
Contributions to centralized dynamic
channel allocation reinforcement
learning agents

Torstein Sørnes

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Table of Contents

Table of Contents 3

List of Tables 5

List of Figures 7

Abbreviations 8

Symbols 9

1 Introduction 1

2 Background 5
2.1 Channel Assignment Policies . 5

2.1.1 Fixed Channel Assignment . 5
2.1.2 Dynamic Channel Assignment 6
2.1.3 Hybrid Channel Assignment . 7

2.2 Reassignment policies . 7
2.3 Related tasks for cellular telephone networks 7
2.4 Centralized and decentralized networks 8
2.5 Call traffic modelling . 8
2.6 Summary . 9

3 Basic Theory 11
3.1 Environment specification . 11

3.1.1 Markov Decision Processes . 11
3.1.2 Dynamic Channel Allocation as a MDP 13
3.1.3 Semi-Markov Decision Processes 15
3.1.4 The average reward optimality criterion 17

3.2 Reinforcement Learning . 17
3.2.1 Dealing with large state spaces 20

1

3.3 Artificial Neural Networks in RL . 21
3.4 Summary . 22

4 Related work 25
4.1 Singh et al. 25
4.2 Nie et al. 27
4.3 Lilith et al. 27
4.4 Kunz . 31
4.5 Brunato et al. 31
4.6 Results from previous work on DCA . 32
4.7 El-Alfy et al. 33
4.8 Pietrabissa . 34
4.9 Usaha et al. 34
4.10 Graph theory for FCA . 35
4.11 Dynamic Spectrum Assignment and Cognitive Radio domains 36
4.12 Morozs . 36
4.13 Bernardo et al. 38
4.14 Biggelaar et al. 39
4.15 Summary . 40

5 Methodology 41
5.1 Simulator . 41
5.2 DCA agent . 44

5.2.1 State value-function approximation 44
5.2.2 Optimizing for a better target . 46
5.2.3 Gradient corrections . 47
5.2.4 Hand-off look-ahead . 49
5.2.5 Incremental feature representation calculation 53
5.2.6 The AA-VNet DCA agent . 53
5.2.7 Policy with nominal channel preference 55

5.3 Summary . 57

6 Results and Analysis 59
6.1 Choice of returns . 60
6.2 Gradients . 62
6.3 Hand-off look-ahead . 63
6.4 Exploration . 66
6.5 Comparison to non-learning agents . 66
6.6 Summary . 69

7 Conclusion 71
7.0.1 Hand-off look-ahead in distributed systems 72
7.0.2 Model-based new call look-ahead 72

Bibliography 73

Appendix 81
7.0.3 Hyperparameters . 81
7.0.4 Remaining graphs . 83

List of Tables

4.1 Lilith’s SARSA methods state-action space size and blocking probability 29
4.2 Results from previous related work . 32

6.1 Value-net agents . 59
6.2 Caller environment parameters . 60

5

List of Figures

1.1 Reuse distance . 2

2.1 Partitioned grid . 6

3.1 RL DCA event-action-train cycle . 12
3.2 SMDP transition diagram . 16

4.1 Shared interefering neighbors on hand-off 30

5.1 Discrete event simulation . 42
5.2 Rhombus grid with axial coordinates . 43
5.3 State-action vs. state networks . 45
5.4 Reassignment on hand-off departure . 50
5.5 Reassignments without hand-off look-ahead 52

6.1 Return comparison (with hand-offs) . 61
6.2 Gradient comparison (without hand-offs) 62
6.3 Hand-off look-ahead . 64
6.4 HLA total blocking probability . 65
6.5 Exploration strategies (with hand-offs) 67
6.6 RL vs. non-learning agents (with hand-offs) 68

7.1 Return comparison and Exploration strategies 83
7.2 RL vs. non-learning agents . 84

7

Abbreviations

BS = Base Station
CAC = Call Admission Control
RL = Reinforcement Learning
DP = Dynamic Programming
FCA = Fixed Channel Allocation
DCA = Dynamic Channel Allocation
DSA = Dynamic Spectrum Allocation
HCA = Hybrid Channel Allocation
BDCL = Borrow with Directional Channel Locking
(S)MDP = (Semi-)Markov Decision Process
A-(S)MDP = Average-Reward (Semi-)Markov Decision Process
ANN = Artifical Neural Network
TD = Temporal Difference
SINR = Signal to Interference plus Noise Ratio
HLA = Hand-off Look-Ahead
SGD = Stochastic Gradient Descent
TDC = TD(0) with Gradient Corrections

Symbols

I Number of cells in the grid.

I Set of all cells.

K Number of channels.

K Set of all channels.

x Allocation map.

z(x, e, a) Allocation map transition function, yields x′.

zφ(x, x̃, e, a) Feature representation transition function, yields x̃′.

x̃ Feature representation of allocation map.

φ Feature representation transformation function.

S State.

A Action.

R Reward.

S State space.

A(s) Action space in state s.

Pa
ss′ Probability of transitioning to state s′ given state s, action a.

Ra
s Expected reward given state s, action a.

Gt Return. Integration of possibly discounted rewards from time t on-wards.

γ Discount factor for MDP.

β Discount factor for SMDP.

9

vπ(s) Expected return when starting in state s and following policy π.

v∗(s) Expected return when starting in state s and following an optimal policy.

Vπ(s) Stochastic approximation of vπ(s).

Vθ(s) Function approximation with parameters θ of Vπ(s).

v̄π(s) Average-adjusted value-function (for average-reward MDPs).

α Learning rate for RL agent.

αG Learning rate for gradient corrections.

αA Learning rate for average reward.

δ Temporal Difference error.

δ̄ Differential Temporal Difference error (for average-reward MDPs).

ρ Average reward.

Chapter 1
Introduction

In 2017, the number of unique mobile subscribers was 5 billion and is expected to reach
5.9 billion by 2025. The number of mobile devices excluding cellular Internet-of-Things
devices is expected to grow from 7.8 to 9.0 billion in the same period (Sivakumaran and
Iacopino, 2018). In 2013, the United Kingdom government enjoyed a £2.3 billion gain by
auctioning the 4G mobile spectrum to telecom operators (Ofcom, 2013). As the number
of mobile cellular telecommunications devices is already staggering and expected to grow,
the efficient use of the limited and expensive radio spectrum becomes even more important
in order to satisfy the demands of the users.

In circuit switched networks carrying voice traffic, the fundamental limiting factor in
system capacity on the radio spectrum is interference between different mobile callers
(Katzela and Naghshineh, 1996). Nearby mobile callers using the same radio frequency
causes co-channel interference which is the most prohibitive interference type. If a service
request cannot be fulfilled without causing excessive interference, it is denied. Interference
is managed through channel allocation techniques which aim to increase radio spectrum
reuse efficiency by determining the pattern with which radio channels are used across the
geographic radio coverage area. The area forms a grid divided into disjoint, fixed sized
regions called cells, each served by its own base station (BS) which has a transceiver that
wirelessly connects user equipment to the network providing voice transmission services.
The system as a whole has access to a finitely sized communications resource, namely its
allocation of radio spectrum bandwidth. The bandwidth is divided into bandwidth units,
hereafter referred to as channels, using a multiple access technique such as frequency divi-
sion multiple access (FDMA). In FDMA, the bandwidth is divided into narrow frequency
bands with guard bands in between to avoid cross talk interference. Other schemes like
time division multiple access (TDMA) and code division multiple access (CDMA) divide
the spectrum using time slots and modulation codes respectively (Dutta et al., 2016). Each
mobile caller must have exclusive access to a channel within its local area to communi-
cate with the base station without interference. The minimum distance necessary between
simultaneous reuse of a channel is termed the channel reuse constraint or reuse distance
(Jordan, 1996). BSs spaced less than the reuse distance apart from a particular BS are its

1

Chapter 1. Introduction

interfering neighbors, while cells at or outside this distance are its co-channel cells and
may use the same channels simultaneously as the cell in question. Since every cell has a
single BS, we will use those terms interchangeably throughout this document.

Figure 1.1: Three cells, with cell A and C both using the same channel without violating the reuse
distance of 2. B is an interfering neighbor of A, while C is a co-channel cell of A.

The problem of channel allocation (channel assignment) is to select which channel
to allocate to a caller upon a service request. In centralized systems, which this work
considers, a BS receiving a service request queries a central switching centre for which
channel to use. In the switching centre, the channel allocation policy selects a channel
from the set of channels that are free for both the BS and its interfering neighbors, i.e.
the eligible channels. If there are no eligible channels, the call must be blocked to avoid
interference. Using a free channel may cause interference, while using an eligible channel
will not.

Callers move around in the geographic area, creating call hand-offs between BSs. On
hand-off from departure BS to arrival BS, the arrival BS may choose any eligible channel
thus a hand-off is logistically equivalent to a call departure in one cell and a call arrival in a
neighboring cell. Blocking a hand-off is considered less desirable than blocking a new call
request, and there is a trend towards reducing the size of the area served by a base station
which increases the hand-off frequency, thus handling hand-offs is increasingly important
(El-Alfy et al., 2001).

The core objective of the channel allocation policy is to minimize the probability of
blocking call service requests, or equivalently, to maximize service utilization. To aid
in that objective, the channel allocation policy may reassign a call in progress from one
channel to another when other calls depart in order to leave more channels eligible for
future assignment. Preferably, hand-off blocking probability should be reduced below the
probability of blocking new call requests. With a Fixed Channel Assignment (FCA) policy,
each cell is pre-allocated a limited subset of the channels and may only assign channels
from this subset. FCA is the most commonly used channel allocation policy in GSM
networks (Lilith and Dogançay, 2004), but performs badly in low traffic conditions and
is unable to prioritize hand-offs without resorting to techniques which cause a significant
penalty to total system utilization (Wong, 2003). In Dynamic Channel Allocation (DCA),
the policy allocates channels from a central pool where any channel can be used in any
cell so long as the reuse constraint is satisfied. DCA policies have the potential to adapt to
temporal and spatial variations in call traffic, to prioritize hand-offs, and handle non-fixed
network topologies. Reinforcement Learning (RL) have been successfully applied to DCA
and related problems in the radio network domain.

In this work, we investigate the formalization of the problem of DCA as a Markov De-

2

cision Process (MDP) and the design of the RL agent, and ask ourselves the questions: Can
hand-off blocking probability be improved without doing call admission control? Which
objective function should be optimized in order to minimize cumulative call blocking prob-
ability? Does the problem of DCA exhibit any special characteristics that can be exploited
in the design of the RL agent?

We introduce a domain-specific policy improvement operator for reassigning channels
during call hand-offs with the intent of reducing hand-off blocking probability. We con-
struct an RL agent for maximizing average grid utilization, which uses a linear neural net-
work as state value-function approximator and afterstates for action selection. A variant
of TD(0) with gradient correction (TDC) (Sutton et al., 2009) is proposed for average-
reward MDPs, which in conjunction with the policy improvement operator contributes
decreased hand-off call blocking probability in a simulated centralized caller environment
without any penalty to previously shown (Singh and Bertsekas, 1997) state of the art new
call blocking probability. The policy improvement operator is also applied to the table-
lookup based SARSA agent of Lilith and Dogançay (2004) where it shows state of the art
performance in terms of hand-off blocking probability for an all-admission agent.

While this works considers centralized systems, the policy improvement operator is
applicable to distributed agents so long as the channel usages of the interfering neighbors
of the hand-off arrival BS are known to the hand-off departure BS.

3

Chapter 1. Introduction

4

Chapter 2
Background

In this work, we assume a cellular telephone network with a centralized agent operating
as the sole user in a licensed band on the radio spectrum. In addition, we assume that the
multiple access technique eliminates any significant adjacent channel interference. Adja-
cent channel interference is caused by two nearby mobiles using different channels that are
nearby in the channel domain, e.g. nearby frequencies. Being the sole user of a network
without adjacent channel interference implies that any interference is co-channel interfer-
ence caused by using the same channel in close geographic distance, and that the network’s
own channel allocations is the only cause for any co-channel interference.

2.1 Channel Assignment Policies
Policies for assigning and reassigning channels can be categorized into three main types,
depending upon whether all, some or none of the channels remain permanently pre-allocated
to cells. Central to all of them is channel packing, which is the idea of using the same chan-
nel in cells that are as close as possible to each other without violating the reuse constraint.

2.1.1 Fixed Channel Assignment
In Fixed Channel Assignment (FCA), the grid is first labelled with the minimum amount
of labels such that no two cells spaced less than the reuse distance apart from each other
have the same label (Figure 2.1). Then, the channels are partitioned evenly into the labels.
The partition of channels pre-allocated to a cell are called its nominal channels, and a cell
may only use channels from this partition. Since all nominal channels in all cells can be
used simultaneously without violating the reuse constraint, channel reassignment on call
termination does not improve system utilization and is therefore not performed.

By convention, cellular grids are modelled with hexagonal cells. For certain hexagonal
grid shapes, cells in some of the corners will have a set of interfering neighbors that,
including the cell itself, does not span the entire range of labels. These corner cells should
then expand their set of nominal channels to include the partitions that are not within the

5

Chapter 2. Background

Figure 2.1: A 7×7 grid divided into 7 partitions. The number within a cell (and its color) designates
which nominal channel partition it belongs to. No two cells with distance of 2 or less of each other
have the same label. A reuse distance of 3 is therefore safe to use without risking interference.

reuse distance. In the rhombus shaped grid in Figure 2.1, this applies to the cell in the top
left-hand corner and the cell in the bottom right-hand corner, assuming the reuse distance
is 3.

Provided that corner cells have their set of nominal channels expanded where appropri-
ate, FCA is optimal in the limit of infinite call traffic (McEliece and Sivarajan, 1994). Still,
it is clear why FCA can perform sub-optimally under lighter traffic conditions. Suppose
there is a hot spot in the grid with high traffic, and a surrounding area with low traffic, then
a cell in the hot spot will be limited to serving as many mobile clients as its number of
nominal channels. Cells in the neighboring low-traffic area might have unused channels,
thus leading to sub-optimal grid usage. If the hot spot is not a temporary phenomenon,
then the problem can be alleviated by partitioning channels unevenly into the cells. How-
ever, FCA is a static policy and unable to adapt to temporal variations in service demand.
Furthermore, cellular systems are designed to operate at a fraction of their full capacity
(Lilith, 2005), making low traffic performance more important.

2.1.2 Dynamic Channel Assignment

With Dynamic Channel Assignment (DCA) policies, cells are not restricted to use a subset
of the channels. Every channel is available for assignment in every cell, unless using the
channel violates the reuse constraint in the current grid conditions. The main idea behind
all DCA policies is to rank the channels in each cell using a cost function, the choice of
which is what differs between schemes (Katzela and Naghshineh, 1996).

Random assignment is the simplest example of a DCA policy, where a channel is
chosen at random from the set of eligible channels, without any reassignment done on call
termination. A random policy can adapt better to the hot spot scenario than FCA, because
high-activity cells have the ability to use a greater portion of the total bandwidth than when
the set of available channels remain fixed as in FCA.

6

2.2 Reassignment policies

2.1.3 Hybrid Channel Assignment

Hybrid Channel Assignment (HCA) policies pre-allocate some nominal channels to cells,
while leaving some portion free to be used anywhere on the grid. This helps alleviate the
issue highlighted in the previously mentioned hot spot example were neighboring cells
have a different amount of traffic and therefore require a different number of channels.
The best-performing example of such an approach is Borrowing with Direction Channel
Locking (BDCL) (Ming and Yum, 1989). If a cell temporarily requires more channels
than its the number of nominal channels, it may borrow a channel from a neighboring
cell. Because the borrowing cell has a different set of interfering neighbors than the cell
it borrows a channel from, a complex scheme of book-keeping makes sure that borrowing
does not violate the reuse constraint. While BDCL is regarded as a powerful heuristic it is
not practically implementable (Lilith, 2005) because a single call departure can cause an
arbitrary number of reassignments in any cell (Singh and Bertsekas, 1997).

2.2 Reassignment policies

Because the domain cost of channel reassignment is not explicitly known to us, this work
follows convention of only considering one reassignment per departure event. The reas-
signment is constrained to the same cell as the departure event.

A single channel reassignment per call termination is not sufficient to allow optimal
grid utilization. Consider an example where the channels [ch1, ch2, . . . , ch5] for a partic-
ular cell are valued in a strictly decreasing order. If both ch1 and ch2 are in use by an
interfering neighbor when three calls arrive, ch3 will be assigned first, then ch4, and at last
ch5. If the neighboring calls on ch1 and ch2 both depart, and our call on ch3 departs, the
optimal action is to reassign the call on ch5 — the minimally valued channel — to ch1.
That leaves a call in progress on ch4, which is not the maximum valued free channel in the
cell, and which could be reassigned to ch2 for a higher valued configuration, if we were to
allow multiple reassignments.

2.3 Related tasks for cellular telephone networks

Another task related to channel allocation is Call Admission Control (CAC) (e.g. Chen and
Jia (2009)), where a policy may decide to drop a call in progress or deny call requests even
though eligible channels are available. The motivation for doing so can be to prioritize
calls which generate more profit for the service provider, or to improve fairness between
different categories of mobile clients. Also, if the bandwidth varies with time, denying call
requests before a known or predicted bandwidth reduction will reduce the probability of
dropping calls in progress. It is generally less desirable to drop a call in progress than to
deny a service request. Many CAC agents are based on the guard channel approach (Hong
and Rappaport, 1986). This approach reserves some number of channels which are only
used for accepting hand-offs. The number of reserved channels can differ between cells,
and need not remain fixed. During network operation, the CAC agent continuously adjusts
the number of reserved channels in order to trade off hand-off versus new call blocking

7

Chapter 2. Background

probability according to an objective function given a priori. Using guard channels in-
creases new call blocking probability because fewer channels are available to serve new
calls (Wong, 2003).

Power control (e.g. Biggelaar et al. (2012)) is also done in caller environments. If
a caller is close to the base station or uses high-grade equipment, the BS can reduce its
transmit power. By regulating the transmit power for each cell and channel individually,
the reuse constraint need not be set for the worst-case scenario but can vary for each cell-
channel pair.

Instead of minimizing call blocking probability subject to limited bandwidth and a
reuse constraint, alternate objectives are commonly studied. Graph theory (e.g. Lin and
Shen (2018)) usually deals with minimizing the total number of channels used in a network
given fixed service demand and reuse constraint, both of which must be fully satisfied.
Other work (e.g. Kunz (1991)) aim to minimize interference given limited bandwidth while
fully satisfying service demand. In this setting there is no reuse constraint, instead pairs
of channel usages interfere with each other and the degree of interference is a function of
geographic distance between cells, distance in the channel domain between the channels
and transmit power.

We will not perform CAC or power control in this thesis, but look at some previous
work since both problems and their solution methods share a lot of similarities with chan-
nel allocation.

2.4 Centralized and decentralized networks

In this work, it is assumed that the network is centralized where the state of every BS is
known to a central agent. For large networks, the total amount of information that needs to
be transferred to the central agent can be prohibitively large. Furthermore these networks
rely on a single point of failure and are badly suited for cases where base stations are
dynamically added and removed during network operation.

