
Data acquisition and analysis ofacquired
data from geographically distributed
sensors connected by 2G / 4G technology

Håkon Edøy Hanssen

Master of Science in Cybernetics and Robotics

Supervisor: Geir Mathisen, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Master
Thesis

Data acquisition and analysis of
acquired data from geographically
distributed sensors connected by

2G / 4G technology

Author:
H̊akon Edøy Hanssen

Supervisor:
Geir Mathisen

June 22, 2018

NTNU
Norges teknisk-naturvitenskapelige
universitet

Faculty of Information Technology
and Electrical Engineering

Department of Cybernetics

Master Thesis

Candidate: H̊akon Edøy Hanssen
Subcject: TTK4990

Oppgavetittel (Norsk): Innsamling og prosessering av data samlet
fra geografisk spredte sensorer ved bruk av
2G/4G

Thesis title (English): Data acquisition and analysis of acquired data
from geographically distributed sensors con-
nected by 2G / 4G technology

Thesis description:

The “smart”- solutions (smart grid, smart cities, smart water etc) require systems
for massive acquisition of data from distributed sources, to be able to implement
optimal control. Preferably, this acquisition should be cheap and take as little ef-
fort as possible to realize. As a contribution to this, we want to develop a (near)
real-time IoT-inspired data acquisition system using 2G / 4G connectivity technol-
ogy. The system should transfer the acquired data (e.g. PV and windmill energy
production, temperature, humidity) to a cloud for further analysis. It should be
possible to remotely adjusting sampling / transferring parameters. As an example,
the analysis should consist of estimating next-day energy production from PV solar
panels, based on historical data and weather forecasts.

NTNU
Norges teknisk-naturvitenskapelige
universitet

Faculty of Information Technology
and Electrical Engineering

Department of Cybernetics
.

The tasks will be:

• Conduct a literary study of systems used for acquisition of distributed data
and methods for forecasting power production from PV solar panels.

• Propose a system for acquisition of data from distributed sources into a cen-
tralized data server, using 2G / 4G connection technology. The proposal
shall include an architecture enabling continuously analyzing of the received
data. To concretise the work, the proposal shall take as an example data
acquisition from PV solar panels and forecasting next day power production.

• As far as time permits, implement the suggested data acquisition and ana-
lyzing system.

Thesis given: 11. January 2018
Thesis deadline: 02. July 2018

Faculty of Information Technology and Electrical Engineering IE

Department of Cybernetics ITK

Abstract

The usage of the 2G/4G network geographically in distributed embedded systems
has multiple advantages. One is the coverage of the network, which in most ad-
vanced countries covers the vast majority of the land area. Another is that the
maintenance of the network is performed by the service provider, reducing the
work necessary to maintain and implement the service. Despite these advantages,
the usage of embedded systems, and development kits with cellular connectivity is
relatively limited. The motivation of this master thesis has therefore been to do
some of the early work within this field of embedded systems, by doing a study
of existing embedded systems with similar functionalities, a review of the factors
affecting the accuracy of predicting solar PV power production, and trying to im-
plement an embedded system using the 2G/4G network to communicate with a
cloud service.

This thesis will present the different kinds of hardware and software used to im-
plement the system. It will also present the system specifications, how it was
implemented, the result of the implementation and its limitations.

Due to timing constraints, lack of libraries and some bugs experienced when us-
ing the Digi API, the author of this thesis had to use a ESP8266 Wi-Fi module,
instead of the intended Digi 3G Global cellular modem. The embedded system
runs FreeRTOS to make it (near) real-time. It communicates with Amazon Web
Services (AWS), the chosen cloud service, by using the light-weight MQTT pro-
tocol. A Python script running on a virtual Ubuntu machine retrieves the data
transmitted by the embedded system and places it in a DynamoDB table. Scripts
for scraping weather forecasts from Yr, and for generating plots run once every 24
hours. All scripts on the Ubuntu machine are run in the background and produces
log files for remote debugging.

The complete system is still in its early stages. The 2G/4G has yet to be suc-
cessfully implemented, and the current cloud service requires, among other things,
improved security and scalability.

i

Sammendrag

Det er flere fordeler ved å bruke 2G/4G nettverket sammen med distribuerte em-
bedded systemer. Et ar at dekningsgraden til nettverket, hvilket ofte er nesten
hele landmassen til de aller fleste land med høy levestandard. En annen er at
alt vedlikehold av nettverket gjennomføres av telefonselskapene, noe som reduserer
mengden nødvendig vedlikehold. P̊a tross av disse fordelene er per i dag 2G/4G-
nettet lite brukt i embedded systemer og sett for utviklere. Hovedmotivasjonen
til denne masteroppgaven er å utføre noe av det tidlige arbeidet relatert til dette
feltet innen embedded maskiner. Dette gjøres gjennom en litteraturstudie av ek-
sisterende embedded systemer med liknende funksjonalitet og av hvilke faktorer
som p̊avirker hvor nøyaktig estimeringen av strømproduksjonen til PV solceller.
Tilslutt vil forfatteren prøve å implementere et embedded system som kommunis-
erer med en skytjeneste gjennom å bruke 2G/4G nettet.

Denne oppgaven vil vise maskin- og programvaren som ble benyttet for å imple-
mentere systemet. Den vil ogs̊a presentere systemspesifikajsonene, hvordan det ble
implementert og systemets n̊aværende begrensinger.

Som følge av tidsbegrensinger, mangel p̊a bibliotek og noen programfeil n̊ar Digis
API ble brukt, m̊atte forfatteren av denne oppgaven bruke en ESP8266 Wi-Fi
modul, istedenfor det tiltenkte Digi 3G Global modemet. Embedded systemet
kjører FreeRTOS for at det skal være et (tilnærmet) sanntidssystem. Den kom-
muniserer med Amazon Web Services (AWS) gjennom å benytte seg av MQTT
protokollen. Et Python skript som kjører p̊a en virtuell Ubuntu-maskin fanger
opp meldingene sendt av systemet og plasserer dem i et DynamoDB tabell. Andre
Python program benyttes for å skrape værmeldingsdata fra Yr og for å genrere
grafer kjøres en gang i døgnet. All programmene som kjøres p̊a Ubuntu-maskinen
kjøres i bakgrunnen og lager loggfiler brukt til feilsøking.

Det komplette systemet er fortsatt p̊a et tidlig stadie. 2G/4G-kommunikasjonen
har enda ikke blitt implementert skikkelig, og det n̊aværende oppsettet i skytjen-
esten trenger blant annet bedre sikkerhet og skalerbarhet.

ii

Preface

This master thesis project was written at the Department of Cybernetics(ITK), a
subsidiary of the Faculty of Information Technology and Electrical Engineering(IE)
at the Norwegian University of Science and Technology(NTNU). The purchase of
the necessary hardware and software needed for this project has been conducted
by financial means provided by ITK. This thesis builds on the work performed by
the author of this thesis during the completion of the mandatory TTK4550 Spe-
cialization Project.

This document is intended to an independent documentation done to complete
this master thesis assignment. This is accomplished by describing all the different
modules, components and methods used through this project. They are all made
available through proper citations and an extensive bibliography throughout this
thesis report.

Prerequisites

This thesis project requires multiple software and hardware components. This
mainly includes embedded hardware modules and associated software to imple-
ment an IoT-inspired data acquisition device, and an Amazon Web Services (AWS)
account to utilize the various services provided by AWS.

List of necessary equipment and software

• LCPXpresso 4367 development kit

• ESP8266MOD NodeMCU

• Digi XBee cellular 3G modem

• An AWS Account

• MCUXpresso IDE (software)

• Python (version 3 or newer)

• Pip (for installing Python libraries)

• NXP LPC-Link2 JTAG debugger

• HO-P Hall Effect Sensor

• A lab bench power supply

iii

Acknowledgements

This thesis project has been greatly helped by the work on cloud service technology
done by Marit Tundal[80] and the collaboration with Erlend Grande M.Sc. His help
with setting up and using FreeRTOS was of great value. I am also grateful for the
help my girlfriend, Ingeborg Herjuaune, has done in removing grammatical errors
that were present in this thesis report. I also wish to extend my gratitude to my
supervisor, Geir Mathisen, for the initial thesis idea and his helpful advice during
this project.

iv

Contents

Abstract i

Sammendrag ii

Preface iii

List of Figures viii

List of Tables xii

List of Listings xiv

Acronyms xv

1 Introduction 2
1.1 Intended Audience . 3
1.2 The Assignment . 3
1.3 Thesis Structure . 3

2 Theory 5
2.1 General Theory . 5

2.1.1 Linear Regression . 5
2.1.2 Solar Photovoltaic - PV . 5
2.1.3 Measuring Current and Voltage 6

2.2 Communications Standards . 7
2.2.1 Universal asynchronous receiver-transmitter - UART 7
2.2.2 Universal Serial Bus - USB 8
2.2.3 Global System for Mobile Communications - GSM/2G 8
2.2.4 3G . 9

v

2.2.5 Long Term Evolution - 4G LTE/4G 10

2.3 Communication Protocols . 11

2.3.1 Internet Protocol Suite . 11

2.3.2 Message Queuing Telemetry Transport - MQTT 12

2.4 Hardware Platform and modules . 12

2.4.1 Cortex - M4 . 12

2.4.2 Digi XBee . 12

2.5 Software Platforms . 14

2.5.1 OS - Operating System . 14

2.5.2 Real-time Operation System - RTOS 15

2.5.3 FreeRTOS . 15

2.5.4 Amazon Web Services - AWS 16

3 Previous Work 20

3.1 A Study of Existing Embedded Systems 20

3.1.1 Evaluation Criteria . 20

3.1.2 Findings . 21

3.1.3 Comparing the Findings . 22

3.2 Studies on Estimating Electric Power Production By Solar PVs . . . 23

3.2.1 Weather Attributes . 24

3.2.2 Estimation Tools and Techniques 24

3.2.3 Conclusion . 25

4 Specifications and Design 26

4.1 An Overview of the Solution . 26

4.2 The Structure of the Systems . 26

4.2.1 The Embedded System . 26

4.2.2 The Cloud Services . 27

4.2.3 The Cloud Computing . 27

4.3 System Specifications . 27

4.4 Choosing the Embedded Hardware 31

4.4.1 The MCU . 31

4.4.2 The Cellular Modem . 32

4.4.3 The Sensor(s) . 33

4.4.4 The Final Embedded Hardware Setup 34

4.5 The Embedded Software Setup . 35

4.6 The Cloud Service Setup . 35

4.6.1 Database . 35

4.6.2 Cloud Computing . 35

4.6.3 Long Term Storage . 36

4.7 The Final System Setup . 37

vi

5 Implementation 38
5.1 The Embedded System . 38

5.1.1 Overall Implementation and Functionality 39
5.1.2 Changing the Implementation 40
5.1.3 FreeRTOS Tasks . 40
5.1.4 Software, Driver and Libraries 44
5.1.5 The Hardware Implementation 46
5.1.6 The Wi-Fi Implementation 49

5.2 Cloud Computing . 51
5.2.1 MQTT Broker . 51
5.2.2 AWS Platforms . 51

5.3 Scripts Running on the EC2 Instance 52
5.3.1 Accessing the EC2 Instance 52
5.3.2 Overall Python Implementation 52
5.3.3 The Yr Scraper . 54
5.3.4 The MQTT Handler . 55
5.3.5 The Graph Handler . 57
5.3.6 Running the Scripts . 61
5.3.7 Debugging the Python Scrips 62

5.4 Tests . 64
5.4.1 The Embedded System . 64
5.4.2 The Cloud Scripts . 65
5.4.3 The System Test . 66

6 Results 67
6.1 The Embedded System Test Results 67

6.1.1 The Sensor Test . 67
6.1.2 The UART Test . 68
6.1.3 The Modem Test . 69
6.1.4 The ESP8266 Test . 73
6.1.5 The Embedded System Test 74

6.2 The Cloud Scripts Test Results . 76
6.2.1 The Yr Scraper Test . 76
6.2.2 The MQTT Handler Test . 76
6.2.3 The Graph Handler Test . 77

6.3 The System Test Results . 78

7 Discussion 82
7.1 The Tests . 82

7.1.1 The Embedded System Tests 82
7.1.2 The Cloud Script Tests . 83
7.1.3 The System-Wide Test . 83
7.1.4 Limitations of the Tests . 84

vii

7.2 The Implementation Change . 84
7.3 Implementation Challenges and Difficulties 85
7.4 Cloud Computing . 86

7.4.1 Analysis and Estimation . 86
7.4.2 Security . 87
7.4.3 Scalability . 87
7.4.4 User Interface . 89

7.5 Further Improvements . 89
7.5.1 An API Library . 89
7.5.2 Embedded Hardware Setup 89
7.5.3 Remote User Interface . 89
7.5.4 Additional Embedded Features 90
7.5.5 Improved Cloud Computing 90

8 Conclusion 92

9 Future Work 93
9.1 Propositions for Future Work . 93

Appendices 95

A Additional Figures and Listings 96
A.1 Additional Figures . 96
A.2 Sensor Figures . 99
A.3 Additional Listings . 100

Bibliography 101

viii

List of Figures

2.1 A simple graphical representation of measuring the current using a
resistor. 6

2.2 A simple graphical representation of measuring the voltage using an
ADC to translate the difference in voltage between the two inputs
to find Vin. 6

2.3 A simple graphical representation of two microcontrollers connected
using UART.1 . 7

2.4 A graphical representation of the message format of UART2 7

2.5 A graphical representation of the structure of a GSM network3 . . . 9

2.6 The XBee pin layout . 13

2.7 A graphical representation of the AWS IoT structure4. 17

3.1 A picture of the ELITEpro XC . 21

3.2 A picture of the TCG120 . 22

4.1 The LCPXpresso 4367 development board. 31

4.2 The Digi 3G Global Cellular modem. 33

4.3 The HO-Phall effect sensor. 34

4.4 The hardware setup of the embedded system with the different com-
munication standards and protocols used. 34

4.5 The setup of the system with the different communication standards
and protocols used. 37

5.1 What the embedded system looked like at the end of its development. 39

5.2 A flow diagram showing the overall functionality of the embedded
system. 40

5.3 A flow diagram showing the functionality of the sensor reading task. 41

ix

5.4 A flow diagram showing the functionality of the modem receiving
task. 42

5.5 A flow diagram showing the functionality of the MQTT client task.
It includes both the functionality that was implemented (part of the
task setup) and what was planned (the end of the task setup, and
the main task loop). 43

5.6 This figure show the last five bytes in the RX ring buffer. See figure
A.2 in appendix A for a screen shot of the buffer. 46

5.7 This figure shows the actual last five bytes in the message. See figure
A.3 in appendix A for a screen shot of the message presented in the
XCTU software. 46

5.8 A graphical representation of the operation principle of the sensor
set up using passive components. 47

5.9 How the operational principle shown in figure 5.8 was shouldered to
the test board. 48

5.10 A flow diagram showing the overall functionality of all the python
programs. 53

5.11 A flow diagram showing the overall functionality of the Yr scraper. . 54

5.12 A flow diagram showing the overall functionality of the MQTT han-
dler script. 56

5.13 A flow diagram showing the overall functionality of the MQTT han-
dler script. 58

5.14 This figure illustrates how the different plot and zip directories are
set up. YYYY denotes the year, MM the month (01 − 12), DD the
day (01 − 31) and HH the hour (01 − 23). 60

5.15 This figure illustrate the different logging directories were set up. . . 62

6.1 A screenshot of the received UART message and the message being
sent using the RealTerm software. 68

6.2 A screenshot of the local variables in the UART test. The ucTestRec-
vArray contains the received UART message. 69

6.3 A screenshot of the array used to hold the received echo message
during the echo server test. 70

6.4 A screenshot of a part of the RX ring buffer during the MQTT test.
The screenshot only includes modem status messages. 71

6.5 A screenshot of the modemIPResponse structure. The TX Status
variable indicate a resource error[30, p. 118]. 72

6.6 A screenshot of the status ring buffer for the TCP socket during the
paho-MQTT test. All status messages indicate a resource error. . . . 73

6.7 A screenshot of the MQTT.fx software used to subscribe to a open
MQTT broker. 74

x

6.8 A screenshot of the RealTerm software used to send messages to the
ESP8266 during testing. The ESP8266 was set to print out debug
messages for clarity. The last line of is the confirmation message
(0x7E 0xFF). 74

6.9 A screenshot of the content of the buffer 75
6.10 A screenshot of the MQTT.fx software used to confirm that the

MQTT messages were sent correctly to the broker. 75
6.11 One of the 24 plots, from 10:00 to 11:00, generated during the second

day of the system-wide test. The plot corresponds to the log snippets
in listing 6.7 and 6.8. 79

6.12 The plot shows both the power production and the forecasted weather
symbol values. The power production is the average value per hour,
with a one hour resolution. Period 06-04 10 to 06-04 11 corresponds
to the average value of the plots in figure 6.11. 79

6.13 The plot shows both the power production and the actual weather
symbol values. The power production is the average value per hour,
with a one hour resolution. Period 06-04 10 to 06-04 11 corresponds
to the average value of the plots in figure 6.11. 80

6.14 The plot shows the power production and all of the forecasted weather
values. The power production is the average value per hour, with a
one hour resolution. Period 06-04 10 to 06-04 11 corresponds to the
average value of the plots in figure 6.11. 80

6.15 The plot shows the power production and the actual weather values.
The power production is the average value per hour, with a one hour
resolution. Period 06-04 10 to 06-04 11 corresponds to the average
value of the plots in figure 6.11. 81

6.16 The content of the Amazon S3 bucket after the three day long test. . 81

A.1 A screen shot of the output of the hard fault handler implemented
for debugging. 97

A.2 A screen shot of parts of the RX ring buffer 97
A.3 A screen shot of the proper RX IPv4 frame generated by the XCTU

software. 98
A.4 A screen shot from the linear regression calculations performed using

Wolfram Alpha . 99

xi

List of Tables

2.1 The Digi API frame format . 14

2.2 The Digi API frame format . 14

4.1 The first table containing the system specifications 28

4.2 The second table containing the system specifications 29

4.3 The third table containing the system specifications 30

4.4 A comparison of the power consumption of the Digi 3G and the
LTE-CAT modem . 32

5.1 The API frame types that were implemented for sending. 44

5.2 The API frame types that were implemented for receiving. 45

5.3 The pins used connecting the hall effect sensor and the LCPXpresso
4367 . 47

5.4 The pins used connecting the 3G modem and the LCPXpresso 4367 48

5.5 The frame format used in the communication between the ESP8266 and
the LCPXpresso 4367. 50

5.6 The pins used connecting the NodeMCU ESP8266 module and the
LCPXpresso 4367 using UART. 50

5.7 The dictionary used to convert the different weather types to integer
values. Only the weather types present during the testing period
were added to this dictionary. 61

5.8 The URL, IPv4 address and the port number of the MQTT broker
used for testing the MQTT handler. The IPv4 address was needed
because the modem requires it to send TCP messages. 65

5.9 The URL and the port number of the second MQTT broker used
for the system test. 66

xii

6.1 The measured output voltages and integer ADC values during the
sensor test. 67

6.2 The first parsed API message shown in figure 6.4 71
6.3 The second parsed API message shown in figure 6.4 72

A.1 The three most relevant status registers shown in figure A.1 for ad-
ditional clarity. 96

xiii

List of Listings

2.1 The different URL formats that can be used to access an object
stored on Amazon S3. 19

5.1 The content of the cron table of the EC2 instance. 61
5.2 The mqtt handler.service file content 62
5.3 An example of an error written to a log file using the logging and

traceback library. 63
6.1 A small snippet of the log output from the Yr scraper during testing.

Line 5 denotes the start time of the forecast, 6 the stop time, 7 the
type of weather, 8 the wind speed, 9 the precipitation and 10 the
temperature. 76

6.2 A small snippet of the log output from the MQTT callback functions
during testing. 76

6.3 A small snippet of the log output from the AWS handler during
testing. 77

6.4 A small snippet of the log output from the Graph Handler 77
6.5 A small snippet of the log output from the Plot Handler class 77
6.6 The log output from the symbol handler during testing. 78
6.7 A small snippet of the log output from one of the log files generated

by the AWS thread in the MQTT handler during the system-wide
test. 78

6.8 A small snippet of the log output from one of the log files generated
by the MQTT thread in the MQTT handler during the system-wide
test. 78

A.1 A small snippet of the log output from the Graph Handler to illus-
trate a DynamoDB query needs to complete a query. 100

A.2 A small snippet of the log output from the Graph Handler to illus-
trate a DynamoDB query needs to complete a query. 100

xiv

Acronyms

ADC Analog-digital Converter

ANN Artificial neural network

API Application Programming Interface

APN Access Point Name

AT Attention

AWS Amazon Web Services

CISC Complex instruction set computer

CLI Command Line Interface

CMOS Complementary metal–oxide–semiconductor

CP/SS Chip/Slave Select

CPU Central Processing Unit

DC Direct Current

EC2 Elastic Compute Cloud

GPIO General Purpose Input Output

GPR General purpose registers

GPRS General Packet Radio Service

GSM or 2G Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

xv

I2C Inter-Integrated Circuit

IP Internet Protocol

ISR Interrupt Service Routine

ISA Instruction Set Architecture

MISO Master In Slave Out

MOSI Master Out Slave In

MQTT Message Queuing Telemetry Transport

PKCS Public Key Cryptography Standards

PV Photovoltaic

RISC Reduced instruction set computer

RS Recommended Standard

RTC Real-Time Clock

RTOS Real-time Operating System

Rx Serial Receiver

S3 Simple Storage Service

SCL Serial Clock

SDA Serial Data

SDK Software Development Kit

SIM Subscriber Identity Module

SPI Serial Peripheral Interface

SoC System on Chip

TCP Transmission Control Protocol

TCP/IP Internet Protocol Suite

Tx Serial Transmitter

UART Universal Asynchronous Receiver-Transmitter

URL Uniform Resource Locator

1

Chapter 1
Introduction

With the falling cost of computing the usage of embedded systems in industry,
business and private homes is increasing. These embedded systems are often con-
nected to each other though the internet or by some other protocol. The hardware
and software of these embedded systems are designed to perform a limited set of
tasks efficiently. As opposed to a desktop or laptop personal computer, who are
able to perform a wide set of tasks.

