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Abstract

Despite the rapidly evolving payment options available to consumers, credit cards still remain
the leading payment method and are also one of the most lucrative forms of banking. As there
will always exist borrowers who default on their obligations, some loss must be expected. How-
ever, recognizing which debtors that are most likely not to repay their debt in full after default
is crucial when estimating these losses. Additionally, obtaining a model that accurately predicts
the fraction of debt a customer is able to restore can be a source of great revenue. Instead of
using resources on collecting debts we predict will not be restored, these could be assigned to
cases where the outcome is more uncertain. Thus, helping debtors to recover from default is
beneficial both for the consumer and the credit card distributor.

This thesis presents three risk models, all with the aim of predicting how much of the debt
a defaulted customer is able to repay. Using a dataset consisting of credit card information
registered during the period August 2015 to November 2017, logistic regression models, support
vector machines and fuzzy clustering models were constructed. The models were also built with
the aim of detecting the behaviour of high-risk customers.

The main contribution of this thesis has been to illustrate how conventional, and some un-
conventional, statistical methods can be used to reveal trends and perform inference on data.
As the use of machine learning algorithms and black-box methods thrive, it can be difficult to
pinpoint why a given algorithm works/does not work as well as being able to interpret the mod-
els. Despite none of the models proved themselves as optimal, several contributed to a greater
understanding of what separates low-risk from high-risk customers. An improvement of the
model would be to include other types of personal information gathered from several databases.
Information regarding health care status, insurance purchases, social media activity, shopping
habits etc. would not only improve the models in this thesis but all modelling involving human
behaviour.
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Sammendrag

Til tross for den stadige utviklingen av ulike betalingsløsninger tilgjengelig for forbrukere, er
kredittkort fortsatt den ledende betalingsmetoden, i tillegg til å være en av de mest lukrative
tjenestene for banker. Siden det alltid vil eksistere låntakere som ikke klarer å oppfylle betal-
ingskravene, vil det alltid forventes noe tap. Ved å gjenkjenne hvilke låntakere som har størst
sannsynlighet for å ikke klare å tilbakebetale deres respektive gjeld etter å ha bli sendt til mis-
lighold, er avgjørende i estimeringen av forventet tap. Å anskaffe seg en modell som til et
tilfredsstillende nivå klarer å predikere andelen gjeld en kunde klarer å betale tilbake, kan være
en stor inntektskilde. Istedenfor å bruke ressurser på å samle gjeld vi allerede har predikert at vi
ikke klarer å få tilbake, kan disse ressursene bli fordelt til tilfellene hvor utfallet er mer uvisst.
På den måten kan vi hjelpe låntakere å komme tilbake fra mislighold, noe som både er gunstig
for forbruker og bank.

Denne avhandlingen vil presentere tre risikomodeller der alle har som mål å predikere hvor
stor andel en kunde som er sendt til mislighold klarer å tilbakebetale. Ved å bruke data bestående
av kredittkortinformasjon registrert i perioden august 2015 til november 2017, har logistiske re-
gresjonsmodeller, support vector machines og fuzzy clustering modeller blitt konstruert. Disse
modellene ble også bygget med et mål om å gjenkjenne oppførsel som tyder på høy risiko hos
kunder.

Hovedbidraget til denne avhandlingen har vært å illustrere hvordan konvensjonelle, og noen
ukonvensjonelle, statistiske metoder kan bli brukt til å avsløre trender og utføre inferens på
data. Ettersom bruken av maskinlæringsalgoritmer og black-box-metoder blomstrer for fullt,
kan det være vanskelig å fastslå hvorfor en gitt algoritme virker eller ikke virker, i tillegg til
å tolke modellene. Til tross for at ingen av modellene viste seg å være optimale, har flere
bidratt til en økt forståelse for hva som skiller lavrisiko- fra høyrisikokunder. En forbedring av
modellene ville vært å inkludere annen informasjon samlet fra flere databaser. Informasjon som
inneholder helsestatus, forsikringskjøp, aktivitet på sosiale medier, kjøpshistorikk osv. ville
ikke bare forbedret modellene i denne avhandlingen, men også all modellering som involverer
menneskelig oppførsel.
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Chapter 1
Introduction

1.1 Background

One might think that the credit card industry is rather new, but it actually dates back to the
early 1800s [1]. Even though plastic cards were not in use back then, merchants and financial
intermediaries did extend credit on durable goods. Already in the early 1900s larger hotels and
department stores began to distribute paper cards to their most devoted customers.

Today, with the rapidly evolving payment options available to consumers, credit cards still
remain the leading payment method. Actually, according to the 2016 U.S Consumer Payment
Study [2], for the first time in years has credit taken over the top spot as the overall preferred
way to pay, replacing debit. So, despite the growth of mobile payments, traditional payment
methods still remain highly relevant.

One main aspect of the credit card industry is the loss of interest as a result of customers
becoming severely delinquent on their credit card payment. Some loss is always expected as
there always exist borrowers who default on their obligations. Financial institutions view these
losses as a cost component of doing business, and so they are managed through several means,
including interest rates and pricing of credit exposures. However, the exact loss observed in a
particular year vary between years even though the quality of the portfolio is assumed consistent
over time. Figure 1.1 illustrates how the realized loss can be divided into expected loss (EL)
and unexpected loss (UL).

Unexpected losses, which are losses above the expected levels, are known to occur now
and then. It is, however, difficult to predict their timing and severity. Financial institutions are
therefore required to hold parts of their capital as a buffer to protect the debtors against these
unexpected losses. The Basel Accords [3], three sets of banking regulations (Basel I, II, III) set
by the Basel Committee on Bank Supervision, recommend banks to develop their internal credit
risk model for expected loss. One approach adopted for Basel II looks at the probability of loss
exceeding the unexpected level by means of a stochastic portfolio model. The frequency curve
on the right-hand side of Figure 1.1 describes the probability of losses of a certain magnitude.
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Figure 1.1: Variation in realized losses over time (left) generates a distribution of losses (right). The
dashed line represents the expected loss, and the spikes above the dashed line are known as unexpected
loss.

We see that small losses around the EL occur more frequently than large losses. The probability
that a bank will not be able to meet its own credit obligation, i.e the losses exceed the unexpected
level, equals the coloured area. 1 minus this probability is the confidence level, denoted α. The
corresponding threshold is called the Value-at-Risk (VaR) for this confidence level. Hence,
letting the buffer size be the difference between EL and VaR when EL is covered by provisions
and revenues, gives a probability of a bank remaining solvent over a one-year horizon equal to
the confidence level. Here, the EL is considered from a portfolio perspective. We can also view
it as a sum of different components, namely

EL = PD× EAD× LGD,

where the Probability of Default (PD) is the average percentage of borrowers who default
during the course of one year, the Exposure at Default (EAD) is the estimated outstanding
amount from a defaulted customer, and Loss Given Default (LGD) is the ratio of outstanding
debt the bank might lose if a customer defaults. These are the essential risk parameters to be
estimated in the Advanced Internal Rating Based (AIRB) approach proposed in Basel II.

In this paper, our main aim is to estimate the value of LGD, or more precisely the recovery
rate (RR) given as the complementary event of LGD. That is, we want to estimate the percentage
of outstanding debt a defaulted customer is able to restore. A defaulted customer is able to
change their status back to normal if they are able to restore parts of their debt, meaning their
RR is above zero. The RR is defined as 1 representing total recovery, and 0 representing a total
loss.

1.2 Motivation

Numerous approaches have been made in order to accurately predict the RR of a defaulted bor-
rower. Hwang et al. (2014) [4] propose a Two-stage Probit Model (TPM) to predict RR due to

2



its ordinal nature: total loss, total recovery, and lying between the two extremes. The two-stages
consist of first utilizing the ordered probit model to predict which of the three categories the ac-
count belongs to. Next, to predict the accurate recovery rate for accounts classified in between
the two extremes, the probit transformation regression is used. The analysis is based on real
data, and the results indicate that the TPM performs better than its competitive alternatives such
as simple probit transformation regression, the mixture of Bernoulli and beta random variables
and the decision tree model.

Moore (2017) [5] performed a case study from a debt collection agency in London assuming
beta distributed recovery rates. The most important aspect of the research is the interpretation
of predictors. Regardless of a less than optimal fit, the model reveals a higher RR for older
borrowers, women opposed to men, borrowers who were homeowners and for the cases when
the debt was less than £100.

Yao et al. (2017) [6] predict RR through the incorporation of least squares Support Vector
Machine (SVM) techniques into a two-stage modelling framework. Similarly to Hwang et.
al (2014), this model requires a classification step discriminating the cases with RR equal to
either 0 or 1, in addition to a regression step that estimates the RR for the cases in between.
The result indicates that the SVM is preferred to a logistic regression using an out-of-time
sample. However, modelling on the whole sample does not give the support vector machine any
advantage compared with other techniques within the two-stage modelling framework.

The introduction of the Basel Accords emphasized the importance of the estimation of LGD
to the banking world. First, recognizing the factors which affect the RR is extremely impor-
tant in calculating the LGD for debtors. This is in return crucial in the estimation of the
expected losses when determining how much buffer the bank should hold. Second, learning
which debtors are more likely to pay after they have defaulted means that debt collectors can
shift their focus towards the debtors we do not know for certain the outcome of. Thus, it is
possible to help the debtors which initially did not have the intention or means to pay down
their debt. Third, identifying the debtors that are at greater risk of not paying, can help with a
better pricing of debt.

1.3 Approach

The problem at hand is to implement predictive models to decide if a defaulted customer will
be able to pay the minimum amount required in order to return back to status normal on their
payments. These models will be built using mainly three statistical methods with the data pro-
vided by SpareBank 1: logistic regression, support vector machine and fuzzy clustering. In a
predictive analysis, logistic regression has for long been the standard method when the outcome
is binary. As for support vector machines, they have some advantages over more classical ap-
proaches such as logistic regression. SVMs are able to handle non-linear feature interactions in
addition to large feature spaces. Another approach of classification is the unsupervised method

3



of clustering where data of similar types are assigned to the same cluster. Fuzzy clustering
offers the measure of the degree of membership in [0, 1], yielding great flexibility in the sense
that data points can belong to more than one cluster.

Chapter 2 introduces the dataset used for modelling, both the included and generated vari-
ables, as well as our response of interest. Additionally, some visualizations are going to be
presented to give some impression on how some variables are related. Chapter 3 presents the
necessary theory behind the fitting of the models, as well as validity - and predictive measures.
Chapter 4 gives the results obtained from model fitting, and an analysis with respect to the
goodness of fit and predictive power. Finally, Chapter 5 concludes the thesis with some closing
remarks and some ideas for further work.

4



Chapter 2
Data

The dataset used is provided by Sparebank 1, an alliance of 16 different Norwegian banks.
The dataset consists of credit card information from 40639 distinct collection cases through
the period of August 2015 to November 2017. The dataset includes information regarding
transactions, application records and insolvency records. Personal information, however, such
as names, addresses, phone number and social security number, is removed or modified due to
the sensitive nature of credit card analyses. The variables at hand will first be presented, before
defining our response of interest. Finally, some illustration of the dataset will be included.

2.1 Variables

Table A.1 in appendix A presents a complete list of the available variables, both categorical
and continuous, with explanation. The variables can be divided into transactional, account- and
application variables.

Transactional variables are mainly observations for each individual credit card account re-
ported at the end of each month. This includes observations from the invoice that is due during
the current month, such as the accumulated interest at the last day of the current month. Other
transactional variables are aggregated data through the month, and includes variables such as the
average balance during the current month and closing balance. Flags raised during the month
are also included here. Such flags could be if the account is late for a payment, or if there has
been a change in the credit limit during the month. Finally, transactional variables include data
describing the account purchases, transactions and cash withdrawals during the first 12 months.

Static data applicable for all months are denoted account variables, and consists of the cus-
tomer’s age, gender and credit limit, among others. Additionally an accounts insolvency history
is reported here, and includes variables such as the amount of times the account has been sent
to collection previously, and the number of received collection warnings.

Application variables are the ones given in the customer application, and includes variables
such as gross income and total amount of mortgages.
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2.2 Response

One important complication when constructing models to predict LGD is the common occur-
rence of its distribution being bimodal with modes at 0 and 1, which is observed to the left of
Figure 2.1. This motivates the questions of how to transform the covariates and which model al-
gorithm to construct. As mentioned in chapter 1 several approaches have been considered in the
search of a solution to this problem. One different approach would be to define LGD as binary
instead of continuous on the bounded interval [0, 1]. This is done by defining LGD as 0 if the
borrower manages to return back to normal independent on how much money is refunded, and
1 if the borrower remains defaulted. Rather than focusing on how much debt is lost, we choose
the response of interest to be the RR. The recovery rate is defined as the ratio of outstanding
debt a defaulted customer is able to pay back, and is therefore simply the complementary event
of LGD. Hence, our response of interest is

RR = 1− LGD =

1, if customer returns to status normal

0, otherwise.
(2.1)

One way to look at this problem is to divide all defaulted customers into three categories: The
ones we know for certain will pay the minimum amount required, the ones we know will not,
and the ones who could end up in either of the former categories. There is no gain in using
resources on customer we know the outcome of. The main interest is therefore the customers
who, with some assistance, might be able to pay. Turning such customers will be a source of
great revenue. Utilizing this definition of the recovery rate, our data is divided as presented to
the right in Figure 2.1.
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Figure 2.1: Distribution of the recovery rate using both the continuous definition (left) and discrete
definition (right)

Henceforth, accounts with RR = 1 are called low risk or recovering accounts, while ac-
counts with RR = 0 are called high-risk or non-recovering accounts.
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2.3 Visualization of Data

In order to obtain some notion of how recovered accounts differ from non-recovered accounts,
we will take a look at the dataset. Figure 2.2 shows the development of the closing balance
divided by credit limit each month for a subset of accounts younger than 6 months. The plots
indicates no particular spending pattern for recovered accounts versus non-recovered accounts.
One can notice that several non-recovered accounts exhibits the behaviour of having a closing
balance close to the credit limit each month. This behaviour exists for recovered accounts as
well, but possibly not to the same extent as the variability is much higher here.
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Figure 2.2: Spending pattern for non-recovered (top) and recovered (bottom) accounts younger than 6
months

Figure 2.3 reveals a linearly increasing effect on the average RR when the number of times
the account has defaulted previously lay between 0 and 4. Thereafter it flattens out. The same
pattern can be detected for the number of times a warning of collection has been sent to the
account. Both of these observations imply that customers who frequently are recovering from
collection or exhibit unwanted behaviour, have a higher probability of recovering later. It is the
first timers who have the lowest recovery rate. Considering the age of the account and customer,
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one would expect that older ones have a higher capability of recovering. For really low values
of either variable this effect is evident. Once the age of the account exceeds 10 months this
influence is still positive, however not as dominant. Similarly for the customer’s age, this effect
is not observable for customers older than 23 years.
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Figure 2.3: Different explanatory variables plotted against the average recovery rate
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Chapter 3
Statistical Models and Methods

This section provides the necessary theory for constructing and analyzing predictive models for
the data described in chapter 2. The concepts of logistic regression, support vector machine and
fuzzy clustering are introduced, in addition to presenting common methods for model diagnos-
tics for each of the models.

3.1 Logistic Regression

3.1.1 The Logistic Model

Rather than modeling the response Y directly, logistic regression models the probability of Y
belonging to a particular category [7, 8].

We assume that data on N objects are given in the form (yi, xi1, ..., xik), i = 1, ..., N , with
the binary response y belonging to two categories, coded by 0 and 1, and covariates denoted by
x1, ..., xk. Thus, we have

Yi ∼ Bin(ni = 1, πi).

The aim of regression with binary responses is to model the expected value, i.e the conditional
probability

E(Yi|x) = P(Yi = 1|x) = πi.

In this specification, the response variables are assumed (conditionally) independent. To model
the relationship between πi and x, we introduce the linear predictor given as

ηi = β0 + β1xi1 + ...+ βkxik = xTi β,

where β = (β0, β1, ..., βk)
T and xTi = (1, xi1, ..., xik), but since the probability πi must lie in the

interval [0,1], restrictions on β are required. These are problematic to handle in the estimation
process, and is the reason why the probability πi is combined with the linear predictor ηi through
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the relationship
πi = h(ηi) = h(β0 + β1xi1 + ...+ βkxik), (3.1)

with h given as a strictly monotonically increasing cumulative distribution function on the real
line. This ensures h(ηi) ∈ [0, 1], and (3.1) can always be expressed in the form

ηi = g(πi) = h−1(πi),

where g is known as the link function. Choosing the logistic distribution function

h(ηi) =
exp(ηi)

1 + exp(ηi)

yields the logit model

πi =
exp(ηi)

1 + exp(ηi)
=

exp(β0 + β1xi1 + ...+ βkxik)

1 + exp(β0 + β1xi1 + ...+ βkxik)
. (3.2)

Using the link function g(πi) = log(πi/(1− πi)), known as the canonical link, yields

log
( πi

1− πi

)
= log

( P(Yi = 1)

1− P(Yi = 1)

)
= β0 + β1xi1 + ...+ βkxik, (3.3)

or alternatively

πi
1− πi

=
P(Yi = 1)

P(Yi = 0)
= exp(β0)exp(β1xi1) · ... · exp(βkxik), (3.4)

where the left hand side of (3.4) is referred to as the odds. Therefore, the interpretation of the
estimates changes compared to a linear regression model. We obtain a multiplicative model for
the odds, where a unit increase of the value xi1 leads to a multiplication of the odds by the factor
exp(β1). This implies a positive effect if β1 > 0, a negative effect if β1 < 0, and no change if
β1 = 0. Although a non-linear least squares approach could be made, the more general method
of maximum likelihood estimation (MLE) is preferred, as it has better statistical properties.

3.1.2 Estimation of the Regression Coefficients

The coefficients in (3.3) are unknown, and must be estimated based on some available training
data. The basic intuition behind the use of maximum likelihood in logistic regression is the
desire for obtaining estimates for β which ensures a predicted response as close to the observed
response yi as possible. The likelihood function is given as

L(β) =
N∏
i=1

f(yi|β) =
N∏
i=1

πyii (1− πi)1−yi , (3.5)
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which depends on β through (3.2). Using (3.5) we can find the expression of the log-likelihood

`(β) = log(L(β)) =
N∑
i=1

`i(β)

=
N∑
i=1

[
yilog(πi) + (1− yi)log(1− πi)

]
=

N∑
i=1

[
yixTi β − log(1 + exTi β)

]
.

To maximize the log-likelihood, we set its derivative to zero, which yields the score equations

s(β) =
∂`(β)

∂β
=

N∑
i=1

xi(yi − πi) = 0, (3.6)

which are p+1 non-linear equations inβ. To solve the score equations (3.6), we use the Newton-
Raphson algorithm, which starts with expanding s(β) in a first-order Taylor series around some
chosen reference value β(0)

s(β) ≈ s(β(0))− (β − β(0))H(β(0)), (3.7)

where H(β) is denoted the negative Hessian matrix or observed Fisher information matrix,
given as

H(β) = − ∂
2`(β)

∂β∂βT
=

N∑
i=1

xixTi πi(1− πi).

Inserting s(β) = 0 into (3.7) and solving for β, we obtain

β = β(0) + H(β(0))−1s(β(0)), (3.8)

If we start with some value β(0) and find a new value β(1) by applying equation (3.8), and then
continue applying this equation until convergence we obtain the Newton-Raphson method:

β(t+1) = β(t) + H(β(t))−1s(β(t)),

staring with β(0) often equal to zero. When using the canonical link we have that H(β) = F(β),
i.e the observed fisher information matrix equals the expected fisher information matrix given
as

F(β) = −E
[ ∂2`(β)

∂β∂βT

]
. (3.9)

Hence, the Newton-Raphson method corresponds here to the Fisher scoring algorithm. Typi-
cally the algorithm does converge as the log-likelihood is concave, but overshooting can occur.
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For a sufficiently large sample size N , β̂ obtains an approximate normal distribution

β̂ ≈ N(β,F−1(β̂)),

where F is defined as in (3.9). Hence, significance tests through the standard normal distribution
can be performed.

3.1.3 Model Selection

Model selection for logistic regression faces the same problems as for ordinary regression. As
the number of explanatory variables increases, the selection process becomes more difficult due
to the rapid increase in possible effects and interactions. There are mainly two goals: the model
should be complex enough to fit the data well, while also simple to interpret. In other words,
smoothing is preferred over overfitting the data.

Two well known procedures for deciding which variables to include are forward selection
and backward elimination. Many statisticians prefer backward elimination, which begins with
a complex model and sequentially removes terms. At each step it selects the term for which its
removal has the least damaging effect on the model, e.g the largest p-value. The process will
stop once a removal would lead to a significantly poorer fit of the model.

One other criteria besides the p-value, is the Akaike information criterion, AIC, which
judges a model by how close its fitted values tend to be to the true values. Even though a
simple model may be further away from the true model than a complex one, it is often preferred
as it tends to provide better estimates of certain characteristics of the true model. The criterion
is defined as

AIC = −2(`− p),

where ` is the maximized log-likelihood, and p = k + 1 is the number of parameters of the
model. Hence, another approach for deciding which terms to include is to do a backward elimi-
nation, and sequentially remove the term which gives the lowest AIC. The process is terminated
once removing a term does not improve the AIC.

By only including a subset of the predictors, subset selection procedures yields a model that
is easier to interpret and has possibly a lower prediction error than a full model. However, as
the process of including or excluding variables is discrete, the predictor estimates often exhibit
high variance, which in turn increases the prediction error. Another alternative is therefore to
fit a model containing all p predictors by utilizing a technique that regularizes the coefficient
estimates, meaning that they are shrunken towards zero. Shrinkage methods are more continu-
ous, and will therefore not experience such high variability, but at the cost of a small bias in the
estimates. The two most common shrinking approaches are ridge regression and the lasso.

We recall from section 3.1.2 that the estimated value for β is found by maximizing the
log-likelihood described in (3.8). Ridge logistic regression [9] is very similar to this fitting
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procedure, and is obtained by maximizing the log-likelihood function with an added penalizing
parameter applied to all the coefficients except the intercept

`Rλ (β) =
1

N

N∑
i=1

[
yixTi β − log(1 + exTi β)

]
− λ

p∑
j=1

β2
j

=
1

N
`(β)− λ‖β‖22,

(3.10)

where the log-likelihood is scaled with its sample size N such that values of λ are comparable
for different sample sizes [10]. This problem statement is equivalent to

min
β

− 1

N

N∑
i=1

[
yixTi β − log(1 + exTi β)

]
subject to λ

p∑
j=1

β2
j ≤ k.

The tuning parameter λ > 0 is to be determined separately. Ridge regression addresses the
problem of correlated predictors, as their likelihood estimates can become poorly determined
and exhibit high variance. By imposing a size constraint on the coefficients, captured in λ, this
issue is alleviated. The tuning parameter λ serves as a weight of the penalization. When λ = 0,
there is no penalization present, and the solution will be the ordinary MLE. However, when
λ→∞, the impact of the shrinkage penalty will become large and all the coefficient estimates
will tend to zero. The estimates are therefore dependent on the value of λ, such that selecting
an optimal value is critical. Also note that the estimates are not equivariant under input scaling,
and it is therefore common to standardize the input before solving (3.10).

