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Abstract

The total correlation integrals can provide useful information about the local structure

of fluids, both for mixtures and for pure materials. These integrals are commonly re-

ferred to as Kirkwood-Buff integrals, due to their central role in the solution theory de-

rived by Kirkwood and Buff. The solution theory was originally derived from molecu-

lar distribution functions in the grand canonical ensemble, but several methods exist for

the purpose of the computation of Kirkwood-Buff integrals using other ensembles. The

purpose of this master’s thesis is therefore to evaluate the efficiency of different methods

available for computation of Kirkwood-Buff integrals from finite size computer simula-

tions. To determine the method with the best overall performance, four factors are con-

sidered: accuracy, precision, availability and computational cost. All methods analyzed

here are based on extracting the Kirkwood-Buff integrals in the thermodynamic limit from

the ones computed for different-sized finite volumes. The finite-size Kirkwood-Buff inte-

grals are either calculated from a running integral over the radial distribution function,

or from fluctuations of number of particles in small subsystems inside a larger reservoir.

Both methods give finite-size Kirkwood-Buff integrals that scale linearly with the inverse

system size, making the values in the thermodynamic limit readily available. Recently, a

scaling equation taking the finite size of the system into account was formulated (J Chem

Phys. 2016;145(14):141103), and two ways of defining the subvolumes are available. The

first is by placing the subvolumes at random locations inside the simulation box, while

the second defines the subvolumes as lattice cells of a superimposed grid on the total

simulation box. In this study, all different alternatives are investigated in detail in order to

determine their effect on the Kirkwood-Buff integrals in the thermodynamic limit.

It was found that the superimposed lattice does not provide enough data points to pre-

cisely extract the Kirkwood-Buff integral in the thermodynamic limit, since the number

available subvolume sizes is constrained by the total simulation box. In addition, the

fluctuations are directly correlated for subvolumes placed right next to each other. The

different techniques to extract the thermodynamic limit value of the Kirkwood-Buff in-

tegrals mainly resulted in similar values, but the ones involving fewer rounds of curve

fitting were more precise. The randomly positioned spheres is the most flexible method.

Combined with linear scaling it also provided the best overall accuracy, provided that the

system is sufficiently far from the critical point. The radial distribution function is less

sensitive to the critical point and the ensemble of the reservoir. The fluctuating volume in

the isobaric-isothermal ensemble results in unwanted contributions to the fluctuations

in the largest subsystems, and should therefore be avoided.





Sammendrag

Totalkorrelasjonsintegralene kan gi nyttig informasjon om den lokale strukturen til både

blandinger og rene materialer. Disse integralene er vanligvis kalt Kirkwood-Buff inte-

graler, grunnet deres sentrale rolle i teorien for løsninger utviklet av Kirkwood og Buff.

Kirkwood og Buffs teori for løsninger ble opprinnelig utviklet fra molekylærdistribusjons-

funksjoner i det store kanoniske ensemble, men flere metoder er utviklet med hensikt

å beregne Kirkwood-Buff integral ved bruk av andre ensembler. Hensikten med denne

masteroppgaven er derfor å vurdere effektiviteten til et utvalg metoder som beregner

Kirkwood-Buff integral fra simuleringer. For å avgjøre hvilken metode som er mest effek-

tiv, er fire punkter unsersøkt: nøyaktighet, presisjon, tilgjengelighet og beregningskost-

nader. Alle metodene undersøkt her er basert på beregning av Kirkwood-Buff integralene

i den termodynamiske grensen fra de beregnet for endelige volum av varierende størrelse.

Kirkwood-Buff integralene med endelige størrelser er enten beregnet fra et integral over

radialfordelingsfunksjonen, eller fra fluktuasjoner i antall partikler i subsystem plassert

inne i et større reservoar. Begge metodene gir Kirkwood-Buff integral som skalerer lineært

med den inverse størrelsen til systemet, slik at verdiene i den termodynamiske grensen

er lett tilgjengelige. Nylig ble det presentert en skaleringslikning som også tar den en-

delige størrelsen av reservoaret med i beregningen (J Chem Phys. 2016;145(14):141103).

To metoder for å definere subvolumene er også tilgjengelige. Den første plasserer sfæriske

volum på tilfeldige posisjoner inne i simuleringsboksen, mens den andre definerer sub-

volumene som gitterceller i et innkopiert nett på den totale simuleringsboksen. Disse

forskjellige alternativene er undersøkt i detalj for å bestemme hvilken effekt de har på

verdien av Kirkwood-Buff integralene i den termodynamiske grensen.

Det ble funnet at gittercellene ikke ga tilstrekkelig antall datapunkter for å gi et presist

estimat av Kirkwood-Buff integralene i den termodynamiske grensen, fordi antall tilgjen-

gelige størrelser av subvolum er begrenset av den totale simuleringsboksen. I tillegg er

fluktuasjonene korrelerte i subvolum plassert rett ved siden av hverandre. De forskjellige

teknikkene brukt for ekstrapolering av Kirkwood-Buff integralene til den termodynamiske

grensen ga i hovedsak de samme verdiene, men de som involverte færre kurvetilpasninger

resulterte i høyere presisjon. De tilfeldig plasserte sfæriske subvolumene er mest flek-

sible, kombinert med lineær skalering gir denne metoden også best nøyaktighet, gitt at

systemet er langt nok unna det kritiske punktet. Radialfordelingsfunksjonen er mindre

sensitiv til det kritiske punktet, og til ensemblet til reservoaret. Det isobarisk-isotermiske

ensemble ga uønskede bidrag til fluktuasjonene i de største subvolumene, og burde derfor

unngås.
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1. INTRODUCTION

1 Introduction

The connection between macroscopic thermodynamic properties and microscopic be-

haviour is the main subject of statistical mechanics. The microscopic behaviour is de-

scribed by the molecular distributions, which contain local information about the corre-

lation between densities at different points in the system [1]. For homogeneous systems,

allowed to exchange particles with the surroundings, these molecular distribution func-

tions are interpreted as the fluctuations of number of particles. Two systems at equilib-

rium, that are allowed to exchange particles, will have constant chemical potential [2]. If

also the temperature is constant, the system can be regarded as grand canonical, meaning

that the fluctuations in number of particles are described by the grand canonical partition

function. Through the fundamental equations of statistical mechanics, the partition func-

tion is in turn connected to a number of macroscopic properties, like the compressibility,

derivative of chemical potential, partial molar enthalpies and partial molar volumes [1].

One important application of this coupling is the solution theory formulated by Kirkwood

and Buff in 1951 [3]. Central to this theory are the Kirkwood-Buff integrals calculated from

the integral of the radial distribution function over volume

Gi k ≡
∫ ∞

0

[
g∞

i k (r )−1
]

4πr 2dr (1.1)

These are especially important when simulating molecular systems since they give access

to a variety of thermodynamic properties, that normally are not available by simply an-

alyzing the simulation trajectories [4]. Obtaining these properties is typically even more

complicated for mixtures, when they are functions of composition as well. The solution

theory by Kirkwood and Buff [3] has therefore been applied in a number of studies of sim-

ulations of aqueous solutions [5] [6] [7], and in parameterization of force fields [8] [9] [10].

The theory was originally derived for open systems of infinite size. This presents some

challenges since these conditions are normally not available during computer simula-

tions. In molecular dynamics simulations, the systems are closed and finite, and while

Monte Carlo is able to create open systems, these are also constrained to a finite, and

often small number of particles. It has also been shown to be generally difficult to use

Monte Carlo to simulate high density systems, due to inefficient particle insertion proce-

dure [11] [12] [13] [14]. Since infinite particle distances are not normally available, several

studies have simply truncated the integral in equation (1.1) at finite distances [10] [15]

[16]. However, this approximation does not provide accurate estimates of the Kirkwood-

1



1. INTRODUCTION

Buff integrals [4]. When the system is very far from thermodynamic limit, meaning that it

not large enough to reproduce macroscopic properties, the truncation method can lead

to significant errors. Several methods have been proposed to account for this, and nor-

mally, a correction for the radial distribution function g∞
i k (r ) is suggested [17] [18]. Some

of these methods are rather numerically involved and difficult to implement, and the re-

sults it that the use of Kirkwood-Buff integrals no longer is a simple way to obtain the

macroscopic properties.

