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Abstract

In this work, electron transport through layered semiconductor heterostruc-
ture devices in the nanometer dimension are simulated. Because these de-
vices have shrunk in the last decades, it is no longer sufficient to utilize only
semiclassical transport theory. This is because it neglects quantum mechan-
ical effects such as tunneling, interference and confinement. Thus, the need
for a fully quantum mechanical corrected theory arises. The application
for these devices range range within the fields of nanoelectronics, optoelec-
tronics and flexible or stretchable electronic devices. Both of the methods
are compared; the semiclassical theory uses a Schrödinger-Poisson solver,
and the fully quantum mechanical theory uses a nonequilibrium Green’s
function method. Both methods are studied in one dimension for electron
transport, in the singleband approximation. Since there are spatial charges
throughout the device, these will affect the shape of the electric potential
profile. So, the Schrödinger-Poisson solver first calculates the quantum
mechanical states from the Schrödinger equation, with an initial ansatz for
the potential profile. Then, the states that are obtained are substituted into
the Poisson equation, which takes into account spatial charges and calcu-
lates a new potential profile. The profile is substituted into the Schrödinger
equation again, and the process is iteratively repeated. The problem is that
one must make an assumption for the electron density involved in the Pois-
son equation, which does not take into account inelastic scattering effects
of the electrons. In the nonequilibrium Green’s function case, the same
ansatz for the potential profile is used. Once the Green’s functions have
been calculated, the electron density may be obtained and substituted into
the Poisson equation for calculations of a new profile. The resulting profile
obtained is substituted into the Green’s function equations, and the process
is iteratively repeated. The result is that the less accurate but more rapid
semiclassical approach is traded off for a much slower but simultaneously
more accurate fully quantum mechanical theory.

i



Preface

This report was submitted in the academic semester in the summer of 2018
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Chapter 1
Introduction

1.1 Background
In the middle of the 20th century, semiconductors were at the frontier
of new technological developments within the field of solid state physics
(Shockley, 1950). Semiconductor devices operate on the basis of control-
ling flow of electrons and holes through the device. These particles were
treated in the semiclassical regime with an effective mass, which at that
time was adequate. The semiclassical transport theory is based on quan-
tum mechanical principles, but quantum effects such as tunneling, interfer-
ence and confinement are neglected. Properties such as effective mass and
bandgaps could be looked up easily for these semiconductors. However,
more recently in the 21st century, the semiconductor devices have shrunk
to the nanoscale regime. Consequently, these devices can be engineered
so that desired properties emerge. In order to describe these devices, it
is necessary to think about charge carriers as quantum mechanical prop-
erties rather than as semiclassical particles (M. P. Anantram and Nikonov,
2008). The applications for these semiconductor devices are plenty, from
nanoelectronics and optoelectronics to flexible devices. From devices such
as quantum cascade lasers (QCL) (J. Faist and Cho, 1994) and detectors
(QCD) (D. Hofstetter and Köhler, 2010), to thermoelectric devices and
biomedical ablation (Hashimura et al., 2014), (Ming-Yang Li and Li, 2008).
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1.2 Motivation and structure of the report

1.2 Motivation and structure of the report
The purpose of this present work is to show preliminary results for the semi-
classical Schrödinger-Poisson (SP) method, and compare this with the fully
quantum mechanical nonequilibrium Green’s function approach (NEGF).
The SP method is efficient and fast, but this is traded off with a lot slower
and more accurate results in the NEGF approach. The slow computational
time for NEGF still remains a challenge today, and the author is motivated
to improve on this issue. Here, only electrons are treated within the single-
band band one dimensional approximation.

There exists numerous techniques in order to simulate the layered semi-
conductor device. Some are based on empirical approaches, which means
that experimental data such as transition rates between relevant energy lev-
els are used as input. Others are self-consistent, which means that they only
rely on well known material properties such as effective mass. But they do
not rely on experimental values for transition rates.

Semiclassical Quantum transport
Empirical

Rate equations 1D density matrix
Maxwell-Bloch

Self-consistent
Rate equations 1D/3D density matrix
Monte Carlo NEGF

Table 1.1: Carrier transport techniques for layered semiconductor structure simu-
lations.

The rate equations are based upon the transition rates between energy
levels, which are either empirically documented or self-consistently solved.
The Maxwell-Bloch equations are generalizations of the rate equations,
however optical fields are modeled using density matrices instead of scatter-
ing rates. Similarly, in quantum mechanics the density matrix is also used
as generalization of the rate equations, but it includes quantum effects such
as tunneling and dephasing. These methods will not be discussed further in
this work.

In this work the Finite Difference Method (FDM) will be used, and
will be covered in section 2.7 and used in section 3.1. The report covers

2



1.2 Motivation and structure of the report

fundamental aspects in semiclassical as well as fully quantum mechani-
cal transport theory in chapter 2. Further on in chapter 3, the numerical
implementation of the SP and NEGF methods will be discussed in detail.
Results of the simulations are given in chapter 4, and the report ends with
concluding remarks and further outlook in chapter 5.
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Chapter 2
Theory

2.1 Preliminaries
This chapter begins by briefly explaining a few concepts which are consid-
ered as the basis for understanding the Schrödinger-Poisson equations and
the NEGF theory handled later on.

2.1.1 Bloch states
Since a crystal has a structure which repeats itself in all directions, the
potential energy will be periodic. The Schrödinger equation for an electron
can be written as [−~2

2m
∇2 + U(r)

]
ψ(r) = Eψ(r), (2.1)

where the potential U(r) has the periodicity

U(r) = U(r +R). (2.2)

Here, R is a direct lattice vector. The general solution of this equation is
given by

ψk(r) = eik·ruk(r), (2.3)

where the function uk(r) = uk(r + R). It immediately follows that the
probability distribution is the same for every repetition of the lattice

∣∣ψ(r+
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2.1 Preliminaries

R)
∣∣2 =

∣∣ψ(r)
∣∣2.

2.1.2 k · p method
This is a method used to calculate effective mass for particles moving in a
crystal. Because of the potential of the crystal, the particles behave as if
they have a different mass than they would have in vacuum (Singh, 2003,
p. 74). The approximation only holds for k values close to the conduction
band edge (Singh, 2003, p. 76).

The function un,k0(r) of the Bloch state from Equation 2.3 in energy
level n will in perturbation theory satisfy the Schrödinger equation

Hkun,k0(r) = En,k0un,k0(r), (2.4)

where the Hamiltonian H = H0 +H ′ with H ′ as the perturbative term and
setting k0 = 0. In k · p theory, the perturbative part can be expressed as

H ′ =
~2k2

2m
+

~k · p
m

. (2.5)

The known part is given by Equation 2.1. In the conduction band, the
eigenenergy can be approximated as

Ec(k) ≈ Ec,k0 +
~2k2

2m
+

~2

Egm2

∑
n

∣∣〈uc,k0

∣∣k · p∣∣uc,k0

〉∣∣2, (2.6)

where Eg is the band gap energy between the minimum of the conduction
and the maximum of the valence band.

The energy will take parabolic forms such as a spherical form, ellip-
soidal or warped (Jacoboni, 2010, p. 118). The different types of effective
masses can be obtained by taking the derivative of the energy Ec with re-
spect to k.

2.1.3 Quantum mechanical formulations
There are three main quantum mechanical formulations a system may be
described by, and all of them are equivalent (Shafer, 2009). They are named
the Schrödinger, Heisenberg and interaction pictures, with the respective
subscripts S,H and I It should be understood that the Hamiltonian is here
in the Schrödinger picture. The three pictures are described below.

5



2.1 Preliminaries

Schrödinger picture

In this picture, the states are time-dependent, but the observables are con-
stant. This gives the relations∣∣ψS(t)

〉
= U(t, t0)

∣∣ψS(t0)
〉
, (2.7)

where U(t, t0) is the time evolution operator, and has the interpretation that
it evolves a state from time t0 to t.

Heisenberg picture

Here the states are constant, instead the observables propagate in time. Sup-
pose that the Hamiltonian is time-independent, then the time evolution op-
erator can be written as

U(t, t0) = e−iH(t−t0)/~. (2.8)

Then, the expectation value for an operator, AS for the state
∣∣ψH(t0)

〉
be-

comes 〈
AS
〉
t

=
〈
ψH(t00)

∣∣AH(t)
∣∣ψH(t0)

〉
, (2.9)

where AH(t) ≡ eiH(t−t0)/~ASe−iH(t−t0)/~.

Interaction picture

For systems which experience a perturbation, the Hamiltonian is usually
split into one part of which the solution of the Schrödinger equation is
known (H0) and one perturbative (HI) term

H = H0 +HI . (2.10)

The states are defined as∣∣ψI(t)〉 ≡ eiH0t/~
∣∣ψS(t)

〉
. (2.11)

The operators are time-dependent, and are defined as

AI(t) = eiH0t/~ASe−iH0t/~. (2.12)

This last picture is the one which will be used later on.
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2.2 Scattering

2.1.4 Time ordering operator
For two time dependent operators, A(t) and B(t′) at different times t 6= t′

the time ordering operator, T acting on the product of these two is defined
such that

T [A(t)B(t′)] =

{
A(t)B(t′) if t > t′

B(t′)A(t) if t′ > t
(2.13)

An equivalent formulation is one using the unit step function, θ(t)

T [A(t)B(t′)] = A(t)B(t′)θ(t− t′)±B(t′)A(t)θ(t′ − t), (2.14)

with + for Bosons and − for Fermions.

2.2 Scattering
There exists numerous scattering processes, and these must be taken into
account for the electrons traveling in the system. The processes of most
importance are lattice vibrations or phonons, electron interaction with im-
purities such as ionized donors, interface roughness, alloy disorders, and
electron interactions among themselves (Franckié, 2016, p. 24). The de-
tails of these processes will be discussed in this section.