In decentralized systems, each BS has its own DCA agent. The degree of decentral-
ization is a measure of the amount of information each agent has about its surroundings,
and differs between proposed solutions. Pure distributed DCA systems has no information
exchange between BSs (Morozs, 2015), while less decentralized system might exchange
channel usages between nearest neighboring cells. The agents in a decentralized system
have less information to act on and usually suffer a significant increase in blocking proba-
bility compared to their centralized counterparts because of it.

2.5 Call traffic modelling

Call traffic is by convention modelled by the memory-less exponential distribution (Ming
and Yum, 1989). That is, call duration τ follows the distribution:

f(τ ;µ) =
1

µ
exp−τ/µ (2.1)

8

2.6 Summary

where µ is the mean call duration. Similarly, mean time between two arriving calls, i.e.
inter-arrival time ∆t, is modelled independently for each cell by:

g(∆t;λ) = λ exp−∆tλ (2.2)

where λ is the mean call rate. This is equivalent to modelling call arrivals following a
Poisson distribution with parameter λ. The Poisson distribution is considered unsuited for
modelling the data packet traffic (Paxson and Floyd, 1995), but this work considers voice
traffic.

On scheduled call departure, calls hand off to a nearby cell with probability phandoff
instead of terminating. The arrival cell is chosen uniformly at random from the set of
neighbors with distance 1 from the cell of the departing call. Hand-offs have mean duration
separate from regular calls, µhandoff , which is usually lower.

Call traffic is independent for each cell, and the collection of parameters for the whole
grid defines the traffic pattern. The simplest traffic pattern is a uniform pattern where all
cells share the same parameters for call duration and inter-arrival times. Non-uniform traf-
fic patterns where the offered traffic varies between cells highlights how different policies
handles spatial variations. Time-varying traffic and delayed equipment failure, i.e. dis-
abling cells after some time period, are of special interest when comparing policies that
learn.

2.6 Summary
As we continue forward, keep in mind our task of performing Dynamic Channel Allocation
in a centralized network using a limited set of channels, given that the reuse constraint must
be satisfied, and as a consequence, service demand may not. As such, the objective is to
minimize the probability of blocking service requests, and preferably, to prioritize hand-
off requests over regular new call service requests. Service requests will not be denied if
they can be accepted without violating the reuse constraint, nor will any calls in progress
be terminated before the caller decides to do so. The task of the DCA agent is then as
simple as assigning and reassigning channels in a manner that minimizes the probability
of not being able to accept service requests.

9

Chapter 2. Background

10

Chapter 3
Basic Theory

Reinforcement Learning (RL) is a set of methods concerned with how an agent ought to
behave in an environment. The agent observes the state st of the environment, decides on
an action at and executes it. In turn, the environment emits a numerical reward signal rt
and transitions to the next state, st+1. The goal of the agent is to maximize the reward
output of the environment over a infinite time horizon or until the environment reaches a
terminal state.

RL is suitable for online learning, that is, learning as data becomes available as op-
posed to learning techniques which learn on an entire data set at once. In general, knowl-
edge of the environment dynamics is not required which contrasts to classical dynamic
programming. Online learning is important in DCA due to the dynamic nature of the
caller environment where temporal variations such as time-of-day fluctuations can arise.

In a DCA, the RL agent can be thought of as event-driven. The occurrence of call
arrival, departure or hand-off events triggers the need for action, and, in conjunction with
the current state of the system, determines which actions are possible to perform. RL has
enticing facets for the problem of DCA in cellular networks, namely its ability to adapt to
changing dynamic environments and ability to deal with state-spaces that are prohibitively
large for traditional dynamic programming.

First, lets define the channel allocation problem formally in terms suitable for RL
methods.

3.1 Environment specification

3.1.1 Markov Decision Processes

A Markov Decision Process (MDP) formally describes a fully observable, possibly stochas-
tic environment. A MDP is defined by the tuple:

(S,A(s),Pa
ss′,Ra

s , γ). (3.1)

11

Chapter 3. Basic Theory

A state value-based reinforcement learning agent. Each time step, the agent receives an
event e from the environment. A value-based policy π selects an action in response to the

event using the allocation map which is an internal model of the state of the grid. The
corresponding reward for that action is the sum of calls in progress after the action has
been executed. The reward is used to update the value-function’s (Vπ) valuation of the

pre-action allocation map.

Figure 3.1: RL DCA event-action-train cycle

12

3.1 Environment specification

Here, S is the finite set of environment states and A(s) is a function from a particular
state s ∈ S to a finite set of actions available to the agent in that state. The environment
dynamics are said to satisfy the Markov property, if and only if:

Pr[St+1 | St] = Pr[St+1|S1, . . . , St]. (3.2)

That is, the future (St+1) is conditionally independent of the past (S1, . . . , St−1) given the
present (St), and knowledge of the past therefore does not help predict future states. The
state transition probability function Pa

ss′ : S ×A× S → R

Pa
ss′ = Pr[St+1 = s′ | St = s,At = a] (3.3)

yields the probability of transitioning to state s′ if the agent executes action a in state s.
The reward functionRa

s : S ×A → R

Ra
s = E[Rt+1 | St = s,At = a] (3.4)

is the expected reward for taking action a in state s. We use the notation Ra
s for the

expectation of reward, r and rt for an observed or fixed reward, and Rt for reward as a
random variable, and similar notation for the other quantities. Lastly, the discount factor
γ ∈ [0, 1) represents the trade-off between short-term versus long-term reward, where
γ = 0 fully prioritizes immediate, short-term rewards.

A strategy π : S ×A → R for choosing actions when navigating an environment
defined by a MDP, termed the policy, assigns action probabilities for each action in each
possible state:

π(a | s) = Pr[At = a | St = s] with
∑

a∈A(s)

π(a | s) = 1. (3.5)

The policy defines the behavior of an agent in the environment. A policy is memory-less; it
depends on the current state and not on the history of states. Policies can be deterministic,
in which case a single action has probability one in each state and we shorten the notation
to a = π(s).

An agent executing actions according to policy π while interacting with the environ-
ment receives a reward at each time step, possibly zero. One measure for evaluating how
well a policy performs is the sum of discounted rewards which an agent receives from time
t on-wards, named the return:

Gt
.
=

∞∑
i=t

γiRt+i (3.6)

The corresponding objective is to find a policy π as to maximize the return G0.

3.1.2 Dynamic Channel Allocation as a MDP
We define a stochastic caller environment as a MDP by letting the state consist of the
allocation map xt and the event et that causes the state transition to the next state st+1;
i.e. st = (xt, et).

13

Chapter 3. Basic Theory

The allocation map xt ∈ {0, 1}I×K is a matrix which describes the state of the net-
work by specifying which channels are in use at each cell (using function notation for
indecies):

xt(i, k)
.
=

{
1, if channel k is in use in cell i at time t
0, otherwise

(3.7)

for all I cells, ∀i ∈ I = {1, 2, . . . , I}, and K channels, ∀k ∈ K = {1, 2, . . . ,K}.
Sometimes we also talk about the allocation map of a specific cell, e.g. xt(i, ·) which is a
K-length vector specifying the channel usages at cell i.

State transitions occur when calls arrive, depart, or hand off; we model the latter as a
call departure event in one cell and an arrival event in another. Arrival events consist of the
cell number i for the service request and time of arrival t. Departure events, in addition,
specify the channel k of the departing call.

et ∈ {NEWi,t,ENDi,k,t} (3.8)

We use the term event-cell for the cell i where the current event takes place.
On call arrival, the set of available actionsA(s) is limited to assigning a channel that is

free in the given cell and its interfering neighbors, or to block the call if no channels are el-
igible. On call departure, we define the set of actions to reassigning a call in progress to the
newly freed channel, or doing no reassignment at all. Reassignments are only considered
in the event-cell.

Let d(i, j) denote the (symmetric) distance between cell i and cell j, such that the
distance from a cell to itself is zero, and from itself to an immediate neighbor is one.
Given a reuse distance of three, the set of interfering cells for cell i is:

IIF (i)
.
= {j ∈ I : d(i, j) < 3} (3.9)

which for convenience also contains cell i itself.
The action space for channel assignment actions corresponds to the set of eligible

channels, KEL:

A(xt,NEWi,t) = KEL(xt, i)
.
= {k ∈ K :

∑
j∈IIF (i)

xt(j, k) = 0}, (3.10)

where an empty set indicates that the call must be blocked. Similarly, on call departure the
action specifies the channel of a call in progress to be reassigned to channel k:

A(xt,ENDi,k,t) = {l ∈ K : xt(i, l) = 1}, (3.11)

where action k is always present in the set and equivalent to doing no reassignment at all.
Note that executing any action at on xt deterministically results in xt+1 given the

current event et. Let z denote this deterministic transition function, such that
xt+1 = z(xt, et, at) = z(st, at). Assignment actions simply sets the channel specified by
the action to 1 (in use) in the event-cell:

z(xt,NEWi,t, at)(j, l)
.
=

{
1 if j = i and l = at

xt(j, l) otherwise,
(3.12)

14

3.1 Environment specification

while reassignment actions on departure events specify which channel to set to 0 (free):

z(xt,ENDi,k,t, at)(j, l)
.
=

{
0 if j = i and l = at

xt(j, l) otherwise.
(3.13)

Logistically, the reassignment action specifies which channel to mark as free. If a call on
channel k departs, and the action is to reassign a call on channel a to channel k, this is
equivalent to letting channel k stay marked as in use while marking channel a as free.

Let c(x) be the total number of calls currently in progress system-wide:

c(xt)
.
=

I∑
i=1

K∑
k=1

xt(i, k). (3.14)

We define rewards rt = r(st, at) as the number of calls in progress immediately after
executing action at on the allocation map xt of the state st:

r(st, at)
.
= c(z(st, at)) (calls in progress after executing a on s) (3.15)
= Ratst (deterministic rewards) (3.16)

and are deterministic due to the functions z and c being deterministic. The correspond-
ing discounted return for this reward definition is then:

Gt
.
=

∞∑
i=t

γic(xt+i+1). (3.17)

Provided we know the model of the environment, Pa
ss′ and Ra

s , the above MDP is
solvable by dynamic programming methods such as value iteration (see e.g. Sutton and
Barto (2018)), which has complexity O(mk2) per iteration where m = |A| is the size of
the action space and k = |S| is the state space size.

Given I cells and K channels, the state space is 2I∗K in size, including illegal states
with channel assignments that violate the reuse constraint. For a 7-by-7 grid with 70
channels, this yields a state space of size 27∗7∗70 = 23430, which is much too large to
solve by dynamic programming. In fact, the problem of DCA as stated above is equivalent
to the Euclidian graph coloring problem and is therefore NP-hard (Brunato, 1999).

3.1.3 Semi-Markov Decision Processes
In a MDP as defined above, state transitions emit a single, instantaneous reward at the
beginning of each state transition. Semi-Markov Decision Processes (SMDPs) generalize
MDPs, where reward is continuously accumulated during a state visit and the length of the
time interval from one transition to the next is stochastic and possibly continuous (Bert-
sekas, 2005). In general, state transitions themselves may be continuous — e.g. increasing
the speed of a car by 5 km/h — but in DCA and most related caller environments tasks,
state transitions are discontinuous. Formulating a problem as a SMDP is necessary when
the reward depends on the time spent in a state and when this duration is not fixed.

15

Chapter 3. Basic Theory

The return GSt of an agent operating in a SMDP caller environment from time t on-
wards is defined as:

GSt =

∫ ∞
t

e−βτr(S(τ), A(τ))dτ (3.18)

where the function S(tk) = Sk such that S(t) = Sk for tk ≤ t < tk+1 and similarly for
A(tk). The discount factor β > 0 has a similar but not identical role to γ in MDPs, while
r(·) is interpreted as a reward rate, e.g. dollars per day or accepted calls per hour.

We define DCA as a SMDP by using the number of calls in progress as reward rate,
i.e. r(s, a)

.
= c(z(s, a)) as before, while the duration of state transitions are determined by

the occurrence of call events. The state and action space remain the same as in the MDP,
but state transition probabilities incorporate the time spent in a transition:

Pasτs′ = Pr[Sk+1 = s′, tk+1 − tk ≤ τ | Sk = s,Ak = a]. (3.19)

Because the number of calls in progress is constant between call events, the expected
reward for a single transition from state sk at time tk to the next state sk+1 = (·, ek+1) at
time tk+1 with sojourn time ∆t = tk+1− tk can be simplified (see e.g. Bertsekas (2005)):

Raksk = Eek+1
[

∫ tk+1

tk

e−βτr(S(τ), A(τ))dτ | Sk = sk, Ak = ak] (3.20)

= r(sk, ak)E∆t[

∫ ∆t

0

e−βτdτ | Sk = sk, Ak = ak] (3.21)

= c(z(sk, ak))E∆t[
1− e−β∆t

β
| Sk = sk, Ak = ak]. (3.22)

Unlike in the MDP formulation, rewards are stochastic because they depend on the time
spent in a state, which given current state and action, is determined by the time of the next
event.

Figure 3.2: SMDP transition diagram. Selecting an action at and executing it on the grid xt which
transitions to xt+1 is assumed to be instantaneous. The reward rate, which is the sum of calls in
progress on the grid xt+1, accumulates over the sojourn time determined by the occurrence of the
next event et+1.

Maximizing the SMDP return (Equation 3.18) is a potentially biased way of minimiz-
ing call blocking probability, because the duration of calls influence their reward. If, for
example, the agent is allowed to drop calls in progress in order to accept new ones, then
ignoring call duration by using MDP returns (Equation 3.17) will not dissuade the agent

16

3.2 Reinforcement Learning

from dropping a call in order to accept a new one on the same channel, an action which
decreases call blocking probability, but is not preferable in terms of user satisfaction.

We will visit both MDP and SMDP formulations in related work (chapter 4), but as-
sume the simpler MDP formulation if not stated otherwise. SMDP formulations have
rewards which depend on sojourn time while MDP formulations do not, making it easy to
distinguish them from each other.

3.1.4 The average reward optimality criterion
In a caller environment, there is no clear reason why blocking a call tomorrow is preferen-
tial to blocking a call today, as implicit in the discount factor of both the MDP and SMDP
formulation of returns.

Instead, a policy π can be evaluated by its average reward ρπ , which for a MDP (under
some conditions) is given by (Sutton and Barto, 2018):

ρπ
.
= lim
h→∞

1

h

h∑
t=1

E[Rt | A0:t ∼ π] = lim
t→∞

E[Rt | A0:t ∼ π] (3.23)

where the expectation is over trajectories and possibly stochastic rewards.
Corresponding to the discounted return (Equation 3.6), the differential MDP return Ḡt

is given by:

Ḡt
.
= Rt − ρπ +Rt+1 − ρπ +Rt+2 − ρπ + . . . =

∞∑
i=t

(Rt+i − ρπ). (3.24)

Similar definitions exist for the SMDPs (section 4.9). Using the average reward as an
optimality criterion avoids biasing the return towards short-term rewards, while keeping it
bounded. Simply setting γ = 1 for discounted returns in an infinite-horizon environment
results in an unbounded return.

Optimizing the average reward instead of the discounted sum of rewards therefore
seems like the natural choice for a caller environment. However algorithms for optimizing
the discounted case are by far the most studied in the context of RL and often come with
convergence guarantees while their average-reward counterparts do not (Tadepalli, 2017).

Hereon, we will assume the simpler discounted case if not stated otherwise.

3.2 Reinforcement Learning
Continuing on from the definition of a MDP, the value of a state is defined as the expecta-
tion of the return:

vπ(s)
.
= EAt,St+1,At+1,...[Gt | St = s]. (3.25)

The expectation is over actions from a possibly stochastic policy, At ∼ π(a | St = s), and
state transitions according to the transition distribution St+1 ∼ Pa

ss′.
Predictive reinforcement learning methods aim to estimate the value-function vπ under

a fixed policy π, while control methods aim to learn a policy that maximizes the value-
function for each state. The value of a state or state-action pair under a fixed policy is

17

Chapter 3. Basic Theory

known to satisfy the recursive Bellman expectation equation, which we obtain by expand-
ing the return by one time step:

vπ(s)
.
= E[Gt | St = s] = E[Rt + γvπ(St+1) | St = s] (3.26)

=
∑

a∈A(s)

π(a | s)[Ras + γ
∑
s′∈S
Pass′vπ(s′)] (3.27)

The state-action values, or Q-values, is the value of executing given action a in state s and
then selecting actions according to a fixed policy π thereafter:

qπ(s, a)
.
= ESt+1,At+1,...[Gt | St = s,At = a] (3.28)
= E[Rt + γqπ(St+1, At+1) | St = s,At = a] (3.29)

= Ra
s +γ

∑
s′∈S
Pa

ss′

∑
a′∈A(s)

π(a′ | s′)qπ(s′, a′) (3.30)

Note that the value of a state and state-action pair can be expressed in terms of each other:

vπ(s) =
∑

a∈A(s)

π(a | s)qπ(s, a) (3.31)

qπ(s, a) = Ra
s +γ

∑
s′∈S
Pa

ss′ vπ(s′) (3.32)

Value-based control methods aim to find the value-function of an optimal policy, which
satisfies the Bellman optimality equation formulated as an optimal state value-function
v∗(s) or an optimal state-action value-function q∗(s, a):

v∗(s)
.
= vπ∗(s) = max

π
vπ(s) (3.33)

q∗(s, a)
.
= qπ∗(s, a) = max

π
qπ(s, a) (3.34)

If the reward function is stationary (even if stochastic), there is guaranteed to exist
a deterministic policy which is optimal for Equation 3.33 and Equation 3.34 (Puterman,
2005). The conditions under which the reward function is stationary in a caller environ-
ment is touched upon in section 4.13.

Assuming the existence of an optimal deterministic policy, we simplify by maximizing
over actions instead of the policy:

v∗(s) = max
a∈A(s)

[Ra
s +γ

∑
s′∈S
Pa

ss′ v∗(s
′)] = max

a∈A(s)
q∗(s, a) (3.35)

q∗(s, a) = Ra
s +γ

∑
s′

Pa
ss′ max

a′∈A(s′)
q∗(s

′, a′) = Ra
s +γ

∑
s′∈S
Pa

ss′ v∗(s
′). (3.36)

The optimal state-action value q∗(s, a) yields the value of first executing an arbitrary given
action a and then following the optimal policy π∗ thereafter, which is why the first action
remain fixed in Equation 3.36 while the second is maximized over.

18

3.2 Reinforcement Learning

Similarly, the average reward Bellman optimality equations follow from the definition
of differential returns (Equation 3.24), the only difference being the subtraction of the
average reward ρ∗ from the reward:

v̄∗(s) = max
a∈A(s)

[Ra
s −ρ∗ + γ

∑
s′∈S
Pa

ss′ v̄∗(s
′)] (3.37)

q̄∗(s, a) = Ra
s −ρ∗ + γ

∑
s′∈S
Pa

ss′ max
a′∈A(s′)

q̄∗(s
′, a′) (3.38)

These are termed average-adjusted value-functions.
In either case, the expectations over rewards and state transitions can be handled by

integrating over all possible outcomes, termed a full width backup, in which case the model
Ra

s and Pa
ss′ is required and the equations define dynamic programming approaches. RL

methods observe or execute an action and a sample reward and state transition is then
received from a possibly stochastic environment.