Increased integration between embedded systems are also one of the main features,
which includes sharing data, collaboration in solving tasks, etc. This enables the
implementation of practical features, such as remote environmental surveillance.
By placing one or more embedded devices with the means of communicating with
each other or a third party by using the 2G/4G network in a remote location,
critical infrastructure or vulnerable parts of nature can be under remote surveil-
lance. This reduces the labor cost of maintaining what the system monitors, gives
more up-to-date information than inspections would and allows for quicker error
responses.

With the urgent need to change the worlds energy infrastructure, both with re-
spect to the exhaustion of natural resources and the devastating effects of climate
change, from an overwhelming focus on fossil fuels, to a more sustainable and ef-
ficient one. Powered mainly by renewable power sources such as solar, wind and
hydro. To help accomplish this task, distributed embedded system could be vital
to ensure a continues surveillance of the new infrastructure. Energy sources such
as solar and wind are not able to produce a set amount of power like fossil fuels are
able to, but it is indeed possible to estimate what they might produce, with some
uncertainty. For this kind of analysis and estimation, data collection is vital.

2

To ensure that the data collected for these ends are retrieved and handled in a
timely manner a (near) real-time embedded system should be used. This allows
for data to be collected and sent in appropriate time intervals and allows for a
more robust implementation. Using a real-time system would also allow the sys-
tem to handle more critical tasks with greater reliability and, in the case of partial
or complete system failure, try to maintain the normal operation as long as possible.

Such distributed real-time embedded systems should be connected to a cloud ser-
vice infrastructure capable of handling such distributed systems in an efficient and
secure manner. It should also give access to resources for using the collected in a
further analysis.

1.1 Intended Audience

The intended audience for this document is students and professionals within elec-
trical, cybernetic and related engineering fields. The language and content of this
document will reflect this choice. Individuals who do not have the mentioned qual-
ifications will therefore have problems with some of the expressions and concepts
in this document.

1.2 The Assignment

The main goal of this assignment was to implement an embedded system who com-
municate with a cloud service using the 2G/4G network, as far as time permits.
The system should be able to have one or more sensors connected to it, for moni-
toring the power production of solar PV panels. The implemented system should
be real-time, to improve the responsiveness and reliability of the system, since it
might be placed in a remote location handling critical tasks. The embedded system
should be implemented in a modular fashion, allowing parts of it to be exchanged
requiring little modification to the remaining part of the system.

Software used to handle the collected information in the cloud service should also
be implemented. This includes placing the collected data in a database, collecting
information from the internet to be used for further analysis and for analyzing the
collected data. The software should also be implemented in a modular fashion, to
make it easy to add additional locations or pieces of information to the system.

1.3 Thesis Structure

The thesis is structured as follows:

3

Chapter 2 Theory presents the theoretical background of this thesis. It includes
a presentation of the different technologies used in this project and how they
work.

Chapter 3 Previous Work presents contains a presentation of two existing em-
bedded systems with a similar functionality to the implemented system. It
also includes a literary study of how and to what degree different factors
influences the accuracy of predicting the power production of solar PVs.

Chapter 4 Specifications and Design presents the functionality and specifica-
tions of the embedded system. It also describe how the hardware used in the
implementation was chosen and what kind of cloud computing platform was
chosen hanlding the data collected by the implemented embedded system.

Chapter 5 Implementation resents how the embedded system and cloud com-
puting software was implemented. It also describe the design decisions that
were were made and why.

Chapter 6 Results presents the results of the different tests, the measured power
consumption of the system and the stats generated by the different AWS
services.

Chapter 7 Discussion presents an analysis of the results and discusses them. It
will also present suggestions to improving the implemented system based on
said discussion.

Chapter 8 Conclusion presents the conclusion drawn from the discussion in the
previous chapter.

Chapter 9 Future Work presents a list of the possible system improvements
discussed in chapter 7.

4

Chapter 2
Theory

This chapter of the thesis will contain the theoretical background on which this
project builds upon. This chapter will assume that the reader has a basic compre-
hension of information technology, electronics and microcontrollers.

2.1 General Theory

2.1.1 Linear Regression

Linear regression is a linear approach within statistics for modelling the relationship
between a scalar variable Y between one or more dependant (or independent)
variables X[24]. Linear prediction functions are modeled using a set of data. These
prediction functions try to estimate the linear relationship between one or more
chosen input variables and the chosen output. The practical use of linear regression
includes, among other things, estimation and error reduction.

2.1.2 Solar Photovoltaic - PV

Photovoltaic solar cells, or Solar PV, are a type of solar panel that converts light to
electricity[26]. The advantages of using solar PVs include no pollution after instal-
lation, simple scalability and an abundance of silicone, the main component of the
cell. Disadvantages to solar PVs mainly come from their need for direct sunlight.
Dust, clouds and indirect sunlight are among the factors that may negatively affect
the amount of electricity converted from light by the solar PVs.

5

2.1.3 Measuring Current and Voltage

Measuring both current and voltage is accomplished by using the well-known equa-
tion derived from Ohm’s Law. The law states that the current through a conductor
is directly proportional to the voltage across two points. The law can be expressed
using equation 6.1. Where I represents the current through the wire, U the voltage
across the two points and R the resistance of the conductor.

I =
U

R
(2.1)

Using Ohm’s Law, one can measure the current running through a wire by placing
a small resistor on the wire and measure the voltage loss across the resistor.

Figure 2.1: A simple graphical representation of measuring the current using a resistor.

An alternative, less invasive method of measuring the current through a wire is by
measuring the magnetic field produced by the current. This is accomplished by
using a hall effect sensor[85]. The magnetic field is measured by having the power
cable run through a ring formed sensor. The sensor often produces an output
voltage, linearly dependant on the current. The output voltage can be measured
like in figure 2.2, by measuring the difference between the voltage and ground.

Figure 2.2: A simple graphical representation of measuring the voltage using an ADC
to translate the difference in voltage between the two inputs to find Vin.

6

2.2 Communications Standards

2.2.1 Universal asynchronous receiver-transmitter - UART

A universal asynchronous receiver-transmitter is a hardware based device for trans-
mitting digital information in serial and asynchronous manner[19, p. 180]. It is a
robust, moderate-speed and relatively simple way of communicating between ICs.
Due to being asynchronous the UART does not transmit a clock signal between
the sender and receiver. The clocks of the separate micro-controllers are instead
synced within reasonable margins to allow them to process the information they
receive.

Figure 2.3 shows how two microcontroller units are connected using UART. The
serial transmitter (Tx) is connected to the serial receiver (Rx). Both are connected
to the same ground, to give them the same reference point. Figure 2.4 shows how
the data is transmitted using the lines between the UART Tx and Rx. The start
bit is the first bit in the transmission, signaling the end of the idle state. The stop
bit is the last bit in the transmission, signaling a return to the idle state. Bit 7 or
8 is often used as a parity bit, a somewhat crude error-detection mechanism.

Figure 2.3: A simple graphical representation of two microcontrollers connected using
UART.1

Figure 2.4: A graphical representation of the message format of UART2

1Picture originates from All About Circuits[1]

7

The UART operates within a certain voltage range, 0V −VCC , which is often 3.3V
or 5V . The bit value 0 is characterized by a zero voltage over the wire, while a bit
value of 1 is characterized by a voltage of VCC . The number of bits that can be
transmitted over the UART connection is determined by the baud rate. A baud
rate of 9600 means that 9600 bits can be transmitted over the connection in a
second. This gives every bit a period of 104.2µs.

2.2.2 Universal Serial Bus - USB

The Universal Serial Bus was developed to standardize the communication between
computers and connected devices [19, p. 203]. The standard defines the cables, com-
munication protocols and connectors used in the USB. The standard voltage of the
USB is 5V DC, with the USB 2.0 standard having a maximum current of 500mA.
The maximum number of devices connected to one USB network is defined as 127,
with a current maximum data rate of 480Mbps for the 2.0 standard [19, p. 204].

The most basic structure of the USB network is a tiered star. With one host
computer controlling the network. Peripherals, such as keyboard, data mouse or
printers are connected to the host. Hubs can be used to extend the network and
number of available USB ports [19, p.204-205]. The USB cable consist of four pins:

1. The USB device power pin, VBUS(+5V DC)

2. Differential data line, D+

3. Differential data line, D−

4. Power and signal ground, GND

The USB standard defines four types of transfers over the bus[19, p. 206]. The
control transfer, which configures the devices and returns status information. The
bulk tranfer is used for asynchronous movement of data. The isochronous transfer is
used to move time-critical information, such as audio or video data. The interrupt
transfer is used for regular interval moving of data. Data is transferred using
packets, with the packets consisting of a synchronization (SYNC) byte, a Packet
ID (PID), the content and a cyclic-redundancy check (CRC).

2.2.3 Global System for Mobile Communications - GSM/2G

Global System for Mobile Communications (GSM or 2G) is a communication stan-
dard developed by the European Telecommunications Standards Institute to de-
fine the protocols for digital cellular networks used by mobile devices. It was
mainly developed as a response to the over nine competing analog standards within

2Picture originates from All About Circuits[1]

8

Europe[74, p. 11]. The GSM standard was released for the first time in Finland in
1991 and had in 2014 a market share of over 90% [17].

Since GSM is a cellular network, the mobile equipment connects to the rest of
the network wirelessly by connecting to the nearest cell generated by one of many
Base Transceiver Stations. The frequencies of which the wireless signals operate are
mostly within 900MHz and 1800MHz. From the base station the signal is then
sent through the Base Station Controller to the more fixed part of the network. In
order to separate the different mobile nodes in the network a Subscriber Identity
Module, or SIM, is used to identify an individual mobile equipment.

The Network Switching System is the part of the network which carries out the
switching between the different mobile units within the cellular network[35]. The
General Packet Radio Service (GPRS) core network facilitate the transmissions of
Internet Protocol (IP) packets to and from mobile devices within the network[36].

Figure 2.5: A graphical representation of the structure of a GSM network3

2.2.4 3G

The first commercial 3G cellular network was launched in October 2001 in Japan[21].
3G uses the same network structure as GSM, but operates within the frequencies

3The picture originates from Wikipedia[82]

9

of 400MHz and 3GHz[54].

The main difference between a 3G and a GSM network is the upload and download
speeds the different networks provide users. GSM has a maximum uploading and
downloading speed of 256Kbps, 3G has a maximum upload and download speed of
5.7Mbit/s and 21Mbit/s respectively. These numbers vary somewhat depending
on the version of 3G that is used. 3G also allows for greater network security by
using the Kasumi block cipher, instead of the A5/1 stream cipher used in GSM
networks. 3G also allows for a number of services that GSM does not. This includes
GPS, streaming and sending video.

2.2.5 Long Term Evolution - 4G LTE/4G

The first commercial deployment of Long Term Evolution was in 2009 in Oslo,
Norway[22]. Similarly to 3G, 4G uses a similar physical infrastructure as the GSM
network. The main difference visible to users is the increase in speed which 4G is
capable of. The original LTE has an upload and download speed of 50Mbit/s and
100Mbit/s, respectively. Additionally, 4G, unlike 3G and GSM, does not support
transfer of voice calls, only data transfers[23]. 4G also, unlike 3G and GSM, only
uses packet switching when transferring data across the network.

Long Term Evolution for Machines - LTE-M

LTE-M is developed for IoT devices. The standard provides the same coverage as
the orginal LTE, but with a smaller bandwidth, around 1Mbps[86]. This is done
to reduce both the cost and the energy usage of the devices using this technol-
ogy. The LTE-M standard is intended for smart meters, and similar devices, that
does not need send large amounts of data. Devices using this standard should
mainly transmit the information in the form of simple UDP or TCP messages[55],
communication standards such as MQTT might be too much to handle for the
system.

Long Term Evolution for Internet of Things - LTE-IoT

LTE-IoT is similar to the LTE-M standard. The coverage is the same, however,
the bandwidth of LTE-IoT is somewhat smaller compared to LTE-M, 250Kbps[86].
The latency is also a bit larger, 1.6−10s, as opposed to LTE-Ms 10−15ms. Though
neither LTE-M nor LTE-IoT is commercially available yet, LTE-IoT is thought of
possibly being cheaper[48], as it does not require a gateway to function, reducing
the required hardware.

10

2.3 Communication Protocols

2.3.1 Internet Protocol Suite

The Internet protocol suite, often refereed to as TCP/IP because the TCP (Trans-
mission Control Protocol) and IP, are the foundational protocols of the suite[68].
The protocol suite specifies the end-to-end communication, including how data is
packetized, addressed, transmitted, routed and received on the Internet. The suite
consists of four layers, that together make the communication over the internet
possible. The four layers are, from lowest to highest:

• The link layer, which contains the different communication protocols that
operate on the links that the different hosts are connected to.

• The internet layer, which contains the different methods and protocols
which transports packets of data between the different hosts.

• The transport layer, which is a set of methods that facilitate the host-to-
host communication over the internet.

• The application layer, is an abstraction layer which specifies the methods
and protocols used by the hosts of the network. For example servers and
clients.

Transmission Control Protocol

TCP is one of the main protocols of the internet. It is a connection-oriented
protocol, meaning that a connection between hosts is established and maintained
until the exchange is completed on both sides [73]. TCP maintains order in the
packets and error-check their transmission. TCP is a part of the transport layer of
the internet protocol suite[73].

Internet Protocol

The Internet Protocol is the main communications protocol of the Internet Protocol
Suite. The protocol is responsible for giving all the hosts the different addresses,
encapsulating the data transmitted over the network into datagrams and routing
them between hosts[68]. Unique IP addresses are used to route the datagrams to
their correct location. There are currently two main versions of the IP address,
IPv4 and IPv6. IPv4 is the oldest version and consists of 32 bits. It is mostly
represented in a decimal fashion, for example 172.16.254.1. IPv6, on the other
hand, consists of 128 bits and is represented in a hexidecimal fashion, for example
2607 : F8B0 : 4005 : 804 : 200E.

11

Port

Within the Internet Protocol Suite is the end point of a communication between
hosts[90]. A port is always associated with an IP address. Meaning that a given
port, for example number 80 will always be associated with its IP address 1.2.3.4.
The port is therefore often represented in the form of 1.2.3.4 : 80. On most com-
puters there are thousands of enumerated ports, with the 1024 most well known
ports having specific applications associated with them. For example port 8080 is
used for URLs (Uniform Resource Locator) on servers hosting web sites.

2.3.2 Message Queuing Telemetry Transport - MQTT

Message Queuing Telemetry Transport (MQTT) is a publish-subscribe-based mes-
saging ISO standard protocol[25]. The protocol is designed to be used in remote
locations with a small code footprint and works on top of the TCP/IP protocol.
The protocol waits for a connection to be established with the server, and discon-
nects after the MQTT client has finished its necessary work and for the TCP/IP
session to end.

2.4 Hardware Platform and modules

2.4.1 Cortex - M4

The Cortex-M4 is a 32-bit ARM-based microcontroller with 1Mbyte of Flash mem-
ory, upto 192 + 4Kbytes of SRAM, with up to 17 timers (twelve 16-bit and two
32-bit timers) with a maximum frequency of 168MHz. The controller has 140 pins
with interrupt capability and 15 communication interfaces, including:

• 3x I2C

• 4x USART / 2x UART

• 3x SPI

• 2x CAN interfaces

• SDIO interface

The Cortex-M4 controller can be debugged using a serial wire interface (SWD) or
JTAG.

2.4.2 Digi XBee

Digi XBee is a series of radio modules produced by Digi International[83]. These
radio modules operate within the IEEE 802.15.4-2003 for point-to-point commu-
nication. The series includes both cellular modules, using both 3G and LTE, and
the ZigBee standard. Fort shorter range communication.

12

The Digi XBee Hardware

To increase modularity all the Digi XBee modules have the same 20 pin mapping,
see figure 2.6.

Figure 2.6: The XBee pin layout

This standardization allows for upgrading existing or deployed systems with lit-
tle to no hardware modification and can extend product life cycles, according its
producer[52].

Digi API

The Digi XBee modules can communicate using a serial protocol by utilizing the
Digi API (application programming interface). This allows for greater software
modularity, as a driver utilizing the API can be utilized with multiple modules with
little to no modification. The Digi API consist of frames that are sent back and
forth over a serial interface. The API frames have the format shown in table 2.1[30,
p. 111].

13

Frame Fields Byte Description
Start delimiter 1 Always 0x7E
Length 2-3 Most Significant Byte, Least Significant Byte
Frame data 4 - number(n) API-specific structure
Checksum n + 1 1 byte

Table 2.1: The Digi API frame format

The API checksum is found by adding all the bytes in the frame data, then, sub-
tracting the two least significant bytes from 0xFF . To confirm that the checksum
is valid, the two least significant bytes of the summation of all bytes in the frame
data and the checksum should be 0xFF .

The type of API frame is defined by the content of the frame data. The format of
the frame data is shown in table 2.2 [28, p. 112].

Frame Fields Byte Description
API frame type 4 Defines what type of message is sent.
Data 5 - n The data being sent.

Table 2.2: The Digi API frame format

The available frames that can be used by the different modules vary, depending of
the module hardware. ZigBee modules cannot, for example, process cellular API
frames.

2.5 Software Platforms

2.5.1 OS - Operating System

An operation system is a form of software that controls different forms of appli-
cation programs and facilitate the interaction between these applications and the
hardware[77, p. 77]. The OS does this by handling the scheduling of loading data in
to the main memory for application execution and initializing files and I/O-devices.
It also handles software and hardware error that occur during the execution of an
application. This includes trying to correct the error or simply abort the running
of the program, and report it to the user.

14

2.5.2 Real-time Operation System - RTOS

A real-time operating system is characterized by fulfilling five general areas of
requirements[77, p. 477].

• Determinism

• Responsiveness

• User Control

• Reliability

• Fail-soft operation

An OS is deterministic when it is able to perform operations within a predefined
time frame or intervals. If multiple processes competes with each other for re-
sources and processor time, no system will be able to be fully deterministic. In
RTOSs external events, such as interrupts, and timings decide which processes re-
ceive priority for processing time and other resources. Related to determinism is
responsiveness, which is concerned as to how long, after an acknowledgement, an
OS require to service an interrupt. This includes how long it takes for the system to
handle and perform the interrupt service routine (ISR) and the effect of interrupt
nesting. That is, if an ISR can be interrupted by another ISR.

In RTOSs the available user control is normally broader than in ordinary OSs[77,
p. 478]. This includes allowing the user to define the priority of the different tasks
the system performs, such as if the system is to use paging, disk transfer algorithms
and so on.

Reliability is one of the most crucial features of RTOSs. If the function fulfilled by
the real-time system is critical to, for example life support, degradation or loss of
the system may have fatal results. Therefore, real-time systems need to be able to
respond to various failures. This characteristic is called fail-soft operation, which
defines the ability of a system to fail while preserving as much data and function-
ality as possible. A real-time system will therefore try to correct or minimize the
effects of an error it detects, while it continues to run. One of the most important
aspects of fail-soft operation is the stability of the system, which means that the
real-time system is able to meet its most critical deadlines, even if it is unable to
meet them all.

2.5.3 FreeRTOS

FreeRTOS is a widely used RTOS for embedded devices[40]. The FreeRTOS is
licensed under the MIT license, which means that it can be used with few restric-
tions with regards to modifications and selling of products containing the software.

15

Due to the open nature of FreeRTOS a large amount of documentation is available,
which eases the development of embedded systems. It also has a large development
community, making it easier to find solutions to problems that might occur dur-
ing implementation. The FreeRTOS kernel is also a very simple piece of software,
containing only 3 C files[40]. This limits the size of the OS to around 6KB to 12KB.

FreeRTOS is capable of running in a tickless mode to reduce the power consump-
tion of embedded devices[40]. This mode modifies the time interval of time ticks, to
avoid unnecessarily interrupting tasks with time ticks. Doing so reduces the power
consumption of the system, and is often used in mobile devices to increase battery
life. This comes at a cost of a more complex implementation and may increase
the time necessary for the CPU to switch to and from an idle mode[79]. It is also
known for slowing user and kernel transactions somewhat. The tickless mode is
therefore often avoided in systems with strict real-time requirements.