2.2.1 Phonons
In this process, it is assumed that the lattice is not deformed, but rather
displaced. This can be described by a displacement field y(r, t) so that the
perturbed Hamiltonian becomes (Jacoboni, 2010, p. 132)

H ′ =
∑
ij

Eij
∂yi
∂yj

, (2.15)

whereEij is a deformation-potential tensor constant. In the case of acoustic
phonons, the deformation constant is a third rank tensor constant. The most
general expression for small vibrations of a chain in three dimensions is

7



2.2 Scattering

yj(r, t) =
∑
q,l

eq,l

{
ξq,lei(q·rj−ωl(q))t + ξ∗q,le

−i(q·rj−ωl(q))t
}
, (2.16)

where eq,l is the polarization vector for a given wavevector q and mode l,
and ξq,l is the amplitude of the displacement. By using normal coordinates
and expressing the displacement field in second quantization, one obtains

yj(r, t) =
∑
q,l

eq,l

(
~

2ρV ωl(q)

)1/2{
aq,l + a†−q,l

}
eiq·r. (2.17)

Thus the perturbed Hamiltonian becomes

H ′ =
∑
ij

Eij
∑
q,l

[eq,l]iiqj

(
~

2ρV ωl(q)

)1/2{
aq,l + a†−q,l

}
eiq·r. (2.18)

2.2.2 Impurities
These are either charged or neutral particles, and respectively interact with
electrons in a long or short range. Neutral impurities will not be discussed
here, as it assumes slowly moving electrons.

The charged impurities can be treated by Coulomb interactions, and
usually the Brooks Herring approach (Jacoboni, 2010, p. 153) is used by
introducing a screening effect

V (r) =
Ze(−e)

4πεr
e−q0r. (2.19)

Here, Z is the atom number for the impurity, r is the distance between the
electron and the impurity, ε is the dielectric constant and q0 is the inverse
screening length.

2.2.3 Alloy scattering
The layered device consists of a mixture or alloy of different materials. Be-
cause of this, there will be a perturbation which allows transitions between
Bloch states.
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2.2 Scattering

Suppose the material consists of an alloy with a fraction x of material
A, and a corresponding fraction (1 − x) of material B. Then, a virtual
potential arises which can be written as (Jacoboni, 2010, p. 158)

Vv = xVA + (1− x)VB, (2.20)

where VA and VB are the respective potentials because of atom A and B,
and Vv is the resulting virtual potential.

Because of inconsistencies in the material, a site which for instance
should be occupied by atom A may instead be occupied by atom B, and
vice versa. This is what causes perturbation and thus scattering. The prob-
ability of finding the ”wrong atom” is then given by the probability that
atom A is supposed to be in that site multiplied by the probability that atom
B is actually located there. The opposite case is added to this effect. The
resulting probability density can then be written as

n = 2
1

Vc
x(1− x), (2.21)

where Vc is the volume of the unit cell of the crystal.

2.2.4 Electron-electron interactions
It is necessary to have knowledge about the distribution of the electrons
in the material in order to include electron-electron interaction. This is
because Coulomb interaction must be included, as well as the probability
that an electron with momentum k will interact with another electron with
momentum k′.

2.2.5 Interface roughness scattering
When two materials are put together, the interface between them will never
be perfectly smooth. This roughness can be described as a potential for the
electrons. This potential will depend upon a small deviation probability,
here called η(r) with spatial dependence. The deviation describes how
much the interface between the two materials deviate from a straight line,
as they are supposed to be completely flat.

The interface roughness potential is averaged over the deviations, which
leads to evaluation of the correlation function

〈
η(r)η(0)

〉
. One may choose

9



2.3 Resonant tunneling diodes

a Gaussian or an exponential distribution (Franckié, 2016, p. 26). For
instance, the Gaussian is given by

〈
η(r)η(0)

〉
= ∆2 exp

(
−
∣∣r∣∣2
Λ2

)
, (2.22)

where ∆ is an average depth or height of a roughness, and Λ the length.

2.3 Resonant tunneling diodes
This type of diode is structured with one layer of high-mobility semicon-
ductor material such as GaAs, and a layer of another high-moobility semi-
conductor material with higher potential energy in comparison with GaAs
such as AlGaAs (Jacoboni, 2010, p. 427). A multiple quantum well/barrier
structure can be formed with this method of alternating the material of each
layer.

Emitter Collector

(a) No applied bias.

Emitter
Collector

(b) Applied voltage bias V > 0.

Figure 2.1: A simple resonant tunneling diode consisting here of two resonant
energies E0 and E1 with electrons filled up to the Fermi energy, EF in both the
emitter and collector regions in Figure 2.1a. When a voltage is applied, the Fermi
energy aligns with the resonant energy E0 which allows for quantum tunneling
through the RTD.

When a bias is applied to the resonant tunneling diode (RTD), the potential
profile will linearly decrease as shown in Figure 2.1b. Note that the con-
duction profile of the RTD will lay below the Fermi energy of the electrons,
otherwise no electrons could occupy those areas. Electrons accumulate in
the emitter region, tunnel through and fill up the Fermi energy in the col-
lector region. However, because of the applied bias these electrons will be
depleted, and new electrons are emitted again in the left reservoir. As the
applied bias is increased even more, the resonant states will misalign with
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2.4 Many-particle systems

the Fermi level. This means that the current will decrease, until it aligns
with the next resonant energy level in the RTD where it increases again. So
one expects to find current peaks for increased biases.

2.4 Many-particle systems
Going from a single particle to multiple or many-particle systems, the eigen-
states have to be revised so they include all particles in every possible state.

2.4.1 Field operators
For a state with multiple particles, the annihilation operator for particle k
for Bosons acting on the state gives

ak
∣∣n1, n2, ..., nk, ...

〉
=
√
nk
∣∣n1, n2, ..., nk − 1, ...

〉
, (2.23)

while the creation operator gives

a†k
∣∣n1, n2, ..., nk, ...

〉
=
√
nk + 1

∣∣n1, n2, ..., nk + 1, ...
〉
. (2.24)

Because of the antisymmetric properties of Fermion states, only one Fermion
can occupy a given state. This condition gives the following result for the
annihilation operator acting on a state

bk
∣∣n1, n2, ..., nk, ...

〉
=

{
(−1)Sk

∣∣n1, n2, ..., nk − 1, ...
〉

if nk = 1

0 if nk = 0
(2.25)

where Sk = n1 + n2 + ... + nk−1 is the number of states before reaching
state k, and takes into account the antisymmetry property of Fermion states.
Similarily for the creation operator

b†k
∣∣n1, n2, ..., nk, ...

〉
=

{
(−1)Sk

∣∣n1, n2, ..., nk + 1, ...
〉

if nk = 0

0 if nk = 1
(2.26)
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2.4 Many-particle systems

The general commutation relations for the operators can be summed up as

[ck, c
†
k′ ]∓ = δkk′ [ck, ck′ ]∓ = [c†k, c

†
k′ ]∓ = 0, (2.27)

where c is either a bosonic or fermionic annihilation operator, and the upper
and lower sign respectively accounts for the bosonic and fermionic cases.

Given a complete set of single-particle states ψ(r), field operators may
be defined as

Ψ(r) =
∑
k

ψk(r)ck, Ψ† =
∑
k

ψ∗k(r)c†k, (2.28)

with properties following from 2.27 and the spatial normalization of ψ(r)

[Ψ(r),Ψ†(r′)]∓ = δ(r − r′) [Ψ(r),Ψ(r′)]∓ = [Ψ†,Ψ†]∓ = 0. (2.29)

The field operators may also be time-dependent, in which case the time
evolution in the Heisenberg picture may be embedded into c as the states
are constant in time,

Ψ(r, t) =
∑
k

ψk(r)ck(t), Ψ† =
∑
k

ψ∗k(r)c†k(t). (2.30)

2.4.2 Second quantization of operators
For a single-particle operator A, in its position representation it can be ex-
pressed as

A =
∑
i

a(ri) (2.31)

in its second quantization it can be expressed as (Jacoboni, 2010, p. 448)

A =
∑
kk′

c†kakk′ck′ (2.32)

where akk′ =
〈
k
∣∣A∣∣k′〉 for a single-particle state

∣∣k〉. Expressed by the
field operators, this becomes

A =

∫ ∫
Ψ†(r)A(r, r′)Ψ(r′)drdr′. (2.33)
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2.4 Many-particle systems

In the same way, two-particle operators such as a potential in its position
representation can be expressed as

V =
1

2

∑
i 6=j

v(ri, rj), (2.34)

where v(ri, rj) is a two-body spatial potential. In second quantization, it
becomes

V =
1

2

∑
k,k′,k′′,k′′′

c†kc
†
k′

〈
k, k′

∣∣v∣∣k′′, k′′′〉ck′′′ck′′ . (2.35)

Expressed by the field operators this becomes

V =
1

2

∫ ∫
Ψ†(r)Ψ†(r′)vΨ(r)Ψ(r′)drdr′. (2.36)

2.4.3 Wick-Matsubara theorem
When treating Green’s functions (GF), it will be necessary to evaluate ex-
pressions such as〈

Ψ†(r1, t1)Ψ(r2, t2)Ψ†(r3, t3)Ψ(r4, t4)
〉
. (2.37)

In this case, the expression is evaluated in the interaction picture on a sta-
tistical ensemble at equilibrium〈

A(ta)B(tb)...
〉

=
1

Z
Tr
{

e−βH0A(ta)B(tb)...
}
. (2.38)

Here, A(ta)B(tb)... are operators, Z is the partitioning function for the en-
semble, H0 is the unperturbed Hamiltonian and β = 1/(kBT ) where kB
is Boltzmann’s constant and T is the temperature. Substitute the time-
dependent expressions for the states to obtain

〈
Ψ†(r1, t1)Ψ(r2, t2)Ψ†(r3, t3)Ψ(r4, t4)

〉
=
∑
λµνγ

eiωλ(t1−t0)eiωµ(t2−t0)eiων(t3−t0)eiωγ(t4−t0)

×ψ∗λ(r1)ψµ(r2)ψ∗ν(r3)ψγ(r4)
〈
c†λcµc

†
νcγ
〉
.

(2.39)
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2.4 Many-particle systems

The goal is to express
〈
c†λcµc

†
νcγ
〉

in pairs of each other, which will lead to
simpler expressions for the expansion of the GFs.