Value-based RL methods iteratively learns an approximation to one of the value func-
tions defined above. As an illustrative example, consider the predictive state value method
TD(0) (Sutton, 1988):

Vt+1(st) = Vt(st) + α[r(st, at) + γVt(st+1)− Vt(st)] = Vt(st) + αδt (3.39)

where actions are sampled from the policy π that we wish to learn the value of. α ∈
(0, 1) is the learning rate and is usually decreased with time though we omit the time step
subscript. The inner term δ is known as the temporal difference (TD) error, and contains
the value target r(st, at)+γVt(st+1) which the value of state st is updated towards, where
Vt(st+1) is known as the bootstrapping value.

The TD error is a sample of the Bellman error, which arises from subtracting the
left hand side of a stochastic approximation of the Bellman expectation equation (Equa-
tion 3.27) from the right hand side:

E[δt] = −Vt(st) +
∑

a∈A(st)

π(a | st)Ra
s +γ

∑
s′∈S
Pa

ss′ Vt(st+1). (3.40)

Model-based and model-free methods

Value-based methods have an implicit policy; actions are selected using the value-function.
Policy-based methods on the other hand explicitly represent the action probabilities for
each state, as in Equation 3.5. The reason to use state-action q(s, a) values (or an explicit
policy) instead of state values v(s) is that a model of the environment dynamics is not
necessary in order to select an action based on the estimated return.

Given a state value-function vπ(s), the MDP environment model Ra
s and Pa

ss′ is nec-
essary to greedily choose an action:

π′(s) = arg max
a∈A(s)

[Ra
s +γ

∑
s′∈S
Pa

ss′ vπ(s′)]. (3.41)

The model is required in order to determine the expected reward and transition prob-
abilities for the next states after taking each of the allowable actions in the current state.

19

Chapter 3. Basic Theory

The above equation is a non-strict policy improvement, that is, Vπ′(s) ≥ Vπ(s), which is
satisfied as an equality if policy π is optimal, that is, if Vπ(s) ≥ Vπ̂,∀s,∀π̂. Greedy action
selection using qπ(s, a), on the other hand, is model-free:

π′(s) = arg max
a∈A(s)

qπ(s, a) (3.42)

Model-free approaches are suitable when the MDP is unknown, or when the MDP is
known but too large to store in memory. In the case of DCA, the reward function is known
and deterministic but event probabilities are assumed unknown.

The model might be known a priori or learned online, and model-based RL covers a
broad set of methods not limited to selecting actions using a model. If a model is known, it
can e.g. be used to generate trajectories of state transitions and rewards for improving the
policy or value-function. This is desirable if it is more expensive to generate experience
from the learning environment, such as a simulator or a real-world environment, than it is
to generate trajectories using a model.

On-policy and off-policy methods

In the simplest form of value-based RL methods, the value-function estimates the value of
the same policy which generates the data it is trained on. Given a policy π, the trajectory
data S0, A0, R0, S1, A1, R1, . . . is generated by policy π choosing actions while traversing
the MDP, i.e. At ∼ π(a | St) where in turn π uses estimate of either qπ or vπ to select
actions. This trajectory data is used to improve the estimates of qπ or vπ , and is termed
on-policy training.

In off-policy training, the value-function estimates the value of a target policy which
differs from the policy used to generate the trajectory data it is trained on. The latter is
termed the behavior policy, and usually selects actions in a semi-random fashion in order
to ensure exploration of the state space, while the target policy is strictly greedy (e.g.
Equation 3.41).

If actions executed in the environment are always selected greedily, the agent might
not explore parts of the state space which yield better returns than what the value-function
currently deem the best states and actions. Greedy action selection does not imply select-
ing actions based on short trajectory returns as opposed to long trajectory returns, but on a
short- versus long-term learning time frame.

Exploration is done by selecting actions according to a stochastic scheme. The sim-
plest example is ε-greedy, which despite its simplicity performs well and is popular in RL
applications (Silver, 2015). With an ε-greedy policy, a valid action is picked uniformly at
random with probability εwhile the highest-valued action is selected with probability 1−ε.
The need for exploration decreases as the value of a larger part of the state-space is accu-
rately estimated. For ε-greedy this is achieved by ε decaying over time, e.g. εt = ε0

log(t) .

3.2.1 Dealing with large state spaces
Storing a value-function Vπ(s),∀s, a state-action value-function Qπ(s, a),∀(s, a) or an
explicit, deterministic policy π(s),∀s in memory might not be feasible. As determined at
the end of subsection 3.1.2, storing a single value for each state in a table would require too

20

3.3 Artificial Neural Networks in RL

much memory for even a toy sized caller environment. RL by table lookup, as the approach
is termed, results in too large tables and suffers from the same ‘curse of dimensionality’
as dynamic programming methods.

There are two main approaches to dealing with large state spaces, which are interre-
lated and may be combined. The first is to use a feature based representation of the state
where a state s is mapped to an approximate representation s̃ = φ(s) which captures only
its essential features. For there to be any reduction in the size of the state space, the map-
ping must be non-injective, i.e. multiple states must map to the same feature representation,
which implies that the environment becomes partially observable.

For DCA, a natural approach to feature representation is to only capture information
about the event-cell and possibly its neighbors within some distance. In this case the
feature representation is a local representation, which is a feasible approach under the as-
sumption that the most important information for selecting an action resides in and around
the cell where the action is to be executed. The condensed information of a cell might be
the number of channels in use, the number of free channels, or the number of channels
eligible for assignment.

A second approach to dealing with large state spaces is to use a parametrized function
approximator with parameters θ for the value-function, i.e. Vθ(s)

.
= Vθπ (s) ≈ Vπ(s), the

state value-function Qθ(s, a) ≈ Qπ(s, a) or the policy πθ(s) ≈ π(s). Artifical neural net-
works are popular function approximators in RL because their input-output computation
scale linearly with the number of parameters in the network.

For a given set of features, table lookup will always give equal or better results than
using function approximation, if enough time is given for the value-function to converge
and the dynamics are stationary, because a function approximator can at best yield the
same values as an optimal table. In practice, even if the table can be stored in memory, the
feature space might be so large that convergence will take too long. It is too slow to learn
the value of each state or state-action pair independent of each other.

3.3 Artificial Neural Networks in RL
Artifical Neural Networks (ANNs) are currently the most commonly used function ap-
proximator for RL (Silver, 2015). This combination has led to many impressive results,
including super-human performance in Chess (Silver et al., 2017), Go (Silver et al., 2016),
and a sizeable portion of the Atari 2600 games (Mnih et al., 2013). The neural network
can be used as a function approximator for the state value-function, the state-action value-
function, for a policy or combinations of these. It is particularly tempting to use them
for state-action methods because the network architecture can be designed to output all q-
values or action probabilities for a given state at once (Mnih et al., 2013), thus eliminating
the need for multiple forward passes when selecting actions.

ANNs are universal function approximators loosely modelled after neurons in the brain
(Goodfellow et al., 2017). Layers of nodes connect input nodes to output nodes, with
connections in-between. Connections between nodes are weighted, and adjusting these
weights allows the network to be trained. For feed-forward networks, which are the only
kind considered in this work, each node is a function of the weighted sum of the nodes
in the previous layer. Linear neural networks use the identity function while non-linear

21

Chapter 3. Basic Theory

neural networks use continuous or approximately continuous functions at each layer. The
output ol,i of neuron i in layer l is given by:

ol,i = f(

J∑
j=1

wl−1,j,iol−1,j + bl,i) (3.43)

where f is the chosen activation function, J is the number of neurons in the upstream layer
l − 1, i.e. the layer closer to the input, wl−1,j,i is the weight from node j in the previous
layer to node i, and bl,i is an optional bias neuron which itself has no inputs but outputs a
constant value that can also be trained. Hereon we will use vector notation instead:

ol,i = f(wT
l−i,·,iol−1,· + bl,i) (3.44)

with wl−i,·,i,ol−1,· ∈ RJ , which for a single-layer, single output linear neural network
with inputs x can be further reduced to o = wTx + b.

The number of layers between the input and the output layer, termed the hidden layers,
determines the depth of the network. For linear neural networks, no more than a single
hidden layer is necessary because the matrix multiplication of the weight matrices of suc-
cessive linear layers yields a single weight matrix, and there is no activation function in
between. (Goodfellow et al., 2017).

3.4 Summary
Moving forward, there is a few key concepts to keep in mind about the intersection be-
tween channel allocation, MDPs, and RL.

First, state transitions are partly deterministic. Given an action, an event and the current
allocation map, the next allocation map is easily determined. If we have an allocation map
and are tasked with modelling the acceptance of a call in a given cell on a given channel, it
is as easy as marking the channel as in use. Events, on the other hand, are fully stochastic.
The actions we perform on the grid have no impact on where and when the next call will
arrive, nor on when any call in progress will depart, or if it will hand off.

Second, RL methods can be categorized into state based methods and state-action
based methods. In the former category the only inhabitant is the state value-function Vπ(s)
which yields a measure of the desirability of being in state s. In the latter category there
is a choice between state-action value functions and explicit policies, both of which yield
a measure of the desirability of being in a state and executing a particular action. We also
draw a distinction between implicit and explicit policies. In implicit policies, actions are
selected based on their value as determined by the value function. In explicit policies, an
action probability is given for each action in each state without using a value-function as
intermediary.

Third, there are multiple viable targets to optimize for; four in total. Discounted MDPs
are the simplest and most widely studied case, where the time spent in a state does not
matter but rewards received in earlier time steps matter more. In discounted SMDPs, a
reward rate accumulates during the time period spent in a transition, e.g. servicing a call
for 2 minutes is better than servicing a call for 1 minute. At last there is an average

22

3.4 Summary

reward formulation of either the two previous, which measures long-run performance of
the system where rewards are not discounted. Discounting is natural to do in economic
domains where it is better to earn $50 today than tomorrow, but the same cannot be said
of servicing calls.

23

Chapter 3. Basic Theory

24

Chapter 4
Related work

4.1 Singh et al.
Singh and Bertsekas (1997) were probably the first to apply RL to the problem of Dynamic
Channel Allocation. They used a SMDP formulation for maximizing the time-integrated,
discounted sum of calls in progress (Equation 3.18).

The RL agent, hereafter referred to as SB-VNet, utilizes the state value-function TD(0)
(Equation 3.39) modified to do control instead of prediction:

Vt+1(x̃t) = Vt(x̃t) + α
[1− e−β∆t

β
r(xt, et, at) + e−β∆t max

x̃′
Vt(x̃

′)− Vt(x̃t)
]

(4.1)

where x̃t is a feature-based representation of the allocation map xt, and the reward rate
r(xt, et, at) is the number of calls in progress immediately after executing action at on
xt. ∆t is the sojourn time, that is, the time difference between the events et+1 and et.

The feature-based representation is hand-crafted and for each cell consists of the num-
ber of free channels and for each cell-channel pair the number of times the channel is used
in a 4-cell radius. These features are the inputs to a linear neural network with parameters
θ serving as a function approximator to the state value-function. The value network is sim-
ply the inner product V (x̃;θ) = θT x̃ where the feature representation is a column vector
of length d, and the number of parameters must necessarily be the same since the output
must be a scalar, i.e. x̃,θ ∈ Rd. To highlight that the feature representation is the input to
the neural network and not the full state, we use the notation V (x̃) instead of V (s).

Reassignment actions are restricted to the cell where the call departure event takes
place. Each ongoing call is considered for reassignment to the newly freed channel, and
the reassignment with the highest valued resulting state is selected. The value of not
reassigning a channel at all is also considered.

As shown in Equation 3.41, state value methods usually require knowing an explicit
model of the environment dynamics in order to greedily select an action. Because call ar-
rivals are always accepted provided there is an eligible channel, and because reassignments
does not change the number of calls in process, the reward is independent of the choice of

25

Chapter 4. Related work

action when conditioned on an allocation map and an event. Furthermore, because one-
step allocation map transitions are deterministic, one-step look ahead is possible. Greedy
action selection can then be done by creating a resulting allocation map x′ for each of
the possible actions a ∈ A(x, e) and selecting the action that results in the highest-valued
next state. This approach is termed afterstate value-functions (Sutton and Barto, 1998),
and is applicable when some or parts of one-step (s, a) → s′ transitions are known but
the full Pa

ss′ dynamics are not. If we let φ be the feature representation transformation
function such that x̃ = φ(x), then the resulting feature representation for an action and an
event is x̃′ = φ(z(x, e, a)) where as before z is the deterministic allocation map transition
function.

Each possible resulting feature representation x̃′ is run through the network one by one
in order to select an action using the implicit policy:

π(s) = arg max
a∈A(s)

V (φ(z(s, a))). (4.2)

The allocation map transition function is used to look ahead at the outcome of each po-
tential action; the policy selects the action resulting in the most desirable outcome as
measured by the value-function.

The system described by the authors chooses actions in a strictly greedy manner with-
out exploration, which implies that Equation 4.1 is on-policy.

Online gradient descent, i.e. stochastic gradient descent with a sample size of 1, is used
to train the network on the squared TD error δ:

L = [Vt+1(x̃t)− Vt(x̃t)]2 (4.3)

=
[1− γ(∆t)

β
r(xt, et, at) + γ(∆t)V (x̃t+1;θt)− V (x̃t;θt)

]2
= δ2

t (4.4)

where we have set γ(∆t)
.
= e−β∆t to point out the similar role β has in a SMDP as γ has

in a MDP. Using ∇θV (x̃)
.
= ∇θ θ

T x̃ = x̃, we take the gradient of the loss and use it to
update the neural network parameters:

θt+1 = θt−α∇θL. (4.5)

The authors does not specify whether the semi-gradient:

∇θL = 2δt
[
−∇θV (x̃t;θt)

]
= −2δt x̃t (4.6)

or the naive residual gradient (Baird, 1995):

∇θL = 2δt
[
γ(∆t)∇θV (x̃t+1;θt)−∇θV (x̃t;θt)

]
(4.7)

= 2δt(γ(∆t) x̃t+1− x̃t) (4.8)

was used for updating the neural network parameters. The naive residual gradient is a
true gradient method, in that it does not ignore the bootstrapping value’s V (x̃t+1;θt)
dependence on θt, as is done with semi-gradients. Stochastic gradient descent on the
residual gradient cannot diverge, but in general converges to a less desirable point than

26

4.2 Nie et al.

when using semi-gradients, and does so more slowly (Sutton and Barto, 2018). The semi-
gradient may not converge to a local minimum under off-policy updates but diverge with
weights going to infinity and is therefore not a true gradient descent method.

The authors note that a non-linear neural network was tried as value-function approxi-
mator but yielded only a small performance improvement.

4.2 Nie et al.

Nie and Haykin (1999) also applied RL to the channel allocation problem. They used
Q-learning (Watkins and Dayan, 1992) with a feature based state representation and com-
pared table lookup to a linear neural network function approximator.

Q-learning is an off-policy, model-free temporal difference method for estimating the
state-action value-function. It does so by recursively forming an approximation to the
optimal value-function q∗(s, a) (Equation 3.36):

Qt+1(x̃t, at) = Qt(x̃t, at) + αt
[
r(xt, et, at) + γ max

a′∈A(s)
Qt(x̃t+1, a

′)−Qt(x̃t, at)
]
.

(4.9)
Q-learning is proven to converge provided that table lookup is used, every state-action
pair is visited infinitely often, and the learning rate is decreased in a suitable manner.
The sequence of learning rates α0, α1, . . . should satisfy the Robbins-Monro conditions
(Robbins and Monro, 1951):

∞∑
n=0

αn =∞ and
∞∑
n=0

α2
n <∞. (4.10)

The state is a feature based representation x̃t = (it, | KEL(xt, it)|) where i is the cell
index of the event-cell and | KEL(xt, it)| is the number of eligible channels in that cell. We
will later describe how to efficiently find this set of channels (Algorithm 1); | KEL(xt, it)|
is the cardinality of this set for a given cell i at some time t. In their system, the action
space consists of valid assignments; no reassignments were performed on call departure.

Interestingly, they utilized a weighted, linear heuristic as reward function that rewarded
compact channel usage patterns (channel packing), much in the same way as BDCL. In
channel assignment, channel packing is not usually an end unto itself, but rather a heuristic
to create or compare channel assignment policies.

The authors demonstrated similar performance between a linear neural network func-
tion approximator and table lookup, in both cases outperforming a non-learning algorithm
named MAXAVAIL which is similar to BDCL but worse performing.

4.3 Lilith et al.

Lilith and Dogançay (2004) and Lilith (2005) used RL with table lookup. They used
a state-action value-function approach termed SARSA (Rummery and Niranjan, 1994),
which is the on-policy counterpart of Q-learning:

27

Chapter 4. Related work

Qt+1(x̃t, at) = Qt(x̃t, at) + α
[
r(xt, et, at) + γQt(x̃t+1, at+1)−Qt(x̃t, at)

]
(4.11)

The difference between Q-learning (Equation 4.9) and SARSA is that the latter uses
target value of the action at+1 chosen by the behavior policy, while Q-learning updates
towards the value of the greedy action, which may differ from the executed action.

Rewards were defined as the number of calls currently in progress system-wide. They
utilized the same reassignment strategy as Singh and Bertsekas (1997) by constricting reas-
signments to the cell of the departing call and to the newly freed channel. This approach al-
lows for a clever trick when used in conjunction with a state-action value-function, namely
that reassignments can be handled in much the same manner as ordinary assignments. In-
stead of choosing the highest valued eligible channel as is done on assignment, the lowest
valued in-use channel is deterministically selected for reassignment to the newly freed
channel:

π(xt,ENDi,k,t) = arg min
a∈A(xt,ENDi,k,t)

Qt(x̃t, a). (4.12)

Therefore, any Q-value represents the value of assigning a given channel in a given cell —
there is no need for separate Q-values for reassignment actions and assignment actions, or
equivalently, for departure events and arrival events.

On call arrivals, actions are sampled from a stochastic Boltzmann policy, which has
probability mass function:

π(xt,NEWi,t, a) =
exp (Qt(x̃t, a)/τ)∑

a′∈A(xt,NEWi,t)

exp (Qt(x̃t, a′)/τ)
(4.13)

where τ is the temperature. High temperature results in more exploration, less so as the
temperature decays, and in the limit τ → 0 actions are chosen greedily. In contrast to ε-
greedy exploration (section 3.2), the probability of picking a non-greedy action increases
with its Q-value. The temperature was decayed as follows:

τt =
τ0√
t/s

(4.14)

where t is the elapsed time in seconds and τ0 and s are hyperparameter constants.
The authors used a lookup table for value-function and a feature-based state represen-

tation is therefore necessary to make the size of the state space tractable. Three different
feature representations were presented and benchmarked against each other. The first, as
we shall denote Vanilla SARSA (V-SARSA), contains the cell index it of the event-cell,
and the number of channels in use at that cell. Constructing this representation is therefore
as easy as summing over the allocation map of the event-cell:

x̃t = (it,

K∑
k=0

xt(it, k)). (V-SARSA)

As done by Nie and Haykin (1999), the feature representation only contains information
about the event-cell. However, instead of counting the eligible channels in the cell, the
feature representation counts the number of channels in use.

