive Services, News Gather-
ing and other broadband satellite applications; Part 1: DVB-S2, European Telecom-
munications Standards Institute, 11 2014, eTSI EN 302 307-1 V1.4.1.

[2] J. Bruant, “Generic high-speed broadband sdr platform implemented in fpga using
direct sampling at l-band,” 2018, trondheim FPGA Forum 2018.

[3] D. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003.

[4] Digital Video Broadcasting (DVB); Second generation framing structure, channel
coding and modulation systems for Broadcasting, Interactive Services, News Gath-
ering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-
S2X), European Telecommunications Standards Institute, 10 2014, eTSI EN 302 307-
2 V1.1.1.

[5] J. Lei and W. Gao, “Matching Graph Connectivity of LDPC Codes to High-Order
Modulation by Bit Interleaving,” in 2008 46TH ANNUAL ALLERTON CONFER-
ENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, ser.
Annual Allerton Conference on Communication Control and Computing. 345 E
47TH ST, NEW YORK, NY 10017 USA: IEEE, 2008, Proceedings Paper, pp. 1059+,
46th Annual Allerton Conference on Communication, Control and Computing, Mon-
ticello, IL, SEP, 2008.

[6] M. Jang, H. Lee, S.-H. Kim, S. Myung, H. Jeong, and J. Kim, “Design of LDPC
Coded BICM in DVB Broadcasting Systems With Block Permutations,” IEEE
TRANSACTIONS ON BROADCASTING, vol. 61, no. 2, pp. 327–333, JUN 2015.

[7] R. Jose and A. Pe, “Analysis of Hard Decision and Soft Decision Decoding Al-
gorithms of LDPC Codes in AWGN,” in 2015 IEEE INTERNATIONAL ADVANCE
COMPUTING CONFERENCE (IACC), ser. IEEE International Advance Computing

67

Conference. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, 2015, Proceed-
ings Paper, pp. 430–435, IEEE International Advance Computing Conference (IACC
2015), Bangalore, INDIA, JUN 12-13, 2015.

[8] N. P. Bhavsar and B. Vala, “Article: Design of hard and soft decision decoding algo-
rithms of ldpc,” International Journal of Computer Applications, vol. 90, no. 16, pp.
10–15, March 2014, full text available.

[9] D. Bhardwaj, S. P. Singh, and V. K Pandey, “Vhdl implementation of efficient multi-
mode block interleaver for wimax,” International Journal of Engineering Trends and
Technology (IJETT), vol. 1, 03 2012.

[10] S. Mohanty and N. M. Sk, “A Novel Interleaver Design for Multimode Communica-
tion in WLAN,” in 2014 INTERNATIONAL CONFERENCE ON SIGNAL PROCESS-
ING AND INTEGRATED NETWORKS (SPIN), IEEE UP Sect; IEEE. 345 E 47TH
ST, NEW YORK, NY 10017 USA: IEEE, 2014, Proceedings Paper, pp. 286–290,
1st International Conference on Signal Processing and Integrated Networks (SPIN),
Amity Univ Campus, Amity Sch Engn & Technol, Noida, INDIA, FEB 20-21, 2014.

[11] C. Yu, M.-H. Yen, P.-A. Hsiung, and S.-J. Chen, “Design of a High-Speed Block In-
terleaving/Deinterleaving Architecture for Wireless Communication Applications,”
in 2009 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS,
IEEE. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, 2009, Proceedings
Paper, pp. 237+, 27th IEEE International Conference on Consumer Electronics, Las
Vegas, NV, JAN 10-14, 2009.

[12] Stratix 10 GX/SX Device Overview, Intel, 10 2017, s10-overview.

[13] Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules User Guide, Intel,
11 2017, ug-s10lab.

[14] Intel Stratix 10 Embedded Memory User Guide, Intel, 12 2017, ug-s10memory.

68

Appendix

The copyright notice of ETSI can be found below.

69

70

71

	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Literature Review
	DVB-S2 modem
	forward error correction
	coding theory
	coding and decoding of frames
	LDPC in more detail

	the block-interleaver
	purpose
	the DVB-S2 and DVB-S2X standard

	existing block-interleaver designs
	Stratix 10 SX
	high level overview
	Adaptive Logic Module
	20-kilo-bit memory block

	Interleaver design
	project description
	objective
	performance goal
	design priorities

	testing methodology
	modeling the interleaver as a permutation operation
	from model to hardware in steps
	examples

	block-interleaver models
	the block-interleaver as a matrix transposition
	memory block address generator as described in the literature
	memory block address generator based on a linear congruential generator
	expanding from examples to real use cases

	block-interleaver with only one memory block
	One-memory-block design explained
	permutation groups
	challenge in frame size scalability
	possible compromise for large frames
	solving the frame size scalability issue
	uninterrupted interleaving for one configuration
	uninterrupted interleaving across all configurations
	scalability of the one-memory-block design

	de-interleaving
	processing multiple sequential bits at a time
	subdividing the transposition operation
	subdividing the interleaver
	row read order permutation
	challenge with indivisibility of words into columns
	allowing variable word sizes

	the final design

	implementation and verification
	big-interleaver implementation
	ModelSim simulation and verification
	Quartus timing and resource usage analysis

	Conclusion
	Bibliography
	Appendix