Start by using the relations in 2.27 which eventually gives

c†λcµc
†
νcγ

=
[
c†λ, cµ

]
∓c
†
νcγ ± cµ

[
c†λ, c

†
ν

]
∓cγ + cµc

†
ν

[
c†λ, cγ

]
∓ ± cµc

†
νcγc

†
λ. (2.40)

The average of the last term will be

〈
cµc
†
νcγc

†
λ

〉
=

1

Z
Tr
{

e−βH0cµc
†
νcγc

†
λ

}
=

1

Z
Tr
{
c†λe−βH0cµc

†
νcγ
}
, (2.41)

which holds because the trace is cyclic.
Consider the following differential equation

d
dβ

{
e−βH0c†λeβH0

}
= e−βH0

[
c†λ, H0

]
eβH0 . (2.42)

From 2.32, the unperturbed Hamiltonian in second quantization formalism
may be written

H0 =
∑
σ

c†σcσ~ωσ, (2.43)

where ~ωσ is the eigenenergy. The commutator is then[
c†λ, H0

]
= −c†λ~ωλ. (2.44)

So 2.42 can be writtens as

d
dβ

{
e−βH0c†λeβH0

}
= −

{
e−βH0c†λeβH0

}
~ωλ. (2.45)

Solving the integral in the limits β → 0 to β gives{
e−βH0c†λeβH0

}
= c†λe−β~ωλ , (2.46)

or

e−βH0c†λ = c†λe−β~ωλ−βH0 . (2.47)

Then at last, 2.41 can be written as
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2.4 Many-particle systems

〈
cµc
†
νcγc

†
λ

〉
= eβ~ωλ

1

Z
Tr
{

e−βH0c†λcµc
†
νcγ
}

= eβ~ωλ
〈
c†λcµc

†
νcγ
〉
. (2.48)

This result can finally be substituted into 2.40, which gives

〈
cµc
†
νcγc

†
λ

〉
=

1

1∓ eβ~ωλ

([
c†λ, cµ

]
∓

〈
c†νcγ

〉
±
[
c†λ, c

†
ν

]
∓

〈
cµcγ

〉
+
〈
cµc
†
ν

〉[
c†λ, cγ

]
∓

) (2.49)

where it should be noted that the commutators are numbers. The same
process can be repeated for the averaged operators inside the brackets, and
will yield results such as〈

cµcγ
〉

=
1

1∓ e−β~ωµ
[
cµ, cγ

]
∓, (2.50)

and 〈
c†νcγ

〉
=

1

1∓ eβ~ων
[
c†ν , cγ

]
∓. (2.51)

In the end, the final expression will be

〈
cµc
†
νcγc

†
λ

〉
=
〈
c†λcµ

〉〈
c†νcγ

〉
±
〈
c†λc
†
ν

〉〈
cµcγ

〉
+
〈
c†λcγ

〉〈
cµc
†
ν

〉
. (2.52)

Insert this into 2.37, and obtain

〈
Ψ†(r1, t1)Ψ(r2, t2)Ψ†(r3, t3)Ψ(r4, t4)

〉
=
〈
Ψ†(r1, t1)Ψ(r2, t2)

〉〈
Ψ†(r3, t3)Ψ(r4, t4)

〉
±
〈
Ψ†(r1, t1)Ψ†(r3, t3)

〉〈
Ψ(r2, t2)Ψ(r4, t4)

〉
+
〈
Ψ†(r1, t1)Ψ(r4, t4)

〉〈
Ψ(r2, t2)Ψ†(r3, t3)

〉
.

(2.53)

This result can be generalized to give the Wick-Matsubara theorem for
N operators in a statistical equilibrium ensemble denoted by zero〈

T
[
A(ta)B(tb)...N(tn)

]〉
0

= ±
〈
T
[
AB
]〉

0

〈
T
[
CD

]〉
0

±
〈
T
[
AC
]〉

0

〈
T
[
BD

]〉
0
± ...,

(2.54)

for each pair of operators where the plus sign is for the case of bosons and
minus for fermions.
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2.5 Schrödinger-Poisson solver

2.5 Schrödinger-Poisson solver
Determining quantized states in a layered structure is crucial in order to
develop and model semiconductor devices such as a QCL or a QCD. For
instance, the wavelength of the QCL is determined by the upper and lower
lower lasing levels. In QCDs, the levels are used to detect radiation. In
order to find these states, the stationary Schrödinger equation is first solved.
Then, to account for space charge effects, the Poisson equation is solved to
yield a new potential. This effect is then substituted into the Schrödinger
equation again, and the process is repeated until convergence is reached.

2.5.1 Schrödinger equation
Because the heterostructure is grown by alternating each layer, the conduc-
tion band will form quantum wells and barriers. Since the transport theory
is treated in one dimension, the growth direction of the crystal will be de-
noted by the coordinate z. The Schrödinger equation is in this case given
by (Jirauschek and Kubis, 2014, p. 011307 - 6)[

~2

2
∂z

1

m∗(z)
∂z + V (z)− E

]
ψ(z) = 0, (2.55)

where m∗(z) is the effective mass in the growth direction, V (z) is the po-
tential, and ψ(z) is the wavefunction in the single-band approximation with
eigenenergy, E.

2.5.2 Poisson equation
For the layered structure in this work, the Poisson equation is given by
(Jirauschek, 2009, p. 1065)

∂z
[
ε(z)∂zṼ (z)

]
= −ρ(z), (2.56)

where ε(z) is the electric permittivity, Ṽ (z) is the resulting potential due to
space charges because of the charge distribution in the device, and ρ(z) is
here given by

ρ(z) = e

[
ND(z)−

∑
i

∫ z0+L

z0

ni(z)

]
, (2.57)
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2.5 Schrödinger-Poisson solver

where ND(z) is the density due to positively charged donors, and ni(z) is
the electron density in energy level i which is integrated over one period L
of the structure. The latter effect is summed over all energy levels. Note
that since only the conduction band is treated, only electrons are included
and not holes. The potential which describes the conduction band with an
applied bias is given by

V0(z) = Vc − Ebz/L, (2.58)

where Vc is the unbiased conduction band profile, and Eb is the applied
voltage bias. The total potential for the entire structure is then V (z) =

V0(z) + Ṽ (z). In this particular case, to avoid large computational times
one may choose the Fermi-Dirac distribution (Cassan, 2000), (H. Li and
Liu, 2008) for the electron density

ni(z) =
m∗(z)

π~2
kBT

∣∣ψi(z)
∣∣2ln

(
1 + exp

[
(µ− Ẽi)
kBT

])
. (2.59)

Here, kB is the Boltzmann constant, µ is the chemical potential, and Ẽi =

En − Eb
∫
z
∣∣ψ(z)

∣∣2/Ldz which takes into account the applied bias.
In order to find the chemical potential, one may assume it to be constant

throughout the device. But one may also use the charge neutrality condition
over one period of the structure

∑
i

∫ z0+L

z0

ni(z)dz =

∫ z0+L

z0

ND(z)dz (2.60)

The chemical potential can then be found by finding an upper limit∑
i

∫ z0+L

z0

ni(z)dz <
∫ z0+L

z0

n(z)dz (2.61)

for µ, and then a lower limit

∑
i

∫ z0+L

z0

ni(z)dz >
∫ z0+L

z0

n(z)dz (2.62)

The chemical potential is then found from this by for instance using the
bisection method (Jirauschek and Kubis, 2014, p. 011307 - 10).
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2.6 Nonequilibrium Green’s function solver

2.6 Nonequilibrium Green’s function solver
There is a need for a fully quantum mechanical theory when the device
structures are of the nanometer scale. Effects such as quantum interference,
coherent tunneling and confinement must be appropriately accounted for.
Additionally in the mesoscopic regime, scattering events cannot be seen
as an electron changing its velocity along its path. Instead, the transport
theory must be treated with many-body techniques, which in this work is
handled by GF.

2.6.1 Green’s functions
The GF has the interpretation that it transfers the effect of a source in a
space-time point (r′, t′) to a point (r, t). In this subsection, the various
GFs will be derived, and in section 3 they will finally be applied to transport
theory in the NEGF approach.

Schrödinger equation

Consider the time-dependent Schrödinger equation

i~
∂

∂t
Ψ(r, t)−HΨ(r, t) = 0. (2.63)

Suppose that there is a flash source in r at time ti, then 2.63 becomes

i~
∂

∂t
Ψ(r, t)−HΨ(r, t) = si(r)δ(t− ti), (2.64)

where si(r) represents the source term. Integration over t gives the discon-
tinuity equation for Ψ(r, t)

i~
[
Ψ(r, ti+)−Ψ(r, ti−)

]
= si(r), (2.65)

and the solution for t > ti is given by (Jacoboni, 2010, p. 455)

Ψ(r, t > ti) = i~
∫
gr(r, t, r′, t′)Ψ(r′, ti)δ(t

′ − ti)dt′dr′, (2.66)

where gr(r, t, r′, t′) is the retarded GF and satisfies
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2.6 Nonequilibrium Green’s function solver

(
i~
∂

∂t
−H

)
gr(r, t, r′, t′) = δ(r − r′)δ(t− t′). (2.67)

After integrating 2.66 with respect to time, one obtains

Ψ(r, t > ti) = i~
∫
gr(r, t, r′, ti)Ψ(r′, ti)dr′. (2.68)

If one compares this with Equation 2.7, which has the solution

Ψ(r, t) =

∫
U(r, t, r′, t0)Ψ(r′, t0)dr′, (2.69)

it is obvious that the GF has the same interpretation as the time-evolution
operator. The general relation between the two is

gr(r, t, r′, t′) =
1

i~
U(r, t, r′, t′)θ(t− t′), (2.70)

and

ga(r, t, r′, t′) = − 1

i~
U(r, t, r′, t′)θ(t′ − t) (2.71)

for the advanced GF.