Tasks

FreeRTOS is a RTOS which is organized around independent tasks, with no de-
pendencies between each other or the scheduler itself[44]. Each of the tasks are
provided with their own stack, with the stack the execution context is saved to it,
so that the stacks maintain their state when swapped. Each task is given a pri-
ority, represented by a number[43], where a low number represents a low priority.
The FreeRTOS scheduler will always choose to run the ready task with the highest
priority.

Semaphores

To prevent tasks from accessing the same resource at the same time, and possibly
corrupting it, one can use binary semaphores[41]. When accessing a global resource,
for example a buffer, the task needs to grab a semaphore in order to access it.
FreeRTOS provides a function for this purpose, with the ability for the task to
enter a blocked state if the semaphore is taken, allowing the task currently using
the resource to finish, before grabbing it.

2.5.4 Amazon Web Services - AWS

Amazon Web Services (AWS) is a subsidiary of Amazon, providing on demand
cloud computing platforms to individuals, companies and governments[75]. The
AWS service is located on multiple server farms across the planet. The individual
user pays a fee based on the actual use of the service. AWS provides a 12 month
free trial period, with limited access to the different technologies available on the
platform. AWS acquired FreeRTOS in 2017, and therefore supplies a number of

16

application programming interfaces (API) to the FreeRTOS kernel to ease the
workload of connecting IoT devices to the cloud[76].

AWS DynamoDB

Amazon DynamoDB is a nonrelational database supplied by AWS[4, p. 1]. It
provides storage methods for both document, such as JSON, and key-value items[4,
p. 12]. DynamoDB is, according to Amazon, intended to be used by web scale
applications, such as gaming, media sharing and IoT due to its low latency and
high scalability[4, p. 21].

AWS IoT

AWS IoT is a service provided by AWS for collecting data from devices connected
to the internet[12]. Users have the option of creating applications for monitoring
sensors or other types of embedded systems. AWS IoT facilitates two-way commu-
nication between the devices and the cloud in a secure manner with low latency.
Embedded systems are connected to AWS IoT by utilizing the MQTT protocol[11],
either directly, or by using the Web socket protocol.

Figure 2.7: A graphical representation of the AWS IoT structure4.

AWS IoT allows users to create certificates, to identify and authenticate the dif-
ferent devices connected to the service[11, p. 2]. It also allows user to define rules,
which are macros that can trigger an action based on a message. The action can
be defined by the device that transmitted the message and the message content,
among other factors[11, p. 2]. AWS IoT also allows for remotely accessing and
controlling connected devices. This is accomplished by using the Device Shadow
service[11, p. 236]. It allows the user to define a JSON document, which contain
chosen attributes of a given device. The Device Shadow can be used to monitor

17

the state of a given device, or to remotely change some attributes of the embedded
system, when it is connected to AWS IoT.

AWS Elastic Beanstalk

AWS Elastic Beanstalk is a service for quickly deploying and managing applications
in the AWS cloud[16]. It allows for easy and non-restrictive scaling of the storage
and database services used, and one only pays for the usage of the underlying AWS
services.

Amazon FreeRTOS

Amazon FreeRTOS is an extension of the FreeRTOS kernel discussed in section
2.5.3[6, p. 1]. This includes libraries for securely connection to AWS IoT cloud,
connecting to AWS Greengrass cores5and managing Wi-Fi connections. There
are some available development kits that can be used to quickly deploy Amazon
FreeRTOS[6, p. 4].

In order to utilize Amazon FreeRTOS with embedded systems not included in
this list it is necessary to port it. This is accomplished by implementing soft-
ware for handling logging, connectivity and security[6, p. 63]. For connectivity
this includes implementing TCP/IP communication in compliance with the Secure
Sockets standard[6, p. 64]. Libraries for the cryptographic protocol, TLS, and the
11th version of the Public Key Cryptography Standards (PKCS#11) has also to
be implemented to port the security functions[6, p. 66].

Amazon Elastic Compute Cloud - Amazon EC2

Amazon EC2 is a service providing cloud computing capacity[5, p. 1]. The capac-
ity is available in the form of instances, which are virtual computing environments,
or machines. The CPU, memory, storage and network capacity can be configured
for each of these instances, depending on the requirements[5, p. 1]. The free tier
system specifications allows for running a t2.micro instance for up to 750 hours per
month. A t2.micro instance has access to 1GB of memory and ’Low to Moderate’
network performance, according to the AWS management console.

To secure the communication between an EC2 instance and a remote user, public-
key cryptography is used[5, p. 508]. Key pairs used for access can be created
through the EC2 console, or a command line. The terminal of EC2 instances
can be accessed remotely by using a SSH client, for example the remote terminal
software PuTTY[5, p. 22]. This approach requires that the .pem key file that is

4The figure originates from the AWS IoT documentation[12]
5AWS Greengrass cores are a part of the AWS Greengrass service provided by Amazon. It is

described as a software that extends capabilities provided by AWS to local devices[10, p. 1].

18

generated by AWS is converted to a .pkk file. This can be accomplished by using
the PuTTYGen software[5, p. 512]. To transfer or remove files on an EC2 instance
a command-line tool like PuTTY Secure Copy, or the GUI tool WinSCP can be
used[5, p. 398]

Amazon Simple Storage Service - Amazon S3

Amazon S3 is an object storage service provided by AWS[7, p. 1]. This means that
information stored on the S3 service is identified as objects. These objects contain
the stored data, meta data and a form of unique identifier, or key. This form
of storage allows for storing and retrieving large amounts of unstructured data[7,
p. 3]. The individual objects are organized in different buckets, in Amazon S3;
managed by users. In these buckets, distinct objects are assigned their unique keys
to identify them. S3 allows for storage of vast amounts of data, users storing up
to 50TB pays 0.023USD for each GB per month, while users storing over 500TB
pays 0.021USD[13]. It allows users to retrieve the objects stored on it by using
associated URLs with the formats shown in listing 2.1.

1 http://s3.amazonaws.com/bucket/key
2 http://bucket.s3.amazonaws.com/key
3 http://bucket/key

Listing 2.1: The different URL formats that can be used to access an object stored on
Amazon S3.

These formats allows S3 to be used to host web pages or information used by smart
phone apps. It also allows users to generate time-bounded URLs. These gives a
third party limited period access to a bucket, or some of the objects.

19

Chapter 3
Previous Work

This chapter will contain a study of two available commercial embedded systems
with a similar functionality to the system implemented by the author of this thesis.
It will also contain a review of a couple of scientific papers looking at how best to
predict the energy production of PV solar panels. This is done by investigating
what kind of weather attributes matter the most and in what ways.

3.1 A Study of Existing Embedded Systems

3.1.1 Evaluation Criteria

The evaluation of these embedded systems was conducted with these features in
mind:

• Energy consumption

• Price

• Wireless and wired communication

• Accompanying Software

• Cloud Integration

• Scalability

20

3.1.2 Findings

Finding 1: ELITEpro XC

According to Dent Instruments the ELITEpro XC is a portable energy log-
ger solution for pinpointing electric usage, recording and analyzing electrical
consumption[49]. It has four channels which are able to measure 0−600V AC or DC
for single or three phase systems and analog inputs that can measure 0 − 10V DC
and 4−20mA. For storage it has a 16MB non-volatile memory for multiple months
of logging data. The ELITEpro can be configured using USB, Bluetooth or Wi-Fi
with the ELOG software. It consumes a maximum of 500mA with a voltage of
6 − 10V DC, which means it has a maximum power consumption of 3 − 5W . The
ELITEpro XC is powered by the bus line it monitors. The ELITEpro XC costs
around 1, 350USD[2].

Figure 3.1: A picture of the ELITEpro XC

Finding 2: TCG120

The user manual for the TCG120 describes it as a remote monitoring controller
for distributed surveillance and control [78]. The TCG120 has two digital inputs
with ”dry contact” and ”logic level” modules, two analog inputs (0− 60V DC) and
1-Wire support for up to four Teracom temperature or humidity sensors. It can
use the GSM network to push its logged data using the HTTP post method on
a remote server. The TCG120 can be configured using a USB or SMS and the
firmware can be updated using a USB cable or GPRS. The TCG has a price tag

21

of 159EUR [3] and has a maximum power consumption of 0.76W 1.

Figure 3.2: A picture of the TCG120

3.1.3 Comparing the Findings

Energy Consumption

There are some variation in the energy consumption of these embedded systems.
The ELITEpro XC has the highest known energy consumption of 5W , while the
TCG120 consumes less than 20% of that, with a maximum of 0.76W .

Price

The ELITEpro XC is by far the most expensive of the embedded systems. This
might be the result of the intended usage of the system. It is, as opposed to
the TCG120, a mobile and robust system used in an industrial setting, while the
TCG120 is not intended for such harsh environments. It is used as stationary
equipment in relatively friendly locations.

Wireless and Wired Communication

The ELITEpro XC is unable to communicate using the GSM network, but it is also
the only one that can use Wi-Fi and Bluetooth for nearby wireless communication.
The TCG120, on the other hand, uses an embedded GSM modem for remote
wireless communication and control.

Both the ELITEpro XC and TCG120 uses analog and digital inputs for

1The figure was sent using email by one of the employees of Teracom as a response to a request
written by the author of this thesis.

22

data collection and both can connect to a host computer using USB. Neither uses
any industrial standards, such as RS-485.

Accompanying Software

Both embedded systems can be configured using a wireless network protocol and
their own dedicated software. The ELITEpro XC uses ELOG and the TCG120 TC
Monitor.

Cloud and Server Integration

The ELITEpro XC has a primitive internal web server2. This is intended to be
used for remote access through PCs, smart phones etc[50, p. 126]. The TCG120 on
the other hand is intended to send HTTP post messages to a remote server, and is
accessed using commands.

Scalability

Neither of these two embedded systems are intended to be scaled up to a large scale
systems. The ELITEpro XC is a mobile unit intended for short-term installation
to pin point power usage. The TCG120 on the other hand, is intended for up to
medium-size systems and permanent installations.

Conclusion

The ELITEpro XC is a portable and robust system intended for a rough envi-
ronment; the factory floor. This functionality is reflected in its relatively high
price, few connections and that it receives its power from the line it monitors. The
TCG120 is intended for a permanent an distributed installation in a more friendly
environment. Its server integration allows for scaling up to a medium sized system,
something the ELITEpro XC is not designed to do. This difference in operation is
reflected in the TCG120’s relatively low price compared to the ELITEpro XC.

3.2 Studies on Estimating Electric Power Produc-
tion By Solar PVs

This section will summarize the literature study conducted by the author of this
thesis on the estimation of solar PV power production. The section will look at
how different attributes of the weather affects the power production and what kind
of mathematical and technical tools have been used to conduct these studies and
what can be used for this thesis. It will not go into technical details regarding the
different AI and statistical methods described here.

2No other mentions of servers were found in the user manual of the ELITEpro XC.

23

3.2.1 Weather Attributes

A study conducted at the Huazong University of Science and Technology in
China found that the most useful weather attributes for estimation were solar
irradiation, wind speed, air temperature and relative humidity[20, p. 2862-2863].
With the form of the graph of solar irradiation being almost identical to the one of
power output. Both temperature and wind speed have a positive correlation with
the power production. Where higher temperatures seem to correlate with solar
irradiation and with the wind cooling down the solar panels, thereby increasing
their efficiency. Relative humidity negatively correlates with the power output.

The results of this study is supported by others, where the inclusion of all
available weather data gave the best solar power estimations[58, p. 94]. This study
used the temperature of the solar cell, ambient temperature, solar irradiance (on
both a 3° and 15° tilt).

The type of weather also has a significant effect on how accurate an estima-
tion is. Chen, Duan, Cai and Liu found that during sunny days, their estimation
have a correlation coefficient in the range of 98 − 99% with a mean absolute
percentage error of between 8.29 − 10.8%[20, p. 2868]. Cloudy days have a
sightly lower accuracy, with a correlation coefficient of 96 − 99% and a mean
absolute percentage error of maximum 15.08%. Rainy days are far more difficult
to estimate, with a correlation coefficient as low as 48.92% and a mean error of
24.16− 54.44%. A note written by Geir Mathisen also underscore this difficulty in
estimating the power of solar PV in locations with few sunny days[59]. Figure 5 in
the note shows how snow that has fallen on the solar cells stops nearly all power
production by preventing the solar rays hitting the PV cells.

3.2.2 Estimation Tools and Techniques

Every single paper that was studied for this thesis used some form of linear
regression to estimate power output of solar PVs based on different environmental
factors. What separates the different papers is the tools and techniques used for
finding the expression used in the linear regression formulae.

The majority of the scientific papers on the estimation of solar power that
was used for this section utilized Artificial Neural Networks (ANN) as the machine
learning tool for improving their estimation[20, 58, 71]. Another, older study, used
the Sigmund function together with a form of quality control of the data points[53].
This quality control included among other things limiting the maximum solar
irradiance a given data point could have, to prevent exceptional situations from
distorting the analysis and predictions[53, p. 884].

24

Looking at values of the mean squared errors (MSE) of the papers, the au-
thors who uses ANNs often get the most accurate data. As described above, Chen,
Duan, Cai and Liu had at times a MSE of less than 15.1%, with an average MSE
of all days of 19.145%3, while the Ruiz-Arias , Alsamamra, Tovar-Pescador and
Pozo-Vázquez had a MSE of at least 20 − 25%, with a far larger data set from a
larger number of locations, with additional quality control of the input data.

3.2.3 Conclusion

The number of sunny days seems to be the main environmental factor in how
difficult it is to estimate the amount of power produced from solar PVs. Clouds,
rain and particularly snow seem to make the estimation quite difficult, even when
advanced statistical methods and powerful tools such as ANNs are used. The type
of tools used to estimate the regression formulae is also of great importance. ANNs
gives the best predictions given a particular amount of information. Other tools,
such as the Sigmund function can give almost as accurate predictions, but need
more data from multiple sources over a longer period of time, and a form of quality
control over the collected data.
———————————————————————

3The percentage was found by calculating the average value of the twelve MSEs in Table 1 in
the paper by Chen, Duan, Cai and Liu[20, p. 2868]

25

Chapter 4
Specifications and Design

This chapter of this thesis will define the specifications of the embedded system and
the cloud services that is to become the solution of this master thesis. It will also
describe the process of choosing the hardware, software and other services used in
the implementation of the system and which alternatives were considered.

4.1 An Overview of the Solution

The main function of the implemented embedded system is to monitor the power
production of solar PVs. The collected data is then handled by the embedded
system and then transmitted to a cloud service using the cellular network. The
collected solar PV data is to be computed together with scraped forecast data to
try to estimate the power production for the next 24 hours.

4.2 The Structure of the Systems

The system can be divided into three main modules, that can be split into mul-
tiple modules. The embedded system, which collects the power production data
and transmits it to AWS, the AWS services utilized and the computing which is
performed in the cloud service.

4.2.1 The Embedded System

The embedded system will consist of a hall effect sensor, used to measure the power
that goes through a power cable. The sensor is connected to one of the analog
inputs of the Cortex-M4 based MCU. The information collected by the sensor will

26

then by sent to the cloud service by using the cellular modem. The modem will be
connected to the microcontroller by using a serial interface.

The Micro Controller Unit - MCU

The MCU to be used for the embedded system needs to have the an adequate
amount of pins for communicating with its peripherals. This includes multiple
serial interfaces available to used for communicating with the 2G/4G modem and
GPIOs for sensors.

The Sensor(s)

One or more sensor units are to be connected to the main system. The sensor
needs to be able to handle voltage and current produced by the solar PV system.
It should also be possible to change the sensor with little to no modification to the
PV installation.

The 2G/4G modem

One of the main objectives of the system is to send data over the 2G/4G network.
Therefore, 2G/4G modem needs to be connected to the main embedded system.
The modem should have one or more serial interfaces that can be used to connect
it to the microcontroller.

4.2.2 The Cloud Services

The cloud service should be able to provide one or more databases to store the
collected power and forecast information. It also needs to provide cloud computing,
for handling the collected data.

4.2.3 The Cloud Computing

The cloud computing should be run using software that utilize the various tools
of the platform. The chosen programming language and structure should be in a
fashion that allows for a stable, secure and relatively fast implementation.

4.3 System Specifications

The following tables describe the system specifications in the form of product re-
quirements and how their functionality is confirmed using the appropriate tests.
The specifications were designed based on the findings from section 3.1.3 and the
system structure presented in the previous section. They are meant to specify the
functionality of a system ready for deployment in the field.

27

Req ref Product req Acceptance req Test ref

PR-1

The system shall be able
to communicate over the
2G/4G network with a
cloud service or server for
transmitting recorded sen-
sor data.

Add elements to a
database stored on a
cloud service.

TR-1

PR-2
The system should be able
to obtain data from one or
more sensors

Communicate with one or
more sensors.

TR-2

PR-3

The system should be able
to store data received from
its sensor modules on a non-
volatile storage, with a time
stamp.

See that the appropriate
files exist on the non-
volatile storage, with the
correct content.

TR-3

PR-4

The data stored in the
cloud service or server
should be used for fur-
ther computation and
estimation.

The data stored at the
cloud service is accessed
using tools provided by
the cloud platform.

TR-4

PR-5

The system is implemented
in such a fashion that it is
able to function under real-
time constraints.

The system uses an oscil-
lator for time synchroniza-
tion.

TR-5

PR-6

The system is able to han-
dle loss of power, both for
short and longer periods of
time.

The system is equipped
with a rechargeable bat-
tery to be used if the sys-
tem loses its main power
supply.

TR-6

PR-1.1

Use a 2G/4G modem con-
nected to the system using
a serial protocol to commu-
nicate with the cloud ser-
vice.

Send and receive confir-
mation that the messages
reached the cloud service
or server.

TR-1.1

PR-2.1
Use a means of communi-
cating with the connected
sensor(s).

Read the sensor output. TR-2.1

Table 4.1: The first table containing the system specifications

28

Req ref Specification Acceptance req Test ref

PR-3.1

Use an external module,
connected to the control
module for long-term stor-
age.

Read and write to files
stored on the storage unit.

TR-3.1

PR-4.1

Use the provided tools for
data analysis and estima-
tion provided by the cloud
service or the programming
language used to implement
them.

The collected data is ana-
lyzed.

TR-4.1

PR-5.1

The system is sufficiently
deterministic to meet its
most critical deadlines to
perform its intended func-
tion.

The system is able to meet
its deadline below a cer-
tain maximal amount of
work.

TR-5.1

PR-5.2

The system is able to han-
dle unforeseen events, er-
rors and accidents, by fail-
soft-operations.

The system is able to func-
tion properly when ex-
posed to some simulated
errors and events.

TR-5.2

PR-6.1
Simulate a temporary loss
of power from the supply.

The system is able to han-
dle simulated loss of power

TR-6.1

PR-1.1.1
Send a TCP/IP message to
a cloud service or server.

Confirm that the message
is received.

TR-1.1.1

PR-1.1.2
Add standardized test data
to the database located in
the cloud service

Confirm that the test data
is added to the database.

TR-1.1.2

PR-2.1.1
Read the measured sensor
value(s).

Read the sensor content
either in a log file, or
through debugging.

TR-2.1.1

PR-2.1.2
Compute the sensor
value(s) if needed for
further use.

Confirm the computa-
tional result by either
reading a log file, or
through debugging.

TR-2.1.2

PR-3.1.1
Write a standard text string
to a text file on the storage
medium.

The file contains one or
more instances of the text
string with appropriate
time tamps.

TR-3.1.1

Table 4.2: The second table containing the system specifications

29

PR-5.1.1
The system is able to han-
dle the loss of a sensor.

The correct handling of
loss is confirmed through
debugging or logging.

TR-5.1.1

PR-6.1.1

The system behaves in an
appropriate manner when
it loses its power supply
based on workload and re-
maining battery charge.

Confirm the correct be-
haviour either by reading
a log file, or through de-
bugging.

TR-6.1.1

PR-1.1.1.1
A modem capable of using
the 2G/4G network.

TR-1.1.1.1

PR-1.1.1.2
A server accessible through
the internet.

TR-1.1.1.2

PR-1.1.2.1
A database located in a
cloud storage service.

TR-1.1.2.1

PR-2.1.1.1

A sensor capable of han-
dling a medium amount of
current (min. 10A) and
that require little modifica-
tion to the current line.

TR-2.1.1.1

PR-3.1.1.1

A hardware module con-
taining a medium for non-
volatile, long-term storage
of data.

TR-3.1.1.1

PR-3.1.1.2

A hardware module for ob-
taining an accurate times-
tamp. For example a real-
time clock.

TR-3.1.1.2

PR-4.1.1.1

A platform for running
the analytical tools and/or
programs, and a storage
medium or database for
handling the result.

TR-4.1.1.1

Table 4.3: The third table containing the system specifications

30

4.4 Choosing the Embedded Hardware

This section describes what kind of hardware were chosen to implement the em-
bedded system and why.

