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Abstract

Complex numerical models have been developed during the last decades. They are able

to model complex phenomena that may occur in a structure when subjected to seismic

excitations, including nonlinear material response and the effects of localization. Correct

calibration of the numerical model is essential in order to take advantage of new methods of

analysis. As the models become more complex, more knowledge is required to make the

right assumptions. These assumptions have a large impact on the end results of analyses,

which can lead to inaccurate assessment of damage.

The objective of this work was to investigate the effect of modeling assumptions. This

has been achieved through analysis of a reinforced concrete moment resisting frame. Both

nonlinear time-history analysis (NTHA) and static pushover analysis (SPO) have been

performed, as these methods complement each other. Different model configurations have

been used for these analyses to investigate the effect of their differences. The analyzed

structure is a low-rise building with a high degree of regularity, which legitimize an analysis

of one of its substructures. Hence, all analyses have been carried out on a 2D frame.

Distributed inelasticity elements with fiber sections and complex material models were used.

Results from models using both stiffness and flexibility based beam-column elements were

compared. Along with these models, the novel beam with hinges (BwH) beam-column

element model was used. The OpenSees framework was used as it posses the necessary

capabilities for this kind of study.

Both global and local responses were assessed. The results showed that the modeling

assumptions do have a significant impact on the response. This was observed on both global

and local levels. The resulting response histories of the roof drifts showed that for the force

based (FB) elements, when more integration points (IP) were used, the response histories

approached a stable solution. The same could be seen in the inter-story drift ratio (IDR)

profiles sampled when maximum roof drifts occurred. For the BwH model, varying the

hinge lengths resulted in different response histories with sometimes extreme variations.

Importantly, significant differences in the curvature response, which is an important measure

of damage, were also observed for different model configurations.

Among the conclusions drawn from these results, is that six or more IPs should be used

for flexibility based element models when they are being used in a NTHA. Also, it is clear

that measured curvatures are highly sensitive to modeling assumptions. So much in fact,

that assumptions resulting mildly imprecise models may lead to unfortunate assessment of

damage. The results show that attention to detail is important when a numerical model is to

be constructed and that the analyst must have knowledge of the numerical issues that may

arise in order to arrive at a correct assessment. Further work is necessary to quantify the

effects of modeling assumptions.
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Sammendrag

I løpet av de siste tiårene har det blitt utviklet komplekse numeriske modeller. De kan

beskrive komplekse fenomener som er vanlige under jordskjelv, som for eksempel ikke-

lineær materialrespons og effekter av lokalisering. Korrekt kalibrering av den numeriske

modellen er avgjørende for å utnytte nye analytiske metoder. Etter hvert som modellene blir

mer komplekse, kreves mer kunnskap for å gjøre riktige antagelser. Disse antagelsene har

stor betydning for resultatet av analysene og kan føre til unøyaktig skadeanalyse.

Målet med denne oppgaven var å undersøke effekten av antagelser i modellene gjennom

analyser av en rammekonstruksjon av armert betong. Både ikke-lineære dynamiske analyser

og statiske analyser har blitt gjennomført ettersom disse metodene komplimenterer hveran-

dre. Ulike modellkonfigurasjoner har blitt brukt for å undersøke effekten av forskjellene i

modellene. Den analyserte bygningen har få etasjer med høy grad av regularitet, noe som

legitimerer analyser av en substruktur. Alle analyser har derfor blitt utført på en 2D-ramme.

Både globale og lokale responser ble vurdert. Resultatene viste at modellantagelsene har

en betydelig påvirkning på responsen. Dette ble observert på både globalt og lokalt nivå.

De resulterende responshistoriene av takets forskyvninger viste at for FB elementer, førte

økende antall integrasjonspunkter til at responshistoriene nærmet seg en stabil løsning.

Det samme gjelder i IDR-profilene beregnet ved maksimal takforskyvning. For BwH-

modellen førte varierende flyteleddslengde til variasjon, og delvis ekstreme variasjoner, i

responshistoriene. Store forskjeller i kurvaturresponsen, som er viktig i skadeanalyse, ble

også observert for forskjellige modellkonfigurasjoner.

Blant konklusjonene som kan trekkes fra disse resultatene, er at seks eller fler integrasjon-

spunkter bør brukes for fleksibilitetsbaserte elementmodeller i ikke-lineære dynamiske

analyser. Resultatene tydeliggjør også at målte kurvaturer er meget sensitive for modellan-

tagelser, faktisk i så stor grad at antagelser som fører til noe upresise modeller kan føre til

uheldig vurdering av skade. Dette viser at fokus på detaljer er viktig når numeriske modeller

blir laget, og at analytikeren må ha kunnskap om numeriske utfordringer som kan oppstå

for å unngå feilvurderinger. Videre arbeid kreves for å kvantifisere modellantagelsenes

påvirkning på modellene.
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Chapter 1

Introduction

1.1 Background

Designing structures that are able to withstand seismic loads is important. Although no

structure can be fail-proof for earthquakes of all magnitudes, they should be able to ensure

public safety. The consequences of structural damage caused by earthquakes are so severe

that it cannot be overstated how important it is with good design in this regard. As pointed

out in the literature [1–3], the damage and loss of life due to recent earthquakes have led to

extensive research on the subject of seismic design during the last decades, spawning new

methods of analysis. Structures complying to modern building codes show good resilience

to earthquakes compared to non-complying structures [4]. As the building codes include

new ways to asses this resilience, new methods are introduced.

The most common way of analyzing the seismic strength of structures has been to do

linear static analysis using gradually increasing lateral forces to assess the lateral stiffness.

These analyses fail to take into account the complex behaviour of earthquake response,

which is dynamic and nonlinear in nature. A newer way of designing a structure is by

performance-based seismic design (PBSD), where the performance of the structure is

assessed. Performance is not solely synonymous with strength. When doing PBSD, it

becomes evident that increasing strength not necessarily gives increased safety in this

context. Ensuring that the response of a building is such a way that public safety is

maintained, is the primary goal.

As new and more advanced procedures and analyses are used in seismic design, the nu-

merical models become more complex. Inelastic material behaviour, cyclic degradation,

geometric nonlineareties and localization must be modeled in a sufficient manner and the

research community is finding new ways to do so [5–7]. The assumptions made in the

making of a numerical model, can have severe implications for the results of the analyses

in which they are used [5, 8–10]. Plastic rotations and curvatures of beams are important

measures for the assessment of the structural state in seismic design [5]. They are used in

building codes and have been shown to be sensitive to differences in numerical modeling

[11]. These facts highlight the importance for understanding of such sensitivities. As the

complexity of the analyses increases, the analyst must know which numerical tools to use

and how modeling assumptions regarding them affects the results.

1



2 Chapter 1. Introduction

1.2 Objective

The objective of this thesis is to investigate how different numerical modeling techniques

compare and how the modeling assumptions associated with them affect their results. Plastic

rotations and roof drifts will be of primary focus. This will be done evaluating a reinforced

concrete moment resisting frame (MRF) using two different methods of analysis; static

pushover analysis (SPO) and a nonlinear time-history analysis (NTHA). Both methods are

used as tools in methodologies which are frequently used by engineers today. The analyses

are performed primarily using the open system for earthquake engineering simulation

(OpenSees), which is an advanced computational tool frequently used in the literature [5,

12].



Chapter 2

Literature review

2.1 OpenSees and Robot

OpenSees is an open-source software framework developed at the Pacific Earthquake

Engineering Research Center (PEER). It is used for simulating the response of structural and

geotechnical systems to earthquake loading [13]. OpenSees interprets input written in the tcl

programming language, which is extended with special commands native to the OpenSees

framework. Such commands define objects as nodes and elements or choose algorithms and

integrators for the analysis. A graphical user interface (GUI) using the OpenSees software

framework do exist (The OpenSees Navigator). This was not used however, because the

author was not aware of such an application when starting out. For anyone that want to

use the OpenSees framework, this is worth looking into. The author suspects, with a very

limited knowledge about such applications, that some of the flexibility that lies in writing

scripts ”by hand” may be lost.

(a) Defining nodes. (b) Establishing first-mode static pushover

procedure.

Figure 2.1: Screen captures of tcl-files written using the OpenSees framework.

When programming using OpenSees and tcl, the user has many possibilities; it is flexible

and there are many material models, algorithms and integrators. It is easy to run several

analyses in loops and changing one parameter at a time, while data is being recorded and

neatly put into output files. This enables the user to easily perform parametric studies.

Building a finite element (FE) model and running a nonlinear analysis using OpenSees

is tedious work. Each node in the model must be individually defined with its unique

coordinates. Elements and their settings must be defined with its properties and nodes. The

3



4 Chapter 2. Literature review

model building process can be made more efficient by using for-loops and lists, but still, it

is time consuming. Another downside with OpenSees is that discovering sources of error

requires a lot of experience. Some of the scripts used in this thesis can be found in Appendix

H and the reader is recommended to take a look at these at this stage.

A wiki-style documentation is available through the the OpenSees website [13]. Additional

information and documentation can be found here. The wiki does not only explain how

different commands work, but sometimes points to articles explaining the relevant theory as

well.

Robot

Robot is a commercial structural analysis software developed for professional engineers. It

has a conventional GUI and has advanced building information modeling (BIM) capabilities.

A more thorough introduction to the software is not needed due to the extent it is used in

this work.

2.2 Performance-based design and the numerical model

2.2.1 Outline

Performance based design is no novelty. To design a structure based on its performance

under realistic and unsimplified conditions is necessary when building codes do not offer

the necessary tools. Seismic design is special in the sense that when a structure is subjected

to large earthquake loading, the main goal is to prevent loss of life. Obviously, for many

earthquakes that a structure is expected to experience, prevention of damage is essential

and the structure should resist the forces without yielding. But, in order to prevent loss of

life during larger earthquakes, the full capacity of the structure must be utilized, that is the

post-yield capacity. Because of this, novel analyses and techniques have been developed

in the recent decades. Methods considering the large differences between earthquakes and

effects like structural damping and cyclic degradation are being deployed [14–16].

A focus on the strength of the structure, that is its ability to resist lateral displacement, has

dominated the seismic design of low-rise buildings in past decades [1]. This is also reflected

in the design codes [14]. The reason for this is that the analyses used are simple, and most

importantly quick. Although lateral stiffness is essential, the seismic response of a structure

is more nuanced. This is because of its dynamic nature. Under earthquake loading, repeated

stress reversals and high stresses are the main source of damage [16]. Static analyses only

consider the latter.

No matter what kind of analysis is performed, it is naturally done using a FE program. The

structure must be modeled numerically in its entirety or in a simplified way. A part of the

structure may possess enough information to depict the response of the entire structure. In

this thesis, a numerical model of a structure or a representative substructure will be referred
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to as ”the numerical model”. This distinction is necessary since sections or elements in the

numerical model are by definition numerical models themselves.

The Norwegian seismic design code, NS-EN 1998-1, hereby referred to as EN 1998, is

the governing code for seismic design in Norway [17]. In the context of PBSD, EN 1998

demands that regions where plastic hinges is expected to occur should be able to undergo

large plastic rotations (sub-clause 5.2.3.4 (1)P). Subsequently, the numerical model must be

able to describe these phenomena as well.

2.2.2 Assessing damage

The structural performance is measured using what is called damage measures (DM) or

response indicators. A number of DMs are used: inter-story drift ratios (IDR), plastic

rotations and capacity curves [8]. Capacity curves usually describe the base shear as a

function of the roof drift. Assessing collapse mechanisms are also useful. Doing so can

help identify adverse design that lead to an undesired mechanism. The sought after collapse

mechanism is one where the beams yield before the columns, taking advantage of the full

capacity of the beams before global instability occurs. Adhering to the strong column-weak

beam (SCWB) principle is to design columns such a way that they can resist the largest

possible moment imposed on them by adjacent beams while remaining elastic, which lead

to the desired mechanism.

According to the principle in NS 1998 sub-clause 5.2.2.4 (2), sufficient curvature ductility

must be provided in critical regions. This is to prevent unacceptable damage. The compli-

ance with this principle is evaluated using a demand based on a curvature ductility factor

μ. This factor is the ratio ” ...of the post-ultimate strength curvature at 85 percent of the

moment resistance, to the curvature at yield...” [17]. NS 1998 define strain limits that are

not to be exceeded. The importance of proper modeling becomes apparent. These measures

have been shown to be greatly affected by the element models applied in the numerical

model [11].

Zeris et al. [8] found that DMs can easily be underestimated due to the numerical model. It

was also stated that for both static and dynamic analysis, there were significant uncertainties

related to the prediction of seismic performance due to the numerical model. Even when

using widely adopted modeling assumptions, DMs and collapse mechanisms varied signifi-

cantly. They further argued that the numerical model should be considered in standardized

PBSD procedures.

2.3 Methodologies and procedures

The different analytic procedures available to an analyst give different insights to the

performance of the structure. The procedures that are about to be presented are only steps

in larger methodologies.
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2.3.1 Static pushover analysis - SPO

The pushover analysis, or static pushover analysis (SPO), is a nonlinear static procedure

(NSP) serving as a tool for seismic performance assessment. There are several different

ways of conducting a pushover analysis ranging from simpler to advanced and more precise

methods. However, they are all static and nonlinear in nature. Whichever is conducted,

the idea is to subject a structure to a pattern of monotonically increasing loads until a

control node has reached a critical displacement (control displacement). Gravity loads are

applied first and held constant throughout [14, 18]. Pushover analysis methods should not

be confused with lateral force methods which deal with elastic systems. These will not be

discussed.

The simplest of the SPOs are the triangular pushover analysis and the first-mode pushover

analysis (Figure 2.2). Modal pushover analysis (MPA) and modified modal pushover

analysis (MMPA) are advanced methods [9]. The first-mode pushover analysis uses the

first eigenvector as a load pattern and pushes the structure to the limit value. This method

has the obvious disadvantage that it does not consider any mode but the first. Since the

first-mode pushover analysis is so simple, and therefore quick, it has been the preferred

method for professional engineers [1]. This is also the simplest nonlinear analysis method

used in EN 1998 [17]. The MPA uses several modal pushover analyses and combines their

result, allowing higher mode effects to be captures. The MMPA modifies this approach

considering the effects of higher modes.

Figure 2.2: Force distribution in a first-mode SPO.

SPOs are used to gain understanding of how a given structure will behave when subjected

to seismic loads. The pushover analyses are useful to find overstrength inherent in the

structure and to estimate plastic mechanisms and damage distributions [17, 19]. Although

the method can be seen as simple, it gives a clear picture of the lateral stiffness of any system.

Results can be visualized in different ways. IDRs show the inter-story drift normalized

using the height of that story. Local behaviour is usually displayed using moment-curvature

relationships. The capacity curve however, sometimes called the pushover curve, is the most

important. It is the base shear plotted against the control displacement and gives a clear

picture of the lateral stiffness of the structure [14].
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Pushover analyses are tools in a larger methodology for seismic analysis. NS 1998 gives

such a methodology [17]. In this code the target displacement is determined by using the

elastic ground acceleration response spectrum which takes damping, natural frequency and

soil conditions into account. A textbook example of a MPA procedure can be found in

Chopra’s Dynamics of Structures [14].

SPO is most suitable for symmetric low-rise buildings with short natural periods [15].

Common moment resisting frame (MRF) falls in this category. Dynamic effects as damping,

inertia effects and degradation are not captured by the SPOs alone [9], nor do they include

effect of earthquake duration. These shortcomings give reasons to perform more advanced

dynamic analyses.

2.3.2 Nonlinear time history analysis - NTHA

Nonlinear time-history analysis (NTHA) is a nonlinear dynamic method. In this method, a

structure is subjected to a (oftentimes scaled) ground motion acceleration and the structural

response is calculated as a function of time [14]. It gives direct insight to cyclic degradation

and other dynamic effects. The calculated response is naturally highly sensitive to the

ground motion acceleration used to excite the structure. This requires the analyst to choose

records carefully. The records chosen for a specific structure should reflect the on-site soil

conditions, distance from fault and the seismic hazard level [20]. The duration of the record

can also be decisive depending on the ductility and the energy-dissipating characteristics

of the structures [21, 22]. Since repeated stress reversals and high stresses are the main

source of damage [16], this may seem natural. There are different conclusions regarding the

importance of duration, and this may be due to the use of different DMs [21].

Due to the sensitivity of the calculated response to the ground acceleration record, several

different records are necessary to adequately map the seismic performance [15, 23]. The

seismic code states that in order to use the average response quantities, at least seven (code

complying) records must be used [17]. A higher number of records are common in the

literature, generally a range between 10 to 30 [24]. The selection of records can be a

daunting task, and using a large ensemble can be time consuming. Therefore some research

have been done to limit the number of records [25].

In NTHA, the records used must be of the sort and magnitude expected at the location of

the structure. Guidelines for this important selection process can be found in FEMA (P695)

[26]. Since there will be a limited number of records that can be used for a certain site, and

the fact that they may not be intense enough, scaling of records is almost always necessary.

How they are scaled differs, but the usual method is to scale the record so that its response

spectrum match a sought after response spectrum. Such spectra can be found in EN 1998

and in other design codes.

For a thorough assessment of the seismic resistance of a structure, IDA may be used.