Ridge regression has one major disadvantage. Unlike forward selection and backward elim-
ination, which selects a subset of of the predictors, ridge regression will always include all p
covariates. One will therefore never obtain a parsimonious model when utilizing ridge regres-
sion. The penalty term in (3.10) will shrink the coefficients, but not let them be equal to zero.
This might not have a great effect on prediction, but it can pose a challenge in interpreting mod-
els where p is large. Therefore, the lasso method is introduced. The lasso coefficients maximize
the quantity

`Lλ(β) =
1

N

N∑
i=1

[
yixTi β − log(1 + exTi β)

]
− λ

p∑
j=1

|βj|

=
1

N
`(β)− λ‖β‖1

(3.11)

equivalent to the minimization problem

min
β

− 1

N

N∑
i=1

[
yixTi β − log(1 + exTi β)

]
subject to λ

p∑
j=1

|βj| ≤ k.
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The difference is that the lasso uses an `1 penalty instead of the `2 penalty used in ridge regres-
sion. The `q-norm of a vector β is defined as

‖β‖q =
(∑

|βj|q
)1/q

.

As with ridge regression, the estimates are shrunken towards zero. The only difference is that
it is now possible for βj to actually take the value zero. Figure 3.1 illustrates this situation.
The ridge and lasso estimates are given by the first point at which a contour of the negative
log-likelihood is in contact with the constraint region from the induced penalty. Since ridge
has a circular constraint, this intersection will generally not occur on an axis, causing non-zero
estimates. Contrarily, the lasso has corners at each of the axes, and one can therefore often
observe estimates equal to zero.

β1 β1

β2 β2

β̂β̂

Figure 3.1: Contours of the negative log-likelihood and constraint regions for the lasso (left) and ridge
regression (right). The yellow areas are the constraint regions, |β1| + |β2| ≤ k and β21 + β22 ≤ k, while
the pink ellipses are the contours of the negative log-likelihood. The figure is as in [7].

Consequently, models generated by the lasso are much easier to interpret. Nevertheless,
when the aim is prediction one must investigate which of the methods produces the best result.
Previous studies have shown that none of them uniformly dominates the other [11]. A new
regularization technique which combines both methods is therefore proposed as a solution, and
is known as the elastic net. Similarly to the lasso, the elastic net performs variable selection
and continuous shrinkage simultaneously, as well as selecting groups of correlated variables.
Studies have also indicated that the elastic net outperforms the lasso in terms of prediction
accuracy. Partly for this reason, Zou and Hastie (2005) [12] introduced the elastic net penalty
yielding

`ENλ =
1

N

N∑
i=1

(
yixTi β − log(1 + exTi β)

)
− λ

p∑
i=1

(
α|βj|+

1

2
(1− α)β2

j

)
=

1

N
`(β)− λ

(
α‖β‖1 −

1

2
(1− α)‖β‖22

)
,

(3.12)
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which is a compromise between ridge and lasso. Hence, the elastic net approach selects vari-
ables like the lasso, while shrinking coefficients for correlated predictors like ridge. The pa-
rameter α determines the weight of the penalties, and must be determined. The most common
method in deciding the value of λ and α is cross-validation described in section 3.1.4.

Analogous to the MLEs, β̂
λ

using the elastic net is also found using an iterative maximiza-
tion procedure. If we let β̃ denote the current estimates, then the quadratic approximation of
the log-likelihood will be

`Q = −1

2

N∑
i=1

wi(zi − xTi β)2 + C(β̃),

where C is a constant independent of β̃, the weights wi and working response zi are

wi = xTi β̃ +
yi − π̃i

π̃i(1− π̃i)
,

zi = π̃i(1− π̃i),

and π̃i is evaluated using the current parameter estimates. For each value of λ, we compute the
quadratic approximation `Q about the current parameters β̃. Then coordinate descent is used to
solve the penalized weighted least squares problem [13]

min
β

{
− 1

N
`Q(β) + λ

(
α‖β‖1 −

1

2
(1− α)‖β‖22

)}
. (3.13)

This method is partitioned in three loops:

Outer loop: Decrement λ.

Middle loop: Update the quadratic approximation `Q using the current estimate β̃.

Inner loop: Perform the coordinate descent algorithm on problem (3.13).

3.1.4 Model Diagnostics

Two aspects which need to be considered when evaluating a model is the power of predicting,
and whether the model is correctly specified. It is important to separate these two. Based
on previous data, a model could perform excellent in predicting, but if it does not explain the
variability in the data well its predictive power will not be as strong in the future. In this section
we will therefore first focus on the goodness of fit, and then the predictive power.

The well known R-squared statistic, which measures the variability in the response ex-
plained by a linear regression model, is not applicable for logistic regression as the response
is dichotomous rather than continuous. According to [14] there are many ways to calculate a
pseudo R2 for logistic regression, but there is no agreement on which one is the best. The most
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common approach is the one proposed by McFadden defined as

R2
McFadden = 1− `C/`0,

where `C and `0 are the maximum log-likelihoods of the candidate model and null model1,
respectively. The interpretation of this pseudo R-squared measure is discussed in [15], which
states that its values tend to be considerably lower than for the standard R2 measure. McFadden
himself actually stated that values between 0.2-0.4 indicate an excellent model fit.

In order to investigate the model fit for a generalized linear model, the deviance given by

D = 2
N∑
i=1

[
yilog

( yi
niπ̂i

)
+ (ni − yi)log

( ni − yi
ni − niπ̂i

)]
, (3.14)

is often used [16]. We use D when assessing the model fit as it grows large when the model
fits poorly. The asymptotic distribution of D, under the assumption that the model is correctly
specified, is D ∼ χ2

(N−p). This statistic is also asymptotically equivalent to the Pearson statistic
given by

X2 =
N∑
i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
=

N∑
i=1

e2i ,

which divides the raw residual (yi − niπ̂i) by the estimated binomial standard deviation of yi.
The proof of the relationship ofD andX2 is given in [17]. The choice between the two depends
on the adequacy of the approximation of the chi-squared distribution, but there is some evidence
thatX2 is often the preferred choice, sinceD is influenced by very small frequencies. However,
when explanatory variables are continuous, often the number of distinct groups in a sample is
equal to the number of observations, which means that ni = 1 for all i. Additionally, as the
response yi is equal to either 0 or 1, the size of the residuals is limited. Thus, a fatal error in the
model will not be recognized, and both D and X2 may be uninformative.

It is, however, worth noticing that the deviance in (3.14) can also be written as

D = −2(`C − `S), (3.15)

where `S is the maximum log-likelihood of the saturated model. The saturated model is defined
as the model which provides a perfect fit as it has a separate parameter for each observation. It
serves therefore as a baseline for other models, such as exploring model fit. The likelihood-ratio
statistic comparing two models is simply the difference between the deviances. Thus, we can
use (3.15) in the comparison of two nested models, M0 and M1, through the Likelihood Ratio
Test

LRT = D0 −D1 = −2(`0 − `1),

1Null model is defined as the model only including the intercept
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which is asymptotically chi-squared distributed with the difference in parameters as the number
of degrees of freedom. LRT grows large when M1 is a better fit than M0. With binomial
responses, this test does not depend on whether the data is grouped or not.

The Hosmer-Lemeshow (HL) test is a commonly used procedure for assessing goodness of
fit when the deviance and the Pearson statistic no longer are useful. Here, the predicted values
are ordered from lowest to highest, and then separated into several groups of approximately
equal size. Hence,

X2
HL =

g∑
j=1

(Oj − Ej)2

Ej(1− Ej/nj)
∼ χ2

g−2.

For each group g, the observed number of events, Oj , as well as the expected number of events,
Ej , are calculated. Additionally, nj is the number of observations in the jth group. A group
size of g = 10 is standard, but for 1000 < N < 25000 a reasonable formula for g is given as
[18]

g = max

(
10,min

{
m

2
,
N −m

2
, 2 + 8

( N

1000

)2})
, (3.16)

where m is the number of successes. Furthermore, if

P(χ2
g−2 > X2

HL,Obs) ≤ α,

we have evidence to reject the null hypothesis stating that the model is correctly specified. It
should be emphasized that a large p-value does not necessarily mean the model fits well, since
evidence against a null hypothesis is not equivalent to evidence in favour of the alternative
hypothesis.

This statistic has become quite popular, but even here we are faced with problems. The
most troubling is that the result depends heavily on the number of groups. Furthermore, one
would think that adding a statistically significant interaction or non-linear term to a model would
improve its fit, judged by the HL test. However, as noted in [14], often this does not happen.
It is also experienced that adding a statistically insignificant interaction or non-linear term to a
model will improve the HL fit, which is unacceptable behaviour. Actually, it is suggested that
when the sample size N > 25000, the HL test is not recommended due to the rapid increase of
suggested value of g with N in (3.16).

Plots of residuals against the predictors may detect a type of lack of fit, and a common
approach is the residuals which uses components of the deviance. In (3.14) let D =

∑
d2i .

Then, the deviance residual for observation i is defined as di with the condition that its sign is
the same as (yi−niπ̂i). As mentioned earlier, these plots could turn out to be very uninformative
as ni = 1. In this case, it may be necessary to rely on other diagnostics such as Cook’s distance,
which for a logistic regression model is approximated to be [19]

Di ≈
1

p

( hii
1− hii

)
r2i , (3.17)
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which measures the ith observation’s influence by looking at how much the entire regression
function changes when removing this observation. The standardized residuals ri in (3.17) are
given as

ri =
ei√

vi(1− hii)

The value hii is the ith element in the diagonal of the hat matrix

H = V1/2X(XTX)−1XTV1/2, (3.18)

and is called the leverage of the ith observation. From (3.18) we have that the leverage is a
distance measure, which tells us if an observation is located far from the others in the predictor
space.The diagonal matrix V has the elements vi = π̂i(1− π̂i), which is the estimated variance
of Yi.

An observation with high leverage can potentially make a substantial difference to the fit.
A convention is that if hii is greater than two or three times p/N , it may be a concern. Large
values of (3.17) indicate high influence from observation i. There is, however, no significance
test for Di, but values near or larger than 1 indicate high influence. Values for Di much larger
than the others is sometimes worth investigating.

Another issue in addressing the adequacy of models for binary data is overdispersion. The
observations may have a greater variance than πi(1− πi). An indicator of this problem is if the
deviance D in equation (3.14) is much greater than N −p (where p is the number of parameters
included in the model) [17]. This could be due to for instance important explanatory variables
being excluded or if the link function is incorrect.

Probably the simplest and most common used method for estimating prediction error is
cross-validation. The approach involves randomly dividing the available dataset into k groups,
or folds, of approximately equal size. Each fold is treated as a validation set, and the fit is on
the remaining k − 1 folds. The mean squared error given as

MSE =
1

N

N∑
i=1

(yi − ŷi)2 =
RSS
N

,

where RSS is the residual sum of squares, is then computed on the observations not included
in the model fit. This procedure is repeated k times, which produces k estimates for MSE. The
predictive estimate is then found by averaging these values,

CV(k) =
1

k

k∑
i=1

MSEi.

The common choice of k is 5 or 10.
Cross-validation is an excellent tool in comparing several classification algorithms. Hav-

ing obtained, for instance, two learning algorithms we want to compare and test whether their
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predictive performance are significantly different. To do this we use a k-fold cross-validation,
and for each fold i we let the measure of interest be pi = p1i − p2i , which is the difference in
observed performance. This is a paired t-test where we have a distribution of pi containing k
points. Given that both p1i and p2i are approximately normal, their difference pi is also normal.
The null hypothesis is then that the distribution of pi has mean zero:

H0 : µ = 0 vs. H1 : µ 6= 0,

where we define

p̄ =
1

k

k∑
i=1

pi and S2 =

∑k
i=1(pi − p̄)2

k − 1
.

We reject the null hypothesis if

T =

√
k(p̄− 0)

S
∼ tk−1

lies outside the interval (−tα/2,k−1, tα/2,k−1). If the test rejects, then we can conclude that one
of the models is significantly better than the other [20].

Other methods of predictive evaluation originates from a confusion matrix which contains
information about the actual and predicted values done by a classification model [21].

Table 3.1: Confusion Matrix

Prediction
False True

Reference False True Negative False Positive
True False Negative True Positive

Using Table 3.1 the accuracy AC of a model is defined as

AC =
True Negative + True Positive

Total Observations
,

and is the proportion of the total number of predictions that were correct. The precision P is
given as the proportion of the predicted positive cases that were correct, calculated by

P =
True Positive

True Positive + False Positive
.

Furthermore, the true positive rate TP and false positive rate FP are given as

TP =
True Positive

True Positive + False Negative

and
FP =

False Positive
True Negative + False Positive
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respectively. The true positive rate is the proportion of positive cases that were correctly spec-
ified, and the false positive rate is consequently the proportion of negative cases that were
incorrectly classified.
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Figure 3.2: Example of a ROC curve

The Receiver Operating Characteristics (ROC) curve is a plot of the TP against the FP ,
and is used to illustrate the relative tradeoffs between benefits (TP ) and costs (FP ). For a
regression model this is a continuous graph as it contains several confusion matrices based on
the threshold of the binary decision. A discrete classifier, however, produces only a single
point in the ROC space as it has only one identity matrix. Figure 3.2 presents an example of a
ROC curve for a regression model, where the diagonal line, also known as the line of equality,
represents the choice of randomly guessing the response. The point (FP = 0, TP = 1) is a
perfect classification model as it classifies all positive- and negative cases correctly. The point
(FP = 0, TP = 0) is for a model that is predicting all events to be negative, similarly will a
model in (FP = 1, TP = 1) predict all events to be positive. Finally, (FP = 1, TP = 0)

represents a model which will predict incorrectly for all events. It is therefore desired for a
regression model to have a ROC curve close to the top left corner of Figure 3.2. An effective
measure to represent a ROC performance is the area under the curve (AUC). It ranges between
0 and 1, but it is worth mentioning that an AUC of 0.5 describes a model of random guessing.

3.2 Support Vector Machine

Support Vector Machine (SVM) is a classification approach developed in the computer science
community in the 1900s, and has since then become quite popular. As for logistic regression,
we have N data points (yi, x1i, ..., xik), i = 1, ..., N , but now the categories of yi is coded −1
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and 1. We will first assume that the two classes are linearly separable, meaning there exist a
hyperplane given as

{H0 : x : f(x) = xTβ + β0 = 0}, (3.19)

which separates the two classes entirely illustrated by Figure 3.3. Here, β is normal to the
hyperplane.

M = 1
‖β‖

H0 : xTβ + β0 = 0

H2

H1 x0

z0

Figure 3.3: Illustration of the separable case. The decision boundary is the solid line, while the dashed
lines are the maximal margin of width 2M = 2/‖β‖.

The data can then be described by

H1 : f(xi) ≥ 1 for yi = 1

H2 : f(xi) ≤ −1 for yi = −1

⇔ yi(xTi β + β0)− 1 ≥ 0, ∀xi, yi.

In other words, an observation is assigned to either class depending on which side of the hy-
perplanes, H1 and H2, it is located. If such planes exist, there exist an infinite number of such
hyperplanes. This is because a given hyperplane can be shifted or rotated a tiny amount and still
separate the classes perfectly. If we have an observation x0 which satisfies

yi(xT0 β + β0)− 1 = 0, (3.20)

then this point is known as a support vector, lying exactly on either of the boundaries between
the two classes. Our aim is now to find which values of β0 and β that produce the biggest
distance between H1 and H2. If we let x0 lie on H2 and z0 on H1 such that (z0 − x0)⊥H2, then
since β is orthogonal to H1 and H2 we can write

z0 = x0 + (z0 − x0) = x0 + 2M
β

‖β‖
, (3.21)
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where 2M is the distance between the two hyperplanes. We have also that

zT0 β + β0 = 1 and xT0 β + β0 = −1. (3.22)

Inserting (3.22) into (3.21)

1 = (x0 + 2M
β

‖β‖
)Tβ + β0

= xT0 β + 2M‖β‖+ β0

= −1 + 2M‖β‖

⇒ M =
1

‖β‖
.

Hence, maximizing M is equivalent to minimizing ‖β‖. Since minimizing ‖β‖ is equivalent to
minimizing 1

2
‖β‖2, our problem can be stated as [22]

min
1

2
‖β‖2

subject to yi(xTi β + β0)− 1 ≥ 0, i = 1, ..., N,
(3.23)

and makes it possible to perform Quadratic Programming (QP) optimization later.

Suppose now that there does not exist a hyperplane which is able to separate the two classes
perfectly. In other words, we have an overlap of observations. One way to deal with this overlap
is to allow for some observations to be misclassified. We still aim to minimize ‖β‖, but now we
allow for some slack denoted ξ = (ξ1, ..., ξN). Hence, we obtain the optimization problem [23]

min
ξ

1

2
‖β‖2 + C

N∑
i=1

ξi

subject to yi(xTi β + β0) ≥ 1− ξi, ∀i
ξi ≥ 0,

(3.24)

where C ≥ 0 denotes the cost parameter controlling the penalty paid for the misclassification of
an observation. If ξi = 0 then the ith observation is on the correct side of the margin. If ξi > 0

then the ith observation is on the wrong side of the margin, and if ξi > 1 then it is on the wrong
side of the hyperplane. Hence, ξi measures the degree of misclassification of xi. In (3.24), C
bounds the sum of the ξi’s. If C = 0 then there is no acceptance for violations to the margin.
For C > 0 no more than C observations can be on the wrong side of the hyperplane. In other
words, increasing C makes our model more tolerant of misclassification, and its value is often
chosen using cross-validation. One interesting property of this problem statement is that only
observations which lie on or on the wrong side of the margin affect the hyperplane, and is the
reason to why these observations are known as the support vectors.
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We can describe the solution of (3.24) using Lagrange multipliers. The Lagrange primal
function is

LP =
1

2
‖β‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(xTi β + β0)− (1− ξi)]−
N∑
i=1

µiξi, (3.25)

which we minimize with respect to β0,β and ξi. Setting the respective derivatives of (3.25) to
zero, we obtain

∂LP
∂β

= 0⇒ β =
N∑
i=1

αiyixi (3.26)

∂LP
∂β0

= 0⇒ 0 =
N∑
i=1

αiyi (3.27)

∂LP
∂ξi

= 0⇒ αi = C − µi, ∀i, (3.28)

in addition to the positivity constraints αi, µi, ξi ≥ 0∀i. Substituting (3.26)-(3.28) into (3.25)
we get the Lagrangian dual function

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxTi xj,

which is maximized with respect to αi ∈ [0, C] and (3.27), and yields a lower bound of (3.24)
for any feasible point. The Karush-Kuhn-Tucker conditions include the constraints

αi[yi(xTi β + β0)− (1− ξi)] = 0 (3.29)

µiξi = 0 (3.30)

yi(xTi β + β0)− (1− ξi) = 0, (3.31)

∀i. Together the equations (3.26)-(3.31) will uniquely characterize the solution to both the
primal and dual problem. From (3.26) we have the solution for β

β̂ =
N∑
i=1

α̂iyixi, (3.32)

and since any observation satisfying (3.20) is a support vector xs, it will have the form

ys(xTs β + β0) = 1.
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We can now find β0 by solving

ys(xTs
∑
m∈S

(α̂mymxm) + β0) = 1,

for β0, where S denotes the set of support vectors. This method is known as the support vector
classifier, and is how we deal with non-separable observations. But what if the boundary be-
tween the two classes is not linear? In order to address this problem, we introduce the concept
of support vector machine.

As with other linear methods, we can make the procedure more flexible by enlarging the
feature space using polynomials or splines. The support vector machine is an extension of this
idea, where the dimension of the feature space is enlarged in a specific way using the concept of
kernels. We notice from (3.32) that the solution of the support vector classifier problem simply
involves the inner product of the observations, and not the observations themselves. The inner
product between two observations xi and xj is given as

〈xi, xj〉 =
k∑

m=1

ximxjm.

The Lagrange dual function can therefore by re-expressed as

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉, (3.33)

where Φ(x) is a transformed feature vector. The solution function given in (3.19) can therefore
be written

f(x) =
N∑
i=1

αiyi〈Φ(x),Φ(xi)〉+ β0. (3.34)

For both (3.33) and (3.34) is Φ(x) involved only through inner products. Hence, it is not neces-
sary to specify Φ(x), but rather the kernel function

K(xi, xj) = 〈Φ(xi),Φ(xj)〉, (3.35)

which computes the inner product of the transformed space, quantifying the similarity between
two observations. It demands far less computational effort than explicitly projecting xi and xj
into the feature space of Φ(x). This allows for the transformation of a non-linear problem into
a higher dimensional linear problem which produces more accurate predictions.

When there is no prior knowledge regarding the data the Gaussian- and Laplace RBF kernels
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are popular choices, and are given as

K(xi, xj) = exp(−σ‖xi − xj‖2)
K(xi, xj) = exp(−σ‖xi − xj‖),

respectively.

x1 x2

y1

y2

X

Y

P0

Pi

Path of Steepest Descent

Figure 3.4: An illustration of the path of steepest descent for a two-factor experiment

When introducing the concept of kernels, the issue regarding the choice of the hyper param-
eters arises. In order to decide the hyper parameter values, here C and σ, which produces the
model with minimum predictive error, the concept of response surface methodology (RSM) is
introduced [24]. The reason for applying RSM as an optimization tool is due to its cost efficient
performance. Instead of iteratively computing the predictive error for multiple combinations of
the tuning parameters, a selection of points inside the operating conditions is chosen, making
up a two level factorial experiment. It is now necessary to explore the chosen region to decide
which direction needs to be taken to move towards the optimum region. Hence, an estimation of
the path of steepest descent is made. The method of steepest descent is an algorithm for finding
the nearest local minimum of a function which presupposes that the gradient of the function can
be computed. This method starts at a point P0 and, as many times as needed, moves from Pi

to Pi+1 by minimizing along the line extended from Pi in the direction of −∇f(Pi), the local
downhill gradient. Looking at Figure 3.4 the initial point P0 is chosen to be the centre of the
2k = 22 level experiment with the levels {x1, x2} and {y1, y2} resulting in a cuboidal experi-
ment region made up of four factorial points. The purpose is to find the parameter values where
the response is at its minimum, which in Figure 3.4 is given as the purple region. If some notion
about where the optimum should be is present, then this is a good area to start. The idea is to
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keep experimenting along the direction of steepest descent until there is no further improvement
on the predictive error.

Normally, one follows the gradient until stabilization, and then perform another 2k exper-
iment with a new centre point. One alternative here is to modify the gradient, or expand the
experiment by adding a group of axial points around the evaluated point Pi resulting in a cen-
tral composite design (CCD) illustrated by Figure 3.5. The CCD is also the most commonly
used design to estimate a second-order model as each factor here has five different levels. If
the factorial points are denoted ±1, then the axial points are given as ±α (α > 1). To preserve
rotatability, defined as a design which can be rotated around its centre without changing the
prediction variance, the value of α depends on the number of factors involved through [25]

α = (2k)1/4.

Even though this is the standard way to do this kind of optimization, other approaches are
possible depending on what is observed.