4.4.1 The MCU

The MCU was not chosen by the author of this thesis, but by the supervisor in
an effort to standardize the hardware across multiple thesis projects1. The NXP
LCP4337 Cortex-M4 MCU was therefore chosen[64] for its low price and power
consumption. The LCPXpresso 4367 development board was used to prototype
the embedded system[65]. Choosing the LPC board platform gave access to the
hardware specific functions provided by the LPCOpen library[63]. This eliminated
the need to implement the low-level functions for UART communication to be
used during the implementation phase of this thesis.

According to its product page, the LCPXpresso 4367 development board is
a low cost platform for developing software for NXPs ARM based MCUs. The
board has an attached JTAG-debugger, which uses the board’s UART. The UART
can be freed during debugging by using the LPC-Link 2 debugger[66], that uses
the 10 pin segger port on the LCPXpresso 4367 to connect to the board.

Figure 4.1: The LCPXpresso 4367 development board.

1This includes the master thesis written by Erlend Grande M.Sc.[45]

31

4.4.2 The Cellular Modem

The choice of cellular modem to connect to the rest of the embedded system was
made with the following criteria in mind:

• Price

• Connectivity

• Power Consumption

• Amount of support, from the producer and the community around it

• Partnerships, or any other forms of guarantees with cloud services

Based on the criteria defined above, the Digi XBee Cellular 3G was chosen[28].
This was a result of its relatively low price, that it can be connected to by using
UART or SPI, their costumer support was helpful and that their user forum had
some activity. It also helped that Digi is an official partner of AWS[29]. The
modem also uses the Digi specific API. This allows the multiple Digi modems to
be controlled using the same software utilizing the API, allowing for a greater
amount of modularity.

An alternative to the Digi 3G modem is the LTE-CAT version. The author
of this thesis ended up choosing the 3G version for a couple of reasons. The 3G
version is cheaper (709NOK[62] vs. 787NOK[61]). Another is the higher power
consumption of the LTE-CAT version[31], which compared to 3G modem is as
follows[30].

Operation Mode 3G LTE-CAT
Transmit 702mA @ 3.3V Avg. 860mA @ 3.3V

425mA @ 5V Max. 1020mA @ 3.3V
Receive 224mA @ 3.3V Avg. 530mA @ 3.3V

160mA @ 5V
Idle/Listening 87mA@3.3V 143mA@3.3V

73mA @ 5V
Deep sleep 10µA @ 3.3V Approx. 10µA@3.3V

Table 4.4: A comparison of the power consumption of the Digi 3G and the LTE-CAT mo-
dem

From table 4.4 we see that when transmitting data, the LTE-CAT modem uses
approximately 30% more power, and more than double when receiving data. The
LTE-CAT will use a shorter amount of time when transmitting and receiving infor-
mation than the 3G version, reducing the gap. However, the author of this thesis

32

believe that this will not reduce the total power consumption sufficiently. This is
because the modem is not intended to send or receive large amounts of informa-
tion. Since the LTE-CAT also consumes almost the double when idle/listening the
possible transmission offset will in all likelihood not make that much difference.

Figure 4.2: The Digi 3G Global Cellular modem.

4.4.3 The Sensor(s)

The choice of the sensor module to be connected to the embedded system was
chosen with the following criteria in mind:

• Robustness

• Simplicity

One of the sensors that was considered for monitoring was the LTC4151 voltage
and current sensor[57]. It can measure voltage in the range of 7 − 80V and a
current with the current limited by the measuring resistor. This sensor was not
chosen due to the fact that it uses the I2C standard and because it would require
a physical modification to the power line to be measured. This would complicate
the installation and require more work related to the implementation process.

The chosen sensor was the Current Transducer HO-P hall effect sensor[56].
It has the advantage of not needing to modify the power cable to measure the
current running through a cable. The sensor only requires that the cable is put
through its ring to measure the current. The sensor is able to measure up to
25A, but can be changed if needed. The sensor is described as being 99% linear.
Because it produces an output current, the system only use an ADC to read the
value of the sensor. This can be accomplished using some of the functions provided
by the LPCOpen library. Thus reducing the needed time for implementing the
system.

33

Figure 4.3: The HO-Phall effect sensor.

The HO-P has an output voltage in the range of 2.5V − 5V . While the ADC on
the LCPXpresso 4367 is able to handle such voltages, it is only able to measure
up to 3.3V . The voltage therefore has to be divided, to two-thirds of its original
value, so that the range is 1.7V − 3.3V , to allow the LCPXpresso 4367 to measure
the maximum output of the sensor.

4.4.4 The Final Embedded Hardware Setup

See figure 4.4 for a graphical representation of the final hardware setup used for
the implementation of the system. The HO-P is connected to the LCPXpresso
4367 by a 5V and GND connection, giving in an input current and signal ground
for the voltage output. The output voltage is divided as described in section 4.4.3.
The LCPXpresso 4367 is powered by a USB cable and is connected to the Digi 3G
modem by its UART. The modem is placed on its development board and powered
by a standard power cord, giving it an input current of 5V and 1.5A.

Figure 4.4: The hardware setup of the embedded system with the different communi-
cation standards and protocols used.

The cellular modem is to be encapsulated together with the development board

34

when the final system is deployed. The embedded system is designed for permanent
installation, unlike the ELITEpro XC.

4.5 The Embedded Software Setup

Since the embedded system is to be a real-time system, the software to be used
for the embedded needs to enable real-time capabilities for it. For this reason, the
most widely used OS for MCUs, FreeRTOS, was chosen as the software platform
for the embedded system. It was chosen for its broad use and support. Reducing
the necessary time for implementing the embedded system, and potential errors. It
was also chosen in order to standardize the software implementation over multiple
thesis projects.

4.6 The Cloud Service Setup

The evaluation of the cloud service to be used was mainly based on the work
done by Marit Tundal[80]. AWS was therefore chosen for its thorough and easy to
navigate documentation[80, p. 15]. The fact that FreeRTOS is currently owned by
Amazon, and that they have released their own version of the OS, called Amazon
FreeRTOS[76] makes an even stronger case for using their platform instead of for
example Microsoft Azure, or Google Cloud Platform, since the majority of their
services with regards to IoT is quite similar.

4.6.1 Database

To store the information collected by the embedded system, the NoSQL database
DynamoDB will be used. This gives the possibility of integrating the system with
AWS IoT, allowing for increased scaling, customization and security.

4.6.2 Cloud Computing

For performing the cloud computing, an EC2 instance will be used to simulate an
Ubuntu machine. This will allow the system to use all the functionalities of Linux
for the handling and computing of data.

The software used to handle the data located in the DynamoDB database
will be written in Python. This is done to take advantage of the vast amount of
available open-source libraries for a speedy and high quality implementation of the
needed software. While Python may not be as resource efficient as for example C,
this is not a concern, as the intended workload is not particularly intensive, and
the decrease in the necessary work to implement the solution far outweighs any
loss in efficiency.

35

The following Python programs will be implemented to run on the EC2
instance.

Yr Scraper

The Yr Scraper will run periodically on the EC2 instance and collect the weather
forecast, and the actual weather data on one or more locations. The scraped
weather data will come from Yr, the Norwegian weather service.

MQTT Handler

This program will handle the data transmitted by the embedded system to the
MQTT broker. It will retrieve the messages it receives when subscribed to one
or more topics. It will then place the collected messages into the appropriate
DynamoDB table. The messages stored in this table can later be used by other
parts of the system for further analysis and computation.

Graph Handler

This script will use the data collected by the Yr scraper, and the embedded system
to generate plots for a graphical visualization to be used for further analysis. It
will also analyze the collected data and try to make estimations for the power
production for the next 24 hours based on historical data, and previous analysis.

4.6.3 Long Term Storage

To store any output from the different Python scripts described above for a longer
amount of time, Amazon S3 will be used. This service was chosen for its ability to
store vast amounts of data, and the possibility of making the information stored
available for third parties at a later date. It also allows the system to use fewer
APIs, as the tools used to access the DynamoDB tables can be used to access
Amazon S3 buckets.

36

4.7 The Final System Setup

See figure 4.5 for the final system setup.

Figure 4.5: The setup of the system with the different communication standards and
protocols used.

The embedded system will collect data using one or more sensors, and periodically
send the information using its 3G modem using the MQTT protocol to an open
MQTT broker. A Python program running on an EC2 instance on AWS will
continuously subscribe to the appropriate topic on the broker, and when it receives
a valid message from the broker, the program will handle the message and place
it in the appropriate DynamoDB table.

The other Python programs running periodically on the EC2 instance will
also place information in their respective DynamoDB tables. One for the scraped
weather forecast data. Amazon S3 buckets will be used for long term storage of
any files and plots from the analysis of the data stored on the different tables.

37

Chapter 5
Implementation

This chapter will go through the implementation of the embedded system and
its modules, the software that was implemented for running in the cloud service
provided by AWS and how these services were set up. The chapter will also de-
scribe which tools were used for testing and debugging the different modules of the
overall solution and end with a description of the tests used to confirm both the
functionality of the sub systems, and the system as a whole.

5.1 The Embedded System

This section explains how the embedded system was implemented using the soft-
ware and hardware specified by the supervisor and the author of this thesis. See
figure 5.1 for how the embedded system looked like at the end of the implementation
phase of this thesis.

38

Figure 5.1: What the embedded system looked like at the end of its development.

5.1.1 Overall Implementation and Functionality

The main functionality of the embedded system is to measure the current running
through a cable, temporarily store it locally before sending the data periodically
to a cloud service using a 3G modem and the MQTT protocol. To accomplish
this functionality, both the hardware and software of the embedded system were
organized in a modular and intuitive fashion. Both the sensor and the modem
have their respective source and header files.

When the system boots up it runs through the normal operations that characterize
a FreeRTOS system. System-wide hardware is initialized, the different tasks are
defined with their respective handler, priorities and stack sizes before being started
by the vTaskStartScheduler() function. Afterwards, the task with the highest
priority is given processor time, until it uses a vTaskDelay() function, which puts
the task to sleep for a specific number of processor ticks. Then the next task is
run, until it calls next delay function. If there are implemented tasks that needs
to be run, the FreeRTOS idle task is run, ensuring that there are always at least
one task occupying the processor. See figure 5.2 for a flow diagram of the overall
functionality.

39

Figure 5.2: A flow diagram showing the overall functionality of the embedded system.

The system is intended to consist of three main tasks. One is used to handle the
sensor, reading the ADC value and perform some minor computing using these
value. The second is the task used to connect to the MQTT broker, and publish
messages to a topic when the system is connected to the broker. The third task
is used for receiving messages from the 3G modem. Since it may send status
messages depending on the state of modem, being able to receive and handle the
information is essential. A fourth and smaller task was also implemented. It turns
one of LEDs of the LCPXpresso 4367 board on and off. This was done to give a
visual confirmation that the system was running.

5.1.2 Changing the Implementation

As a result of time constraints, bugs and other issues, the implementation of the
embedded system was changed towards the end of the implementation period.
The Digi 3G cellular modem was replaced with the ESP8266 NodeMCU module.
This changed both the hardware and software implementation. Due to the less
sophisticated nature of the communication between the LCPXpresso 4367 and the
ESP8266, versus the communication with the 3G modem, the number of FreeRTOS
tasks was reduced by one. The task used to receive messages was was no longer
necessary. The technical details of this implementation will be discussed below,
and a more thorough discussion of this decision will be conducted in section 7.2 of
this thesis.

5.1.3 FreeRTOS Tasks

This subsection elaborates on how the different FreeRTOS tasks described in sec-
tion 5.1.1 were implemented for this thesis.

40

The Sensor Reading Task

The sensor reading task starts by setting up the ADC, using the prvADCSetup()
function. This function sets it up by using the board specific function provided
by the LPCOpen library. Then it sets up the ring buffers used to hold the read
sensor values.

After this, the task starts its while loop. First it calls on the handleHallSensor()
function. This function reads the ADC value and then places it into the ring
buffer intended for the sensor. It then checks if the ring buffer is full. If yes, it
pops every single value and calculates the average value using the prvGetAver-
ageHallSensorValue() function. It then calculates the ADC bit value into the
corresponding ampere value, using the prvHallValueToAmp() function. Finally
the ampere value is added to the ring buffer used for all sensors, to be used by
other tasks. See figure 5.3 for a flow diagram of the sensor reading task.

Figure 5.3: A flow diagram showing the functionality of the sensor reading task.

41

Modem Receiving Task

The modem receive task starts by setting up the modem, which includes setting
up the UART hardware. Then it starts on the main loop. It checks if there are
any bytes to be read in the RX ring buffer. If no, the task is put to sleep, before
trying again. If there are bytes in the RX buffer, the modem checks if it is currently
reading a message. If not, it reads the first four bytes stored in the ring buffer. If
the bytes are from a valid API message, these bytes will include the start delimiter,
length of the message type. The task first checks if these bytes are valid. If they
are, it uses the length bytes to read the remaining of the message in the RX buffer.
Then, depending on the message type, the task handles the message. If it has
received a status message, it is placed in the socket0 status buff ring buffer, which
holds the status messages related to a given socket. If the received message is a RX
IPv4 message, it is placed in the socket0 buff ring buffer. So that the content can
be retrieved by a modem recv function later(see the section on the modem driver
in section 5.1.4). Figure 5.4 shows a flow diagram of the modem receiving task.

Figure 5.4: A flow diagram showing the functionality of the modem receiving task.

42

The MQTT Client Task

The MQTT client task starts declaring its local variables. Then it waits until
the modemReadyFlag is pulled high, before starting to set up the network and
MQTTClient structures, provided by the paho library. After this, the client uses
the NetworkConnect() function to set up the modem socket. Next, it starts the
paho MQTT thread, used to handle the connection. Next, the MQTTConnect
was called to connect to the chosen MQTT broker.

Unfortunately this is a long as the author of this thesis came in implement-
ing this FreeRTOS task. The plan was to model the client task after the echo
example provided by the paho library[33]. After the system had connected to the
chosen topic, it would publish messages when sensor values became available. See
figure 5.5 for a flow diagram showing how far the implementation got, and what
was intended.

Figure 5.5: A flow diagram showing the functionality of the MQTT client task. It
includes both the functionality that was implemented (part of the task setup) and what
was planned (the end of the task setup, and the main task loop).

43

5.1.4 Software, Driver and Libraries

UART Driver

The UART driver for the embedded system was developed by using the board
specific UART functions implemented by the producers of the development board.
The functions were accessed by using the hardware specific board.h file. The
functions were found by reading and testing different example projects.

The driver uses two 256 byte ring buffers to both transmit and receive data
on the UART pins. The data is sent and received using interrupt that call on the
board specific Chip UART IRQRBHandler() function, that handles the sending
and receiving of bytes on the UART. An unsigned character array is transmitted
by using the implemented uartSendString() function. For receiving of bytes,
the uartReceiveString() function was implemented. It runs until the board has
received a predefined number of bytes, or until a timer has run out. This was
implemented by using the xTaskCheckForTimeOut() function provided by the
task.h. The ring buffer used for receiving bytes on the UART is only called when
the UART interrupt flag is high. Two semaphores are used to control the access
to the TX and RX ring buffers respectively, to avoid race conditions.

The API Parser

In order to control the 3G modem, the Digi API was used. This was done
to avoid defining a new protocol for the modem. To utilize the API a set of
functions was implemented to generate and parse the different frames. A number
of macros were defined in the header file api frame lib.h to ease the work. This
header file included the integer values of the different message types, some of the
modem status responses and the byte offset values of some of the frame types. A
function for generating the message length and check sum was defined to increase
modularity of the modem driver.

The parser implemented to handle the sending the API frames shown in
table 5.1.

API message Usage
TX IPv4 Used to send IP messages over the internet.

Is able to communicate over UDP, TCP or SSL.
AT Command Used to perform cellular commands, such as if it

is registered to the cellular network, or the signal strength.
Does currently not support AT commands with parameters.

Table 5.1: The API frame types that were implemented for sending.

44

The parser was able to handle the messages shown in table 5.2 from the modem

API message Usage
TX Status Indicates the success or failure of a TX frame.
AT Command Response The response of an AT command. Indicates the

status of the operation. And may contain
additional data.

Modem Status Cellular status messages sent by the modem in
response to certain conditions.

Table 5.2: The API frame types that were implemented for receiving.

Typecasting was used to convert any provided data that was represented as integer
values, such as IP addresses, port numbers and the defined macros. To get the
appropriate byte values to represent the length using two bytes, the getAPIMs-
gLenght() function was implemented, and the check sum is calculated using the
getAPIMsgChecksum() function.

Modem Driver

The driver communication functionality of the driver was modeled on the functions
used in the FreeRTOS+TCP stack[42]. This includes the functionality to create
a socket, set its target IP address and port number and sending and receiving
data on this socket. The modem socket() function creates a socket, similarly to the
FreeRTOS socket() function. modem connect() sets the target IP address and port
number and sends a TCP ping message to establish a socket connection. If it is
successful, the modem send() function can be used to send an IPv4 message to the
socket destination. The modem recv() is used to receive data on the socket. The
modem was implemented to handle only one TCP socket. This choice was mainly
a result of time constraints and simplicity. The access of the global socket buffers
were controlled using semaphores.

MQTT Communication

The paho-MQTT library for embedded C[34] was used to implement the
MQTT communication with the broker. The files located in MQTTClient-C
and MQTTPacket directories were added to the source and include folders of
the project. This was done after some time had been used to try to use it as
a Dynamic Link Library (DLL), but was abandoned after talking to NXP support1.

Some modification was needed to to be able to use the library. This mainly
involved the MQTTFreeRTOS.c and MQTTFreeRTOS.h for the library to use

45

the modem specific functions and to change the name of some macros to avoid
duplicates.

Problems with the Modem Solution

The problem originated from that the RX ring buffer on the LCPXpresso 4367 did
not receive the last two bytes of the message received from the modem as a response
to the request to connect to the MQTT broker. See figure 5.7 for the last five bytes
in the RX buffer.

[14] [15] [16] [17] [18]
0x20 0x02 0x00 0x00 0x00

Figure 5.6: This figure show the last five bytes in the RX ring buffer. See figure A.2 in
appendix A for a screen shot of the buffer.

[14] [15] [16] [17] [18]
0x20 0x02 0x00 0x00 0xCC

Figure 5.7: This figure shows the actual last five bytes in the message. See figure A.3
in appendix A for a screen shot of the message presented in the XCTU software.

The LPCOpen function RingBuffer GetCount() was used to check the number of
bytes placed in the ring buffer as a part of the debugging. It found that the buffer
contained two bytes less than it should have. This bug only occurred when the
paho libary was used. When trying to send the same connect message without
the library, the UART was able to place all bytes into the ring buffer. This error
occurred shortly before the choice of changing the network solution was made. It
did not occur during testing, which was conducted afterwards.

As a result of the time constraints, and the delayed response from NXP
support, the Digi modem had do be exchanged with a simple Wi-Fi module in
order to complete the implementation and to conduct the system-wide tests.

5.1.5 The Hardware Implementation

This subsection describes how the hardware part of the embedded system was
implemented. This mainly involves how the different hardware modules was con-
nected.

1The author of this thesis was told by NXP support that they had little experience with using
DLLs with the MCUXpresso IDE.

46

The Sensor

The hall effect sensor is connected to the LCPXpresso 4367 using the following
pins:

Sensor Pin LCPXpresso 4367 Pin
1 (Vin) 4 (5V)
3 (Vout) 5 (ADC3)
5 (GND) 1 (GND)

Table 5.3: The pins used connecting the hall effect sensor and the LCPXpresso 4367

In addition to the connection of a couple of pins between the HO-P and the LCPX-
presso 4367 board, the pins of the sensor had to be connected using one resistor,
and three capacitors to operate normally, as shown in figure 5.8.

Figure 5.8: A graphical representation of the operation principle of the sensor set up
using passive components.

47

The connection was implemented by shouldering the components together on the
prototype board that the HO-P sensor was mounted to. The shouldering is shown
in figure 5.9.

(a) Front view of the shouldering. (b) Back view of the shouldering.

Figure 5.9: How the operational principle shown in figure 5.8 was shouldered to the test
board.

The Digi Modem

The modem is connected to the LCPXpresso 4367 board using the following pins.

Modem Pin LCPXpresso 4367 Pin
3 (RX) 4 (TX)
2 (TX) 5 (RX)
10 (GND) 1 (GND)

Table 5.4: The pins used connecting the 3G modem and the LCPXpresso 4367

All of the pins of the LCPXpresso 4367 pins are located in header P4.

48

5.1.6 The Wi-Fi Implementation

This subsection describes both the hardware and software implementation that
were done to facilitate the Wi-Fi communication used in the absence of functional
cellular modem. To implement the Wi-Fi communication, the ESP8266 module
was chosen. This was done due to problems with integrating the paho MQTT
library with the implemented modem driver.

The ESP8266

The ESP8266 is a widely used, low cost Wi-Fi chip[84]. It has a 1MB flash mem-
ory, allowing for single chip Wi-Fi devices. The NodeMCU V0.9 was used in the
implementation. The board supports the Arduino SDK and therefore gives access
to a wide range of open-source libraries and previous projects[87].