Incremental dynamic analysis (IDA) is a method of analyzing seismic response using an

ensemble of NTHAs. The name implies a procedure similar to NTHA, but refer to a

methodology used for performance-based seismic design. An IDA study involves analyzing

the results of the ensemble of NTHAs, producing curves showing a DM versus an intensity
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measure (IM) [24, 27]. Unsurprisingly, these curves are called IDA curves. The DM is any

parameter that describes the state of the structure, for example roof displacement or base

shear. IMs are also called monotonic scalable ground motion intensity measure, to reflect

that they are monotonically increasing functions of the base record and a scale factor λ [27].

Probabilistic methods enable a summary of IDA curves [27]. Using either parametric or

non-parametric methods, the response spectra can be summarized and the corresponding

IDA curves may subsequently be defined. This summary ”smooths over” the problematic

input sensitivity of the NTHA methods giving a more general insight. This can be used to

estimate the mean annual frequency (MAF) of exceeding a certain limit-state, based on an

IM- or DM-based demand [24].

Numerical non-convergence signals global instability and could be used in IDA and NTHA

studies to describe the state of the system [27]. The numerical model has obviously a big

effect on the overall results of any IDA study. It has been shown that not considering effects

of uncertainties regarding the model, almost always lead to an unconservative estimation

[28].

It is obvious that the NTHA gives the most insight to the seismic response of the building

compared to a SPO. The NTHA subjects the numerical structure to realistic, unsimplified

design effects, but it does not give a clear picture of the lateral stiffness of the structure.

This can be seen as incentives to perform both analyses. More advanced SPOs than those

discussed here have been developed. However, they do not provide enough insight to make

the NTHA redundant [29].

2.4 Element models

There exist many different approaches to modeling plastic behaviour. The discrete (lumped)

plasticity models assign inelastic behaviour rules to member ends, using some kind of

rotational spring. The discrete models separate element behaviours, and thus axial-moment

interaction will not be captured [5], which is a disadvantage. The upside to these models

is their numerical efficiency. The structure may also be modeled using the FE method,

meshing the structure into extremely small FEs. Doing so enables the capturing of complex

constitutive behaviour with high accuracy, but this comes with an equally high computational

demand. This is often so high that it makes this type of model unpractical. There are many

models that lie in between these two extreme levels of refinement, one of which is the

distributed plasticity models.

Distributed plasticity models

Distributed plasticity models allow plastic behaviour to occur over an entire element length

and can be implemented using FEs based on either the stiffness formulation or the flexibility

formulation. The latter will be elaborated on shortly. Inelastic properties are defined at

integration sections along the FE, each contributing to the global inelasticity of the FE

[11]. These sections are usually divided into finite areas, or fibers, which are assigned a
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Figure 2.3: Illustration of the distributed plasticity model. One FE with five integration

sections.

material uni-axial inelastic relationship. Figure 2.3 illustrates this model. When representing

the integration section using too few fibers, the section capacity is underestimated [30].

Increasing the number of fibers beyond what is strictly necessary does not affect the

objectivity of the result [31, 32]. Increasing the number of fibers does, however, require

more computational effort. Integration sections go by several names in the literature:

integration point (IP), control section and integration section.

The author failed to find any literature that gave a simple rule for choosing the number of

fibers. Increasing the number of fibers obviously affects computational time spent, but any

quantification of this was not found. In the literature, different number of fibers are used [30,

32, 33], ranging between around a 100 to 500 for the entire section. In a paper by Capone,

Filippou and Taucer [30] a reference is made to a PhD thesis which deals with this issue.

The author was not able to find it.

Distributed plasticity models have two big advantages. They allow plastic hinges to form

throughout the element and do not require any prior calibration or pre-defined hysteresis

response. They also allow direct modeling of N-M interactions and allow for modeling

of softening behaviour, which lumped plasticity models do not [34]. Many of the initial

limitations with this model have been sorted out. For example, Ceresa et al. [6] have

addressed shear-flexure coupling under cyclic loading.

One numerical issue that must be addressed using this model is localization. Experiments

have shown that when a specimen is subjected to axial compression, the global response

does not only depend on the material properties, but the size of the specimen as well. The

collapse of a specimen is due to localization of stresses in the whole body causing a local
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mechanism [11]. Therefore this issue is mainly of concern for softening response. This

makes it more acute for RC structures as steel structures usually display hardening response

under earthquake loads [35].

The term localization describes both a physical and a numerical phenomenon. Stresses tend

to localize in the most stressed IPs in the most stressed element. Numerical localization

leads to nonobjective response for different reasons depending on the FE formulation. To

restore an objective response, regularization techniques are required. Calabrese, Almeida

and Pinho have addressed numerical issues and regularization techniques for RC frame

elements in their 2010 paper [11]. This paper has been an important source of information.

Before presenting some of the techniques, additional information about each FE formulation

is required.

The stiffness formulation - displacement based elements

The classical FEs are formulated using the stiffness formulation. For these elements,

interpolation functions are used to describe a displacement field along the element satisfying

equilibrium in an integral sense only. Element forces are found by energy considerations.

These types of elements will be referred to as DB elements (displacement based elements).

Since the curvature field can become highly nonlinear when plastic hinges occur, the DB

elements with their imposed displacement field cannot capture the real deformed shape.

This formulation necessitates meshing. DB elements must have a refined mesh to model the

the inelastic curvatures. The analyst can try to predict where the inelastic behaviour will

take place and refine the mesh at that location, but risks more discretization errors. Refining

the mesh uniformly will demand more computational effort.

The Gauss-Legendre integration rule is commonly used for the DB elements as it is the

most accurate one [36]. Calabrese et al. [11] show that there is no reason to use more than

two IPs using this rule. This rule has no IPs at the element ends where moments usually are

largest. This error is reduced when the number of FEs increases since the distance between

the ends and the extremal IPs gets shorter.

When it comes to modeling softening behaviour, the stresses localize in the most strained

IP in the most strained element [11]. As the FE mesh is refined, larger and larger stresses

are required inside an element to produce same values of displacement, making the re-

sponse nonobjective. In other words, as the mesh is refined, the solution will not converge.

According to Calabrese et al. [11] there are limited regularization techniques for the DB

element, but one way is to set the extremity elements lengths equal to twice the length of

plastification. By doing this, the IP where localization occurs, integrate over the entire area

of plastification and thereby capturing the objective response.

The flexibility formulation - force based elements

The flexibility formulation uses force interpolation functions for the variation of internal

forces over the element length which represent the exact solution to the governing equations
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[37, 38]. Even for nonlinear material response, it satisfies equilibrium [30]. Elements

using this formulation have been shown to capture inelastic behaviour more accurately than

DB elements [33]. This allows a one-to-one correspondence between structural members

and the FEs, hence, no discretization error occurs. This formulation does not restrain the

development of inelastic deformations in a member as the DB element does, making it ideal

for analyses where inelastic deformations occur. These types of elements will be referred to

as FB elements (force based elements).

The most common integration rule for this element is the Gauss-Lobatto integration rule

because it puts the IPs at the ends of the element. This is where internal moment is largest for

typical frame elements and elements without internal forces. Four to six IPs are necessary

to accurately represent nonlinear material response [37]. As for all the other quadrature

rules, weights and locations are usually tabulated in handbooks. They can also be found

online [39].

When modeling softening behaviour, stresses localize in the most stressed IP in the force

based element. No convergence is obtained in this situation, and post-peak results are in fact

without physical meaning [11]. The mechanism is explained as follows. The total rotation

in the element is sampled over the characteristic length of the ctitical IP. This rotation must

always be the same to satesfy the equilibrium imposed in the flexibility formulation. When

the number of IPs increase, the characteristic length shortens. Thus, in the IP, increasing

curvatures are required to achieve the same prescribed displacement. The characteristic

length of the IP is, in essence, the plastic hinge length (length of plasticity) for any FB FE

where curvatures localize in this IP.

One regularization technique modifies the concrete so that a constant fracture energy is

maintained. This was proposed by Coleman and Spacone [35]. Another results in the plastic

hinge element, which uses integration methods which specify the length of plastification,

lp. This makes it possible to determine a length of plastification that maintains a constant

fracture energy [5]. As will shortly be presented, simpler methods are available.

Plastic hinge elements

The plastic hinge element used is a force-based element that uses the plastic hinge integration

method suggested by Scott and Fenves [5]. The model is a regularization technique that

address the nonobjective response of FB elements that experience strain softening behaviour.

As with other plastic hinge methods, plastic hinge zones are defined at each end. The

lengths of these zones, lp, are determined so that they cover the parts of the element where

it is expected that material nonlineareties might occur. There are different approaches to

determine lp, one of which is using empirical equations. One example is the equation

suggested by Paulay and Priestley [40], see equation 2.1. To clarify, this element is regarded

as a lumped plasticity element model in parts of the literature. This is because it in its

original form confines nonlineareties to the hinge lengths. This categorization is not made

here in order to distinguish it from the lumped plasticity models that use rotational springs.

lp = 0.08L + 0.022fydb (2.1)
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In equation 2.1, L is the element length in millimeters, fy is the yield strength of reinforcing

bars in MPa and db is the diameter of reinforcing bars, also in millimeters. This is a simple

equation that is used in the literature [5, 11]. Paulay and Priestly state in their book [40] that,

for frame elements with normal proportions, this equation usually yields lp = 0.5 h, where h

is the depth of the cross section. However, it should be noted that the normal proportions of

today may not be the same as the normal proportions of 1992 (year of publication).

Figure 2.4: Beam with hinges element using the modified Gauss-Radeu integration rule.

In OpenSees, the element originally had an elastic zone between the two plastic zones,

limiting the development of plastic hinges to the two end zones consistent with the model

of Scott and Fenves. The rule used in this element is the modified Gauss-Radau integration

rule. This method of integration uses a two-point Gauss-Radau rule over a length of four

times the plastic hinge length. The positions (ξ) and weights (ω) are as shown below and

illustrated in Figure 2.4. Originally, the IPs on the interior were linear elastic and thus

inelastic response was limited to IPs at the ends.

ξ = {0, 8lp/3, L − 8lp/3, L} ω = {lp, 3lp, 3lp, lp}

Equation 2.2 is the equation for the element flexibility presented by Scott and Fenves [5].

f =
Np∑
i=1

(bTfsb|x=ξi
)ωi + f e

int (2.2)

Here, the first part captures the contribution of the numerical integration of the plastic

hinge regions and f e
int is the flexibility of the interior. This quantity is, for the modified

Gauss-Radau used in the beam with hinges (BwH) element, given by equation 2.3.

f e
int = (bTf e

sb|x=8/3lpi
)3lpi +

L−4lpj∫

4lpi

bTf e
sbdx + (bTf e

sb|x=L−8/3lpj
)3lpj (2.3)
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In this equation, the contribution for the two IPs at x = 8/3lpi and x = L − 8/3lpj is

included together with an integral that captures the elastic behavior of the interior not

captured by these sections.

The BwH element has been further developed. When constructing a BwH element, the

analyst can use any type of section in the interior in OpenSees [41]. For example, a fiber

section model with a nonlinear material model can be used to enable plastic hinges to form

in the interior or assign hysteresis rules to it. Any type of section available in OpenSees can

be used. In the interior, a two-point Gauss rule is used to calculate the flexibility. In total,

there are six IPs in the BwH element, and the rules associated with the sections displayed in

Figure 2.4 (i.e. 4lp regions) are well documented. However, the rules associated with the

two IPs in the interior are not. In this literature review, no such documentation was found.

The BwH element is a force based element as it is formulated using the flexibility formu-

lation. It should therefore be considered as an element in the FB family of elements. But

in order to distinguish this element from the pure distributed plasticity FB element (using

Gauss-Lobatto), it will be referred to as the beam with hinges element (BwH element). Also,

the global numerical models using the different element models will be referred to as FB

model, BwH model etc.

The BwH element has shown to give good results for nonlinear analysis where softening or

degradation occurs [5]. Incorrect calibration of the BwH element may lead to overestimating

the lateral load capacity for a planar frame structure [42]. This was observed when strain

hardening occurred in the structure. Not only does this demonstrate how significant the

calibration of the elements is, but it also shows that any analyst must have knowledge of

such behaviour.

Recent work on the subject of frame elements which develop plastic hinges is worth

mentioning. Feng and Ren have proposed a new FB element enriched with evolutionary

plastic hinges which seemed to perform well for both softening and hardening response [7].

Other elements have also been proposed [33, 43–45]. These works are mentioned to give a

picture of the state of the art and will not be used. They also show that these kinds of frame

elements are of interest to the engineering community.

2.5 Material model

The material models used in any analyses must be able to describe the expected material

behaviour. For linear static problems this is quite simple - it has to describe the classical

stress-strain relationship for the material. For nonlinear dynamic problems there are more

complicated effects taking place. Plastic hinges may occur during violent oscillations. The

most important factors for the concrete behaviour under these circumcises are confinement

and strain rate. Material nonlinearity is crucial for the dynamic response of low- and

mid-rise structures [1].

The effect on confinement by means of transverse reinforcement is known to be significant.

This has been documented by, among others, Larsen et al. [46] who documented that
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the collapse probability for a given structure was 1.2% when considering confinement in

compliance with the code and 12% when confinement was not considered. This illustrates

the importance of modeling confinement properly.

According to Mander, Priestley and Park [47], tests have shown that confinement gives

a significant increase in both ductility and strength for concrete in compression. They

state that this strength enhancement together with the concrete stress-strain relationship

greatly influence the strength and ductility of a member. In their 1988 paper, they define

a theoretical stress-strain relationship for confined concrete which includes the effects of

confinement, strain rate and cyclic loading.

The formulation proposed by Mander, Priestley and Park [47] builds on the relationship

presented by Popovics in 1973 [48], and the model is used in much of the literature on the

subject of numerical simulation of RC structures. It is able to model the material behaviour

expected in elements of any RC MRF.

Figure 2.5 was recited by Mander, Priestley and Park from prior work [10]. The figure

shows a proposed stress-strain model for monotonic loading based on one of Popovics

equations [48]. It shows how big effect correct modeling of confined concrete will have on

the performance of the modeled structure. A member with confined concrete modeled in

this way will be much more ductile and reach significantly larger deformations.

Figure 2.5: Stress-strain model proposed for monotonic loading of confined and unconfined

concrete [47].

It is not just the confinement the material model by Mander, Priestley and Park considered -

strain rate was also accounted for. Higher strain rates are known to give stiffer response.

They also result in larger peak stresses and lower strains at these peak stresses [47]. These

effects were accounted for in the model by multiplying the compressive strength, modulus
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of elasticity and strain at peak stress with respective dynamic magnification factors. For

example, the dynamic strength is f ′
co.dyn = Dff ′

co. The respective dynamic magnification

factors presented by Mander, Priestley and Park are given in equation 2.4. Dynamic

magnification factors Df and DE usually range from 1 to 1.6 and 2 respectively.

Df =
1 +

(
εc

0.035f ′
co

2

) 1
6

1 +
(

0.00001
0.035f ′

co
2

) 1
6
, DE =

1 +
(

εc

0.035f ′
co

3

) 1
6

1 +
(

0.00001
0.035f ′

co
3

) 1
6
, Dε = 1

3Df

⎛
⎜⎝1 +

√√√√1 +
3D2

f

DE

⎞
⎟⎠ (2.4)

Typically, the strain rate varies from 10−3 s−1 to 10−2 s−1 for earthquakes [49]. A strain

rate of 0.0167 s−1 was used by Scott et al. [50] while Mander, Priestley and Park [51] used

0.013 s−1.

Mander, Priestley and Park also present a method based on energy considerations for

determining the ultimate strain for the confined concrete [47]. The confined concrete looses

all its strength when the first transverse reinforcement breaks, and it is the energy in this

reinforcement that is considered. An alternative is equation 2.5 which is found in Paulay

and Priestley’s textbook [40] which is considered to be conservative.

εcu = 0.004 + 1.4ρsεsm
fyh

f ′
co

(2.5)

Here, εcu is the ultimate strain, ρs is the ratio of the area of transverse reinforcement to

area of the section, which is followed by the steel strain εsm which corresponds to peak

stress. The yield stress of the steel and confined concrete are fyh and f′
co respectively. For

the unconfined concrete, the ultimate strain can be taken as 0.006 [40].

All in all, the model proposed by Mander, Priestley and Park is a solid and viable one. An

effort should be made to map possible phenomena the model should be able to describe

for the structure in question. This is because other models than this model can be more

descriptive in certain cases. For simulation of flexural-dominated members, the Mander

model has been used throughout the literature [5, 11], and is recommended [3].

2.6 Damping

Damping in structures are due to energy dissipating mechanisms; mechanisms such as

hysteretic behaviour of the structural materials, dry friction due to slippage in joints and

air displacement [52]. The contributions from these phenomena are difficult to quantify.

A damping matrix cannot be defined in the same manner as mass and stiffness matrices

in the design procedure. Consequently, modal damping ratios are often chosen from

experimental/recorded data for structures similar to the one being assessed. If such data

does not exist, one option is to turn to tabulated recommendations [14]. Most building

codes, including the EN 1998, assume a viscous damping ratio of 5% and does not consider

the variation of damping with structural materials.
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Figure 2.6: Rayleigh damping model.