Second quantization Green’s functions

In second quantization for a single particle state, the time-evolution opera-
tor can be written as

U(r, t, r′, t′) =
〈
r
∣∣U(t, t′)

∣∣r′〉. (2.72)

The state
∣∣r〉 can be obtained by applying the creation field to the vacuum

state, so that
∣∣r〉 = Ψ†(r)

∣∣0〉. In the Heisenberg picture with time reference
at t0, the operator becomes

〈
0
∣∣Ψ(r)U(t, t′)Ψ†(r′)

∣∣0〉 =〈
0
∣∣U(t, t0)Ψ(r, t)U †(t, t0)U(t, t′)U(t′, t0)Ψ†(r′, t′)U †(t′, t0)

∣∣0〉, (2.73)

where it was used that U(t′, t0)U †(t′, t0) = 1. The three time evolution
operators in the middle of 2.73 become 1, and the other two yield the unit
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2.6 Nonequilibrium Green’s function solver

step function. Thus, for a single particle in the vacuum state, the GFs can
be written as

gr(r, t, r′, t′) =
1

i~
〈
0
∣∣Ψ(r, t)Ψ†(r′, t′)

∣∣0〉θ(t− t′) (2.74)

ga(r, t, r′, t′) = − 1

i~
〈
0
∣∣Ψ(r, t)Ψ†(r′, t′)

∣∣0〉θ(t′ − t) (2.75)

Similarily, one may look at an arbitrary state by exchanging the vacuum
state with a wavefunction, Φ in the following way〈

ΦH

∣∣Ψ†(r, t)Ψ(r′, t′)
∣∣ΦH

〉
, (2.76)

where the subscript H denotes the Heisenberg picture.
The relation between the Heisenberg and the Schrödinger state is given

by

∣∣ΦH

〉
= U−1(t, t0)

∣∣ΦS(t)
〉

= U−1(t, t0)

∫ ∣∣r〉dr〈r∣∣ΦS(t)
〉
, (2.77)

by using the completeness of the states
∣∣r〉. The time evolution of the

vacuum state will still be the vacuum state, so

U(t, t0)
∣∣0〉 =

∣∣0〉. (2.78)

From this equation, the state becomes∣∣ΦH

〉
=

∫
drΦS(r, t)Ψ†(r, t)

∣∣0〉. (2.79)

Equation 2.76 can now be written as

∫
dρ′Φ∗S(ρ′, t′)

×
∫

dρΦS(ρ, t)
〈
0
∣∣Ψ(ρ′, t′)Ψ†(r′, t′)Ψ(r, t)Ψ†(ρ, t)

∣∣0〉. (2.80)

By using the relations in 2.29, and the fact that the annihilation operators
give 0 when applied to the vacuum state, 2.80 can be written as
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2.6 Nonequilibrium Green’s function solver

〈
ΦH

∣∣Ψ†(r, t)Ψ(r′, t′)
∣∣ΦH

〉
=

∫
dρ′Φ∗S(ρ′, t′)

×
∫

dρΦS(ρ, t)
〈
0
∣∣δ(r′ − ρ′)δ(r − ρ)

∣∣0〉. (2.81)

Integration over ρ and r yields〈
ΦH

∣∣Ψ†(r, t)Ψ(r′, t′)
∣∣ΦH

〉
= ΦS(r, t)Φ∗S(r′, t′). (2.82)

The resulting Equation 2.82 shows that when t → t′ and r′ → r, the
field operators acting on the state gives the probability density n(r) =∣∣Φ(r, t)

∣∣2. So instead of obtaining a propagator one can define the GFs
by, one rather obtains information about the system. If instead the reverse
product Ψ(r)Ψ†(r′) is applied to the ΦH states, the result will be〈

ΦH

∣∣Ψ(r, t)Ψ†(r′, t′)
∣∣ΦH

〉
= δ(r − r′)± n(r), (2.83)

in the limits r′ → r and t′ → t. With this in mind, the GFs can instead be
defined as

Gr(r, t, r′, t′) =
1

i~
〈
ΦH

∣∣[Ψ(r, t),Ψ†(r′, t′)
]
∓

∣∣ΦH

〉
θ(t− t′) (2.84)

Ga(r, t, r′, t′) = − 1

i~
〈
ΦH

∣∣[Ψ(r, t),Ψ†(r′, t′)
]
∓

∣∣ΦH

〉
θ(t′ − t) (2.85)

Capital letters are used for these GFs as they are the central ones which will
be used in the application to quantum cascade lasers.

For many-particle systems, the state
∣∣ΦH

〉
must be replaced by an av-

erage over the entire ensebmle. The advanced GF is simply the complex
conjugate of the retarded. Additionally, two other GFs are defined

Gn(r, t, r′, t′) =
1

i~
〈
Ψ(r, t)Ψ†(r′, t′)

〉
(2.86)

Gp(r, t, r′, t′) = ± 1

i~
〈
Ψ(r′, t′)Ψ†(r, t)

〉
(2.87)

where Gn is called the electron GF, and Gp the hole correlation GF. Given
these expressions, it is easy to realize that from the discussion above the
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2.6 Nonequilibrium Green’s function solver

interpretation of these GFs is that they are correlation functions. Gn gives
the correlation of the amplitude between a particle in (r, t) and (r′, t′), and
−Gp gives the correlation of available states to generate particles in (r′, t′)
and (r, t).

Other GFs that will be used are the time ordered GFs, defined in the
following way

Gt(r, t, r′, t′) =
1

i~
〈
TΨ(r, t)Ψ†(r′, t′)

〉
= θ(t− t′)Gn + θ(t′ − t)Gp,

(2.88)

and the anti-time ordered GF

Gt̄(r, t, r′, t′) = θ(t′ − t)Gn + θ(t− t′)Gp. (2.89)

From the definitions given for the various GFs, the following relations im-
mediately follow

Gr = Gt −Gn = Gp −Gt̄ (2.90)
Ga = Gt −Gn = Gp −Gt̄. (2.91)

2.6.2 Perturbation expansion of Green’s functions
For a system with an interaction, the GFs may be expressed in terms of
Feynman diagrams. In this work, the interaction picture is chosen because
it is assumed that at a point in time or space perturbation is present.

Interaction picture

Using 2.11, and time evolving the Schrödinger state one obtains

∣∣Φ(t)
〉
I

= U †0(t, t0)
∣∣Φ(t)

〉
S

= U †0(t, t0)U(t, t′)
∣∣Φ(t′)

〉
S

=

U †0(t, t0)U(t, t′)U0(t′, t0)
∣∣Φ(t′)

〉
I
, (2.92)

keeping in mind that the subscript 0 denotes the use of the unperturbed
Hamiltonian H0. The operator, U(t, t′) evolves the Schrödinger state for
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the full Hamiltonian,H . Thus, the time evolution operator in the interaction
picture is

UI(t, t
′) = U †0(t, t0)U(t, t′)U0(t′, t0) (2.93)

Taking the time derivative gives the equation of motion for the time operator

i~
d
dt
UI(t, t

′) =
(
i~

d
dt
U †0(t, t0)

)
U(t, t′)U0(t′, t0)

+U †0(t, t0)
(
i~
d

dt
U(t, t′)

)
U0(t, t0),

(2.94)

where the last term is zero because U0(t′, t0) is independent of t. Further-
more, this becomes

i~
d
dt
UI(t, t

′) = U †0(t, t0)(−H0 +H)U(t, t′)U0(t′, t0). (2.95)

Since H = H0 +H ′ the final expression is

i~
d
dt
UI(t, t

′) = H ′IUI(t, t
′), (2.96)

with H ′I(t) ≡ U †0(t, t0)H ′U0(t′, t0). Integration with respect to time t gives

UI(t, t
′) = 1 +

1

i~

∫ t

t′
H ′I(t

′′)UI(t
′′, t′)dt′′. (2.97)

Since H ′I is time-dependent, it is rarely the case that this equation may be
solved exactly. Usually, for small perturbations one may instead substitute
UI(t, t

′) into itself through 2.97 up to the desired order. To second order,
the operator becomes

UI(t, t
′) = 1 +

1

i~

∫ t

t′
H ′I(t

′′)dt′′

+
1

(i~)2

∫ t

t′

∫ t′′

t′
H ′I(t

′′)H ′I(t
′′′)UI(t

′′′, t′)dt′′dt′′′. (2.98)

Since this process can be repeated infinitely many times, the resulting ex-
pression on the right hand side will be an exponential function. With this,
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and by ensuring correct time order of the operators, 2.97 can be expressed
as

UI(t, t
′) = T exp

(
1

i~

∫ t

t′
H ′I(τ)dτ

)
, (2.99)

where T is the time ordering operator.

Feynman diagrams

In 2.86 and 2.87 the GFs were defined in the Heisenberg picture. Moving
to the Schrödinger picture and looking at the electron correlation GF for a
state ΦS(t), it can be defined as

Gn(r, t, r′, t′) =
1

i~
〈
ΦS(t)

∣∣Ψ(r)U(t, t′)Ψ†(r′)
∣∣ΦS(t′)

〉
. (2.100)

Using now 2.11 and 2.93, the greater GF in the interaction picture is

Gn(r, t, r′, t′) =
1

i~
〈
ΦI(t)

∣∣ΨI(r, t)UI(t, t
′)Ψ†I(r

′, t′)
∣∣ΦI(t

′)
〉
. (2.101)

Time evolve now the states from time t0

Gn(r, t, r′, t′)

=
1

i~
〈
ΦI(t0)

∣∣U †I (t, t0)ΨI(r, t)UI(t, t
′)Ψ†I(r

′, t′)UI(t
′, t0)

∣∣ΦI(t0)
〉
,

(2.102)

and insert the solution given by 2.99 gives

Gn(r, t, r′, t′) =
1

i~
〈
ΦI(t0)

∣∣T exp

(
1

i~

∫ t0

t

H ′I(τ)dτ

)
ΨI(r, t)

×T exp

(
1

i~

∫ t

t′
H ′I(τ)dτ

)
Ψ†I(r

′, t′)

×T exp

(
1

i~

∫ t′

t0

H ′I(τ)dτ

)∣∣ΦI(t0)
〉
.