Software Implementation

The software implemented for the ESP8266 consists of five files. First is the
ESP8266.ino file, that contains the setup() and loop() functions present in all
Arduino programs. Next is the mqttHandler .cpp and .h files. These implements
the Wi-Fi and MQTT functionalities. This includes the Wi-Fi connection, the
name of the MQTT broker and the topic to publish to. The mqttSendData()
function is used to publish messages to the chosen topic bu using the publish()
function provided by the PubSubClient Arduino library[67].

For communication with the LCPXpresso 4367 board the uartHandler .cpp
and .h files were implemented. These files handles the receiving and sending of
UART messages and debugging of the software. The function uartGetMsg() is
used to check if the ESP8266 has received any commands from the LCPXpresso
4367. If yes, it returns the received message payload in the form of a string.
Otherwise, it returns an empty string. The uartDebug() and uartDebugByte()
functions were used to print messages to the UART during debugging. These
functions only prints when the macro UART DEBUG is set to one, and not when
it is zero. This reduced the work needed to change the software when debugging
was no longer needed.

UART Communication API

The API used to facilitate the communication between the ESP8266 and the LCPX-
presso 4367 was designed to be similar to that of the Digi 3G modem. The structure
of the messages used to transmit data to be published to the MQTT topic is shown
in table 5.5.

49

Frame Fields Byte Description
Start delimiter 1 Always 0x7E
Length 2 0x00 to 0xFF
Frame data 3 - number(n) The message content.

Table 5.5: The frame format used in the communication between the ESP8266 and the
LCPXpresso 4367.

The ESP8266 sends a confirmation message to the LCPXpresso 4367 when it has
published the message. The confirmation message is always 0x7F 0xFF .

The designed API is minimal, with no ways of handling errors, such as loss
of Wi-Fi connection, or any other status updates. This limitation was the result
of the time constraints with regards to the completion of this implementation.

Hardware Implementation

To connect the ESP8266 to the LCPXpresso 4367 board the following pins were
connected:

ESP8266 Pin LCPXpresso 4367 Pin
3.3V (Vin) 3V3 (CN6)
GND GND (CN6)
GPIO1 (TX) 4 (RX - P4)
GPIO3 (RX) 5 (TX - P4)

Table 5.6: The pins used connecting the NodeMCU ESP8266 module and the LCPX-
presso 4367 using UART.

50

5.2 Cloud Computing

This section explains how the data collected by the embedded system described
in section 5.1 is handled by the different services provided by AWS and software
implemented by the author of this thesis.

5.2.1 MQTT Broker

The iot.eclicpse.org MQTT broker was initially chosen to be used for handling
the messages sent by the embedded system. This broker was chosen because it is
maintained by the same individuals that implemented the MQTT library used by
the embedded system. It was later replaced by the m23.cloudmqtt.com broker, due
downtime during the system-wide test, see section 7.1.4.

5.2.2 AWS Platforms

This subsection describes how the different AWS services were set up an configured.

EC2 Instance

In order to set up the EC2 instance a number of steps had to be completed.
First, an IAM user had to be created by following the steps outlined in the EC2
documentation[5, p. 20]. This is because services like EC2 requires credentials
when accessing them, something IAM provides[5, p. 19]. Next, a key pair was
generated to handle the public-key cryptography used by AWS[5, p. 21-23]. After
this key was generated through the AWS management console, it was converted
using PuTTYgen in order for it to be used by PuTTY and WinSCP, as described
in section 2.5.4. Finally, a security group was created to act as a firewall for the
EC2 instance[5, p. 23-24]. To access the instances on the computers used during
this thesis their IPv4 addresses were added to the exceptions in this security
group, as defined by the documentation.

After these prerequisites were taken care of the EC2 was launched. By us-
ing the EC2 console, choosing Launch Instance, choosing the Ubuntu Server and
the free tier hardware version[5, p. 27]. Finally, the instance was connected to the
cryptography key pair described above. After being launched, the instance was
added to the security group discussed earlier.

DynamoDB Tables

The DynamoDB tables were created by following the steps outlined by the Dy-
namoDB web page in the AWS Management Console. By pressing the Create
Table button, and then defining the table name, partition key and (optionally) a

51

sorting key. Then, the Create button was pressed, and within a few minutes, a new
table was created.

S3 Bucket

The Amazon S3 bucket used to store the files generated by the software running on
the EC2 instance was created using the S3 service in the AWS management console.
This was done by following the steps outlined in the AWS documentation[8, p. 3-4].
By pressing the Create Bucket button, giving it a unique name, haakonehmaster-
bucket and specifying the region it will be stored, eu-central-1.

5.3 Scripts Running on the EC2 Instance

This section will describe how the different scripts that were run on the EC2 in-
stance provided by AWS. It will also discuss the tools used to access it and the
Ubuntu services used to set up these scripts and how they were debugged remotely.

5.3.1 Accessing the EC2 Instance

To run the different Python programs in the cloud an EC2 instance was used.
This instance simulated an Ubuntu 64-bit machine and only used the free-tier
functionalities, as discussed in section 2.5.4. The instance was set up by following
the steps outlined in the AWS documentation[15]. A key pair for accessing the EC2
instance remotely was also created. To access the instance , the terminal emulator,
Putty[88], was used. WinSCP[89] was used to transfer, edit and remove files stored
on the instance.

5.3.2 Overall Python Implementation

All of the Python scripts were designed with modularity in mind. Therefore, they
were organized into different classes according to their main functions. The Yr
scraper discussed in section 5.3.3 consist of the YrHandler class, which facilitates
the scraping of the Yr forecasts, converts it to a Python dictionary and places
them in the appropriate DynamoDB table. It then uses a simple main.py file to
access the class, and set the target Yr location, and DynamoDB tables.

This architecture is common in all of the scripts, and can be graphically il-
lustrated using figure 5.10.

This modularity allows for the different scripts to be extended or modified
with relatively little effort. Additional locations can be scraped by running
functions used in the main file multiple times, with different variables.

52

Figure 5.10: A flow diagram showing the overall functionality of all the python programs.

Accessing AWS

Another similar feature of the Python scripts is that they access one or more AWS
services. To accomplish this the Python library and AWS software development
kit (SDK) boto3[14] was used. To access the different DynamoDB tables by
creating a DynamoDB class instance using the resource() function, then creating
a table instance using the Table() function of the DynamoDB class.

Accessing the S3 bucket was done in a similar manner. A bucket instance
was created using the Bucket() function of a S3 class instance.

To gain access to the different AWS services using the boto3 library a certi-
fication key had to be installed using the AWS Command Line Interface (CLI).
The AWS CLI was configured by creating a key pair using the key file described
in section 5.2.2[9, p.30].

53

5.3.3 The Yr Scraper

This sub section describes how the scraping of Yr forecast data, and their placement
in the chosen DynamoDB table was implemented.

Software Architecture

As discussed in section 5.3.2 the Yr scraper is split into two main components.
The main.py file, that is the authority of the scraping program, and YrHandler.py,
that contains the class that handles the actual scraping of Yr data and storing the
collected data in a DynamoDB table. See figure 5.11 for a simple flow diagram of
the Yr scraper.

Figure 5.11: A flow diagram showing the overall functionality of the Yr scraper.

The program designed with modularity in mind. Additional locations can be added
to the program by adding the full Yr path of the location, and the correct munici-
pality ID. A two dimensional list could be used to traverse through a large number
of locations and creating an YrHandler class instance and running it. There should
be some form of delay between each iteration, since Yr limits how much data can
be accessed during a short period of time by using their API[91].

The Yr Handler Class

The Yr handler class uses the functions provided by the open-source python library
python-yr[46]. The data was collected by creating an Yr class instance by using
the Yr() function, the hour long forecasts for the next 48 hours was collected by
using the forecast() method. Try and except was used to handle any errors that
may occur when these functions run.

54

Adding the Collected Data to the Database

By using the functions described in section 5.3.2 forecasts were added to a Dy-
namoDB table. The individual hour forecast was added to the table by using the
put item() function of the table instance.

Forecast Content

The hour forecasts added to the DynamoDB table contain the majority of the in-
formation scraped by the program. Every hour long forecast contains the following
weather data, in addition to the start and stop times of the forecast:

• Type of weather (sunny, cloudy etc.)

• The precipitation (in milimeters)

• The wind speed (in mps)

• The temperature (in celcius)

This series of data was chosen based on the study conducted in section 3.2. The
forecast pressure was not added to the database as it was found to have no effect
on the projected power production of solar PV.

The Weather Scraper

In addition to the main.py file, that runs every 24 hours, to scrape forecasted data.
Another file was implemented, called now.py. It runs once every hour. This scraper
is used to add the newest forecast data to another DynamoDB table, intended to
be compared with the forecasted Yr data, and the power production. Instead of
adding the next 24 hours to the database, it adds the next six, and updates existing
values if they already exist in the DynamoDB table.

5.3.4 The MQTT Handler

The MQTT handler program has two main functions. The first is to subscribe to
one or more topics on the provided MQTT broker and retrieve any valid messages.
The second is to take the retrieved MQTT messages and place them into the
appropriate DynamoDB table. To achieve this, threads were used from the Python
library threading [38]. One thread for handling the incoming messages, another for
placing them in the DynamoDB table. To handle the exchange of information
between the threads safely, the python structure queue was used[39].

55

Software Architecture

See figure 5.12 for a flow diagram showing the overall functionality of the MQTT
handler script.

Similarly to the Yr Scraper, the program can be expanded if needed. Addi-
tional brokers, or topics can be handled by creating multiple MQTT handler
instances by using a for loop.

Figure 5.12: A flow diagram showing the overall functionality of the MQTT handler
script.

56

The MQTT Handler Class

The MQTT uses the paho MQTT Python library[32] to handle the connection,
subscription and handling of incoming MQTT messages. A series of callback
functions was implemented in the MQTT Helper.py file. This includes functions
handling when the program successfully connects to the MQTT broker, or is
disconnected. When the broker receives a message from the broker, the content
of the message is checked. Since the access to the MQTT broker is open, there is
a risk of the topic being used being spammed by outsiders. Due to the low data
footprint of MQTT, it is not possible to screen out messages based on the client
who sent it.

In the MQTT Handler.py the MQTT Handler class instance is implemented.
This class is used to hold the client instance, that use the callback functions
implemented in MQTT Helper.py. The MQTT Handler contains functions used
for configuring the broker to be connected to, and for connecting to the particular
broker. It also includes the main loop used when the MQTT thread is running. It
mainly checks if the hour has changed. This is done to split the logging output in
one file for each hour, in order to ease the debugging of the MQTT handler.

Similarly to the Yr Scraper, most of the functions use the try and except
handling to prevent the program from crashing, and to capture any errors to the
log.

The AWS Handler Class

The AWS thread starts after the AWS class instance is set up by the main loop.
When running, the thread first checks if any messages has been placed in the
queue structure. If yes, they are moved to a local buffer. Then the messages in
the buffer are placed, one by one, into the appropriate DynamoDB table using the
table.put item(). When placing a message into a table, a time stamp is added, to
identify the time the message was sent by the embedded system, and for further
analysis. The result is then logged.

When the local buffer is empty, the thread checks the current time. If the
hour has changed since the previous loop, the logger is reconfigured in the same
manner as the logger for the MQTT thread.

5.3.5 The Graph Handler

The graph handler was implemented to generate plots from the collected by the
embedded system and the Yr Scrapers, described in section 5.1 and 5.3.3 respec-
tively.

57

Software Architecture

The Graph handler is split into four main modules. The main file, which per-
forms the function calls to another module, the GraphHandler class, in the
Graph Handler.py file. The GraphHandler performs the retrieving of data from the
DynamoDB tables, and computing. It also performs the function calls of the other
two modules, the PlotHandler and the SymbolHandler class. The PlotHandler
manages the plotting of the data computed by the GraphHandler, and stores them
as images in an appropriate directory. The SymbolHandler manages some of the
data not used by the PlotHandler and stores it in a text file located in the same
directory as the plots. It also handles the zipping and uploading of the plot direc-
tory to the AWS service S3. The final module is the RootClass. It functions as a
parent class of all the other functions.

Figure 5.13: A flow diagram showing the overall functionality of the MQTT handler
script.

58

The Graph Handler Class

The graph handler class is used as the main module of this script. It makes the
function calls to the other two implemented classes and contain the majority of
the code in this script. The Graph Handler class handles the retrieving of data
stored in three different DynamoDB tables and computation. It also performs the
function calls necessary to generate multiple plots used to graphically represent
the collected data, store it in multiple files and directories and places them in the
appropriate Amazon S3 bucket.

It uses the boto3 library differently than the other scripts. Instead of plac-
ing data in the DynamoDB tables, it uses the query() function of the table
instance to retrieve the intended table content. After it has received the
DynamoDB object returned from the function, a function proved by the Decima-
lEncoder class was used to convert it to a JSON text object. The JSON was then
converted to a dictionary using the dumps() function made available by the json
Python library[69].

The graph handler class creates multiple dictionaries this way. This includes a
dictionary containing the Yr forecasts for the previous day, the actual weather
and a dictionary containing the average hourly power production measured for the
previous day. It also generates 24 dictionaries, each containing all of the power
measurements obtained during one hour. All of these dictionaries are used for at
least one plot.

The Plot Handler Class

The Plot Handler class was implemented to handle the plotting of figures and the
storage of them. It uses the open-source mathplotlib.pyplot library[60] to generate
plots from the data retrieved from the DynamoDB tables.

The plots are generated by two functions. The first, plotSimpleLine() func-
tion generated plots containing only one line. It uses two arrays, one representing
the values intended for the X axis and the other represents the Y axis. When
plotting multiple lines in the same figure, the plotMultipleLines() function is used.
It takes as parameter an array containing the values intended for the X axis,
usually time stamps. For the Y axis, a dictionary is used. Where the keys are the
names of the lines to be plotted, and the values are a list of the Y axis values for
that particular line. Both functions then saves the plot as a PNG file by using the
savePlot() function.

The plot handler class also contains the functions used to handle the differ-
ent files created by this script. This includes uploading and downloading files from
a chosen Amazon S3 bucket and zipping the content of a chosen directory.

59

Script directory

Plots

YYYY MM DD

Forecast Plots

Hour Power Plots

YYYYMMDD0000 YYYYMMDD0100.png

...

Weather Plots

YYYYMMDD 24H Avg Pow Prod.png

YYYYMMDD 24H Forecast.png

YYYYMMDD 24H Weather.png

Avg symbol val for YYYYMMDD.txt

ZipFiles

YYYYMMDD plots.zip

Figure 5.14: This figure illustrates how the different plot and zip directories are set up.
YYYY denotes the year, MM the month (01 − 12), DD the day (01 − 31) and HH the
hour (01 − 23).

The Symbol Handler Class

Since the plot handler only handles the weather phenomena that can be rep-
resented numerically it does not handle the type of weather described by the
symbol variable in each of the forecasts. A smaller class, called SymbolHandler
was therefore implemented to calculate the average power production for the
different types of weather during a day. It does this by using a dictionary where
the keys are the different types of weather occurring during the day, and a list of
the average power production for each hour during the different weather types. It
returns a dictionary where the keys are the different symbols and the values are
the average power production. The content of this dictionary is then written to a
.txt file and placed in the same directory as all the plots.

It also assists the plot handler in generating plots for visualizing the change
in weather type during the course of the day. It does this by using a simple
dictionary was implemented as a global variable in the Symbol Handler.py file.
The keys of the dictionary were the name of the different types of weather in
during the test period, while the values denoted an integer value. Where the
highest value were given to the best kind of weather, ’Clear Sky’. This was done
to show the correlation between the type of weather and the power production.
The content of the dictionary is shown in table 5.7

60

Weather Type Integer value
Clear sky 5
Fair 4
Partly cloudy 3
Cloudy 2
Light rain showers 1

Table 5.7: The dictionary used to convert the different weather types to integer values.
Only the weather types present during the testing period were added to this dictionary.

The Root Class

The RootHandler class contains functions used by all the other classes in this
script. This includes the setup and configuring of the class logger. It also contain
a function for logging the content for a dictionary, this was primarily used for
debugging during implementation.

5.3.6 Running the Scripts

This subsection will outline how the Python scripts described above were run on
the EC2 instance.

The Cron Table

In Unix-based systems, including Ubuntu, programs and commands can be period-
ically run using the cron software. The YrScraper script, for example, runs every
day at 00:30. The command to be run by the cronjob is written in a cron table
file. The content of the cron table used for this thesis is shown in listing 5.1.

1 # Edit this file to introduce tasks to be run by cron.
2 #
3 # For example, you can run a backup of all your user accounts
4 # at 5 a.m every week with:
5 # 0 5 ∗ ∗ 1 tar −zcf /var/backups/home.tgz /home/
6 #
7 # m h dom mon dow command
8 30 0 ∗ ∗ ∗ python3 /home/ubuntu/YrHandler/main.py
9 10 ∗ ∗ ∗ ∗ python3 /home/ubuntu/YrHandler/now.py

10 5 0 ∗ ∗ ∗ python3 /home/ubuntu/Graph Handler/main.py

Listing 5.1: The content of the cron table of the EC2 instance.

61

The Systemd Service

Unlike the other Python scripts, the MQTT handler runs continuously in the back-
ground on the EC2 instance. To accomplish this, the Systemd service provided by
Ubuntu was used[81]. The Systemd service allows users to write .service files.
These files allows certain scripts to run in the background when the system boots
up. Since the MQTT handler runs continuously, the script will also run continu-
ously in the background as long as the computer is on. See listing 5.2 to see the
script used to run the MQTT handler.

1 [Unit]
2 Description=My Script Service
3 After=multi−user.target
4

5 [Service]
6 User=ubuntu
7 Type=idle
8 ExecStart=/usr/bin/python3 /home/ubuntu/MQTT Handler/main.py
9

10 [Install]
11 WantedBy=multi−user.target

Listing 5.2: The mqtt handler.service file content

5.3.7 Debugging the Python Scrips

Since the software is to be run periodically, or continuously, on a virtual Linux
machine, being able to easily confirm that the programs worked successfully is
essential. For this purpose, the standard logging library was used. The log files are
placed in a directory with the following format shown in figure 5.15.

Script directory

[script name] YYYY

MM

DD

[script name] YYYY MM DDTHH.log

main.py

etc.

Figure 5.15: This figure illustrate the different logging directories were set up.

The logging directories were organized in this format to make it easier to locate
logs for different periods of time. By identifying the different log files by the date

62

and hour, their individual size was reduced, thereby making debugging easier.
This helped significantly when debugging the MQTT Handler. Since it handles
and logs messages approximately once a minute, having 24 files with 60 log entries
is far easier to handle than one file with 1440 log entries.

The Python programs uses try and except to handle both exceptions in the
different operations of the program. If an operation succeeds, it is added to the
log, possibly with additional information. For example if something is added
successfully to a DynamoDB table, everything that was added to the table is
written to the log file to clarify and make debugging easier. In case of failure, a
message is written to the log file. Additional information about the specific failure
is also added by using the traceback Python library[70]. This library gives access
to the error message that normally would be displayed in the terminal, so that it
can be placed in the log file.

1 2018−06−03 14:48:21,856:ERROR:Graph Handler:Unable to generate the forecast graph.
2 Error code: Traceback (most recent call last):
3 File ”C:\Users\haakoneh\Desktop\AWS VM Script\Graph Handler\Graph Handler.py”, line

↪→ 341, in generateForeCastGraph
4 self.plotHandler.plotMultipleLines(self.forecastDateTimeList,self.foreCastGraphDict,x label,

↪→ y label, file name, fig name,True)
5 File ”C:\Users\haakoneh\Desktop\AWS VM Script\Graph Handler \Plot Handler.py”, line

↪→ 196, in plotMultipleLines
6 self.savePlot(fig, file name)
7 File ”C:\Users\haakoneh\Desktop\AWS VM Script\Graph Handler\Plot Handler.py”, line

↪→ 89, in savePlot
8 self.createDirectory('{}/{}'.format(self.plotDir))
9 IndexError: tuple index out of range

Listing 5.3: An example of an error written to a log file using the logging and traceback
library.

63

5.4 Tests

This section describes the tests used to confirm the different functionalities of the
system.

5.4.1 The Embedded System

The functionality of the different parts of the embedded systems was verified by
performing tests varying in the number of steps and size, comparable to the func-
tionality being tested.

The Sensor Test

The HO-P sensor was tested by using a lab current source to check the read ADC
value produced by the sensor. The sensor was tested using multiple different cur-
rents and voltages. Then a linear regression was conducted to check the linearity
of the sensor output. As a result of the relatively low current output of the current
source of 1.5A, compared to the sensor’s maximum reading of 25A, the output cable
was run through the sensor opening three times. Effectively tripling the strength
of the magnetic field and the sensor reading. This increased the accuracy of the
sensor test by widening the range of the current used for the test.

The UART Test

The UART functionality of the system was confirmed by connecting the LCPX-
presso 4367 to a computer over UART using a TTL-USB converter and using the
RealTerm serial terminal software[72] to send and view received data on the connec-
tion. The LPC-Link 2 debugger was used to check the content of the RX and TX
ring buffers on the LCPXpresso 4367 to confirm the functionality on the embedded
side of the connection.