When similar damping mechanisms are evenly distributed throughout the structure, classical

damping models are applicable. One such model that have been shown to give satisfactory

results is the Rayleigh Damping model. In this model, mass and stiffness proportional

damping are both considered using two coefficients, a0 and a1 corresponding to mass and

stiffness respectively. Their values are determined by equation 2.7, assuming the same

modal damping ξ for the two modes with natural frequencies ωi ωj . The damping matrix c
is then determined by equation 2.6. An illustration of the concept is provided in Figure 2.6.

c = a0m + a1k (2.6)

a0 = ξ
2ωiωj

ωi + ωj

a1 = ξ
2

ωi + ωj

(2.7)

The condition that similar damping mechanisms must be evenly distributed throughout the

structure excludes systems with soil-structure interaction, and more importantly, nonlinear

models [14]. Thus, it would be natural to assume that representing the damping for inelastic

systems would have been the subject of many studies. This problem however seem to be

given little consideration in much of the literature. Studies suggest that when establishing a

Rayleigh damping model, the tangent stiffness should be used instead of the initial stiffness.

This suggestion was made based on observations of unrealistically large damping forces

after yielding of members. These studies did not show in detail how the damping model

affected demand parameters as explained in a paper by Erduran [53]. Here, these effects

are investigated by analyses of a three-story steel moment resisting frame (SMRF) and a

nine-story SMRF. It is shown that story-drift demands are not significantly affected by the

applied damping model. Moreover, neither mass nor stiffness proportional damping alone

gave satisfactory results. The Rayleigh damping model was deemed to be the best alternative,

with a cautious recommendation of anchoring it at the reduced first mode frequency and T

= 0.2 s, resulting in ωi = 0.707ω1 and ωj = 31.4 rad/s.

In a more recent study, Chopra and McKenna [54] provide data showing that a viscous

damping matrix constructed by superposition of modal damping matrices eliminates the

issues associated with the Rayleigh damping model for nonlinear systems. It was recom-

mended to use this method for nonlinear response history analyses. As in other studies, it
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was found that a Rayleigh model using the initial stiffness was inferior to one using the

tangent stiffness. But, it was also found that when using a distributed plasticity model, the

Rayleigh model leads to acceptable results: ”...When the element plasticity model is more

sophisticated — in that a fiber model is used to represent structural elements, allowing

distributed plasticity — the structural response is not sensitive to the damping model. Even

the Rayleigh damping model leads to acceptable results. Thus, there is no intrinsic problem

with this damping model, provided that plasticity is modeled properly. This is yet another

reason to abandon concentrated plasticity models...” [54].

2.7 P-delta effects

Gravity loads produce additional overturning moments when a structure is displaced horizon-

tally. These effects introduce geometrical nonlinearity and are called P-δ effects. They are

always present when a structure undergo lateral displacement, but only become significant

for tall or flexible structures, or in structures that is deformed significantly [1].

2.8 The NGA-West2 database

Ground motion records have been selected from the NGA-West2 database [55]. This

database is a part of the NGA-West2 project at the Pacific Earthquake Engineering Research

Center (PEER). The database consists of a large number of ground motions recorded around

the world.

2.9 Noteworthy

This section introduces some important articles and remarks to this literature review.

The article Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for
Seismic Analysis by Calabrese et al. [11] investigates the effect of element formulations and

sectional constitutive behaviour, making this a basis of comparison.

Another noteworthy article presents a thorough overview of the wide subject of seismic

engineering: Seismic assessment of structures and lifelines by Fragiadakis et al. [1]. With

its over 250 references it is a recommended read for anyone new to the subject.

Earlier work on structure to be analyzed

The structure which is to be analyzed has been used in previous work [12, 56–58]. In one of

these, investigation of over-strength of dual systems has been performed [12].
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Analyzed structure

The structure which has been analyzed is a RC structure. Designed as a residential building

in southern Europe, it complies with the eurocodes NS-EN 1992-1-1 [59] and NS-EN

1998-1 [17]. It has been designed with ductility class DCM using the lateral force method.

The design was performed by Nina Øystad-Larsen. All drawings of the structure and its

structural members in this chapter have been made solely by Øystad-Larsen.

All structural elements belong to XC3, M60. The concrete chosen is C30/37 using a 35 mm

cover. The reinforcement is of quality B500C with a modulus of elasticity of 200 GPa.

Throughout the design, one notable principle that was adhered to was the SCWB principle.

This ensures that the full moment capacity of the beams is utilized before global instability

is reached. In the design, the slabs contribution to the beam stiffness was included, giving

them an effective flange width and a higher moment capacity. This effective width however

will be disregarded throughout this work.

3.1 Building layout

The structure is a four-story RC MRF with five bays. It is doubly symmetric in the horizontal

plane, making torsional effects due to ground motion negligible. Figure 3.1 shows the plan

of the structure. Floor slabs are present in all stories.

Figure 3.1: Plan view of the structure. A larger version is available in Appendix A.

19
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Figure 3.2 shows a vertical projection of the 2D frame along axis B. It is this 2D frame

that will be used in the analyses. This frame is representative for the response of the whole

structure due to its regularity. The structure satisfies the criterion of regularity set by EN

1998 clause 4.2.3 [17].

Figure 3.2: Vertical projection of 2D frame along axis B. This figure has been provided by

Øystad-Larsen.

The cross sectional dimensions and reinforcement layout are given in Appendix A. MN

interaction curves for the different structural elements of interest have been plotted in Figure

3.3. Note that the colors correspond to a specific structural member, using the same colors

as in Figure 3.2.

(a) Columns (b) Beams

Figure 3.3: Moment and axial load interaction curves. Calculated using Response 2000.
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3.2 Mass and loads

The mass of the entire structure is 2 024 tons. First story weighs 531 tons, second 527 tons,

third 524 tons and roof 441 tons. The total mass associated with the 2D frame which is

to be analyzed (along axis B) is 490 tons. This includes self weight of in-plane structural

members as well as self weight of out-of-plane members (beams and slabs) and the loads

they are subjected to. These masses were calculated according to EN 1998 clause 3.2.4 and

4.2.4 [17]. Figure 3.4 shows the vertical loads due to the self weight of the out-of-plane

plane members (beams and slabs) and their loading.

Figure 3.4: Vertical loads on 2D model in kN/m. This figure has been provided by Øystad-

Larsen.
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Numerical model

The basis of the numerical models used in this work are the same for all analyses, with

the exception of changing some parameters of interest. They model the 2D frame shown

in the previous chapter and thus have the same geometry and cross sectional dimensions.

The settings of the parameters that are going to be varied will be presented here. What

is common among all the models are the vertical loads, seismic mass and other structural

”realities”. All sections are formulated in the same way with the same material behaviour.

4.1 Concrete material model

The concrete material model should be able to describe all material behaviours expected

to occur before collapse during static and dynamic analyses. This includes, among other

phenomena, strain softening and hardening, the effects of strain rates and confinement. As

stated in section 2.5, the model described by Mander, Priestley and Park [47], which was

based on Popovics model [48], describe these phenomena. This model is referred to as the

Mander model. The model is also used in much of the relevant literature [5, 7, 11]. As it is

able to describe expected behaviour, and also is popular, Mander’s concrete model is used

in all analyses in this work.

The concrete parameters for the confined concrete are presented in Table 4.1. These

were calculated by Øystad-Larsen using the formulas presented by Mander, Priestley and

Park. The strain rate used in the calculations was 0.013 s−1 as this rate was used in the

Mander model. [51]. The parameters shown in the table are the input parameters for the

CONCRETE04 (C04) material model in OpenSees. The reinforcement steel was modeled

using the simplest model provided in OpenSees for steel, STEEL01. The input parameters

for this model were Fyk = 500 MPa, Es = 200 GPa and with a strain hardening ratio of b =

0.005.

Name fc εc εcu Ec εct εt

Unconfined concrete -38.6 -0.00199 -0.0060 33.916 2.9 0.0855

50x50 Conf. concrete -47.9 -0.00420 -0.0142 - - -

45x45 Conf. concrete -47.1 -0.00400 -0.0141 - - -

30x50 Conf. concrete -42.5 -0.00300 -0.0148 - - -

26x45 Conf. concrete -43.3 -0.00320 -0.0199 - - -

Table 4.1: Concrete material parameters.

23
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The C04 material model in OpenSees is presented in the OpenSees wiki as Popovics

model [60], but with a modification; its envelope curve corresponds to that of the Mander

model. Furthermore, the wiki states that the C04 material has ”...a degraded linear un-

loading/reloading stiffness according to the work of Karsan-Jirsa and tensile strength with

exponential decay...” [60].

4.2 Fiber sections

The sections in the numerical model are modeled as fiber sections. The number of fibers

was selected after some trial and error, resulting in the somewhat odd subdivision shown

in Figure 4.1. Each of the five regions in the figure enclosed by thick, black borders is

subdivided into 20x20 fibers, resulting in 2000 fibers in total for the entire cross section.

This is more fibers than necessary, and a section with less fibers would be more efficient

computation-wise. Initially, seemingly reasonable numbers by the standards of the literature

were used. However, analyses where these sections were used failed to converge. To avoid

further work, the subdivision was chosen so that the number of fibers was well above the

required minimum. As will be shown, this section gave reasonable results.

Figure 4.1: Cross sectional fiber discretization for 500x500 columns. All other sections are

discretized this way.

4.3 Finite elements and mesh

Different FEs have been used for analyses, and some of their parameters have been varied.

Table 4.2 shows all the different configurations that were used. Because the different

elements have been discussed in detail in Chapter 2, their description here will be brief.
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Element Number of IPs Special

DB Beam-Column 2, 5 and 8 nFE = 4

nFE = 8

nFE = 18

nFE = 24

FB Beam-Column 3 to 8 -

FB Beam with hinges Standard lp = 1.0 h

lp = 1.5 h

lp = 2.0 h

FB Beam with hinges with inelastic interior Standard lp = 1.0 h

lp = 1.5 h

lp = 2.0 h

Table 4.2: Different parameter settings used in analyses.

The first element used is the classical FE - the displacement based (DB) element. The

Gauss-Legendre quadrature rule was chosen because it is the most effective [36]. This rule

does not assign IPs at the element ends where the moments are largest. This introduce an

error, but this error is considered to become insignificant as the FE mesh is made finer. As

seen in Table 4.2, analyses of the DB model are performed using different numbers of FEs

(nFE). Meshing the model in OpenSees was not a trivial task. The scripts for this process is

presented in Appendix H. Figure 4.2 shows the DB model mesh using 4 FEs per structural

member. Blue lines depict elements, and node numbers are displayed at the respective node

location.

Figure 4.2: FE mesh for the DB model with four FEs per structural member.

For the force based (FB) element, the Gauss-Lobatto integration rule was chosen. One of

the big advantages of the FB elements is that they allow one-to-one correspondence between

the structural members and the FEs (i.e. no meshing is required). Since the members are
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modeled with one FE, it is necessary to use a rule that defines IPs at the element ends where

moments are largest. This is the reason for choosing the Gauss-Lobatto rule. The numbers

of IPs per element used in analyses are presented in Table 4.2 as it is one of the parameters

that will be investigated.

For the beam with hinges (BwH) element, the chosen integration rule is the modified Gauss-

Radau rule outlined in section 2.4. Both the effects of the hinge lengths and the use of

different interior sections will be investigated. The different configurations for the BwH

model are also presented in the above table.

When modeling the BwH interior as elastic, the integration rule is as the one outlined in

section 2.4. Here the interior sections are represented by simple elastic sections. Only area,

second moment of inertia and the Young’s modulus are defined. These input values were

calculated using Response 2000 and controlled with hand calculations. When an inelastic

interior is used, the interior sections are modeled using fiber sections. These fiber sections

are the same as those used in the DB model, the FB model and the plastic hinge regions

of the BwH model. In this case, specific information on how the interior is integrated

numerically was not found. The OpenSees wiki does not provide any additional guide in

this regard [41] and it is assumed that no other changes are necessary except for changing

the interior sections.

4.4 Constraints, loads and global settings

The frame is restricted from any out-of-plane movements. All of the nodes at ground level

are fixed, restricting rotation and all displacements at these nodes.

The seismic mass consists of the self weight of the columns, beams and out-of-plane

members (beams and slabs). The vertical loads are also applied according to the recommen-

dations in EN 1998. These masses are lumped in their respective vertical level in nodes

along axis 3 and act only in the horizontal plane. In other words, they do not contribute to

the vertical loads on the structure.

The vertical loads are applied as load patterns in OpenSees. The self weight of the beams,

slabs and live loads are uniformly distributed over the beam elements, and the self weight of

the columns are distributed over their length. Before any of the main analyses are performed,

the vertical loads are applied to the structure. They increase monotonically until they reach

their full effect. After this gravity analysis, the vertical loads are set as constant and will

remain constant in subsequent analyses.

The validity of the numerical model was tested by considering the natural periods of the

structure, calculated using OpenSees and Robot. This was done to verify that the numerical

model’s initial elastic stiffness was reasonable. As is seen in Table 4.3, it was. The table

shows the four first natural periods for three different models. One analysis of the whole

structure (3D), as well as an analysis of the simplified 2D frame was done in Robot. The

former model was made by Øystad-Larsen while the latter was made by the author. Only the

four first in-plane modes of the 3D model were extracted. The results show that the model
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in OpenSees was reasonably defined. The periods were calculated using every combination

of parameters and element formulations, but only one of these combinations is given in the

table. This is because the results were so similar that no interesting conclusions could be

drawn from them.

Model T1 T2 T3 T4
Robot 3D 0.5100 0.1600 0.0900 0.0600

Robot 2D 0.5400 0.1800 0.1000 0.0700

OpenSees 0.5301 0.1736 0.1006 0.0725

Table 4.3: Natural periods for the four first modes computed using the different software.

4.4.1 Damping

Rayleigh damping has been chosen as damping model for the numerical model. This is

because it is easily applied in OpenSees and have led to reasonable results when used

together with distributed plasticity elements [53, 54]. Furthermore, anchoring at the reduced

first mode frequency and T = 0.2 s was chosen, as suggested by Erduran [53]. The

frequencies used to construct the coefficients in equation 2.7 are ωi = 0.707ω1 and ωj =
31.4 rad/s. The result is a0 = 0.1000 and a1 = 0.00366.

At first glance, using these suggestions which are based on results from analyzing steel

structures, might seem inappropriate for concrete structures. However, these recommenda-

tions mainly tackle the issues with the mass and stiffness proportional damping. It is the

damping ratio that considers material differences. In Table 11.2.1 in Chopra’s book [14], it

is shown that structures have much lower damping when in the elastic realm than when in

the inelastic realm. The table suggests ratios from 2 to 5% for elastic concrete structures,

but 7 to 8% for inelastic concrete structures. A ratio of 5% has been chosen throughout this

work due to its use in both the literature and the EN 1998.
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Analyses and their results

5.1 Theoretical moment-curvature relationship

To establish a benchmark for moment-curvature relationships, an analysis of a zero-length

element was done using the 500x500 column section. This procedure is thoroughly explained

in the OpenSees wiki [61] which is the source for parts of the code used in the analysis.

The procedure analyses the zero-length element under static loading. The axial load is

constant and a moment is gradually applied to achieve a target ductility. All degrees of

freedom (DOFs) were fixed at one element end, and only rotation and axial displacement

were allowed at the other end. This analysis resulted in a moment-curvature relationship

that can be used for comparisons of other results. The axial loads applied are approximately

0%, 5% and 10% of the total axial capacity. The results of this analysis are displayed in

Figure 5.1.

Figure 5.1: Theoretical moment curvature relationship for 500x500 section.

5.1.1 Control cantilever

Initially it was assumed that OpenSees automatically meshed each element. The results

based on this assumption and the following MPA for the DB model showed unexpected

results compared to other element models. To make sure that the issue was the meshing of

29
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the elements, a simplified pushover analysis was performed on a cantilever using various

numbers of DB elements with different number of IPs. The cantilever was identical in

length and properties to the first-story column in axis 3. The different meshes subdivided it

into 2, 4, 8, 18 and 24 FEs as shown in Figure 5.2. For each of these meshes, the number of

IPs per FE was 2, 4, 8 and 10.

Figure 5.2: Control cantilever load configuration and different meshes.

The results are presented in Figure 5.3 in the form of moment curvatures for the section

closest to node 1. It can be seen that the curvatures converge as the number of FEs increases.

From the figure, it is evident that the results of the pushovers of the cantilevers modeled

with eight or more FEs, converge. The figure also indicates that increasing the number of

IPs does not produce more accurate results. The second model listed in the figure legend has

more IPs than the third model. Despite of this, the third model, with more FEs, produces

more accurate results than the second model.
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Figure 5.3: Moment curvature relationship for the first IP of the first FE in the control

cantilever for the different number of FEs.

5.2 SPO

A SPO was performed to assess the behaviour of the structure and the different element

formulations. The static pushover loads were applied to nodes along axis 3 in a vertical

pattern based on the eigenvectors of the first mode, making this a first-mode pushover

analysis (FMPA). These eigenvectors were calculated using OpenSees. P-δ effects are

included in all analyses.

Analyses were done using the different element models: The DB element, the FB element

and the BwH element. The numerical models using the different elements will be referred

to as the DB model, FB model and BwH model respectively. Parameters were changed

so that analyses were run using elements with different numbers of IPs, hinge lengths,

member subdivisions and other relevant settings. Table 4.2 shows all the different element

configurations that were analyzed by static pushover.

As stated in section 5.1.1, no meshing was done initially. The resulting plots showed that the

element was misbehaving. After considering results from analyses of the control cantilever,

it was decided that meshing was required, and analyses using different levels of mesh

refinement were performed.