Figure 3.5: Diagram of central composite design generation for two factors

3.3 Fuzzy Clustering

3.3.1 Fuzzy Logic

Cluster analysis belongs to the unsupervised way of statistical modelling, where no prior in-
formation regarding the data is needed. The aim is to obtain useful information regarding the
structure of a given dataset by partitioning the observations into distinct groups. These groups
are built such that the observations within each group resemble each other, while observations
between groups differ from each other. Clustering is popular in many fields, resulting in a great
number of methods. One of the most common approaches is known as K-means clustering,
where N observations consisting of p measured variables are assigned to a predefined number
of non-overlapping clusters. This procedure results from a simple and intuitive mathematical
problem, where we begin by defining C1, ..., CK as the sets containing the indices of the obser-
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vations in each cluster. The set of observations is represented as an N × p matrix

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

...
xN1 xN2 . . . xNp

 , (3.36)

denoted as the pattern or data matrix. Here, the rows of the matrix are called patterns or objects,
while the columns are called the features or attributes.

The sets {Ck : k = 1, ..., K} must satisfy the following properties [26]:

K⋃
k=1

Ck = X (3.37a)

Ck ∩ Ck′ = ∅ ∀ k 6= k′ (3.37b)

∅ ⊂ Ck ⊂ X ∀ k. (3.37c)

Equation (3.37a) states that the union of subsets Ck contains all the observations, while (3.37b)
indicate that these subsets are non-overlapping. None of them are empty nor include all the ob-
servations as given in (3.37c). Traditionally, observations are judged as to whether they belong
to a given set or not. However, in the case of fuzzy sets, whether an observation belongs to a
set or not is unclear. In order to represent this mathematically, we utilize the degree of belong-
ingness of each observation to a set. A fuzzy set Ck is a set characterized by the membership
function given as

µk : X→ [0, 1], ∀k. (3.38)

In other words, µk(x) is the degree of belongingness of x to a fuzzy set Ck. If the grade µk(x)

is close to 1, then our confidence in x belonging to Ck is great, while a value of µk(x) close to
0 indicates that it is unlikely that x belongs to Ck.

3.3.2 Fuzzy c-Means Clustering

Fuzzy sets were first proposed as a method of capturing the uncertainty present in real data. This
soft way of clustering allows for observations to belong to several clusters simultaneously. The
hard approach to clustering may fail as its rigid nature is not able to handle real-life complexity.
Suppose we have our dataset X as given in (3.36), and a set of fuzzy clusters which are defined
as in (3.38). Then the degree of belongingness of an observation i to a cluster k is denoted
uik ≡ µk(xi), and satisfies the conditions

uik ∈ [0, 1],∀i, k and
K∑
k=1

uik = 1,∀i. (3.39)
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We let U = (uik)N×K be the fuzzy partition matrix containing membership values of the ith
observation to the kth cluster Ck. An example of a fuzzy partition matrix for a dataset X =

(x1, ..., x5)
T which is to be divided into K = 2 clusters, is

U =


1.0 0.0

0.8 0.2

0.5 0.5

0.2 0.8

0.1 0.9

 .

For this partition matrix, the object x3 has an equal membership degree in both clusters.

The clusters Ck are described by their member observations and their centre. The centre is
often called the prototype, and can be viewed as the most central member of a cluster. Since
they are not known beforehand they are sought for simultaneously as the partitioning of the
data. Usually, centroids are used as the centres of the clusters, and are the points to which the
sum of distances from all objects in that cluster is minimized. We therefore need a partitioning
clustering algorithm, which divides X into K clusters with a low within-cluster variation, and
high between-cluster variation. In other words, we seek the partitioning which connects similar
observations and distinguish different observations.

Let dij denote the distance in Rp between two observations xi and xj; each xi = (xi1, xi2, ..., xip).
We assume that for all xi in Rp this function satisfies [26]

dij = d(xi, xj) ≥ 0 (3.40a)

dij = 0⇔ xi = xj (3.40b)

dij = dji (3.40c)

Functions which satisfies (3.40) are known as measures of dissimilarity, which means that we
can construct a similarity measure s from d. The idea is to incorporate the distances {dij}
as a clustering criteria. Fuzzy c-means (FCM) is the method which minimizes the weighted
within-class sum of squares [27]

JFCM(U,X,A, v) =
N∑
n=1

K∑
k=1

(unk)
md2A(xn, vk), (3.41)

where vk denotes the centroid of the kth cluster, and d2A(xn, vk) is the distance measure between
xn and vk given as

d2A(xn, vk) = ‖xn − vk‖2A = (xn − vk)TA(xn − vk) = d2Ank.

The incorporation of a matrix A, a (p×p) positive definite matrix, results in a distance weighting
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according to the statistical properties of the features [28].

The value of m is chosen beforehand from [0,∞), and represents the degree of fuzziness
of the clustering. The goal is to obtain values for the partitions U and cluster prototypes vk.
This problem can be solved using multiple methods, including simulated annealing, iterative
minimization or genetic algorithms. The most popular method is, however, a simple Picard
iteration through the first-order conditions for stationary points of (3.41).

These stationary points can be found by adjoining constraint (3.39) to JFCM by the means
of Lagrange multipliers

J̄FCM(U,X, v,λ) =
K∑
k=1

N∑
n=1

(unk)
md2Ank +

N∑
n=1

λk

[ K∑
k=1

ukn − 1
]
,

and letting the gradients of J̄FCM with respect to U, V = (v1, ..., vc)T and λ be equal to zero. It
can be shown that requiring m > 1 may result in the minimization of (3.41) only if

unk =
1∑K

j=1(dAnk/dAnj)2/(m−1)
, ∀k, n, (3.42)

and

vk =

∑N
n=1(unk)

mxn∑N
n=1(unk)

m
, ∀k, (3.43)

which are both first-order necessary conditions for stationary points of (3.41). The FCM pre-
sented in Algorithm 1 iterates through (3.42) and (3.43). Its convergence, and the sufficiency of
(3.42) and (3.43) is proven in [26].

It is worth noticing a few remarks regarding the FCM algorithm. First of all, this algorithm
finds a local optimum instead of a global, which results in the final partitioning being depen-
dent on the initial cluster assignments U(0). Furthermore, while step 1. and 2. in Algorithm 1
are quite straight forward, step 3. is a bit more complex, since a singularity will occur when
d2Ank = 0 for some xn and one or more vk. This rarely happens, but results in zero memberships
assigned to the cluster for which d2Ank > 0. For the remaining clusters the memberships will be
distributed arbitrarily. The if otherwise statement at this step is built to handle this singularity.
Also, when presenting Algorithm 1 we take for granted that the values of K,m,U(0),A and ε is
known when this, in fact, is not the case. It is therefore important to run the algorithm multiple
times with different initial values, and then choose the one producing the lowest value of JFCM .

The number of clusters K is by far the most important parameter in the sense that the
other parameters have far less influence on the resulting partition. When dealing with real data
without any prior information on the data structure, one usually has to make some assumptions.
The FCM algorithm will then search for K clusters regardless of whether they are present
or not. There are mainly two approaches in determining the appropriate number number of
clusters: validity measures and iterative merging.
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Algorithm 1 Fuzzy c-Means (FCM)
Given a dataset X, choose the number of clusters 1 < K < N , the degree of fuzziness
m > 1, the norm-inducing matrix A and the termination tolerance ε > 0. Initialize the
partition matrix U randomly.
Repeat for i = 1, 2, ...

1. Compute the cluster prototypes for all the clusters:

v(i)
k =

∑N
n=1(u

(i−1)
nk )mxn∑N

n=1(u
(i−1)
nk )m

, ∀k

2. Compute the distances:
d2Ank = ‖xn − v(i)

k ‖A, ∀k, n

3. Update the degree of membership of all feature vectors in all the clusters:
If dAnk > 0 ∀i

u
(i)
nk =

1∑K
j=1(dAnk/dAnj)2/(m−1)

,

otherwise

u
(i)
nk = 0 if dAnk > 0, and u

(i)
nk ∈ [0, 1] with

K∑
k=1

u
(i)
nk = 1

Until ‖U(i) − U(i−1)‖ < ε

The former are scalar indices that assess the goodness of the obtained partition. If the value
of K equals the number of groups actually present in the data, it is expected that the algorithm
will identify them correctly. When this is not the case, misclassifications will appear and the
clusters will consequently not be well separated nor compact. Validity measures are therefore
built to quantify the separation and compactness of clusters, and are presented later in section
3.3.5.

The latter starts with a sufficiently large number of clusters, and successively reduce this
number by merging similar clusters with respect to some predefined criteria [29]. The opposite,
which starts with a small number of clusters and iteratively split clusters where the observations
have a low degree of membership, is also possible.

The fuzziness parameter m is also quite important as it significantly influences how soft the
partition is going to be. Saving the reasoning for section 3.3.5, an interval of [1.5, 2.5] for the
value of m is recommended [30].

It is standard practice to set the initial prototypes uniformly at random from X, but the
approach of augmenting the c-means algorithm with a simple, randomized seeding technique,
known as k-means++, has been shown to improve both the speed and the accuracy dramatically
[31]. This specific way of choosing initial prototypes for the c-means algorithm is to first define
D(x) as the shortest distance from a data point to the closest centre that has already been chosen.
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Then, the algorithm runs as follows:

1. Take the first centre v1 chosen randomly from X.

2. Take a new centre vi, choosing x ∈ X with the probability D(x)2∑
x∈X D(x)2 .

3. Repeat step 2. until we have K centres altogether.

Another method, proposed by Al-Daoud [32], performs its calculation the following way

1. Compute the variance of each feature.

2. Detect the feature with the highest variance, denote it cvmax, and sort it in any order.

3. Divide the points of cvmax into K subsets of equal length.

4. Find the median of each subset, and use the corresponding vectors for each median to
initialize the cluster prototypes.

This initialization will presumably only be effective for datasets where the variability is con-
centrated in one dimension, as it only considers the feature with highest variance.

The shape of the clusters is determined by the norm-inducing matrix A. A common choice
is A = I, which is the standard Euclidean norm, and is used if it is believed that correlations
between the features are low. This might, however, not be the case as illustrated in Figure 3.6,
and we therefore need a method which tolerates clusters to be of different shapes.

a) b)

Figure 3.6: Clusters of different shapes and dimensions in R2.

Finally, a termination parameter value of ε = 0.001 is the most common choice. However,
a value of ε = 0.01 is often chosen as it works well in practice, while drastically reducing the
computational effort.

3.3.3 Gustafson-Kessel Algorithm

Gustafson and Kessel [28] introduced an adaptive distance norm, which served as a detection
of clusters of different geometrical shapes in a dataset. Each cluster would have its own norm-
inducing matrix Ak, yielding the objective functional of the GK algorithm:

JGK(U,X, {Ak}, v) =
N∑
n=1

K∑
k=1

(unk)
md2Ak

(xn, vk),
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where dAk
is the Mahalanobis distance. Since the objective function is linear in Ak, it cannot be

directly minimized with respect to Ak. Hence, a feasible solution is only obtained if Ak contains
some restrictions. The most common choice is to constrain the determinant of Ak such that

|Ak| = ρk, ρk > 0, ∀k.

Fixing the determinant corresponds to optimizing the cluster’s shape while keeping the volume
constant. Using the Lagrange-multiplier method yields an expression for Ak

Ak = [ρk det(Fk)]1/NF−1k ,

where Fk is the fuzzy covariance matrix of the kth cluster, and is given as

Fk =

∑N
n=1(unk)

m(xn − vk)(xn − vk)T∑N
n=1(unk)

m
.

The GK algorithm is presented in Algorithm 2. We note that matrix Ak is adapted automatically,
and does not need to be specified. However, the cluster volumes ρk must now be determined.
When no prior knowledge is attainable, ρk is simply fixed at 1 for each cluster, which causes
the drawback of the GK algorithm only being able to detect clusters of similar volumes.

One of the factors influencing the partitioning of clusters is the distance measure. Due to
recent advances in fuzzy clustering it is now possible to detect, not only hypervolume clus-
ters, but also clusters shaped as curves and surfaces [33]. Both the FCM and GK include the
probabilistic constraint in (3.39) stating that all memberships of a data point across all clusters
must sum to 1, and is used in order to avoid the trivial solution of no observation belonging to
any cluster. However, since the memberships generated by this constraint are relative numbers,
they are not suitable for applications where the aim of the memberships is to represent typi-
cality/compatibility with an elastic constraint. The following example illustrates this problem.
Figure 3.7 represents a situation containing two clusters. The FCM/GK would produce very
different membership values for the points A and B even though they are equidistant to the
prototype, thus equally typical for that particular cluster. This is due to restriction (3.39), which
causes point B to transfer some of its connection from cluster 1 to cluster 2. Furthermore, point
A and C might obtain equal membership values in cluster 1 although point C is more typical
than point A. In other words, the membership values for the FCM and GK algorithm are just
relative numbers depending on the membership values for all the other observations.

FCM and many of its derivatives have been proven to be very successful on many cluster-
ing problems. However, even here are we faced with major drawbacks as these methods have
problems with high dimensional datasets and large number of prototypes [34]. For instance,
the fuzzifier function for FCM is an exponential function um with m > 1. Figure 3.9 visualize
the impact of dimensionality to the FCM, where the prototypes move straight into the centre of
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Algorithm 2 Gustafson-Kessel (GK) algorithm
Given a dataset X, choose the number of clusters 1 < c < N , the degree of fuzziness
m > 1, the cluster volumes ρk and the termination tolerance ε > 0. Initialize the partition
matrix U randomly.
Repeat for i = 1, 2, ...

1. Compute the cluster prototypes for all the clusters:

v(i)
k =

∑N
n=1(u

(i−1)
nk )mxn∑N

n=1(u
(i−1)
nk )m

, ∀k

2. Compute the fuzzy cluster covariance matrices:

Fk =

∑N
n=1(u

(i−1)
nk )m(xn − v(i)

k )T (xn − v(i)
k )∑N

n=1(u
(i−1)
nk )m

, ∀k

3. Compute the distances:

d2Aknk
= (xn − v(i)

k )
[
ρk det(Fk)1/NF−1k

]
(xn − v(i)

k )T , ∀k, n

4. Update the degree of membership of all feature vectors in all the clusters:
If dAknk > 0 ∀i

u
(i)
nk =

1∑K
j=1(dAknk/dAknj)

2/(m−1)
,

otherwise

u
(i)
kn = 0 if dAknk > 0, and u

(i)
nk ∈ [0, 1] with

K∑
k=1

u
(i)
nk = 1

Until ‖U(i) − U(i−1)‖ < ε
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A
C

B

cluster 1 cluster 2

Figure 3.7: Example of a dataset with two clusters where the membership values constructed by the
FCM/GK are different for A and B, despite them being equally typical. A and C will have similar
membership values regardless of not being equally typical.

gravity of the high dimensional data independent of their initialization, creating no clusters at
all. In order to gain some knowledge to why the behaviour presented in Figure 3.9 occurs, Win-
kler et al. (2012) [34] tested the FCM in a rather artificial way by letting α ∈ [0, 1] control the
location of the prototypes: Let D = (x1, ..., xK) ⊂ Rp be a dataset containing K > p clusters,
with one data object per cluster. The clusters in D are then located on a p-dimensional hyper-
sphere surface arranged such that the minimal pairwise distance is maximized. D is considered
as a perfect dataset for clustering due to its clusters being infinitely dense and maximally sepa-
rated. There is only one small limitation to this statement, which is that K cannot be extremely
larger than p (i.eK < p!) since the hypersphere surface might be too small to handle an extreme
amount of prototypes. Hence, algorithms with problems on D will have even more problems
on other datasets as there does not exist a more manageable dataset than D. If xi ∈ Rp is the
ith data object with µ∗D ∈ Rp as the centre of gravity of D, then vi(α) = αxi + (1− α)µ∗D and
dij(α) = d(vi(α), xj). As the objective function JFCM is a function of the membership values
(which are functions of the distance values) and the distance values, it is possible to plot it as a
function of α as illustrated in Figure 3.8.
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Figure 3.8: Illustration of normalized objective function plots for FCM as a function of α from [34]

This plot presents a strong local maximum between α = 0.5 and α = 0.9, and studies made
by Winkler et al. (2011) [35] showed that the number of dimensions in the dataset effects the
objective function by the height of this local maximum. The prototypes however influences the
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location of the maximum, as a higher number of prototypes moved the local maximum towards
higher values of α. Since FCM is a gradient descent algorithm, the prototypes will move to the
centre of gravity if their initialization corresponds to a value of α lower than the value producing
the local maximum, which is exactly what happens on the right hand side of Figure 3.9. For
a p-dimensional hypersphere it is almost impossible to initialize a prototype near enough to
a cluster so that it converges to that cluster, since the volume increases exponentially with its
radius.

Figure 3.9: Illustration of FCM applied on data with both a low (left) and high (right) number of clusters.
The prototypes are portrayed as black circles with tails representing the way the prototypes took from
their initialization to their final location from [34].

3.3.4 Possibilistic Fuzzy c-means

In order to avoid the problem of dimensionality, Pal et al. [36] proposed a new method called
possibilistic fuzzy c-means (PFCM) which produces memberships and possibilities simultane-
ously. The PFCM minimizes the functional

JPFCM(U,X, v,T) =
N∑
n=1

K∑
k=1

(aumnk + btηnk)d
2
Ak

(xn, vk) +
K∑
k=1

γk

N∑
n=1

(1− tnk)η, (3.44)

with a > 0, b > 0,m > 1 and η > 1. We introduce T = [tnk]N×K , where each element satisfies

tnk ∈ [0, 1], ∀k, n, (3.45)

to represent the typicality matrix, and γk > 0 as a user defined constant. Note that tnk does not
have the probabilistic restriction which unk has. The first term in (3.44) is familiar from (3.41)
which demands the distances within a cluster to be as low as possible, while the second term
forces tnk to be as large as possible in order to avoid the trivial solution tnk = 0 ∀k, n. The
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constraints are now defined as

K∑
k=1

unk = 1, ∀n

0 ≤unk, tnk ≤ 1, ∀k, n.

If d2Aknk
> 0 for all k, n,m, η, and X contains at least K distinct observations then (3.44) is

minimized only if condition (3.42) is fulfilled in addition to [36]:

tnk =
1

1 +
(
b
γi
d2Aknk

)1/(η−1) , ∀k, n (3.47)

and

vk =

∑N
n=1(au

m
nk + btηnk)xn∑N

n=1(au
m
nk + btηnk)

, ∀k. (3.48)

The necessary condition in (3.42) for unk is a function of xn and all centroids V, whereas the
necessary condition for tnk in (3.47) is a function of xn and vk alone. Hence, unk is affected
by the position of all K clusters, while tnk depends solely on the distance between xn and vk,
in addition to the constant γk. We therefore regard unk as the relative typicality, and tnk as the
absolute typicality.

The redefinition of the functional in (3.44) causes some interesting properties. For instance,
PFCM behaves like FCM when the exponents, m and η, grow without bound. In other words,
regardless of the choice of a and b, all K centres will approach the overall mean when m, η →
∞. Equation (3.48) indicate that choosing b > a results in the centres being more influenced by
the typicality values rather than the membership values. In order to reduce the effect of outliers,
one should therefore choose values such that b is greater than a. Similar effects is also applied
to the choice of m and η, where choosing m > η also reduces the effect of outliers.

3.3.5 Validity Measures of Fuzzy Clustering

In section 3.3.2 we mentioned that different validity indices are used in order to detect the cor-
rect number of clusters K. The concept of measuring the degree of similarity within clusters
and dissimilarity between clusters is open for interpretation and can be expressed in several
ways. Accordingly, different validity measures have been presented in the literature [26, 37].
Partition Coefficient (PC) [38] and Partition Entropy (PE) [39] have historically been the most
prominent validity indexes. The former measures how close the fuzzy solution is to the corre-
sponding hard solution, where the hard solution is defined as classifying each observation to the
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cluster with the highest membership value. The formula for the partition coefficient is given as

VPC =
1

N

K∑
k=1

N∑
n=1

u2nk,

taking values in the range [1/K, 1]. A value equal 1/K indicates that all membership values are
1/K. The latter measures the amount of overlap between clusters, and is defined as

VPE = − 1

N

K∑
k=1

N∑
n=1

unk log unk.

This index takes values in the range [0, logK], where a value close to logK indicates an absence
of any clustering structure in the data, or the fitted clustering algorithm has been unsuccessful
in unravelling it. We therefore seek the parameter values which maximizes VPC , and minimizes
VPE .

These two indices lacks however a direct connection to the geometrical structure of the data,
in addition to often decreasing with the value of K, which causes a disadvantage. Intuitively,
clarity and compactness of a classification should increase with the number of classes. The
Xie-Beni index [40]

VXB(X,U,V) =

∑K
k=1

∑N
n=1(unk)

m‖xn − vk‖2

N ·mink 6=k′
(
‖vk − vk′‖2

) , (3.49)

which measures both the compactness and separateness of fuzzy clusters, has been found to
perform well in practice. This measure can be interpreted as the ratio between the total within-
cluster variation and the separation of the cluster centres. Hence, the optimal value for K can
be found by minimizing (3.49). Another popular index was proposed by Fukuyama and Sugeno
[41] written as

VFS(X,U,V) =
K∑
k=1

N∑
n=1

(unk)
m‖xn − vk‖2 −

K∑
k=1

N∑
n=1

(unk)
m‖vk − v̄‖2, (3.50)

where v̄ is the mean of the cluster prototypes. As for VXB, small values of VFS suggest a good
partition with compact and well-separated clusters.

These indices are often used to establish the optimal value of K, but also in the selection of
other tuning parameters. Despite choosing an appropriate clustering algorithm, improper values
of the algorithmic parameters will cause for partitions that does not reflect the desired clustering
of the data.

The reason to why the hyperparameter m often is chosen in the interval [1.5, 2.5] is because
of its effect on (3.49) and (3.50). As m→ 1 from above, the partition becomes hard and vk will
then be ordinary means of the clusters. Here, the Xie-Beni index will still work well, but the
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Fukuyama-Sugeno index will behave like the trace of the within-cluster scatter matrix, which is
not a desirable feature. On the other hand, as m→∞, the partition becomes completely fuzzy
which means that all vk’s will be equal to the mean of X. The limit of the Xie-Beni index will
also tend to infinity which causes instability, while the Fukuyama-Sugeno index might either
take an indeterminate form or a zero index value. Hence, neither of them will be capable of
discriminating the number of clusters.
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Chapter 4
Experiments and Analysis

The purpose of this chapter is to present and explain the results found using the models given
in chapter 3. First, the process of modifying the data is briefly explained. Second, several
logistic-, support vector machine- and fuzzy clustering models have been tested and evaluated.
A summary of performance used in a comparison of the supervised models is given in Table
B.1 in appendix B.

All model fitting and diagnostics are done using R. The total dataset is made up of account
information from 40639 distinct collection cases. When training the models 75% of the dataset
is used, and the remaining 25% is used in model validation.