(2.103)
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It is now convenient to introduce the contour time ordering operator, Tc, to
simplify the above expression

Gn(r, t, r′, t′)

=
1

i~

〈
Tc

{
exp

(
1

i~

∫
C

H ′I(τ)dτ

)
ΨI(r, t)Ψ

†
I(r
′, t′)

}〉
(2.104)

The contour ordering operator is defined such that the times in the contour
from t0 back to itself must be kept in the correct order. See Figure 2.2 for
details.

 time

Figure 2.2: Contour integration for the case where t > t′ on the forward path, but
t is closer to t0 on the path back on the contour, C.

Without prescription of the location of the two times t and t′ in 2.104, it
becomes the general GF here denoted G. Expanding the exponential factor
to order zero, it will simply be 1 so that the unperturbed GF becomes

G0(r, t, r′, t′) =
1

i~

〈
Tc

{
ΨI(r, t)Ψ

†
I(r
′, t′)

}〉
. (2.105)

The corresponding Feynman diagram is drawn in Figure 2.3.
The first order term is linear in the potential, so

G1(r, t, r′, t′) =
1

i~

〈
Tc

{
1

i~

∫
H ′I(τ)dτΨI(r, t)Ψ

†
I(r
′, t′)

}〉
. (2.106)

For a simple potential, V (r) the interaction Hamiltonian in second quan-
tization can be written as H ′I(t) =

∫
Ψ†I(r, t)V (r)ΨI(r, t). Inserting this

into 2.106 gives
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Figure 2.3: The zeroth order term, G0, simply propagates a particle in point (r′, t′)
to (r, t).

G1(r, t, r′, t′) =
1

(i~)2
×

〈
Tc

{∫ ∫
dr′′Ψ†I(r

′′, τ)

V (r′′)ΨI(r
′′, τ)ΨI(r, t)Ψ

†
I(r
′, t′)

}〉
.

(2.107)

By using the Wick-Matsubara theorem from subsection 2.4.3, the operators
can be split into three terms

V (r′′)
{〈
Tc
{

Ψ†I(r
′′, τ)ΨI(r, t)

}〉〈
Tc
{

ΨI(r
′′, τ)Ψ†I(r

′, t′)
}〉

±
〈
Tc
{

Ψ†I(r
′′, τ)ΨI(r

′′, τ)
}〉〈

Tc
{

ΨI(r, t)Ψ
†
I(r
′, t′)

}〉
+
〈
Tc
{

Ψ†I(r
′′, τ)Ψ†I(r

′, t′)
}〉〈

Tc
{

ΨI(r
′′, τ)ΨI(r, t)

}〉}
, (2.108)

where the factor 1/(i~)2 was neglected for readability. The last term is
zero, as there are two creation and annihilation operators acting on the state.
Thus, 2.108 can be expressed as

V (r′′)
{
G0(r′′, τ, r, t)G0(r′′, τ, r′, t′)

±G0(r′′, τ, r′′, τ)G0(r, t, r′, t′)
} (2.109)
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2.6 Nonequilibrium Green’s function solver

The two resulting Feynman diagrams are shown in Figure 2.4. This process
of substituting the interaction potential may be repeated for all orders, but
the complexity drastically increases. Already for second order, there are six
terms similar to those in 2.109.

Figure 2.4: Diagrams of the first order Green function, G(1). The star denotes
the space-time point of the potential interaction. The diagram to the left is fully
connected, while the diagram to the right is disconnected.

Dyson equation and self-energy

Continuing the expansion of the GF, for each order new disconnected di-
agrams will be obtained. However, all of the disconnected diagrams will
vanish. This is because in the expression for those diagrams, the GF simply
describes a propagation from a point back to itself. This is a loop which
becomes zero, so for instance in 2.109 the last term will disappear. Similar
results happen for higher orders. Thus, since only the connected parts are
left, the GF expansion may be written as

G = G0 +G0V G0 +G0V G0V G0 + ...

= G0 +G0V
[
G0 +G0V G0 + ...

]
.

(2.110)

The term in the brackets is simply the GF itself. Because the GF is equal
to itself, the potential V is called the self-energy and is substituted by the
letter Σ . Collecting G0Σ to the left or ΣG0 to the right results in the two
forms of the Dyson equation
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2.6 Nonequilibrium Green’s function solver

G = G0 +G0ΣG, G = G0 +GΣG0. (2.111)

Solving this gives

G =
1

G−1
0 − Σ

, (2.112)

which gives the interpretation that Σ acts as a correction to the unperturbed
GF because of the interactions considered. This equation holds for all the
different types of GFs. For the retarded GF, 2.112 becomes

Gr =
1

(Gr
0)−1 − Σ r

, (2.113)

note that the self-energy is different in the retarded and advanced case. Re-
call from subsection 2.6.1, the retarded GF at equilibrium is the inverse of
the Schrödinger equation. Thus, the equation for the retarded GF becomes

Gr =
1

i~∂/∂t−H0 − Σ r
, (2.114)

and the advanced is simply the complex conjugate, Ga = (Gr)∗. When
applied to the states of the system, the operator i~∂/∂t will simply yield
the eigenenergy, E.

Lastly, the Dyson equation for the lesser and greater GFs will be found.
By using that Σ r = Σ t − Σ< = Σ t̄ − Σ>, Σ a = Σ t − Σ> = Σ< − Σ t̄,
2.90 and 2.91, one may obtain the following

Gn = Gn
0 +Gn

0Σ
tGt −Gt̄

0Σ
inGt −Gn

0Σ
outGn +Gt̄

0Σ
t̄Gn, (2.115)

Gp = Gp
0 +Gp

0Σ
t̄Gt̄ −Gt

0Σ
pGt̄ −Gp

0Σ
inGp +Gt

0Σ
tGp. (2.116)

Using now that Gt = Gr + Gp, Gt̄ = Gp − Ga, Σ t = Σ r + Σ out, Σ t̄ =
Σ out − Σ a and Σ in = Σ r + Σ r = Σ r + Σ out − Σ a from the definitions at
the end of subsection 2.6.1 one may obtain(

1−Gr
0Σ

r
)
Gp = Gp

0(1 + Σ aGa) +Gr
0Σ

outGa. (2.117)

Using 2.111 for the retarded GF, and multiplying with
(
1 +GrΣ r

)
gives
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2.6 Nonequilibrium Green’s function solver

Gp =
(
1 +GrΣ r

)
Gp

0

(
1 + Σ aGa

)
+GrΣ outGa (2.118)

Gn =
(
1 +GrΣ r

)
Gn

0

(
1 + Σ aGa

)
+GrΣ inGa. (2.119)

It is now useful to move to the momentum representation of the GFs. The
Dyson equation for the retarded and advanced GFs now become

Gr/a(k, ω) = G
r/a
0 + (2π)3G

r/a
0 (k, ω)Σ r/a(k, ω)Gr/a(k, ω), (2.120)

with the solution

Gr/a(k, ω) =
1

(2π)3/2~
1

ω − ωk − (2π)3/2Σ r/a/~
. (2.121)

Since the self-energy is in general complex, it may be defined in the fol-
lowing way

Σ r(k, ω) =
~

(2π)3/2

(
ωs − iΓ

)
, (2.122)

where ωs is a shift in the energy eigenvalues, Γ is the lifetime of the eigen-
states and Σ a =

(
Σ r
)∗. From 2.120, the retarded GF becomes

Gr(k, ω) =
1

(2π)3/2~
1

σ + iΓ
, (2.123)

where σ = ω − ωk − ωs. The new equation for the hole GF is now

Gp =
(
1 + (2π)3GrΣ r

)
Gp

0

(
1 + (2π)3Σ aGa

)
+ (2π)3GrΣ outGa. (2.124)

Gp
0 is proportional to δ(ω−ωk)(ω−ωk)2 which is zero. So one is left with

Gp = (2π)3GrΣ outGa (2.125)
Gn = (2π)3GrΣ inGa, (2.126)

again with very similar derivations for Gn.
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2.7 Finite difference scheme

2.7 Finite difference scheme
One way to solve both the SP and the NEGF equations numerically, is to
discretize them into finite steps with uniform spacing. More specifically,
they are solved using FDM.

The Hamiltonian which enter either SP or NEGF is on the form

H = − ~2

2m

∂2

∂z2
+ U(z), (2.127)

for some single particle potential U(z). Using FDM, all derivatives of com-
plex functions are expressed as

∂f

∂x
≈ 1

d

[
fi − fj

]
(2.128)

∂2f

∂x2
≈ 1

d2

[
fi − 2fj + fk

]
. (2.129)

The indices, i, j, k denote three neighbouring points on the grid, and d is the
spacing between the points. Equations 2.128 and 2.129 are used in order to
find the derivatives of the states of the system.

The resulting discretized Hamiltonian will be of the tridiagonal form

Hij =


U1 + 2t −t 0 . . . 0
−t U2 + 2t 0 . . . 0
0 −t U3 + 2t . . . 0
. . .

 , (2.130)

where t = ~2/2md2. This will be explained in more detail in section 3.1.
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Chapter 3
Numerical model

3.1 Recursive solutions
This section will explain how the SP and NEGF equations may be solved
numerically, and implemented using a programming language.

3.1.1 Schrödinger-Poisson solver
Schrödinger equation

Using the FDM as described in 2.7 on a spatial grid with uniform spacing
∆z, 2.55 can be discretely solved. The first order derivative is approximated
as ∂zψ(zn+1/2) ≈ ∆ψn+1/2. Using linear interpolation (Jirauschek, 2009,
p. 1062), this becomes

∆ψn+1/2 =
(
ψn+1 − ψn

)
/∆z. (3.1)

The term involving the effective mass in 2.55 can then be expressed as

∂z
(
m∗(z)

)−1
∂zψ(z) = (∆ψn+1/2/m

∗
n+1/2−∆ψn−1/2/m

∗
n−1/2)/∆z. (3.2)

Using the same technique as above, the effective mass becomes

m∗n+1/2 = (m∗n +m∗n+1)/2. (3.3)

Finally, 2.55 is discretized into
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3.1 Recursive solutions

− snψn−1 + dnψn − sn+1ψn+1 = Eψn, (3.4)

where

sn ≡
~2

∆2
z(m

∗
n−1 +m∗n)

(3.5)

and

dn ≡
~2

∆2
z

(
1

m∗n−1 +m∗n
+

1

m∗n +m∗n+1

)
+ Vn. (3.6)

Equation 3.4 can now be transformed into a matrix equation, and solved
assuming the boundary conditions ψ0 = 0 = ψN . Here, N is the final grid
point. This gives the matrix equation(

H − EI
)
ψ = 0, (3.7)

whereψ =
{
ψ1, ψ2, ..., ψN

}T , I is the identity matrix of dimension N −1,
andH contains the following elements

Hn,n = dn (3.8)
Hn,n−1 = −sn (3.9)

Hn,n+1 = −sn+1 (3.10)

where all other elements are zero. Thus, 3.7 can be solved as a tridiagonal
eigenvalue problem.