For simplicity, pushover loads were applied in the nodes along the center left column row

(axis 3). It is also from these nodes the eigenvectors were ”sampeled”. The loads were

scaled so that their relative magnitude were the same as for the eigenvectors of the first

mode and so that their sum was equal to unity. The latter enabled easier interpretation of the

output data because then the pseudo-time (load factor) was equal to the total base shear.
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5.2.1 Results

Analyses of the DB model were performed using different meshes. The resulting capacity

curve is shown in Figure 5.4. The results appear to converge to a stable solution as the

number of FEs per member increases. As suspected from the coarsely meshed models using

DB elements, the response is too stiff, apparently overestimating the peak base shear by 300

kN.

Performing the SPO using the DB element showed one of its severe disadvantages compared

to the other elements - it has poor efficiency. One analysis using five IPs and 18 FEs took

about five times as much time compared to the analysis of the model using FB elements.

The efficiency could be improved for the DB model, but it would not be able to compete

with the FB elements.

Figure 5.4: Base shear plotted against roof drift for different configurations of the DB

model.

The response of the FB model is nonobjective (i.e. as the number of FEs increases, the

different curves do not converge towards a stable solution). Figure 5.5 shows that increasing

the number of IPs does not lead to a unique solution. Although it may seem like it does at

first glance, the immediate post-peak response shows larger discrepancies as the number of

IPs increases. Also, for the model using eight IPs, the solution fails to converge close to 700

mm.
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Figure 5.5: Base shear plotted against roof drift for different configurations of the FB

model.

Using the BwH model, the results show similar responses for the different hinge lengths.

This is shown in Figure 5.6. For a shorter hinge length, the peak base shear is reached

sooner. It also has a softer post-peak response compared with those for larger hinge lengths.

For the models where elements were defined with the inelastic fiber section in the interior,

the response is generally softer. Note also that the model that used a hinge length of lp = 2.0

h with an inelastic interior, failed to converge at around 50 mm roof drift. The models using

inelastic element interiors also displayed more similar pre-peak response.

Figure 5.6: Base shear plotted against roof drift for different configurations of the BwH

model.



34 Chapter 5. Analyses and their results

Figure 5.7 shows a comparison between the different results for the different DB, FB and

BwH model configurations. First of all, the initial stiffness is pretty much identical for all of

them. The first model to soften is the FB model using eight IPs, which when compared with

the others seems to be nonobjective. The DB model follows shortly thereafter, and has a

considerably softer post-peak response than the other seemingly objective configurations.

The BwH model using lp = 1.5 h and the FB model using three IPs, show very similar

results, and appear to be well-behaved.

Figure 5.7: Base shear plotted against roof drift for selected configurations of the DB model

(d), FB model (f) and the BwH model (h).

Figure 5.8 shows IDRs at 10% roof drift (1240 mm) for the BwH and FB model and their

different configurations. This shows a very similar global response for both models in that

the curves have the same pattern. For the different BwH model configurations, the responses

can be seen as almost identical in Figure 5.8a. The most noticeable difference between them

is that for the models using an inelastic interior, the displacements are more biased towards

the lower stories. The same is the case for the FB model when using the largest number of

IPs. Figure 5.8b shows that for six or more IPs, the solutions differ considerably from when

five or less IPs are used. This also shows a less ”gradual” development than what can be

seen in Figure 5.7.
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Figure 5.9 shows the IDRs for the three different models at various roof drifts. From the

IDR profiles at 2 and 4% roof drift, it can be seen that the three different models start out

with very similar response. As the roof drift increases, the DB model starts displaying bias

towards the lower stories. For 10% roof drift, larger differences than those observed in the

capacity curves can be seen between the BwH model and the FB model using the selected

configurations. The DB model has a softer response at the lower stories compared to the

others.

(a) BwH (b) FB beam-column

Figure 5.8: IDRs at 10% roof drift for different element configurations. *) Inelastic interiors

are being used.
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(a) 2% roof drift (b) 4% roof drift

(c) 10% roof drift

Figure 5.9: IDRs for different element configurations at various roof drifts.

Moment-curvature relationships are also of interest. In the following moment-curvature

relationship plots in Figure 5.10 and 5.11, the monitored IP is the bottom one (first) in the

first-story column along axis 3. First, the relationship for the BwH element in Figure 5.10

should be mentioned. It shows an identical moment-curvature relationship for all element

types.
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Figure 5.10: Moment-curvature relationship for the BwH model configurations.

Moment-curvature relationships for the two other models using the FB elements and the

DB elements do not give more insight than the comparative plot in Figure 5.11. All curves

for the FB elements using three to eight IPs overlap. Both the FB, DB and BwH element

with or without inelastic interior have similar softening behaviour. What is not evident from

this figure is that some of the curvatures are nonobjective.

Figure 5.11: Moment-curvature relationship for selected configurations of the DB model

(d), FB model (f) and the BwH model (h).
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Figure 5.12: Roof drift plotted against the curvature in the monitored section.

The roof drift is plotted against the curvature at the control IP in Figure 5.12. This plot

illustrates how some of the model configurations give nonobjective curvatures. Previous

plots show that all models enter the plastic realm around the same roof displacement (150

mm). It is also here the curvatures start to become nonobjective for some configurations.

Elements with plastic hinge lengths 1.0 h and 1.5 h show steady development of curvature

as the roof displace. This includes the FB element with three IPs (which effectively have

a hinge length of approximately 1.1 h). The FB model using eight IPs and the DB model

using 24 FEs however, diverge significantly. It is not apparent from the figure, but when the

structure has reached a 10% RDR, the curvature is sampled as 1.3e−3 rad/mm for the DB

element using 24 FEs. This is eight times the magnitude of the model using BwH elements

with lp = 1.0 h.

5.3 NTHA

A NTHA was performed for each of the seven ground motion records listed in Table 5.1

for the different numerical models; in total 84 NTHAs. The records were randomly chosen

by the author from a larger set of 30 records. This set was compiled by Øystad-Larsen,

who, considering recommendations by FEMA (P695) [26], selected records based on the

following criteria:

• Only horizontal far-fault records should be selected.

• Peak ground accelerations must be above 2.0 m/s2.

• The shear wave velocity, Vs30, must be between 180 m/s and 360 m/s.

• Magnitude of earthquake must be above 6.5.
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RSN Name Year Mag Rrap (km) Vs30 (m/sec) PGA

282 Trinidad 1980 7.2 76 312 0.22

720 Superstition Hills-02 1987 6.5 27 206 0.33

1003 Northridge-01 1994 6.7 27 309 0.64

1110 Kobe Japan 1995 6.9 25 256 0.25

4889 Chuetsu-Oki Japan 2007 6.8 33 315 0.37

5832 Iwate Japan 2010 6.9 31 248 0.40

6923 Darfield New Zealand 2010 7 31 255 0.47

Table 5.1: Ground motion records used for the analyses.

The records have been collected from the PEER NGA-West2 ground motion database [55].

Choosing the records randomly was done to prevent bias. The number of records reflects

that at least seven records are demanded in EN 1998 [17], clause 4.3.3.4.3, in order to use

the average response parameter in further design. Even though these analyses will not be

used for design, this demand is adhered to since it is based on a statistical rationale. This

makes discussion of mean values of the responses meaningful.

The response spectra based on the records were scaled to match the elastic response spectrum

defined in EN 1998 [17] at the first natural period of the structure. Both unscaled and scaled

response spectra are shown in Figure 5.13 and 5.14. The response of the structure is

dominated by the first natural mode, hence scaling in this way is justified. The production

of response spectra and the scaling of them were performed in Matlab. The Matlab script

developed for this purpose is found in Appendix G. The resulting scale factors are listed in

Table 5.2. Ground motion records were scaled by multiplying them with the scale factors.

This was expected to bring the structure into the inelastic realm. The script provided by

Cemalovic in his thesis [57] was used as a starting point for the Matlab script. Parts of page

3 and 4 in Appendix G are solely results of Cemalovic’s work.
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Figure 5.13: Unscaled response spectra.

Figure 5.14: Scaled response spectra. Scaled to match the elastic spectrum in NS 1998 at

T1.
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RSN Name SF

282 Trinidad 2,362

720 Superstition Hills-02 1,882

1003 Northridge-01 0,763

1110 Kobe Japan 1,666

4889 Chuetsu-Oki Japan 1,292

5832 Iwate Japan 1,121

6923 Darfield New Zealand 0,992

Table 5.2: Scale factors (SF) for the different ground motion records.

5.3.1 Results

The 84 NTHAs that were performed gave a large amount of output. Response histories

showing RDR are given in appendices. The response history of the FB model is given in

Appendix C. Results from the BwH model using elastic and inelastic interiors are shown

in Appendix D and Appendix E, respectively. No NTHAs were performed using the DB

model because it was found to be too time consuming. The response histories are presented

together to show how they differ and to limit the number of pages. This results in some

figures that are only able to give an overview of trends. In an attempt to give more detail,

each response plot in Appendix D, E and C is accompanied with a magnified part of the

same plot.

The results of the NTHAs for the Trinidad and Superstition Hills ground motions show

somewhat odd responses. This seems to be due to the fact that the nature of these ground

motions are peculiar. They are relatively short, but have large peaks distributed throughout.

It is emphasized that although abnormal, they are regarded as valid in this work.

Of the total 84 NTHAs that were run, 16 failed to converge due to numerical instability.

This is not always reflected by the presented figures, but should be considered when viewing

them. Table 5.3 shows an overview of which failed to converge. All those that failed to

converge did so before the structure reached significant roof drifts.
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Model 282 720 1003 1110 4889 5832 6923
BwH 1.0h el. int. conv. conv. conv. conv. conv. conv. conv.

BwH 1.5h el. int. conv. conv. conv. conv. conv. conv. conv.

BwH 2.0h el. int. conv. conv. conv. conv. conv. conv. conv.

BwH 1.0h inel. int. conv. conv. conv. conv. conv. conv. conv.

BwH 1.5h inel. int. conv. conv. conv. conv. conv. conv. conv.

BwH 2.0h inel. int. failed failed failed failed failed failed failed

FB 3 IPs conv. conv. conv. conv. conv. conv. conv.

FB 4 IPs conv. conv. conv. conv. conv. conv. conv.

FB 5 IPs conv. conv. conv. conv. conv. conv. conv.

FB 6 IPs failed conv. conv. failed conv. conv. conv.

FB 7 IPs conv. conv. conv. failed conv. failed conv.

FB 8 IPs failed conv. conv. failed failed failed failed

Table 5.3: Analyses that converged and failed.

The BwH models

The maximum roof drifts of the BwH models are presented in Figure 5.15 and Figure

5.18. For the model using elastic sections in the interior (Figure 5.15), the trend is that

larger deformations are reached when using elements with longer plastic hinge lengths. The

result of the analyses using Kobe ground motions is the exception. The time histories in

Appendix D show that the differences in the results of the models apparent in Figure 5.15,

are consistent throughout the entire response history. From the figures in Appendix D, it is

evident that the model using lp = 2.0 h has a response that is usually larger than the others.

In general, the models using lp = 1.5 h and lp = 2.0 h show similar development of period

elongations and differences in amplitude. Figure 5.16 shows the maximum IDRs for the

same cases as Figure 5.15, and the same trends are evident.

For most of the ground motions, the different hinge lengths seem to result in different

dynamic properties of the models - they experience dis-synchronized beating. This is well

illustrated in Figure D.8. From the 40-second mark, it can be seen that as the model using lp
= 1.0 h starts responding with larger amplitudes, the one using lp = 2.0 h does the opposite.
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Figure 5.15: Maximum RDR for the BwH model using elastic interior.

Figure 5.16: Maximum IDR for the BwH model using elastic interior.

The largest deviation can be found in the responses to the Chuetsu-Oki ground motions

(Figure D.9). Smoothed, one-sided envelope curves for these response histories are presented

in Figure 5.17 (for illustration purposes only). The first 24 seconds, the response of the

different models are almost identical. At the 24-second mark, the first extreme roof drift

cycle is reached, and after this the response of the different models diverge significantly.

For the model with the shortest lp, the response abate, while the response of the two other

models continues to amplify. The differences of the three models become extreme after the

initial cycles. Especially for the model using lp = 2.0 h, for which the response amplitudes
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remain close to its maximum roof drift throughout. The model using lp = 1.5 h shows

increased amplitudes around the 55-second mark.

Figure 5.17: One-sided envelope curve of the roof displacement response histories for

node 43. The responses correspond to the BwH models using elastic interior

subjected to the Chuetsu-Oki ground motions. These curves are smoothed

using spline interpolation separated by at least 50 samples. Much information

is lost this way. This figure is for illustration purposes only. No conclusions

of behavior are based on this figure.

Another noteworthy result can be observed in Figure D.2, which shows the response to the

Trinidad ground motions. Here, the result starts to disagree around the 15-second mark. At

this time, the two models using lp = 1.5 h and lp = 2.0 h separate from the one using lp = 1.0

h. What is interesting is that when this separation occurs, the model using lp = 1.0 h shows

a rapid decrease in amplitude before an equally rapid increase.

In all the responses for the BwH models, period elongation is evident after the first cycles

with large roof drifts. In relatively short time after these cycles, the different responses

become dis-synchronized. It is also noteworthy that for some ground motions, the lines

of equilibrium shift after plastic behaviour. This is best shown in the responses to the

Superstition Hills ground motions, shown i Figure D.3. These shifts are different in

magnitude for the different models.

For the models using a nonlinear fiber section in the element interior, the results are very

similar to the ones using an elastic interior. The response histories for those with nonlinear

interiors are found in Appendix E. Unfortunately, the analysis of these models using lp = 2.0

h failed to converge before any significant drifts were reached. All analyses using lp = 1.0

h and lp = 1.5 h did converge, and their results show the same trends for the same models

using an elastic element interior. This can be seen in Figure 5.18 and 5.19.
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Figure 5.18: Maximum RDR for the BwH model using inelastic interior.

Figure 5.19: Maximum IDR for the BwH model using inelastic interior.

Figures 5.20, 5.21 and 5.22 show the RDR response histories for models using the same

hinge length but with different interior sections. For all ground motion records except

Chuetsu-Oki, the choice of interior sections has little effect on the roof drifts. Some

differences are present towards the end of some response histories. As is seen in Figure

5.20 and Figure 5.21, there are small differences in response when using different interior

sections. These plots are representative for all but the Chuetsu-Oki ground motion record.

For the Chuetsu-Oki ground motion, large differences develop around the 52-second mark

and disappear towards the end of the response history. For this type of comparison, only the
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models using lp = 1.0 h and lp = 1.5 h were available, as the model using lp = 2.0 h with

inelastic interior failed to converge.

Figure 5.20: Response of the BwH models using lp = 1.5 h. Responses are for the Kobe

ground motions.

Figure 5.21: Response of the BwH models using lp = 1.5 h. This figure shows a magnified

part of the response to the Kobe ground motions displayed in Figure 5.20.
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Figure 5.22: Response of the BwH models using lp = 1.5 h. Responses are for the Chuetsu-

Oki ground motions.

The FB models

The maximum RDRs of the FB model, using different element configurations, are summa-

rized in Figure 5.23. The analyses that failed to converge have not been included. Here it

is seen that increasing the number of IPs beyond five, appears to have little effect on the

maximum displacements. The magnified plots of the roof drift response histories, given

in Appendix C, show a slightly different trend. When increasing the number of IPs, the

different responses appear to approach what can be characterized as an agreement. In some

of the plots, it can be seen that when using five IPs, the response does not always agree with

results obtained using six or more IPs. The roof drift response histories in Appendix C also

show that the difference in amplitudes for the FB model is not as pronounced as for the

different BwH models as the number of IPs is increased. Only for the Chuetsu-Oki ground

motions do a significant difference in amplitude occur. When using three IPs, the response

increases drastically after the 50-second mark. This is about the same time as was observed

for the BwH model. Figure 5.24 shows the maximum IDRs for the same cases as Figure

5.23, and the same trends are evident.
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Figure 5.23: Maximum RDRs for the FB model.

Figure 5.24: Maximum IDRs for the FB model.

Overall trends for the FB model and the BwH model

Figure 5.25 shows an overview of the mean of the maximum RDRs and IDRs for the

different model configurations. Numerical model configurations that did not converge have

been left out to avoid discussion of means based on results from less than 7 ground motion

records. The figure shows that the maximum IDR values are consistently larger than the

maximum RDR values for the same models. Across the various configurations, the trends

shown for the RDRs and IDRs are very similar. For both measures, it is evident that the peak

responses decrease as the number of IPs increases for the FB model. For the BwH element,
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longer hinge lengths leads to larger peak values for both RDRs and IDRs, regardless of the

interior. For elastic interiors, the peaks are somewhat larger compared with results from

models using inelastic interiors.

Figure 5.25: Mean values of RDRs and IDRs for the different numerical models. Blue bars

represent RDRs while the values of the IDRs are represented by blue plus

orange bars.

Figure 5.26 and 5.27 show the hysteresis curve of the curvature versus RDR for the Chuetsu-

Oki and Kobe ground motions, respectively, for two different models: the BwH model using

an elastic interior and a hinge length of 1.0 h and the FB model using five IPs. The response

to the Chuetsu-Oki ground motions shows the typical difference between the two models,

which is that the BwH model reach larger curvatures than the FB model. The response to

the Kobe ground motions is more extreme and the differences in curvature between the

models are larger. Here, the FB model shows significantly larger curvatures than the BwH

model for negative roof drifts.
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Figure 5.26: The RDR versus curvature for the FB model using five IPs and BwH model

using lp = 1 h with an elastic interior. This is the response to the Chuetsu-Oki

ground motions.