The Modem Test

The functionality of the 3G modem was confirmed by sending multiple TCP
messages to an echo server recommended by the modem’s user guide[30, p. 18-19].
The sending and receiving of the TCP messages were confirmed by checking the
socket buffers, and the content of an array used to receive the echoed data.

Another test of trying to connect the modem to an open MQTT broker
was also performed. The broker URL and port number is shown in table 5.8.

64

Broker name (URL) IPv4 Addr Port number
eclipse.iot 198.41.30.241 1883

Table 5.8: The URL, IPv4 address and the port number of the MQTT broker used for
testing the MQTT handler. The IPv4 address was needed because the modem requires it
to send TCP messages.

The ESP8266 Test

To confirm that the ESP8266 module was able to connect to the correct MQTT
broker and publish to the chosen topic, the MQTT client software MQTT.fx was
used[27]. It displays messages sent to a broker on a specific topic, thereby confirm-
ing if the messages sent to the ESP8266 using the API over UART discussed in
section 5.1.6 were transmitted to the correct topic. MQTT.fx was used to confirm
that the messages were sent correctly, and the LPC-Link 2 was used to confirm the
functionality of the LCPXpresso 4367. The ESP8266 test used the same broker as
the modem test.

The Embedded System Test

The finished system was tested by combining the sensor and ESP8266 tests. The
HO-P measured the current produced by the source, and the average minute
value was transmitted to the ESP8266using the implemented API. Finally, the
ESP8266 transmitted the measured value to the MQTT broker.

It was also tested by connecting the HO-P sensor to the cable output of a
solar PV array mounted on the wall outside of the office used by the author of
this thesis during the semester. This was used to get data on power produced by
a solar array.

5.4.2 The Cloud Scripts

The functionality of the Python scripts run on the EC2 instance was confirmed by
checking the log files after they were run manually on both a local computer and
on the EC2 instance by using the PuTTY terminal. The logs were also checked
periodically when they were deployed using the services discussed in section 5.3.6.

The Yr Scraper

The Yr scraper was tested by letting the EC2 instance run for a couple of days
and then checking the log files to see the program functioned properly. The log
messages and their time stamp were checked to confirm its functionality.

65

The MQTT Handler

The functionality of the MQTT Handler was confirmed by connecting it to an
open broker, subscribing to a test subject, sending a test message from another
client to the subject. Retrieving it, and placing the message in the appropriate
DynamoDB table. The broker shown in table 5.8 was also used for this test.

The Graph Handler

The testing of the graph handler was done by using data collected by the embedded
system and the Yr scraper after they had been running for at least the previous 24
hours. The functionality was confirmed by checking the various log files generated
by the different classes, looking at the individual plots and checking the target
Amazon S3 bucket to confirm that the correct zip file had been uploaded.

5.4.3 The System Test

The entire system implementation was tested over a period of three days. During
this time interval all Python scripts were run using the services described in
section 5.3.6 and the embedded system was connected to the output cable
discussed above.

Initially the MQTT broker used for this test was the same as the one shown in
table 5.8. However, due to the server being unavailable, the broker was changed
during the second day of the test to the one shown in table 5.9. See section 7.1.4
for a discussion about this change and its implications for the system as a whole.

Broker name (URL) Port number
m23.cloudmqtt.com 1883

Table 5.9: The URL and the port number of the second MQTT broker used for the
system test.

66

Chapter 6
Results

This chapter of the thesis features the results of the tests discussed in section 5.4
of the previous chapter.

6.1 The Embedded System Test Results

6.1.1 The Sensor Test

Iin(A) Uin(V) Uout(V) ADC(Int)
0 0 1.72 560
1.5 2 1.76 595
3 3 1.79 640
4.5 5 1.82 680

Table 6.1: The measured output voltages and integer ADC values during the sensor
test.

Using the Wolfram Alpha web service, the following equation was calculated. See
figure A.4 in appendix A for a screenshot of the calculations.

y = 0.0369582x− 20.6179 (6.1)

67

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

560

580

600

620

640

660

680

The input current (A)

T
h

e
in

te
ge

r
A

D
C

va
lu

es
The measured ADC valus

y = 0.0369582x− 20.6179

6.1.2 The UART Test

The UART test was performed by connecting the USART0 of the LCPXpresso
4367 board to a TTL-USB converter. A small test task was then run, where it
sends a UART message, then waits 5 seconds before trying to read 10 bytes from
the RX buffer. See figure 6.3 to see message sent by the LCPXpresso 4367, and
figure 6.2 to see the received message stored in the array.

Figure 6.1: A screenshot of the received UART message and the message being sent
using the RealTerm software.

68

Figure 6.2: A screenshot of the local variables in the UART test. The ucTestRecvArray
contains the received UART message.

6.1.3 The Modem Test

This section contains the three different types of tests used to confirm the func-
tionality of the 3G Digi Modem.

Echo Server Test

To test the modem’s capability for sending and receiving simple TCP messages a
test where a server that echoes the TCP messages it receives was used. A TCP
message with the text echotest was sent to the server. See figure 6.3 to see the
echoed TCP message.

69

Figure 6.3: A screenshot of the array used to hold the received echo message during the
echo server test.

MQTT Test

To see if the modem was able to connect to a MQTT server without using the
paho-MQTT library, a MQTT test was conducted. As figure 6.4 shows, it was
not successful. The modem sent several status messages to indicate a loss, and
the reestablishment of a connection to the cellular network. At another point in
the test, the modem responded to TX IPv4 messages, with a resource error (see
figure 6.5).

70

Figure 6.4: A screenshot of a part of the RX ring buffer during the MQTT test. The
screenshot only includes modem status messages.

As seen in figure 6.4, the same API messages are received repeatedly. Since all
these messages are modem statuses, see table 6.2 and 6.3, this indicates that certain
conditions regarding the modem changes rapidly during the MQTT test.

Array index Int value Hex value API meaning
14 126 0x7E API start deliminator
15 0 0x00 First length byte
16 2 0x02 Second length byte
17 138 0x8A Frame type: modem

status[30, p. 119]
18 3 0x03 Status: Unregistered with

cellular network
19 115 0x73 Message checksum

Table 6.2: The first parsed API message shown in figure 6.4

71

Array index Int value Hex value API meaning
20 126 0x7E API start deliminator
21 0 0x00 First length byte
22 2 0x02 Second length byte
23 138 0x8A Frame type: modem

status
24 2 0x02 Status: Registered with

cellular network
25 114 0x72 Message checksum

Table 6.3: The second parsed API message shown in figure 6.4

Figure 6.5: A screenshot of the modemIPResponse structure. The TX Status variable
indicate a resource error[30, p. 118].

Paho-MQTT Test

A test to check if the modem would connect while using the paho-MQTT library
was also conducted. As figure 6.6 shows, this test also experienced a resource error
when trying to send TCP messages.

72

Figure 6.6: A screenshot of the status ring buffer for the TCP socket during the paho-
MQTT test. All status messages indicate a resource error.

6.1.4 The ESP8266 Test

To test the functionality of the ESP8266 NoceMCU after it was used to replace
the Digi 3G modem, a MQTT test was conducted to confirm its functionality.
Figure 6.7 shows a MQTT message being successfully published to a topic on an
open broker. Figure 6.8 shows the debug output from the ESP8266 when using the
RealTerm software to transmit an API message during the test.

73

Figure 6.7: A screenshot of the MQTT.fx software used to subscribe to a open MQTT
broker.

Figure 6.8: A screenshot of the RealTerm software used to send messages to the
ESP8266 during testing. The ESP8266 was set to print out debug messages for clar-
ity. The last line of is the confirmation message (0x7E 0xFF).

6.1.5 The Embedded System Test

To confirm the functionality of the embedded system using the ESP8266, an system
test was conducted. Figure 6.9 shows a part of the buffer used to hold the sensor
values measured using the ADC and the ampere value calculated using the equation
found using linear regression. Figure 6.10 shows the ampere value being published

74

to a topic on an open MQTT broker.

Figure 6.9: A screenshot of the content of the buffer

Figure 6.10: A screenshot of the MQTT.fx software used to confirm that the MQTT
messages were sent correctly to the broker.

75

6.2 The Cloud Scripts Test Results

To confirm the functionality of the different Python scripts run on the EC2 instance,
their logging output was read. See the the listings shown in section 6.2.1, 6.2.2 and
6.2.3 for the logging output.

6.2.1 The Yr Scraper Test

1 2018−06−03 00:30:01,837:INFO:yrhandler:Successfully accessed Norge/Trndelag/Trondheim/
↪→ Trondheim

2 2018−06−03 00:30:01,837:INFO:yrhandler:Successfully retrieved the next 48 hrs
3 2018−06−03 00:30:01,909:INFO:yrhandler:Successfully added to db:
4 Norge/Trndelag/Trondheim/Trondheim
5 20180603010000
6 20180603020000
7 Clear sky
8 1.7
9 0

10 13

Listing 6.1: A small snippet of the log output from the Yr scraper during testing. Line
5 denotes the start time of the forecast, 6 the stop time, 7 the type of weather, 8 the wind
speed, 9 the precipitation and 10 the temperature.

6.2.2 The MQTT Handler Test

1 2018−05−27 16:01:31,830:INFO:MQTT helper:Connected to broker
2 2018−05−27 16:04:39,993:INFO:MQTT helper:Added to queue from user: None
3 On topic: outFreeTopic
4 Received message:
5 test 123425

Listing 6.2: A small snippet of the log output from the MQTT callback functions during
testing.

76

1 2018−05−27 16:04:43,456:INFO:aws Handler:Added message from queue to local buffer:
2 test 123425
3 2018−05−27 16:04:44,048:INFO:aws Handler:Successfully added to db

Listing 6.3: A small snippet of the log output from the AWS handler during testing.

6.2.3 The Graph Handler Test

1 2018−06−03 21:06:21,499:INFO:Graph Handler:Key: Clear sky, value: 3.75375
2 2018−06−03 21:06:21,502:INFO:Graph Handler:Successfully generates symbol files
3 2018−06−03 21:06:21,739:INFO:Graph Handler:Successfully generated the forecast graph
4 2018−06−03 21:06:21,993:INFO:Graph Handler:Successfully generated the weather graph
5 2018−06−03 21:06:28,141:INFO:Graph Handler:Successfully generated a pow graph
6 2018−06−03 21:06:29,306:INFO:Graph Handler:Successfully generated the power and forecast

↪→ graph
7 2018−06−03 21:06:30,491:INFO:Graph Handler:Successfully generated the power and forecast

↪→ graph
8 2018−06−03 21:06:32,016:INFO:Graph Handler:Zipped and uploaded plots for 20180603
9 2018−06−03 21:06:32,017:INFO:Graph Handler:Successfully generated all graphs and uploaded

Listing 6.4: A small snippet of the log output from the Graph Handler

1 2018−06−03 21:06:30,025:INFO:Plot Handler:Generated multiple plots for Weather Plots
↪→ /20180603 24H Pow Weather Curr prod

2 2018−06−03 21:06:30,250:INFO:Plot Handler:Generated multiple plots for Weather Plots
↪→ /20180603 24H Pow Weather precipitation

3 2018−06−03 21:06:30,491:INFO:Plot Handler:Generated multiple plots for Weather Plots
↪→ /20180603 24H Pow Weather wind speed

4 2018−06−03 21:06:30,570:INFO:Plot Handler:Zipped folder: ZipFiles/20180603 plots from
↪→ directory: ZipFiles

5 2018−06−03 21:06:32,016:INFO:Plot Handler:Uploaded file: ZipFiles/20180603 plots.zip with
↪→ key 20180606 plots from ZipFiles/20180606 plots.zip to bucket: haakonehmasterbucket

Listing 6.5: A small snippet of the log output from the Plot Handler class

77

1 2018−06−03 21:06:18,353:INFO:Symbol Handler:Symbol Handler successfully set up
2 2018−06−03 21:06:21,499:INFO:Symbol Handler:Successfully calculated the symbol average.
3 2018−06−03 21:06:21,502:INFO:Symbol Handler:Successfully wrote dict to file: Plots/2018

↪→ 06 03/Avg symbol val for 20180603.

Listing 6.6: The log output from the symbol handler during testing.

6.3 The System Test Results

To confirm the functionality of the embedded system, cloud service set up and
the Python scripts a system wide test was conducted of the span over three days.
Listing 6.7 and 6.8 shows a snippet of the logging output of the MQTT and AWS
thread, placing one of the many MQTT message being sent from the embedded
system during the three days. Figure 6.11 show the plot of one hour of the second
day, with a one minute resolution.

1 2018−06−05 10:00:58,510:INFO:aws Handler:Added message from queue to local buffer:
2 AWS test 6.21
3 2018−06−05 10:00:58,520:INFO:aws Handler:Successfully added to db:
4 msg content: 6.21

Listing 6.7: A small snippet of the log output from one of the log files generated by the
AWS thread in the MQTT handler during the system-wide test.

1 2018−06−05 10:00:58,510:INFO:aws Handler:Added message from queue to local buffer:
2 AWS test 6.21
3 2018−06−05 10:00:58,520:INFO:aws Handler:Successfully added to db:
4 msg content: 6.21

Listing 6.8: A small snippet of the log output from one of the log files generated by the
MQTT thread in the MQTT handler during the system-wide test.

78

Figure 6.14 shows the average power production for every hour and the forecasted
temperature, wind speed and precipitation. Figure 6.15 shows the same, except
with the actual weather, not the forecast. Figure 6.16 shows the content of the
target S3 bucket after the system test was completed.

Figure 6.11: One of the 24 plots, from 10:00 to 11:00, generated during the second day
of the system-wide test. The plot corresponds to the log snippets in listing 6.7 and 6.8.

Figure 6.12: The plot shows both the power production and the forecasted weather
symbol values. The power production is the average value per hour, with a one hour
resolution. Period 06-04 10 to 06-04 11 corresponds to the average value of the plots in
figure 6.11.

79

Figure 6.13: The plot shows both the power production and the actual weather symbol
values. The power production is the average value per hour, with a one hour resolution.
Period 06-04 10 to 06-04 11 corresponds to the average value of the plots in figure 6.11.

Figure 6.14: The plot shows the power production and all of the forecasted weather
values. The power production is the average value per hour, with a one hour resolution.
Period 06-04 10 to 06-04 11 corresponds to the average value of the plots in figure 6.11.

80

Figure 6.15: The plot shows the power production and the actual weather values. The
power production is the average value per hour, with a one hour resolution. Period 06-04
10 to 06-04 11 corresponds to the average value of the plots in figure 6.11.

Figure 6.16: The content of the Amazon S3 bucket after the three day long test.

81

Chapter 7
Discussion

This chapter will discuss the results presented in the previous chapter, compare
them to the specifications presented in chapter 4, as well as the limitations of the
tests conducted for this thesis. Furthermore, the chapter will discuss the transi-
tion from a cellular-based, to a Wi-Fi-based solution, and the background for this
choice. The chapter will also discuss some challenges that were encountered dur-
ing the implementation process and a longer discussion of some of the challenges
and limitations of the current cloud computing implementation. Finally, further
improvements for both the embedded system and cloud computing setup will be
discussed.

7.1 The Tests

7.1.1 The Embedded System Tests

The Sensor Test

The sensor test indicates that the HO-P functions properly and is indeed linear
with an accuracy of over 99%, as specified by the sensor’s datasheet. Thereby
confirming PR-2.1 by using an analog input, and PR-1.1.2.

The UART Test

Similarly to the sensor test, the UART test seems to confirm that the system is
able to send and receive messages while using the LPC-Link 2 debugger to free up
the hardware UART.

82

The Modem Test

As section 6.1.3 shows, the Digi cellular modem is able to send simple TCP mes-
sages to an echo server, and handle the response, but not more complex tasks. It
was therefore able to confirm PR-1.1.1, but only for the echo server. When trying
to connect to a MQTT broker, the modem seems to experience multiple status
changes. It loses the connection and then reconnects to the cellular network re-
peatedly. Similarly, when using the paho library, the modem experiences a resource
error. This normally occurs when the modem is not able to open more sockets.
Which seems strange, since the modem was restarted before conducting the test,
and therefore should not have any sockets open, except for the one created during
the test.

The ESP8266 Test

In contrast to the modem test, the ESP8266 test confirmed the network function-
ality of the embedded system. In accordance with PR-1.1.1 and PR-1.1.2, but not
PR-1.1, as it uses Wi-Fi, not 2G/4G. The test was not run for more than a cou-
ple of minutes, and does therefore did not confirm that the system is able to stay
connected to a Wi-Fi network for long periods of time.

The Embedded System Test

The embedded system-wide test indicates that it is able to function as intended. It
is able to read the ADC value from the HO-P sensor, translate the average value
to a corresponding ampere value and transmit it to a remote server. Similarly to
the ESP8266 test, it did not run for more than ten minutes, and did therefore not
guarantee long term operational integrity.

7.1.2 The Cloud Script Tests

The multiple logging snippets used during debugging the different Python scripts,
do seem to all confirm the functionality of the embedded system. The author of
this thesis has not read through all of the different log files produced during these
tests, but snippets of them, as well as using the AWS management console. This
is one of the weaknesses of this approach, when a significant amount of logging
output is produced, and if not automated, the process of checking the log files can
be quite time-consuming.

7.1.3 The System-Wide Test

In contrast with the previous tests discussed in this chapter, this test was run for
circa three days, a significantly longer time. As shown by the logging snippets,
plots and screenshot, the system seems to be working as intended. Confirming

83

the medium-term operational integrity of the current system. As discussed in
section 7.1.2, this test produces a significant amount of output, resulting in only
some parts of it being analyzed.

7.1.4 Limitations of the Tests

The test results currently looks promising for the Wi-Fi solution. While the
tests conducted during this thesis are more robust than those conducted for the
TTK4550 thesis[47, p. 55], they still do not guarantee that the system is able
to function in harsher environments than an office. The encapsulation of the
hardware would have to provide a similar internal environment for the performed
tests to confirm the system functionality.

There is also the problem of test reliability. During the second day of the
system-wide test, the MQTT broker used became unavailable. Due to this error,
the CloudMQTT broker replaced the Eclipse broker. Luckily, this error was
discovered within 30 minutes after it occurred, and was fixed in less than five. This
error did not reoccur, but still illustrates the limitations of this system-wide test,
and the solution as a whole. Had the error not been discovered, almost two days
of testing would have been wasted in trying to confirm the system’s functionality.
They would instead have illustrated critical vulnerabilities in the system far more
potently than what occurred. Finding an alternative solution to the usage of an
open MQTT broker is therefore necessary.

7.2 The Implementation Change

As section 6.1.3 and 7.1.1 shows, the final modem implementation did not
function as intended and was therefore replaced with a simple Wi-Fi solution to
complete the project. This is in contrast to the solution implemented for the
TTK4550 Specialization Project[47], implemented during the fall of 2017. For
that particular thesis, a functioning GSM solution using the Arduino SDK and
multiple open-source libraries were used for the implementation. Particularly the
TinyGSM library, facilitating the controlling of the GSM modem, streamlined the
implementation process.

The main difference between these two implementations is the community
around the different tools. The Arduino community has a vast amount of previous
projects, libraries and support for developers. This leads to the fact that even
modules that are not staples in Arduino projects, such as GSM modules, have
libraries available. In contrast, the Dig 3G modem has no such open-source
libraries. It neither has a significant amount of previous open-source projects
available. The majority of the support community is located on the official Digi
support forum[51]. This difference in the amount of previous work available has

84

obvious consequences for the individual developer using the Digi modem. A signif-
icant amount of time has to be spent implementing, debugging and testing a driver
or library to use the modem for more sophisticated operations. It also requires a
significant amount of time to read the documentation of the product, that might
not always be as clear as it could be. Something that required a significant amount
of time during the implementation process was to read up on and obtain an
intuitive understanding of the Digi API framework. This process was made more
difficult due to the lack of API message examples in the documentation or any
form of graphical representation of the message structure. When implementing
the parser functions for the TX IPv4 API messages, a significant amount of the
time used reading the documentation was spent switching between IPv4 message
structure (p. 116) and the standard frame structure (p. 111). An example of a
IPv4 API message in the documentation, with some additional information would
have improved the readability of the documentation.

As a result of the limited amount of available open-source projects and li-
braries a lot of the period used for implementing the project was spent trying to
implement a modem driver capable of connecting, publishing and maintaining a
connection to an open MQTT broker. The planned driver was intended to have
little, to no error handling in the case of a loss of cellular connection, mainly due
to timing constraints. This would have reduced the probability of the embedded
system being able to pass the system-wide test. Particularly since a cellular
network connection would most likely have been less reliable than the Wi-Fi
network of NTNU.