4.1 Data Preparation

As mentioned previously, the models are going to predict the RR based on 12 months of ob-
servations. The covariates included in the initial dataset provided by Sparebank 1 are given in
Table A.1 in appendix A. We note that all transactional variables have one distinct value each
month, resulting in 12 variables describing the same type of behaviour. We have for example
that ClosingBalance1, ClosingBalance2, etc. correspond to the closing balance 1, 2, ... months
before the account is sent to collection. One important observation is that in 19% of the col-
lection cases is the age of the account lower than 12 months, and it is reason to believe that
the behaviour of these customers is somewhat different than from the older customers. Fur-
thermore, since several covariates will be non-existent for these newer accounts as a 12 month
history will not be present, two different models will be built: one for accounts newer than six
months, and one for accounts older than six months. This is done by dividing the dataset into
data.new and data.old. The resulting response balance for the two datasets is reported
in Table 4.1, where we observe that the dataset consisting of the older accounts have a higher
fraction of recovering accounts.

In order to manage the missing transactional covariates present for accounts newer than
12 months and the high number of variables present in both datasets, new covariates with the

39



Table 4.1: Accounts divided into recovering (RR= 1) and non-recovering (RR= 0) for data.new (a)
and data.old (b)

(a)

RR Frequency Percentage
1 2237 60.02
0 1490 39.97

(b)

RR Frequency Percentage
1 29287 79.64
0 7488 20.36

aim of summarizing the behavioural trends were created, and are presented in Table A.2 in the
appendix A. The hope is that these new variables are able to capture the variability present in
the original variables. These are variables such as the maximum amount of withdrawn cash,
how many months the account has had status normal instead of payment reminder or collec-
tion warning sent, the maximum closing balance, average cash withdrawals, maximum cash
withdrawals, maximum cash transfers, average number of active months were the payment has
been lower than 5% of the closing balance, closing balance the first active month, the number of
overdrafts, and a flagging variable which is raised if a customer who has ignored one payment
suddenly is able to pay later. Note that in order to obtain an accurate representation of average
usage, another covariate denoted Active was created. Active is the number of months there has
been activity on the credit card, and so the covariates describing average behaviour is only for
these active months. All summarizing covariates, except for incurred interest, are divided by
the credit limit as the spending amount is correlated with the credit limit.

The final correlation matrix for data.new is presented in Figure 4.1. We notice that the
correlation between MaxClosingBalance and ClosingBalanceCollectionWarning is ρ = 0.99,
and the correlation between DaysSinceLastTime and Recurring is ρ = −0.95. The predictors
MaxClosingBalance and DaysSinceLastTime are therefore removed for models of the newer
accounts.

Some of the predictors generated to fit the dataset data.new are not included for data.old.
These are predictors which describe behaviour during the time after the opening of the account.
The correlation plot for the included predictors in data.old is given in Figure 4.2, where we
notice the high correlation between MaxClosingBalance and ClosingBalanceCollectionWarn-
ing. As for the previous dataset, we remove MaxClosingBalance.

Finally, the variable SerialN which are two of the digits of the social security number is
mainly just information regarding which country the customer is from. So, even though the
covariate is given as a number, it can actually be considered as a factor. As the numbers range
between 00 − 49, we are faced with a great number of parameter estimates. This covariate is
therefore divided into four different levels based on the first number of the two digits, i.e 0− 4,
to facilitate this problem.
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Figure 4.1: Symmetric correlation matrix for quantitative variables in data.new. Darker blue dots or
darker purple dots correspond to highly correlated variables and larger dots correspond to higher absolute
correlation.
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Figure 4.2: Symmetric correlation matrix for quantitative variables in data.old. Darker blue dots or
darker purple dots correspond to highly correlated variables and larger dots correspond to higher absolute
correlation.
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4.2 Logistic Model Analysis

4.2.1 Model for New Accounts

Model Selection

We start by fitting the full model consisting of 73 coefficients using the function glm in the
package stats. Interactions are not included due to the high number of available explanatory
variables. The summary of the full model is given in appendix B, where we notice that several
covariates are not statistically significant. Hence, a reduction is desired, which can be performed
through both a backward elimination as well as regularization. The step function applies the
concept of backward elimination based on the AIC. The output of the reduced model using this
function is given in appendix B. An ANOVA test for comparing the full- and reduced model
using the likelihood ratio as the statistic is given in appendix B. With a p-value = 0.6926, we
conclude that the full model is not significantly better than the reduced model.

As mentioned in section 3.1.3 a discrete way of performing model selection often produces
estimates exhibiting high variance. we will, therefore, also perform ridge regression, the lasso,
and elastic net regularization on the dataset. The package glmnet is used to perform ridge,
lasso and elastic net regularization on the training set of data.new. Applying lasso, ridge
and elastic net with α = 0.5 generates the coefficient profiles presented in Figure 4.3. In the
top panel, each curve corresponds to the lasso-, ridge- and elastic net coefficient estimate for
each of the 77 variables plotted as a function of log λ. At the extreme left side of the plot, λ is
essentially zero, which corresponds to a coefficient estimate equal to the usual log-likelihood
estimate. As λ increases, the estimates shrink towards zero. The bottom panel shows which
values of log λ that correspond to the minimum mean squared error.

Note that since our design matrix includes qualitative variables, we are transforming these
into dummy variables. In order to detect which value of α yields the best model selection, 11
different models were fitted using values of α in the range 0 to 1. Each model is fitted for
an automatically selected range of λ values, which can be seen in Figure 4.3, and the optimal
model for each α is chosen based on the lowest value of MSE. The MSE for different values of
α is plotted in Figure 4.4.

For the newer accounts, an optimal value of α was calculated to be αnew = 0.7, which
indicates a heavier weighting of the lasso. Utilizing this model suggests a reduction of 78% of
the covariates, which is very high. This indicates that the variation in all of these covariates
was relatively small, or correlated with the remaining variables, and had therefore little or no
influence on the response. The included covariates with their respective estimate are presented
in Table 4.2, where we observe that 16 variables are included in the final model. Furthermore,
we will inspect the estimates obtained through the backward elimination procedure.
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Figure 4.3: Lasso, Ridge and Elastic Net on data.new. The standardized coefficients (top) and mean
squared error (bottom) are shown as a function of log(λ).

Parameter Analysis

We notice that 34 out of the 73 initially included covariates remains in the reduced model ob-
tained from a backward elimination procedure, whereas 18 of them are not considered statisti-
cally significant at a 10% significance level. We notice that the backward elimination procedure
includes more covariates compared to the regularization approach. When the variables in a
regression model are highly correlated, their coefficients will become poorly determined and
exhibit high variance. For instance, a large coefficient for one variable can be cancelled by an
equally negative coefficient on a correlated variable. Imposing the penalization in ridge, lasso
and elastic net, alleviate this problem. In Figure 4.1 we observed that several covariates were
highly correlated, which explains the high reduction from the elastic net approach. Among the
included variables in the regularized model, five of them are not included in the reduced model.
These are ProductSB1 EXTRA MC, AvgClosingBalance, AvgLessThanMin, FirstActive and
MaxCashWithdrawal. In order to obtain some notion of how the regularized model explains the
variability in the data compared to the reduced model, we fit a logistic model by only includ-
ing the variables remaining for the regularized model, and investigate their significance. The
model output is given in appendix B, and reveal that only the predictor AvgLessThanMin is
not significant at a 10% significance level. By performing a likelihood ratio test on the reduced
model including 34 predictors, and the regularized including 16 predictors, we obtain a p-value
= 4.958 · 10−6. This tells us that the reduced model gives a better fit than the regularized, and
so our model analysis will primarily concern the reduced model.
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Figure 4.4: MSE as a function of α fitted for data.new

Comparing the effects in the reduced model, we see that AgeOfAccount is considered highly
significant even though it is not included in the regularized model. The estimate of AgeOfAc-
count is calculated to be β̂AgeOfAccount = 0.2, with the multiplicative effect of exp(β̂AgeOfAccount) =

1.221. Thus, increasing the age of the account with one month leads to a multiplication of the
odds of the RR by 1.221. The average number of payments, AvgPayN, and the average num-
ber of times there have been an overdraft on the account, AvgOverLimit, are also considered
important. The estimate of AvgPayN is β̂AvgPayN = 1.547, which yields a multiplication of the
odds by exp(β̂AvgPayN) = 4.697. This suggests that customers transferring money to their credit
card frequently have the tendency to recover from collection, opposed to customers only trans-
ferring money once or maybe never. The estimate of AvgOverLimit is β̂AvgOverLimit = −1.096,
equivalent to a multiplicative effect of exp(β̂AvgOverLimit) = 0.334. Hence, increasing the rate
of overdrafts produces a lower probability of recovering. One interesting observation is the
negative estimate of AvgCashTransfer, which suggests that customers which have the habit of
transferring money from the credit card to other bank accounts are at greater risk of not recov-
ering.

When studying the effect of each predictor it is important to remember what type of model
we are considering. The estimated effects are the effects of one predictor given that the other
predictors are fixed. For a logistic model where the relationship between neither the probability
nor the odds is linear, the effect of a predictor is dependent on the fixed level of the other
predictors. This complication is visualized in Figure 4.5 where an equal increase in the linear
predictor gives a different change in the probability. In other words, the effect of one predictor
is smaller if p = π is close to either 0 or 1, than when p is close to 0.5. Instead of only looking
at the estimated effect one could consider the maximum effect which is achieved for a p around
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Table 4.2: Predictors included in the model with α = 0.7 for the dataset data.new

Predictor β̂ exp(β̂)
DebtCollectionCompanyGOT 9.14 · 10−2 1.096
ProductSB1 EXTRA MC −2.11 · 10−1 0.810
SerialN10 −3.52 · 10−1 0.703
SerialN20 −2.52 · 10−1 0.777
RecruitmentChannelOperatoerkanal 2.87 · 10−1 1.332
MTPCollectionWarning −5.90 · 10−5 0.999
GrossIncome 4.74 · 10−7 0.999
EvaluationMethodOrdinaer −4.29 · 10−1 0.651
AvgClosingBalance −7.91 · 10−1 0.453
AvgInterest −3.93 · 10−4 0.999
AvgPayN 6.26 · 10−1 1.870
AvgOverLimit −9.79 · 10−1 0.376
AvgLessThanMin −2.23 · 10−1 0.800
FirstActive 7.52 · 10−2 1.078
Returned 9.67 · 10−1 2.630
MaxCashWithdrawal −1.51 · 10−1 0.860

0.5. The maximum effect of, say RR.avg which is the average recovery rate each active month,
is calculated to be ∆p+ = 0.599. This implies that increasing the average recovery rate for each
month by one, could increase the probability of recovery with 0.599. Similarly, the minimum
effect is calculated to be ∆p− = 0.047. The difference between ∆p+ and ∆p− illustrates how
one predictor could contribute highly to the probability, and sometimes could be considered
irrelevant.
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Figure 4.5: Illustration of how the effect of one predictor is dependent on the fixed values of the other
predictors. The change ∆p is small for p close 0 and 1, and high for p close to 0.5

46



Predictive Performance

It is now interesting to investigate how well this model predicts newly defaulted accounts, in
addition to comparing the predictive performance of the reduced- and regularized model. Fig-
ure 4.6 shows the density plots for the predicted probabilities for both recovering and non-
recovering accounts given from the reduced model.
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Figure 4.6: Distribution of the predicted
values for both recovered (blue) and non-
recovered (purple) accounts in the reduced lo-
gistic regression model for data.new
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Figure 4.7: ROC curve of reduced logit model
for data.new

Intuitively, we let the threshold of the decision be π̂ = 0.5, which means that a predicted
probability above 0.5 gives RR = 1. Using the package caret we obtain the confusion matrix
for the reduced model which is given in Table 4.3. Since we have divided the data such that the
test set is used in model validation, cross-validation is not necessary. We calculate the accuracy
to be AC = 0.679 and the precision to be P = 0.710, which can be seen in Table B.1 in
appendix B. The ROC curve is given in Figure 4.7, and the area under the curve is computed
using the pROC package to be AUC = 0.751. As this is actually not a binary problem, we set
a lower and an upper threshold of how certain we want to be in our decision. The boundary 0.5

is quite crisp, and will not catch the accounts which can be placed in the middle, i.e accounts
with 0 < RR < 1. From Figure 4.6 we see that the two distributions overlap for nearly all
predictive values. However, in order to increase the certainty of our decision, we let the lower
and upper threshold be 0.2 and 0.8, respectively. Applying these new limits yields AC = 0.866

and P = 0.864, which is notably better. It is also worth noticing that 59.7% of the accounts in
the test set were placed in the uncertain category.

Some of the most prominent covariates for data.new, according to the elastic net ap-
proach, is if the evaluation method were of type ordinary, the average number of payments
each month, if the recruitment channel was operational channel and the average number of
times the account overdrafts each active month.
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Table 4.3: Confusion matrices of the reduced logit model for data.new with threshold π̂ = 0.5 (left),
and π̂ ∈ [0.2, 0.8] (right).

Prediction
False True

Reference False 212 172
True 127 421

Prediction
False F/T True

Reference False 36 316 32
True 5 340 203
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Figure 4.8: Distribution of the predicted
values for both recovered (blue) and non-
recovered (purple) accounts in the regularized
logistic regression model for data.new
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Figure 4.9: ROC curve of logit model with
elastic net regularization for data.new

We see from Figure 4.8 that the distribution of the predictions is somewhat different from the
reduced model. The overlap is evident but is now more centred towards the interval [0.4, 0.7].
Hence, in addition to addressing the predictive performance for the crisp boundary at 0.5, we
add a lower and an upper threshold of 0.3 and 0.75, respectively. We obtain the confusion matrix
given in Table 4.4 for the regularized model.

Table 4.4: Confusion matrices of the model obtained using elastic net regularization for data.new
with threshold π̂ = 0.5 (left), and π̂ ∈ [0.3, 0.75] (right).

Prediction
False True

Reference False 201 176
True 114 441

Prediction
False F/T True

Reference False 26 329 22
True 3 359 193

Using the crisp decision boundary yields AC = 0.689 and P = 0.796, which is actually
higher than for the reduced logistic model. The ROC curve is presented in Figure 4.9, and the
area under the curve is computed to be AUC = 0.746. Imposing the same lower and upper limit
as for the reduced model results in an accuracy of AC = 0.898 and a precision of P = 0.898,
which is an improvement from the crisp boundary decision. However, 73.8% of the accounts in
the test set were placed in the uncertain category, which also could be the reason for the high
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accuracy and precision.
Using cross-validation we want to explore if the two models are significantly different at

predicting. We use the boundary π̂ = 0.5 when calculating the precision of the reduced and
regularized model. We let the difference on fold i be pi = p1i − p2i , and execute a 10-fold
CV paired t-test. We calculate the statistic to be T = −1.304, and by letting α = 0.05 we
have the critical value t0.025,9 = 2.26. We can, therefore, conclude that the reduced model has
not a significantly better precision than the regularized model. We can now do the same with
the accuracy, which gives an observed value T = 0.587, also not rejecting the null hypothesis
stating that their accuracy is equal. Thus, by using these two measures one cannot conclude that
either model is better than the other.

Goodness of Fit

Now, we want to assess the goodness of fit of the reduced model first through the McFadden
R-squared, which is found using the package BaylorEdPsych. The value is calculated to be
R2

McFadden = 0.19, which as mentioned in section 3.1.4 indicate an acceptable model fit.
Second, performing the Hosmer-Lemeshow test using the package ResourceSelection with

g = max

(
10,min

{
1689

2
,
2795− 1689

2
, 2 + 8

(2795

1000

)2})
≈ 65

results in the output given in appendix B. With a p-value = 0.4023 we have no evidence to reject
the null hypothesis stating that the model is correctly specified. The plot of Cook’s distance
is presented in Figure 4.10, where we see that there are a few observations which attain a
higher influence than the rest. According to section 3.1.4 the critical leverage value is hii =

3× 35/2795 = 0.038. There are 50 observations in the training set which have a leverage value
higher than this boundary. Removing these observations results in a lower AIC = 3051.1 for
the reduced model. However, it is more interesting to investigate if the prediction is improved.
The accuracy and precision are calculated to be AC = 0.685 and P = 0.716, barely improved
from the reduced model.

The residual deviance for the reduced model is calculated to beD = 3105.6 on 2761 degrees
of freedom, which could indicate lack of covariates, power, interactions terms, or that the data
should be grouped. we will, therefore, continue in section 4.3.1 by looking at the support vector
machine approach.
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Figure 4.10: Plot of Cook’s distance for data.new

4.2.2 Model for Old Accounts

Model Selection

The summary of the model fitted by including all 77 covariates is given in appendix B. We
observe that there are some covariates which are not statistically significant. Hence, a reduction
through a backward elimination based on the AIC is performed. The summary of the reduced
model, as well as the output from the ANOVA test between the full- and reduced model are also
given in appendix B. We have a p-value = 0.6956, which results in the full model not being
significantly better than the reduced model. We will, therefore, continue with analyzing the
reduced model instead of the full model.

A reduction through the use of ridge regression, the lasso and elastic net is also done for the
older accounts and is presented in Figure 4.11. Similarly, as for the newer accounts, the optimal
value of α is selected by fitting 11 models using values of α in the range 0 to 1. The MSE for
the different models is plotted in Figure 4.12.

The optimal value of α was found to be αold = 0.9, which implies a heavy weighting
of lasso regression. Fitting this model reduced the number of covariates with 80.8%, which
is consistent with the high correlations observed in Figure 4.2. Also, considering the results
obtained for the newer accounts this is not surprising. If a covariate has low variance among
the newer accounts, it is expected a somewhat similar result for the older accounts. However,
the difference in αnew and αold suggests that several covariates have a lower influence on older
accounts than newer ones. The included covariates, as well as their estimates, are presented
in Table 4.5, but without a measure of their significance, we cannot accurately evaluate their
importance. A logistic model only including the variables preserved by the elastic net approach
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Figure 4.11: Lasso, Ridge and Elastic Net on data.old. The standardized coefficients (top) and mean
squared error (bottom) are shown as a function of log(λ).

is fitted. This model reveals that all 14 predictors are considered significant at a 1% significant
level. Only the average amount of transactions to other bank accounts, AvgCashTransfer, is
included in the regularized model and not the reduced model. Performing a likelihood ratio test
on the two models, we get a p-value < 2.2 · 10−16 stating that the reduced model is significantly
better than the regularized.

Parameter Analysis

The backward elimination procedure yields a model which includes 70 out of the 77 initially
included covariates, whereas 21 of them are not considered statistically significant at a 10% sig-
nificance level. The elastic net, however, only preserves 14 covariates. Several predictors have
established themselves as important in LGD/RR modelling in literature. Bellotti and Crook
(2012) [42] demonstrated that time with bank, which is here denoted AgeOfAccount, has sig-
nificantly positive effect on the RR. They also found that balance at collection had a negative
impact on the RR. The results obtained for both the new- and old accounts model are consis-
tent with this result. We have also included predictors which have not been tested in previous
literature. The average recovery rate for the previously active months, RR.avg, is an important
feature in the older account, with a multiplicative effect of exp(β̂RR.avg) = 3.146. The multi-
plicative effect is lower for the older accounts compared to the newer accounts, indicating that
it is more important for newly joined customers to pay down their monthly invoices in order to
recover from default. The predictor AvgNormal is also considered prominent with a multiplica-
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Figure 4.12: MSE as a function of α fitted for data.old

tive effect of exp(β̂AvgNormal) = 0.251. The negative effect of AvgNormal, which suggest that
the average number of times the account has had status normal causes a decrease in the recov-
ery rate, is quite surprising. Intuitively one might think that an account that has had a normal
behaviour except for a few months would have a greater chance of recovery. This is however
not the case. One possible explanation could be just plain laziness. Meaning there exist a great
deal of customers who are able to pay, but not willing. Another reason could be that some
customers ignore invoices with status ”normal” due to poor finance, and only pays the invoices
with status payment reminder in fear of ending up in default. Once they end up in default they
will find the means to pay the minimum amount required. In that way will lower risk cus-
tomers have the behaviour of fluctuating between normal and payment reminder, which yields
a relatively high rate of status normal. From the data it is found that the average value of AgeO-
fAccount for recovering accounts is higher compared to non-recovering accounts. Combining
this with the positive effect of AgeOfAccount, it is not as astonishing that an older account have
an increased number of payment reminders compared to newer accounts. Additionally, several
predictors which were not considered significant in the newer account model are included in the
model for the older accounts. These are covariates such as the average amount of active months
where the sum of payments were lower than 5% of the closing balance, the maximum amount
of transfers to other accounts, and the maximum amount of cash withdrawn.
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Table 4.5: Predictors included in the model with α = 0.9 for the dataset data.old

Predictor β̂ exp(β̂)
ProductSpareBank 1 MasterCard Gold 4.98 · 10−2 1.051
SerialN10 −2.84 · 10−1 0.753
SerialN20 −2.22 · 10−1 0.801
SerialN40 1.76 · 10−3 1.002
MTPCollectionWarning −5.79 · 10−5 0.999
SumDunning 9.59 · 10−2 1.101
SumCreditIncrease −5.03 · 10−2 0.951
PaymentTypePrint 7.46 · 10−2 1.077
EvaluationMethodOrdinær −2.12 · 10−1 0.809
RR.avg 1.33 · 10−1 1.142
AvgNormal −6.89 · 10−2 0.933
AvgCashTransfer −5.34 · 10−2 0.948
AvgInterest −5.54 · 10−5 0.999
AvgOverLimit −7.66 · 10−1 0.465

Predictive Performance

Furthermore, a predictive analysis is performed. We want to examine how well both the
reduced- and regularized model predicts, before comparing the two models. We let the ini-
tial threshold of our decision be π̂ = 0.5, which results in the prediction from the reduced
model given to the left in Table 4.6. The ROC curve is presented in Figure 4.14, where the area
under the curve is calculated to be AUC = 0.737.
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Figure 4.13: Distribution of the predicted
values for both recovered (blue) and non-
recovered (purple) accounts in the reduced lo-
gistic regression model for data.old
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Figure 4.14: ROC curve of reduced logit
model for data.old

The accuracy and precision are calculated to be AC = 0.802 and P = 0.815, which is
relatively high. However, we can observe that the values False Negative and False Positive
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compared to True Negatives are relatively high. Consequently, we divide the prediction into
three instead of two: certain negative, certain positive and uncertain. From Figure 4.13 we
notice that the overlap of the predictive distributions of the two classes are skewed towards
probability values around 0.8, which reveals why we obtain such a high value of FP when using
a boundary of 0.5. We let the lower and upper threshold be 0.3 and 0.85, respectively. Imposing
these thresholds results in an updated accuracy of AC = 0.905 and precision P = 0.909.
Albeit improving the prediction, the size of False Negative and False Positive are still too high
compared to the size of True Negative. Here, 53.22% of the observations were placed in the
uncertain category.

Table 4.6: Confusion matrices of the reduced logit model for data.old with threshold π̂ = 0.5 (left),
and π̂ ∈ [0.3, 0.85] (right).