Figure 5.27: The RDR versus curvature for the FB model using five IPs and BwH model

using lp = 1 h with an elastic interior. This is the response to the Kobe ground

motions.

Figure 5.28 and 5.29 show plots of curvatures versus RDRs for selected time windows of the

response to the Chuetsu-Oki and Kobe ground motions respectively. These time windows

cover the oscillation where maximum roof drift occurs. As seen from the figures, there

seems to be a reasonable agreement between the FB model using different numbers of IPs.

This suggests that in this time span, no localization occurs. This is at least true for the Kobe

response and parts of the Chuetsu-Oki response. At the bottom right in Figure 5.28, it can

be seen that there are differences in roof drifts and curvatures.



5.3. NTHA 51

Figure 5.28: Curvature versus RDR for the FB model response to the Chuetsu-Oki ground

motions. Curvatures are sampled at the first section (IP) in the first-story

column in axis 3.

Figure 5.29: Curvature versus RDR for the FB model response to the Kobe ground motions.

Curvatures are sampled at the first section (IP) in the first-story column in axis

3.

The plastic deformations of the elements were also recorded. Figure 5.30 and 5.31 show

the plastic rotations of the base of the first-story column in axis 3 due to Superstition Hills

and Iwate ground motions, respectively. For the Superstition Hills ground motions, which

showed to give relatively small deformations, the model using three IPs estimates very

different plastic rotations compared to the other model configurations. The plastic rotations
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in the monitored base reach peaks with magnitude three times larger than those of the

surrounding peaks resulting from using more integration points. For the Iwate ground

motions, the differences between the responses are less profound.

Figure 5.30: Part of the response history of the FB model to the Superstition Hills ground

motions, showing total plastic rotations in the base of the first-story column in

axis 3.

Figure 5.31: Part of the response history of the FB model to the Iwate ground motions

showing total plastic rotations in the base of the first-story column in axis 3.

The plastic rotations at the top of the element were recorded as well. Figure 5.32 and Figure

5.33 show these rotations. They show very different response histories for the different FB
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model configurations. As seen in the figure for the Iwate ground motions (Figure 5.33), the

different model responses all coincide in the beginning of the excitation period. After about

32 seconds however, the model using three IPs starts to display almost zero plastic rotations

where the rotations of the other models remain significant. For the Superstition Hills ground

motions, the model using three IPs display very different plastic rotations compared with

the ones using more IPs. Here, its rotations are larger.

Figure 5.32: Part of the response history of the FB model to the Superstition Hills ground

motions showing total plastic rotations in the top of the first-story column in

axis 3.

Figure 5.33: Part of the response history of the FB model to the Iwate ground motions

showing total plastic rotations in the top of the first-story column in axis 3.
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Figure 5.34: IDRs for the response of the BwH model using elastic interior to the Iwate

ground motions.

IDRs for all the different model configurations and ground motions are shown in Appendix

F. These display the IDR profile recorded at the same time as the maximum roof drift occurs.

For the BwH model, it can be seen that for almost all ground motion records, the profiles

corresponding to the different hinge lengths have the same shape. The exception is the

response to the Iwate ground motions, where the model using lp = 2.0 h shows a larger bias

towards the lower stories. The IDR plot for this ground motion is provided in Figure 5.34.

The IDRs for the FB model presented in Appedix F, show similar profile shapes. As were

seen for the time histories, the results seem to converge towards a stable solution as the

number of IPs is increased.



Chapter 6

Discussion

6.1 Control cantilever

The analysis of the control cantilever was helpful to identify the reason for the unexpected

results of the SPO of the DB model. It clearly showed that OpenSees does not automatically

mesh DB elements as initially assumed. The results also showed trends that could lead to

the conclusion that using more FEs than 18 might be unnecessary. When comparing the

results from the cantilever to the behaviour of the DB model during the MPA, it appears

that seemingly negligible errors accumulate in the large numerical model.

6.2 SPO

The results from Figure 5.4 show that four FEs per member are enough to achieve a

satisfactory solution for the elastic response for the DB model, but when nonlinearities

start to occur, the solution becomes too stiff. Using 24 FEs seems to give satisfactory

results for the capacity curves. However, this model yielded nonobjective results. This

was illustrated in Figure 5.12, displayed below for convenience (Figure 6.1). These results

are consistent with those found by Calabrese et al. [11] and others [35]; for softening

behaviour, increasing the number of DB elements leads to nonobjective curvatures. Also, as

was showed by Calabrese et al. and confirmed in the results presented herein, the FB model

shows nonobjective curvatures as well.

A regularization technique for the DB model was presented by Calabrese et al. [11], which

was to set the length of the most strained FE equal to twice the hinge length. However, in

the present work, the DB model was found to be inefficient compared to the FB models.

Based on this fact, the author is in doubt whether it is worth considering the DB element for

analysis of MRFs such as the one considered herein.

Figure 5.10, which displays the moment-curvature relationships for the BwH model, shows

results consistent with expectations based on knowledge presented in section 2.4. Because

the characteristic length of the IP gets shorter, it must give higher values of curvature to

produce the same displacements. The differences between the BwH model configurations

are significant. Considering that the curvature is used as a control measure, for example

1.5e−4 rad/mm, the difference between the final roof drifts is large (approximately 290 mm).

The FB model’s post-peak response was nonobjective. This is shown in Figure 6.1. It was

only the model with three IPs that had a seemingly objective response. These results are
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Figure 6.1: Roof drift plotted against the curvature in the monitored section.

also consistent with those of Calabrese et al. [11]. Because of the softening response, the

curvatures localize in the first IP. For the elements with many IPs, the critical length (length

of integration) for all IPs is short. For the IP where the curvature localize, these lengths are

too short because the curvatures must reach extreme magnitudes in order to compute the

same level of displacement. For the FE using three IPs, the critical length is 0.333L/2 which

is approximately 570 mm [39]. This length is close to both lp = 1.0 h = 500 and lp = 1.5 h =

750, but closest to the former. This can be seen in Figure 6.1, as the line of the FB model

(with three IPs) leans more towards the BwH using lp = 1.0 h.

The differences seen in curvature responses of these models have direct implications for the

measure of damage in the structural elements. It shows that when using a shorter hinge length

than whatever may be correct, the assessment of damage will be non-conservative. Also, if

a larger hinge length is used, the assessment may be overly conservative. As curvature is a

common DM in methodologies in building codes, these findings are important.

6.3 NTHA

The results from the NTHA show that using different hinge lengths or different number of

IPs yields different results. Figure 5.25 shows the mean values of the maximum roof drifts,

and it is evident that the FB model using three IPs reach similar values as the 1.5 h BwH

model. This is interesting since this FB model also showed similar response to the BwH

models in the SPO.

For the BwH models, the differences between the response amplitudes for models using

different hinge lengths were significant, no matter which interior sections were being used.

Not only did the maximum values differ, but the response amplitudes were consistently

larger for larger hinge lengths throughout the duration of the response history. As stated
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in the literature review, the main sources of structural damage are stress reversals and high

stresses. The latter is more significant for low-rise buildings [16]. With this in mind, it

would be natural to assume that if a numerical model using lp = 2.0 h were used in design,

the damage due to cyclic stress reversals would be assessed as more pronounced.

A softer numerical model would give larger peak responses and have a larger natural period.

If larger hinge lengths give a softer structure, this would explain the increased amplitudes.

This means that these models should show longer periods. The results of the NTHAs show

that this generally is the case. Not initially when the response is elastic, but after cycles

where nonlinear response occur. Natural periods increase after significant deformations,

some approaching 1 second. This shows that the different hinge lengths give different

post-yield responses. The fact that the BwH model reach larger roof drifts, might result in

more softening than the other models, causing the observed period elongation. The largest

deviations were found in the responses to the Chuetsu-Oki ground motions (Figure D.9).

The response shown by the model using lp = 2.0 h is so extreme that it cannot possibly be

regarded as what could be expected of the physical structure. The periods visible in the

response are not that different for those in other models, so extreme softening is not likely

to be the cause. This shows that large hinge lengths may sometimes lead to a defective

numerical model.

When considering the IDR plots for the BwH model in Appendix F, the differences are not

that remarkable. However, the IDR plot for the Iwate ground motions (Figure 5.34) showed

bias towards the lower stories for the model using lp = 2.0 h. The Iwate ground motions

induce the second largest mean responses among the ground motions. What this plot might

suggest is that for models using larger hinge lengths, a mechanism where displacements

localize in the lower stories is reached sooner. Increasing the intensity of the ground motions

would help shed light on this theory.

If the hinge lengths are so long that 8lp > L, the weights associated with the modified

Gauss-Radau integration rules cover more length than that of the elements. This is the case

for the columns when using lp = 1.0 h, lp = 1.5 h and lp = 2.0 h. This might seem like a

numerical issue because the weights of the IPs in the interior, associated with the modified

Gauss-Radau rules, overlap. However, as stated by Scott et al. [5], the integral that (in

part) represents the elastic interior, is additive over its limits of integration (recall equation

2.3). This integral cancels out what has been integrated where the weights (critical lengths)

overlap. Scott et al. [5] only address the use of elastic interiors. OpenSees allows inelastic

sections to be used in the interior, but neither the wiki, nor any other source, explains how

this operation is performed numerically.

When using lp = 2.0 h, the total weigh of one of the Gauss-Radau rules extends beyond

the element length (4lp > L). This could be the cause of the convergence issues when

using this hinge length and inelastic interior. Because of the limited knowledge of which

numerical procedures are used in this situation, it is difficult to confirm that this is the case.

An investigation of the source code of the software or contacting its author, would be the

next step. Nevertheless, the response shows that assumptions regarding hinge lengths can

have profound effects on final results.

The results from the analyses using the FB models showed that there were large differences
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in amplitudes, especially for the model using three IPs. The results also displayed that when

increasing the number of IPs, the time histories seemed to converge towards one stable

solution. Both the period elongations and the amplitudes decreased as the number of IPs

was increased. As seen in Figure 6.2, the model using five IPs seems to give results that

can be as satisfactory as the models with more IPs. The roof drift response histories do not

support this observation. For some ground motions, this model also shows response that

differs significantly from finer models (models using more IPs). The RDR histories do show

that the trend is the same throughout the duration of the response - models using more IPs

approach a stable solution. The IDR profile plots also show these characteristics. For the

models using six IPs or more, the differences appear to be negligible. Based on these results

it is argued that six or more IPs should be used. This is more IPs than what Neuenhofer and

Filippou [37] recommended, which was four to six IPs.

With reference to Table 5.3, the use of six or more IPs seems to result in convergence issues

for some ground motions. This suggests that the FB elements using less IPs have superior

stability. In this thesis, the iterative form of the FB element was unfortunately not used.

This form is expected to perform better, according to the OpenSees wiki [41], and will be

accompanied with more computation for each element. With this in mind, it is advisable

to use the iterative form of the element. If instability occurs, trying to use fewer IPs per

element might be helpful, but it will come with the cost of less accuracy.

Figure 6.2: Maximum roof drifts for FB models.

The plots of the plastic rotations show that the apparent inaccuracy of the coarser FB models

has large implications on this inelastic response measure. The results of the models using

three and four IPs are significantly different compared to the responses of the finer models.

For the model using five IPs, the plastic rotations are more consistent with the finer models,

but the path and its magnitude diverge somewhat in some response histories. Again, results

suggest that six or more IPs should be used.

These results have serious implications for assessment of the damage of the different models.
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Since the inelastic response of the coarse models differs so much from others, the effects

of cyclic degradation can be both over- and underestimated when using them. This may

further lead to unconservative, or overly conservative, design decisions.

These findings could have been dismissed as erroneous if numerical softening behaviour

occurred during the response. As seen in the SPO, when softening response occurs, increas-

ing the number of IPs in the FB element does not lead to a unique solution. No indications

of softening behaviour were found, suggesting that no such behaviour will occur during

earthquake excitations for this structure, or that none of the excitations are intense enough

to induce it. The latter seems most likely. In any case, FB model responses are reasonable

and considered objective.

The DB model was not used in the NTHAs because it was computationally inefficient. It is

the authors opinion that the use of the stiffness formulation is unsuitable for such analyses,

compared to the much more efficient FB formulation. Although direct computational cost

is an issue of the past in the context of seismic design, computational efficiency is still

important.

In chapter 2.3.2, non-convergence was presented as a signal of global instability of the

structure [27]. Obviously, it only signals instability of the numerical model, making this

statement only true for ”perfect” models. Seeing this as ”true” collapse can therefore be

problematic for any novice analyst with limited knowledge of how the different formulations

are used. This fact should motivate learning and inspire diligence.

It may be reasonable to consider the uncertainties associated with the numerical model in

design methodologies. Inaccuracies will always be inherent in numerical modeling, but the

results show significant sensitivity to modeling assumptions. This must not be seen as an

argument for allowing improper modeling to be accounted for. It was found that perfectly

reasonable model configurations gave significantly different results. As an example, the

assumed hinge lengths had remarkable effects on the resulting curvatures. This should

definitively be considered by an analyst, but it may be legitimate reasons for this to be

considered in design methodologies as well. This topic of discussion lies in the intersection

between two subtopics. The first is how the effect of different hinge lengths affect the results

from a numerical model. The other is how different hinge lengths are calculated using

accepted methods and how they compare to experimental results. The latter is beyond the

scope of this thesis, but the former topic is addressed here and results suggest that further

study should be considered.

6.4 Further work

Over the course of this study, interesting topics have revealed themselves. It is also work

that the author simply did not have time to do. Although geometrical nonlineareties (P-δ
effects) are most decisive for high-rise buildings, it would be interesting to measure how

these effects could change the measured responses. Also, increasing the intensity of the

ground motion records in order to achieve larger plastic displacements could give additional

insights.
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Performing an IDA study of the response of different BwH models could give valuable

information. The hinge lengths could be varied between, for example, 75 and 125% of a

hinge length found using commonly accepted methods; for example equation 2.1. Such a

study would give further insight to the significance of small changes to the hinge lengths,

quantified using probabilistic measures. Realistically, there are such small changes (errors)

in hinge lengths that it would be reasonable to expect when defining a numerical model for

use in design. This would be an interesting topic for future study.



Chapter 7

Conclusion

The objective of this thesis was to investigate the effect of modeling assumptions. This has

been achieved through analysis of a RC MRF using NTHAs and SPOs using different model

configurations. Modeling assumptions have been shown to have large effects on the results

of both NTHAs and SPOs. The same numerical model also shows different characteristics

when analyzed using the two procedures. This is only natural, but the results have illustrated

that it may be advantageous to perform both types of analyses.

The most significant result of the SPOs is that the recorded curvatures are sensitive to the

critical lengths in the element for all models. Thus, when using curvature as a limiting DM,

it is possible to over- or underestimate the actual damage if incorrect hinge lengths are used.

It is concluded that when using curvature as a DM, extra attention should be paid to the

estimation of the hinge lengths.

For the NTHA, plastic rotations were shown to differ when using the FB models. Using

three IPs yielded what seemed to be erroneous results. The same could be seen from the

time histories. Interestingly, using four or even five integration points seemed to lead to

imprecise solutions. This suggest that it is advantageous to use six or more integration

points, which is more than what is recommended in parts of the literature.

The different types of elements available to an analyst, be it DB, FB or BwH elements,

have their limitations and potential pitfalls. The different results show that an analyst must

be able to assess what kind of phenomena are occurring in the numerical model in order

to assess the objectivity of the results. Because different assumptions lead to so different

results, it may be reasonable to consider the uncertainties associated with the numerical

model in design methodologies.
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Appendix A

Drawings of structure

This appendix presents drawings of structural elements.

Figure A.1: Beams at first, second and third floor. This figure has been provided by Øystad-

Larsen.

Figure A.2: Beams at roof level. This figure has been provided by Øystad-Larsen.
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68 Appendix A. Drawings of structure

Figure A.3: Internal columns. This figure has been provided by Øystad-Larsen.
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Figure A.4: Boarder columns. This figure has been provided by Øystad-Larsen.



70 Appendix A. Drawings of structure

Figure A.5: Plan view of the structure. This figure has been provided by Øystad-Larsen.



Appendix B

Ground motion records

The following is a presentation of the seven ground motion records used in the NTHAs.

They are collected from the NGA-West2 ground motion database, developed by PEER [62].

The records are unscaled and not processed in any other way.

Figure B.1: As recorded, ground acceleration record. 0282 Trinidad.

Figure B.2: As recorded, ground acceleration record. 0720 Superstition Hills.

Figure B.3: As recorded, ground acceleration record. 1003 Northridge.
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72 Appendix B. Ground motion records

Figure B.4: As recorded, ground acceleration record. 1110 Kobe.

Figure B.5: As recorded, ground acceleration record. 4889 Chuetsu-Oki.

Figure B.6: As recorded, ground acceleration record. 5814 Iwate.

Figure B.7: As recorded, ground acceleration record. 6923 Darfield.



Appendix C

Response histories - FB model

The following is a presentation of the seven response histories for node 43 for the FB

models.
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74 Appendix C. Response histories - FB model

Figure C.1: Response histories using the FB model for node 43. 0282 Trinidad.

Figure C.2: Response histories using the FB model for node 43. 0282 Trinidad.
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Figure C.3: Response histories using the FB model for node 43. 0720 Superstition Hills.

Figure C.4: Response histories using the FB model for node 43. 0720 Superstition Hills.



76 Appendix C. Response histories - FB model

Figure C.5: Response histories using the FB model for node 43. 1003 Northridge.