Poisson equation

By using the same approach for the Poisson as for the Schrödinger equation,
the resulting discretized form of 2.56 becomes

s̃nṼn − d̃nṼn + s̃n+1Ṽn+1 = ρn, (3.11)

where now

s̃n ≡
1

2e∆2
z

(
εn−1 + εn

)
, (3.12)
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3.1 Recursive solutions

d̃n ≡
1

2e∆2
z

(
εn−1 + 2εn + εn+1

)
, (3.13)

and

ρn ≡ e

(
ND,n +

∑
i

ni,n
∣∣ψi,n∣∣2). (3.14)

Thus, the length of the grid that 3.11 is solved for must coincide with the
length of the grid used to solve 3.4. Using similar boundary conditions
Ṽ0 = 0 = ṼN , the following matrix equation is obtained

MṼ = ρ, (3.15)

with

Ṽ =
{
Ṽ1, Ṽ2, ..., ṼN

}
(3.16)

ρ =
{
ρ1, ρ2, ..., ρN

}
. (3.17)

The matrixM has the only non-zero elements

Mn,n = −d̃n (3.18)
Mn,n−1 = s̃n (3.19)

Mn,n+1 = s̃n+1. (3.20)

So 3.11 is also solved as a tridiagonal eigenvalue problem.

3.1.2 Nonequilibrium Green’s function solver
The following subsection describes exactly how the NEGF equations may
be iteratively solved. The biggest problem when solving 2.114 is that even
though (E − H0 − Σ r) is a sparse matrix, the GFs will be full matrices.
This means that a tremendous amount of processing power and storage is
required to calculate these matrices. However, instead of calculating all
elements, only the diagonal ”blocks” need to be calculated. Then, one may
decide which off-diagonal terms need to be calculated after this.
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3.1 Recursive solutions

Hamiltonian and basis

The following Hamiltonian describes the system in this work

H = H0 +Hpop +Hac +Hir +Hal +Hid, (3.21)

where the subscripts respectively mean polar optical phonons, acoustic
phonons, interface roughness, alloy disorders, and ionized dopants or im-
purities. The perturbative terms can be included in a self-energy, Σ . The
unperturbed Hamiltonian is broken down into the following parts

H0 = HD
0 +HL

0 +HR
0 +HLD

0 +HRD
0 , (3.22)

where each term respectively represents the Hamiltonian of the device, the
left and right contacts, the coupling between the left contact and the device
and the coupling between the right contact and the device. Note that since
the unperturbed Hamiltonian by definition is known, its solution will be
exact.

For the compound GaAs, the element Ga is the cation and As the anion.
For alternating layers of cations and anions, a vector which points to a layer
L of the cations has a z-component of RL

z = L∆ and an in-plane compo-
nent RL

t . Here, ∆ is the spacing of each layer. Likewise, the anions have
the same components except that they are shifted by a vector v = ∆

2
(1, 1, 1)

from each cation layer. The basis for the cations and anions respectively are∣∣c, L,RL
t

〉
and

∣∣a, L,RL
t

〉
. Both a and c run over all possible orbitals. The

bases are then given by the Bloch states

∣∣c, L,k〉 =
1√
N

∑
RL
t

exp(ik ·RL
t )
∣∣c, L,RL

t

〉
(3.23)

∣∣a, L,k〉 =
1√
N

∑
RL
t

exp(ik · (RL
t + v))

∣∣a, L,RL
t

〉
, (3.24)

for some normalization factor N . The field operators then become

Ψ(r) =
∑
k,L

[∑
c

〈
r
∣∣c, L,k〉cc,L,k +

∑
a

〈
r
∣∣a, L,k〉ca,L,k], (3.25)
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3.1 Recursive solutions

where cc,L,k and ca,L,k respectively are the destruction operators for an elec-
tron in the state

∣∣c, L,k〉 and
∣∣a, L,k〉.

The matrix elements of the unperturbed Hamiltonian is in general

〈
α,L,k

∣∣H0

∣∣α′, L′,k〉 = Dα,α′;L′(k)δL,L′

−tα,L;α′,L′(k)δL′,L±j 6=0,
(3.26)

where the index j is an integer. In the single-band and tight-binding ap-
proximations, this Hamiltonian becomes tri-diagonal with elements

ti,j ≡
~2

(mi +mj)∆2
(3.27)

Di(k) ≡ ~2

2∆2

(
1

m−
+

1

m+

)
Vi (3.28)

m− ≡ mi−1 +mi

2
(3.29)

m+ ≡ mi +mi+1

2
. (3.30)

It is now clear that this unperturbed Hamiltonian corresponds with the
Hamiltonian found in the subsection 3.1.1, which is a relief. The differ-
ence between the Hamiltonian for the entire system in the NEGF case and
the one for the SP solver, is that the former includes the perturbative self-
energy term.

The retarded Green’s function

The Dyson equation is on the form AGr = I where I is the identity matrix
needs to be solved. The solution becomes

(Gr)−1 =


A0,0 t0,1 0 . . . 0
t1,0 A1,1 t1,2 . . . 0
0 t2,1 A3,3 . . . 0
. . . . . . . . . . . . tN−2,N−1

0 0 . . . tN−1,N−2 AN−1,N−1

 , (3.31)

where Ai,i is the Dyson equation for block number i.
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3.1 Recursive solutions

Since none of the blocks are currently known, the Dyson equation can
for instance be solved for two consecutive blocks (D. Vasileska and Klimeck,
2010, p. 526-533). The equation then becomes[

AZ,Z AZ,Z′

AZ′,Z AZ′,Z′

] [
Gr
Z,Z Gr

Z,Z′

Gr
Z′,Z Gr

Z′,Z′

]
=

[
I 0
0 I

]
, (3.32)

This has the solution

Gr = Gr
0 +GrUGr

0, (3.33)

where

Gr
0 =

[
(Gr

Z,Z)0 0
0 (Gr

Z′,Z′)0

]
=

[
A−1
Z,Z 0
0 A−1

Z′,Z′

]
(3.34)

and

U =

[
0 −A−1

Z,Z′

−A−1
Z′,Z 0

]
. (3.35)

The equation for the advanced GF can be solved in the exact same way,
except now Ga is the complex transpose of Gr, Ga = (Gr)∗.

In order to solve the system by GF techniques, it is necessary to assume
that the contacts have semi-infinite domain. Otherwise, there would be
an infinite amount of equations. Assume that the block indexed zero lies
somewhere in the regime of the left contact, not too far away from the
device as indicated in Figure 3.1. Then suppose that all of the blocks to the
left of block indexed−2, which is an infinite amount of blocks are assumed
to have the same values as the block in −2. Then the left connected GF is
given by the matrix

(gLr)−1
0,0 =

E − A−2,−2 − Σ r
−2,−2 A−2,−1 0

A−1,−2 E − A−1,−1 A−1,0

0 A0,−1 E − A0,0

 . (3.36)

Because the block is in the upper left corner, the superscript L is added.
The same can be done for each block along the diagonal of the system. The
recursive solutions

gLri,i =
(
Ai,i − Ai,i−1g

Lr
i−1,i−1Ai−1,i

)−1 (3.37)
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for a diagonal block follow from 3.33 for the consecutive blocks Z = i− 1
and Z ′ = i. The last block, gLrN−1,N−1 is special, because it contains infor-
mation about the entire system between the contacts. And this is simply the
retarded GF, Gr

N−1,N−1 = gLrN−1,N−1 = Gr.
Since the last element of the retarded GF is known, this can be used to

recursively find the other elements. The off-diagonal terms can be found
by the equations

Gr
i>j,j = −gi,iti+1,iG

r
i,j+1 (3.38)

Gr
i,j>i = −gi,iti,i+1G

r
i+1,j (3.39)

For the diagonal elements, the equation becomes

Gr
i,i = gLri,i (1− Ai,i+1G

r
i+1,i). (3.40)

Indexation is different from before, because now the algorithm starts on the
last element of Gr and walks the other way to find the remaining diagonal
elements.

Left contact

Right contact

0

-1

-2

1

N-1

Device region
Figure 3.1: Blocks iterated throughout the system using FDM and the method
described in the text. The sizes and numbers of blocks are only representative of
the actual process, the blocks may be smaller and the number larger.
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The entire ”walking” process is shown in Figure 3.2. If densities are
needed for particular regions, this can be easily found by using 3.38 and
3.39. This technique demonstrates that it is not necessary to know all of
the elements of the GFs in order to simulate the physical processes of the
system. Only diagonal blocks need to be calculated, and then calculating
the other desired GF blocks afterwards.

Left contact

Right contactDevice region

gLr

Gr

gLr

Figure 3.2: Green functions for the numerical process. In order to find Gr, one
must ”walk” gLr through the entire system and connect it to Gr in the last block.
Then, electron or current densities can be found by ”walking” back and finding
the horizontal blocks indicated by the blue lines. If only the current on one side is
needed, the only block that has to be calculated is the one to the left of the device
indicated by the green line.