7.3 Implementation Challenges and Difficulties

The author of this thesis had never used the FreeRTOS stack before this thesis
project. As a result of this there were a number of challenges, difficulties and bugs
that may not have been as prevalent as they were for the author of this thesis.
One of these bugs was a hardware fault that plagued the project for a couple of
weeks, see figure A.1 in appendix A for a screenshot of the hard fault handler
used to debug this project. The problem bug occurred when the embedded system
started to send bytes over the UART using its interrupt. At first, the problem
was solved by switching variables that had been local to global. This solved the
problem temporarily. The problem was finally solved by increasing the stack size
of the individual task.

Based on the solution to this bug, the problem stemmed from the chosen
stack size of an individual task being too small, and when the scheduler switched
between one task to another, the program counter was located in an invalid
memory location based on the defined size. As the appendix makes clear, the fault

85

was a memory fault, that escalated to a hard fault.

In retrospect, the solution to this bug could have been found earlier. One
of the main features of the FreeRTOS is that every task has its individual stack,
used to store variables, and the state of the task when switching to another. Had
the author been more experienced in using and debugging FreeRTOS systems,
this problem could have been solved earlier.

7.4 Cloud Computing

This section contains a discussion on some of the shortcomings and challenges
related to the cloud computing solution implemented for this thesis.

7.4.1 Analysis and Estimation

The analytical aspect of this system is currently rather simple. It is able to plot
multiple plots, to be later studied by humans, but does not use the collected data
in any analytical manner to either draw conclusions or estimations. While this may
be sufficient in the systems current state and usage, this approach will be inade-
quate if the number of embedded systems collecting data increases dramatically.
Checking the plots of hundreds or thousands of embedded systems every day would
be a daunting task for any individual, and trying to make estimations practically
impossible. To solve this problem, more sophisticated techniques and tools should
be utilized.

Data Collection

The current data input for the analysis and estimation is currently inadequate.
The weather factors currently used to estimate the power production would not
make the estimation tool as accurate as those discussed in section 3.2. To obtain
more accurate weather data, a local weather station should be used. This would
give data for a smaller area, and thereby giving the estimation tool more relevant
parameters.

The estimation tools described in chapter 3 also used additional information
regarding the solar PV installation and the global positioning of it. This included
the angle of the solar PV cells to the ground and the normal levels of solar
irradiation in the area. The angle of the PV cells to the incoming solar radiation
can greatly affect the amount of power produced, as mentioned earlier, and is
therefore rather relevant to the estimation tool and its accuracy. It would also
allow for collecting weather data with a one minute resolution, to further improve
the analysis. This would help identify the factors responsible for the rapid changes
in power production, as shown in figure 6.11.

86

Information regarding the installation would also improve the estimation
and analysis. By taking into account the angle of the solar panels, and the
direction they are placed, would give greater insight into how weather attributes
affect the power production. As seen in figure 6.14 the correlation between the
type of weather and power production changes depending on the time during the
day. The panels used for this thesis were placed on the south side of the D-block
of the Elektro Building at Gløshaugen. Meaning that even if the weather is at its
best during the early morning, the solar rays will hit the panels on such an angle
that the production will be relatively low. This can be seen in figure 6.13, where
the power production reaches its peak at around ten in the morning, despite the
weather becoming poorer. This indicates that the production increases because
of the solar radiation hitting the panels at a better angle, than what they did
previously. Therefore, adding functionality that takes this factor into account
would improve both the analysis and the estimation accuracy.

7.4.2 Security

Another factor is the security of the data supplied to the cloud computing platform.
Currently, the data is supplied by using an open MQTT broker. This comes with
a number of security risk, in addition to the problem of reliability, as discussed in
section 7.1.4. One such risk is that a third party would spam the topic used to
retrieve the measures sensor data with messages that the MQTT handler would
interpret as authentic messages from the embedded system. Thereby flooding the
database with junk data, and possibly overloading the Python application.

Another security issue is the fact that all the collected data is not encrypted.
Meaning that any third party who know of the system, and the topic used could
retrieve all of the data collected by the embedded system. While this is not a
pressing issue for the system in its current state, as a project in early development
and mainly used in an educational and experimental manner, it is a major
concern if it is ever deployed. Particularly if it is used for any application that is
essential for society. Some form of encryption should therefore be added to the
communication between the embedded system and the cloud platform.

7.4.3 Scalability

Scalability is also an issue for the current cloud computing platform. While there
are few limits to how much computing power can be utilized by applications
and services hosted on the platform, it is a question of cost and efficiency. In
its current version, the MQTT handler confirms the validity of an embedded
system by checking the ID field of the message published to the chosen topic,
and then checks it against a list if it is valid. This approach was easy and

87

took little time to implement, but it has some major limitations. If the num-
ber of embedded systems would increase dramatically, to for example 10.000,
the application would demand vast amount of resources. Keeping a list of
10.000 items continuously in the EC2 instance memory and to check its content
millions of times a day would require a large amount of computing power, and
corresponding high costs. Both in money and in material resources, such as energy.

A possible solution is to use a DynamoDB table to hold the items and in-
stead perform queries to check if the ID is valid. This comes with its own
drawbacks. While an individual DynamoDB query does not require a lot of time,
it is not instantaneous. It usually takes close to 0.05 seconds1. Meaning that if
10.000 queries were to be performed every minute. It would take approximately
8.28 minutes to check every ID, every minute. See the equation below for the
calculations.

10.000 · 0.05s

60s/min
=

500s

60s/min
= 8.28min (7.1)

To reduce the amount of time used to check all of the different IDs two methods
can be used, both incurring financial costs. One is to use a more powerful EC2
instance with a faster internet connection than that of the t2.micro used for this
thesis, which was defined as ’Low to Moderate’. Another is to use extensive mul-
tithreading, something that also might require a more powerful virtual machine.
Additionally, there is the cost of performing 10.000 queries to a DynamoDBtable
every minute. This is because, beyond a certain threshold, it costs extra to
perform queries to DynamoDB tables. There is also the problem of checking
for errors. The script would have to be modified to allow for better debugging.
Checking the logging output of 10.000 devices would be practically impossible, if
it is not automated and improved. This might include further splitting up the
logging files, based on the different devices, and reducing the logging to only log if
an error or bug occurs. This would reduce the output, but it might make it more
difficult to detect edge cases which do not trigger the error logging.

Another problem is the case of spamming of the MQTT broker if the sys-
tem consist of such a large number of devices. The system would be more
vulnerable to flooding of the MQTT topics, and because of the large amount of
valid messages, the handler could be overwhelmed. Particularly if the attacker
uses valid device IDs in these spam messages. Such an attack would be difficult to
detect, and maybe impossible to stop.

1The time interval was found by looking at a log snipped from the Graph Handler, see listing
A.1 and A.2 in appendix A

88

7.4.4 User Interface

Currently, the plots produced by the graph handler can be accessed using a Python
script on a machine that has an approved AWS certification key installed. This
makes the produced data potentially available anywhere with an internet con-
nection. However, it is still quite cumbersome to set up such a connection. It
also requires a certain level of programming knowledge, a significant drawback.
Therefore, a more user friendly method of interfacing with this data should be
implemented.

7.5 Further Improvements

This section contains a detailed discussion on changes to, or additions to the current
system to improve its functionality. Chapter 9 presents this section in short-form
as a list, for a faster read through.

7.5.1 An API Library

For the embedded system to fully utilize the Digi 3G modem, a more robust API
library should be implemented. The library could be a series of C files, similarly
to the paho MQTT library. It needs to be able to handle the many possible errors
that may occur when using the modem. This includes the loss of signal or the
unexpected closing of a socket on the server side. Similarly, the library could be
modularized similarly to the paho library, by letting a user specify the send and
receive functions to be utilized by the library. This would allow the library to be
ported to multiple embedded system, including those that may not use FreeRTOS.
It would also reduce the workload of any engineer who might try to incorporate
the 3G modem, or any other Digi product utilizing the same API.

7.5.2 Embedded Hardware Setup

The current hardware setup is mainly intended for implementation and testing. As
such, the current embedded system is not fit for deployment. A possible solution is
to design a circuit board, using among other components, a NXP LPC43xx CPU
and a 20 pin connector for Digi XBee devices. Allowing the 3G modem to be
connected to the circuit board, and possibly upgraded at a later date.

7.5.3 Remote User Interface

Some form of interface for remote controlling should also be implemented. This
is for a user to be able to change how often the system reads its sensor values,
how often it transmit those data to the cloud service etc. This interface could be
implemented by using the device shadow functionality of AWS IoT.

89

7.5.4 Additional Embedded Features

To make the embedded system fit for field deployment more features should be
added. This includes, among other things, a form of long term non-volatile storage
medium, in order to fulfill PR-3.1. Both for the possibility of storing measured
data for longer periods of time, and system logging. This could be accomplished by
using a SD card module and a Real-Time clock (RTC) for retrieving timestamps.
The LCPXpresso 4367 does allow for RTC functions, but it does not have a
constant power supply, thereby resetting it whenever the system loses power. A
module connected to a battery should therefore be used, similarly to what was
implemented for the TTK4550 thesis for this author[47, p. 27].

Another feature is increased robustness. The current embedded system has
few features regarding the handling of unforeseen errors, other than what is
embedded in the FreeRTOS stack. Functionality to handle power loss of parts, or
the entire system, for example, should be implemented. To meet PR-7.

7.5.5 Improved Cloud Computing

This subsection discusses some of the improvements that can be implemented to
improve the cloud computing of the system.

Analysis and Estimation

If the system is to be able to estimate the power production for the next 24
hours, an application with artificial intelligence capabilities such as machine
learning, similarly to the techniques discussed in section 3.2.2, like ANNs, should
be implemented. Such an application also needs extra and more reliable data than
what is currently available in the system. Currently, the weather data used in the
system comes from what is available through the Yr API, which covers the whole
Trondheim Area. A local weather station, capable of collecting the necessary
information would be better. Some form of data quality control should also be
added, as one study showed, it greatly improved the estimation quality[53].

Additional information regarding the solar PV location should also be used
in the analysis and estimations. This includes, among other things, the angle of
the solar PV cells. Which is of great importance of the solar radiation hitting
the cells. And the positioning of the panels, which would help pinpoint when the
solar rays hit the PV panels at an angle which produces the most power. Another
is the normal solar radiation of the geographical area, which can help remove
extraordinary production levels that might reduce the accuracy of the estimations.
Third is a form of historical weather analysis. As the Mathisen note in section
3.2.1 mentions, snow on the solar PV cells prevents nearly all power production,
for several days after it has fallen on the cells. Adding this factor would be crucial,

90

particularly for a country like Norway, where in certain locations, it might snow
in May.

Security and Scalability

A possible solution to the issues and limitations discussed in section 7.4 is to utilize
the Amazon FreeRTOS SDK. This would give access to such cloud services as
AWS IoT, which is intended to be used for a larger amount of different embedded
systems. It would additionally give access to a more secure cloud connection by
utilizing the mbedtls cryptographic standard and handle the task of identifying
the different systems by using the certificate functionality provided by Amazon
FreeRTOS. While the necessary porting discussed in section 2.5.4 does require a
significant amount of work, the non-hardware specific functionality can mostly be
directly copied from existing code. This includes among others the pkcs11 header
and source files. Where the only functions that needs to be modified are those
handling the saving and retrieving of files on the non-volatile memory. Similarly,
it is mainly private send and receive functions in the secure sockets files that
needs to be modified to the particular hardware setup. This is by no means an
insignificant task, as the author of this thesis experienced during the time spent
trying to understand the Amazon FreeRTOS structure, but a significant amount
of existing code can be reused.

There are of course downsides to this approach. The most important one is
possibly how difficult it makes migrating the system to another cloud service in
the future. Amazon has, through its acquisition of FreeRTOS, strengthened its
position in the marked for embedded systems solutions. Making it an attractive
choice for those who wants to build systems needing embedded security and vast
cloud computing resources. While a large team of developers may build their
own SDK to avoid this issue, smaller teams may not have the time, or resources,
available to do this. Amazon FreeRTOS gives small teams a lower entry to
developing secure applications, but it will also lock them to AWS.

Web Interface

To make the plots, and any other data produced by the graph handler available
for individuals with little to no programming experience, a web interface could be
implemented. Both for visualizing the data on the interface and make the plots
available for download. This can be implemented by utilizing the Python web
framework Django[37], similarly to the interface Marit Tundal implemented for her
TTK4550 thesis.

91

Chapter 8
Conclusion

Through a systematic approach the author of this thesis has designed and
implemented an embedded system, capable of communicating with a cloud service
using a Wi-Fi module and the cloud computing used to handle the collected
data. The stated goal of using a 2G/4G modem was not accomplished due to
a lack of time and no existing libraries or previous projects available to reduce
the workload during the implementation period. The system is able to measure
the current running through a cable by using a HO-P hall effect sensor. The
system calculates the average power production over the course of a minute and
then publishes it to an open MQTT broker. A continuously running Python
script retrieves the published data and adds it to a DynamoDB table. The
collected is then plotted with scraped Yr weather and forecast data, using
periodically run Python scripts. The plots are then placed in a zipped direc-
tory and uploaded to a Amazon S3 bucket, for long term storage and easy retrieval.

The functionality of the system has been confirmed by multiple tests, but it
is still not fit for field deployment. Better error handling on both the embedded
and cloud service side of the system needs to be added. It also needs better
security features in the form of cryptography, and scalability.

92

Chapter 9
Future Work

This chapter contains a list of the future improvements discussed in chapter 7.
This list is intended for a fast read through. Therefore, the justifications and the
approach is discussed more thoroughly in section 7.5. Every list item also includes
a reference to the specific section they are discussed in long-form, to make reading
this thesis easier.

9.1 Propositions for Future Work

• An API library to better control the Digi modem, see section 7.5.1.

• A printed circuit board for making the hardware ready for field deployment,
see section 7.5.2

• A remote interface for controlling the embedded systems. Possibly imple-
mented by using the Device Shadow service of AWS IoT, see section 7.5.3

• Additional features for increased robustness should be added to the embedded
system. This include both a SD and RTC module for logging, and additional
error handling, particularly with regards to power loss, see section 7.5.4

• Cloud computing improvements, see section 7.5.5

– Improved analysis and estimation by using AI tools such as Artificial
Neural Networks. These would be further improved by utilizing more
data regarding the solar PV installation, the environment and weather
measurement, accompanied by information quality control.

– Better security and scalability by using the Amazon FreeRTOS SDK.

93

– A web user interface for easier data retrieval for third parties using the
Django web framework.

94

Appendices

95

Appendix A
Additional Figures and Listings

A.1 Additional Figures

The Hard Fault

By using the Keil MDK tutorial document to debug the hard fault registers[18],
and looking at the value of the CSFR register, that handles usage, bus and memory
faults[18, p. 8] one can debug the hard fault described in section 7.3. The value
1024 in CFSR denotes an imprecise data bus error (IMPRECISERR, bit 10)[18,
p. 10]. The HFSR denotes that the bus fault was escalated to a hard fault because
it cannot be handled (FORCED, bit 30)[18, p. 7]. The bus fault (BFAR) status
register shows that an instructtion bus error has occurred (IBUSERR, bit 8)[18,
p. 8-9], and that the error is not related to the instruction that caused the error
(IMPRECISERR, bit 10), and that is a floating point error (LSPERR, bit 13)

Status register Int value Binary value
CFSR 1024 00000000 00000000 00000100 00000000
HFSR 1073741824 01000000 00000000 00000000 00000000
BFAR 3758157112 11100000 00000000 11101101 00111000

Table A.1: The three most relevant status registers shown in figure A.1 for additional
clarity.

The Modem Bugs

96

Figure A.1: A screen shot of the output of the hard fault handler implemented for
debugging.

Figure A.2: A screen shot of parts of the RX ring buffer .

97

Figure A.3: A screen shot of the proper RX IPv4 frame generated by the XCTU software.

98

A.2 Sensor Figures

Figure A.4: A screen shot from the linear regression calculations performed using Wol-
fram Alpha

99

A.3 Additional Listings

Looking at line 1 and 2 in listing A.1 and A.2 we see the time difference needed to
generate a Python dictionary from the query result from a DynamoDB query using
the boto3 library. The choice of defining the period needed to perform a query as
0.05 seconds is a pessimistic one, but was chosen for simplicity and to give some
leeway with respect to the calculations.

1 2018−06−05 00:05:02,207:INFO:Graph Handler:Successfully generated the forecastDict
2 2018−06−05 00:05:02,241:INFO:Graph Handler:Successfully generated the forecastDict
3 2018−06−05 00:05:02,484:INFO:Graph Handler:Successfully generated the entire powerAvgDict
4 2018−06−05 00:05:02,655:INFO:Graph Handler:Successfully generated an avg pow graph

Listing A.1: A small snippet of the log output from the Graph Handler to illustrate a
DynamoDB query needs to complete a query.

1 2018−06−04 00:05:01,718:INFO:Graph Handler:Successfully generated the forecastDict
2 2018−06−04 00:05:01,750:INFO:Graph Handler:Successfully generated the forecastDict
3 2018−06−04 00:05:02,023:INFO:Graph Handler:Successfully generated the entire powerAvgDict
4 2018−06−04 00:05:02,188:INFO:Graph Handler:Successfully generated an avg pow graph

Listing A.2: A small snippet of the log output from the Graph Handler to illustrate a
DynamoDB query needs to complete a query.

100

Bibliography

[1] Back to basics: The universal asynchronous receiver/transmitter
(uart). https://www.allaboutcircuits.com/technical-articles/

back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/.
Accessed: 2017-10-15.

[2] Dent elitepro xc series power meters. https://www.powermeterstore.com/

P16777/dent-elitepro-esp-xc-power-meters. Accessed: 2017-12-02.

[3] Tcg120 - gsm/gprs controller. https://shop.marcomweb.it/

en/shop-online/telecontrollo/tutti-i-prodotti/remote-i-o/

tcg120-gsm-gprs-controller-dettagli.html. Accessed: 2017-12-02.

[4] Amazon. Amazon DynamoDB - Developer Guide. Amazon.

[5] Amazon. Amazon Elastic Compute Cloud - User Guide for Linux Instances.

[6] Amazon. Amazon FreeRTOS - User Guide.

[7] Amazon. Amazon Simple Storage Service - Developer Guide. Amazon.

[8] Amazon. Amazon Simple Storage Service - Getting Started Guide.

[9] Amazon. AWS Command Line Interface - Getting Started Guide.

[10] Amazon. AWS Greengrass - Developer Guide.

[11] Amazon. AWS IoT - Developer Guide.

[12] Amazon. Aws iot core. https://aws.amazon.com/iot-core/, 2018. [Online;
accessed 13-February-2018].

[13] Amazon. Aws pricing. https://aws.amazon.com/pricing/?nc2=h_ql_pr&

awsm=ql-3, 2018. [Online; accessed 2-June-2018].

101

https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.powermeterstore.com/P16777/dent-elitepro-esp-xc-power-meters
https://www.powermeterstore.com/P16777/dent-elitepro-esp-xc-power-meters
https://shop.marcomweb.it/en/shop-online/telecontrollo/tutti-i-prodotti/remote-i-o/tcg120-gsm-gprs-controller-dettagli.html
https://shop.marcomweb.it/en/shop-online/telecontrollo/tutti-i-prodotti/remote-i-o/tcg120-gsm-gprs-controller-dettagli.html
https://shop.marcomweb.it/en/shop-online/telecontrollo/tutti-i-prodotti/remote-i-o/tcg120-gsm-gprs-controller-dettagli.html
https://aws.amazon.com/iot-core/
https://aws.amazon.com/pricing/?nc2=h_ql_pr&awsm=ql-3
https://aws.amazon.com/pricing/?nc2=h_ql_pr&awsm=ql-3

[14] Amazon. Boto 3 documentation. https://boto3.readthedocs.io/en/

latest/, 2018. [Online; accessed 28-March-2018].

[15] Amazon. Setting up with amazon ec2. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html, 2018. [On-
line; accessed 21-May-2018].

[16] Amazon. What is aws elastic beanstalk? https://docs.aws.amazon.com/

elasticbeanstalk/latest/dg/Welcome.html, 2018. [Online; accessed 13-
February-2018].

[17] 4G Americas. Gsm global system for mobile communications. https:

//web.archive.org/web/20140208025938/http://www.4gamericas.org/

index.cfm?fuseaction=page§ionid=242, 2017. [Online; accessed
15-October-2017].

[18] arm Keil. Using Cortex-M3/M4/M7 Fault Exceptions, 2017. MDK Tutorial.

[19] John Catsoulis. Designing Embedded Hardware. Morgan Kaufmann, second
edition, May 2005.

[20] Tao Cai Bangyin Liu Changsong Chen, Shanxu Duan. Online 24-h solar power
forecasting based on weather type classification using artificial neural network.
Solar Energy, 85(11):2856–2870, 2011.

[21] Wikipedia contributors. 3g — wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=3G&oldid=823833557, 2018. [On-
line; accessed 4-February-2018].

[22] Wikipedia contributors. 4g — wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=4G&oldid=823766065, 2018. [On-
line; accessed 5-February-2018].

[23] Wikipedia contributors. Comparison of mobile phone standards — wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Comparison_of_mobile_phone_standards&oldid=821136749, 2018. [On-
line; accessed 5-February-2018].

[24] Wikipedia contributors. Linear regression — wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Linear_

regression&oldid=823846035, 2018. [Online; accessed 18-February-2018].