Figure C.6: Response histories using the FB model for node 43. 1003 Northridge.
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Figure C.7: Response histories using the FB model for node 43. 1110 Kobe.

Figure C.8: Response histories using the FB model for node 43. 1110 Kobe.



78 Appendix C. Response histories - FB model

Figure C.9: Response histories using the FB model for node 43. 4889 Chuetsu-Oki.

Figure C.10: Response histories using the FB model for node 43. 4889 Chuetsu-Oki.
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Figure C.11: Response histories using the FB model for node 43. 5814 Iwate.

Figure C.12: Response histories using the FB model for node 43. 5814 Iwate.



80 Appendix C. Response histories - FB model

Figure C.13: Response histories using the FB model for node 43. 6923 Darfield.

Figure C.14: Response histories using the FB model for node 43. 6923 Darfield.



Appendix D

Response histories - BwH el. int

The following is a presentation of the seven response histories for node 43 for the BwH

models using elements with elastic interior.
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82 Appendix D. Response histories - BwH el. int

Figure D.1: Response histories using the BwH model with elastic interior for node 43.

0282 Trinidad.

Figure D.2: Response histories using the BwH model with elastic interior for node 43.

0282 Trinidad.
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Figure D.3: Response histories using the BwH model with elastic interior for node 43.

0720 Superstition Hills.

Figure D.4: Response histories using the BwH model with elastic interior for node 43.

0720 Superstition Hills.



84 Appendix D. Response histories - BwH el. int

Figure D.5: Response histories using the BwH model with elastic interior for node 43.

1003 Northridge.

Figure D.6: Response histories using the BwH model with elastic interior for node 43.

1003 Northridge.
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Figure D.7: Response histories using the BwH model with elastic interior for node 43.

1110 Kobe.

Figure D.8: Response histories using the BwH model with elastic interior for node 43.

1110 Kobe.



86 Appendix D. Response histories - BwH el. int

Figure D.9: Response histories using the BwH model with elastic interior for node 43.

4889 Chuetsu-Oki.

Figure D.10: Response histories using the BwH model with elastic interior for node 43.

4889 Chuetsu-Oki.
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Figure D.11: Response histories using the BwH model with elastic interior for node 43.

5814 Iwate.

Figure D.12: Response histories using the BwH model with elastic interior for node 43.

5814 Iwate.



88 Appendix D. Response histories - BwH el. int

Figure D.13: Response histories using the BwH model with elastic interior for node 43.

6923 Darfield.

Figure D.14: Response histories using the BwH model with elastic interior for node 43.

6923 Darfield.



Appendix E

Response histories - BwH inel. int

The following is a presentation of the seven response histories for node 43 for the BwH

models using elements with inelastic interior.
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90 Appendix E. Response histories - BwH inel. int

Figure E.1: Response histories using the BwH model with inelastic interior for node 43.

0282 Trinidad.

Figure E.2: Response histories using the BwH model with inelastic interior for node 43.

0282 Trinidad.
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Figure E.3: Response histories using the BwH model with inelastic interior for node 43.

0720 Superstition Hills.

Figure E.4: Response histories using the BwH model with inelastic interior for node 43.

0720 Superstition Hills.



92 Appendix E. Response histories - BwH inel. int

Figure E.5: Response histories using the BwH model with inelastic interior for node 43.

1003 Northridge.

Figure E.6: Response histories using the BwH model with inelastic interior for node 43.

1003 Northridge.
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Figure E.7: Response histories using the BwH model with inelastic interior for node 43.

1110 Kobe.

Figure E.8: Response histories using the BwH model with inelastic interior for node 43.

1110 Kobe.



94 Appendix E. Response histories - BwH inel. int

Figure E.9: Response histories using the BwH model with inelastic interior for node 43.

4889 Chuetsu-Oki.

Figure E.10: Response histories using the BwH model with inelastic interior for node 43.

4889 Chuetsu-Oki.
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Figure E.11: Response histories using the BwH model with inelastic interior for node 43.

5814 Iwate.

Figure E.12: Response histories using the BwH model with inelastic interior for node 43.

5814 Iwate.



96 Appendix E. Response histories - BwH inel. int

Figure E.13: Response histories using the BwH model with inelastic interior for node 43.

6923 Darfield.

Figure E.14: Response histories using the BwH model with inelastic interior for node 43.

6923 Darfield.



Appendix F

Inter-story drift ratios (IDR)

The following is a presentation of the IDR profiles for the different models and ground

motions. The IDRs are sampled at the time where the peak roof drift is reached.
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98 Appendix F. Inter-story drift ratios (IDR)

Figure F.1: IDRs for the FB model response to the Trinidad ground motions.

Figure F.2: IDRs for the FB model response to the Superstition Hills ground motions.
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Figure F.3: IDRs for the FB model response to the Northridge ground motions.

Figure F.4: IDRs for the FB model response to the Kobe ground motions.



100 Appendix F. Inter-story drift ratios (IDR)

Figure F.5: IDRs for the FB model response to the Chuetsu-Oki ground motions.

Figure F.6: IDRs for the FB model response to the Iwate ground motions.
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Figure F.7: IDRs for the FB model response to the Darfield ground motions.

Figure F.8: IDRs for the response of the BwH model using the elastic interior to the

Trinidad ground motions.



102 Appendix F. Inter-story drift ratios (IDR)

Figure F.9: IDRs for the response of the BwH model using the elastic interior to the

Superstition Hills ground motions.

Figure F.10: IDRs for the response of the BwH model using the elastic interior to the

Northridge ground motions.



103

Figure F.11: IDRs for the response of the BwH model using the elastic interior to the Kobe

ground motions.

Figure F.12: IDRs for the response of the BwH model using the elastic interior to the

Chuetsu-Oki ground motions.



104 Appendix F. Inter-story drift ratios (IDR)

Figure F.13: IDRs for the response of the BwH model using the elastic interior to the Iwate

ground motions.

Figure F.14: IDRs for the response of the BwH model using the elastic interior to the

Darfield ground motions.
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Figure F.15: IDRs for the response of the BwH model using the inelastic interior to the

Trinidad ground motions.

Figure F.16: IDRs for the response of the BwH model using the inelastic interior to the

Superstition Hills ground motions.



106 Appendix F. Inter-story drift ratios (IDR)

Figure F.17: IDRs for the response of the BwH model using the inelastic interior to the

Northridge ground motions.

Figure F.18: IDRs for the response of the BwH model using the inelastic interior to the

Kobe ground motions.
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Figure F.19: IDRs for the response of the BwH model using the inelastic interior to the

Chuetsu-Oki ground motions.

Figure F.20: IDRs for the response of the BwH model using the inelastic interior to the

Iwate ground motions.



108 Appendix F. Inter-story drift ratios (IDR)

Figure F.21: IDRs for the response of the BwH model using the inelastic interior to the

Darfield ground motions.



Appendix G

Scaling in Matlab

In this appendix, the script used to import, make and scale response spectra in Matlab is

presented.
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m
p
2

 
 
 
 
C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
4
8
8
9
_
C
H
U
E
T
S
U
_
6
E
1
C
1
N
S
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
 
 
C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
1
)
;
 
C
H
U
E
_
4
8
8
9
_
H
2
_
A
 
=
 
9
.
8
1
*
(
C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
1

C
H
U
E
_
4
8
8
9
_
H
2
_
A
_
t
e
m
p
2

 
 
 
 
C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
4
8
8
9
_
C
H
U
E
T
S
U
_
6
E
1
C
1
U
D
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
 
 
C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
1
)
;
 
C
H
U
E
_
4
8
8
9
_
U
P
_
A
 
=
 
9
.
8
1
*
(
C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
1

C
H
U
E
_
4
8
8
9
_
U
P
_
A
_
t
e
m
p
2

 
 
 
 
I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
5
8
1
4
_
I
W
A
T
E
_
4
4
B
9
1
E
W
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
1
)
;
 
I
W
A
T
_
5
8
1
4
_
H
1
_
A
 
=
 
9
.
8
1
*
(
I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
1

I
W
A
T
_
5
8
1
4
_
H
1
_
A
_
t
e
m
p
2

 
 
 
 
I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
5
8
1
4
_
I
W
A
T
E
_
4
4
B
9
1
N
S
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
1
)
;
 
I
W
A
T
_
5
8
1
4
_
H
2
_
A
 
=
 
9
.
8
1
*
(
I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
1

I
W
A
T
_
5
8
1
4
_
H
2
_
A
_
t
e
m
p
2

 
 
 
 
I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
5
8
1
4
_
I
W
A
T
E
_
4
4
B
9
1
U
D
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
1
)
;
 
I
W
A
T
_
5
8
1
4
_
U
P
_
A
 
=
 
9
.
8
1
*
(
I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
1

I
W
A
T
_
5
8
1
4
_
U
P
_
A
_
t
e
m
p
2

 
 
 
 
D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
6
9
2
3
_
D
A
R
F
I
E
L
D
_
K
P
O
C
N
1
5
E
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
1
)
;
 
D
A
R
F
_
6
9
2
3
_
H
1
_
A
 
=
 
9
.
8
1
*
(
D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
1

D
A
R
F
_
6
9
2
3
_
H
1
_
A
_
t
e
m
p
2

 
 
 
 
D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
6
9
2
3
_
D
A
R
F
I
E
L
D
_
K
P
O
C
S
7
5
E
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
1
)
;
 
D
A
R
F
_
6
9
2
3
_
H
2
_
A
 
=
 
9
.
8
1
*
(
D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
1
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 3

D
A
R
F
_
6
9
2
3
_
H
2
_
A
_
t
e
m
p
2

 
 
 
 
D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
1
 
=
 
d
l
m
r
e
a
d
(
'
R
S
N
6
9
2
3
_
D
A
R
F
I
E
L
D
_
K
P
O
C
U
P
.
A
T
2
'
)
;
 
 
 
 
 
 
 
 
 
 
D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
2
 
=
 
t
r
a
n
s
p
o
s
e

(
D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
1
)
;
 
D
A
R
F
_
6
9
2
3
_
U
P
_
A
 
=
 
9
.
8
1
*
(
D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
2
(
:
)
)
;
 
c
l
e
a
r
v
a
r
s
 
D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
1

D
A
R
F
_
6
9
2
3
_
U
P
_
A
_
t
e
m
p
2

%
%
 
D
e
f
i
n
i
n
g
 
c
e
l
l
A
r
r
a
y
 
f
o
r
 
a
c
c
e
l
e
r
a
t
i
o
n
s

%
 
r
e
c
o
r
d
 
g
i
v
e
s
 
n
a
m
e
s
,
 
d
T
 
a
n
d
 
t
h
e
n
 
a
c
c
e
l
e
r
a
t
i
o
n
 
r
e
c
o
r
d
s
 
i
n
 
m
/
s
^
2

 
 
 
 
A
r
e
c
o
r
d
s
 
=
 
{
'
T
R
I
N
I
D
A
D
 
R
S
N
0
2
8
2
'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
0
5
 
T
R
I
N
_
0
2
8
2
_
H
1
_
A
 
T
R
I
N
_
0
2
8
2
_
H
2
_
A
 
T
R
I
N
_
0
2
8
2
_
U
P
_
A
;
.
.
.

'
S
U
P
E
R
S
T
I
T
I
O
N
 
H
I
L
L
S
-
0
2
 
R
N
S
0
7
2
0
'
 
0
.
0
1
0
 
S
U
P
E
_
0
7
2
0
_
H
1
_
A
 
S
U
P
E
_
0
7
2
0
_
H
2
_
A
 
{
}
;
.
.
.

'
N
O
R
T
H
R
I
D
G
E
-
0
1
 
R
S
N
1
0
0
3
'
 
 
 
 
 
 
 
 
 
0
.
0
1
0
 
N
O
R
T
_
1
0
0
3
_
H
1
_
A
 
N
O
R
T
_
1
0
0
3
_
H
2
_
A
 
N
O
R
T
_
1
0
0
3
_
U
P
_
A
;
.
.
.

'
K
O
B
E
 
R
S
N
1
1
1
0
'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
1
0
 
K
O
B
E
_
1
1
1
0
_
H
1
_
A
 
K
O
B
E
_
1
1
1
0
_
H
2
_
A
 
K
O
B
E
_
1
1
1
0
_
U
P
_
A
;
.
.
.

'
C
H
U
E
T
S
U
-
O
K
I
 
R
S
N
4
8
8
9
'
 
 
 
 
 
 
 
 
 
 
 
0
.
0
1
0
 
C
H
U
E
_
4
8
8
9
_
H
1
_
A
 
C
H
U
E
_
4
8
8
9
_
H
2
_
A
 
C
H
U
E
_
4
8
8
9
_
U
P
_
A
;
.
.
.

'
I
W
A
T
E
 
R
S
N
5
8
1
4
'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
1
0
 
I
W
A
T
_
5
8
1
4
_
H
1
_
A
 
I
W
A
T
_
5
8
1
4
_
H
2
_
A
 
I
W
A
T
_
5
8
1
4
_
U
P
_
A
;
.
.
.

'
D
A
R
F
I
E
L
D
 
R
S
N
6
9
2
3
'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
0
5
 
D
A
R
F
_
6
9
2
3
_
H
1
_
A
 
D
A
R
F
_
6
9
2
3
_
H
2
_
A
 
D
A
R
F
_
6
9
2
3
_
U
P
_
A
}
;

c
l
e
a
r
v
a
r
s
(
'
-
e
x
c
e
p
t
'
,

'
A
r
e
c
o
r
d
s
'
)
;

%
%
 
F
o
r
m
a
t
i
n
g
 

%
 
F
i
n
d
i
n
g
 
m
a
x
i
m
u
m
 
a
b
s
o
l
u
t
e
 
v
a
l
u
e
s
 
a
n
d
 
l
e
n
g
t
h
 
o
f
 
r
e
c
o
r
d
i
n
g

 
 
 
 
 
 
 
 
f
a
c
t
s
_
A
r
e
c
o
r
d
s
_
H
1
{
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)
,
 
2
}
=
 
[
]
;

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
t
s
_
A
r
e
c
o
r
d
s
_
H
1
{
i
,
1
}
 
=
 
m
a
x
(
a
b
s
(
A
r
e
c
o
r
d
s
{
i
,
3
}
)
)
;

 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
t
s
_
A
r
e
c
o
r
d
s
_
H
1
{
i
,
2
}
 
=
 
l
e
n
g
t
h
(
A
r
e
c
o
r
d
s
{
i
,
3
}
)
;

e
n
d
;
 
c
l
e
a
r
v
a
r
s
 
i

%
 
F
i
n
d
i
n
g
 
m
a
x
i
m
u
m
 
g
r
o
u
n
d
 
m
o
t
i
o
n
 
l
e
n
g
t
h
 
f
o
r
 
a
l
l
 
r
e
c
o
r
d
s

 
 
 
 
 
 
 
 
l
o
n
g
e
s
t
L
e
n
g
t
h
 
=
 
m
a
x
(
[
f
a
c
t
s
_
A
r
e
c
o
r
d
s
_
H
1
{
:
,
2
}
]
)
;

%
 
C
r
e
a
t
e
 
t
i
m
e
 
a
r
r
a
y
s
 
o
v
e
r
 
t
h
e
 
l
o
n
g
e
s
t
L
e
n
g
t
h
 
w
i
t
h
 
t
h
e
 
r
e
s
p
e
c
t
i
v
e
 
t
i
m
e
 
s
t
e
p
s

 
 
 
 
t
i
m
e
_
A
r
e
c
o
r
d
s
_
H
1
{
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)
,
 
1
}
 
=
 
[
]
;
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n
n
 
=
 
z
e
r
o
s
(
1
,
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)
)
;

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
n
n
(
i
)
 
=
 
l
o
n
g
e
s
t
L
e
n
g
t
h
/
[
A
r
e
c
o
r
d
s
{
i
,
2
}
]
;

 
 
 
 
 
 
 
 
t
i
m
e
_
A
r
e
c
o
r
d
s
_
H
1
{
i
,
1
}
 
=
 
t
r
a
n
s
p
o
s
e
(
l
i
n
s
p
a
c
e
(
0
,
l
o
n
g
e
s
t
L
e
n
g
t
h
,
n
n
(
i
)
+
1
)
)
;

e
n
d
;
 
c
l
e
a
r
v
a
r
s
 
i

n
n

%
%
 
P
l
o
t
 
g
r
o
u
n
d
 
m
o
t
i
o
n
s

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
f
i
g
u
r
e
(
'
n
a
m
e
'
,
A
r
e
c
o
r
d
s
{
i
,
1
}
)

 
 
 
 
 
 
 
 
a
a
 
=
 
t
i
m
e
_
A
r
e
c
o
r
d
s
_
H
1
{
i
,
1
}
;

 
 
 
 
 
 
 
 
b
b
 
=
 
A
r
e
c
o
r
d
s
{
i
,
3
}
;

 
 
 
 
 
 
 
 
p
l
o
t
(
a
a
(
1
:
l
e
n
g
t
h
(
b
b
)
,
1
)
.
'
,
b
b
.
'
,
'
-
'
,
'
c
o
l
o
r
'
,
[
0
 
0
 
0
]
)
;

 
 
 
 
 
 
 
 
x
l
a
b
e
l
(
'
T
i
m
e
 
[
s
]
'
)
;

 
 
 
 
 
 
 
 
y
l
a
b
e
l
(
'
A
c
c
e
l
e
r
a
t
i
o
n
 
[
m
/
s
^
2
]
'
)

 
 
 
 
 
 
 
 
l
e
g
e
n
d
(
A
r
e
c
o
r
d
s
{
i
,
1
}
)

 
 
 
 
 
 
 
 
y
l
i
m
i
t
 
=
 
1
.
0
5
*
m
a
x
(
a
b
s
(
b
b
)
)
;

 
 
 
 
 
 
 
 
y
l
i
m
(
[
-
y
l
i
m
i
t
,
y
l
i
m
i
t
]
)

 
 
 
 
 
 
 
 
g
r
i
d
 
o
n

 
 
 
 
 
 
 
 
g
r
i
d
 
m
i
n
o
r

 
 
 
 
 
 
 
 
a
x
 
=
 
g
c
a
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

%
 
 
 
 
 
 
 
 
 
a
x
.
X
T
i
c
k
 
=
 
0
:
0
.
2
5
e
-
4
:
2
.
5
e
-
4
;

 
 
 
 
 
 
 
 
a
x
.
Y
T
i
c
k
 
=
 
-
5
:
1
:
5
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
-
'
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
:
'
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
A
l
p
h
a
 
=
 
0
.
5
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
A
l
p
h
a
 
=
 
.
2
5
;

 
 
 
 
 
 
 
 
a
x
.
L
a
y
e
r
 
=
 
'
b
o
t
'
;

e
n
d
;
 
c
l
e
a
r
v
a
r
s
 
i

a
a

b
b
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%
%
 
C
o
m
p
u
t
a
t
i
o
n
 
o
f
 
r
e
p
o
n
s
e
 
s
p
e
c
t
r
u
m
 
b
y

%
 
 
 
-
 
N
e
w
m
a
r
k
s
 
l
i
n
e
a
r
 
m
e
t
h
o
d

%
 
 
 
-
 
C
o
n
s
t
a
n
t
 
a
v
e
r
a
g
e
 
a
c
c
e
l
e
r
a
t
i
o
n
 
m
e
t
h
o
d
 
(
g
a
m
m
a
=
1
/
2
,
 
b
e
t
a
=
1
/
4
)

%
 
 
 
-
 
L
i
n
e
a
r
 
a
c
c
e
l
e
r
a
t
i
o
n
 
m
e
t
h
o
d
 
(
g
a
m
m
a
=
1
/
2
,
 
b
e
t
a
=
1
/
6
)

%
 
P
r
o
c
e
d
u
r
e
 
c
o
n
s
t
a
n
t
s
.
 