28

4.3 Lilith et al.

The second representation, Table-Trimmed SARSA (TT-SARSA), used the same ap-
proach as V-SARSA but aggregated the feature representation of states with 30 or more
calls in progress. The reasoning behind this decision was an analysis of a high-traffic
simulation showing that a cell using 30 or more channels at once was a rare occurrence.

x̃t = (it,max(30,

K∑
k=0

xt(it, k))) (TT-SARSA)

In other words, the feature representation of the allocation map will be the same if event-
cell has 30 calls in progress or more, regardless of which channels are in use.

A third representation, Reduced-State SARSA (RS-SARSA), reduced the state space
even more aggressively by eliminating the state variable for the number of used channels
entirely. The state then only consists of the cell index of the current event:

x̃t = it. (RS-SARSA)

Despite RS-SARSA being the feature representation with the least amount of information,
it was the best performing by a large margin. Lilith et al. argues that DCA systems that
perform learning naturally tend to favour assigning certain channels to certain cells, and
that the performance of the system is largely determined by the speed with which these
associations can be formed. The smaller the size of the feature representation space, the
quicker these associations can be formed.

State and state-action space size for the different feature representations are given in
Table 4.1, where I is the number of cells and K is the number of channels. The state-
action space size for a typical problem size of 7 × 7 cells with 70 channels is shown. In
addition, reported new call blocking probability is shown for a simulation with hand-offs.

Version |X̃ | × |A| Typical size New call block. prob. Hand-off b.p.
V-SARSA I ×K ×K 240,100 20.6% 17.6%
TT-SARSA I × 30×K 106,330 20.4% 16.8%
RS-SARSA I ×K 3,430 17.5% 14.2%

Table 4.1: Feature-action space size for the different feature representations and their size and re-
ported performance on a 7× 7 grid simulation with hand-offs

The state-action space size for RS-SARSA is only a small fraction of the other feature
representations, and cell-channel associations are able to form and change more rapidly.
We point out and emphasize that hand-offs have lower blocking probability than new calls,
even though the agent is not defined with any explicit prioritization of hand-offs over new
calls in the reward function or elsewhere. A contributing factor is that the channel of the
departing call is guaranteed to be free at a large portion of the arrival cell’s interfering
neighbors, because it is eligible at the departure cell which shares a large portion of its
interfering neighbors with the arrival cell. (Figure 4.1).

Noting that the state formulation of RS-SARSA only relies on local information (the
event-cell index), the authors derived a distributed version with a separate agent in each

29

Chapter 4. Related work

Figure 4.1: On hand-off from departure cell D to arrival cell A, the departure channel is guaranteed
to be free in all interfering cells (green) of D. Since A must be an immediate neighbor of D, the
departure channel is guaranteed to be free in the intersection of the interfering cells of A and the
interfering cells of D. In the yellow cells, which are not interfering cells of D, no guarantee can be
made of the status of the departure channel.

cell. The authors assumed that each BS has access to information about which channels
are in use at its interfering neighbors. The reward, which for the centralized version is the
number of calls in progress system-wide, was limited to count the number of calls in cells
with a distance of 4 or less from the cell receiving the reward. In a high-traffic simula-
tion, the distributed version incurred a call blocking probability increase of approximately
1.5%.

A non-linear neural network with 100 hidden nodes using the hyperbolic tangent func-
tion f(x) = 1−e−2x

1+e−2x with f(x) ∈ (−1, 1) for the last two layers was compared to table
lookup. While it performed better than the Random DCA algorithm (subsection 2.1.2), it
was significantly worse than its table-based counterpart. The reason, the authors argue,
is due to the irregularity of a well-performing value-function. Plotting state-action pairs
versus their value from a table revealed that neither nearby states, as represented by the
number of used channels, nor nearby actions had similar Q-values. If the neural network
assumes a smooth relation between inputs and outputs, then it will struggle to learn a
good value-function. This, according to the authors, renders function approximation with
non-linear neural networks infeasible. We argue instead that the reason is the choice of
activation function in the last layer. Assuming γ = 0, the true Q-value for a highly valued
action will be roughly the same as the number of calls the system can serve simultane-
ously, which is 7 × 7 × 10 = 490 for the environment in question. The upper bound
for the range of the hyperbolic tangent is 1, thus the neural network cannot output larger
Q-values. Any Q-value in any environment must be at least 1 since only Q-values for eli-
gible actions are defined, and any eligible action results in an allocation map with at least
1 call in progress. Thus the network is totally unable to differentiate between desirable
and undesirable actions, and as gamma increases, the problem compounds exponentially.

30

4.4 Kunz

4.4 Kunz
In previously discussed work, we have discussed the objective of minimizing call blocking
probability provided that no channel usage results in interference exceeding a threshold
which is implicitly determined by the channel reuse constraint.

Kunz (1991) instead attempted to minimize the amount of interference given a limited
set of channels while fully satisfying call service demand. The severity of interference for
an allocation map x is given by the objective function:

F (x) =

I∑
i=1

K∑
k=1

x(i, k)
I∑
j=1

K∑
l=1

Pi,j,|k−l| x(j, l) (4.15)

where P is a symmetric cost tensor containing the degree of interference between any two
channel usages. Pi,j,|k−l| is the interference of using channel k at cell i and channel l at
cell j, and k− l is the distance between two channels in the channel domain, e.g. measured
in MHz.

A Hopfield Neural Network (HNN) was used to minimize the objective function under
the constraint of satisfying call demand. HNNs are a form of recurrent neural networks
with binary threshold units and symmetric connections between every pair of neurons. The
energy function for a network incorporates the objective function subjected to constraints,
and is a function of the network’s neurons, weights and biases:

E(x) = F (x) + C

I∑
i=1

(

K∑
k=1

x(i, k)−Di)
2. (4.16)

The second term is a penalty term multiplied by a large constant C > 0, which then
effectively serves as hard constraint on satisfying call service demand Di ≥ 0 for each
cell i. Each neuron x(·, ·) in the network corresponds to a cell-channel pair (hence the
same notation as the allocation map) and is connected to every other neuron. The weight
between two neurons is contained in the tensor P and yields the degree of interference if
both cell-channel pairs are in simultaneous use. Call demand for cell i is represented by
the weight Di from a bias neuron to all neurons for cell i, i.e. x(i, k),∀k ∈ K where as
before K is the set of channels.

A local energy minimum can be obtained by starting from any configuration and up-
dating the neurons one at a time in arbitrary order. The update switches a neuron on or off
whichever gives the lowest global energy. The contribution of a neuron to the global en-
ergy can be computed locally; it only depends on its own state and weights connected to it.
HNNs are guaranteed to converge to a local optima, which may provide a poor solution.
As a workaround, Smith and Palaniswami (1997) added random noise to the objective
function allowing the HNN to perform hill climbing.

Though interference is a soft constraint in the energy function, the authors showed their
method capable of finding interference-free configurations for the data sets they tested on.

4.5 Brunato et al.
Brunato (1999) and Battiti et al. (2001) used a weighted objective function which penal-

31

Chapter 4. Related work

ized interference and rewarded channel packing. They proved that a global minimum of
the heuristic function could be found in O(K logK) for K channels. The algorithm per-
formed superior both in terms of call blocking probability and in terms of computational
complexity over BDCL. The main contribution of this work is its low computational re-
quirements while still achieving good performance.

A distributed version of the algorithm showed no performance penalty. No reassign-
ment was done on call departure in either version. Instead, on call arrival all calls in the
cell were rearranged to achieve the best configuration. As a consequence the number of
rearrangements might be large, but is bounded by the number of channels.

4.6 Results from previous work on DCA
The mentioned previous work on DCA uses a 7 × 7 grid with 70 channels and a chan-
nel reuse constraint of 3. Though they all used mean call duration µ of 3 minutes, the
only common call rate λ between them was 200 calls per hour and so those are the results
reported here (Table 4.2). These results are comparable to the simulations in chapter 6
where hand-offs are not performed. The average call rate is the same for all cells which
results in a uniform traffic pattern. Results for hand-offs, non-uniform or time-varying
traffic patterns are not included because different works used different parameters. Their
reported performance with the FCA algorithm is shown to provide some confidence that
other factors such as the random number generator and grid shape are not major differ-
entiating factors. Results from Kunz (1991) and Smith and Palaniswami (1997) are not
included because the tested their systems on a small data set instead of generating traffic
in a simulator.

Authors Approach Blocking probability, in %
Singh & Bertsekas FCA 21.4
Singh & Bertsekas BDCL 14.3
Singh & Bertsekas SB-VNet 12.3
Singh & Bertsekas (recreated) SB-VNet 13.8
Nie et al. FCA 21.5
Nie et al. MAXAVAIL 20.0
Nie et al. Q-learning 19.5
Brunato et al. FCA 21.5
Brunato et al. BDCL 14.2
Brunato et al. BBB (obj. func) 13.4
Lilith et al. (recreated) V-SARSA 18.6
Lilith et al. (recreated) TT-SARSA 18.6
Lilith et al. (recreated) RS-SARSA 15.5

Table 4.2: Results on a 7× 7 grid with mean call rate of 200 calls/hour

Lilith et al.’s SARSA algorithms described in section 4.3 were recreated because the
authors did not report results on simulations without handoffs. The reimplementation used

32

4.7 El-Alfy et al.

the hyperparameter values reported by the authors: τ0 = 5 and s = 256 for Boltzmann
exploration (Equation 4.14), learning rate α = 0.05 without decay and discount factor
γ = 0.975.

The recreation of RS-SARSA achieved similar results on the reported benchmark with
handoffs: 17.52% (standard deviation of 0.21%) for new calls versus the reported result
of 17.52%. For hand-offs, 13.50% versus reported 14.38%. These results were averaged
over 32 runs where each lasted for 24 hours of simulator time, the latter the same as in the
paper.

SB-VNet of Singh and Bertsekas (1997) (section 4.1) is recreated because it will built
further upon later, though there is a significant discrepancy between our recreation of SB-
VNet and the reported results. The hyperparameter values for the learning rate α and
discount factor β were not disclosed. Unlike the discount factor γ ∈ [0, 1) for MDPs,
β > 0 is unconstrained. The discount factor has a large impact on the magnitude of the
TD errors, and thus must be optimized jointly with the learning rate. Reasonable results
were achieved with β ranging from 10 to 2800. The result in the table used β = 21 and
α = 5.1× 10−6, was averaged over 32 runs with a standard deviation of 0.20% and used
semi-gradients (Equation 4.6). As in their paper, the learning rate was not decayed nor did
the agent perform any exploration.

4.7 El-Alfy et al.
El-Alfy et al. (2001) developed a model-based Q-learning scheme for CAC with the intent
of prioritizing hand-offs over new calls.

At each time step, the system updates the following estimates:

τt(s, a) running average of sojourn time, for each state-action pair

r̄t(s, a) running average of time-integrated rewards for each state-action pair

ρt system-wide, time-integrated average reward

Pt(s′, s, a) estimate of transition probabilities Pr[St+1 = s′ | St = s,At = a], for each
state-action and resulting state triple

The transition probabilities are maximum likelihood estimates formed simply by count-
ing transitions — that is, observing how often each s′ is the resulting state after executing
action a in state s. The model is updated online as transitions occur in the simulator.

The Q-value function is updated with an average-reward SMDP formulation of the
environment:

Q̄t+1(s, a) = (1−α)Q̄t(s, a)+α
[
r̄t(s, a)−ρtτt(s, a)+

∑
s′∈S
Pt(s′, s, a) max

a′∈A(s′)
Q̄t(s

′, a′)
]

(4.17)
For incoming new calls, the agent chooses between accepting or rejecting the call while
hand-offs are always accepted. Contrary to regular Q-Learning, the target value is an
expectation over state transitions which is attained by using the model. Note that none
of the terms rely on the current state or executed action; (s, a) are arbitrary while the

33

Chapter 4. Related work

remaining terms are current estimates from the model. Thus, the update equation can be
used to update any state-action pair. The authors did not specify which scheme was used
for selecting which state-action pairs to update. It is common to update the observed state
and executed action, as in model-free approaches, in addition to state-action pairs thought
to occur in the near future, which can be determined by using the transition probabilities
(Silver, 2015).

The agent was tested on a system consisting of a single cell. In single-cell systems,
no co-channel interference is possible, and the system state is therefore fully described by
the number of channels in use. Also particular to single-cell systems is the property that
without hand-off prioritization, new call and hand-off blocking probability must be the
same. As previously discussed (section 4.3) this is not the case for multi-cell systems even
if hand-offs are not explicitly prioritized by the agent.

4.8 Pietrabissa

Pietrabissa (2011) considered the case where the link capacity, i.e. the number of channels
available for the system, varies with time, for instance due to weather conditions. If the
link capacity decreases below the current utilization, calls in progress have to be dropped,
which is less desirable than not granting service in the first place. To decrease the proba-
bility of dropping calls the authors implemented CAC using RL, with separate agents for
call admission and call dropping control, both using table-lookup Q-learning. Call traffic
was divided into multiple classes, each requiring a certain bitrate which is analogous to
a single caller requiring more than one channel at once. The admission policy controls
whether or not to accept call requests while the dropping policy decides which, if any,
calls to drop when a cell uses full link capacity.

Even if service requests are always denied when the link capacity is fully used, call
dropping cannot be avoided due to the link capacity varying with time. The objective of the
system is to simultaneously minimize new call blocking probability, dropping probability
and fairness in service time between the different call classes.

4.9 Usaha et al.

Usaha and Barria (2007) used RL for CAC and call routing in low Earth orbit satellite
networks. These satellites accept calls from the ground, route them along satellites in space
before they at last are connected back down to the ground. The satellites communicate with
optical or radio intersatellite links which are broken and reestablished as satellites move
in orbit and come in and out of range of each other. Current systems route calls along the
shortest path (in number of hops) or the path with links most likely to stay up.

As in a regular caller environment, it is desirable to perform CAC because links may
go down and there might not be sufficient unused bandwidth at active links to service all
calls in progress, which necessitates dropping some of them. The decision of whether to
accept or block a call is only made at the satellite where the call originates, i.e. is routed
from the ground; calls routed from other nodes are always accepted. Hand-offs occur as

34

4.10 Graph theory for FCA

the satellites move in orbit, when a different satellite becomes physically nearer to a caller
than the previous satellite that handled the call.

The RL agent performs CAC and routing simultaneously and on service requests either
rejects the call or selects a route from the set of currently available routes. Rewards are
integrated over sojourn time to encourage the selection of routes likely to stay up through-
out the duration of the call. As in DCA, there is no inherent preference for short term
rewards. The problem was therefore defined as a SMDP with differential returns. For
average-reward SMDPs, the average reward ρπ for a stationary policy π is averaged over
cumulative continuous time instead of the number of time steps:

ρπ = lim
N→∞

∑N−1
k=0 E[Rk | A0:k ∼ π]

E[tN]
(4.18)

where Rk is the (time-integrated) reward from transition k and tN is the time of the Nth

time step. The Bellman optimality equation for average reward SMDPs, with expected
sojourn time T a

s for a particular state and action is given by:

v̄∗(s) = max
a∈A(s)

[Ra
s −ρ∗ T a

s +E[v̄∗(s
′) | s, a]] (4.19)

where ρ∗ is the average reward under an optimal policy. The reward Ra
s was defined

as the positive constants rNEW and rHOFF with rHOFF >> rNEW for accepted new
calls and hand-offs respectively, and zero otherwise. The average-adjusted value-function
was used as a baseline for an actor-critic method using REINFORCE-style gradients (see
section 4.12 and Equation 4.22).

4.10 Graph theory for FCA
In graph theory, a L(j1, j2, . . . jm) graph labelling task concerns the issue of labelling
(coloring) every vertex in a graph such that every pair of vertices with distance i between
them, as measured by the number of edges of the shortest path, have labels that differ at
least ji. The usual graph coloring problem where adjacent vertices must have different
colors is a L(1) labelling task. Assigning partitions of nominal channels to cells, as is
shown in subsection 2.1.1, is a L(j1, j2, . . . jd−1) labelling task with j1 = j2 = · · · =
jd−1 = 1 and reuse distance d, if we let any two partitions have distance 1 from another.
Cells correspond to vertices where cells that are geographic neighbors are connected by an
edge in the graph. Channel assignment has been studied in graph theory since the 1960s
and is still actively studied (Calamoneri, 2011).

Recently, Lin and Shen (2018) considered the case where each pair of channel alloca-
tions in the same cell must be separated by some distance t in the channel domain (chan-
nel distance), and where every pair of channel allocations for neighboring cells within the
reuse distance must differ by some arbitrary channel distance j. This is a multi-labelling
problem because each vertex (cell) must be labelled (assigned) multiple labels (channels).
These types of problems are defined as n-fold, t-separated L(j1, j2, . . . jd−1) graph la-
belling tasks with j .

= j1 = j2 = · · · = jd−1 when each cell requires n channels, all of
which have channel distance of t or greater between each other.

35

Chapter 4. Related work

The authors provided an optimal solution requiring the least amount of channels. A
further generalization of the problem allowing different channel distance ji for each geo-
graphic distance i is NP-complete (Wong, 2003). Graph labelling in the context of channel
allocation usually concerns assigning nominal channels for use with FCA. As we will see
(subsection 5.2.7 and 6.4), a static assignment which is optimal under some fixed call
traffic conditions can be useful even in the context of DCA.

4.11 Dynamic Spectrum Assignment and Cognitive Ra-
dio domains

The term Dynamic Spectrum Access (DSA) is often used to describe the problem of chan-
nel allocation in modern Orthogonal Frequency Division Multiple Access (OFDMA) data
networks, though there are no strict definitions of what constitutes a DSA domain as op-
posed to a DCA domain. In packet switched data networks, voice traffic is transferred by
data packets using Voice-over-IP. OFDMA divides the bandwidth into sub-carriers which
is analogous to channels, though a single mobile client may use multiple sub-carriers at
once depending on its data rate requirement. The objective is often, analogous to DCA, to
minimize packet or file (a sequence of packets) retransmission probability.

In DCA, calls are blocked if there are no channels that can be used without interference.
In DSA, packets are always transmitted but the transmission may fail due to excessive in-
terference in which case the whole file is retransmitted. Furthermore, the data rate a client
can achieve depends on the magnitude of the signal-to-interference-plus-noise (SINR) ra-
tio, thus interference management is more important in typical DSA environments than in
typical DCA environments. DCA (typically) has an implicit interference threshold deter-
mined by the reuse constraint, and further improving the SINR by reducing interference
yields no improvement in user satisfaction. Some minimum SINR is required to support
data transmission in DSA environments, and improving it further yields higher potential
data rate. Some DSA policies therefore aim to maximize average SINR or data throughput.
While results in DSA are not directly comparable to those in DCA, the solution methods
are largely the same with the domain differences expressed in the reward formulation and
state and action spaces.

In typical DCA caller environments, it is assumed that a single service provider has
exclusive access to the bandwidth. The service provider is the primary user and the legal
incumbent of a radio network. Other (secondary) users are traditionally only allowed to
transmit if the primary user is inactive, in which case they can be ignored when doing
channel allocation for the primary user. In proposed cognitive radio systems, this con-
straint is lifted and secondary users are allowed to transmit if they are located outside a
protected geographic boundary or their interference on any primary transmitter, as a func-
tion of transmit powers and distances, is below a given threshold.