Another part of the Kirkwood-Buff theory, that has been receiving increased attention,

is the expression for Kirkwood-Buff integrals for finite volumes. Through the interpre-

tation of the molecular distribution functions, this expression is directly coupled to the

fluctuations of number of particles in open and finite systems

GV
i k = 1

V

∫
V

∫
V

[
g∞

i k (r12)−1
]

dr1dr1

=V

(〈Ni Nk〉−〈Ni 〉〈Nk〉
〈Ni 〉〈Nk〉

− δi k

〈Ni 〉
) (1.2)

Many recently published papers have calculated estimates of the Kirkwood-Buff integrals

in the thermodynamic limit (V →∞) from the ones calculated for various sizes of these fi-

nite volume integrals [8] [19] [20] [21]. Methods calculating GV
i k from particle fluctuations,

and by integration of g∞
i k (r ) exist, and they are both normally followed by extrapolation in

order to obtain the thermodynamic limit value, Gi k . Some comparisons of the efficiency

of these methods exists, but they mostly focus on the differences between integration of

g∞
i k (r ), and fluctuation based methods [8] [22] [23] [24]. Since several different methods

for calculation of fluctuations also are available [25] [20] [23], a comparison between these

is also of interest. What still remains is therefore a thorough evaluation of the efficiency

of the different methods, answering the question: which method shows the best overall

accuracy, precision, availability and computational effort?

This master’s thesis is organized as follows. Section 2 presents the theoretical background

of the calculated properties. Section 3 presents the computational background of molecu-

lar dynamics simulations, and the different procedures used to obtain the Kirkwood-Buff

integrals in the thermodynamic limit. Section 4 describes how the simulations and calcu-

lations were performed, while results and discussion are presented in section 5, followed

by conclusion in section 6.

2



2. THEORETICAL BACKGROUND

2 Theoretical Background

The following section presents a description of properties often reported for mixtures, to-

gether with models and methods available to obtain these. This includes partial molar

properties and isothermal compressibility. A section describing different ensembles of-

ten applied in simulations and experiments, and their connection to local structure and

fluctuations of thermodynamic quantities, is also included. Thereafter follows a section

describing molecular distribution functions, and one of its most important applications,

the Kirkwood-Buff theory of solutions.

2.1 Properties of Mixtures

Mixtures act differently than pure materials, giving rise to some additional, mixture spe-

cific properties. To be able to accurately describe and understand the behaviour of mix-

tures, it is therefore necessary to define some quantities and models that characterize

these properties [26]. In most engineering applications, the temperature, T, and pressure,

p, are constant. Consequently, a general extensive property, B, of a multicomponent sys-

tem is conveniently defined by

B = f (T, p,n1, ...,nM ) (2.1)

where ni is the number of moles of component i in a mixture of M different components.

2.1.1 Partial Molar Properties

One central central derivative of B is the partial molar property, defined by

Bi ≡
(
∂B

∂ni

)
T,p,n j [i ]

(2.2)

These can be described as how one property of a mixture changes with the number of

moles of component i in the mixture while T, p and the number of all components except

i are held constant (indicated by subscript n j [i ]) [2]. The partial molar properties will be

zero order in number of moles, making them intensive properties. This means that they

do not depend on the size of the system, but that they can depend on the temperature,

3



2. THEORETICAL BACKGROUND

pressure and composition. Naturally, the partial molar properties are also properties of

the specific mixture considered, and not simply properties of the component i.

The partial molar properties can be evaluated by a number of different methods [26].

One of the most effective is to express the property B as a function of composition, and

evaluate Bi by differentiation. This can be done by starting off with expressing the total

differential of the intensive property B̃ = B/n as

dB̃ =
(
∂B̃

∂T

)
p,x

dT +
(
∂B̃

∂p

)
T,x

dp + ∑
j 6=i

(
∂B̃

∂x j

)
T,p,x[ j ,i ]

dx j (2.3)

where x j is the mole fraction of component j, and the subscript x[ j , i ] indicates that all

mole fractions in the set (x1,...,xM ) are held constant, except x j and xi . After some algebra,

explained in detail in reference [26], Bi yields

Bi = B

n
− ∑

j 6=i
x j

(
∂
(B

n

)
∂x j

)
T,p,x[ j ,i ]

(2.4)

which is an expression that can be applied to all multicomponent systems for any prop-

erty of interest [27].

One central partial molar property that provides useful information about the role of the

different components in a mixture is the partial molar Gibbs energy, defined as the chemi-

cal potential, µi ≡Gi [26]. This property is particularly useful because it can describe both

phase behaviour and driving forces of different systems [28]. Because of its importance

in both thermodynamics and solution chemistry, several methods exist for the purpose

of its calculation. Currently, the best known method for calculation of chemical potential

is the Widom particle insertion method [29]. An ideal mixture is characterized by equal

forces acting between all molecules [2]. For such mixtures, there exist theoretical predic-

tions for most state functions and thermodynamic properties, and chemical potential is

no exception. It is expressed as

µID
i = RT ln xi +µ∗

i (2.5)

where µ∗
i is the chemical potential of pure component i at current pressure and tempera-

ture of the mixture. The partial derivative of the chemical potential with mole fraction in

4
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an ideal mixture is therefore given by

(
∂µID

i

∂xi

)
T,p

= RT

xi
(2.6)

2.1.2 Isothermal Compressibility

Another property that is often reported both for mixtures and pure materials, principally

because it can be measured by simple experiments, is the isothermal compressibility [30].

It can be expressed as follows

κT ≡− 1

V

(
∂V

∂p

)
T

(2.7)

where V is volume. This property is easily accessible since the derivative can be can be de-

termined numerically by constant temperature experiments that provide data for volume

as a function of pressure. For simple mixtures, an approximate value of the isothermal

compressibility is available through the expression

κT =φiκ
0
T,i +φkκ

0
T, j (2.8)

where φi is the volume fraction of component i in the solution, calculated from the prod-

uct of the bulk density of this component and its partial molar volume, ρi Vi , at the given

composition [9]. κ0
T,i is the isothermal compressibility of a pure system of component i.

For complex mixtures, equation (2.8) will not give very accurate estimates of the isother-

mal compressibility, but it can provide an indication of its order of magnitude.

2.2 Ensembles and Fluctuations

An ensemble can be defined in two ways. Either it describes the set of variables that are

controlled throughout the experiment or simulation, or it refers to a collection of all pos-

sible microstates of the system, called ensemble members [31]. Some of the most com-

mon ensembles are the micro canonical ensemble, grand canonical ensemble, canonical

ensemble and the isobaric-isothermal ensemble [32]. The micro canonical ensemble is

represented by the fixed variables: number of particles N, V, and energy, E . The grand

canonical ensemble represents an open system in a heat bath, which means that µ, V and

5



2. THEORETICAL BACKGROUND

T are held constant. The canonical ensemble represents a closed system in a heat bath,

meaning that N, V and T are constant. The isobaric-isothermal ensemble, with the fixed

variables N, p and T, is the one most used in experiments and engineering applications.

All properties that are not controlled by the ensemble will therefore fluctuate around a

mean value. The magnitude of such fluctuations for a general property B, can be mea-

sured by

σ2
B = 〈(B −〈B〉)2〉 = 〈B 2〉−〈B〉2 (2.9)

Each ensemble is also represented by a particular partition function, which is a sum of

Boltzmann factors specifying how particles are partitioned throughout the accessible states

[31]. These partition functions provide a connection between macroscopic thermody-

namic properties and microscopic models, since a number of thermodynamic properties

can be described by the ensemble’s partition function, or its derivatives. Take as an exam-

ple, the grand canonical partition functionΞ, which is coupled to the product of pressure

and volume through the fundamental connection

p(T,V ,µ)V = kBT lnΞ(T,V ,µ) (2.10)

where kB is the Boltzmann constant [33]. The second derivative of the partition function

is in turn related to fluctuations of particle number through

(kBT )2
(
∂2 lnΞ(T,V ,µ)

∂µ2

)
T,V

= 〈N 2〉−〈N〉2 (2.11)

where the brackets 〈· · ·〉 denote ensemble averages. Thus, by measuring something as

simple as average number of particles, a large variety of thermodynamic properties are

available [33]. The isothermal compressibility is actually available through fluctuations

both in the µV T and in the N pT ensemble. By fluctuation of number of particles in the

µV T ensemble, it is expressed as

κT = V

T kB

〈N 2〉−〈N〉2

〈N〉2
(2.12)

6



2. THEORETICAL BACKGROUND

while it also is available from volume fluctuations in the N pT ensemble by

κT = 1

T kB

〈V 2〉−〈V 〉2

〈V 〉 (2.13)

This connection means that the relative fluctuations in volume in the N pT ensemble are

equal to the relative fluctuations in number of particles in the µV T ensemble, provided

that the average volume of the N pT system, 〈V 〉, is equal to the constant volume of the

µV T system, V.