Prediction
False True

Reference False 293 1604
True 214 7083

Prediction
False F/T True

Reference False 48 1462 387
True 23 3431 3843

For the regularized model we obtain the prediction distribution given in Figure 4.15, and
ROC curve in Figure 4.16 with AUC = 0.733. From the confusion matrix presented in Table
4.7 the accuracy is computed to be AC = 0.799, and precision P = 0.809, which is similar to
the reduced model. The value of False Negative and False Positive is still too high compared to
the True Negative. We impose the two thresholds of 0.3 and 0.85. Placing 56.06% observations
in the uncertain category gives an updated accuracy of AC = 0.908 and precision P = 0.911,
which is an improvement. However, we still have a high share of misclassified observations.
Hence, we need a model which captures the behaviour of high-risk cases better.
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Figure 4.15: Distribution of the predicted
values for both recovered (blue) and non-
recovered (purple) accounts in the regularized
logistic regression model for data.old
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Figure 4.16: ROC curve of logit model with
elastic net regularization for data.old
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Table 4.7: Confusion matrices of the model obtained using elastic net regularization for data.old
with threshold π̂ = 0.5 (left), and π̂ ∈ [0.3, 0.85] (right).

Prediction
False True

Reference False 218 1679
True 172 7125

Prediction
False F/T True

Reference False 24 1517 356
True 14 3637 3646

We want to assess the difference in prediction through the approach of cross-validation.
Letting the boundary be π̂ = 0.5, and executing a 10-fold CV paired t-test using pi = p1i −
p2i as the difference in precision for the reduced and regularized model on fold i, results in
T = 11.756. With a confidence level of 95% we have the critical value t0.025,9 = 2.26, which
results in the rejection of the null hypothesis stating that their precision is equal. Hence, the
reduced model is significantly better than the regularized. Similarly, for the accuracy we obtain
T = 1.131, which do not reject the null hypothesis. This result indicates that the reduced model
is better at detecting the positive cases, but overall are they not different.

Goodness of Fit

Finally, we look at the goodness of fit of the reduced model. The McFadden R-squared is
calculated to be R2

McFadden = 0.12, which is not very good. The Hosmer-Lemeshow test with

g = max

(
10,min

{
21990

2
,
27581− 21990

2
, 2 + 8

(27581

1000

)2})
≈ 2796,

gives the output in appendix B. With a p-value< 2.2 ·10−16 we reject the null hypothesis stating
that our model is correctly specified. However, our confidence in this measure decreases with
N , and for the training set we have N = 27581, which is actually above our boundary of 25000

stated in section 3.1.4.
The Cook’s distance is plotted in Figure 4.17, where we notice that some points attain a

higher influence than others. The critical leverage value is calculated to be hii = 3×71/27581 =

0.0077, with 1615 observations exceeding this threshold. Removing these observations yields a
reduced model with an AIC = 23085 indicating a better model performance, but could just be
the result of removing such a large amount of observations. Regardless, our main aim is pre-
diction and consequently, we need to assess whether the prediction is improved. With accuracy
AC = 0.802 and precision P = 0.815, there is no improvement and we continue therefore with
including all observations.

The residual deviance for the model is calculated to be D = 24403 on 27511 degrees of
freedom. There is, therefore, no indication of overdispersion. Nevertheless, the model does
not seem to explain the variation in the data very well. we will, therefore, in the next sections
attempt to fit a model which better demonstrates this variability.
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Figure 4.17: Plot of Cook’s distance for data.old

4.3 Support Vector Machine Analysis

We are using the kernlab package and ksvm function when fitting the support vector machine.
Aforementioned in section 3.2 typical kernel choices are the Gaussian RBF and Laplace RBF
when there is no prior information regarding the data. Both of these includes the two hyperpa-
rameters C and σ, requiring some kind of model selection to be done. One approach here is to
perform a grid search using cross-validation. This is a straight-forward way of optimizing but
comes across as a bit naive. Actually, there exist several more advanced methods which can
save computational cost.

One of these methods is known as response surface methodology. The initial values for σ are
found using the function sigest. The function estimates a range of values for σ which returns
good results based on the 0.1 and 0.9 quantile of ‖x − x’‖2. Common choices of C are in the
range of 0.1 − 100 [43]. We will first execute an optimization process of the hyperparameters
C and σ with RSS as our objective function using the Gaussian RBF kernel, computed from a
10 fold cross-validation. Furthermore, we are going to fit and analyze the resulting model for
each dataset data.new and data.old.

4.3.1 Model for New Accounts

Model Selection

The initial values are set to C = {0.25, 4} and found to be σ = {4.42 · 10−3, 1.51 · 10−2}. The
result obtained from performing a 22 experiment is presented to the left of Figure 4.18, where
we observe an optimal value of RSS = 5.203 · 10−4 in the point (C = 0.25, σ = 4.42 · 10−3).
Before following the gradient from the centre of the design space to the first step optimal point,
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we will investigate whether there is an interaction between C and σ. Assuming the log(RSS)

can be expressed as

log(RSS) = β0 + βCC + βσσ + βC,σC · σ + ε, (4.1)

we will estimate the value of β based on our observations from the 22 experiment, where we
have

log(RSS) = log


5.203 · 10−4

5.888 · 10−4

6.229 · 10−4

1.528 · 10−3

 =


1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1



β0

βC

βσ

βC,σ

+ ε.

The logarithm is chosen in order to have the responses conform more closely to the normal
distribution. The estimation of the effects, given in appendix B, were quite similar which could
indicate that there exist some interaction between the two hyperparameters. However, Figure
B.1 in appendix B reveals that neither one of these estimates are considered significant. Hence,
instead of looking at a 22 experiment, we will execute a central composite design with α =

√
2,

and adjusting the position of one axial point due to the restriction of C > 0. Looking at the
right plot of Figure 4.18 we obtain a new optimal point in (C = 4.78, σ = 9.75 ·10−3) with RSS
= 3.203 · 10−4. Noticing how the optimal point shifts when we instead of a rectangle region,
study a circular region, suggest that the RSS is more complex than assumed in (4.1). Hence,
we will search around this new optimum in the attempt to find a local optimum. Omitting
the calculations, we obtain no further improvement when moving along the gradient from the
centre of the design space to the first optimal point. Hence, we perform another CCD around
the first optimal point which results in an updated point in (C = 5.28, σ = 4.76 · 10−3) with
RSS = 2.27 · 10−4. Moving along the gradient from the newly obtained centre of the design
space to the second optimal point does not improve the value of RSS. Hence, we conclude the
optimization process stating that we have found a local optimum.

Predictive Performance

The final model is an SVM with the Gaussian RBF kernel and parameter values C = 5.28 and
σ = 4.76 · 10−3. Here we have used the option of calculating class probabilities rather than
hard classification. The number of support vectors is calculated to be 1888 out of 2795, which
accentuates the overlap of observations. This overlap is also visualized in Figure 4.19, which
reveals a noticeable amount of overlap for predicted values between 0.3 and 0.7. In other words,
accounts which have a very similar behaviour may not have the same recovery rate.

The confusion matrices are given in Table 4.8, which reveal an accuracy of AC = 0.687

and precision of P = 0.704 when utilizing the crisp boundary π̂ = 0.5. From Figure 4.19 we
impose the uncertain category using the boundaries 0.2 and 0.8. We obtain AC = 0.863 and
P = 0.858, which is not superior to the logistic model.
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Figure 4.18: Optimization of the hyperparameters C and σ using the concept of RSM for data.new.
The predictive error is presented in a heat map, and the purple circle denotes the optimal point of (C, σ)
for the 22 experiment (left) and CCD (right).
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Figure 4.19: Distribution of the predicted values for both recovered (blue) and non-recovered (purple)
accounts in the SVM model for data.new

Table 4.8: Confusion matrices of the SVM for data.new with threshold π̂ = 0.5 (left), and π̂ ∈
[0.2, 0.8] (right).

Prediction
False True

Reference False 198 186
True 106 442

Prediction
False F/T True

Reference False 33 321 30
True 4 363 181

Characteristics of the Support Vectors

Preceding, we want to compare the support vectors with the remaining observations. The pre-
dictor StartGrad is computed as the difference in closing balance from the second active month
to the first. In other words, how much has the usage increased during the first active month.
From Figure 4.20 it is observed that the support vectors for both the low-risk and high-risk
cases have a similar distribution with a heavy weight around StartGrad = 1. The correctly clas-
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sified recovering observations have a heavy tail close to StartGrad = 0 and implies that these
accounts have a lower spending rate the first active month compared to the incorrectly classified
observations. Similarly, roughly all the correctly classified non-recovering cases have StartGrad
≥ 1. Hence, the typical difference is that high-risk accounts spend nearly all available credit
during the first active month opposed to low-risk accounts which have a much more spread
out spending rate. There exist however several recovering accounts which exhibits a typical
high-risk spending behaviour, contributing to noise in our model.
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Figure 4.20: Comparison of the density of the covariate StartGrad in the support vectors (black) and the
remaining correctly classified observations (blue, purple). The low-risk cases (RR = 1) is presented to
the left, and the high-risk cases (RR = 0) is presented to the right.

We continue our comparison for the support vectors and the remaining observations by com-
puting the average value of the quantitative variables in the dataset. Henceforth, the observa-
tions which are not set as support vectors, and therefore not influencing our model, are denoted
the non-support vectors. From Table 4.9 it is observed that the average age of the accounts is
highest for the non-support vectors with RR = 1, and lowest for the non-support vectors with
RR = 0. This could imply that customers with high-risk are generally sent to collection earlier
than low-risk customers. The result also suggests that older customers are in greater chance
of recovering comparing to newer customers. However, we note that the difference in AgeOf-
Customer is not prominent between the non-support vectors for the recovered accounts versus
to the non-recovered accounts. The debt given in the application is considerably higher for the
recovering accounts compared to the non-recovering accounts, independent of the observations
being support vectors or not. The values for the support vectors are however, closer than for the
non-support vectors. Either do high-risk accounts carry a generally lower debt, or they have the
tendency to lie on their application. The bank’s resources in investigating whether the appli-
cation information is correct when granting a credit card to a new customer, is limited. There
is therefore no reason for an applicant, who is in the need of a credit card, not to lie on their
application. We also notice that the stated income in the application is higher for all accounts,
which substantiates the previous statement regarding the integrity of the applicants. The amount
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of time before the credit card is used is higher for the recovering accounts. This supports the
hypothesis of high-risk customers spending all their available credit balance immediately after
receiving their credit card. The variable StartGrad also reveals that high-risk accounts spend
more money from the first active month to the next.

Table 4.9: Average values for quantitative variables in the support vectors (SVRR=1, SVRR=0), and the
remaining observations (SVRR=1,SVRR=0) for data.new

SVRR=1 SVRR=1 SVRR=0 SVRR=0

SerialN 30.75 30.66 27.33 28.1
AgeOfAccount 4.48 4.44 4.16 4.12
AgeOfCustomer 35.96 35.16 34.11 34.79
MTPCollectionWarning 1639 1646 2505 2522
ClosingBalanceCollectionWarning 24812 22614 26373 27696
SumCollectionWarning 0.05 0.05 0.04 0.05
SumDunning 1.18 1.18 1.15 1.15
Recurring 0.02 0.01 0.01 0.01
SumCreditIncrease 0.03 0.02 0.01 0.01
DebtAppl 716661 645342 301837 257182
GrossIncomeAppl 557088 615381 376327 405899
GrossIncome 288414 279671 235121 237343
Active 3.98 3.96 3.78 3.77
RR 0.06 0.06 0.03 0.03
RR.avg 0.02 0.02 0.01 0.01
AvgClosingBalance 0.82 0.81 0.96 0.98
StartGrad 0.63 0.61 0.81 0.84
AvgNormal 0.42 0.42 0.41 0.40
AvgCashTransfer 0.19 0.18 0.23 0.25
AvgPurchase 0.08 0.09 0.07 0.06
AvgInterest 195.38 181.98 235.48 246.20
AvgPayN 0.21 0.19 0.15 0.15
AvgOverLimit 0.70 0.66 1.02 1.05
MaxClosingBalance 25051 22994 26482 277514
DaysSinceLastTime 9787 9863 9945 9894
CreditLimit 27067 25551 25475 26141
AvgCashWithdrawal 0.05 0.05 0.07 0.06
AvgLessThanMin 0.91 0.90 0.93 0.94
FirstBalance 15778 14460 20260 21726
FirstActive 1.50 1.46 1.37 1.34
Returned 0.03 −0.01 −0.04 −0.06
SumOverLimit 2.75 2.61 3.76 3.83
MaxCashTransfer 0.45 0.39 0.52 0.58
MaxCashWithdrawal 0.14 0.16 0.21 0.20
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4.3.2 Model for Old Accounts

Model Selection

After observing an interaction between C and σ for the dataset containing the newer accounts,
we instantly start with a CCD for the older account dataset. The initial values are set to C =

{0.25, 4} and σ = {4.35·10−3, 1.59·10−2}, in addition to the star points with a distance α =
√

2

from the centre of the design space. The result is presented to the left in Figure 4.21, where we
observe an optimal value of RSS = 3.24·10−5 in the point (C = 4, σ = 4.35·10−3). Continuing
along the gradient from the centre of the design space to the first step optimum did not improve
the value of RSS. we will, therefore, perform another CCD around this optimum. The second
step optimal was calculated to be RSS = 2.96 · 10−5 in the point (C = 3.5, σ = 2.35 · 10−3)

as indicated to the right in Figure 4.21. Continuing along the path from the centre of the design
space to the second step optimum did not improve the prediction error. Hence, we terminate the
optimization process stating we have found a local optimum.
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Figure 4.21: Optimization of the hyperparameters C and σ using the concept of RSM for data.old.
The predictive error is presented in a heat map, and the purple circle denotes the optimal point of (C, σ)
CCD in step 1 (left) and step 2 (right).

Predictive Performance

Fitting the SVM using the Gaussian RBF kernel with parameter values C = 3.5 and σ =

2.35 · 10−3 yields 11999 support vectors out of a total of 27581 observations. This again sheds
some light on how inconsistent human behaviour can be, and is visualized in Figure 4.22. We
notice a great overlap for predicted values between 0.75 and 0.85. The reason to why this
overlap is not centreed at 0.5 as for data.new, is the more prominent imbalance in the data
observed from Table 4.1b. In order to obtain a satisfactory predictive result we need to classify
observations in the overlapping interval to the uncertain category.

The model’s predictive performance is presented in Table 4.10, and reveals an accuracy
AC = 0.799 and precision P = 0.807 when using the boundary π̂ = 0.5. However, we
have already seen that this is not an optimal boundary. Including the uncertain category gives
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Figure 4.22: Distribution of the predicted values for both recovered (blue) and non-recovered (purple)
accounts in the SVM model for data.old

the updated values AC = 0.855 and P = 0.912, which is close to the logistic model. It is
worth mentioning that the SVM correctly specifies more negative cases compared to the logistic
model, but unfortunately at the cost of incorrectly specifying positive cases. This is expected
due to the high number of support vectors, which indicates that the SVM is not able to find a
suitable hyperplane dividing the two categories. Considering the values for the accuracy and
precision alone give no indication of an insufficient predictive power.

Table 4.10: Confusion matrices of the SVM for data.old with threshold π̂ = 0.5 (left), and π̂ ∈
[0.75, 0.85] (right).

Prediction
False True

Reference False 178 1719
True 120 7177

Prediction
False F/T True

Reference False 178 1599 120
True 120 5935 1242

Characteristics of the Support Vectors

A comparison between the support vectors and the remaining observations is done by looking
at the average value for the quantitative variables in the dataset. Table 4.11 reveals that the
average age of the customers is lowest for the non-support vectors with RR = 1, and highest
for the non-support vectors with RR = 0, contrarily to the newer accounts. The assumption of
older and more established customers having a higher probability of returning back to normal,
is therefore not supported here. The average minimum payment required to recover is lower
for the recovered accounts versus the non-recovered accounts. A low value of MTPCollection-
Warning will therefore work as a incentive to recover. One interesting observation is the average
number of times a dunning has been sent to the accounts, which is highest for the recovering
accounts among the non-support vectors. In other words, the more frequently accounts are sent
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to collection and manage to recover, the more likely they are to recover later. The same inter-
pretation yields for the average number of collection warnings and recurrences. We also notice
that the non-recovering accounts have a higher rate of credit increase, and a higher gap between
the income given in the application and the actual observed income for the same year.

Table 4.11: Average values for quantitative variables in the support vectors (SVRR=1, SVRR=0), and the
remaining observations (SVRR=1,SVRR=0) for data.old

SVRR=1 SVRR=1 SVRR=0 SVRR=0

SerialN 31.62 31.52 29.29 28.99
AgeOfAccount 55.86 56.43 47.05 45.70
AgeOfCustomer 39.18 39.23 39.32 39.45
MTPCollectionWarning 1860 1851 2926 2984
ClosingBalanceCollectionWarning 28937 27869 34871 35848
SumCollectionWarning 1.94 1.71 1.30 1.43
SumDunning 5.38 4.84 3.88 4.15
Recurring 1.08 0.93 0.74 0.86
SumCreditIncrease 0.27 0.22 0.39 0.42
DebtAppl 385226 490036 152541 821986
GrossIncomeAppl 188628 173773 184063 263321
GrossIncome 120448 100341 118516 136043
Active 11.37 11.36 11.09 11.04
RR 0.10 0.11 0.08 0.08
RR.avg 0.09 0.09 0.07 0.08
AvgClosingBalance 0.82 0.81 0.90 0.90
AvgNormal 0.54 0.54 0.57 0.57
AvgCashTransfer 0.05 0.05 0.07 0.07
AvgPurchase 0.04 0.04 0.03 0.03
AvgInterest 428.38 411.91 530.83 559.78
AvgPayN 0.48 0.47 0.50 0.51
AvgOverLimit 0.54 0.52 0.71 0.72
MaxClosingBalance 30682 29825 36235 37003
CreditLimit 30793 30336 33290 34143
AvgCashWithdrawal 0.02 0.02 0.03 0.02
AvgLessThanMin 0.95 0.95 1.03 1.03
MaxCashTransfer 0.19 0.18 0.25 0.26
MaxCashWithdrawal 0.09 0.10 0.14 0.13
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4.4 Fuzzy Clustering Analysis

Intuitively, one could imagine that different trends in behaviour leads to the same outcome.
In other words, it could be interesting to investigate whether accounts could be grouped into
more than two clusters. This is the main aim of including fuzzy clustering in this analysis. As
presented in section 3.3, there are several fuzzy algorithms to choose from. we will, therefore,
start with FCM with norm-inducing matrix A = I as a base case, before exploring GK and
PFCM.

4.4.1 Model for New Accounts

To get a preliminary insight into the cluster structure of the data, we will first look at a visual
cluster assessing of the data. The blue cells in Figure 4.23 indicate low dissimilarity, while yel-
low cells indicate high dissimilarity. The plot reorganizes the dissimilarities such that diagonal
blocks correspond to clusters in the data. We notice that the potential number of clusters could
be K = 3 or even K = 5.
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Figure 4.23: Visual assessing of cluster tendency for data.new

Fuzzy c-means (FCM)

As with SVM, the FCM algorithm includes two hyperparameters K and m. In order to find the
optimal value of these two, a grid search is performed using the validity measures VXB and VFS
presented in (3.49) and (3.50), respectively. For K, maximum value is 10, minimum value is 2

and step length is 1. Form, maximum value is 2.5, minimum value is 1.5 and step length is 0.25.
Then, models using all the grid points are fitted in order to detect which one yields the optimal
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validity measures. Section 3.3 call attention to the problems occurring when the dimensions of
the data become too high, and we will, therefore, fit the FCM including the preserved features
from applying the elastic net with α = 0.7. We use the function cmeans in the package
e1071 for fitting the FCM. Figure 4.24 is the heat map of the Xie-Beni and Fukuyama Sugeno
index using the k-means++ and al-daoud as prototype initialization on data.new. We notice
that the two initializations produce consistent results, with an optimal number of clusters K =

3 confirming our assumptions from Figure 4.23. The optimal fuzziness is calculated to be
m = 2.25. This indicates that there does not exist that many different behavioural patterns, but
dividing the data into three clusters is the optimal choice.
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Figure 4.24: Grid search of the hyperparameters K and m for data.new. The Xie-Beni index with
k-means++ prototype initialization (top left), the Fukuyama Sugeno index with k-means++ prototype
initialization (top right), the Xie-Beni index with Al-Daoud prototype initialization (bottom left), and the
Fukuyama Sugeno index with Al-Daoud prototype initialization (bottom right).

Fitting a FCM model with parameters K = 3 and m = 2.25 yields the results given in Table
4.12. When assigning the observations to the closest hard clustering, i.e the class with maximal
membership, we observe that cluster 3 has an overweight of zero (RR = 0) cases, while cluster
2 has an overweight of positive (RR = 1) cases. However, the overweight in cluster 3 is only
55%, which is not high enough to label the cluster. Instead of assigning the observations to
the closest hard cluster, we could take advantage of the fuzziness of the predictions by only
assigning an observation to a cluster if its membership is higher than some threshold. However,
when looking at the distribution of maximum membership values in Figure 4.25 nearly all of
them are found to be ≈ 1/3. This is also confirmed from the partition coefficient calculated to
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Figure 4.25: Distribution of the maximal membership values for the FCM with K = 3 and m = 2.25
for data.new

be VPC = 1/3. This means that the cluster assignments presented in Table 4.12 are just a result
of small differences in the observations, and that essentially all observations are equally typical
for all clusters.

Table 4.12: Cluster results when assigning observations to the cluster of maximal membership using the
FCM on data.new

Cluster
1 2 3

Reference 0 42 228 836
1 33 972 684

Gustafson-Kessel (GK)

As the method of FCM did not prove to produce a satisfactory result, we continue with the
Gustafson-Kessel method which allows for the clusters to be of different geometrical shapes.
Letting the fuzziness parameter still have the value m = 2.25, we fit several models with
different number of clusters ranging from 2 to 9 using the gk function from the ppclust package.
The reason for this approach is to test the hypothesis of the existence of several behavioural
trends leading to an equal outcome, instead of only two or three clusters. Table 4.14a presents
the cluster assignments for each of the eight models. Assigning observations to the cluster with
highest membership value results in several empty clusters, which is an unfortunate property.
However, analyzing all of them simultaneously may shed some light on distinct features of
recovering and non-recovering accounts.

For instance, when dividing the dataset into K = 9 clusters we notice that cluster number
4 include 88.1% recovering accounts. From the data we observe that this cluster has the lowest
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prototype value among all the clusters for the covariate Returned. From Table A.2 in appendix
A we have that a low number indicates customers who once have paid their invoices are no
longer able or willing to pay. Intuitively, one would expect the opposite result, but further
investigation shows that among the observations assigned to cluster 4 only 1 among all 13

observations which had Returned = −1 did not recover. Hence, a value of Returned = −1 is
not an implication of high-risk for customers in this cluster. Another observation made is that
this cluster has the second highest prototype value for the covariate FirstActive, which means
that the observations in this cluster spend more than the average amount of time before they
start using their credit card. The mean value of FirstActive is 1.43 for all customers and 2.10 for
customers in cluster 4. Among the customers in cluster 4 with FirstActive > 2, only 2 out of 16

observations did not recover. It is also noticed that among the customers in cluster 4 which have
values Returned = −1 and FirstActive > 2, nearly all which have EvaluationMethodOrdinary
= 0 did recover. It is therefore interesting to investigate if this combination yields the same
result for all observations, and not just within this particular cluster. It is found that among all
observations which have Returned = −1, FirstActive > 2 and EvaluationMethod 6= Ordinary,
will 88.9% recover.