4.12 Morozs
Morozs (2015) applied distributed reinforcement learning to the problem of DSA for data
file transfer in cognitive LTE networks.

36

4.12 Morozs

They used distributed stateless Q-learning, which for each cell is of the form:

Qt+1(at) = Qt(at) + α[r(at)−Qt(at)]. (4.20)

Stateless RL algorithms are often applied to multi-armed bandit problems. Bandits have
no state and thus does not transition in state space. Stateless Q-learning is possible to
use for pure distributed channel allocation because the action space varies with time and
implicitly encodes some state; at the extreme if no channels are eligible then the action
space is empty. Omitting the state variable reduces the number of Q-values that need to be
learned, thus speeding up learning. The aim of their work was to improve the poor initial
performance of table-based Q-learning agents such as the one in Lilith (2005), and further
reducing the size of the state-action space is one approach for achieving that goal.

The reward was defined as±1 for successful and failed file transmissions respectively,
with corresponding objective to minimize the probability of file retransmission. A file
transmission consists of several packet transmissions and may fail because of excessive
interference, in which case it is retransmitted. In this distributed, cognitive channel alloca-
tion domain, excessive interference may occur because cells only intermittently commu-
nicate their list of used channels, and the information of whether a channel is safe to use
may therefore be outdated.

The system employed the variable learning rate technique Win-or-Learn-Fast, where
the constant αwin is used for successful transmissions and αlose with αlose > αwin is
used for failed transmissions. This technique is of particular interest to non-stationary
environments, because large state(-action) values are decreased in a shorter period of time
if the network topology or call traffic distribution changes and decreases the desirability
of certain actions.

Morozs et al. (2016) extends the above approach by incorporating Case Based Rea-
soning (CBR) for the purpose of improving performance for cellular environments with
time-varying network topology. In this scenario, the environment may change with the
addition of new base stations or the removal of existing ones. In real-world networks,
base stations may be turned off to save power, in which case nearby BSs increase their
transmit power to cover a larger area. Other scenarios include base stations which are only
temporarily deployed in order to provide service for an event.

CBR is often described as “solving new problems using the solutions to similar prob-
lems solved in the past”. In short, a new problem is compared to previously solved ones
using a comparison function. The most similar one is retrieved with the corresponding
solution from the case base. The retrieved solution is applied to the new problem, then
modified based on its performance before it is stored back in the case base as a solution to
the new problem.

Here, a network topology constitutes a case and a Q-table a solution. The paper con-
siders a distributed approach where only the local network topology informs the decision
of which Q-table to use. A binary string is constructed which embeds the status of BSs
in cells within a radius of 2 or less; if a bit is switched on it signifies a currently active
BS and vice versa. Cases, i.e. network topologies, are retrieved from the case base using a
similarity measure defined as the sum reduction of the ‘exclusive or’ product of the current
topology and each stored topology. The solution yielding the lowest sum reduction is re-
trieved with its corresponding Q-table. This similarity measure is position dependent; two

37

Chapter 4. Related work

cases with the same number of active BSs have low similarity if the specific BSs which
are active differ between the two topologies.

For every file transfer, the case base is queried and the most similar Q-table is retrieved
and used to select an action. After a single regular Q-learning update (Equation 4.20), the
Q-table is stored back into the case base as a solution to the current topology, which may
differ from the case it was retrieved as in the first place.

The CBR approach was shown to outperform stateless Q-learning (Equation 4.20),
particularly for environments of low complexity dynamics.

4.13 Bernardo et al.
Bernardo et al. (2009) applied distributed RL for chunk pre-allocation in OFDMA net-
works. A chunk is a predetermined, contiguous, fixed set of sub-carriers. In each cell, each
chunk is given its own RL agent, resulting in multiple agents per cell. An agent outputs
a single binary decision, signifying whether the channels in the chunk are made available
for allocation in that cell. The reward is given on a per-cell basis and increases linearly
with user throughput and decreases linearly with the number of used chunks. These two
terms are weighted by constants which are hyperparameters of the system. Furthermore,
the reward is zero if the average user throughput is below some predefined threshold; this
is done to encourage a minimum quality of service. Decreasing the reward according to
the number of used chunks discourages the agent from pre-allocating more chunks than its
clients can use.

Each agent consists of a single-layer neural network with a single sigmoid output
which serves as parameter for a Bernoulli unit. The sigmoid (logistic function) output
is in general given by p(x̃,θ) = 1

1+e− θT x̃
with θ, x̃ ∈ Rd for input vector x̃ and network

weights θ.
The probability p ∈ (0, 1) is used as parameter for a Bernoulli unit g(a, p), which is

the probability mass function:

g(a, p)

{
1− p if a = 0

p if a = 1.
(4.21)

The Bernoulli unit is used as policy, πθ(a | x̃)
.
= g(a, p(x̃, θ)), thus the action is 1 (pre-

allocate) with probability p and 0 (do not pre-allocate) otherwise. Each agent in a particular
cell receives the same input scalar x̃ defined as the percentage of users in that cell with
respect to the total number of users in the system. As a consequence each agent has a
single scalar network parameter (weight) θ.

The network is updated using the general framework of REINFORCE policy gradients
(Williams, 1992):

∇θ ES0,A0,S1,...[

∞∑
t=0

rt] = ES0,A0,S1,...[

∞∑
t=0

(rt − ψt)∇θ lnπθ(at | st)] (4.22)

where ψt is an optional baseline, such as the average reward ρ under the policy or V (st),
which reduces the variance of the gradient (see e.g. Schulman et al. (2015) for a thorough

38

4.14 Biggelaar et al.

overview). Regardless of the baseline used, so long as it is unbiased, the expectation of
the policy gradient points in the direction of increase in average reward.

Every event, the Bernoulli unit is used to sample a binary action at using the sigmoid
output. The policy network weights are then updated with REINFORCE using the average
reward ρ as baseline:

θt+1 = θt +α[(rt − ψt)∇θ lnπθ(at | xt)] general REINFORCE method (4.23)
θt+1 = θt + α[(rt − ρt−1)∇θ ln(g(at, pt))] single layer Bernoulli net (4.24)
θt+1 = θt + α[(rt − ρt−1)(at − pt)xt] see Williams (1992). (4.25)

Each agent has their own weights and are updated individually, with r being the cell-
specific reward (cell and agent indecies are omitted). The cell-specific average reward ρπ
is not known beforehand, and must be estimated. There are several ways of doing so,
in this work they used an exponentially weighted moving average of the (cell-specific)
reward:

ρt = αArt + (1− αA)ρt−1 (4.26)

for some secondary learning rate αA ∈ (0, 1).
As mentioned in section 3.2, an optimal deterministic policy is guaranteed to exist

provided the reward function is stationary. For a centralized DCA system, this holds true
even if the call distribution is non-stationary. In multi-agent environments, this is not the
case if the reward depends on the behavior of the other agents, which will change over time
as they learn. As an illustrative example, consider two RL agents playing the game of rock-
paper-scissors against each other. If agent A plays ‘rock’ more than a third of the time,
agent B (should) play ‘paper’ with the same frequency. In turn agent A should decrease the
frequency with which it plays ‘rock’, which would cause the reward for playing ‘paper’
for agent B to trend downwards. The optimal policy for either agent is to randomly play
each of the alternatives with equal probability, which is the Nash equilibrium of the game.

For the system described above, the reward from pre-allocating a chunk in a cell given
system load will trend downwards if interfering neighbors increase their probability of
pre-allocating the same chunk. If more interfering neighbors pre-allocate the same chunk,
then interference will increase causing decreased throughput and thus a smaller reward. A
stochastic policy is more easily expressed by a policy function, and REINFORCE policy
gradients are able to learn optimal stochastic policies (van Hasselt, 2016).

4.14 Biggelaar et al.
Biggelaar et al. (2012) proposed a decentralized Q-learning system for power control of
secondary users in cognitive radio networks.

Their system consists of a RL agent for each secondary transmitter which controls
the transmit power used for all channels in the cell. In order to use Q-learning for the
continuous action space of transmission power, the full range was quantized into a set of
15 discrete values.

The objective was to minimize the SINR of each secondary agent under the constraints
that the SINR for the primary and secondary transmitters both exceed their separate mini-
mum thresholds. To achieve this goal, the reward formulation for a particular cell is of the

39

Chapter 4. Related work

form:

rt =

{
−(SINRst − SINRsTH)2, if SINRpt ≥ SINR

p
TH

−∞, otherwise.
(4.27)

SINRsTH and SINRpTH are the minimum thresholds for the secondary and primary
transmitters respectively, and SINRst , SINR

p
t are the measured SINRs for the trans-

mitters at time t. Higher than required secondary SINR is penalized, thus decreasing
the chance of exceeding interference thresholds on the primary transmitters. The SINR re-
quirement for the secondary transmitter is a soft constraint while the interference constraint
on the primary transmitter is effectively a hard constraint due to the large negative reward.
SINR measurements are local to each cell though we have omitted indecies; SINRst,i
measures the SINR of cell i while SINRpt,i yields the SINR of the nearest primary trans-
mitter.

In a multi-agent setting it is not necessarily desirable that each agent attempts to max-
imize its own reward measure, unless the reward measure incorporates the performance
of other agents. For example, maximizing the SINR at each secondary agent in isolation
could lead to worse performance system wide (i.e. average performance) if the interfer-
ence effect on the primary transmitters is multiplicative instead of additive. A work-around
where each agent maximizes the system-wide performance instead would undermine the
purpose of using multiple agents since reward information would need to be communicated
over potentially long distances. In decentralized, multi-agent settings, cooperative reward
functions of which the above (Equation 4.27) is an example are designed to increase the
performance of other agents without requiring access to their reward signals.

The Q-learning algorithm was implemented with table-lookup and state information
for each cell consists of the cell’s transmit power, which is local information, and knowl-
edge of the nearest primary transmitter’s interference level, which needs to be commu-
nicated. The authors demonstrated significant improvement over the naive approach of
maximizing secondary SINR for each agent.

4.15 Summary
For Dynamic Channel Allocation and related tasks in the cellular network domain, the
most popular RL approach seems to be Q-learning and related state-action value-function
methods, most often using a small feature representation of the state, and table-lookup as
value-function. The feature representation is not restricted in size due to limited compu-
tational resources. Instead, the state-action space is reduced in size to allow the RL agent
to learn rapidly and exhibit good performance while learning; characteristics which also
indicate the agent’s ability to deal with dynamic environments.

Recent work is largely focused on distributed and/or cognitive networks. There, knowl-
edge of the grid state may be limited to the local neighborhood, outdated, or outright miss-
ing. These domains have different and more complex sets of assumptions than what is
common in DCA domains, yet solution methods remain largely the same. The same solu-
tion methods are also used to achieve tasks other than channel allocation, or with different
success criteria. Different tasks define their objective in the reward function, which is often
shaped to amplify different aspects of the agent’s behavior.

40

Chapter 5
Methodology

In this chapter, we first describe the details of the caller environment simulator. Then,
using the SB-VNet agent of Singh and Bertsekas (1997) as starting point, we construct an
improved agent by introducing the following three changes:

• Relaxation of the problem to an MDP and optimizing for average reward

• TD(0) gradient corrections for the average-reward MDP

• A policy improvement operator for look-ahead on hand-off departure reassignments

In addition, we present an algorithm for calculating the feature representation incremen-
tally, which is done strictly for computational efficiency. At last, we introduce a policy
with preference for using nominal channels, and which is later used as an aid in analyzing
agent performance.

5.1 Simulator
The caller environment simulator is implemented as a discrete event simulator (Figure 5.1)
(Hillier and Lieberman, 2010), where events are processed sequentially and the simulator
clock is advanced according to the timestamp of the current event.

A priority queue stores event timestamps and unique event identifiers, sorted on the
timestamps in ascending order. A hash table is used for mapping identifiers to actual event
objects. In addition, a second hash table maps cell-index channel pairs to event identifiers.
Using two hash tables and event identifiers is one approach for handling reassignments
efficiently. If a call in progress is reassigned to another channel, its corresponding depar-
ture event in the priority queue — which is already generated and waiting for its turn to be
processed — must be changed to reflect the channel reassignment. The only information
available from the DCA agent is the cell index and target channel; that is, the departure
event triggering a reassignment and the chosen action. To avoid searching sequentially
through the entire priority queue for a departure event matching the cell and channel for
the call to be reassigned, hash tables allow efficient lookup.

41

Chapter 5. Methodology

Figure 5.1: Discrete event simulation

42

5.1 Simulator

Each simulator iteration, an event identifier is popped off the priority queue and its
corresponding event is retrieved from the hash table. For arrival events in cells without
any eligible channel there is nothing to be done — if the arrival event was a regular call
and not a hand-off arrival, then the next new call arrival event is generated and added to
the priority queue. For departure events, the channel of the departing call is freed and the
DCA agent chooses a channel, if any, to reassign to the newly freed channel. For arrival
events that can be accepted, the DCA agent allocates a channel from the set of eligible
channels. Provided that the call arrival was not handed off from another cell, there is a
chance that the just-accepted call will hand off instead of terminate when its service time
has elapsed. With probability phandoff, a hand-off departure and subsequent hand-off arrival
is added to the priority queue. The hand-off arrival — if accepted — has expected duration
µhandoff. New calls, accepted or not, always generate the next arrival event according to the
exponential distribution (Equation 2.2).

The environment grid of cells is modelled as a grid of hexagons, the allocation map of
which must be stored as a rectangular array. There are three relevant options for the grid
shape: rectangular, rhombus, and hexagonal; all of which have seen use throughout chan-
nel assignment literature. In addition, a hexagonal grid can be mapped to a rectangular
array through either axial, cube, or offset coordinate systems (Redblob-Games (2015) pro-
vide an extensive resource). A rhombus-shaped grid with an axial coordinate system is the
only combination which does not result in any wasted space in the array where some array
elements do not correspond to cells in the grid, and where the offsets from any cell to its
set of n-distance neighbors are the same regardless of the row and column of the cell. The
latter property simplifies algorithms on the grid such as labelling and is crucial if a rep-
resentation of the grid maintaining its spatial structure is used as input to a convolutional
network, although that will not be done in this work.

Figure 5.2: A 7 × 7 rhombus grid with an axial coordinate system, showing the cell (3, 3) in dark
gray, its neighbors with a radius of 1 (gray) and its neighbors with a radius of 2 (light gray). These
are the interfering neighbors of cell (3, 3) provided the reuse distance is 3.

When labelling the grid for use with FCA (subsection 2.1.1), the shape of the grid
must be taken into account to keep results comparable. Both rectangtular and rhombus
grid shapes have corner cells with interfering neighbors that do not span the entire range of
partitions, and the performance of the FCA strategy can be improved if their set of nominal
channels are expanded. This is not the case for the hexagonal grid shape and because some

43

Chapter 5. Methodology

literature (e.g. Jordan (1996)) uses hexagonal grids, expanding the set of nominal channels
should be avoided in order to keep results comparable across grid shapes.

We conclude this section with a simple demonstration of how to efficiently find the
set KEL of channels that are free and that do not violate the reuse constraint, and thus
are eligible for assignment to arriving calls. This operation is invariant of grid shape and
coordinate system.

Algorithm 1: Eligible channels — A(x,NEW)

Input : Allocation map x, event e = NEWi,t

Output: Eligible channels for cell i: KEL(x, i)
h← x(i, ·) // Row vector length K (number of channels)
// For the cell index of each interfering neighbor
for j ∈ IIF(i), j 6= i do

h← h | x(j, ·) // Bitwise OR
end
KEL(x, i)← where(h) // Indecies of elements that are 1
return KEL(x, i)

Using the bitwise OR operator, |, between the allocation map of a cell and its interfer-
ing neighbors IIF(i) allows for efficient calculation of the eligible channels. Determining
the interfering neighbors will depend upon the coordinate system and reuse distance.

5.2 DCA agent

5.2.1 State value-function approximation

To begin, consider the structure of a 1-layer artificial neural network function approxima-
tor. For state value networks, regardless of which state forms the input to the function
approximator, all the parameters in the network will affect the output which is the value
of the state, unless either parts of the feature representation or a parameter is zero. This is
also true for the backward pass of the same network: a value update of a state will affect
the estimate of any other state because the same parameters are used for all state inputs
(Figure 5.3b).

Table-lookup and 1-layer neural network function approximators for state-action value-
functions or policies use a different set of parameters for each state-action pair (Fig-
ure 5.3a), and therefore cannot generalize directly across actions. If the value-function
or policy uses the same set of actions for assignments as reassignments (as in section 4.3),
the size of the action space alone is I × K for I cells and K channels since we can-
not expect a channel to have the same Q-value or action-probability across cells. For a
given feature representation, a state-action table or neural network will thus have I × K
times more parameters than a 1-layer network state value-function, and learning time will
increase correspondingly since the parameters are not shared.

44

5.2 DCA agent

(a) State-action value network
1-layer state-action value (or policy)

networks have disjoint sets of parameters for
each state-action pair.

(b) State value network
State value networks use the same

parameters to calculate any input-output
pair.

Figure 5.3: State-action vs. state networks

This major increase in the number of parameters necessitates a severe reduction in the
size of the feature representations, which is why previously discussed feature representa-
tions for state-action methods are so small compared to the one introduced by Singh and
Bertsekas (1997). Some even go as far as to eliminate the feature representation entirely
(Morozs, 2015). For a typical environment with 49 cells and 70 channels, the input for
SB-VNet has 7× 7× (70 + 1) = 3479 elements while the input for RS-SARSA has two
elements — the cell index of the current event and an action.

Thus for 1-layered networks, estimating the state value is clearly preferable to estimat-
ing the state-action value. Usually, the use of a state value-function requires a full model
of the environment; both the expected reward Ra

s and state transition probabilities Pa
ss′.

In the case of DCA, as previously discussed (section 4.1), deterministic afterstates permit
the use of a state value-function for selecting actions without requiring the full model of
the environment. Using a state value-function in turn allows for a large feature representa-
tion while maintaining high convergence rate as measured by the number of value updates
because learning generalizes across states and actions. Convergence rate is important for
DCA agents that learn, with prior work (Morozs, 2015) specifically done to improve it,
because performance during learning (temporal performance) is important in its own right
if agents are to be deployed and cannot be pre-trained, and furthermore because it indicates
the agent’s ability to adapt to dynamic cellular environments.

Taking the discussion above into account, the use of a state value-function with a large
feature representation, and the use of afterstates to select actions is therefore carried on
from SB-VNet.

45

Chapter 5. Methodology

5.2.2 Optimizing for a better target
The objective of a DCA agent that does not perform CAC is to minimize call blocking
probability. If CAC is not performed, the agent cannot preemptively terminate calls. How
should the objective be formulated in terms of rewards, and is there a way to incorporate a
preference for servicing hand-offs over new calls?

Compare the SMDP reward at time step k, RSk , side by side to the MDP reward Rk,
and recall that the reward (reward rate for the SMDP) is the call count at the next time
step:

RSk =
1− e−β(tk+1−tk)

β
c(xk+1) Rk = c(xk+1). (5.1)

In the SMDP formulation, prioritizing hand-offs will result in a larger return because hand-
offs have shorter mean duration and 2× (1− e−β∆t) > (1− e−2β∆t), that is, serving two
short calls yields higher reward than serving a single call of twice the duration.