In real life, these fluctuations arise naturally, as a result of which other properties are held

constant. When performing simulations, the goal is to mimic this behaviour properly,

and to make sure that the fluctuations follow the distributions determined by the parti-

tion functions. Having the correct fluctuation distributions becomes especially important

when measuring equilibrium averages that are sensitive to, or dependent on fluctuations

[34]. A region in which fluctuations should be treated with particular care, is close to the

critical point of the system. For fluids, this is at the given temperature, pressure and vol-

ume, where the phase boundary between liquid and gas ceases to exist. The region is

characterized by large fluctuations in local thermodynamic variables, and in the point it-

self, the amplitude of the fluctuations will diverge [35]. One practical example of this is

the isothermal compressibility, which becomes infinite in the critical point. Since it is di-

rectly coupled to fluctuations through equations (2.12)-(2.13), these clearly also need to

reflect this behaviour [36].

2.3 Molecular Distribution Functions

The above introduced connection between macroscopic thermodynamic properties and

microscopic behavior is the main subject of molecular theories of liquids and liquid mix-

tures [1]. Central to both these theories are the molecular distribution functions, since

these convey local information about the densities, and the correlation between densities

at different points in the system.

A molecule’s location in space can be described by the vector r = (x, y, z), where x, y

and z are Cartesian coordinates [33]. However, this description of the configuration is

only complete if the molecule is spherical. If the molecule is non-spherical, an additional

three angles are needed to describe the orientation of the molecule, specified by the vec-

7
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torω= (φ,θ,ψ), whereφ, θ andψ is the set of Euler angles. For some cases, the molecule’s

internal degrees of freedom, which consists of rotation and vibration, also need to be in-

cluded in the description. However, for the purpose of this text, the description of the

spatial coordinates of rigid molecules is sufficient. The molecular distribution functions

are here presented for a two-component mixture, consisting of the species i and k, in a

grand canonical system.

Two central functions in this description are the singlet distribution function, ρ(1)
i (r1), and

the pair distribution function, ρ(2)
i k (r1,r2). These both provide useful information when in-

tegrated over the entire volume V. The first can be regarded as the local density at the point

r1. For an infinitesimal small volume dr1, located at the point r1, the product ρ(1)
i (r1)dr1

can therefore be viewed as the average number of particles in that volume element. Con-

sequently, the integration of the product over the entire volume V becomes the average

number of particles in the entire system

∫
V
ρ(1)

i (r1)dr1 = 〈Ni 〉 (2.14)

The product ρ(2)
i k (r1,r2)dr1dr2 is interpreted as the average number of pairs of species i

and k occupying the volume elements dr1 and dr2. The double integral of this product

over V therefore becomes the average number of pairs occupying the entire system

∫
V

∫
V
ρ(2)

i k (r1,r2)dr1dr2 = 〈Ni Nk〉−δi k〈Ni 〉 (2.15)

where δi k is the Kronecker-delta, which is equal to one when i = k and zero otherwise.

See reference [1] for full derivation of above equations. The fluctuations of number of

particles of a two-component mixture in an open volume are therefore expressed as

∫
V

dr1

∫
V

dr2

[
ρ(2)

i k (r1,r2)−ρ(1)
i (r1)ρ(1)

k (r2)
]
= 〈Ni Nk〉−〈Ni 〉〈Ni 〉−δi k〈Ni 〉 (2.16)

For homogeneous and isotropic mixtures, the molecules are translational and rotational

invariant. This means that the singlet molecular distribution function is expected to have

the same value at any point r1 in the fluid. This value is the number density, given by

ni = 〈Ni 〉/V , and will be equal to the macroscopic number density ρi . The pair distri-

bution function can also be written in terms of the bulk molecular concentration, by the

8



2. THEORETICAL BACKGROUND

combination

ρ(2)
i k (r1,r2) = ρiρk gi k (r1,r2) (2.17)

but this expression includes the additional term gi k (r1,r2), which is identified as the loca-

tional pair correlation function.

2.3.1 Radial Distribution Function

The assumption of a homogeneous mixture also has an effect on the above introduced

pair correlation function. For instance, if r1 is chosen at the origin, the relative orientation

of the second particle is of no importance. By introducing the variable r12 =| r1 − r2 |, the

pair correlation function can be expressed explicitly as a function of the distance r12. This

function is commonly referred to as the radial distribution function (RDF), and is central

to theories of the liquid state because it characterizes local structure of the system [37].

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

Figure 2.1: Radial distribution function of a pure Lennard-Jones system with parameters
ε= 1 and σ= 1 and reduced density ρσ3 = 0.7.

The physical meaning of this function is the probability of finding a molecule of type k

at a distance r12 from a molecule of type i . This probability is expressed as relative to the

ideal gas distribution [38]. Subsequently, the RDF of an ideal gas in an open system is

g∞
ideal(r12) = 1 [39]. Since the correlation between the local densities at two points become

9



2. THEORETICAL BACKGROUND

smaller with the separation distance, the RDF should also for non-ideal, open systems

reach unity for large values of r [1]. For closed and finite systems, the RDF of an ideal

gas is gideal(r12) = 1− 1/N . Consequently, non-ideal closed systems also will approach

this value for large values of r. This difference, and where it originates from is further ex-

plained in the applications of RDF in section 3.3.1.

The shape of the RDF is highly dependent on the density. Take for example, a fluid consist-

ing of identical particles described by the Lennard-Jones potential (described in section

3.1.1). For all densities, the first peak of the RDF will appear close to the minimum of the

Lennard-Jones potential, which is located at rmin = 21/6σ. For dilute systems this will be

the only peak, but at larger densities, new peaks will develop and occur nearly at multi-

ples ofσ, r ≈σ,2σ,3σ, ... , which arise due to behaviour of packing of spherical molecules

about another molecule [1]. The point where the RDF approaches unity is regarded as

the structural correlation length, ξ, of the fluid. It represents the extent of the correlation

between the local densities at two points in the mixture [1]. Figure 2.1 shows the RDF for

a system with reduced density ρσ3 = 0.7 and structural correlation length ξ≈ 7σ.

2.4 Kirwood-Buff Theory of Solutions

One central application of the RDF is the powerful and general solution theory presented

by Kirkwood and Buff [3]. This theory provides direct relations between various ther-

modynamic properties and the molecular distribution functions in the grand canonical

ensemble. It can be used for mixtures of any number of components [4], and is widely ap-

plied in physical chemistry due to its ability to investigate complex, liquid mixtures. The

theory defines the so-called Kirkwood-Buff (KB) integral

Gi k ≡
∫ ∞

0

[
g∞

i k (r )−1
]

4πr 2dr (2.18)

which is the integral of g∞
i k (r12) over of an infinite, open system. The physical meaning

of these integrals is the measure of mutual affinity between component i and k in the

mixture. The connection to the local structure becomes evident in the expression for the

KB integrals for finite volumes, which is obtained by combining equations (2.16)-(2.17)

10



2. THEORETICAL BACKGROUND

and dividing by ρiρkV

GV
i k = 1

V

∫
V

∫
V

[
g∞

i k (r12)−1
]

dr1dr1

=V

(〈Ni Nk〉−〈Ni 〉〈Nk〉
〈Ni 〉〈Nk〉

− δi k

〈Ni 〉
) (2.19)

Full derivation of above expression can be found in reference [4].

While the KB integrals themselves can provide insight to local structure, they are most

useful in their relation to the thermodynamic quantities, such as partial derivative of

chemical potential, isothermal compressibility, and partial molar volumes of the com-

ponents in the mixture.