[25] Wikipedia contributors. Mqtt — wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=MQTT&oldid=825426299,
2018. [Online; accessed 13-February-2018].

[26] Wikipedia contributors. Photovoltaics — wikipedia, the free encyclopedia,
2018. [Online; accessed 10-February-2018].

102

https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
https://web.archive.org/web/20140208025938/http://www.4gamericas.org/index.cfm?fuseaction=page§ionid=242
https://web.archive.org/web/20140208025938/http://www.4gamericas.org/index.cfm?fuseaction=page§ionid=242
https://web.archive.org/web/20140208025938/http://www.4gamericas.org/index.cfm?fuseaction=page§ionid=242
https://en.wikipedia.org/w/index.php?title=3G&oldid=823833557
https://en.wikipedia.org/w/index.php?title=3G&oldid=823833557
https://en.wikipedia.org/w/index.php?title=4G&oldid=823766065
https://en.wikipedia.org/w/index.php?title=4G&oldid=823766065
https://en.wikipedia.org/w/index.php?title=Comparison_of_mobile_phone_standards&oldid=821136749
https://en.wikipedia.org/w/index.php?title=Comparison_of_mobile_phone_standards&oldid=821136749
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=823846035
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=823846035
https://en.wikipedia.org/w/index.php?title=MQTT&oldid=825426299

[27] Jens Deters. Welcome to the home of mqtt.fx. http://mqttfx.jensd.de/,
2018. [Online; accessed 3-June-2018].

[28] Digi. Digi xbee® cellular 3g. https://www.digi.com/

products/xbee-rf-solutions/embedded-cellular-modems/

digi-xbee-cellular-3g, 2018. [Online; accessed 5-April-2018].

[29] Digi. Rapid prototyping and connectivety to aws. https://www.digi.com/

resources/standards-and-technologies/aws, 2018. [Online; accessed 5-
April-2018].

[30] Digi International. DIGI XBEE CELLULAR 3G User Guide, 2018. User
Guide.

[31] Digi International. DIGI XBEE CELLULAR LTE CAT 1, 2018. Datasheet.

[32] Eclipse. paho-mqtt 1.3.1. https://pypi.org/project/paho-mqtt/, 2018.
[Online; accessed 21-May-2018].

[33] eclipse. paho.mqtt.embedded-c. https://github.com/eclipse/paho.mqtt.

embedded-c/blob/master/MQTTClient-C/samples/FreeRTOS/MQTTEcho.c,
2018. [Online; accessed 9-June-2018].

[34] eclipse. paho.mqtt.embedded-c. https://github.com/eclipse/paho.mqtt.

embedded-c, 2018. [Online; accessed 19-May-2018].

[35] Radio Electronics. Gsm network architecture. http://www.

radio-electronics.com/info/cellulartelecomms/gsm_technical/

gsm_architecture.php, 2017. [Online; accessed 15-October-2017].

[36] GSM Favorites. Introduction to general packet radio service (gprs).
https://en.wikipedia.org/w/index.php?title=GPRS_core_network&

oldid=804499437, 2017. [Online; accessed 15-October-2017].

[37] Django Software Foundation. Django: The web framework for perfection-
ists with deadlines. https://www.digi.com/support/forum/, 2018. [Online;
accessed 10-June-2018].

[38] Python Software Foundation. 17.1. threading — thread-based parallelism.
https://docs.python.org/3/library/threading.html, 2018. [Online; ac-
cessed 8-May-2018].

[39] Python Software Foundation. 17.7. queue — a synchronized queue class.
https://docs.python.org/3/library/queue.html, 2018. [Online; accessed
8-May-2018].

[40] Amazon Web Services. The freertosTM kernel. https://www.freertos.org/.
[Online; accessed 3-February-2018].

103

http://mqttfx.jensd.de/
https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/digi-xbee-cellular-3g
https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/digi-xbee-cellular-3g
https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/digi-xbee-cellular-3g
https://www.digi.com/resources/standards-and-technologies/aws
https://www.digi.com/resources/standards-and-technologies/aws
https://pypi.org/project/paho-mqtt/
https://github.com/eclipse/paho.mqtt.embedded-c/blob/master/MQTTClient-C/samples/FreeRTOS/MQTTEcho.c
https://github.com/eclipse/paho.mqtt.embedded-c/blob/master/MQTTClient-C/samples/FreeRTOS/MQTTEcho.c
https://github.com/eclipse/paho.mqtt.embedded-c
https://github.com/eclipse/paho.mqtt.embedded-c
http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/gsm_architecture.php
http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/gsm_architecture.php
http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/gsm_architecture.php
https://en.wikipedia.org/w/index.php?title=GPRS_core_network&oldid=804499437
https://en.wikipedia.org/w/index.php?title=GPRS_core_network&oldid=804499437
https://www.digi.com/support/forum/
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/queue.html
https://www.freertos.org/

[41] Amazon Web Services. Freertos binary semaphores. https://www.freertos.
org/Embedded-RTOS-Binary-Semaphores.html, 2018. [Online; accessed 9-
May-2018].

[42] Amazon Web Services. Freertos+tcp. https://www.freertos.org/

FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html, 2018. [Online; accessed
31-May-2018].

[43] Amazon Web Services. Task priorities. https://www.freertos.org/

RTOS-task-priority.html, 2018. [Online; accessed 9-May-2018].

[44] Amazon Web Services. Tasks and co-routines. https://www.freertos.org/

taskandcr.html, 2018. [Online; accessed 9-May-2018].

[45] Erlend Grande. Data gathering and -assembling from several smart meter han
ports. Ttk4990, Norwegian University of Science and Technology, Trondheim,
June 2018. TTK4990 Master Thesis.

[46] Alexander Hansen. python-yr. https://github.com/wckd/python-yr, 2018.
[Online; accessed 28-March-2018].

[47] H̊akon Edøy Hanssen. Embedded system sensor monitoring with 2g/4g com-
munication. Ttk4550, Norwegian University of Science and Technology, Trond-
heim, December 2017. TTK4550 Specialixation Project Thesis.

[48] Yitaek Hwang. Cellular iot explained – nb-iot vs. lte-
m vs. 5g and more. https://www.iotforall.com/

cellular-iot-explained-nb-iot-vs-lte-m/, 2018. [Online; accessed
8-May-2018].

[49] Dent Instruments. Elitepro energy logger. https://shop.dentinstruments.
com/collections/elitepro-energy-logger, 2017. [Online; accessed 17-
October-2017].

[50] Dent Instruments. Operator’s Guide Eitepro XC and ELOG 15. Dent Instru-
ments, 2017.

[51] Digi International. Digi forum. https://www.digi.com/support/forum/,
2018. [Online; accessed 10-June-2018].

[52] Digi International. The new dig xbee3 series. https://www.digi.com/xbee,
2018. [Online; accessed 31-May-2018].

[53] J. Tovar-Pescador D. Pozo-Vázquez J.A. Ruiz-Arias *, H. Alsamamra. Pro-
posal of a regressive model for the hourly diffuse solar radiation under all sky
conditions. Energy Conversion and Management, 51(5):881–893, 2009.

104

https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://www.freertos.org/RTOS-task-priority.html
https://www.freertos.org/RTOS-task-priority.html
https://www.freertos.org/taskandcr.html
https://www.freertos.org/taskandcr.html
https://github.com/wckd/python-yr
https://www.iotforall.com/cellular-iot-explained-nb-iot-vs-lte-m/
https://www.iotforall.com/cellular-iot-explained-nb-iot-vs-lte-m/
https://shop.dentinstruments.com/collections/elitepro-energy-logger
https://shop.dentinstruments.com/collections/elitepro-energy-logger
https://www.digi.com/support/forum/
https://www.digi.com/xbee

[54] James F. Kurose and Keith W. Ross. Computer Networking - A Top-Down
Approach. Pearson, sixth edition, 2013.

[55] Link Labs. What is lte-m? https://https://www.link-labs.com/blog/

what-is-lte-m, 2018. [Online; accessed 8-May-2018].

[56] LEM. Current Tranducer HO-P Series, 2014. Datasheet.

[57] Linear Technology. LTC4145 - High Voltage I2C Current and Voltage Monitor,
2008. Rev F.

[58] Maria Malvoni Maria De Giorgi, Paolo Congedo. Photovoltaic power forecast-
ing using statistical methods: impact of weather data. IET Science, Measure-
ment Technology, 8(3):90–97, 2014.

[59] Geir Mathisen. Notat flexnet - case 3: Last- og fleksibilitetspotensialet for en
plusskunde. Project number: 1020190782, 2017.

[60] mathplotlib. The pyplot api. https://matplotlib.org/api/pyplot_

summary.html, 2018. [Online; accessed 2-June-2018].

[61] Mouser. Bc-v1-ut-001. https://no.mouser.com/ProductDetail/

Digi-International/XBC-V1-UT-001?qs=sGAEpiMZZMuCv89HBVkAk%

2fJATD96F4I5YkJa0QjY3Po%3d, 2018. [Online; accessed 19-May-2018].

[62] Mouser. Xbc-m5-ut-001. https://no.mouser.com/ProductDetail/

Digi-International/XBC-M5-UT-001?qs=pfd5qewlna6hjdV4MSQYsQ%3d%

3d, 2018. [Online; accessed 19-May-2018].

[63] NXP. Lpcopen platform v1.03 lpcopen platform for nxp lpc microcontrollers.
http://docs.lpcware.com/lpcopen/v1.03/index.html. [Online; accessed
9-May-2018].

[64] NXP. Lpc4337fet256: 32-bit arm cortex-
m4/m0 mcu. https://www.nxp.com/products/

processors-and-microcontrollers/arm-based-processors-and-mcus/

lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/

32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:

LPC4337FET256, 2018. [Online; accessed 5-April-2018].

[65] NXP. Lpcxpresso4337 development board. https://www.nxp.

com/support/developer-resources/hardware-development-tools/

lpcxpresso-boards/lpcxpresso4337-development-board:OM13070, 2018.
[Online; accessed 5-April-2018].

[66] NXP. Om13054: Lpc-link2. https://www.nxp.com/products/

processors-and-microcontrollers/arm-based-processors-and-mcus/

105

https://https://www.link-labs.com/blog/what-is-lte-m
https://https://www.link-labs.com/blog/what-is-lte-m
https://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/api/pyplot_summary.html
https://no.mouser.com/ProductDetail/Digi-International/XBC-V1-UT-001?qs=sGAEpiMZZMuCv89HBVkAk%2fJATD96F4I5YkJa0QjY3Po%3d
https://no.mouser.com/ProductDetail/Digi-International/XBC-V1-UT-001?qs=sGAEpiMZZMuCv89HBVkAk%2fJATD96F4I5YkJa0QjY3Po%3d
https://no.mouser.com/ProductDetail/Digi-International/XBC-V1-UT-001?qs=sGAEpiMZZMuCv89HBVkAk%2fJATD96F4I5YkJa0QjY3Po%3d
https://no.mouser.com/ProductDetail/Digi-International/XBC-M5-UT-001?qs=pfd5qewlna6hjdV4MSQYsQ%3d%3d
https://no.mouser.com/ProductDetail/Digi-International/XBC-M5-UT-001?qs=pfd5qewlna6hjdV4MSQYsQ%3d%3d
https://no.mouser.com/ProductDetail/Digi-International/XBC-M5-UT-001?qs=pfd5qewlna6hjdV4MSQYsQ%3d%3d
http://docs.lpcware.com/lpcopen/v1.03/index.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:LPC4337FET256
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:LPC4337FET256
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:LPC4337FET256
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:LPC4337FET256
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0/32-bit-arm-cortex-m4-m0-mcu-up-to-1-mb-flash-and-136-kb-sram-ethernet-two-high-speed-usb-lcd-emc:LPC4337FET256
https://www.nxp.com/support/developer-resources/hardware-development-tools/lpcxpresso-boards/lpcxpresso4337-development-board:OM13070
https://www.nxp.com/support/developer-resources/hardware-development-tools/lpcxpresso-boards/lpcxpresso4337-development-board:OM13070
https://www.nxp.com/support/developer-resources/hardware-development-tools/lpcxpresso-boards/lpcxpresso4337-development-board:OM13070
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054

lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054,
2018. [Online; accessed 16-May-2018].

[67] Nick O’Leary. Arduino client for mqtt. https://github.com/knolleary/

pubsubclient, 2018. [Online; accessed 31-May-2018].

[68] Oracle. Introducing the internet protocol suite. https://docs.oracle.com/

cd/E19455-01/806-0916/6ja85398m/index.html, 2017. [Online; accessed
15-November-2017].

[69] Python. 19.2. json — json encoder and decoder. https://docs.python.org/
3/library/json.html, 2018. [Online; accessed 2-June-2018].

[70] Python. 28.10. traceback — print or retrieve a stack traceback. https://

docs.python.org/2/library/traceback.html, 2018. [Online; accessed 19-
May-2018].

[71] Nurettin Çetinkaya Qudsia Memon. Short-term power production forecasting
in smart grid based on solar power plants. International Journal of Engineering
and Applied Sciences (IJEAS), 4(12):48–52, 2018.

[72] RealTerm. Realterm: Serial terminal. https://realterm.sourceforge.io/,
2018. [Online; accessed 3-June-2018].

[73] Margaret Rouse. Tcp (transmission control protocol). http://

searchnetworking.techtarget.com/definition/TCP, 2017. [Online; ac-
cessed 15-November-2017].

[74] Audrey Selian. 3g mobile licensing policy: From gsm to imt-2000 - a compar-
ative analysis. 2002.

[75] Amazon Web Services. About aws. https://aws.amazon.com/about-aws/,
2018. [Online; accessed 9-February-2018].

[76] Amazon Web Services. Amazon freertos. https://aws.amazon.com/

freertos/, 2018. [Online; accessed 9-February-2018].

[77] William Stallings. Operating Systems - Internals and Design Principles.
Eighth edition, 2015.

[78] Teracom. GSM-GPRS Remote monitoring controller TCG120 - User Manual.
Teracom Systems, April 2017.

[79] torvalds. Reducing scheduling-clock ticks. https://git.kernel.org/

pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/

timers/NO_HZ.txt. [Online; accessed 3-February-2018].

106

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/lpc-link2:OM13054
https://github.com/knolleary/pubsubclient
https://github.com/knolleary/pubsubclient
https://docs.oracle.com/cd/E19455-01/806-0916/6ja85398m/index.html
https://docs.oracle.com/cd/E19455-01/806-0916/6ja85398m/index.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/2/library/traceback.html
https://docs.python.org/2/library/traceback.html
https://realterm.sourceforge.io/
http://searchnetworking.techtarget.com/definition/TCP
http://searchnetworking.techtarget.com/definition/TCP
https://aws.amazon.com/about-aws/
https://aws.amazon.com/freertos/
https://aws.amazon.com/freertos/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/timers/NO_HZ.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/timers/NO_HZ.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/timers/NO_HZ.txt

[80] Marit Schei Tundal. Using cloud services for data exchange with iot like de-
vices. Ttk4550, Norwegian University of Science and Technology, Trondheim,
December 2017. TTK4550 Specialixation Project Thesis.

[81] ubuntu wiki contributors. Systemdforupstartusers. https://wiki.ubuntu.

com/SystemdForUpstartUsers, 2018. [Online; accessed 27-May-2018].

[82] Wikipedia. Gsm — wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=GSMoldid=804880242, 2017.
[Online; accessed 15-October-2017].

[83] Wikipedia contributors. Xbee — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=XBee&oldid=763025486,
2017. [Online; accessed 31-May-2018].

[84] Wikipedia contributors. Esp8266 — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=ESP8266&oldid=

843195845, 2018. [Online; accessed 31-May-2018].

[85] Wikipedia contributors. Hall effect sensor — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Hall_effect_

sensor&oldid=840083072, 2018. [Online; accessed 9-May-2018].

[86] Wikipedia contributors. Narrowband iot — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Narrowband_IoT&

oldid=837360224, 2018. [Online; accessed 8-May-2018].

[87] Wikipedia contributors. Nodemcu — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=NodeMCU&oldid=

835549174, 2018. [Online; accessed 31-May-2018].

[88] Wikipedia contributors. Putty — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=PuTTY&oldid=839195267, 2018.
[Online; accessed 21-May-2018].

[89] Wikipedia contributors. Winscp — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=WinSCP&oldid=827766657, 2018.
[Online; accessed 21-May-2018].

[90] Sean Wilkins. Tcp/ip ports and protocols. http://www.

pearsonitcertification.com/articles/article.aspx?p=1868080, 2012.
[Online; accessed 8-December-2017].

[91] Yr. Vilk̊ar for bruk av gratis data fr̊a yr. http://om.yr.no/info/verdata/

vilkar/, 2018. [Online; accessed 29-March-2018].

107

https://wiki.ubuntu.com/SystemdForUpstartUsers
https://wiki.ubuntu.com/SystemdForUpstartUsers
https://en.wikipedia.org/w/index.php?title=XBee&oldid=763025486
https://en.wikipedia.org/w/index.php?title=ESP8266&oldid=843195845
https://en.wikipedia.org/w/index.php?title=ESP8266&oldid=843195845
https://en.wikipedia.org/w/index.php?title=Hall_effect_sensor&oldid=840083072
https://en.wikipedia.org/w/index.php?title=Hall_effect_sensor&oldid=840083072
https://en.wikipedia.org/w/index.php?title=Narrowband_IoT&oldid=837360224
https://en.wikipedia.org/w/index.php?title=Narrowband_IoT&oldid=837360224
https://en.wikipedia.org/w/index.php?title=NodeMCU&oldid=835549174
https://en.wikipedia.org/w/index.php?title=NodeMCU&oldid=835549174
https://en.wikipedia.org/w/index.php?title=PuTTY&oldid=839195267
https://en.wikipedia.org/w/index.php?title=PuTTY&oldid=839195267
https://en.wikipedia.org/w/index.php?title=WinSCP&oldid=827766657
https://en.wikipedia.org/w/index.php?title=WinSCP&oldid=827766657
http://www.pearsonitcertification.com/articles/article.aspx?p=1868080
http://www.pearsonitcertification.com/articles/article.aspx?p=1868080
http://om.yr.no/info/verdata/vilkar/
http://om.yr.no/info/verdata/vilkar/

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Intended Audience
	The Assignment
	Thesis Structure

	Theory
	General Theory
	Linear Regression
	Solar Photovoltaic - PV
	Measuring Current and Voltage

	Communications Standards
	Universal asynchronous receiver-transmitter - UART
	Universal Serial Bus - USB
	Global System for Mobile Communications - GSM/2G
	3G
	Long Term Evolution - 4G LTE/4G

	Communication Protocols
	Internet Protocol Suite
	Message Queuing Telemetry Transport - MQTT

	Hardware Platform and modules
	Cortex - M4
	Digi XBee

	Software Platforms
	OS - Operating System
	Real-time Operation System - RTOS
	FreeRTOS
	Amazon Web Services - AWS

	Previous Work
	A Study of Existing Embedded Systems
	Evaluation Criteria
	Findings
	Comparing the Findings

	Studies on Estimating Electric Power Production By Solar PVs
	Weather Attributes
	Estimation Tools and Techniques
	Conclusion

	Specifications and Design
	An Overview of the Solution
	The Structure of the Systems
	The Embedded System
	The Cloud Services
	The Cloud Computing

	System Specifications
	Choosing the Embedded Hardware
	The MCU
	The Cellular Modem
	The Sensor(s)
	The Final Embedded Hardware Setup

	The Embedded Software Setup
	The Cloud Service Setup
	Database
	Cloud Computing
	Long Term Storage

	The Final System Setup

	Implementation
	The Embedded System
	Overall Implementation and Functionality
	Changing the Implementation
	FreeRTOS Tasks
	Software, Driver and Libraries
	The Hardware Implementation
	The Wi-Fi Implementation

	Cloud Computing
	MQTT Broker
	AWS Platforms

	Scripts Running on the EC2 Instance
	Accessing the EC2 Instance
	Overall Python Implementation
	The Yr Scraper
	The MQTT Handler
	The Graph Handler
	Running the Scripts
	Debugging the Python Scrips

	Tests
	The Embedded System
	The Cloud Scripts
	The System Test

	Results
	The Embedded System Test Results
	The Sensor Test
	The UART Test
	The Modem Test
	The ESP8266 Test
	The Embedded System Test

	The Cloud Scripts Test Results
	The Yr Scraper Test
	The MQTT Handler Test
	The Graph Handler Test

	The System Test Results

	Discussion
	The Tests
	The Embedded System Tests
	The Cloud Script Tests
	The System-Wide Test
	Limitations of the Tests

	The Implementation Change
	Implementation Challenges and Difficulties
	Cloud Computing
	Analysis and Estimation
	Security
	Scalability
	User Interface

	Further Improvements
	An API Library
	Embedded Hardware Setup
	Remote User Interface
	Additional Embedded Features
	Improved Cloud Computing

	Conclusion
	Future Work
	Propositions for Future Work

	Appendices
	Additional Figures and Listings
	Additional Figures
	Sensor Figures
	Additional Listings

	Bibliography