Despite that, in the case of uniform hand-off probabilities, maximizing RSk might not
be preferable over maximizing Rk in terms of either new call or hand-off blocking proba-
bility. If the agent cannot deny call service requests or drop calls in progress, it simply does
not have any means of prioritizing hand-offs over new calls, no matter how much hand-
offs are prioritized in the reward function. This hypothesis is easily verified by defining
a reward function with large hand-off prioritization, e.g. by counting previously handed
off calls as 10 when summing the allocation map (Equation 3.14), to see if there is any
reduction in hand-off blocking probability, which there is not. Regardless of which reward
definition is used, hand-off blocking probability will be lower than new call blocking prob-
ability for reasons described in Figure 4.1, but cannot be further reduced by shaping the
reward definition alone. As such, there does not seem to be anything to gain in choosing
the more complex SMDP reward definition over the MDP reward definition.

Selecting hyperparameters for a SMDP RL agent is also harder because trading off
short-term versus long-term rewards affect the magnitude of the value update to a larger
degree. Even for small changes in trade-off, the learning rate α must be selected jointly
with β. This issue is exasperated by β > 0 being unbounded compared to γ ∈ (0, 1),
which is bounded. Furthermore, integrating the reward rate over time causes a mismatch
in the scale of the reward compared to the scale of the feature representation, which counts
eligible or in-use channels.

Based on these arguments, we relax the SMDP formulation in Equation 4.1 to a MDP.
In addition, due to the objective of minimizing cumulative call blocking probability not
being discounted, we optimize for average reward instead of discounted return. These two
changes results in the following average-adjusted state value-function update:

V̄t+1(x̃t) = V̄t(x̃t) + α
[
r(xt, et, at)− ρt + VT − V̄t(x̃t)

]
= V̄t(x̃t) + α δ̄t (5.2)

where the reward is the count of calls in progress (Equation 3.15), δ̄t is the differential TD
error and VT is a partial value target. In general, the full value target may be the one-step
return rt − ρt + V̄ (x̃t+1), where VT = V̄ (x̃t+1); the two-step return rt − ρt + rt+1 −
ρt + V̄ (x̃t+2), where VT = rt+1 − ρt + V̄ (x̃t+2); or an arbitrary number of steps. In SB-
VNet, no exploration is performed and the partial value target is the bootstrapping value
attained from executing the greedy action, i.e. VT = max

x̃′
V̄t(x̃

′). If an exploration policy

46

5.2 DCA agent

is used, the value target need not correspond to the greedy choice of action, and if we are
somehow able to look more than one step into the future, the value target need not be a
one-step return, hence we have used a generic variable to be specified later.

The average reward ρπ is not known beforehand and must be estimated during learning.
For large t, it is possible to estimate ρπ with V̄t+1(x̃t)− V̄t(x̃t) = δ̄t (Gao, 2006):

ρt+1 = ρt + αA δ̄t (5.3)

where aA ∈ (0, 1) is the learning rate for the average reward. This approach was found
to yield slightly superior results over using an exponentially weighted moving average
(Equation 4.26).

5.2.3 Gradient corrections
In general, it is not possible approximate the true value-function vπ with a function approx-
imator Vθ with zero error for all states as measured by the Bellman error (Equation 3.40),
unless the function approximator has as many parameters as there are states.

Given that the true value-function vπ is known, the best possible function approximator
is the one that minimizes the Mean Squared Value Error, V E (Sutton and Barto, 2018):

V E(θ)
.
=
∑
s∈S

µ(s)
[
vπ(s)− Vθ(s)

]2
(5.4)

where µ with
∑
s∈S

µ(s) = 1 is an arbitrary weighting of states, signifying the relative

importance of accurately valuing the different states. When doing control, it is more im-
portant to have an accurate estimate of states that are frequently visited over those that are
rarely visited, thus µ is usually the on-policy distribution. The best function approximator
is then min

θ
V E(θ), which is a projection of the true value-function into the subspace of

value-functions that are actually representable with θ.
Monte Carlo methods converge to min

θ
V E(θ) for the on-policy distribution of states,

but are high-variance, sample-inefficient and unsuited for infinite-horizon environments
since there are no terminating states. Bootstrapping methods like TD(0) or Q-Learning
converge to a different point, if they converge at all. The MDP relaxation of the TD(0)
semi-gradient SGD update in Equation 4.6 has an upper bound on its TD error, known as
the TD fixed point:

V E(θTD) ≤ 1

1− γ
min
θ
V E(θ) (5.5)

over the on-policy distribution. The TD fixed point θTD is guaranteed to exist when linear
function approximator is used for the value-function and updates are done on-policy. For
DCA there is no inherent discount in the penalty of blocking calls, thus we want large γ
which in turn implies a large upper error bound. Also, if updates are done off-policy then
linear TD(0) can diverge with infinite weights.

Even if dynamic programming is used in conjunction with function approximation, the
act of projecting the current estimate of the value-function corrected by the Bellman error
back in to subspace of the function approximator parameters causes convergence to the
TD fixed-point instead of min

θ
V E(θ).

47

Chapter 5. Methodology

Exact solution methods such as Least-Squares TD converge to the TD fixed point for
the value prediction problem (Equation 3.27) and provide excellent temporal performance
until convergence. Unlike stochastic approximation methods, Least-squares methods used
for prediction weigh old trajectory data the same as new trajectory data and require no
learning rate. There exists derivations for control (e.g. Lagoudakis et al. (2002)), which
unlike their counterparts for prediction are not exact at each point in time until convergence
due to the continuously changing policy. Least-squares methods are of O(d2) computa-
tional complexity where d is the size of the feature representation, and require aggressive
reduction of the size of the feature representation even for small caller environments. Fur-
thermore, they rely on the environment being stationary, and we found them unsuited for
DCA.

More recently, methods have been developed which are able to consistently converge to
the TD fixed point under off-policy linear value-function approximation. TD(0) with gra-
dient correction (TDC) (Sutton et al., 2009) defines a gradient by using the minimum pro-
jected Bellman error (PBE) as loss instead of the TD error as is used with semi-gradients.
Minimum PBE is achieved at the TD fixed point thus SGD with TDC converges to the
same point as semi-gradients.

TDC is originally only defined for the discounted case, where the loss gradient is given
by:

∇θtL = 2
π(st, at)

b(st, at)
(δt x̃t−γ x̃t+1 x̃

T
t vt) (5.6)

where vt ∈ Rd is a gradient correction term, which is updated each iteration with a sec-
ondary learning rate parameter αG > 0:

vt+1 = vt +
π(st, at)

b(st, at)
αG(δt − x̃Tt vt) x̃t . (5.7)

π is the target policy, b is the behavior policy, and π(st,at)
b(st,at)

is the importance sampling ratio,
which is greater than 1 if the action is deemed more important by the target policy than the
behavior policy and vice versa. Provided the inner vector product x̃Tt vt is computed first,
TDC has O(d) complexity.

As TDC is only defined for discounted MDPs, and since our preferred objective is to
optimize for average reward, it needs to be adapted. If we follow the derivation of TDC,
but use the differential Bellman equation (Equation 3.37) as starting point instead of the
discounted Bellman equation, the result is the same as in Equation 5.6 and 5.7 but with
γ = 1 and the TD error δt replaced with the differential TD error δ̄t. As it turns out, the
performance of the naive TDC derivation for average-reward MDPs is terrible. Instead,
we propose the following pseudo-TDC gradient for use with an average-adjusted value-
function:

∇θtL = 2
π(st, at)

b(st, at)
(δ̄t x̃t +ρt − x̃t+1 x̃

T
t vt) (5.8)

which is equal to the naive derivation except with the addition of ρt. The average reward
term appears twice; once in the differential TD error δ̄t and as a standalone term. The
gradient correction equals the naive derivation which just has δt swapped for δ̄t:

vt+1 = vt +
π(st, at)

b(st, at)
αG(δ̄t− x̃Tt vt) x̃t . (5.9)

48

5.2 DCA agent

Using an aggressive exploration policy, and thus off-policy updates, is less important
in highly stochastic domains because state space exploration is to some degree is unavoid-
able. This line of argumentation have been used (Silver, 2015) to explain the success
of the Backgammon RL agent TD-Gammon (Tesauro, 1995) which always select actions
greedily, while state space exploration is ensured by players having to roll a dice to deter-
mine their current action space. We found that for both discounted and average-adjusted
rewards, an exploratory behaviour policy with greedy off-policy updates did not perform
significantly different than using the behaviour policy with on-policy updates. Therefore,
we use on-policy updates, where the importance sampling is always 1 since the target and
behavior policy is the same, but keep TDC due to its improved convergence properties
which might provide some benefit to average-reward methods.

5.2.4 Hand-off look-ahead

When defining a caller environment as a (S)MDP, it is convenient to model a hand-off
as a departure event ENDi,·,· in cell i and an arrival event NEWj,· in another cell j. To
distinguish hand-off departures from regular departures, let

HOFFi,j,k,t be the departure of a call on channel k in cell i, to be handed off the next time
step to another cell j,

such that a hand-off consists of the departure event HOFFi,j,k,t immediately followed by
the arrival event NEWj,t+1 for i 6= j, and call departures that are not handed off are
labelled END as before. The allocation map transition function z behaves identically for
HOFF as END events: it marks the channel specified by the action as free. The action
space is also the same for HOFF as END events: we choose must between channels in use
(Equation 3.11).

If the RL algorithm does not distinguish regular departure events from those followed
by a hand-off, we forfeit useful information when reassigning channels. In this particular
instance, the next event is known to be a hand-off arrival in an immediate neighbor cell.
The reassignment action on hand-off departure is likely to have an effect on which channels
are eligible for the hand-off arrival precisely because the cells are neighbors (Figure 5.4
and 5.5). When selecting the reassignment, we can look ahead an additional time step to
see if the choice of action allows the hand-off to be accepted, furthermore, we can select
the reassignment that allows for the highest joint value of reassignment action and hand-
off assignment action. Reassignments that allow the hand-off to be accepted are likely
more desirable than reassignments that do not leave any eligible channels for the hand-off
arrival cell, at least if we prioritize servicing hand-offs over regular new calls.

Formally, if et = HOFFi,j,k,t then et+1 is an event of type NEWj,t+1 and is fully
known at time step t. Then both one-step and two-step afterstates x′ and x′′ can be deter-
ministically determined for each possible sequence of actions a, a′ by using the allocation
map transition function; x′ = z(xt, a, et) and x′′ = z(x′, a′, et+1). Reassignment actions
on hand-off departures (i.e. et = HOFFi,j,k,t) can then be chosen greedily as follows using

49

Chapter 5. Methodology

Figure 5.4: Reassignment on hand-off departure: A three-cell system with four channels. The reuse
distance is 2: cell 1 has cell 2 as interfering neighbor, but not cell 3. On hand-off departure in cell 1,
we can reassign any call in progress to the channel of the departing call, or not do any reassignment
at all. Of the three possible actions, only one allows the hand-off arrival to be accepted in cell 2. The
optimal reassignment creates an eligible channel for the hand-off arrival cell. While simple, an RL
agent cannot perform the optimal reassignment for 2D grids unless the hand-off arrival cell is made
known to the agent, because there is no way of knowing which cell to create an eligible channel for
when doing the hand-off departure reassignment.

50

5.2 DCA agent

the hand-off look-ahead (HLA) policy improvement operator:

πHLA(xt,HOFFi,j,k,t) =
arg max
a∈A(xt,et)

max
a′∈A(x′,et+1)

Vt(x̃
′′) if ∃x′ : |A(x′, et+1)| > 0

arg max
a∈A(xt,et)

Vt(x̃
′) otherwise.

(5.10)

The first condition checks if any reassignment allows the hand-off arrival to be accepted.
If not, that is, if (using explicit notation):

|A(z(xt, a,HOFFi,j,k,t),NEWj,t+1)| = 0,∀a ∈ A(xt,HOFFi,j,k,t), (5.11)

then actions are chosen using the usual one-step afterstate as before (second case state-
ment). HLA can be thought of as a policy improvement operator — in the above example
it is applied to and improves the greedy policy. Look-ahead might in theory be applied to
an exploration policy, although in practice it is best to avoid performing exploratory reas-
signments, in particular on hand-off departures as we know these actions to be important
for reducing hand-off blocking probability.

On hand-off departure, the two-step hand-off look-ahead afterstate — i.e. the alloca-
tion map where both the hand-off departure reassignment action and subsequent hand-off
arrival assignment actions are executed — can be used as bootstrapping target when up-
dating the value function, although it is of minor importance.

Unlike the usual afterstate technique, HLA is also applicable to state-action value-
functions and explicit policies. On hand-off departures, the HLA-Q policy for state-action
value-functions maximizes over hand-off arrival channel assignments (if any are possible)
instead of minimizing over hand-off departure reassignments:

πHLA-Q(xt,HOFFi,j,k,t) =
arg max
a∈A(xt,et)

max
a′∈A(x′,et+1)

Qt(x̃
′, a′) if ∃x′ : |A(x′, et+1)| > 0

arg min
a∈A(xt,et)

Qt(x̃, a) otherwise.
(5.12)

In the HLA policies above, reassignments that allow the hand-off to be accepted are
always preferred over those that do not. The policies select the hand-off departure reas-
signment that allows for the best joint hand-off departure reassignment and hand-off arrival
assignment.

An example HLA algorithm using a state value-function is written out below (Algo-
rithm 2). As implemented, it returns the bootstrapping value of the two-step afterstate in
addition to the selected action. Without significant sacrifice, one-step value targets of the
reassignment afterstate can be used instead and the multi-purpose pseudo-policy function
π̂ turned into a regular (deterministic) policy function π : S → A.

51

Chapter 5. Methodology

Figure 5.5: When performing a reassignment in the center (dark gray) cell, the agent may learn to
choose the reassignment as to create an eligible channel for the event-cell or any of its interfering
cells, as indicated by the arrows, if at all possible. If the reassignment is triggered by a hand-off
departure, it is known for sure that one of the immediate neighbors (medium gray) will receive a
hand-off arrival the next time step, though this information cannot be taken advantage of unless the
policy treats hand-off departures differently from regular departures. Hand-off look-ahead chooses
the reassignment in the departure cell as to create an eligible channel for the actual hand-off arrival
cell (green arrow), if at all possible.

Algorithm 2: Hand-off look-ahead for state value-functions — π̂HLA(x,HOFF)

Input : Allocation map xt

Event et = HOFFi,j,k,t

Output: Action at
Two-step afterstate value (bootstrapping value) V (x̃t+2)

at ← None
V (x̃t+2)← −∞
// For every channel in use at departure cell
for a ∈ A(xt,HOFFi,j,k,t) do

x′ ← z(xt,HOFFi,j,k,t, a) // Flip xt(i, a) to 0
// For every eligible channel at arrival cell
for a′ ∈ A(x′,NEWj,t+1) do

x′′ ← z(x′,NEWj,t+1, a
′) // Flip x′(j, a′) to 1

// Greedy action selection
if V (φ(x′′)) > V (x̃t+2) then

at ← a
V (x̃t+2)← V (φ(x′′))

end
end

end
return at, V (x̃t+2)

52

5.2 DCA agent

5.2.5 Incremental feature representation calculation
We borrow the feature representation from SB-VNet, and decide on the necessary as-
sumptions left out in the paper (Singh and Bertsekas, 1997). For each cell-channel pair,
the feature representation counts the number of times the channel is used by cells with dis-
tance 4 or less, not including the cell itself. For each cell, it counts the number of eligible
channels. Formally, the feature representation x̃ ∈ NI×(K+1) is given by:

x̃(i,m) = φ(x)(i,m) =

{
|{j ∈ I : 1 ≤ d(i, j) ≤ 4, x(j,m) = 1}| if m ≤ K
| KEL(x, i)| otherwise.

(5.13)
To decrease the computational cost of constructing the feature representation, although
practically feasible, the feature representation can be constructed incrementally. When
constructing the incremental representation, it is assumed that assignment events have
at least one eligible channel. If they do not, neither the allocation map nor its feature
representation will change. Let:

b(et) =

{
1 if et = NEWi,t

−1 otherwise,
(5.14)

such that b is the change in the number of calls in progress if an action is executed in
response to event e.

Let f(x, e) be a function that frees the channel specified by a departure event:

f(xt, et)(h, l)

{
0 if et ∈ {ENDi,k,t,HOFFi,j,k,t} and h = i and l = k

xt(h, l) otherwise.
(5.15)

Then the incremental feature representation is given by:

x̃t+1(i, k) = zφ(xt, x̃t, et, at)(i, k) =
x̃t(i, k) + b(et) if k ≤ K and 1 ≤ d(i, cell(et)) ≤ 4

x̃t(i, k)− b(et) if k = K + 1 and at ∈ KEL(f(xt, et), i)

x̃t(i, k) otherwise.

(5.16)

where cell(et) is the event-cell. Intuitively, the next feature representation may only
change within a 4-cell radius of the event-cell. If the action is to assign channel i, then the
neighbors with distance of 4 or less will increase their count of how many times channel
i is used within their 4-distance neighborhood. When a call departs, the number of eligi-
ble channels must increase by 1 in the departure cell. The same is not necessarily true of
the interfering neighbors of the event-cell, since they in turn may have other interfering
neighbors which continue to use the channel. Conversely, the number of eligible channels
does not necessarily decrease at the interfering cells when a channel is assigned, because
the channel to be assigned may already be ineligible in any cell but the event-cell.

5.2.6 The AA-VNet DCA agent
We construct a DCA agent by stitching together the aforementioned pieces. The aim of
the agent is to maximize the differential MDP return (Equation 3.24), represented as an

53

Chapter 5. Methodology

average-adjusted state value-function (Equation 5.2). The value-function is approximated
using a linear neural network with parameters θ as function approximator, which is up-
dated by SGD using TDC gradients for average-adjusted value-functions (Equation 5.8
and 5.9). The agent is referred to as the afterstate average-reward value network (AA-
VNet) DCA agent and is shown in Algorithm 3. For simplicity, the periodic decay of the
learning rates is not shown. Also not shown is the transitioning of the feature representa-
tion in feature space, i.e. x̃t+1 = zφ(xt, x̃t, et, at), instead of creating it from scratch each
iteration as is indicated below.

Algorithm 3: AA-VNet DCA agent

Input: Learning rates α, αG and αA

x← 0RI×K // Allocation map with I cells and K channels
θ ← 0Rd // Neural net parameters
v← 0Rd // Gradient correction weights
ρ← 0 // Average reward
while True do

e ∼ ε // Sample call event from environment
a, VT ← π̂θ(x, e, ρ) // Get action and value target (Alg. 4)
x′ ← z(x, e, a) // Execute action on grid
r ← c(x′) // Reward is number of calls in progress
x̃← φ(x) // Create feature representations
x̃′ ← φ(x′)
δ̄ ← r − ρ+ VT − θT x̃ // Differential TD error

d← x̃T v
θ ← θ +2α(δ̄ x̃+ρ− d x̃′) // SGD with TDC gradient
v← v + αG(δ̄−d) x̃ // Update grad. correction weights
ρ← ρ+ αA δ̄ // Update avg. reward
x← x′

end

The three learning rates are decayed exponentially, e.g.:

αt+1 = αt ∗ αν (5.17)

with αt=0 as the initial value given by α in the table of hyperparameters (subsection 7.0.3),
and αν ∈ (0, 1) as the decay factor. The learning rate for the neural net is decayed every
10,000 events while the gradient and average reward learning rate is decayed every event.