For pure systems, some of these properties can be calculated directly from fluctuations

of number of particles in the system (see section 2.2). This is not as straight forward for

multicomponent systems, since the intermolecular interactions can be very different for

the different components in the mixture. This is where the KB integrals become particu-

larly useful. Through the connection provided by the grand canonical partition function

(equation (2.10)), the thermodynamic properties are instead expressed as combinations

of the KB integrals of the mixtures. Presented here, are the partial derivative of the chemi-

cal potential with mole fraction, isothermal compressibility and the partial molar volumes

(
∂µi

∂xi

)
T,p

= kBT

xi (1+xi ck (Gi i +Gkk −2Gi k )
(2.20)

κT = T

kB

1+ ci Gi i + ckGkk + ci ck (Gi i Gkk −G2
i k )

ci + ck + ci ck (Gi i +Gkk −2Gi k )
(2.21)

Vi = 1+ (Gkk −Gi k )ck

ci + ck + ci ck (Gi i +Gkk −2Gi k )
(2.22)

All these expressions require the KB integrals from open systems of infinite volume. The

KB integrals calculated from equation (2.19) of finite sized volumes can not be used di-

rectly in equations (2.20)-(2.22), since they are not equal to the ones defined by equation

(2.18). For homogeneous fluids in the limit V →∞, the system is translationally invariant,

which means that the effects of orientation can be integrated out of the left hand side of
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equation (2.19) using the variable transformation r2 → r = r1 − r2. The double integral is

then reduced to a single integral which yields the original expression for the KB integral

in equation (2.18). However, for finite-size systems, the integration over r depends on r1

which means that the variable transformation is not possible. If a finite volume still was

to be used in the integral equation (2.18), it would give −δi k /ci , which does not represent

the true values of neither Gi k , nor GV
i k [39]. Therefore, to obtain the exact KB integrals of

finite volumes, and approximate values of the KB integral in the thermodynamic limit, al-

ternative methods have to be used. Some of these are introduced in the following section.

Another problem that arises when working with simulations of finite volumes is that the

RDFs are calculated for closed and finite systems, while RDFs for open and infinite sys-

tems are required for the KB integrals. The main difference is the asymptotic behaviour

of the RDF, which is different for open and closed systems (see section 2.3.1). This means

that, not only does the integration provide incorrect answers, but the integrand also con-

tains errors. However, several methods are available for the estimation of g∞
i k (r ) from the

RDF calculated for the closed and finite system gi k (r ) [8] [19] [20].

12
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3 Computational Background

The main tool used in this work is the simulation method molecular dynamics. The most

important aspects of this method is therefore presented in the following section. Then

follows a description of different approaches used for computation of KB integrals. All

methods include computation of KB integrals for finite volumes followed by different

techniques to obtain their values in the thermodynamic limit.

3.1 Molecular Dynamics

A system of N particles can be described as a classical many-body system if the motions

of the particles obey the laws of classical mechanics. Such a system can, in each point in

time, be described by 3N coordinates r and 3N momenta p, which together spans the 6N-

dimensional phase space [37]. The system’s energy is expressed by the Hamiltonian, H ,

which under the classical description can be written as the sum of kinetic- and potential

energy functions

H (r,p) =K (p)+V (r) (3.1)

The kinetic energy is usually on the form

K (p) =
N∑

i=1

p2
i

2mi
(3.2)

where mi is the mass of particle i. The potential energy function, however, contains infor-

mation about the particles’ interactions, and will largely depend on the types of particles

in the system. Molecular dynamics (MD) is a simulation method that utilizes the interac-

tions arising from the potential energy function to describe the forces in an equation of

motion. In that way, is attempting to mimic the motion of particles by computing trajec-

tories consisting of each particle’s positions and velocities in the entire time-evolution of

the system [40]. Its governing equation of motion is Newton’s second law

mi
d2ri

dt 2
= Fi (3.3)

where ri is the coordinates of particle i and Fi is the sum of forces acting on particle i.
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The forces are computed from the potential energy function, V (r), which is modelled by

the interaction potential (described in section 3.1.1) and depends on the set of positions

of the N particles. Since the masses of the electrons are much smaller than the masses of

the nuclei, the electrons can more rapidly adjust to changes in nuclear position and relax

to their ground state much faster than the nuclei. As a result, the electronic and nuclear

motions can be separated. Therefore, the Born-Oppenheimer approximation can be as-

sumed to operate, meaning that the nuclear coordinates are the only dynamical variables

included in the calculation of the interactions [41]. In order to properly describe the time

evolution of the motion of the particles, and achieve accurate results, a good description

of these interactions is needed.

3.1.1 Interaction Potential

For a system of N particles, the potential energy as a function of the position of all the

particles in the system r = [r1,r2, ...,rN ] can be expressed as a sum of different terms

V (r) = ∑
i=1

v1(ri )+ ∑
i=1

∑
j=i+1

v2(ri ,r j )+ ∑
i=1

∑
j=i+1

∑
k= j+1

v3(ri ,r j ,rk )+ ... (3.4)

where the first term represents the effect of an external field while the remaining are due

to interactions between particles [42]. The third term, namely the triplet interactions, is

rarely included in MD simulations because its computation is very time consuming. The

second term is therefore the most important, and gives rise to the so-called pair poten-

tial approximation. The summation of this term indicates the summation over all distinct

pairs of i and j without computing any pair twice. The pair potential approximation ex-

presses this by

Vpair(r) = 1

2

∑
i 6= j

v2(|ri − r j |) (3.5)

where the sum is over all the pairs, but a factor of one half is included to make sure that no

pair is counted twice, and i 6= j indicates that one particle’s interaction with itself should

not be counted either. The pair potential is also assumed to be isotropic, which is why it

can be expressed as a function of the magnitude of the pair separation | ri −r j | (or simply

ri j ) [42].
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Figure 3.1: Lennard-Jones potential curve for ε= 1 and σ= 1.

For spherically symmetric particles with no charge, the pair potential can be visualized as

an energy curve as a function of the separation distance, ri j . The typical features of such

a potential curve are as follows. There is an attractive tail at large separations, which is ap-

proaching zero at infinite separation. This is due to the correlations of the electron clouds

of the atoms, namely ’London’ and ’van der Waals’ dispersions. At shorter separations,

the energy is reduced until it reaches a minimum, before it rapidly increases. This repre-

sents the repulsive wall at small separations, due to overlap of electron clouds, namely the

’Pauli’ repulsion [42] [43]. One often used model, that represents this empirical behavior,

is the Lennard-Jones (LJ) potential

VLJ(ri j ) = 4ε

[(
σ

ri j

)12

−
(
σ

ri j

)6]
(3.6)

where the term r−6
i j represents the long-range attractive tail, and the r−12

i j is the repulsive

term. The parameters σ and ε are the collision diameter, and the potential well depth

respectively (see figure 3.1 for illustration). When these are chosen appropriately for the

components of interest, the LJ potential provides a reasonable description of the pair po-

tential [42].
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For charged particles, an additional term is needed to describe the interactions arising

from charges. The pairwise Coulombic interactions describe these as

VCoulomb(ri j ) = qi q j

4πε0ri j
(3.7)

where qi is the charge of particle i and ε0 is the dielectric constant of the interparticle

medium [38]. The total pair potential then becomes

Vpair(r) = 1

2

∑
i 6= j

(
VLJ(ri j )+VCoulomb(ri j )

)
= 1

2

∑
i 6= j

4ε

[(
σ

ri j

)12

−
(
σ

ri j

)6]
+ 1

2

∑
i 6= j

qi q j

4πε0ri j

(3.8)

3.1.2 Boundary Conditions

Treatment of boundaries is of great importance in molecular simulations. Normally, the

aim is to compute macroscopic properties, but still keep the number of particles at a min-

imum. The result is that surface effects will influence a large number of the particles, and

making these experience different forces than the particles in the bulk [38]. Since we of-

ten are interested in the bulk phase, these surface effects are unwanted. Introducing peri-

odic boundary conditions (PBC) solves this problem. The simulation cell is then repeated

through space, representing an infinite lattice. This means that when a particle exits the

simulation box on one side, it reappears on the opposite side [42].

3.1.3 Truncation of Potential

The most time consuming part of computer simulations of molecular systems is the com-

putation of non-bonded interactions [37]. Even when using the pair potential approxima-

tion, the interactions are still computed for every pair of particles in the system, making

the computational effort scale as O (N 2). For many systems, this is an unnecessary effort,

since the forces often become unimportant at large separation distances. One example

is the LJ potential, which falls off very rapidly with the distance ri j , and already at 2.5σ

has just 1% of its value at σ. This can also be observed in figure 3.1 where the potential

16



3. COMPUTATIONAL BACKGROUND

curve is close to zero at this point. Simplifications in computations of the interactions

are therefore often applied, in order to lower the computational cost. One simplification

often used for LJ systems is the truncated potential, which employs a cut-off distance for

the potential. This means that particles separated by a distance longer than the cut-off

distance experience zero interaction from each other.