The correlation Green’s function

Equations 2.125 and 2.126 are solved by using the same techniques as for
the retarded and advanced GFs, which are on the form

AGn = ΣnGa (3.41)
AGp = Σ pGa. (3.42)
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By following the previous conventions, the matrix form of this is

[
AZ,Z AZ,Z′

AZ′,Z AZ′,Z′

] [
Gn
Z,Z Gn

Z,Z′

Gn
Z′,Z Gn

Z′,Z′

]
=

[
Σn
Z,Z Σn

Z,Z′

Σn
Z′,Z Σn

Z′,Z′

] [
Ga
Z,Z Ga

Z,Z′

Ga
Z′,Z Ga

Z′,Z′

]
, (3.43)

taking into account the electron correlation GF. The hole correlation GF
follows the exact same procedure. This yields the following solutions

Gn = Gr
0UG

n +Gr
0Σ

inGa (3.44)
Gp = Gr

0UG
p +Gr

0Σ
outGa. (3.45)

or

Gn = Gn
0 +GrUGn

0 +GnU †Ga
0, (3.46)

where Gn
0 = Gr

0Σ
inGa

0 and 3.33 was used.
The first block has the solution for each of the GFs

gLn0,0 = gLr0,0Σ
in
0,0g

La
0,0 (3.47)

gLp0,0 = gLr0,0Σ
out
0,0 g

La
0,0, (3.48)

and the other diagonal blocks are given by

gLni,i = gLri,i
[
Σ in
i,i + Ai,i−1g

Ln
i−1,i−1A

†
i−1,i − Σ in

i,i−1g
La
i−1,i−1A

†
i−1,i

−Ai,i−1g
Lr
i−1,i−1Σ

in
i−1,i

]
gLai,i ,

(3.49)

gLpi,i = gLri,i
[
Σ out
i,i + Ai,i−1g

Lp
i−1,i−1A

†
i−1,i − Σ out

i,i−1g
La
i−1,i−1A

†
i−1,i

−Ai,i−1g
Lr
i−1,i−1Σ

out
i−1,i

]
gLai,i .

(3.50)

The connected correlation GFs then become

Gn
i,i = gLni,i + gLri,iAi,i+1G

n
i+1.i+1A

†
i+1,ig

La
i,i

−(gLni,i A
†
i,i+1G

a
i+1,i +Gr

i,i+1Ai+1,ig
Ln
i,i )

(3.51)

Gp
i,i = gLpi,i + gLri,iAi,i+1G

p
i+1.i+1A

†
i+1,ig

La
i,i

−(gLpi,i A
†
i,i+1G

a
i+1,i +Gr

i,i+1Ai+1,ig
Lp
i,i ).

(3.52)
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The off-diagonal elements are

Gn
i+1,i = (gLni+1,i)0 −Gr

i+1,iAi,i+1(gLni+1,i)0

−Gr
i+1,i+1Ai+1,ig

Ln
i,i −GLn

i+1,i+1A
†
i+1,ig

La
i,i

(3.53)

Gp
i+1,i = (gLpi+1,i)0 −Gr

i+1,iAi,i+1(gLpi+1,i)0

−Gr
i+1,i+1Ai+1,ig

Lp
i,i −G

Lp
i+1,i+1A

†
i+1,ig

La
i,i ,

(3.54)

and

Gn
i,i+1 = (gLni,i+1)0 −Gr

i,i+1Ai+1,i(g
Ln
i,i+1)0

−Gr
i,iAi,i+1g

Ln
i+1,i+1 −Gn

i,iA
†
i,i+1g

La
i+1,i+1

(3.55)

Gp
i,i+1 = (gLni,i+1)0 −Gr

i,i+1Ai+1,i(g
Lp
i,i+1)0

−Gr
i,iAi,i+1g

Lp
i+1,i+1 −G

p
i,iA

†
i,i+1g

La
i+1,i+1.

(3.56)

3.1.3 Expressions for the self-energies
For the moment, only the contact self-energies are considered such that the
governing equations are [

E −H0 − Σ r
lead

]
Gr = 1 (3.57)

where Σ r
lead is the retarded self-energy for the leads, and

Gn = GrΣ in
leadG

a, (3.58)

Due to the semi-infinite contacts, the self-energies are

(Σ r
lead)−2,−2 = A−2,−3g

Lr
−3,−3A−3,−2, (3.59)

for the contact to the left and

(Σ r
lead)N−1,N−1 = AN−2,N−1g

Lr
N−1,N−1AN−1,N−2 (3.60)

for the right. The expressions for the advanced self-energies are exactly
the same, except gLr is replaced by gLa. The self-energies related to the
scattering into the device are given by

(Σ in
lead)0,0 = A1,0g

Ln
0,0A0,1 (3.61)
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at the left boundary and

(Σ in
lead)N−1,N−1 = AN−2,N−1g

Ln
N−1,N−1AN−1,N−2 (3.62)

at the right boundary.
Since the solution of gLr−3,−3 is needed to solve 3.59, it is possible to

make certain assumptions about the system. One assumption is to use the
effective mass model (Klimeck, 2004, p. 6), in which case all off diagonal
termsAi,j>i andAi>j,j are equal and constant. Here, the constant is denoted
by t. The energy can be approximated as

E = A−2,−2 − 2tcos(γ∆), (3.63)

where γ is a longtitudal wave vector in the left lead. The GF is then

gLr−3,−3 = − exp(γ∆)/t, (3.64)

which gives the self-energy

Σ r
−2,−2 = −t exp(γ∆). (3.65)

Generally, neighboring blocks will be coupled, so that in the left and right
contacts the self-energies respectively are

(Σ in
lead)i,j =

∑
k,l≤0

ti,kg
r
k,ltl,j (3.66)

(Σ in
lead)n,m =

∑
k′,l′≥0

tn,k′g
r
k′,l′tl′,m, (3.67)

where it should be understood that i, j ≤ 0 since this self-energy describes
the left boundary, and n,m ≥ N−1 because it describes the right boundary.

3.1.4 Scattering
Scattering events may now be included, so that the governing equations
become [

E −H0 − Σ r − Σ r
lead

]
Gr = 1, (3.68)

and
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3.1 Recursive solutions

[
E −H0 − Σ r − Σ r

lead

]
Gn =

[
Σ in + Σ in

lead

]
Ga. (3.69)

Considering elastic scattering, the self-energies may be expressed as

Σ r = D ⊗Gr (3.70)
Σ in = D ⊗Gn, (3.71)

where D contains the square of the scattering potential, and ⊗ is a convo-
lution over k and orbital indices defined in the beginning of this section.
The scattering in/out self-energies for electron-phonon interaction will be
discussed below, the other self-energies may be found in appendix B.

Electron-phonon scattering

Let the self-energy Σ in
R denote the scattering self-energy in from the con-

tact to the right, and similarly Σ in
L for the left contact. Then, there will

be additional scattering in contribution to the self-energy at energy E from
the energy levels above and below. In the Born approximation, it can be ar-
gued that the scattering in self-energy will depend on the Bose factor which
determines the phonon occupancy, the deformation potential for electron-
phonon scattering, and the availability of electrons through the electron
correlation GF. Thus, the scattering in self-energy will take the following
form (Mahan, 1987, p. 251)

(
Σ in
Phonon

)
q

(E) =
∑
η

Dη
q

[
nB(~ωphonon)Gn

q (E − ~ωphonon)

+(nB(~ωphonon) + 1)Gn
q (E + ~ωphonon)

]
,

(3.72)

where nB(~ωphonon) is the Bose distribution function at energy ~ωphonon for
phonons, and Dη

q is the electron-phonon scattering strength or deformation
potential at block q. All terms that contribute to the scattering in self-energy
is shown in Figure 3.3.

The exact same arguments can be done for the scattering out self-energy,
which will take the following form (Mahan, 2000)
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3.1 Recursive solutions

(
Σ out
Phonon

)
q

(E) =
∑
η

Dη
q

[
(nB(~ωphonon) + 1)Gp

q(E − ~ωphonon)

+nB(~ωphonon)Gp
q(E + ~ωphonon)

]
,

(3.73)

in this case scattering out from a fully filled state.

Energy

Position, 

Right leadLeft lead Device

Figure 3.3: Contributions to the scattering in self-energy.

3.1.5 Electron density
The electron density can in the NEGF case be expressed in terms of GFs.
The electron density at a position z in the device, will depend on the number
of states filled due to the contacts to the left and right. So at block q, the
expression will be (M. P. Anantram and Nikonov, 2008, p. 529)

nq(E) =
1

π∆

∫
dE
[
Gr
q,1(E)Σ in

L (E)Ga
1,q(E)

+Gq,n(E)Σ in
R (E)Ga

n,q(E)

]
.

(3.74)

However, since electron-phonon scattering is present an electron may scat-
ter from a point (q′, E ′) to (q′, E), and then propagate to the point (q, E).
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3.1 Recursive solutions

So, equation 3.74 must be modified to include this effect as well (M. P. Anantram
and Nikonov, 2008, p. 530)

nq(E) =
1

π∆

∫
dE
[
Gr
q,1(E)Σ in

L (E)Ga
1,q(E)

+Gq,n(E)Σ in
R (E)Ga

n,q(E)

+
∑
q′

Gq,q′(E)Σ in
Phonon(E)Ga

q′,q(E)

]
.

(3.75)

The contributions are shown in Figure 3.4.

Energy

Position, 

Right leadLeft lead
Device

Figure 3.4: All three contributions to the electron density.

Recalling 2.125 and Σ in = Σ in
L +Σ in

R +Σ in
Phonon, the expression for the

electron density may be simplified in the following way

nq(E) =
1

π∆

∫
dEGn

q,q(E). (3.76)

Flowchart

The overall algorithm is depicted in Figure 3.5. As described in subsection
3.1.4, the scattering in/out self-energies respectively depend on the elec-
tron/hole correlation GFs. And these GFs again depend on the scattering
in/out self-energies. One might then be lead to believe that the entire prob-
lem is unsolvable, but by using a few tricks it should be evident that this is
not the case.

44



3.1 Recursive solutions

Initial potential profile,

Solve for contact self-energies
Solve NEGF equations for and

Solve for scattering self-energies

Iterate

Solve Poisson's equation 

Convergence?