Although cluster number 1 only includes two observations, both of them are recovering ac-
counts, and so we want to examine what is common for these two observations. We notice that
both of them have AvgInterest < 25, MaxCashWithdrawal ≤ 0.05 and EvaluationMethodOrd-
nary = 0. Testing this hypothesis for all the observations yields a share of 91.6% of recovering
accounts. So, despite the fact that our cluster assignments were not optimal when dividing into
K = 9 clusters, we were still able to detect some trends which lead to an outcome of RR = 1.

The majority of the observed clusters have a heavier weight of recovering accounts, which
is not surprising given the unbalanced data observed from Table 4.1a. Furthermore, for the
clusters which have an overweight of non-recovering accounts, we observe that this overweight
is not dominating. The highest fraction of non-recovering accounts in a cluster is calculated
to be 62.3%, observed when K = 4. This particular cluster has the highest prototype values
for the features AvgOverLimit, AvgLessThanMin, MaxCashWithdrawal, AvgClosingBalance,
SerialN10 and ProductSpareBank 1 MasterCard Gold. The mean value of AvgOverLimit is
0.818 for all customers and 0.999 for customers in cluster 4. Among the customers in cluster
4 with AvgOverLimit > 1 are there 74.1% who did not recover. Similarly, the mean value of
AvgLessThanMin is 0.917 for all customers and 0.939 for customers in cluster 4. The fraction
of non-recovering accounts among those who have AvgOverLimit > 1 and AvgLessThanMin
> 0.94 is 76.1%. Testing this hypothesis on the whole dataset, and not just for this particular
cluster, yields a share of 63.1% of non-recovering accounts with these feature values. It is,
however, a major drawback that the algorithm itself could not draw these conclusions. we will,
therefore, continue with the possibilistic fuzzy c-means model using the function pfcm in the
ppclust package.
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Possibilistic Fuzzy c-means (PFCM)

In order to decide which values of a, b,m and η we should use for the PFCM model, we look
at the validity indices VPC , VPE and VXB for different values of the tuning parameters. The
number of clusters is assigned to be K = 3 since our goal is to divide the accounts into three
groups, in addition to the observations made from Figure 4.23. We fit three linear models
assuming that each validity index can be expressed as

VPE = β0 + βaa+ βbb+ βmm+ βηη + βa,ba · b+ βa,ma ·m+ βb,mb ·m+ ε

VPC = β̃0 + β̃aa+ β̃bb+ β̃mm+ β̃ηη + β̃a,ba · b+ β̃a,ma ·m+ β̃b,mb ·m+ ε

VXB = β∗0 + β∗aa+ β∗b b+ β∗mm+ β∗ηη + β∗a,ba · b+ β∗a,ma ·m+ β∗b,mb ·m+ ε.

The estimates are found by using a 24−1 factorial design, where the respective low and
high values for the hyperparameters are set to be a = {1, 2}, b = {1, 5},m = {2, 5} and
η = {1.5, 3}. The sign matrix together with the corresponding response values are presented in
Table 4.13, and the estimates are given in appendix B.

Table 4.13: Sign matrix with level codes for a, b,m and η = abm, and respective validity indices when
K = 3 for data.new

Run a b m η = abm VPE VPC VXB
1 − − − − 0.384 0.978 76468
2 − − + + 0.939 0.508 84603
3 − + − + 0.783 0.358 50693
4 − + + − 0.201 0.565 162650
5 + − − + 0.919 0.519 617638
6 + − + − 0.390 0.924 147842
7 + + − − 0.194 0.533 96561
8 + + + + 0.825 0.229 114096

Figure B.2 in appendix B reveal that only the value of b and η have significant effects on the
partition entropy and partition coefficient. For the partition entropy, the effects are negative for b
and positive for η, while both negative for the partition coefficient. The property of a decreased
partition entropy when the value of b is increased implies an existence of outliers, which causes
for our clusters not to be well separated. Hence, increasing the value of b reduces the effect
of outliers and improves the value of VPE . We notice that the Xie-Beni index is independent
of all the parameters, and so our decision will solely be based on the partition entropy and
partition coefficient. A low value of η makes the typicality assignments crisp, and since the
cluster assignments for the PFCM are given by the typicality values, the fuzzy solution will
become closer to the hard solution. This will increase the value of the partition coefficient.
Simultaneously, a high value of η yields a high partition entropy which means that our clusters
are becoming more overlapped. An acceptable trade-off between the partition entropy and
partition coefficient is observed for run 1 where all the coefficients are at its low level.
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Opposed to the Gustafson-Kessel model, Table 4.14b reveals that observations are assigned
to all of the PFCM clusters. However, it does not seem that the groupings can be characterized
by the RR as nearly all of the clusters obtains a heavier weight of recovering accounts. This
could imply that the clustering problems are not rooted in the dimensionality of the data, but
rather the lack of groupings with respect to the recovery rate.
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Table 4.14: Cluster results from applying the Gustafson-Kessel (a) and the Possibilistic fuzzy c-means
(b) for values of K = 2, ..., 9, and defuzzifying the membership degrees (GK) and typicality degrees
(PFCM) of the objects for data.new.

(a)

K Cluster Prediction
0 1

2 1 114 67
2 992 1622

3 1 71 47
2 1035 1642
3 0 0

4 1 997 1623
2 0 0
3 0 0
4 109 66

5 1 66 40
2 101 141
3 0 0
4 65 66
5 874 1442

6 1 12 8
2 0 0
3 0 0
4 233 240
5 0 0
6 861 1441

7 1 106 303
2 6 4
3 897 1322
4 0 0
5 73 47
6 24 13
7 0 0

8 1 24 12
2 0 0
3 7 5
4 0 0
5 730 1100
6 269 525
7 0 0
8 76 47

9 1 0 2
2 79 48
3 0 0
4 7 52
5 686 778
6 0 0
7 95 269
8 239 540
9 0 0

(b)

K Cluster Prediction
0 1

2 1 519 923
2 587 766

3 1 182 414
2 377 520
3 547 755

4 1 203 347
2 332 434
3 456 635
4 115 273

5 1 128 196
2 323 401
3 444 651
4 103 202
5 108 239

6 1 111 205
2 316 395
3 181 249
4 70 156
5 20 61
6 408 623

7 1 25 37
2 313 392
3 205 284
4 103 196
5 18 58
6 376 572
7 66 150

8 1 23 47
2 312 392
3 20 67
4 102 182
5 66 156
6 181 261
7 88 176
8 314 408

9 1 123 181
2 320 397
3 70 157
4 97 90
5 92 199
6 274 405
7 94 144
8 4 17
9 32 99
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4.4.2 Model for Old Accounts

To obtain some notion of the cluster structure, we look at the ordered dissimilarity plot presented
in Figure 4.26. The cluster structure is not as visible as for the newer dataset, but an optimal
value of K = 2 seems plausible.
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Figure 4.26: Visual assessing of cluster tendency for data.old

We will here perform the same analysis as for the dataset containing the newer accounts by
first looking at the FCM algorithm before continuing with the GK and finally the PFCM.

Fuzzy c-means (FCM)

Similarly to the newer account dataset, we perform a grid search for the values of m and K
using the validity indices VXB and XFS as presented in Figure 4.27. The optimal parameter
values differ somewhat between the two different validity indices but are consistent with the
different initialization techniques. we will, therefore, continue with fitting two FCM models
using the optimal values indicated from the two measures. We start with K = 2 and m = 2.5

as indicated from the Xie-Beni index, and then continue with K = 3 and m = 1.75 from the
Fukuyama-Sugeno index. Fitting the first FCM model including the preserved covariates from
performing the elastic net regularization on the data with α = 0.9, yields the result presented in
Table 4.15.

Table 4.15: Cluster results when assigning observations to the cluster of maximal membership (left) and
when membership unk > 0.9 (right) using the FCM with K = 2 and m = 2.5 on data.old

Cluster
1 2

Reference 0 5306 2182
1 25156 4131

Cluster
1 2 0.5

Reference 0 3395 474 3619
1 19116 849 9322
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Figure 4.27: Grid search of the hyperparameters K and m for data.old. The Xie-Beni index with
k-means++ prototype initialization (top left), the Fukuyama Sugeno index with k-means++ prototype
initialization (top right), the Xie-Beni index with Al-Daoud prototype initialization (bottom left), and the
Fukuyama Sugeno index with Al-Daoud prototype initialization (bottom right).

When assigning the observations to the closest hard clustering both clusters are dominated
by recovering accounts. By only assigning observations to the closest hard clustering if the cor-
responding membership value is unk > 0.9, the ratio between non-recovering and recovering
accounts is preserved. we will, therefore, fit the second FCM model with result presented in Ta-
ble 4.16. Note that cluster 0.5 corresponds to observations which have a maximal membership
lower than 0.9, and are therefore not assigned to either of the clusters. Just as for K = 2, we
observe only clusters dominated by recovering accounts.

Table 4.16: Cluster results when assigning observations to the cluster of maximal membership (left) and
when membership unk > 0.9 (right) using the FCM with K = 3 and m = 1.75 on data.old

Cluster
1 2 3

Reference 0 4493 2650 345
1 22883 6013 391

Cluster
1 2 3 0.5

Reference 0 3671 1509 150 2158
1 20029 3260 167 5831

Gustafson-Kessel (GK)

There is no indication that choosing K = 3 improves the partition of non-recovering and re-
covering accounts when looking at both the closest hard clustering and when the membership
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values exceed a threshold of unk > 0.9. Just as with the newer accounts dataset, we will, there-
fore, proceed with the Gustafson-Kessel algorithm letting K = 2, ..., 9 while keeping m = 1.75

constant. Table 4.18a gives the cluster assignments for each of the eight models, where we
notice that we are still not achieving a satisfactory partitioning of accounts based on their re-
covery rate. In fact, we have no cluster for which non-recovering accounts are the majority.
The reason could simply be the high dimension of data.old compared to data.new, but
dividing the dataset into smaller subsets and fitting the GK algorithm on a subset of equal size
to data.new produces similar results. Considering Figure 4.26 and the fact that several clus-
ters were not assigned any observations, it is not that surprising that our data do not exhibit a
clustering structure. Actually, there is no value of K where the algorithm successfully detects
the given number of clusters. Some analysis could be performed on the clusters having an over-
weight of recovering accounts, similar to what was done for data.new. The reason why this
is not done here, is simply because the overweight is not higher for each cluster compared to
the whole dataset.

Possibilistic Fuzzy c-means (PFCM)

As a final attempt, we will apply the PFCM model and use the partition coefficient, partition
entropy and Xie-Beni index to choose between different values for the parameters a, b,m and
η. Due to the poor result of the GK algorithm when applying high values of K, and the impli-
cation of K = 2 from Figure 4.26, we let K = 2 when performing the PFCM. Similar to the
hyperparameters in the SVM, we assume that each validity index can be expressed as

VPE = β0 + βaa+ βbb+ βmm+ βηη + βa,ba · b+ βa,ma ·m+ βb,mb ·m+ ε

VPC = β̃0 + β̃aa+ β̃bb+ β̃mm+ β̃ηη + β̃a,ba · b+ β̃a,ma ·m+ β̃b,mb ·m+ ε

VXB = β∗0 + β∗aa+ β∗b b+ β∗mm+ β∗ηη + β∗a,ba · b+ β∗a,ma ·m+ β∗b,mb ·m+ ε.

Using a 24−1 factorial design by letting the respective low and high values of the hyperparam-
eters be set to a = {1, 2}, b = {1, 5},m = {2, 5} and η = {1.5, 3}, we obtain the validity
indices reported in Table 4.17. Section 3.3.5 states that the partition coefficient should not take
values VPC > 1. This is due to the possibilistic constraint on the membership values, which the
calculation of this index is based on. For the PFCM is VPC calculated from the typicality values
which are not constrained to sum up to 1, and so it can take on values higher than 1. However,
a value higher than 1 is not desired as it implies that observations attain high typicality for sev-
eral clusters. In other words, it is difficult deciding the optimal parameter values based on the
partition coefficient alone.

The estimates and corresponding half-normal plots in Figure B.3 are presented in appendix
B, and reveal that η has a significant positive effect on the partition entropy and a significant
negative effect on the partition coefficient. The value of b has a significant negative effect on
the partition coefficient, while the interaction of a and m has a significant positive effect on the
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Table 4.17: Sign matrix with level codes for a, b,m and η = abm, and respective validity indices when
K = 2 for data.old

Run a b m η = abm VPE VPC VXB
1 − − − − 0.124 1.598 1639330
2 − − + + 0.531 0.837 1335348
3 − + − + 0.525 0.458 162332
4 − + + − 0.141 0.769 183322
5 + − − + 0.554 0.779 288080
6 + − + − 0.134 1.591 2243384
7 + + − − 0.116 0.744 181313
8 + + + + 0.638 0.466 808281

partition coefficient. The model fit on the Xie-Beni index revealed no significant effects, and so
we will focus on the two other indices when deciding the hyperparameter values. The positive
effect on the partition entropy tells us that increasing η causes for overlapping clusters. Increas-
ing a and m simultaneously results in the membership component of the objective function in
(3.44) trying to push the prototypes towards the grand mean, making typicality more important
for centroid computation. This is consistent with the negative estimate of η as decreasing this
parameter makes typicality assignments almost crisp causing for the fuzzy solution to become
closer to the hard solution. Since the partition coefficient is calculated from the typicality values
for the PFCM, this will increase the value of VPC . We will, therefore, seek a small value of η,
while high for a and m. Increasing b from 1 to 5 while maintaining the other parameter values
fixed, causes for the partition coefficient to decrease, and so we want to avoid a low value of b.
However, since we aim to keep VPC ≤ 1, the values of b and a ·m cannot be at their respective
high levels simultaneously. Both run 4 and 7 produce a satisfactory combination of the validity
indices, and so we will fit the PFCM using the values from run 4.

Figure 4.18b reveals that for each value of K there is one cluster which size is much larger
than for the other clusters, just as for data.new. Opposed to the newer dataset, we do not ob-
tain any cluster where the 0-cases dominate, but we do observe some clusters with dominating
1-cases. For instance, cluster 4 whenK = 9 and cluster 4 whenK = 6 have a fraction of 93.5%

and 89.3% recovering cases, respectively. The final prototype values for both clusters reveal the
same behaviour. Both clusters are centred at low values of MTPCollectionWarning, SumDun-
ning, SumCreditIncrease, AvgInterest and AvgOverLimit compared to the other cluster centres.
In other words, low-risk accounts typically have a lower amount they have to pay in order to
recover, which indicate that the balance sent to collection is far less compared to high-risk ac-
counts. The low value of SumDunning contradicts the findings from both the logistic - and SVM
model, but could indicate the existence of some interaction between the number of payment re-
minders and the other variables. The observations within these clusters have increased the credit
limit far less than the other observations, in addition to a lower incurred interest and number
of overdrafts. Investigating these findings quantitatively by looking at the observations which
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fulfills MTPCollectionWarning < 350, SumDunning ≤ 4, SumCreditIncrease ≤ 1, AvgInterest
< 150, AvgOverLimit < 0.2, yields a fraction of 2179/2388 = 91.2% recovering accounts
when looking at the whole dataset. Hence, we are able to seclude about 10% of the observa-
tions, meaning that we do not have to worry about whether these observations will recover. We
discover that it is far easier to detect recovering cases than the opposite.
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Table 4.18: Cluster results from applying the Gustafson-Kessel (a) and the Possibilistic fuzzy c-means
(b) for values of K = 2, ..., 9, and defuzzifying the membership degrees (GK) and typicality degrees
(PFCM) of the objects for data.old.

(a)

K Cluster Prediction
0 1

2 1 7488 29287
2 0 0

3 1 7079 28593
2 0 0
3 409 694

4 1 0 0
2 6398 24921
3 681 3672
4 409 694

5 1 0 0
2 0 0
3 918 4614
4 0 0
5 6570 24673

6 1 0 0
2 0 0
3 406 689
4 7079 28594
5 0 0
6 3 5

7 1 0 0
2 0 0
3 125 295
4 374 642
5 0 0
6 6965 28306
7 24 44

8 1 0 0
2 349 630
3 0 0
4 0 0
5 0 0
6 0 0
7 7139 28657
8 0 0

9 1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 6441 26099
8 440 754
9 607 2434

(b)

K Cluster Prediction
0 1

2 1 1389 2817
2 6099 26470

3 1 59 89
2 182 1019
3 7247 28179

4 1 92 158
2 239 1179
3 7099 27618
4 158 332

5 1 63 96
2 169 882
3 319 1399
4 55 347
5 6882 26463

6 1 47 102
2 73 71
3 274 1216
4 44 368
5 6756 26022
6 294 1508

7 1 46 279
2 279 1386
3 338 1463
4 37 360
5 6350 24030
6 389 1902
7 49 47

8 1 30 66
2 37 41
3 406 1763
4 24 334
5 6173 23264
6 438 2043
7 51 101
8 329 1675

9 1 32 73
2 40 42
3 196 797
4 27 391
5 5878 21984
6 360 1885
7 59 111
8 317 1691
9 579 2313
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4.5 Sensitivity Analysis by Design of Experiments

One concern when building predictive models is their time of relevance. How much time needs
to pass before these models no longer apply? It is therefore important to consider external
factors which most likely will change with time, and evaluate the effect it will have on the
model’s predictive power. Opposed to the previously mentioned statistical models where we
have performed observational studies, i.e we do not have any influence on the variables we
are measuring, Design of Experiments (DoE) allows us to control the covariate values X of
the process and then measure the response Y . The intention is to discover which values of
the independent variables allow for improvement of the performance of our model, and which
values causes for our model to perform poorly. By examining the variables included in the
models built in the previous sections, we see that there are several predictors that might change
severely in the future.

According to a newly published article by the Business Insider Nordic [44], less than 10%

of all transactions made in Norway are in cash. Jon Nicolaisen, the deputy governor of Nor-
way’s central bank, argued at the City Week conference at London’s Guildhall this year that
Norway could be considered a cashless country. There is, therefore, reason to believe that all
cash transactions will be equal to zero at some point in the future. The interest rate is known
to change. If it will increase or decrease in the near future is uncertain, and it is therefore in-
teresting to measure its impact. Today, the interest rate is about 25% depending on the amount
of outstanding credit balance, if the invoice is issued by mail or electronically, etc. One other
variable which often increases with time is the amount of income due to inflation or seniority.

Our sensitivity analysis will concern the models obtained using the method of support vector
machine. Our parameters of interest will be AvgInterest, MaxCashWithdrawal/AvgCashWithdrawal
and GrossIncome/GrossIncomeAppl when performing a 2k factorial design with k = 3. It is
important to stress that the analysis is done by changing the values of these variables in our test
set, and further assume that our response remains constant when performing prediction on our
fitted model. This might not conform to reality as a change in external factors can drive us to
act differently.

We want to examine the effect on the accuracy and precision of the model. The low (−1)

and high (+1) levels for the given covariates are defined as

AvgInterest (A) : interest rate equal to 20%(−1) or 30%(+1)

CashWithdrawal (B) : 0 (−1) or today’s value (+1)

Income (C) : today’s value (−1) or 10%(+1),

(4.2)

and the results on both datasets are given in Table 4.19. We can already observe that neither the
accuracy nor precision are highly influenced by these covariates in either of the datasets. Despite
both the accuracy and the precision only taking values in the range [0, 1] which motivates for
beta regression, we will approximate the effects through the linear approach as the range of
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change in both measures are relatively small.

Table 4.19: Sign matrix with level codes and response values for data.new (a) and data.old (b)

(a)

A B C AC P
+ + + 0.6888 0.7048
+ + − 0.6899 0.7072
+ − + 0.6899 0.6971
+ − − 0.6899 0.6989
− + + 0.6877 0.6950
− + − 0.6856 0.6953
− − + 0.6835 0.6831
− − − 0.6813 0.6827

(b)

A B C AC P
+ + + 0.7994 0.8069
+ + − 0.7999 0.8073
+ − + 0.7989 0.8042
+ − − 0.7992 0.8045
− + + 0.7989 0.8047
− + − 0.7992 0.8050
− − + 0.7991 0.8024
− − − 0.7989 0.8025

We fit two linear models with AvgInterest, CashWithdrawal and Income as covariates, and
the accuracy and precision as respective response values. The estimated effects for each dataset
are given in Figure 4.28 and 4.30.

A1

A1:B1

B1

A1:C1

C1

B1:C1

0.000 0.001 0.002 0.003 0.004 0.005

Estimated Effect

A1

B1

A1:B1

A1:C1

C1

B1:C1

0.000 0.005 0.010

Estimated Effect

Figure 4.28: Estimated effects of accuracy (left) and precision (right) together with the line of signifi-
cance for data.new. The definitions of the covariates A, B and C are given in (4.2).

Figure 4.28 reveals that the only covariate which has a significant effect on the accuracy for
the newer dataset is the average incurred interest. Contrarily, we observe that the precision is
significantly dependent on all the covariates and interactions. Hence, the accuracy of the model
is more robust than the precision.

Examining the significant effects further we see that decreasing the interest rate causes a
disadvantageous influence on both the accuracy and the precision. Decreasing the amount of
withdrawn cash reduces the precision rate, which can be expected as the model is fitted using
today’s values. However, we notice that the value of cash withdrawals cannot decrease below
0, and so the covariate will not contribute to a lower precision than already observed in Table
4.28. The impact of increased income is not as dominant as for the other covariates, but still
significant for the precision. One can, therefore, expect that as income increases, the model’s
precision rate will also continue to decrease.
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Figure 4.29: Significant main effects on accuracy (left) and precision (right) for data.new

We obtain no significant effects on the accuracy for the older dataset, implying that the
accuracy will remain unchanged despite the changes given in (4.2). For the precision, on the
other hand, we achieve significant effects for the interest rate and cash withdrawals. As for the
older accounts, is the precision more vulnerable to change compared to the accuracy.

A1

A1:B1

B1

A1:C1

C1
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0.000 0.001 0.002 0.003 0.004 0.005

Estimated Effect
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C1

B1:C1

0.000 0.005 0.010

Estimated Effect

Figure 4.30: Estimated effects of accuracy (left) and precision (right) together with the line of signifi-
cance for data.old. The definitions of the covariates A, B and C are given in (4.2).

The interpretation of Figure 4.31 is that decreasing the interest rate has a unfortunate impact
on the model precision, while decreasing the amount of cash withdrawn from today’s value to 0

contributes to a lower precision rate. Both of these observations are consistent with the results
from the newer dataset.

0.804
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0.806

20% 30% 0 today's value

Effect

P

Variable

A

B

Figure 4.31: Significant main effects on precision for data.old
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Chapter 5
Summary and Concluding Remarks

The aim of this thesis was to construct statistical models with high predictive power in detecting
whether defaulted credit card customers recover or not. Several logistic regression models were
fitted by including covariates using both backward elimination and regularization by elastic
nets. An optimal support vector machine model was found by minimizing the residual sum
of squares with respect to the included hyperparameters. The unsupervised approach of fuzzy
clustering was also tested with the aim to investigate whether the data could be grouped such
that each cluster shared a common recovery rate. This chapter gives an overview of the achieved
goals and some recommendations of further studies.