Another principle that normally is applied together with the cutoff, is the minimum image

convention, which becomes necessary due to the PBCs [38]. The idea behind this princi-

ple is that each particle should at most "see" one image of every other particle in the sys-

tem. The cut-off can therefore not be larger than half the size of the total simulation box,

to make sure that no particle sees its own image, or one of the other particles twice. For LJ

systems, the cut-off is often set to 2.5σ. Since the forces in this potential are short-ranged,

this mostly gives sufficiently small errors in the dynamics of the system, meaning that

they still are representative of the macroscopic system the model is designed to simulate

[44]. However, if long-range forces are present, a cut-off this short will lead to much larger

errors. For electrostatic interactions, the range of the forces is often greater than half the

box length, meaning that using a cut-off at all would lead to errors. A method often used

to solve this problem is the Ewald summation [45], where each charge in the system is

allowed to interact with an infinite array of periodic images of the simulation cell, mak-

ing the cut-off for these interactions effectively infinite [38]. The Coulombic term, from

equation (3.8), for interactions between the particles in the central box of length L and the

particles in all surrounding image boxes is therefore written as as

Vpair(r) = 1

2

∑′
|n|=0

N∑
i=1

N∑
j=1

qi q j

4πε0 | ri j +n | (3.9)

where n = [nxL,nyL,nzL] is the position of the image box, and ri j is the distance between

the charges i and j in Cartesian coordinates. The prime on the first sum indicates that the

series does not include the interaction i = j for n = 0, since this would represent the same

particle within the central box [38]. In the current version of equation (3.9), the charges

are represented as point charges. The Ewald method converts this to a sum over the inter-

actions between the charges, plus a neutralizing charge distribution of equal magnitude,

but of opposite sign. These charge distributions are represented by Gaussian distribu-

tions, usually on the form

qiα
3

π(3/2)
exp(−α2r 2) (3.10)
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The motivation behind this, is that the slowly converging sum in equation (3.9) is split

into two series, each of which converge much more rapidly. The final equation therefore

contains these two sums, and two additional correctional terms, written as

VEwald(r) = 1

2

N∑
i=1

N∑
j=1

( ∞∑′
|n|=0

qi q j

4πε0

erfc(α | ri j +n |)
| ri j +n |

+ ∑
k 6=0

1

πL3

qi q j

4πε0

4π2

k2
exp

(
− k2

4α2

)
cos(k · ri j )

− αp
π

N∑
k=1

q2
k

4πε0
+ 2π

3L3

∣∣∣∣ N∑
k=1

qk

4πε0
rk

∣∣∣∣2)
(3.11)

The first term represents the real space summation, which includes the error function

erfc(x) = 2p
π

∫ ∞

x
exp(−t 2)dt (3.12)

where α is the width of the Gaussian curves. A higher value of α leads to faster converge

for the real space summation. The second sum is performed in the reciprocal space, and

therefore consists of the reciprocal vectors k = 2πn/L. This summation also contains the

α parameter, and converges more rapidly for lower α, in contrast to the first summation,

which converges more rapidly for higher α. A point of balance therefore needs to be de-

termined in order to optimize the convergence of the combined summation. In addition,

two correctional terms are needed. The first subtracts the sum of Gaussian functions that

interact with themselves in real space, while the second is only included if the surround-

ing medium is vacuum.

3.1.4 Velocity Verlet

After computing the forces acting on all the particles in the system, the equation of motion

(equation (3.3)) needs to be integrated. The usual approach is a finite difference method,

namely the velocity Verlet integrator scheme [37]. This method computes the positions

and velocities by the following equations

r(t +∆t ) = r(t )+∆tv(t )+ 1
2∆t 2a(t ) (3.13)

18



3. COMPUTATIONAL BACKGROUND

v(t +∆t ) = v(t )+ 1
2∆t [a(t )+a(t +∆t )] (3.14)

where v are the velocities, a are the accelerations and ∆t is the time step. Since the com-

putation of the velocity by equation (3.14) requires the acceleration at both t and t +∆t ,

this method also involves a predictor step. This is achieved by using

v(t + 1
2∆t ) = v(t )+ 1

2∆ta(t ) (3.15)

before computing forces and accelerations at time t+∆t , and then completing the velocity

calculation with

v(t +∆t ) = v(t + 1
2∆t )+ 1

2∆ta(t +∆t ) (3.16)

where equation (3.15) is inserted for v(t + 1
2∆t ). The uses of the velocity Verlet algorithm

are widespread, and it is probably the most attractive method for solving the equations of

motion [42]. It is time reversible and area preserving (which leads to low long-term energy

drift) in addition to being efficient, numerically stable and simple, which all are desirable

traits [37].

3.1.5 Time Averages and Ensemble Averages

The aim of a MD simulation is usually to compute thermodynamic properties of a system.

To measure these properties, they need to be expressed as a function of the position and

momenta of the particles in the system. When equilibrium or steady state is reached, the

properties are independent of time, but will fluctuate around a mean value. Only then

can properties like pressure, temperature and internal energy be expressed as averages

over time [37]. For the general property, the time average over the dynamical history of

the system can be expressed as [32]

〈B〉t = lim
τ→∞

1

τ

∫ τ

0
B [rN (t ),pN (t )]dt (3.17)

Another alternative is to express the property as an average over all the members of an en-

semble at one snapshot in time, namely an ensemble average [42]. The ensemble mem-
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bers are regarded as replicas of the physical system of interest, and each member’s distri-

bution of phase points are described by the partition function of the given ensemble.

3.2 Small System Method

In thermodynamics, the main difference between small systems and large systems is the

surface area to volume ratio. Since this ratio is much larger for small systems, the sur-

face effects become much more significant, and the properties can no longer be directly

compared to thermodynamic properties of macroscopic systems [46]. This becomes clear

by studying the system’s extensive properties, which for small systems no longer are pro-

portional to volume, but higher order functions of size and shape. As a result, classical

thermodynamics can not be applied for systems far from the thermodynamic limit, with-

out first doing some modifications [47]. The formalism developed by Hill [46] provides

such modified equations through generalizing Gibbs equation to also apply for small sys-

tems. Hill’s thermodynamics of small systems in the grand canonical ensemble can also

be linked to the probability distributions of statistical mechanics. When the system is in

the grand canonical ensemble, the particles are free to move in and out of the small sys-

tem, which means that fluctuations in particle- and energy-density will arise [25]. These

fluctuations are related to the second moments of the probability distribution and there-

fore also to fundamental thermodynamic quantities of small systems.

Figure 3.2: Illustration of the sampling of three configurations from the simulation trajectory
and the procedure of sampling small spherical systems by varying the size. Simulation
snapshots generated by Ovito version 2.9.0 [48].
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The Small System Method (SSM), developed by Schnell et al. [25], exploits this connection

to obtain macroscopic properties from energy- and density-fluctuations of small systems.

The calculations are performed as MD simulations that place small non-periodic subsys-

tems at random positions inside a larger periodic reservoir. By systematically increasing

the volume of the subsystem, the wanted properties can be calculated as functions of size

and shape of the small system. These properties scale linearly with the inverse cube root

of the volume they were calculated in, which means that the macroscopic value can be

found by extrapolation to the thermodynamic limit. The small system can only be re-

garded as in the grand canonical ensemble if the reservoir also is in the grand canonical

ensemble, or if the small system is much smaller than the reservoir. For a closed system, a

density change in the subvolume can not occur without a corresponding density change

in the reservoir. This will affect the fluctuations of the largest of the embedded small sys-

tems, since the simulation box is not functioning properly as a grand canonical reservoir

at this point, and deviations from linearity will occur. Strøm et al. [49] also concluded

that the surface of the small system satisfies Gibbs thermodynamics for flat surfaces [50],

which means that also the properties of the surface can be studied by Hill’s thermody-

namics for small systems [46].

There are two important things to consider when using SSM to calculate properties in

the thermodynamic limit. The first condition is that the system is sufficiently far from its

critical point, where fluctuations are very long ranged [44]. The second is that the total

simulation box (reservoir) is large enough, such that the calculated properties for the dif-

ferent sized subvolumes display a definitive linear region as a function of inverse system

size.