Yes

No

Final output profile,

to obtain new potential profile

Solve for electron density,

Figure 3.5: The flowchart for the implemented code. It consists of two iterative
blocks, see the description below for further details.

It is clear that the conduction band potential profile along with the ap-
plied bias V0 needs to be calculated first, as it is involved in the diagonal part
of the Hamiltonian. This, as well as the eigenenergy is used to calculate the
retarded and advanced GFs for the structure. In order to solve the electron
and hole correlation GFs one may not simply assume that Σ in = Σ out = 0,
because this will give Gn = Gp = 0 as evident from 2.125 and 2.126.

45



3.1 Recursive solutions

Instead, one may give another ansatz for the self-energies. Here, the scat-
tering self-energies are assumed to have some constant value not equal to
zero. The next step is to use these self-energies in order to calculate the
first values for the electron and hole correlation GFs, by using 3.51 and
3.52. Then, these GFs can again be used to calculate new values for the
scattering in/out self-energies, by using 3.72 and 3.73. This process just
described is the innermost iterative block in Figure 3.5. The ansatz for the
scattering in/out self-energies is justified in the sense that if they in fact are
zero even though they were assumed to have nonzero values, then after a
number of iterations it should be evident that their values do go to zero.

After the iteration process has converged, the program continues to
solve for the electron density n(z) by using 3.76. This is then used in the
Poisson’s equation in order to solve for a new potential profile, which now
takes into account bending because of spatial charges. The first time the
electron density is calculated, it will be based on the fact that the potential
does not take into account any spatial charges. Therefore, the program ex-
ecutes the ”no” answer in Figure 3.5 when asked if the potential profile has
converged. This leads to calculation of new GFs using the latest potential
profile.

This entire process is repeated until convergence of the potential profile
has been reached, in which case ”yes” is executed and the program yields
the final potential profile V .
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Chapter 4
Results and discussion

All results have been obtained from a script written by the author in the
programming language FORTRAN 95, and MATLAB for plotting. All cal-
culations are based on the material compound Al0.85Ga0.15As/GaAs. The
lattice temperature is set to T = 200 K, and the applied voltage bias is
varied between 12 and 50 mV. The simulation time for the SP solver is no
more than a few minutes, but the NEGF solver may take up to a few days.

Preliminary results are shown in Figure 4.1. It must be noted that the
NEGF method uses a sixth of the grid resolution that is used in the SP
calculations, so as to save simulation time. It should also be noted that
the results in Figure 4.1 should not be taken as absolute truths, but rather as
indicators of how more accurate solutions would look. This is because there
are a lot of parameters involved in the calculations which may be adjusted
to more accurate values. The bending of the potential profile in Figure 4.1b
shows additional bending as a result of the spatial charges.
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(a) SP results.
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(b) NEGF results.

Figure 4.1: Simulation results, showing five states along with the final potential
profile for both cases 4.1a and 4.1b. Both results are simulated at an applied volt-
age bias of 30 mV.
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Figure 4.2 shows further results from the SP simulations. In for in-
stance a QCL or QCD, the eigenstates may be utilized in order to find what
wavelengths the device will lase or absorb at. In a QCL, selected states will
be filled with electrons which in turn will undergo diagonal optical pho-
ton transitions to states with lower energy levels. These states are emptied
because extractor states will extract those electrons. The photons emitted
in the process will be reflected in a cavity, and eventually give rise to the
lasing effect. In a QCD, the process is reversed in the sense that photons
are absorbed to excite electrons into higher rather than lower energy eigen-
states.

Because the potential profile linearly decreases because of the applied
voltage bias, the states will become localized. The reason is that the reso-
nant states in the quantum wells are misaligned as described in Section 2.3,
so the probability that an electron will tunnel through one barrier decreases
for each barrier. Because each state has a different eigenvalue, they will
align with different resonant levels.
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(a) 12 mV applied voltage bias
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(b) 50 mV applied voltage bias

Figure 4.2: Both Figure 4.2a and 4.2b show the potential profile along with the
five first energy eigenstates for two different applied voltage biases.
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Chapter 5
Conclusion and outlook

The SP solver provides a simple and fast way of studying layered devices
such as the system described in this report. However, it is not nearly accu-
rate enough, as one has to assume an expression for the electron density. It
does not take into account inelastic or electron-phonon scattering effects.
Nor does it take in the fact that during scattering events in nanoscale de-
vices, electrons will be affected by the applied voltage bias. In fact, scat-
tering events cannot be taken as changes along the electron’s path, because
the path doesn’t exist (Jacoboni, 2010, p. 335).

Using instead the NEGF approach, the electron density may immedi-
ately be expressed through GFs. Now, both elastic and inelastic effects are
taken into account. But for a high price, because the solution very slowly
converges. This is even after simplifying the discretized expressions of the
GFs, so that they are not calculated in their full matrix forms. Thus, cur-
rent research is focused on what quantum effects are relevant for accurate
calculations while balancing computational time. So, one method is to is
to implement aspects of quantum transport into the semiclassical transport
theory. In this way, computational time is optimized, while simultaneously
giving an accurate picture of the quantum transport theory. For instance,
a hybrid of the NEGF and Monte Carlo approaches is considered. In this
way, resonant tunneling is treated in some regions for instance through a
thick barrier by the NEGF approach, but the rest of the device is simulated
using the semiclassical transport theory.

Another method that the author will suggest, is to use a proof-of-work
system (Investopedia, 2018). By doing this it should be possible to avoid
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simulation times of full matrices of several years. Since the main con-
tributor to the simulation time is matrix inversions, it is possible through
proof-of-work to distribute these tasks on a network of participants. Each
participant will solve a small part of the problem, and send the solution
back to the host for verification. Given that the solution is correct, the host
will provide a new problem for the participant again. The incentive to par-
ticipate is to be rewarded with some currency or coin. It should be noted
that this solution is fairly new with few implementations, but it has been
shown to work and could prove to solve the great challenge of slow NEGF
simulations (R. Heart and Mesquita, 2017).
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Appendix
A Derivation of 3.49
Equation 3.49 is derived by using 3.44

gLni,i = (gri,i)0A
†
i,i−1g

Ln
i−1,i + (gri,i)0Σ

in
i,i g

La
i,i + (gri,i)0Σ

in
i,i−1g

La
i−1,i. (1)

Equation 3.46 can be used in order to express gLni−1,i by known quantities

gLni−1,i = (gLni−1,i)0 + (gLni−1,i)0A
†
i,i−1g

La
i−1,i − gLni−1,i−1A

†
i−1,ig

La
i,i

− gLri−1,i−1Ai−1,ig
Ln
i,i . (2)

Substituting this into Equation 1 gives

[
I − (gri,i)0Ai,i−1g

Lr
i−1,i−1Ai−1,i

]
gLni,i

= (gri,i)0Σ
in
i,i g

La
i,i + (gri,i)0Σ

in
i,i−1g

La
i−1,i

−(gri,i)0Ai−1,i

[
(gLni−1,i)0 + (gLni−1,i)0A

†
i,i−1g

La
i−1,i

−gLni−1,i−1A
†
i−1,ig

La
i,i

]
, (3)

and using

(gLni,i+1)0 = gLri,i Σ
in
i,i+1g

La
i+1,i+1 (4)

(gLni+1,i)0 = gLri+1,i+1Σ
in
i+1,ig

La
i,i , (5)

the following is obtained

gLni,i = gLri,i
[
Σ in
i,i − Ai−1,ig

Ln
i−1,i−1A

†
i−1,i

]
gLai,i

+gLri,i Σ
in
i,i−1g

La
i−1,i − gLri,iAi−1,ig

Lr
i−1,i−1Σ

in
i−1,ig

La
i,i . (6)

Noting that gLri,i−1 = gLri,iAi−1,ig
Lr
i−1,i−1, 3.49 should follow immediately.

55



B Self-energies
Phonons

These are the expressions for the scattering in phonon self-energies, where
the deformation potential is specified

Σ in
α,L,α′,L′(k,E) =

1

V

∑
q

∣∣Uk−q
∣∣2 exp(iqz∆(L− L′ + να,α′))

×
[
nqG

n
α,L,α′,L′(qt;E − ~ωq)

+(nq + 1)Gn
α,L,α′,L′(qt;E + ~ωq)

]
, (7)

and

Σ in
α,L,α′,L′(k,E) =

1

V

∑
q

∣∣Uk−q
∣∣2 exp(iqz∆(L− L′ + να,α′))

×
[
(nq + 1)Gn

α,L,α′,L′(qt;E − ~ωq)

+nqG
n
α,L,α′,L′(qt;E + ~ωq)

]
, (8)

where U is the Fourier transformed scattering potential, nq is the electron
density for mode q, α run over anion and cation states, L is the length to a
layer of cations, and finally ν is defined as

να,α′ =


1/2 if α = a, α′ = c

−1/2 if α = c, α′ = a

0 otherwise
. (9)

Alloy disorder

From the potentials VA and VB in subsection 2.2.3, one may define δV (r) =
VA(r)− VB(r). Given a matrix element Mα,α′ =

〈
α
∣∣δV (r)

∣∣α′〉, the alloy
self energy may be written as

Σ in
c,L,c′,L′ =

2∆2x(1− x)Mc,L,c′,L′Mc′,L′,c,L

A

×
∑
q

Gn
c,L,c′,L′(q), (10)
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where A is the cross sectional area described earlier.

Interface roughness

This self-energy becomes

Σ in
c,L,c′,L′ =

x(1− x)Mc,L,c′,L′Mc′,L′,c,L

A

×
∑
q

∣∣Uk−q
∣∣2Gn

c,L,c′,L′(q). (11)

Ionized impurities

Fourier transforming the screening potential in 2.19, one may obtain the
generalized self-energy

Σ in
α1,L1,α2,L2

(k) =
e4

8Aε2

∑
L

nLs

×
∑
q

e−
√
q20+

∣∣k−q∣∣2[∣∣L1−L
∣∣+|L2−L

∣∣]∆
q2

0 +
∣∣k − q∣∣2
×Gn

α1,L1,α2,L2
(12)
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