Afterstates allow action selection using the state value-function. We found that, as
done in SB-VNet, strictly greedy action selection performed on par with or better than a
wide range of exploration policies and amounts. Therefore we continue to pick actions
greedily, using HLA for reassignments when applicable. The action selection algorithm
(Algorithm 4) returns the partial value target in addition to the greedy action, which is
practical because a two-step target can be used on HLA while the standard one-step target
is used otherwise. Not shown is the calculation of the state value, which for a linear value
network is the inner vector product θT x̃, as any state value-function may be used.

54

5.2 DCA agent

Algorithm 4: Action and value target selection — π̂(x, e, ρ)

Input : Allocation map x
Event e
Average reward ρ

Output: Action a
Afterstate partial value target VT

a← None
if e == HOFF then

a, V̂ ← π̂HLA(x, e) // Greedy HLA reassignment (Alg. 2)

VT ← c(x)− ρ+ V̂ // Look-ahead partial value target
if a == None then

VT ← −∞
// Greedily choose (re)assignment
for â ∈ A(x, e) do

x′ ← z(x, e, â)
if V (φ(x′)) > VT then

a← â
VT ← V (φ(x′)) // For regular one-step value target

end
end

return a, VT

When the event is a hand-off departure, actions are selected greedily using the HLA policy
(Algorithm 2), which also returns a partial value target. The two-step differential TD error
on hand-off look-ahead is then:

δ̄t = r(xt, et, at)− ρt + VT − Vt(x̃t) (5.18)
= r(xt, et, at)− ρt + r(xt+1, et+1, at+1)− ρt + Vt(x̃t+2)− Vt(x̃t) (5.19)
= c(xt+1) + c(xt)− 2ρt + Vt(x̃t+2)− Vt(x̃t) (5.20)

because rewards are defined as calls in progress, and a completed hand-off does not change
the number of calls in progress (i.e. c(xt+2) = c(xt) if et is a hand-off departure).

If the hand-off arrival cannot be accepted, then the HLA policy will not return an action
and actions are selected using the regular one-step afterstate.

Source code (Python) for AA-VNet agent is available online1.

5.2.7 Policy with nominal channel preference
At last, we introduce a policy for doing channel assignments with a preference for nominal
channels. This policy will not be used by our DCA agent, but is a useful tool for analyzing
agent performance.

We define the nominal channel preference (NCP) policy which for assignment events
always selects the highest numbered eligible nominal channel as given by the partitioning

1https://github.com/tsoernes/dca

55

https://github.com/tsoernes/dca

Chapter 5. Methodology

done for use with FCA, while reassignments are handled by another policy, e.g. HLA for
hand-off departures and greedy action selection otherwise. The order in which the nominal
channels are picked does not matter, so long as it remains fixed.

An example NCP policy for Q-functions is given in Algorithm 5, where KNC(i) is the
set of nominal channels for cell i. This policy is only defined for arrival events and selects
actions greedily if no nominal channel is eligible.

Algorithm 5: Nominal channel preference state-action value-functions —
πNCP-Q(x,NEW)

Input : Allocation map xt

Event et = NEWi,t

Output: Action at
at ← None
// For every nominal channel at arrival cell
for n ∈ KNC(i) do

// Pick highest numbered eligible nominal channel
if n ∈ A(xt,NEWi,t) then

at ← n
end

end
// No nominal channel is eligible
if at == None then

// Greedy action selection
q ← −∞
for a ∈ A(xt,NEWi,t) do

if Q(xt, a) > q then
at ← a
q ← Q(xt, a)

end
end

end
return at

The thought behind the NCP policy is to improve channel packing by utilizing the
partitioning done in FCA. It might seem counterproductive to fully disregard the value-
function on arrival events and use a fixed, non-learning policy instead. As FCA is optimal
in the limit of infinite call traffic, the partitioning pattern might serve as a good baseline,
which is deviated from by using the RL policy to select actions when no nominal channels
are eligible and for reassignments. While the value-function is not consulted for picking
actions on arrival events if there is an eligible nominal channel, it is still trained on the
result of executing these actions and thus learns the values of the nominal channels.

56

5.3 Summary

5.3 Summary
In building the AA-VNet agent, we started off by making a case for the approach behind
SB-VNet. We have seen that the use of a state value-function instead of a state-action
value-function allows a 1-layer neural network function approximator to generalize. While
the use of a state value-function usually requires a full environment model, afterstates
allow action selection with a partial model.

We have shown the construction of the AA-VNet agent and the reasoning behind the
design decisions. The use of afterstates has been extended to looking ahead on hand-off
departures to find a reassignment that allows the hand-off to be accepted. In addition, the
AA-VNet agent is made to maximize the differential return of an average-reward MDP,
which we argue is a better target than the discounted return of a SMDP or MDP, because
minimizing call blocking should not be discounted in time. The agent updates its linear
neural network by using a variant of TDC gradients proposed for average-reward MDPs.

57

Chapter 5. Methodology

58

Chapter 6
Results and Analysis

In this chapter, each design decision of the AA-VNet (subsection 5.2.6) agent is inspected
incrementally. To start, the SB-VNet agent (section 4.1) is modified to maximize dis-
counted MDP returns and average-reward MDP returns. Then, continuing optimizing for
average reward, the choice between TDC, residual gradients and semi-gradients is com-
pared. The last step of the incremental analysis verifies the efficacy of hand-off look-ahead
(subsection 5.2.4) for both the AA-VNet agent and RS-SARSA (section 4.3). Then, we
analyze how these two agents react to the use of a policy with nominal channel preference.
Finally, these two agents are compared to Random Channel Allocation and FCA over a
range of traffic loads. The configuration of all value-net agents are listed in Table 6.1.

Name Target Gradient HLA Figure
SB-VNet Discounted SMDP Semi No 6.1

Discounted MDP Semi No 6.1
Average-reward MDP Semi No 6.1 and 6.2 (no hand-offs)
Average-reward MDP Residual No 6.2 (no hand-offs)
Discounted MDP TDC No 6.2 (no hand-offs)
Average-reward MDP TDC No 6.21(no hand-offs) and 6.3

AA-VNet Average-reward MDP TDC Yes 6.3 and 6.52and 6.6

Table 6.1: Value-net agents

All results are on a simulated caller environment with a uniform traffic pattern using the pa-
rameters in Table 6.2. Hand-offs are only performed in simulations where the agents being
compared might have a different delta between hand-off and new call blocking probability.
All simulations, besides the last where it is stated otherwise, use a call rate of 200 calls per

1also corresponds to “AA-VNet” though it does not employ HLA, because the simulation is without hand-offs
thus HLA has no effect

2some use a non-greedy policy on arrival events

59

Chapter 6. Results and Analysis

Parameter Description Value
I Number of cells 7× 7 = 49
K Number of channels 70

Number of simulated events 470,000
µ Call duration, minutes 3
µhandoff Hand-off duration, minutes 1
phandoff Hand-off probability 15%

Table 6.2: Caller environment parameters

hour, i.e. λ = 3.33 calls per minute. A traffic pattern with mean call rate of 200 calls per
hours is a high-traffic simulation, which is precisely the situation where FCA performs at
its best, due to being optimal in the limit of infinite offered traffic. Keep in mind that for a
given mean (new) call arrival rate and call duration, a simulation with hand-offs will have
higher new call blocking probability than one without because the effective offered traffic
has increased.

470, 000 events corresponds to roughly 24 hours in simulator time for simulations with
hand-offs and 26 hours for simulations without. Comparing the temporal performance of
agents by the number events instead of simulator time is more accurate because learning
happens on the experience of events, and the number of events for a given time frame is
inherently stochastic.

All plots show cumulative blocking probability for either new calls, hand-offs, or both
(total), with error bars showing standard deviation over 80 independent runs with differ-
ent random seeds. The value networks are initialized with the weight vector set to zeros,
and the same is true of the Q-tables, thus the stochasticity stems from call events and the
exploration policy when used. Plot points are slightly shifted on the x-axis to avoid over-
lapping error-bars; cumulative blocking probability measurements occur simultaneously
on the earliest instance of each period, with a period lasting 25, 000 events.

Hyperparameters such as learning rates for each of the state value-based agents are
listed in subsection 7.0.3, and were found using LIPO (Malherbe and Vayatis, 2017) which
constructs an upper bounding model of the hyperparameter versus loss (blocking proba-
bility) space by estimating the Lipschitz constant of the RL agent, in addition to local trust
region optimization for fine tuning (King, 2009). Hyperparameters for RS-SARSA are the
same as used by the authors of the system, listed in section 4.6.

For simulations where hand-offs are performed but only a subset of the graphs are
shown, the remaining graphs are to be found in subsection 7.0.4.

6.1 Choice of returns

We test the hypothesis that the MDP formulation is no worse than the SMDP formula-
tion, and that optimizing the average reward might be preferable over optimizing the dis-
counted return due to the true objective of minimizing call blocking probability not being
discounted.

60

6.1 Choice of returns

(a) Hand-off blocking probability

(b) New call blocking probability

Figure 6.1: Return comparison (with hand-offs)

61

Chapter 6. Results and Analysis

The agents are all value networks based on SB-VNet and differ only in their definition
of returns. The reward (rate) is defined as the number calls in progress, in the case of the
SMDP integrated over time, and in the case of differential returns (A-MDP) subtracted
by the average reward. All agents use semi-gradients without any exploration. The hy-
perparameters are selected individually for each agent. For the SMDP, the learning rate
α is selected jointly with the discount factor β and for the MDP, α is jointly tuned with
γ. For the A-MDP, the average reward learning rate αA is selected jointly with α because
the average reward is a function of the neural network output (Equation 5.3), although in
practice these turn out to be nearly independent.

There is an insignificant difference in the hand-off blocking probability between the
SMDP (8.92%), MDP (9.14%), and average-reward MDP (8.96%), while as for new call
blocking probability it seems to confirm the hypothesis that using differential returns is
superior. Using differential returns reduces blocking probability by about 1.03% over the
discounted MDP which in turn reduces it by about 0.50% over the SMDP. The difference
between the MDP and SMDP can possibly be explained by the different scaling of the
rewards, which is known to have a significant effect in RL in general (Henderson et al.,
2017), or it could be caused by a worse choice of hyperparameters for the SMDP.

6.2 Gradients

Figure 6.2: Gradient comparison (without hand-offs)

In this section, we compare gradients for the average-reward MDP agent from the pre-
vious section. The most commonly used semi-gradient is compared to residual gradients
and TDC. To discover if gradient corrections are applicable and provide any benefit to the

62

6.3 Hand-off look-ahead

average-reward case, TDC is applied to both the average-reward MDP formulation (TDC
A-MDP, Equation 5.8) and the discounted MDP formulation (TDC MDP, Equation 5.6).
The residual and semi-gradients are as defined earlier (section 4.1), but with differential
TD errors corresponding to an average-reward MDP formulation:

∇θtL = 2δ̄t(x̃t+1− x̃t) (Residual gradient)
∇θtL = 2δ̄t(− x̃t) (Semi-gradient)

The learning rates have been tuned individually for each gradient method; for the TDC
gradient methods jointly with the gradient correction learning rate αG.

While in general, residual gradients converge to a less desirable point and are to be
avoided, for the special case of deterministic environments, residual gradients converge
to a more desirable point (Sutton et al., 2009). Transition dynamics are not deterministic
in DCA, but independent Bellman errors (Equation 3.40) of the value-function for the
MDP are deterministic due to deterministic rewards and allocation map transitions. Thus,
ignoring exploration, the Bellman error of a single transition equals the TD error of the
same transition, while a series of either Bellman errors or TD errors is not deterministic
due to stochastic events determining the action space of the next time steps. It is therefore
of interest to compare the residual gradient to the much more widely used semi-gradient.

Figure 6.2 reveals that residual gradients perform about 0.31% worse than semi-gradients.
TDC gradients for the A-MDP outperform semi-gradients by approximately 0.87%, and
with an average cumulative new call blocking probability of 12.42% nearly matches the
reported results of ≈ 12.3% of SB-VNet. We reiterate that all updates are done on-policy.
Convergence is only known to be guaranteed for the MDP, as average-reward RL meth-
ods using linear neural networks have no known convergence guarantee (Tadepalli, 2017),
though none of the agents ever diverged in practice. The most important property of TDC
gradients are their guaranteed convergence under off-policy updates for MDPs with dis-
counted returns, but these findings show that not only is TDC applicable to differential
returns, but also provide improved steady-state performance over semi-gradients.

6.3 Hand-off look-ahead
Figure 6.3 compares the use of hand-off look-ahead (HLA) with regular, non-look-ahead
reassignments. Enabling HLA for the state value-network agent (Equation 5.10) improves
hand-off blocking probability by about 1.46% in addition to an insignificant improvement
for new call blocking probability. With HLA enabled, this agent corresponds fully to AA-
VNet (subsection 5.2.6).

For the state-action table-lookup agent RS-SARSA (section 4.3), HLA (Equation 5.12)
is used for hand-off departures while arrival events are handled by a Boltzmann exploration
policy (Equation 4.13) and regular departures by greedy action selection, the latter two the
same as in the original system. In RS-SARSA, HLA yields a decrease of 7.95% in the
blocking probability for hand-offs and 0.31% increase for new calls; a total decrease of
0.59% (Figure 6.4).

HLA is likely more impactful in terms of hand-off blocking probability for RS-SARSA
than AA-VNet because the total blocking probability of RS-SARSA is significantly higher.

63

Chapter 6. Results and Analysis

(a) Hand-off blocking probability

(b) New call blocking probability

Figure 6.3: Hand-off look-ahead

64

6.3 Hand-off look-ahead

Figure 6.4: HLA total blocking probability

New call blocking probability is approximately 3% worse for RS-SARSA, making HLA
able to take advantage of the relatively poor channel packing when reassigning channels
before hand-offs, causing the significantly improved hand-off blocking probability.

As demonstrated in Figure 6.4, there is a significant difference in the temporal behav-
ior between the agents. The Q-table in RS-SARSA has nearly the same total amount of
parameters as the function approximator in AA-VNet — (I×K) vs. (I× (K+ 1)) — yet
the state value approach shows near-perfect temporal performance, while the state-action
value approach undergoes significant learning during the first 12 hours and takes roughly
24 hours of simulation time before converging. As discussed in subsection 5.2.1, improv-
ing the estimate of one state-action pair in a Q-table does not directly generalize to any
other. The same would be true of a state value table and a 1-layer state-action neural net.
However the state value-function never shows worse than steady-state performance while
the initially empty caller environment fills up with calls.

These results are not directly comparable with results from CAC systems because the
latter usually model multiple classes of calls, with the objective of prioritizing hand-offs
as well as new calls of high-priority call classes. As a result, new calls of low-priority
call classes see a major increase in call blocking probability and so does the total block-
ing probability. In Lilith and Dogançay (2005), a CAC agent was tested in an identical
environment as used in this work (Table 6.2) with traffic split evenly into a low- and high-
revenue class. Hand-offs for either class had approximately 3% chance of being blocked
while new calls were blocked with 45% and 4% chance respectively. Compared to the RS-
SARSA agent using HLA, which blocks hand-offs with probability 5.7% and new calls
with probability 18.0%, the small decrease in hand-off blocking probability achieved by

65

Chapter 6. Results and Analysis

using CAC might not be worth the large increase in total blocking probability.

6.4 Exploration

In this section, different ‘exploration’ strategies are compared for both AA-VNet and RS-
SARSA. In previous simulations, AA-VNet has used greedy action selection on arrival
events, where RS-SARSA has used a Boltzmann exploration policy. Here, we apply Boltz-
mann exploration with the same parameters in the same manner to AA-VNet. Conversely,
greedy action selection on call arrivals is also tested for RS-SARSA. Looking at the results
for hand-offs (Figure 6.5a) or new calls (Figure 6.5b), we see that neither change results
in any significant difference. As earlier (subsection 5.2.3) discussed, exploration is less
important in highly stochastic domains, because the unavoidable stochasticity inherent in
state transitions ensure state space exploration.

More interestingly is how the two agents respond when using the policy with nomi-
nal channel preference (NCP) (subsection 5.2.7), where, for either agent, call arrivals are
assigned to an eligible nominal channel, hand-off departures use HLA and actions are se-
lected greedily otherwise. NCP reduces new call blocking probability by approximately
1.53% for RS-SARSA while having only a very slight negative effect for AA-VNet. The
use of NCP also eliminates the advantage RS-SARSA with HLA has shown over AA-
VNet in terms hand-off blocking probability. For RS-SARSA, the use of NCP improves
channel packing as is evident by the significant reduction of total blocking probability
(Figure 7.1b). These findings give substantial credence to the hypothesis discussed in
the previous section that RS-SARSA with a Boltzmann policy or greedy action selec-
tion exhibits poor channel packing and that HLA causes greater improvement in hand-off
blocking probability because of it.

At last, NCP significantly improves the temporal performance of RS-SARSA. Know-
ing optimal channel partitions for a given traffic pattern allows the use of a NCP policy, and
can therefore be useful for some DCA agents if HLA cannot be performed or if servicing
hand-offs is not preferred over servicing new calls.

6.5 Comparison to non-learning agents

In Figure 6.6, we compare FCA and random assignment (subsection 2.1.2) with our pre-
vious RL agents. The simulations include hand-offs and have (new call) offered traffic
ranging from 5 to 10 Erlangs, corresponding to 100 to 200 calls per hour (per cell) with
call duration of 3 minutes. Perhaps surprisingly, random assignment outperforms FCA
over all traffic conditions. Interestingly, the difference is much greater for hand-offs than
new calls. In high-traffic conditions, hand-off blocking probability is approximately 5%
lower. In FCA, the departure of a call has no effect on the amount of eligible channels in
neighboring cells. Any free nominal channel is eligible — which is the point of assigning
nominal channels in the first place — thus on hand-off departure, the probability of block-
ing the subsequent hand-off arrival is the same as for blocking a new call anywhere on the
grid.

66

6.5 Comparison to non-learning agents

(a) Hand-off blocking probability

(b) New call blocking probability

Figure 6.5: Exploration strategies (with hand-offs)

67

Chapter 6. Results and Analysis

(a) Hand-off blocking probability

(b) Total blocking probability

Figure 6.6: RL vs. non-learning agents (with hand-offs)

68

6.6 Summary

That is not the case for random assignment. As described earlier in Figure 4.1, the
channel to be freed on hand-off departure is guaranteed to be free for a large portion of the
interfering cells of the arrival cell. This guarantee cannot be made anywhere on the grid,
nor is it applicable to FCA because the departure channel cannot be a nominal channel
in the arrival cell, hence random assignment has lower hand-off blocking probability than
FCA.

As expected, both RL agents significantly outperform the non-learning agents. At low
traffic conditions, the AA-VNet agent is able to maintain near-zero blocking probability
for either call type up to 6 Erlangs, whilst FCA has a 5% chance of blocking calls at that
traffic load. At 10 Erlangs, the total (Figure 6.6b) blocking probability is 9.13% lower
for AA-VNet and 6.49% lower for RS-SARSA compared to FCA. For hand-offs, both
RL agents use HLA and perform well compared to the non-learning agents. As seen
previously, RS-SARSA with HLA is clearly the best performing with hand-off blocking
probability of 5.68% at 10 Erlangs.