3.2.1 Calculating Properties

In the thermodynamics of small systems presented by Hill [46], N replicas of the small

system were considered. Together, these replicas created an ensemble large enough to

follow the laws of classical thermodynamics. The Gibbs equation for this ensemble is

dU GC
t = T dSGC

t −pGCdVt +
n∑

i=1
µi dN GC

i ,t +X GCdN (3.18)

where Ut is internal energy of the total system of N replicas, St is entropy of the total sys-

tem of N replicas, Vt is volume of the total system, µi is chemical potential of component
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i, and X GC is given by

X GC(T,V ,µ j ) =
(
∂U GC

t

∂N

)
St,V ,Ni

≡−p̂(T,V ,µ j )V (3.19)

which can be interpreted as the reversible work needed to add one replica of the small

system at constant St, V and Nt. This means that St and Nt need to be redistributed over

one more replica and that Vt = N V increases. The superscript GC means grand canoni-

cal, and specifies that the variables should be calculated as a function of the total system’s

controlled variables T, V, µ j and N . The property p̂ is called the integral pressure and is

only equal to the differential or normal pressure p in the thermodynamic limit [49]. When

p̂ differs from p, the system can be considered as small [51]. By introducing ensemble av-

erages of each property (B GC
t (T,V ,µ j ,N ) ≡ N B GC(T,V ,µ j )) the average enthalpy of one

replica can be written as H GC ≡U GC+pGCV . However, the enthalpy of a small system with

the controlled variables T, V and µ j is defined by

Ĥ GC ≡U GC + p̂V (3.20)

By inserting the expressions for the ensemble averages of the variables into equation

(3.18) and using the expression for the average internal energy of a single small system,

the Gibbs-Duhem-like equation of a small system replica becomes

d(p̂V ) = SGCdT +pGCdV +
n∑

i=1
N GC

i dµi (3.21)

and we get

SGC =
(
∂p̂V

∂T

)
V ,µ j

pGC =
(
∂p̂V

∂V

)
T,µ j

N GC
i =

(
∂p̂V

∂µi

)
T,V ,µ j 6=i

(3.22)

See references [49] or [51] for full derivation of the above equations. The superscript GC

is from now on omitted. The equations (3.22) are particular for the small system, but are
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still linked to the probability distributions of statistical mechanics through Ξ, known as

the grand canonical partition function [46]

p̂(T,V ,µ j )V = kBT lnΞ(T,V ,µ j ) (3.23)

As already mentioned, the second derivatives of the partition function are connected to

fluctuations in particle- and energy-density. It is therefore possible to obtain fluctuation

expressions for some central quantities, based on the derivatives of p̂V (equations (3.22)).

For a two-component system, the fundamental properties of interest are the particle den-

sity ni ≡ 〈Ni 〉/V , the derivative of the internal energy density u ≡ 〈U 〉/V

kBT

(
∂u

∂µi

)
T,V ,µ j 6=i

= 〈U Ni 〉−〈U 〉〈Ni 〉
V

(3.24)

and a property defined by particle density fluctuations given by

νi k ≡ kBT

V

(
∂Ni

∂µk

)
T,V ,µ j 6=k

= 〈Ni Nk〉−〈Ni 〉〈Nk〉
V

(3.25)

These properties are central because they are linear combinations of Ni , U, (∂u/∂µi )T,V ,µ j 6=i

and (∂Ni /∂µk )T,V ,µ j 6=k which are all extensive properties in sense of Hadwiger’s theorem

(explained in Klain [52]). This makes ni , u and the properties defined in equations (3.24)-

(3.25) extensive as well. According to Hadwiger [52], an extensive property can be ex-

pressed as a sum of four terms, each depending on the shape or size of the system. It was

also shown by Blokhuis [53] that one extra term, proportional to the integral of the square

of the total curvature, is needed. When only the value in the thermodynamic limit is of

interest, higher order terms can be discarded, and only two terms remain. Consequently,

extensive properties are expressed as a sum of those two contributions, one proportional

to the volume and one to the surface area. This means that as a first approximation, the

density of a general extensive property can be written as

b(T,V ,µ j ) = B(T,V ,µ j )

V
= b∞(T,µ j )+Ω

V
bs(T,µ j ) (3.26)

where b∞ is the volume contribution and bs is the surface contribution of b, while Ω is
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the surface area. Hence, we can write the extensive properties as

kBT

(
∂u

∂µi

)
T,V ,µ j 6=i

= kBT

(
∂u

∂µi

)∞
T,V ,µ j 6=i

+kBT
Ω

V

(
∂u

∂µi

)s

T,V ,µ j 6=i

(3.27)

νi k = ν∞i k +
Ω

V
νs

i k and ni = n∞
i +Ω

V
ns

i (3.28)

Consequently, these are the properties that can be extrapolated to the thermodynamic

limit using scaling laws. However, most properties of interest are not extensive in the

sense of Hadwiger’s theorem (explained in Klain [52]), and can therefore not be directly

split into surface and volume terms. The solution is therefore to write these properties

as combinations of the proper extensive properties (given in equations (3.27) and (3.28))

and find the thermodynamic limit values of the combinations. Using the equation for the

enthalpy of a small system (3.20) and expressing the partial enthalpy as a combination of

the extensive properties in equations (3.27)-(3.28) gives

(
∂〈Ĥ〉
∂〈Ni 〉

)
T,V ,µ j 6=i

= 〈U Ni 〉−〈U 〉〈Ni 〉+〈N〉kBT

〈N 2
i 〉−〈Ni 〉2

= kBT

(
∂u
∂µi

)∞
T,V ,µ j 6=i

+ Ω
V

(
∂u
∂µi

)s

T,V ,µ j 6=i
+n∞+ Ω

V ns

ν∞+ Ω
V ν

s

(3.29)

The same procedure can be applied for the KB integrals in the grand canonical ensemble

GV
i k =V

(〈Ni Nk〉−〈Ni 〉〈Nk〉
〈Ni 〉〈Nk〉

− δi k

〈Ni 〉
)

= ν∞i k + Ω
V ν

s
i k

(n∞
i + Ω

V ns
i )(n∞

k + Ω
V ns

k )
− δi k

n∞
i + Ω

V ns
i

(3.30)

In their work, Strøm et al. [49] investigated the effect of shape of the small systems on

the thermodynamic properties of water. It was discovered that the deviations from linear

behaviour become significant for the same volume of each shape (when the size of the

small system approaches the size of the reservoir). It was therefore determined that these

deviations were due to the finite size of the reservoir. To correct for this effect, a method

for describing the finite reservoir contributions to the volume and surface terms was sug-
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gested. This method assumes that the effect only is a function of the ratio of subvolume

to total simulation box. Hence, a general extensive property can be expressed as

b = b∞+Ω

V
bs + V

V0
br (3.31)

where br is the contribution from the reservoir effect, and V0 is the reservoir volume,

which is assumed to be of the same shape as the small systems. When the subvolume

fraction is unity (the small system is of the same size as the reservoir), the fluctuations in

equations (3.24)-(3.25) become zero. Hence, the general extensive property can be writ-

ten as

b =
[

1− V

V0

]
b∞+Ω

V

[
1−

(
V

V0

)4/3
]

bs (3.32)

This equation is valid for all extensive properties in sense of Hadwiger’s theorem (ex-

plained in Klain [52]) if they can be expressed by fluctuations that approach zero when

V /V0 → 1. It should therefore provide volume and surface contributions of such prop-

erties, independent of the size of the reservoir. In other words, the underestimation of

extensive properties, that can arise when the reservoir that is not large enough, can be

corrected for.

At the other end of this scale, where the volumes are smaller than the the size of the parti-

cle, the behaviour depends on the instantaneous values of Ni . Since Ni only can be 0 or 1

for these volumes, their expected value for νi i in the limit is

lim
V →0

νi i = lim
V →0

〈N 2
i 〉−〈Ni 〉2

V
= 〈Ni 〉−〈Ni 〉2

V
≈ 〈Ni 〉

V
= ni (3.33)

The first equality is true because N 2
i = Ni when Ni either is equal to 1 or 0, and the second

is true because 〈Ni 〉À 〈Ni 〉2 for very small average values 〈Ni 〉. The interaction between

unlike particles should approach zero. This is because at least one of Ni and Nk always is

zero when the volume is so small that it only can contain one particle. The result is that

the product Ni Nk always becomes zero, while the product 〈Ni 〉〈Nk〉 becomes so close to

zero that it is negligible.
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3.3 Integration of Radial Distribution Function

Recall that, in addition to using the fluctuation equations (2.19), the KB integrals can be

obtained from integration of the RDF, using

GV
i k = 1

V

∫
V

∫
V

[
g∞

i k (r12)−1
]

dr1dr1 (3.34)

where the double integral only can be reduced to a single integral in the limit V → ∞.