N
o
t
e
:
 
F
o
r
 
a
 
s
t
a
b
l
e
 
s
o
l
u
t
i
o
n
,
 
2
b
e
t
t
a
 
>
 
g
a
m
m
a
 
>
 
0
.
5

 
 
 
 
g
a
m
m
a
 
=
 
0
.
5
;
 

 
 
 
 
b
e
t
a
 
=
 
1
/
6
;

 
 
 
 
m
 
=
 
1
;

%
 
M
a
s
s
 
i
s
 
s
e
t
 
e
q
u
a
l
 
t
o
 
o
n
e
 
a
n
d
 
t
h
e
 
s
t
i
f
f
n
e
s
s
 
i
s
 
v
a
r
i
e
d
.

 
 
 
 
p
s
i
 
=
 
0
.
0
5
;

%
 
D
e
t
e
r
m
i
n
e
 
d
a
m
p
i
n
g
.

 
 
 
 
T
m
a
x
 
=
 
4
;

%
 
D
e
t
e
r
m
i
n
e
 
m
a
x
i
u
m
u
m
 
p
e
r
i
o
d

%
 
P
r
e
a
l
l
o
c
a
t
i
o
n
s

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
A
r
e
c
o
r
d
 
=
 
A
r
e
c
o
r
d
s
{
i
,
3
}
;

 
 
 
 
 
 
 
 
d
t
 
=
 
A
r
e
c
o
r
d
s
{
i
,
2
}
;

 
 
 
 
 
 
 
 
u
 
=
 
z
e
r
o
s
(
s
i
z
e
(
A
r
e
c
o
r
d
)
)
;

 
 
 
 
 
 
 
 
v
 
=
 
u
;

 
 
 
 
 
 
 
 
a
 
=
 
u
;

 
 
 
 
 
 
 
 
T
(
1
,
1
)
 
=
 
0
;

%
 
P
r
e
a
l
l
o
c
a
t
i
o
n
s

 
 
 
 
 
 
 
 
 
 
 
 
d
T
 
=
 
T
m
a
x
/
d
t
;

 
 
 
 
 
 
 
 
 
 
 
 
o
m
e
g
a
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
(
l
i
n
s
p
a
c
e
(
0
,
 
T
m
a
x
,
 
d
T
+
1
)
)
,
1
)
;

f
o
r
 
j
 
=
 
1
:
d
T

 
 
 
 
 
 
 
 
 
 
 
 
o
m
e
g
a
(
j
,
1
)
 
=
 
2
*
p
i
*
(
1
/
T
(
j
,
1
)
)
;

 
 
 
 
 
 
 
 
 
 
 
 
k
 
=
 
(
o
m
e
g
a
(
j
)
)
^
2
*
m
;

 
 
 
 
 
 
 
 
 
 
 
 
c
 
=
 
2
*
p
s
i
*
o
m
e
g
a
(
j
)
*
m
;

 
 
 
 
 
 
 
 
 
 
 
 
a
1
 
=
 
(
g
a
m
m
a
/
(
b
e
t
a
*
d
t
)
)
*
c
+
(
1
/
(
b
e
t
a
*
d
t
^
2
)
)
*
m
;

 
 
 
 
 
 
 
 
 
 
 
 
a
2
 
=
 
(
1
/
(
b
e
t
a
*
d
t
)
)
*
m
+
(
(
g
a
m
m
a
/
b
e
t
a
)
-
1
)
*
c
;
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a
3
 
=
 
(
(
g
a
m
m
a
/
(
2
*
b
e
t
a
)
)
-
1
)
*
c
*
d
t
+
(
(
1
/
(
2
*
b
e
t
a
)
)
-
1
)
*
m
;

 
 
 
 
 
 
 
 
 
 
 
 
k
e
f
f
 
=
 
k
+
a
1
;

f
o
r
 
k
 
=
 
1
:
l
e
n
g
t
h
(
u
)
-
1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
h
 
=
 
-
A
r
e
c
o
r
d
(
k
+
1
)
*
m
+
a
1
*
u
(
k
,
1
)
+
a
2
*
v
(
k
,
1
)
+
a
3
*
a
(
k
,
1
)
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
(
k
+
1
,
1
)
 
=
 
P
h
/
k
e
f
f
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
(
k
+
1
,
1
)
 
=
 
(
g
a
m
m
a
/
(
b
e
t
a
*
d
t
)
)
*
(
u
(
k
+
1
,
1
)
-
u
(
k
,
1
)
)
+
(
1
-
(
g
a
m
m
a
/
b
e
t
a
)
)
*
v
(
k
,
1
)
+
d
t
*
(
1
-
(
g
a
m
m
a
/
(
2
*
b
e
t
a
)
)
)
*
a
(
k
,
1
)
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
(
k
+
1
,
1
)
 
=
 
(
1
/
(
b
e
t
a
*
d
t
^
2
)
)
*
(
u
(
k
+
1
,
1
)
-
u
(
k
,
1
)
)
-
(
1
/
(
b
e
t
a
*
d
t
)
)
*
v
(
k
,
1
)
-
(
(
1
/
(
2
*
b
e
t
a
)
)
-
1
)
*
a
(
k
,
1
)
;

e
n
d

 
 
 
 
 
 
 
 
 
 
 
 
S
d
(
j
,
1
)
 
=
 
m
a
x
(
a
b
s
(
u
)
)
;

 
 
 
 
 
 
 
 
 
 
 
 
S
v
(
j
,
1
)
 
=
 
m
a
x
(
a
b
s
(
v
)
)
;

 
 
 
 
 
 
 
 
 
 
 
 
S
a
(
j
,
1
)
 
=
 
S
d
(
j
,
1
)
*
(
o
m
e
g
a
(
j
)
)
^
2
;

 
 
 
 
 
 
 
 
 
 
 
 
T
(
j
+
1
,
1
)
 
=
 
T
(
j
)
+
d
t
;

e
n
d
;
 
T
(
e
n
d
)
 
=
 
[
]
;

%
 
T
h
e
s
e
 
m
a
n
u
a
l
 
v
a
l
u
e
s
 
e
n
s
u
r
e
 
c
o
n
t
i
n
u
t
y
 
i
n
 
t
h
e
 
s
p
e
c
t
r
u
m

 
 
 
 
 
 
 
 
S
d
(
1
:
2
,
1
)
 
=
 
0
;

 
 
 
 
 
 
 
 
S
v
(
1
:
2
,
1
)
 
=
 
0
;

 
 
 
 
 
 
 
 
S
a
(
1
:
3
,
1
)
 
=
 
m
a
x
(
a
b
s
(
A
r
e
c
o
r
d
)
)
;

 
 
 
 
 
 
 
 
P
G
A
_
E
C
8
 
=
 
3
.
5
;

 
 
 
 
 
 
 
 
P
S
A
_
E
C
8
 
=
 
1
0
.
0
6
;

 
 
 
 
 
 
 
 
T
n
_
l
o
c
a
t
i
o
n
 
=
 
f
i
n
d
(
a
b
s
(
T
-
0
.
5
1
)
 
<
 
0
.
0
0
1
)
;
 
%
 
O
S
 
0
.
2
1

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
3
}
 
=
 
P
G
A
_
E
C
8
/
S
a
(
1
,
1
)
;

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
5
}
 
=
 
P
S
A
_
E
C
8
/
S
a
(
T
n
_
l
o
c
a
t
i
o
n
,
1
)
;

 
 
 
 
 
 
 
 
P
G
A
_
S
a
 
=
 
S
a
*
(
P
G
A
_
E
C
8
/
S
a
(
1
,
1
)
)
;

%
 
S
c
a
l
e
d
 
R
e
s
p
o
n
s
e
 
a
c
c
e
l
e
r
a
t
i
o
n
 
t
o
 
P
G
A

 
 
 
 
 
 
 
 
T
S
_
S
a
 
=
 
S
a
*
(
P
S
A
_
E
C
8
/
S
a
(
T
n
_
l
o
c
a
t
i
o
n
,
1
)
)
;
 
%
 
S
c
a
l
e
d
 
R
e
s
p
o
n
s
e
 
a
c
c
e
l
e
r
a
t
i
o
n
 
t
o
 
T

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
1
}
 
=
 
T
;

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
2
}
 
=
 
S
a
;

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
4
}
 
=
 
P
G
A
_
S
a
;
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S
p
e
c
t
r
u
m
s
{
i
,
6
}
 
=
 
T
S
_
S
a
;

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
7
}
 
=
 
S
v
;

 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
s
{
i
,
8
}
 
=
 
S
d
;

 
 
 
 
 
 
 
 
c
l
e
a
r
v
a
r
s
 
a

a
1

a
2

a
3

c
d
t

i
j

k
k
e
f
f

o
m
e
g
a

p
h

T
u

v
S
d

S
v

S
a

d
T

T
S
_
S
a

P
G
A
_
S
a

A
r
e
c
o
r
d

T
n
_
l
o
c
a
t
i
o
n

e
n
d

%
%
 
P
l
o
t
t
i
n
g

 
 
 
 
f
i
g
u
r
e
(
'
n
a
m
e
'
,
'
U
n
s
c
a
l
e
d
 
r
e
s
p
o
n
s
e
 
s
p
e
c
t
r
u
m
s
'
)

 
 
 
 
h
o
l
d
 
o
n
;

 
 
 
 
l
e
g
e
n
d
I
n
f
o
 
=
 
{
}
;

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
2
}
)
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
i
}
 
=
 
[
A
r
e
c
o
r
d
s
{
i
,
1
}
]
;

e
n
d

 
 
 
 
l
e
g
e
n
d
(
l
e
g
e
n
d
I
n
f
o
)

 
 
 
 
x
l
i
m
(
[
0
,
2
]
)

 
 
 
 
x
l
a
b
e
l
(
'
N
a
t
u
r
a
l
 
P
e
r
i
o
d
 
[
s
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)
;

 
 
 
 
y
l
a
b
e
l
(
'
R
e
s
p
o
n
s
e
 
[
m
/
s
^
2
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)

 
 
 
 
g
r
i
d
 
o
n

 
 
 
 
g
r
i
d
 
m
i
n
o
r

 
 
 
 
a
x
 
=
 
g
c
a
;

 
 
 
 
a
x
.
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;
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%
 
 
 
 
 
a
x
.
X
T
i
c
k
 
=
 
0
:
0
.
2
5
e
-
4
:
2
.
5
e
-
4
;

%
 
 
 
 
 
a
x
.
Y
T
i
c
k
 
=
 
0
:
5
0
:
7
5
0
;

 
 
 
 
a
x
.
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
-
'
;

 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
:
'
;

 
 
 
 
a
x
.
G
r
i
d
A
l
p
h
a
 
=
 
0
.
5
;

 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
A
l
p
h
a
 
=
 
.
2
5
;

 
 
 
 
a
x
.
L
a
y
e
r
 
=
 
'
b
o
t
'
;

 
 
 
 
f
i
g
u
r
e
(
'
n
a
m
e
'
,
'
S
c
a
l
e
d
 
r
e
s
p
o
n
s
e
 
s
p
e
c
t
r
u
m
s
,
 
P
G
A
'
)

 
 
 
 
h
o
l
d
 
o
n
;

 
 
 
 
l
e
g
e
n
d
I
n
f
o
 
=
 
{
}
;

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
4
}
)
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
i
}
 
=
 
[
A
r
e
c
o
r
d
s
{
i
,
1
}
]
;

e
n
d

 
 
 
 
l
e
g
e
n
d
(
l
e
g
e
n
d
I
n
f
o
)

 
 
 
 
x
l
i
m
(
[
0
,
2
]
)

 
 
 
 
x
l
a
b
e
l
(
'
N
a
t
u
r
a
l
 
P
e
r
i
o
d
 
[
s
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)
;

 
 
 
 
y
l
a
b
e
l
(
'
R
e
s
p
o
n
s
e
 
[
m
/
s
^
2
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)

 
 
 
 
g
r
i
d
 
o
n

 
 
 
 
g
r
i
d
 
m
i
n
o
r

 
 
 
 
a
x
 
=
 
g
c
a
;

 
 
 
 
a
x
.
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

%
 
 
 
 
 
a
x
.
X
T
i
c
k
 
=
 
0
:
0
.
2
5
e
-
4
:
2
.
5
e
-
4
;

%
 
 
 
 
 
a
x
.
Y
T
i
c
k
 
=
 
0
:
5
0
:
7
5
0
;

 
 
 
 
a
x
.
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
-
'
;

 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
:
'
;

 
 
 
 
a
x
.
G
r
i
d
A
l
p
h
a
 
=
 
0
.
5
;
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a
x
.
M
i
n
o
r
G
r
i
d
A
l
p
h
a
 
=
 
.
2
5
;

 
 
 
 
a
x
.
L
a
y
e
r
 
=
 
'
b
o
t
'
;

 
 
 
 
f
i
g
u
r
e
(
'
n
a
m
e
'
,
'
S
c
a
l
e
d
 
r
e
s
p
o
n
s
e
 
s
p
e
c
t
r
u
m
s
,
 
T
_
1
'
)

 
 
 
 
 
 
 
 
h
o
l
d
 
o
n
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
 
=
 
{
}
;

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
6
}
)
;

 
 
 
 
 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
i
}
 
=
 
[
A
r
e
c
o
r
d
s
{
i
,
1
}
]
;

e
n
d

%
P
l
o
t
t
i
n
g
 
t
h
e
 
m
e
a
n
 
o
f
 
a
l
l
 
t
h
e
 
s
p
e
c
t
r
u
m
s
 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

%
C
u
s
u
m
 
a
n
 
m
u
s
t
 
b
e
 
c
h
a
n
g
e
d
 
i
f
 
A
r
e
c
o
r
d
s
 
i
s
 
c
h
a
n
g
e
d

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
1
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
1
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
1
)
 
=
 
S
p
e
c
t
r
u
m
1
t
e
m
p
(
1
:
2
:
e
n
d
,
1
)
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
2
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
2
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
2
)
 
=
 
S
p
e
c
t
r
u
m
2
t
e
m
p
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
3
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
3
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
3
)
 
=
 
S
p
e
c
t
r
u
m
3
t
e
m
p
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
4
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
4
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
4
)
 
=
 
S
p
e
c
t
r
u
m
4
t
e
m
p
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
5
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
5
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
5
)
 
=
 
S
p
e
c
t
r
u
m
5
t
e
m
p
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
6
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
6
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
6
)
 
=
 
S
p
e
c
t
r
u
m
6
t
e
m
p
;

 
 
 
 
 
 
 
 
 
 
 
 
S
p
e
c
t
r
u
m
7
t
e
m
p
 
=
 
S
p
e
c
t
r
u
m
s
{
7
,
6
}
;
 
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
(
:
,
7
)
 
=
 
S
p
e
c
t
r
u
m
7
t
e
m
p
(
1
:
2
:
e
n
d
,
1
)
;

 
 
 
 
 
 
 
 
 
 