6.6 Summary
Throughout this chapter, we have compared each design decision of the AA-VNet agent
with the most obvious alternatives. In our results, we found that optimizing for the differ-
ential return of an average-reward MDP formulation of the environment yielded lower call
blocking probabilities than optimizing the discounted return of either a MDP or SMDP
formulation. The TDC gradient proposed for average-reward MDPs (Equation 5.8) was
found to perform substantially better than both TDC gradients for discounted MDPs and
semi-gradients for average-reward MDPs.

We found that the use of the hand-off look-ahead policy improvement operator signif-
icantly decreased hand-off blocking probability, particularly for RS-SARSA where look-
ahead was able to exploit the rather poor channel packing. RS-SARSA with HLA showed,
to the best of our knowledge, state-of-the-art hand-off blocking probability for an agent
not performing call admission. In terms of temporal performance and total call blocking
performance, the AA-VNet agent is superior to RS-SARSA at the price of a roughly 2%
increase in hand-off blocking probability at 10 Erlangs.

69

Chapter 6. Results and Analysis

70

Chapter 7
Conclusion

In this work, we have focused on the task of channel allocation in centralized cellular
telephone networks carrying voice traffic. Fixed Channel Allocation, which is the most
widely used channel allocation policy in deployed systems, performs badly for hand-offs
and in light traffic conditions. Reinforcement learning have been successfully used to cre-
ate agents for Dynamic Channel Allocation and related tasks in the caller environment
domain. Common to nearly all proposed RL systems is the use of state-action methods, in
particular schemes like Q-learning paired with table-lookup, with a tiny feature represen-
tation of the full state.

In DCA, state transition dynamics are partly deterministic. The notion of afterstates
allow us to look at the consequences of potential actions before they are executed. This in
turn makes it possible to use a state based RL method as opposed to a state-action based
method. With a linear neural network as state value function approximator, learning by
stochastic gradient descent on a loss function generalizes across states and actions, which
is not the case for either table-based methods or linear state-action networks. This effect
is so drastic that it enables the use of a much larger feature representation of the state
while maintaining superior temporal performance. The use of afterstates and a state value-
function is applicable to a wide range of tasks in the caller environment domain.

By exploiting the fact that hand-off departures are always succeeded by perfectly pre-
dictable hand-off arrivals, afterstates can be used to look ahead on hand-off departure to
create eligible channels for the subsequent hand-off arrival. The hand-off look-ahead pol-
icy improvement operator reassigns channels to create a desirable configuration for the
next known event. The result is a significant decrease in hand-off blocking probability
without, as is the case when doing call admission control, incurring increased total block-
ing probability. For RS-SARSA, HLA had a significant positive impact on total blocking
probability as well which we ascribe to poor channel packing which HLA is able to take
advantage of.

If call admission control is not performed, then the reward function cannot be shaped
to freely trade off prioritization of hand-offs over new calls. We did find however that the
choice of return definition had a large impact on total blocking probability; optimizing

71

Chapter 7. Conclusion

for average reward yielded better results than optimizing the discounted return of either a
MDP or SMDP since cumulative call blocking probability is not a discounted objective.

In addition, our proposed TDC gradient for average-reward MDPs performed very
well although it is backed only by an empirical performance demonstration and almost
surely does not carry the off-policy convergence guarantee of regular TDC gradients for
discounted MDPs.

7.0.1 Hand-off look-ahead in distributed systems
In distributed systems, knowledge of the state of neighboring base stations may be limited.
In order to perform HLA, the hand-off departure cell must have access to the allocation
maps of the interfering neighbors of the hand-off arrival cell, in order to ascertain whether
a reassignment will create an eligible channel. The total amount of information that needs
to be communicated to the departure cell is 18×K bits forK channels if the reuse distance
is 3, because a cell has 18 neighbors with distance of 2 or less. In section 6.3, we concluded
that the more inefficient the agent is, the greater improvement can be obtained by using
HLA. Thus, if the transfer of the necessary information proves realistic in distributed
systems, HLA should prove fruitful since distributed agents in general perform worse than
their centralized counterparts due having less information on which to act.

If computational power in the base station is very limited, the value of any successor
state V (x̃t+1) may be calculated incrementally given the current allocation map xt and its
value V (x̃t). The difference between any two sequential allocation maps xt and xt+1 is at
most 1 bit, and since the value of linear state value is an inner vector product, constructing
an incremental state value is as easy as adding or subtracting the value of the parameter
corresponding to the changed bit.

7.0.2 Model-based new call look-ahead
If a departure event is not succeeded by a hand-off arrival, look-ahead on channel reas-
signment is still possible if a model of the environment is known. Upon reassignment, the
look-ahead policy should prioritize creating eligible channels for neighbor cells according
to both their offered traffic and current number of eligible channels. If a high-traffic neigh-
bor within reuse distance does not have a single eligible channel, choosing a reassignment
that creates one is arguably a highly valued action.

Look-ahead on reassignments followed by regular new calls is only beneficial for en-
vironments with non-uniform call traffic. In uniform traffic, the probability of a cell being
the recipient of the next new call service request is the same for all cells, thus looking
ahead using a probabilistic model cannot result in the prioritization of a cell.

The benefit will be greater in non-stationary call traffic environments since a model
should be able to adapt to changes in the call traffic distribution faster than any prioriti-
zation in the value-function because it can explicitly estimate the (relative) offered traffic
of cells which can be used in the look-ahead policy, while any RL algorithm must shift
potentially large state or state-action values to accommodate the shift of which cells to
prioritize.

For a call environment with exponentially distributed call duration and inter-arrival
times (section 2.5), constructing an environment model is particularly easy. If the call traf-

72

fic is stationary and uniform, we need only to estimate two parameters, namely the average
call duration and the average inter-arrival time. If it is non-uniform, two parameters per
cell will be necessary and for the non-stationary case, more recent samples needs to weigh
more heavily than old samples when estimating the parameters. A stationary call distribu-
tion can be modelled simply by forming a running average of call rate and duration. For
a non-stationary environment more advanced models are necessary, such as exponential
smoothing or perhaps a time-adaptive drift diffusion model (Rivest et al., 2014).

73

74

Bibliography

Baird, L., 1995. Residual algorithms: Reinforcement learning with function approxima-
tion. Machine Learning Proceedings, 30–37.

Battiti, R., Bertossi, A. A., Brunato, M., Dec. 2001. Cellular channel assignment: a new
localized and distributed strategy. Mobile Networks and Applications 6, 493–500.

Bernardo, F., Agust, R., Prez-Romero, J., Sallent, O., 07 2009. A self-organized spectrum
assignment strategy in next generation ofdma networks providing secondary spectrum
access. IEEE Communications Conference, 1 – 5.

Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, Vol 1, 3rd edition.
Athena Scientific.

Biggelaar, O. V. D., Dricot, J.-M., Doncker, P. D., Horlin, F., 2012. Power allocation in
cognitive radio networks using distributed machine learning. IEEE 23rd International
Symposium on Personal, Indoor and Mobile Radio Communications.

Brunato, M., 1999. Channel assignment algorithms in cellular networks. Ph.D. thesis.

Calamoneri, T., 2011. The l(h, k)-labelling problem: An updated survey and annotated
bibliography. The Computer Journal 54 (8), 1344–1371.

Chen, Y., Jia, C., 12 2009. An improved call admission control scheme based on reinforce-
ment learning for multimedia wireless networks. International Conference on Wireless
Networks and Information Systems 0, 322–325.

Dutta, J., Chakraborty, S., Barma, P. S., Kar, S., Jan 2016. An efficient approach to dy-
namic channel assignment problem using genetic algorithm. In: 2016 International Con-
ference on Microelectronics, Computing and Communications (MicroCom). pp. 1–6.

El-Alfy, E. S., Yao, Y.-D., Heffes, H., 2001. A model-based q-learning scheme for wireless
channel allocation with prioritized handoff. Global Telecommunications Conference 6,
3668–3672.

75

Gao, Y., 2006. Research on average reward reinforcement learning algorithms (mla06).
http://lamda.nju.edu.cn/conf/MLA06/files/Gao.Y.pdf.

Goodfellow, I., Bengio, Y., Courville, A., 2017. Deep Learning. MIT Press.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2017. Deep
reinforcement learning that matters. CoRR abs/1709.06560.
URL http://arxiv.org/abs/1709.06560

Hillier, F. S., Lieberman, G. J., 2010. Introduction to Operations Research, 9ed. Interna-
tional. McGraw Hill.

Hong, D., Rappaport, S. S., 1986. Traffic model and performance analysis for cellular
mobile radio telephone systems with prioritized and nonprioritized handoff procedures.
IEEE Trans. Veh. Tech 35, 77–92.

Jordan, S., 1996. Resource allocation in wireless networks. Journal of High Speed Net-
works 5 (1), 23–34.

Katzela, I., Naghshineh, M., 1996. Channel assignment schemes for cellular mobile
telecommunication systems: A comprehensive survey. IEEE personal communications
3 (3), 10–31.

King, D. E., 2009. Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research 10, 1755–1758.

Kunz, D., 03 1991. Channel assignment for cellular radio using neural networks. IEEE
Transactions on Vehicular Technology VT-40, 188 – 193.

Lagoudakis, M. G., Parr, R., Littman, M. L., 2002. Least-squares methods in reinforcement
learning for control. Methods and Applications of Artificial Intelligence, 249–260.

Lilith, N., 2005. Reinforcement learning-based resource allocation in cellular telecommu-
nications systems. Ph.D. thesis.

Lilith, N., Dogançay, K., 2004. Reduced-state sarsa with channel reassignment for dy-
namic channel allocation in cellular mobile networks. Proceedings of 11th International
Conference on Telecommunications, 1327–1336.

Lilith, N., Dogançay, K., 2005. Distributed dynamic call admission control and chan-
nel allocation using sarsa. Asia-Pacific Conference on Communications, Perth, Western
Australia, 376–380.

Lin, W., Shen, C., 02 2018. Channel assignment problem and n-fold t-separated
l(j1, j2, . . . , jm)-labeling of graphs. Journal of Combinatorial Optimization.

Malherbe, C., Vayatis, N., 2017. Global optimization of Lipschitz functions. ArXiv e-
prints.

McEliece, R. J., Sivarajan, K. N., 1994. Performance limits for channelized cellular tele-
phone systems. IEEE Transactions on Information Theory 40 (1), 21–34.

76

http://lamda.nju.edu.cn/conf/MLA06/files/Gao.Y.pdf
http://arxiv.org/abs/1709.06560

Ming, Z., Yum, T.-S., 1989. Comparisons of channel-assignment strategies in cellular mo-
bile telephone systems. IEEE Transactions on Vehicular Technology 38 (4), 211–215.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Ried-
miller, M., 2013. Playing Atari with Deep Reinforcement Learning. Arxiv.

Morozs, N., 09 2015. Accelerating reinforcement learning for dynamic spectrum access in
cognitive wireless networks. Ph.D. thesis.

Morozs, N., Clarke, T., Grace, D., 2016. Cognitive spectrum management in dynamic
cellular environments: a case-based q-learning approach. Engineering Applications of
Artificial Intelligence 5, 239–246.

Nie, J., Haykin, S., 1999. A q-learning-based dynamic channel assignment technique for
mobile communication systems. IEEE Transactions on Vehicular Technology 48 (5),
1676–1687.

Ofcom, Februrary 2013. Winners of the 4g mobile auction. https://www.
ofcom.org.uk/about-ofcom/latest/media/media-releases/
2013/winners-of-the-4g-mobile-auction.

Paxson, V., Floyd, S., 1995. Wide area traffic: the failure of poisson modeling. IEEE/ACM
Transactions on Networking 3 (3), 226–244.

Pietrabissa, A., 12 2011. A reinforcement learning approach to call admission and call
dropping control in links with variable capacity. European Journal of Control 17, 89–
103.

Puterman, M. L., 2005. Markov Decision Processes: Discrete Stochastic Dynami Pro-
gramming. Wiley-Interscience.

Redblob-Games, 2015. Hexagonal grids. https://www.redblobgames.com/
grids/hexagons/, [Online; accessed 10-Dec-2017].

Rivest, F., Kohar, R., Amadou, N., 12 2014. Learning to predict events on-line: A semi-
markov model for reinforcement learning.

Robbins, H., Monro, S., 1951. A stochastic approximation method. The Annals of Mathe-
matical Statistics 22 (3), 400.

Rummery, G. A., Niranjan, M., September 1994. On-line Q-learning using connectionist
systems. Tech. Rep. 166, Cambridge University Engineering Department.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., Abbeel, P., 2015. High-dimensional
continuous control using generalized advantage estimation. CoRR abs/1506.02438.
URL http://arxiv.org/abs/1506.02438

Silver, D., 2015. Lectures on reinforcement learning (compm050/compgi13). http://
www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html.

77

https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2013/winners-of-the-4g-mobile-auction
https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2013/winners-of-the-4g-mobile-auction
https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2013/winners-of-the-4g-mobile-auction
https://www.redblobgames.com/grids/hexagons/
https://www.redblobgames.com/grids/hexagons/
http://arxiv.org/abs/1506.02438
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., Hassabis, D., 2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529 (7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D., Dec.
2017. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm. ArXiv e-prints.

Singh, S., Bertsekas, D., 1997. Reinforcement learning for dynamic channel allocation
in cellular telephone systems. In Advances in Neural Information Processing Systems:
Proceedings of the 1996 Conference, 974–980.

Sivakumaran, M., Iacopino, P., 2018. The mobile economy 2018.
https://www.gsmaintelligence.com/research/2018/02/
the-mobile-economy-2018/660/.

Smith, K., Palaniswami, M., 1997. Static and dynamic channel assignment using neural
networks. IEEE Journal On Selected Areas In Communications 15 (2), 238–249.

Sutton, R. S., Aug 1988. Learning to predict by the methods of temporal differences.
Machine Learning 3 (1), 9–44.

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduction (1st Edition).
MIT Press.

Sutton, R. S., Barto, A. G., 2018. Reinforcement Learning: An Introduction (2nd Edition,
Feb. 2018 draft). MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., Wiewiora,
E., 2009. Fast gradient-descent methods for temporal-difference learning with linear
function approximation. In: Proceedings of the 26th Annual International Conference
on Machine Learning. ICML ’09. ACM, pp. 993–1000.

Tadepalli, P., 2017. Average-reward reinforcement learning. Encyclopedia of Machine
Learning and Data Mining, 87–92.

Tesauro, G., 1995. Temporal difference learning and td-gammon. Commun. ACM 38 (3),
58–68.

Usaha, W., Barria, J., 07 2007. Reinforcement learning for resource allocation in leo satel-
lite networks. IEEE transactions on systems, man, and cybernetics (Part B) 37, 515–27.

van Hasselt, H., 2016. Lectures on advanced topics in machine learning). https://
hadovanhasselt.com/2016/01/12/ucl-course/.

Watkins, C., Dayan, P., 1992. Q-learning. Machine Learning 8, 272–292.

78

https://www.gsmaintelligence.com/research/2018/02/the-mobile-economy-2018/660/
https://www.gsmaintelligence.com/research/2018/02/the-mobile-economy-2018/660/
https://hadovanhasselt.com/2016/01/12/ucl-course/
https://hadovanhasselt.com/2016/01/12/ucl-course/

Williams, R. J., 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 229–256.

Wong, S. H., 2003. Channel allocation for broadband fixed wireless access networks.
Ph.D. thesis.

79

80

Appendix

7.0.3 Hyperparameters

Hyperparameters common to all VNet agents are listed at the top. See subsection 5.2.6
and Equation 5.17 for details of how the learning rate decay parameters are applied, and
Equation 4.13 for the Boltzmann temperature.

81

Parameter Description Value
VNet (general)

αν Learning rate exp. decay (per 10k events), ANN 0.78
SMDP Discount

α Learning rate, ANN 5.1× 10−6

β Discount factor 21
MDP Discount

α Learning rate, ANN 2.02× 10−7

γ Discount factor 0.845
MDP Average

α Learning rate, ANN 3.43× 10−6

αA Learning rate, avg. reward 3.68× 10−3

αAν Learning rate exp. decay, avg. reward 1− 4.75× 10−5

Semi-gradients (A-MDP): See MDP Average
Residual gradients (A-MDP)

α Learning rate, ANN 1.6× 10−5

αA Learning rate, avg. reward 3.68× 10−3

αAν Learning rate exp. decay, avg. reward 1− 4.75× 10−5

TDC gradients (A-MDP)
α Learning rate, ANN 2.52× 10−6

αA Learning rate, avg. reward 6× 10−2

αAν Learning rate exp. decay, avg. reward 1− 4.75× 10−5

αG Learning rate, grad. corr. 5× 10−6

αGν Learning rate exp. decay, avg. reward 1− 9× 10−4

TDC gradients (MDP)
α Learning rate, ANN 1.91× 10−6

γ Discount factor 0.845
αG Learning rate, grad. corr. 5× 10−9

αGν Learning rate exp. decay, avg. reward 1− 9× 10−4

TDC gradients (A-MDP): Boltzmann exploration
τ0 Boltzmann temperature 5
s Boltzmann temperature log decay param. 256

82

7.0.4 Remaining graphs

(a) Return comparison (with hand-offs): Total call blocking probability

(b) Exploration comparison (with hand-offs): Total blocking probability

Figure 7.1: Return comparison and Exploration strategies

83

(a) RL vs. non-learning agents (with hand-offs): New call blocking probability

Figure 7.2: RL vs. non-learning agents

84

	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Symbols
	Introduction
	Background
	Channel Assignment Policies
	Fixed Channel Assignment
	Dynamic Channel Assignment
	Hybrid Channel Assignment

	Reassignment policies
	Related tasks for cellular telephone networks
	Centralized and decentralized networks
	Call traffic modelling
	Summary

	Basic Theory
	Environment specification
	Markov Decision Processes
	Dynamic Channel Allocation as a MDP
	Semi-Markov Decision Processes
	The average reward optimality criterion

	Reinforcement Learning
	Dealing with large state spaces

	Artificial Neural Networks in RL
	Summary

	Related work
	Singh et al.
	Nie et al.
	Lilith et al.
	Kunz
	Brunato et al.
	Results from previous work on DCA
	El-Alfy et al.
	Pietrabissa
	Usaha et al.
	Graph theory for FCA
	Dynamic Spectrum Assignment and Cognitive Radio domains
	Morozs
	Bernardo et al.
	Biggelaar et al.
	Summary

	Methodology
	Simulator
	DCA agent
	State value-function approximation
	Optimizing for a better target
	Gradient corrections
	Hand-off look-ahead
	Incremental feature representation calculation
	The AA-VNet DCA agent
	Policy with nominal channel preference

	Summary

	Results and Analysis
	Choice of returns
	Gradients
	Hand-off look-ahead
	Exploration
	Comparison to non-learning agents
	Summary

	Conclusion
	Hand-off look-ahead in distributed systems
	Model-based new call look-ahead

	Bibliography
	Appendix
	Hyperparameters
	Remaining graphs