As mentioned in section 2.3.1, this results in a problem when attempting to calculate KB

integrals for finite volumes. A proposed solution to this problem was presented by Krüger

et al. [19] (explained in further detail in [54]) in their derivation of an exact expression for

finite-volume KB integrals. This expression includes the purely geometrical function

w(r ) ≡ 1

V

∫
V

∫
V
δ(r − r12)dr1dr2 (3.35)

where δ(r − r12) is the Dirac delta function. By combining w(r ) with equation (3.34), the

double volume integrals are reduced to a single radial integral on the form

GV
i k =

∫ [
g∞

i k (r )−1
]

w(r )dr (3.36)

The function w(r ) is characteristic for the volume V , and for hyperspheres of radius R in

one, two and three dimensions, it can be calculated analytically. For a three-dimensional

hypersphere the function is

w(r ) = 4πr 2
(
1− 3r

4R
+ r 3

16R3

)
(3.37)

which gives the final expression for the KB integrals in a finite, three-dimensional system

on the form

GV
i k = 4π

∫ 2R

0

[
g∞

i k (r )−1
]

r 2
(
1− 3r

4R
+ r 3

16R3

)
dr (3.38)

It was also shown by Krüger et al. [19] that GV
i k scales linearly with the inverse system size
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for systems of large R. The argument was based on considering the property

F ≡
∫

V

∫
V0−V

[
g∞

i k (r )−1
]

dr1dr2

=
∫

V

∫
V0

[
g∞

i k (r )−1
]

dr1dr2 −
∫

V

∫
V

[
g∞

i k (r )−1
]

dr1dr2

(3.39)

for a closed volume V, where V0, as before, is the volume of the reservoir. For sufficiently

large V, only particles in a layer of thickness equal to the correlation length of the sys-

tem, on either side of the surface, Ω, contribute to F. This means that F scale as the size

of the surface for increasing volumes. Krüger et al. [19] then assumed that the variable

transform r2 → r = r2 − r1 could be applied for the first integral on the right-hand side

of equation (3.39). By also recognizing that the second integral on the right-hand side of

equation (3.39) is equal to the one in equation (3.34), we get Ω∝ F =V Gi k −V GV
i k . Since

the surface to volume ratio of spheres is proportional to the inverse radius, the expression

becomes GV
i k ∝ 1/R +Gi k .

Similarly to the SSM approach, the KB integrals can therefore be calculated for differ-

ent sized volumes, plotted as a function of the inverse system size, and extrapolated to

the thermodynamic limit. In other words, estimates of Gi k can be obtained by linear ex-

trapolation of GV
i k to 1/R → 0. The ability to calculate KB integrals for open systems while

simulating closed ones makes the method very useful when use of open systems are pro-

hibited, as it is in MD simulations. The procedure of the linear extrapolation, and effects

of the finite size of the system is further discussed in [54]. Dawass et al. [55] has also re-

cently shown that the method is not constrained to hyperspheres, but that the same pro-

cedure can be applied to calculate KB integrals from subvolumes of complex, arbitrary

shapes.

3.3.1 Finite-Size Correction of Radial Distribution Function

When using the RDF to calculate KB integrals in finite and closed systems, there are two

finite-size effects to consider. The first arises from the finite, and often too small, size of

the domain used to compute the KB integrals, and can be overcome by the method pro-

posed by Krüger et al. [19]. The second effect is due to the finite number of particles inside

a closed system, which will affect the calculation of the RDF.
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As mentioned in section 2.3.1, the RDFs calculated in closed and finite systems differ from

those calculated in open and infinite systems. The difference is in a term of order N−1,

that arises from the finite number of particles in a closed system [56]. For large systems,

consisting of many particles, this difference is small, but it does become important when

integrating over the entire volume, as in equation (3.38). These discrepancies arise from

the density calculations performed around each particle in the system during the RDF

calculations. Fixing one particle at a specific point affects the density at any other point

in the system, and reduces it to ρ = (N −1)/V [4]. For a two-component system of species

i and k, the effect will depend on which component is fixed. Placing a particle of type i at

a fixed position changes the average number of i particles in the total system by exactly

-1, but it does not change the total number of particles of type k. For both pure fluids and

mixtures, the symmetry is not respected, and the average density will differ from the bulk

density, except in the limit V →∞ [19].

Since both the original expression for the KB integrals (2.18), and the Krüger equation

(3.38) require RDFs of open and infinite systems, this often becomes a problem when

performing MD simulations. Several methods are available to account for this, and a

comparison of the efficiency of three of these was performed by Dawass et al. [54]. They

concluded that a method proposed by Ganguly et al. [8] yields the most accurate results.

A similar analysis was performed by Milzetti et al. [22], which resulted in the same conclu-

sion. This method, from now on referred to as the Ganguly correction, takes into account

the effect on the density that arises from fixing one particle at a specific position. The idea

is that the excess or depletion of particle type k around a particle type i at local scale is

compensated by the excess or depletion at long distances, having that the total number

of particles is constant. The correction includes calculating the excess or depletion of the

number of molecules of type k around a central molecule of type i , as a function of the

distance r. The excess or depletion is calculated inside spherical volumes V (r ) where the

radius r is drawn from the central molecule of type i [54], and can be expressed as

∆Ni k (r ) =
∫ r

0
dr ′4πr ′2ρk [gi k (r )−1] (3.40)

where ρk is the bulk density of molecule type k. Assuming that the total simulation box is

cubic, with box length L, makes the expression valid for r < L/2. Longer distances are not

necessary, since it was concluded by Dawass et al. [54] that r should not be extended be-

yond half the length of the simulation box. The estimated RDF, according to the Ganguly
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correction is presented as

g Ganguly
i k (r ) = gi k (r )

Nk

(
1− V (r )

V0

)
Nk

(
1− V (r )

V0

)
−∆Ni k (r )−δi k

(3.41)

It is clear from the above equation that for infinitely large systems, g Ganguly
i k (r ) is equal to

gi k (r ).

3.4 Cortes-Huerto et al. [20] Scaling Equation

Cortes-Huerto et al. [20] proposed yet another method of obtaining the KB integrals in

the thermodynamic limit, that also utilizes small subsystems embedded in a MD simula-

tion box. The fluctuations are calculated in the same manner as for SSM, but it applies a

different technique to obtain the KB integrals in the thermodynamic limit. SSM is solely

based on the thermodynamics of small systems presented by Hill [46], and can be used to

obtain macroscopic values of all properties available from fluctuations. Cortes-Huerto et

al. [20] instead modified equation (2.19) for the purpose of calculating KB integrals in the

thermodynamic limit from the ones calculated for finite volumes of varying size. Since

the scaling equation is derived from the integral on left-hand side of (2.19), it is still con-

nected to the fluctuations of number of particles.

Cortes-Huerto et al. [20] stated that the motivation behind the derivation of this expres-

sion is that it explicitly takes the finite size of the simulation box into account. The reason-

ing is that the fluctuations are dependent on both the volume of the simulation box, and

the subvolume they are calculated in. The derivation starts off by defining an expression,

analogous to equation (2.19), that is valid for closed and finite reservoirs

GV ,V0
i k = 1

V

∫
V

∫
V

[
gi k (r12)−1

]
dr1dr1

=V

(〈Ni Nk〉′−〈Ni 〉′〈Nk〉′
〈Ni 〉′〈Nk〉′

− δi k

〈Ni 〉′
) (3.42)

where V0 is the volume of the total simulation box. The average number of particles of

type i is defined as 〈Ni 〉′ ≡ 〈Ni 〉V ,V0 . The RDF is also explicitly expressed as the one that is

obtained from a closed system. To account for this, a finite size correction is suggested on
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the form

gi k (r ) = g∞
i k (r )− 1

V0

(
δi k

ρi
+Gi k

)
(3.43)

This expression is based on the work by Ben-Naim [39], which describes the differences

between the RDFs obtained in open, and closed systems. In his work, it is also stated that

the effect of a closed system only has an influence on the RDF for distances r > ξ, and that

this becomes important when the integration extends to r →∞. It is named the closure

correlation, which in the asymptotic limit takes the form

gi k (r À ξ) = 1− 1

V0

(
δi k

ρi
+Gi k

)
(3.44)

Combining this with the asymptotic behaviour of the RDF of an open system (g∞
i k (r À

ξ) = 1), gives the proposed expression in equation (3.43). Since this correction is derived

based on the asymptotic behaviour of the RDFs, it strictly valid for r → ∞. Hence, ap-

plying it for the entire range of distances means that the difference between gi k (r ) and

g∞
i k (r ) is independent of r . On that point, this method differs from the Ganguly correction

[8] where the excess or depletion is considered for all distances r (see section 3.3.1).