5.1 Predictive Performance of the Supervised Models

Separating the dataset in two based on how long the accounts have been operative, we ob-
served that the models fitted on the older accounts attained a higher accuracy and precision than
the models fitted on the newer accounts. Analyzing the accuracy and precision of the logistic
regression models and the support vector machine models revealed a decent predictive perfor-
mance for both methods. Both the optimal accuracy and precision values were obtained with
the regularized logistic model for the newer accounts, and the reduced logistic model for the
older accounts. Their respective values were calculated to be ACnew = 0.689, ACold = 0.802

and Pnew = 0.796, Pold = 0.815. Neither the accuracy nor precision were proven to be statis-
tically different between the reduced and regularized models for the newer accounts, while the
precision proved to be statistically better in the reduced model for the older accounts.

The number of misclassified low-risk cases was unfortunately higher for the models of the
older accounts compared to the newer accounts. The reason for this is believed to be the imbal-
ance in the data as only 20.36% of the observations had a response value of RR = 0 in the older
dataset, compared to 39.97% for the newer dataset. The distribution of predictions for the 0-
and 1- cases were highly overlapping for several models. Exercising a soft threshold, with the
aim of containing the overlapping observations, improved both the accuracy and precision for
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all models. The number of observations contained inside this threshold interval varied between
50% and 70%, stressing the amount of overlap.

5.2 Behavioural Trend in High-Risk Accounts

Investigating significant covariates in the logistic model of the newer accounts, revealed the age
of the account, the number of payments and the number of times there has been an overdraft
on the account as important. The longer an account has been operative increases the probabil-
ity of recovering, which support the hypothesis of high-risk accounts defaulting more rapidly
compared to low-risk accounts. A high number of overdrafts cause for a lower probability
of recovering and transferring money to the credit card often will increase the probability of
recovering.

When fitting the logistic model to the behaviour of the older accounts, the recorded average
recovery rate for the past year and the number of months the account has had the status normal
were considered important. An increased past RR caused an increased predicted value of the
present RR, which was anticipated. The effect of the number of normal months was, on the
other hand, interestingly estimated to be negative for both the older and newer accounts. This
estimate could either be the result of laziness or the scare-off effect caused by the status payment
reminder.

Comparing the support vectors with the remaining observations from the SVM for the newer
accounts suggested that a typical high-risk behaviour is increasing the spending amount drasti-
cally from the first active month to the next. The mean value of the customer age was higher for
the non-support vectors of the recovering accounts compared to the non-support vectors of the
non-recovering accounts, implying higher financial stability for low-risk accounts. This obser-
vation was also made for the older accounts. For the older accounts, we also discovered that the
number of previous defaults was highest for the support vectors which had RR = 1, meaning
that accounts which often recover from default have a higher probability of recovering again.

The clustering algorithms did not obtain a satisfactory result. However, investigating the
clusters that had a dominating fraction of recovering accounts revealed several dominating
trends of the recovering accounts. Newer accounts which have an average incurred interest
lower than 25 NOK, a maximal amount of cash withdrawals of less than 5% of the credit limit,
and had not an evaluation method of type ordinary have a 91.6% chance of recovering. Hence,
an increased amount of incurred interest and cash withdrawals causes a higher probability of
not recovering. For the older accounts, a typical low-risk behaviour was revealed to be accounts
which have a low balance sent to collection, infrequently receive payment reminders, rarely in-
crease their credit limit, low amount of incurred interest and number of overdrafts. Among the
accounts which satisfy MTPCollectionWarning < 350, SumDunning ≤ 4, SumCreditIncrease
≤ 1, AvgInterest< 150, AvgOverLimit< 0.2, 91.2% were recovering. Hence, the clusters were
successful in detecting parts of the recovering cases but found it more difficult to distinguish
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the non-recovering cases.

5.3 Recommendations for Further Work

Only a discrete definition of RR was utilized in this thesis which causes loss of information.
That is, customers who are able to restore a high fraction of their debt presents a lower risk
compared to other recovering customers who are only able to pay the minimum amount re-
quired. The drawback is therefore that a discrete RR will not detect this difference of risk. By
imposing the continuous definition of the RR, other methods such as beta regression could be
considered [5, 45, 46]. Another approach would be to adopt a two-stage modelling framework
similar to [4, 6] on the data presented in this thesis to better separate the 0- and 1-cases from the
observations lying between the two extremes.

One possible reason to why the models are not successful in separating the low-risk cases
from the high-risk cases is due to lack of information. The data provided for this thesis is solely
based on transactional behaviour in addition to general information such as gender, age and
income. This data does not contain enough information about why people act the way they
do. We observe that a customer all of a sudden stops paying their bills without knowing they
are going through a divorce or that they lost their job. Additionally, a customer in a comfort-
able financial situation could display a lack of commitment solely because paying their bills
rarely is more appealing than saving money. It is not only external factors influencing peo-
ple’s choices but also human factors which are not available to the conventional bank. Today,
separate companies possess different types of personal information, and there does not exist a
common platform to incorporate all this information into one database. In the corporate world,
striving for competitive advantage and obligations regarding the distribution of sensitive infor-
mation, make this task even more difficult and maybe not ethically responsible. Nevertheless,
combining information from e.g insurance-, health, social media- and bank companies could
dramatically improve all analyses targeted to capture how users behave.
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Appendix A
Data

Table A.1: Variables included in the data set provided by Sparebank 1

Variable Explanation
BK COLLECTION CASE ID Key, unique for each collection case
Recovery If account recovered = 1, else = 0
DebtCollectionCompany Which debt collection company (GOT, CON, LIN) handled the case
RecruitmentChannel Where the account has been sold, ex. online, mobile bank, operation

channel etc.
AgeOfCustomer Age of customer in years
Gender Gender of customer
AgeOfACcount Age of account in months
Bank Which bank does the account belong to
SerialN Digits from social security number
Product Type of credit card product
ClosingBalanceCollectionWarning Closing balance at invoice for collection warning
MTPCollectionWarning Minimum payment required for recovery, and is calculated from Clos-

ingBalanceCollectionWarning
SumCollectionWarning Number of times the account has been sent a collection warning
SumDunning Number of times the account has been sent a dunning
Recurring Number of times the account has been sent to collection warning previ-

ously
EvaluationMethod How the account has been sold, ex. through mortgage, campaign, ordi-

nary, platinum, young/student etc.
DebtAppl Current debt given in the credit card application
GrossIncomeAppl Gross income for current year given in credit card application
GrossIncome Actual registered gross income for current year
ClosingBalance Closing balance for each month
ShareClosingBalance Closing balance divided by credit card limit for each month
PayedShare Payments divided with closing balance
CredLimit Credit limit each month
CredLimitIncrease Amount the credit limit has increased with from the previous month
OverLimit If the balance during the month has exceeded the credit limit = 1, else

= 0
PayedAmt Amount payed each month
PayedN Number of payments each month
Interest Incurred interest each month
Purchase Amount spent on purchases each month
CashWithdrawal Amount of cash withdrawn each month
CashTransfer Amount transferred to another bank account each month
InvoiceType Type of invoice, ex. normal, payment reminder, collection warning etc.
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Table A.2: Variables added to the data set

Variable Explanation
Active Number of moths the credit card has been used
RR Total recovery rate for the previously recorded months, i.e

the sum of payments divided by the sum of closing balance
for the last six months

RR.avg Average recovery rate for the previously recorded months,
i.e sum of payments divided by closing balance each month

AvgClosingBalance Average closing balance for the active months
SumCollectionWarning Total number of collection warnings for the last six months
SumDunning Total number of dunnings for the last six months
SumCreditIncrease Total number of times the credit limit has been increased

during the last six months
StartGrad Closing balance divided by the credit limit for the first ac-

tive month
AvgNormal Average number of times the invoice has had status ”nor-

mal” for the active months
AvgCashTransfer Average cash transfers for the active months
AvgPurchase Average purchases for the active months
AvgInterest Average incurred interest for the active months
AvgPayN Average number of payments for the active months
AvgOverLimit Average number of times the credit balance has exceeded

the credit limit for the active months
MaxClosingBalance Maximum closing balance
DaysSinceLastTime Days since the last time the account was sent to collection

(if the account has never been sent to collection before, then
its value is set to 9999)

AvgCashWithdrawal Average cash withdrawals for the active months
AvgLessThanMin Average number of times the payment was less than 5% of

the closing balance
FirstBalance First active balance
FirstActive Number of months between receiving the credit card and

usage
Returned If the customer has returned from not paying or has always

payed = 1, if the customer has never payed = 0, if the
customer has not returned −1

SumOverLimit Total number of times the credit balance has exceeded the
credit limit

MaxCashTransfer Maxmimum cash transfer
MaxCashWithdrawal Maximum cash withdrawal
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Appendix B
Results

Table B.1: Accuracy, precision and AUC for the final logistic - and SVM models presented in the same
order as in section 4.

Model Data set Threshold AC P AUC
0.5 0.679 0.710

Reduced Logistic data.new
[0.2, 0.8] 0.866 0.864

0.751

0.5 0.689 0.796
Regularized Logistic data.new

[0.3, 0.75] 0.898 0.898
0.746

0.5 0.802 0.815
Reduced Logistic data.old

[0.3, 0.85] 0.905 0.909
0.737

0.5 0.799 0.809
Regularized Logistic data.old

[0.3, 0.85] 0.908 0.911
0.733

0.5 0.687 0.704
data.new

[0.2, 0.8] 0.863 0.858
0.734

0.5 0.799 0.807
SVM

data.old
[0.75, 0.85] 0.855 0.912

0.718

Full Logistic Model for data.new
Call:

glm(formula = Recovery ˜ ., family = "binomial", data = english.yng[train_ind,

-1])

Deviance Residuals:

Min 1Q Median 3Q Max

-2.7878 -0.9517 0.4191 0.8770 2.7059

Coefficients: (2 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.554e+00 1.076e+03 0.003 0.997364

DebtCollectionCompanyGOT 2.117e-01 9.907e-02 2.137 0.032617 *
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DebtCollectionCompanyLIN 1.232e-01 1.860e-01 0.662 0.507660

ProductLOfavoer MasterCard -1.225e+00 9.349e-01 -1.310 0.190100

ProductSB1 EXTRA MC -2.035e-01 6.490e-01 -0.314 0.753888

ProductSH GOLD MC 1.817e-01 3.099e-01 0.586 0.557603

ProductSpareBank 1 MasterCard Gold 2.902e-01 5.690e-01 0.510 0.610103

ProductSparebank 1 Platinum MC 2.301e+00 9.475e+02 0.002 0.998063

ProductSpareBank 1 Visa Business Card -9.386e+00 8.827e+02 -0.011 0.991517

ProductSpareBank 1 Visa Gold 2.622e-01 9.658e-01 0.271 0.786018

BankSpareBank 1 BV 1.762e-01 5.549e-01 0.318 0.750795

BankSpareBank 1 Gudbrandsdal 1.057e+00 7.722e-01 1.368 0.171160

BankSpareBank 1 Hallingdal Valdres 4.705e-01 7.219e-01 0.652 0.514511

BankSpareBank 1 Lom og Skjaak -1.141e-01 7.968e-01 -0.143 0.886090

BankSpareBank 1 Modum -2.826e-02 6.126e-01 -0.046 0.963199

BankSpareBank 1 Nord-Norge 2.432e-01 5.251e-01 0.463 0.643285

BankSpareBank 1 Nordvest -2.697e-01 5.959e-01 -0.453 0.650794

BankSpareBank 1 Noetteroey-Toensberg 5.946e-01 7.020e-01 0.847 0.396971

BankSpareBank 1 Oslo Akershus -1.153e-02 5.248e-01 -0.022 0.982465

BankSpareBank 1 Oestfold Akershus 1.182e-01 5.445e-01 0.217 0.828111

BankSpareBank 1 oestlandet -4.131e-01 5.816e-01 -0.710 0.477474

BankSpareBank 1 Ringerike Hadeland 6.141e-02 5.832e-01 0.105 0.916148

BankSpareBank 1 SMN 1.335e-01 5.247e-01 0.254 0.799134

BankSpareBank 1 Soere Sunnmoere 6.827e-02 6.667e-01 0.102 0.918442

BankSpareBank 1 SR-Bank -6.970e-02 5.202e-01 -0.134 0.893419

BankSpareBank 1 Telemark -3.830e-01 5.662e-01 -0.676 0.498753

BankSparebanken Hedmark NA NA NA NA

SerialN10 1.291e+01 6.146e+02 0.021 0.983246

SerialN20 1.342e+01 6.146e+02 0.022 0.982583

SerialN30 1.400e+01 6.146e+02 0.023 0.981831

SerialN40 1.398e+01 6.146e+02 0.023 0.981854

AgeOfAccount 4.511e-01 5.465e-01 0.825 0.409131

GenderM -1.628e-01 9.077e-02 -1.793 0.072940 .

AgeOfCustomer -4.074e-03 4.383e-03 -0.930 0.352622

RecruitmentChannelLO Channel 6.893e-01 3.209e-01 2.148 0.031711 *
RecruitmentChannelMobilebank 5.265e-02 3.445e-01 0.153 0.878509

RecruitmentChannelOnlinebank 1.681e-01 1.603e-01 1.049 0.294326

RecruitmentChannelNULL 1.314e+01 6.184e+02 0.021 0.983044

RecruitmentChannelOpen web -1.147e-01 1.022e+00 -0.112 0.910670

RecruitmentChannelOperationchannel 6.319e-01 1.741e-01 3.630 0.000284 ***
RecruitmentChannelResponsepage 3.537e-01 2.052e-01 1.724 0.084782 .

MTPCollectionWarning -1.898e-04 5.389e-05 -3.522 0.000428 ***
ClosingBalanceCollectionWarning 5.084e-05 3.397e-05 1.497 0.134481

SumCollectionWarning -7.000e-02 3.785e-01 -0.185 0.853265

SumDunning -1.968e-01 3.373e-01 -0.583 0.559612

Recurring -7.659e-01 1.271e+00 -0.602 0.546921

SumCreditIncrease 7.667e-01 4.122e-01 1.860 0.062871 .

DebtAppl 1.239e-11 7.946e-11 0.156 0.876043

GrossIncomeAppl -1.037e-09 2.034e-09 -0.510 0.610208
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GrossIncome 9.913e-07 2.331e-07 4.253 2.11e-05 ***
EvaluationMethodMortgage -1.263e+01 8.827e+02 -0.014 0.988580

EvaluationMethodCampaign -1.253e+01 8.827e+02 -0.014 0.988678

EvaluationMethodNULL -1.129e+01 8.827e+02 -0.013 0.989797

EvaluationMethodOrdinary -1.296e+01 8.827e+02 -0.015 0.988287

EvaluationMethodPlatinum NA NA NA NA

EvaluationMethodYoung/Student -1.249e+01 8.827e+02 -0.014 0.988709

Active -5.486e-01 5.675e-01 -0.967 0.333704

RR 8.353e-01 1.426e+00 0.586 0.557929

RR.avg 3.328e+00 2.863e+00 1.163 0.245031

AvgClosingBalance -8.995e-01 8.407e-01 -1.070 0.284676

StartGrad 4.152e-01 3.826e-01 1.085 0.277915

AvgNormal -1.698e+00 1.434e+00 -1.184 0.236492

AvgCashTransfer -2.635e+00 1.677e+00 -1.571 0.116072

AvgPurchase -1.264e+00 1.535e+00 -0.823 0.410336

AvgInterest -1.510e-03 1.310e-03 -1.153 0.248877

AvgPayN 1.517e+00 3.675e-01 4.127 3.67e-05 ***
AvgOverLimit -8.987e-01 4.658e-01 -1.929 0.053696 .

MaxClosingBalance -1.375e-05 3.099e-05 -0.444 0.657336

DaysSinceLastTime -1.015e-04 1.339e-04 -0.758 0.448434

CreditLimit -1.180e-05 1.467e-05 -0.805 0.421101

AvgCashWithdrawal 1.924e+00 1.756e+00 1.096 0.273005

AvgLessThanMin -4.616e-01 5.356e-01 -0.862 0.388732

FirstBalance -1.725e-05 1.090e-05 -1.582 0.113698

FirstActive -2.402e-01 5.513e-01 -0.436 0.663037

Returned 2.032e-01 8.557e-02 2.375 0.017566 *
SumOverLimit -1.766e-02 1.202e-01 -0.147 0.883218

MaxCashTransfer 1.424e-01 3.192e-01 0.446 0.655499

MaxCashWithdrawal -6.039e-01 5.386e-01 -1.121 0.262194

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3752.2 on 2794 degrees of freedom

Residual deviance: 3000.7 on 2719 degrees of freedom

AIC: 3152.7

Number of Fisher Scoring iterations: 13

Reduced Logistic Model for data.new

Call:

glm(formula = Recovery ˜ DebtCollectionCompany + SerialN + AgeOfAccount +

Gender + RecruitmentChannel + MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCreditIncrease + GrossIncome + EvaluationMethod + Active +
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RR.avg + AvgNormal + AvgCashTransfer + AvgInterest + AvgPayN +

AvgOverLimit + Returned, family = "binomial", data = english.yng[train_ind,

-1])

Deviance Residuals:

Min 1Q Median 3Q Max

-2.7252 -0.9520 0.4346 0.8878 2.6456

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.256e+00 6.140e+02 -0.015 0.987973

DebtCollectionCompanyGOT 2.033e-01 9.771e-02 2.080 0.037505 *
DebtCollectionCompanyLIN 8.641e-02 1.816e-01 0.476 0.634225

SerialN10 1.301e+01 6.140e+02 0.021 0.983095

SerialN20 1.351e+01 6.140e+02 0.022 0.982446

SerialN30 1.409e+01 6.140e+02 0.023 0.981691

SerialN40 1.408e+01 6.140e+02 0.023 0.981707

AgeOfAccount 2.005e-01 7.326e-02 2.736 0.006213 **
GenderM -1.348e-01 8.923e-02 -1.511 0.130740

RecruitmentChannelLO Channel 6.324e-01 3.067e-01 2.062 0.039190 *
RecruitmentChannelMobilebank 2.586e-01 3.301e-01 0.784 0.433305

RecruitmentChannelONlinebank 3.294e-01 1.410e-01 2.336 0.019486 *
RecruitmentChannelNULL 1.473e+01 6.164e+02 0.024 0.980938

RecruitmentChannelOpen web 8.132e-02 1.020e+00 0.080 0.936429

RecruitmentChannelOperationChannel 7.702e-01 1.609e-01 4.787 1.69e-06 ***
RecruitmentChannelResponsepage 5.078e-01 1.914e-01 2.653 0.007975 **
MTPCollectionWarning -1.892e-04 4.997e-05 -3.787 0.000153 ***
ClosingBalanceCollectionWarning 2.619e-05 8.687e-06 3.015 0.002567 **
SumCreditIncrease 7.874e-01 3.883e-01 2.028 0.042609 *
GrossIncome 9.288e-07 2.275e-07 4.082 4.46e-05 ***
EvaluationMethodMortgage -2.882e+00 1.619e+00 -1.780 0.075065 .

EvaluationMethodCampaign -2.750e+00 1.603e+00 -1.716 0.086189 .

EvaluationMethodNULL -2.927e+00 1.617e+00 -1.810 0.070220 .

EvaluationMethodOrdinary -3.213e+00 1.604e+00 -2.003 0.045157 *
EvaluationMethodPlatinum 1.170e+01 3.516e+02 0.033 0.973454

EvaluationMethodYoung/Student -2.759e+00 1.623e+00 -1.701 0.089001 .

Active -2.468e-01 9.237e-02 -2.672 0.007539 **
RR.avg 2.771e+00 1.884e+00 1.471 0.141423

AvgNormal -1.143e+00 7.245e-01 -1.577 0.114820

AvgCashTransfer -1.276e+00 4.435e-01 -2.878 0.004007 **
AvgInterest -3.190e-03 8.234e-04 -3.875 0.000107 ***
AvgPayN 1.547e+00 3.404e-01 4.544 5.53e-06 ***
AvgOverLimit -1.096e+00 1.420e-01 -7.715 1.21e-14 ***
Returned 1.663e-01 7.921e-02 2.099 0.035807 *
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3752.2 on 2794 degrees of freedom

Residual deviance: 3037.6 on 2761 degrees of freedom

AIC: 3105.6

Number of Fisher Scoring iterations: 13

ANOVA for Full- and Reduced Model for data.new
Analysis of Deviance Table

Model 1: Recovery ˜ DebtCollectionCompany + SerialN + AgeOfAccount + Gender +

RecruitmentChannel + MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCreditIncrease + GrossIncome + EvaluationMethod + Active +

RR.avg + AvgNormal + AvgCashTransfer + AvgInterest + AvgPayN +

AvgOverLimit + Returned

Model 2: Recovery ˜ DebtCollectionCompany + Product + Bank + SerialN +

AgeOfAccount + Gender + AgeOfCustomer + RecruitmentChannel +

MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCollectionWarning + SumDunning + Recurring + SumCreditIncrease +

DebtAppl + GrossIncomeAppl + GrossIncome + EvaluationMethod +

Active + RR + RR.avg + AvgClosingBalance + StartGrad + AvgNormal +

AvgCashTransfer + AvgPurchase + AvgInterest + AvgPayN + AvgOverLimit +

MaxClosingBalance + DaysSinceLastTime + CreditLimit + AvgCashWithdrawal +

AvgLessThanMin + FirstBalance + FirstActive + Returned +

SumOverLimit + MaxCashTransfer + MaxCashWithdrawal

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2761 3037.6

2 2719 3000.7 42 36.934 0.6926

Regularized Model for data.new
Call:

glm(formula = Recovery ˜ ., family = "binomial", data = reg.train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.6928 -0.9745 0.4500 0.9049 1.9893

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.541e+00 4.831e-01 5.259 1.45e-07 ***
DebtCollectionCompanyGOT 2.796e-01 9.421e-02 2.968 0.003000 **
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ProductSB1.EXTRA.MC -7.632e-01 3.154e-01 -2.419 0.015549 *
SerialN10 -7.143e-01 2.043e-01 -3.496 0.000473 ***
SerialN20 -4.026e-01 9.828e-02 -4.096 4.20e-05 ***
RecruitmentChannelOperatationchannel 4.378e-01 1.043e-01 4.197 2.71e-05 ***
MTPCollectionWarning -1.016e-04 2.769e-05 -3.671 0.000242 ***
GrossIncome 1.106e-06 2.201e-07 5.022 5.10e-07 ***
EvaluationMethodOrdinary -5.423e-01 9.019e-02 -6.012 1.83e-09 ***
AvgClosingBalance -8.260e-01 3.761e-01 -2.196 0.028064 *
AvgInterest -9.033e-04 3.657e-04 -2.470 0.013509 *
AvgPayN 1.109e+00 2.593e-01 4.277 1.89e-05 ***
AvgOverLimit -1.055e+00 1.606e-01 -6.567 5.13e-11 ***
AvgLessThanMin -6.606e-01 4.296e-01 -1.537 0.124171

FirstActive 2.455e-01 6.959e-02 3.528 0.000418 ***
Returned 2.507e-01 6.494e-02 3.861 0.000113 ***
MaxCashWithdrawal -3.922e-01 1.565e-01 -2.507 0.012190 *
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3758.0 on 2794 degrees of freedom

Residual deviance: 3093.5 on 2778 degrees of freedom

AIC: 3127.5

Number of Fisher Scoring iterations: 5

ANOVA for Reduced- and Regularized Model for data.new

Analysis of Deviance Table

Model 1: Recovery ˜ DebtCollectionCompanyGOT + ProductSB1.EXTRA.MC + SerialN10 +

SerialN20 + RecruitmentChannelOperationchannel + MTPCollectionWarning +

GrossIncome + EvaluationMethodOrdinary + AvgClosingBalance +

AvgInterest + AvgPayN + AvgOverLimit + AvgLessThanMin + FirstActive +

Returned + MaxCashWithdrawal

Model 2: Recovery ˜ DebtCollectionCompany + SerialN + AgeOfAccount + Gender +

RecruitmentChannel + MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCreditIncrease + GrossIncome + EvaluationMethod + Active +

RR.avg + AvgNormal + AvgCashTransfer + AvgInterest + AvgPayN +

AvgOverLimit + Returned

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2778 3093.5

2 2761 3037.6 17 55.873 4.958e-06 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

96



Hosmer-Lemeshow for data.new

Hosmer and Lemeshow goodness of fit (GOF) test

data: reduced.model$y, fitted(reduced.model)

X-squared = 65.136, df = 63, p-value = 0.4023

Full Logistic Model for data.old

Call:

glm(formula = Recovery ˜ ., family = "binomial", data = english.old[train_ind,

-1])

Deviance Residuals:

Min 1Q Median 3Q Max

-3.9302 0.2958 0.4882 0.6778 3.5367

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.329e+00 1.109e+00 3.001 0.002691 **
DebtCollectionCompanyGOT 1.538e-01 3.573e-02 4.304 1.67e-05 ***
DebtCollectionCompanyLIN -1.327e-01 5.933e-02 -2.236 0.025323 *
ProductLOfavoer MasterCard -5.343e-01 3.382e-01 -1.580 0.114114

ProductSB1 EXTRA MC -1.079e+00 3.130e-01 -3.448 0.000566 ***
ProductSH BUSINESS VISA 1.291e+00 1.041e+00 1.240 0.215052

ProductSH GOLD MC -9.781e-02 1.276e-01 -0.766 0.443443

ProductSpareBank 1 MasterCard Gold -1.845e-01 2.385e-01 -0.774 0.439117

ProductSparebank 1 Platinum MC 3.315e-01 4.045e-01 0.820 0.412479

ProductSpareBank 1 Visa Business Card 1.743e+00 6.454e-01 2.700 0.006926 **
ProductSpareBank 1 Visa Gold -5.654e-01 2.488e-01 -2.273 0.023049 *
BankSpareBank 1 BV 2.984e-01 2.263e-01 1.319 0.187310

BankSpareBank 1 Gudbrandsdal 9.269e-01 2.988e-01 3.102 0.001922 **
BankSpareBank 1 Hallingdal Valdres 4.643e-01 2.669e-01 1.740 0.081935 .