 
 
c
l
e
a
r
v
a
r
s
 
S
p
e
c
t
r
u
m
1
t
e
m
p

S
p
e
c
t
r
u
m
2
t
e
m
p

S
p
e
c
t
r
u
m
3
t
e
m
p

S
p
e
c
t
r
u
m
4
t
e
m
p

S
p
e
c
t
r
u
m
5
t
e
m
p

S
p
e
c
t
r
u
m
6
t
e
m
p

S
p
e
c
t
r
u
m
7
t
e
m
p

 
 
 
 
 
 
 
 
 
 
 
 
p
0
 
=
 
p
l
o
t
 
(
S
p
e
c
t
r
u
m
s
{
2
,
1
}
,
 
m
e
a
n
(
S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
,
2
)
,
 
'
c
o
l
o
r
'
,
[
0
 
0
 
0
]
,
 
'
l
i
n
e
w
i
d
t
h
'
,
 
1
.
5
)

 
 
 
 
 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
e
n
d
+
1
}
 
=
 
'
M
e
a
n
'
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%
%
 
E
c
 
s
p
e
c
t
r
a
s

 
 
 
 
 
 
 
 
S
 
=
 
1
.
1
5
;

 
 
 
 
 
 
 
 
a
_
g
 
=
 
3
.
5
;

 
 
 
 
 
 
 
 
T
_
B
 
=
 
0
.
2
;

 
 
 
 
 
 
 
 
T
_
C
 
=
 
0
.
6
;
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C:
\U
se
rs
\J
or
ge
n\
Do
cu
me
nt
s\
MA
TL
AB
\M
at
la
bM
as
te
r\
Re
co
rd
s\
Re
co
rd
Sc
al
in
gI
WA
TE
.m

Pa
ge
 1
0

 
 
 
 
 
 
 
 
T
_
D
 
=
 
2
.
0
;

 
 
 
 
 
 
 
 
q
 
=
 
3
.
9
;

 
 
 
 
 
 
 
 
b
e
t
a
 
=
 
0
.
2
;

 
 
 
 
 
 
 
 
e
t
a
 
=
 
1
.
0
;

%
 
D
e
s
i
g
n
 
s
p
e
c
t
r
a

 
 
 
 
 
 
 
 
p
1
=
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
(
(
2
/
3
)
+
(
T
.
/
T
_
B
)
*
(
2
.
5
/
q
 
-
 
2
/
3
)
)
,
 
 
 
 
 
 
 
 
 
 
 
 
[
0
 
 
 
T
_
B
]
 
 
 
,
'
-
.
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
p
5
=
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
(
1
+
(
T
.
/
T
_
B
*
(
e
t
a
*
2
.
5
-
1
)
)
)
,
 
 
 
 
 
 
 
 
 
 
 
 
[
0
 
 
 
T
_
B
]
 
 
 
,
'
-
-
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
2
.
5
/
q
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[
T
_
B
 
T
_
C
]
 
 
 
,
'
-
.
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
m
a
x
(
a
_
g
*
S
*
(
2
.
5
/
q
)
*
(
T
_
C
.
/
T
)
,
 
b
e
t
a
*
a
_
g
)
,
 
 
 
 
 
 
 
 
 
 
 
[
T
_
C
 
T
_
D
]
 
 
 
,
'
-
.
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
m
a
x
(
a
_
g
*
S
*
(
2
.
5
/
q
)
*
(
T
_
C
*
T
_
D
.
/
T
.
^
2
)
,
 
b
e
t
a
*
a
_
g
)
,
 
 
 
 
[
T
_
D
 
4
]
 
 
 
 
 
,
'
-
.
k
'
)
;
 
h
o
l
d
 
o
n

%
 
E
l
a
s
t
i
c
 
s
p
e
c
t
r
a

%
 
 
 
 
 
 
 
 
 
p
5
=
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
(
1
+
(
T
.
/
T
_
B
*
(
e
t
a
*
2
.
5
-
1
)
)
)
,
 
 
 
 
 
 
 
 
 
 
 
 
[
0
 
 
 
T
_
B
]
 
 
 
,
'
-
-
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
e
t
a
*
2
.
5
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[
T
_
B
 
T
_
C
]
 
 
 
,
'
-
-
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
e
t
a
*
2
.
5
*
(
T
_
C
.
/
T
)
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[
T
_
C
 
T
_
D
]
 
 
 
,
'
-
-
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
 
 
 
 
f
p
l
o
t
(
@
(
T
)
 
a
_
g
*
S
*
e
t
a
*
2
.
5
*
(
T
_
C
*
T
_
D
.
/
T
.
^
2
)
,
 
 
 
 
 
 
 
 
 
 
 
 
 
[
T
_
D
 
4
]
 
 
 
 
 
,
'
-
-
k
'
)
;
 
h
o
l
d
 
o
n

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
e
n
d
+
1
}
 
=
 
'
E
l
a
s
t
i
c
 
r
e
s
p
o
n
s
e
 
s
p
e
c
t
r
a
'
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
{
e
n
d
+
1
}
 
=
 
'
D
e
s
i
g
n
 
r
e
s
p
o
n
s
e
 
s
p
e
c
t
r
a
'
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
(
l
e
g
e
n
d
I
n
f
o
)

 
 
 
 
 
 
 
 
x
l
i
m
(
[
0
 
2
]
)

 
 
 
 
 
 
 
 
x
l
a
b
e
l
(
'
N
a
t
u
r
a
l
 
P
e
r
i
o
d
 
[
s
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)
;

 
 
 
 
 
 
 
 
y
l
a
b
e
l
(
'
R
e
s
p
o
n
s
e
 
[
m
/
s
^
2
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)

 
 
 
 
 
 
 
 
g
r
i
d
 
o
n

 
 
 
 
 
 
 
 
g
r
i
d
 
m
i
n
o
r
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C:
\U
se
rs
\J
or
ge
n\
Do
cu
me
nt
s\
MA
TL
AB
\M
at
la
bM
as
te
r\
Re
co
rd
s\
Re
co
rd
Sc
al
in
gI
WA
TE
.m

Pa
ge
 1
1

 
 
 
 
 
 
 
 
a
x
 
=
 
g
c
a
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
-
'
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
:
'
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
A
l
p
h
a
 
=
 
0
.
5
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
A
l
p
h
a
 
=
 
.
2
5
;

 
 
 
 
 
 
 
 
a
x
.
L
a
y
e
r
 
=
 
'
b
o
t
'
;

 
 
 
 
 
 
 
 
c
l
e
a
r
v
a
r
s
 
S

q
p
1

p
0

p
5

T
_
B

T
_
C

T
_
D

e
t
a

a
_
g

f
o
r
 
i
 
=
 
1
:
s
i
z
e
(
A
r
e
c
o
r
d
s
,
1
)

 
 
 
 
 
 
f
i
g
u
r
e
(
'
n
a
m
e
'
,
[
'
R
e
s
p
o
n
s
e
 
s
p
e
c
t
r
u
m
s
,
 
'
 
A
r
e
c
o
r
d
s
{
i
,
1
}
]
)

 
 
 
 
 
 
 
 
h
o
l
d
 
o
n
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d
I
n
f
o
 
=
 
{
}
;

 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
2
}
)
;

 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
4
}
)
;

 
 
 
 
 
 
 
 
p
l
o
t
(
S
p
e
c
t
r
u
m
s
{
i
,
1
}
,
 
S
p
e
c
t
r
u
m
s
{
i
,
6
}
)
;

 
 
 
 
 
 
 
 
l
e
g
e
n
d

 
 
 
 
 
 
 
 
l
e
g
e
n
d
(
 
'
U
n
s
c
a
l
e
d
'
,

'
 
S
c
a
l
e
d
,
 
P
G
A
'
,

'
S
c
a
l
e
d
,
 
T
_
1
'
)

 
 
 
 
 
 
 
 
x
l
i
m
(
[
0
,
2
]
)

 
 
 
 
 
 
 
 
x
l
a
b
e
l
(
'
N
a
t
u
r
a
l
 
P
e
r
i
o
d
 
[
s
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)
;

 
 
 
 
 
 
 
 
y
l
a
b
e
l
(
'
R
e
s
p
o
n
s
e
 
[
m
/
s
^
2
]
'
,
'
F
o
n
t
S
i
z
e
'
,
1
0
'
)

 
 
 
 
 
 
 
 
g
r
i
d
 
o
n

 
 
 
 
 
 
 
 
g
r
i
d
 
m
i
n
o
r

 
 
 
 
 
 
 
 
a
x
 
=
 
g
c
a
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
C
o
l
o
r
 
=
 
[
.
5
 
.
5
 
.
5
]
;
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C:
\U
se
rs
\J
or
ge
n\
Do
cu
me
nt
s\
MA
TL
AB
\M
at
la
bM
as
te
r\
Re
co
rd
s\
Re
co
rd
Sc
al
in
gI
WA
TE
.m

Pa
ge
 1
2

%
 
 
 
 
 
a
x
.
X
T
i
c
k
 
=
 
0
:
0
.
2
5
e
-
4
:
2
.
5
e
-
4
;

%
 
 
 
 
 
a
x
.
Y
T
i
c
k
 
=
 
0
:
5
0
:
7
5
0
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
-
'
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
L
i
n
e
S
t
y
l
e
 
=
 
'
:
'
;

 
 
 
 
 
 
 
 
a
x
.
G
r
i
d
A
l
p
h
a
 
=
 
0
.
5
;

 
 
 
 
 
 
 
 
a
x
.
M
i
n
o
r
G
r
i
d
A
l
p
h
a
 
=
 
.
2
5
;

 
 
 
 
 
 
 
 
a
x
.
L
a
y
e
r
 
=
 
'
b
o
t
'
;

e
n
d

 
 
 
 
c
l
e
a
r
v
a
r
s
 
m

g
a
m
m
a

b
e
t
a

p
s
i

P
h

T
m
a
x

P
G
A
_
E
C
8

P
S
A
_
E
C
8

l
o
n
g
e
s
t
L
e
n
g
t
h

a
x

i
y
l
i
m
i
t

l
e
g
e
n
d
I
n
f
o

S
p
e
c
t
r
u
m
s
_
f
o
r
m
e
a
n
s
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Appendix H

OpenSees - Defining DB elements

In this appendix, the OpenSees script used to define nodes and elements for the DB model

is presented.
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#
#
T
i
t
l
e
:
 
 
 
 
E
l
e
m
e
n
t
 
d
e
f
i
n
i
t
i
o
n
s

#
A
u
t
h
o
r
:
 
 
 
 
J
ø
r
g
e
n
 
R
o
s
m
o
 
R
o
v
e
n

#
U
n
i
t
s
:
 
 
 
 
 
M
e
t
r
i
c
 
(
m
m
,
 
t
o
n
,
 
N
,
 
s
e
c
)

#
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
e
o
m
T
r
a
n
s
f
 
L
i
n
e
a
r
 
1

g
e
o
m
T
r
a
n
s
f
 
P
D
e
l
t
a
 
2

#
 
t
a
 
i
s
 
g
i
v
e
n
 
i
n
 
t
h
e
 
f
o
m
a
t
 
(
B
e
a
m
=
1
/
C
o
l
=
2
)
(
s
t
o
r
y
)
(
c
o
l
u
m
n
r
o
w
)
(
n
u
m
b
e
r
o
f
F
i
n
i
t
e
E
l
e
m
e
n
t
)

#
A
s
s
e
m
b
l
e
s
 
i
n
t
e
r
n
a
l
 
b
e
a
m
s

 
 
 
 
#
 
R
u
n
s
 
f
o
r
 
e
a
c
h
 
s
t
o
r
y
 
n
o
t
 
i
n
c
l
u
d
i
n
g
 
t
h
e
 
u
p
p
e
r
m
o
s
t
 
s
t
o
r
y

f
o
r
 
{
s
e
t
 
n
S
t
o
r
y
 
2
}
 
{
$
n
S
t
o
r
y
 
<
 
$
n
Z
c
}
 
{
i
n
c
r
 
n
S
t
o
r
y
}
 
{

#
 
R
u
n
s
 
f
o
r
 
a
l
l
 
c
o
l
u
m
n
 
r
o
w
s
 
e
x
e
p
t
 
t
h
e
 
l
a
s
t
 
-
 
p
u
t
s
 
a
l
l
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
s
 
o
n
 
r
o
o
f
 
e
x
e
p
t
 
e
l
e
m
e
n
t
 
n
u
m
b
e
r
 
0
 
a
n
d
 
n
F
E

f
o
r
 
{
s
e
t
 
n
C
o
l
R
o
w
 
1
}
 
{
$
n
C
o
l
R
o
w
 
<
 
$
n
X
c
}
 
{
i
n
c
r
 
n
C
o
l
R
o
w
}
 
{

#
 
R
u
n
s
 
f
o
r
 
a
l
l
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
s
 
e
x
c
e
p
t
 
l
a
s
t

f
o
r
 
{
s
e
t
 
d
e
l
t
a
x
 
1
}
 
{
$
d
e
l
t
a
x
 
<
 
$
n
F
E
-
1
}
 
{
i
n
c
r
 
d
e
l
t
a
x
}
 
{

#
 
 
 
e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
$
e
l
e
T
a
g

$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x
 
 
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
[
e
x
p
r
 

$
d
e
l
t
a
x
+
1
]
 
$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
3
0
x
5
0
 
 
 
 
1

e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
1
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x

1
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x
 
1
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
[
e
x
p
r
 

$
d
e
l
t
a
x
+
1
]
 
 
 
 
$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
3
0
x
5
0
 
 
 
 
1

} u
n
s
e
t
 
d
e
l
t
a
x

s
e
t
 
d
e
l
t
a
x
 
0

#
 
P
u
t
s
 
f
i
r
s
t
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
 
n
u
m
b
e
r
 
0

e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
1
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x

2
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x
 
1
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
[
e
x
p
r
 

$
d
e
l
t
a
x
+
1
]
 
 
 
 
$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
3
0
x
5
0
 
 
 
 
1

u
n
s
e
t
 
d
e
l
t
a
x

} u
n
s
e
t
 
n
C
o
l
R
o
w

#
 
R
u
n
s
 
f
o
r
 
a
l
l
 
c
o
l
u
m
n
 
r
o
w
s
 
e
x
e
p
t
 
t
h
e
 
l
a
s
t
 
-
 
p
u
t
s
 
a
l
l
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
 
n
F
E
 
o
n
 
r
o
o
f
 
f
o
r
 
b
e
a
m
s
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f
o
r
 
{
s
e
t
 
n
C
o
l
R
o
w
 
2
}
 
{
$
n
C
o
l
R
o
w
 
<
=
 
$
n
X
c
}
 
{
i
n
c
r
 
n
C
o
l
R
o
w
}
 
{

s
e
t
 
d
e
l
t
a
x
 
[
e
x
p
r
 
$
n
F
E
-
1
]

e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
1
$
n
S
t
o
r
y
[
e
x
p
r
 
$
{
n
C
o
l
R
o
w
}
-
1
]
$
d
e
l
t
a
x

1
$
n
S
t
o
r
y
[
e
x
p
r
 
$
{
n
C
o
l
R
o
w
}
-
1
]
$
d
e
l
t
a
x

2
$
n
S
t
o
r
y
$
{
n
C
o
l
R
o
w
}
0
 
$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
3
0
x
5
0
 
 
 
 
1

} u
n
s
e
t
 
n
C
o
l
R
o
w

} u
n
s
e
t
 
n
S
t
o
r
y

#
 
A
s
s
e
m
b
l
e
 
r
o
o
f
 
b
e
a
m
s

 
 
 
 
#
 
R
u
n
s
 
f
o
r
 
a
l
l
 
c
o
l
u
m
n
 
r
o
w
s
 
e
x
e
p
t
 
t
h
e
 
l
a
s
t
 
-
 
p
u
t
s
 
a
l
l
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
s
 
o
n
 
r
o
o
f
 
e
x
e
p
t
 
e
l
e
m
e
n
t
 
n
u
m
b
e
r
 
0
 
a
n
d
 
n
F
E

f
o
r
 
{
s
e
t
 
n
C
o
l
R
o
w
 
1
}
 
{
$
n
C
o
l
R
o
w
 
<
 
$
n
X
c
}
 
{
i
n
c
r
 
n
C
o
l
R
o
w
}
 
{

#
 
R
u
n
s
 
f
o
r
 
a
l
l
 
f
i
n
i
t
e
 
e
l
e
m
e
n
t
s
 
e
x
c
e
p
t
 
l
a
s
t

f
o
r
 
{
s
e
t
 
d
e
l
t
a
x
 
1
}
 
{
$
d
e
l
t
a
x
 
<
 
$
n
F
E
-
1
}
 
{
i
n
c
r
 
d
e
l
t
a
x
}
 
{

#
 
 
 
e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
$
e
l
e
T
a
g

$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x
 
 
$
n
S
t
o
r
y
$
n
C
o
l
R
o
w
[
e
x
p
r
 
$
d
e
l
t
a
x
+
1
]
 

$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
3
0
x
5
0
 
 
 
 
1

e
l
e
m
e
n
t
 
d
i
s
p
B
e
a
m
C
o
l
u
m
n
 
1
$
n
Z
c
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x

1
$
n
Z
c
$
n
C
o
l
R
o
w
$
d
e
l
t
a
x
 
 
 
 
1
$
n
Z
c
$
n
C
o
l
R
o
w
[
e
x
p
r
 
$
d
e
l
t
a
x
+
1
]

$
n
u
m
I
n
t
g
r
P
t
s
 
$
s
e
c
T
b
2
6
x
4
5
 
 
 
 
1
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