BankSpareBank 1 Kredittkort -2.761e+00 7.171e-01 -3.850 0.000118 ***
BankSpareBank 1 Lom og Skjaak 7.930e-01 3.306e-01 2.399 0.016452 *
BankSpareBank 1 Modum 3.371e-01 2.580e-01 1.307 0.191382

BankSpareBank 1 Nord-Norge 5.147e-01 2.176e-01 2.366 0.017981 *
BankSpareBank 1 Nordvest 7.573e-01 2.435e-01 3.110 0.001868 **
BankSpareBank 1 Noetteroey-Toensberg 4.781e-01 2.647e-01 1.806 0.070932 .

BankSpareBank 1 Oslo Akershus 2.768e-01 2.181e-01 1.269 0.204407

BankSpareBank 1 oestfold Akershus 4.338e-01 2.259e-01 1.920 0.054857 .

BankSpareBank 1 oestlandet 1.614e-01 1.672e-01 0.965 0.334591

BankSpareBank 1 Ringerike Hadeland 3.220e-01 2.349e-01 1.371 0.170417

BankSpareBank 1 SMN 4.449e-01 2.170e-01 2.051 0.040306 *
BankSpareBank 1 Soere Sunnmoere 7.691e-01 2.669e-01 2.882 0.003953 **
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BankSpareBank 1 SR-Bank 3.432e-01 2.161e-01 1.588 0.112178

BankSpareBank 1 Telemark 4.350e-01 2.318e-01 1.876 0.060621 .

BankSparebanken Hedmark NA NA NA NA

SerialN10 -2.209e-01 6.286e-01 -0.351 0.725303

SerialN20 4.870e-02 6.246e-01 0.078 0.937859

SerialN30 3.825e-01 6.243e-01 0.613 0.540065

SerialN40 4.949e-01 6.243e-01 0.793 0.427987

AgeOfAccount 3.555e-03 7.439e-04 4.779 1.76e-06 ***
GenderM -3.677e-02 3.223e-02 -1.141 0.253989

AgeOfCustomer -8.508e-03 1.570e-03 -5.421 5.93e-08 ***
RecruitmentChannelLO Channel 1.032e+00 3.097e-01 3.333 0.000858 ***
RecruitmentChannelMobilebank 7.758e-01 4.824e-01 1.608 0.107764

RecruitmentChannelOnlinebank 3.740e-01 9.900e-02 3.777 0.000159 ***
RecruitmentChannelNULL 7.613e-01 1.819e-01 4.186 2.85e-05 ***
RecruitmentChannelOpen web 7.174e-02 5.332e-01 0.135 0.892973

RecruitmentChannelOperationChannel 6.960e-01 9.917e-02 7.018 2.24e-12 ***
RecruitmentChannelResponsepage 4.370e-01 1.148e-01 3.807 0.000141 ***
MTPCollectionWarning -1.307e-04 1.243e-05 -10.518 < 2e-16 ***
ClosingBalanceCollectionWarning 1.351e-05 3.232e-06 4.181 2.90e-05 ***
SumCollectionWarning 3.993e-02 2.150e-02 1.857 0.063301 .

SumDunning 1.016e-01 9.625e-03 10.550 < 2e-16 ***
Recurring -5.438e-02 2.661e-02 -2.044 0.040974 *
SumCreditIncrease -1.354e-01 2.762e-02 -4.905 9.36e-07 ***
PaymentMethod NULL -2.897e+00 8.719e-01 -3.323 0.000891 ***
PaymentMethod Print 3.403e-01 3.913e-02 8.698 < 2e-16 ***
DebtAppl 1.471e-07 3.565e-08 4.127 3.68e-05 ***
GrossIncomeAppl -2.780e-09 6.077e-09 -0.458 0.647289

GrossIncome 6.938e-07 1.099e-07 6.314 2.72e-10 ***
EvaluationMethodMortgage -8.791e-01 8.768e-01 -1.003 0.316067

EvaluationMethodCampaign -1.315e+00 8.711e-01 -1.510 0.131006

EvaluationMethodNULL -1.350e+00 8.816e-01 -1.531 0.125704

EvaluationMethodOrdinary -1.568e+00 8.705e-01 -1.801 0.071742 .

EvaluationMethodPlatinum -1.535e+00 1.082e+00 -1.419 0.155951

EvaluationMethodYOung/Student -1.495e+00 8.795e-01 -1.699 0.089241 .

Active -4.429e-02 1.704e-02 -2.598 0.009364 **
RR 1.293e-01 1.135e-01 1.139 0.254528

RR.avg 1.146e+00 2.929e-01 3.911 9.18e-05 ***
AvgClosingBalance -4.313e-01 1.229e-01 -3.511 0.000446 ***
AvgNormal -1.594e+00 1.812e-01 -8.792 < 2e-16 ***
AvgCashTransfer 7.301e-03 3.854e-01 0.019 0.984886

AvgPurchase 2.219e-01 3.185e-01 0.697 0.485981

AvgInterest -5.712e-04 1.224e-04 -4.665 3.09e-06 ***
AvgPayN 7.014e-01 1.231e-01 5.697 1.22e-08 ***
AvgOverLimit -7.682e-01 6.893e-02 -11.145 < 2e-16 ***
DaysSinceLastTime 1.454e-05 4.917e-06 2.958 0.003095 **
CreditLimit -5.322e-06 2.387e-06 -2.229 0.025786 *
AvgCashWithdrawal -1.295e+00 7.191e-01 -1.801 0.071711 .
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AvgLessThanMin -2.573e-01 6.466e-02 -3.979 6.92e-05 ***
MaxCashTransfer -3.980e-01 7.942e-02 -5.012 5.39e-07 ***
MaxCashWithdrawal -2.458e-01 1.350e-01 -1.820 0.068730 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27809 on 27580 degrees of freedom

Residual deviance: 24399 on 27505 degrees of freedom

AIC: 24551

Number of Fisher Scoring iterations: 10

Reduced Logistic Model for data.old

Call:

glm(formula = Recovery ˜ DebtCollectionCompany + Product + Bank +

SerialN + AgeOfAccount + AgeOfCustomer + RecruitmentChannel +

MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCollectionWarning + SumDunning + Recurring + SumCreditIncrease +

‘PaymentMethod ‘ + DebtAppl + GrossIncome + EvaluationMethod +

Active + RR.avg + AvgClosingBalance + AvgNormal + AvgInterest +

AvgPayN + AvgOverLimit + DaysSinceLastTime + CreditLimit +

AvgCashWithdrawal + AvgLessThanMin + MaxCashTransfer + MaxCashWithdrawal,

family = "binomial", data = english.old[train_ind, -1])

Deviance Residuals:

Min 1Q Median 3Q Max

-3.9305 0.2963 0.4887 0.6765 3.5413

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.389e+00 1.108e+00 3.059 0.002223 **
DebtCollectionCompanyGOT 1.528e-01 3.571e-02 4.278 1.89e-05 ***
DebtCollectionCompanyLIN -1.333e-01 5.931e-02 -2.247 0.024659 *
ProductLOfavoer MasterCard -5.313e-01 3.378e-01 -1.573 0.115772

ProductSB1 EXTRA MC -1.080e+00 3.130e-01 -3.450 0.000560 ***
ProductSH BUSINESS VISA 1.268e+00 1.039e+00 1.221 0.222248

ProductSH GOLD MC -1.002e-01 1.276e-01 -0.785 0.432483

ProductSpareBank 1 MasterCard Gold -1.839e-01 2.385e-01 -0.771 0.440692

ProductSparebank 1 Platinum MC 3.267e-01 4.038e-01 0.809 0.418471

ProductSpareBank 1 Visa Business Card 1.712e+00 6.424e-01 2.666 0.007681 **
ProductSpareBank 1 Visa Gold -5.646e-01 2.488e-01 -2.269 0.023240 *
BankSpareBank 1 BV 2.972e-01 2.264e-01 1.313 0.189217

BankSpareBank 1 Gudbrandsdal 9.248e-01 2.988e-01 3.095 0.001967 **
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BankSpareBank 1 Hallingdal Valdres 4.610e-01 2.669e-01 1.727 0.084159 .

BankSpareBank 1 Kredittkort -2.768e+00 7.170e-01 -3.861 0.000113 ***
BankSpareBank 1 Lom og Skjaak 7.875e-01 3.305e-01 2.383 0.017192 *
BankSpareBank 1 Modum 3.342e-01 2.580e-01 1.295 0.195242

BankSpareBank 1 Nord-Norge 5.129e-01 2.176e-01 2.357 0.018412 *
BankSpareBank 1 Nordvest 7.552e-01 2.435e-01 3.102 0.001923 **
BankSpareBank 1 Noetteroey-Toensberg 4.788e-01 2.647e-01 1.809 0.070441 .

BankSpareBank 1 Oslo Akershus 2.752e-01 2.181e-01 1.261 0.207173

BankSpareBank 1 oestfold Akershus 4.287e-01 2.259e-01 1.898 0.057752 .

BankSpareBank 1 oestlandet 1.594e-01 1.673e-01 0.953 0.340640

BankSpareBank 1 Ringerike Hadeland 3.188e-01 2.349e-01 1.357 0.174787

BankSpareBank 1 SMN 4.421e-01 2.170e-01 2.038 0.041593 *
BankSpareBank 1 Soere Sunnmoere 7.667e-01 2.669e-01 2.873 0.004069 **
BankSpareBank 1 SR-Bank 3.405e-01 2.161e-01 1.576 0.115054

BankSpareBank 1 Telemark 4.309e-01 2.318e-01 1.859 0.063087 .

BankSparebanken Hedmark NA NA NA NA

SerialN10 -2.266e-01 6.286e-01 -0.361 0.718425

SerialN20 4.433e-02 6.246e-01 0.071 0.943413

SerialN30 3.803e-01 6.243e-01 0.609 0.542352

SerialN40 4.938e-01 6.243e-01 0.791 0.428942

AgeOfAccount 3.521e-03 7.434e-04 4.736 2.18e-06 ***
AgeOfCustomer -8.539e-03 1.566e-03 -5.453 4.95e-08 ***
RecruitmentChannelLO Channel 1.025e+00 3.094e-01 3.313 0.000923 ***
RecruitmentChannelMobilebank 7.830e-01 4.820e-01 1.624 0.104281

RecruitmentChannelOnlinebank 3.733e-01 9.901e-02 3.770 0.000163 ***
RecruitmentChannelNULL 7.630e-01 1.819e-01 4.196 2.72e-05 ***
RecruitmentChannelOpen web 6.094e-02 5.333e-01 0.114 0.909026

RecruitmentChannelOperationchannel 6.966e-01 9.918e-02 7.024 2.16e-12 ***
RecruitmentChannelResponsepage 4.352e-01 1.148e-01 3.791 0.000150 ***
MTPCollectionWarning -1.302e-04 1.238e-05 -10.519 < 2e-16 ***
ClosingBalanceCollectionWarning 1.423e-05 2.294e-06 6.204 5.51e-10 ***
SumCollectionWarning 4.072e-02 2.149e-02 1.895 0.058079 .

SumDunning 1.017e-01 9.611e-03 10.578 < 2e-16 ***
Recurring -5.572e-02 2.657e-02 -2.097 0.035989 *
SumCreditIncrease -1.338e-01 2.712e-02 -4.934 8.05e-07 ***
PaymentMethod NULL -2.917e+00 8.727e-01 -3.342 0.000831 ***
PaymentMethod Print 3.406e-01 3.909e-02 8.713 < 2e-16 ***
DebtAppl 1.464e-07 3.551e-08 4.122 3.76e-05 ***
GrossIncome 6.943e-07 1.098e-07 6.324 2.55e-10 ***
EvaluationMethodMortgage -9.020e-01 8.776e-01 -1.028 0.304045

EvaluationMethodCampaign -1.338e+00 8.719e-01 -1.535 0.124763

EvaluationMethodNULL -1.376e+00 8.824e-01 -1.559 0.118922

EvaluationMethodOrdinary -1.591e+00 8.713e-01 -1.826 0.067838 .

EvaluationMethodPlatinum -1.543e+00 1.083e+00 -1.425 0.154093

EvaluationMethodYoung/Student -1.512e+00 8.803e-01 -1.717 0.085920 .

Active -4.843e-02 1.657e-02 -2.923 0.003472 **
RR.avg 1.366e+00 2.441e-01 5.595 2.21e-08 ***
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AvgClosingBalance -4.375e-01 1.213e-01 -3.606 0.000311 ***
AvgNormal -1.584e+00 1.804e-01 -8.782 < 2e-16 ***
AvgInterest -5.610e-04 1.180e-04 -4.755 1.99e-06 ***
AvgPayN 7.138e-01 1.225e-01 5.825 5.70e-09 ***
AvgOverLimit -7.691e-01 6.842e-02 -11.240 < 2e-16 ***
DaysSinceLastTime 1.469e-05 4.912e-06 2.990 0.002788 **
CreditLimit -5.069e-06 2.073e-06 -2.445 0.014479 *
AvgCashWithdrawal -1.224e+00 6.438e-01 -1.901 0.057284 .

AvgLessThanMin -2.611e-01 6.403e-02 -4.078 4.55e-05 ***
MaxCashTransfer -4.044e-01 5.157e-02 -7.842 4.43e-15 ***
MaxCashWithdrawal -2.585e-01 1.346e-01 -1.921 0.054758 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27809 on 27580 degrees of freedom

Residual deviance: 24403 on 27511 degrees of freedom

AIC: 24543

Number of Fisher Scoring iterations: 10

ANOVA for Full- and Reduced Model for data.old

Analysis of Deviance Table

Model 1: Recovery ˜ DebtCollectionCompany + Product + Bank + SerialN +

AgeOfAccount + AgeOfCustomer + RecruitmentChannel + MTPCollectionWarning +

ClosingBalanceCollectionWarning + SumCollectionWarning +

SumDunning + Recurring + SumCreditIncrease + ‘PaymentMethod ‘ +

DebtAppl + GrossIncome + EvaluationMethod + Active + RR.avg +

AvgClosingBalance + AvgNormal + AvgInterest + AvgPayN + AvgOverLimit +

DaysSinceLastTime + CreditLimit + AvgCashWithdrawal + AvgLessThanMin +

MaxCashTransfer + MaxCashWithdrawal

Model 2: Recovery ˜ DebtCollectionCompany + Product + Bank + SerialN +

AgeOfAccount + Gender + AgeOfCustomer + RecruitmentChannel +

MTPCollectionWarning + ClosingBalanceCollectionWarning +

SumCollectionWarning + SumDunning + Recurring + SumCreditIncrease +

‘PaymentMethod ‘ + DebtAppl + GrossIncomeAppl + GrossIncome +

EvaluationMethod + Active + RR + RR.avg + AvgClosingBalance +

AvgNormal + AvgCashTransfer + AvgPurchase + AvgInterest +

AvgPayN + AvgOverLimit + MaxClosingBalance + DaysSinceLastTime +

CreditLimit + AvgCashWithdrawal + AvgLessThanMin + MaxCashTransfer +

MaxCashWithdrawal

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 27511 24402
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2 27505 24399 6 3.8598 0.6956

Hosmer-Lemeshow for data.old
Hosmer and Lemeshow goodness of fit (GOF) test

data: reduced.model$y, fitted(reduced.model)

X-squared = 3992, df = 2794, p-value < 2.2e-16

Regularized Model for data.old
Call:

glm(formula = Recovery ˜ ., family = "binomial", data = reg.train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.8601 0.3177 0.5068 0.6890 3.1735

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.757e+00 1.112e-01 15.797 < 2e-16 ***
ProductSpareBank.1.MasterCard.Gold 3.433e-01 3.884e-02 8.838 < 2e-16 ***
SerialN10 -7.453e-01 8.132e-02 -9.165 < 2e-16 ***
SerialN20 -4.204e-01 4.083e-02 -10.295 < 2e-16 ***
SerialN40 1.183e-01 3.829e-02 3.091 0.001994 **
MTPCollectionWarning -7.268e-05 7.471e-06 -9.728 < 2e-16 ***
SumDunning 1.223e-01 7.262e-03 16.840 < 2e-16 ***
SumCreditIncrease -7.008e-02 2.417e-02 -2.900 0.003734 **
PaymentTypePrint 3.054e-01 3.744e-02 8.157 3.43e-16 ***
EvaluationMethodOrdinary -4.083e-01 3.751e-02 -10.885 < 2e-16 ***
RR.avg 2.168e+00 2.060e-01 10.525 < 2e-16 ***
AvgNormal -8.268e-01 1.219e-01 -6.785 1.16e-11 ***
AvgCashTransfer -1.467e+00 2.009e-01 -7.304 2.79e-13 ***
AvgInterest -1.662e-04 4.868e-05 -3.415 0.000639 ***
AvgOverLimit -9.994e-01 4.724e-02 -21.155 < 2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27809 on 27580 degrees of freedom

Residual deviance: 24938 on 27566 degrees of freedom

AIC: 24968

Number of Fisher Scoring iterations: 5
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Fitting a 22 factorial design with log(RSS) of the SVM as re-
sponse for data.new

Call:

lm.default(formula = log(RSS) ˜ ., data = X[1:4, c(1, 2, 3, 6)])

Residuals:

ALL 4 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.2159 NA NA NA

c 0.2833 NA NA NA

sigma 0.2552 NA NA NA

cs 0.1933 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 3 and 0 DF, p-value: NA
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Figure B.1: Half-normal plot of the 22 experiment on log(RSS) for data.new
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Fitting a 24−1 factorial design with the validity indices VPE, VPC, VXB
of the PFCM model as response for data.new

Call:

lm.default(formula = pe ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, pe))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.579227 NA NA NA

a1 0.009271 NA NA NA

b1 -0.078577 NA NA NA

m1 0.002711 NA NA NA

eta1 0.287176 NA NA NA

a1:b1 0.002880 NA NA NA

a1:m1 0.015987 NA NA NA

b1:m1 0.006002 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA

Call:

lm.default(formula = pc ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, pc))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.576717 NA NA NA

a1 -0.020085 NA NA NA

b1 -0.155625 NA NA NA

m1 -0.025576 NA NA NA

eta1 -0.173290 NA NA NA

a1:b1 -0.003988 NA NA NA

a1:m1 0.045386 NA NA NA

b1:m1 -0.014830 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA
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Call:

lm.default(formula = xb ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, xb))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 168819 NA NA NA

a1 -41521 NA NA NA

b1 -62819 NA NA NA

m1 75215 NA NA NA

eta1 47939 NA NA NA

a1:b1 73894 NA NA NA

a1:m1 -71544 NA NA NA

b1:m1 -75887 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA

Fitting a 24−1 factorial design with the validity indices VPE, VPC, VXB
of the PFCM model as response for data.old
Call:

lm.default(formula = PE ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, PE))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.345375 NA NA NA

a1 0.015625 NA NA NA

b1 0.009625 NA NA NA

m1 0.015125 NA NA NA

eta1 0.216625 NA NA NA

a1:b1 0.018875 NA NA NA

a1:m1 0.009875 NA NA NA

b1:m1 0.006875 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
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Figure B.2: Half-normal plot of the 24−1 experiment on the PE, PC and XB for data.new

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA

Call:

lm.default(formula = PC ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, PC))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 0.90525 NA NA NA

a1 0.01050 NA NA NA

b1 -0.29600 NA NA NA

m1 -0.01025 NA NA NA

eta1 -0.27025 NA NA NA

a1:b1 -0.00225 NA NA NA

a1:m1 0.12300 NA NA NA

b1:m1 0.00600 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA

Call:

lm.default(formula = XB ˜ a + b + m + eta + a:b + a:m + b:m,

data = cbind(plan, XB))

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 855174 NA NA NA

a1 287410 NA NA NA

b1 -521362 NA NA NA

m1 25091 NA NA NA

eta1 -206664 NA NA NA

a1:b1 -125420 NA NA NA

a1:m1 358158 NA NA NA

b1:m1 135894 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA
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Figure B.3: Half-normal plot of the 24−1 experiment on the PE, PC and XB for data.old
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