Similarly to the work of Krüger et al. [19], the effect of the finite size of the subvolume

is also considered. As explained in section 3.3 the transformation r2 → r = r2 − r1 can not

be applied to equation (3.42) when V is finite. In order to solve the integral, it is therefore

split into the domains
∫

V

∫
V0

and
∫

V

∫
V0−V . The latter is solved by considering the same ar-

guments as used by Krüger et al. [57]. That is, the particles in the region V0−V will have a

contribution that is proportional the surface area of the subvolume [58]. This integral can

therefore be written as ΩC ′
i k , where C ′

i k is a proportionality constant that depends on the

thermodynamic state of the system. This, together with the expression for the correction

of the RDF in equation (3.43), turns equation (3.42) into

GV ,V0
i k = 1

V

∫
V

∫
V0

[
g∞

i k (r12)−1
]

dr1dr2 − V

V0

(
δi k

ρi
+Gi k

)
+ Ci k

V 1/3
(3.45)

where Ω/V ∝ 1/V 1/3 has been used for convenience, turning the proportionality con-

stant C ′
i k into Ci k . To solve the remaining integral, Cortes-Huerto et al. [20] applied the re-

striction Vξ <V <V0 where Vξ = 4πξ3/3. As a result, finite size effects due to oscillations in

RDF beyond V are neglected. Additionally, the PBCs are assumed to make the entire sys-
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tem translationally invariant, which means that the variable transform r2 → r = r2−r1, can

now be applied. Hence, the integral becomes the original expression in equation (2.18),

yielding the KB integral in the thermodynamic limit Gi k . The final expression therefore

becomes

GV ,V0
i k =Gi k

(
1− V

V0

)
− V

V0

δi k

ρi
+ Ci k

V 1/3
(3.46)

A more convenient version is obtained by introducing λ≡ (V /V0)1/3

λGV ,V0
i k (λ) =λGi k (1−λ3)−λ4δi k

ρi
+ Ci k

V 1/3
0

(3.47)

When λGV ,V0
i k (λ) is plotted as a function if λ, a linear region will appear for λ3 ≈ 0, where

the slope can be identified as the KB integral in the thermodynamic limit. Cortes-Huerto

et al. [20] identify this region as λ ≤ 0.3. As earlier mentioned, another constraint has

already been applied in order to solve the integrals. That is, the volume of the subdomain

has to be larger than Vξ, resulting in a total constraint of

(
4π

3V0

)1/3

ξ≤λ≤ 0.3 (3.48)

This should be taken into consideration when choosing size of subvolumes and when

identifying the linear region.

3.4.1 Lattice Approach by Galata et al. [23]

An even newer contribution to the field of computation of KB integrals is the work by

Galata et al. [23], which applied the scaling equation (3.47) by Cortes-Huerto et al. [20]

to compute the KB integrals in the thermodynamic limit. However, a different definition

of subvolumes was suggested. Instead of the randomly positioned subvolumes used by

Cortes-Huerto et al. [20], which also is the standard method used in SSM, a three di-

mensional grid was superimposed on the cubic simulation box. In that way, the entire

simulation box was partitioned into Ncells smaller cell that were considered to be in the

grand canonical ensemble. The computation of the finite volume KB integrals from the

fluctuations also differed from previous methods [49] [8] [20] [21]. Normally, the values

of 〈Ni 〉 and 〈Ni Nk〉 are computed as averages over subvolumes and snapshots, and later
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combined by the right-hand side of equation (2.19) to compute the KB integrals. Instead,

Galata et al. [23] computed the fluctuations inside each cell, before computing the KB in-

tegrals directly from these. The average KB integrals for the current partitioning, λ, were

then obtained by computing the average over all cells

GV
i k (λ) = 1

Ncells

Ncells∑
j=1

GV
i k, j (λ) (3.49)

By varying the size of the partitioning λ, the KB integrals for different sized subvolumes

GV
i k (λ) could be calculated, and the KB integral in the thermodynamic limit were be ob-

tained using equation (3.47).

There are two potential errors using this approach. The first is the use of a superimposed

grid to define the subvolumes. For subsystems of macroscopic size, the fluctuations will

in general not be correlated. However, if the subvolumes are of infinitesimal size, their

fluctuations will be highly correlated if the separation of the subsystems is of the same

size as the range of the interparticle forces [32]. The fact that the lattice cells at all times

are placed right next to each other makes their fluctuations completely correlated, mean-

ing that if a particle leaves one of the sub-boxes it immediately enters another. The result

is that the lattice cells do not provide independent samples. The second problem is the

computation of the KB integrals using equation (3.49). The brackets in equation (3.30) de-

note ensemble averages of the system. Computing GV
i k, j (λ) directly for each subvolumes

means that the fluctuations are not proper ensemble averages, but rather time averages

for each cell. Computing the KB integrals by averaging over all cells later will not correct

for this, since the conditions of the right-hand side of equation (2.19) are not followed.
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4 Computational Procedure

The following section presents the details of the simulations performed for the different

mixtures. The procedures used for computation of the KB integrals are also described.

This includes the integral of the RDF, and fluctuations calculated from randomly posi-

tioned subvolumes, as used by SSM, and lattice partitioning, as suggested by Galata et al.

[23]. The programming language Python version 3.5.2 [59] was used for postprocessing

of results, and for calculation of fluctuations by random positioned subvolumes for the LJ

mixtures. For the methanol-water mixture, both subvolume methods were implemented

using Python. LAMMPS input scripts used for simulations are found in appendix D, while

Python scripts are found in appendix C.

4.1 Simulation Details

The MD simulations were performed using the open source code LAMMPS (version 11

August 2017) [60]-[61], which applies the Verlet algorithm and the rRESPA integrator de-

rived by Tuckerman et al. [62] for integration of the equations of motion (see section

3.1.4). The simulation box was in all cases cubic and had periodic boundary conditions in

all directions, to make sure that the system was studied in the bulk. Thermostatting and

barostatting were performed using the Nosé-Hoover style equations of motion by Shin-

oda et al. [63]. These equations are based on the scheme of Martyna et al. [64], which are

known to produce the desired distributions of position and velocity [65]. In other words,

they generate positions and velocities sampled from the NV T or N pT ensemble.

Three different types of binary mixtures were studied. The first two were an ideal LJ mix-

ture and a real LJ mixture. The parameters describing these mixtures and all settings

used during the simulations were chosen to reproduce the work by Galata et al. [23] in

order to make sure that their method was implemented correctly. The simulation de-

tails for the two LJ mixtures are identical, and are therefore presented together in section

4.1.1. The third mixture was of more complex character, consisting of methanol and water

molecules, and is presented in section 4.1.2. For all mixtures, the tail correction imple-

mented in LAMMPS was applied. This correction is based on the work by Sun [66], and

makes it possible to analytically compute the contributions of a long-range van der Waals

interaction to the total energy and pressure. The long-range tail corrections (LTC) to the
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total energy and pressure for a system of n different non-bonded atom types are given by

ELTC = 1

2

n∑
i=1

Ni

n∑
k=1

ρk 4π
∫ ∞

rc

gi k (r )v2,i k (r )r 2dr (4.1)

pLTC = 1

6

n∑
i=1

ρi

n∑
k=1

ρk 4π
∫ ∞

rc

gi k (r )

(
r

dv2,i k (r )

dr

)
r 2dr (4.2)

where i and k represent the different components in a mixture, ρi is the density of com-

ponent i, and v2,i k (r ) is the pair potential between particles of type i and k. When this

is applied during the simulations, the atoms do not feel any LJ pair interactions beyond

the cutoff, but the calculated energy and pressure include an estimated contribution from

those interactions [67]. The thermophysical properties are therefore not thermodynam-

ically consistent with the truncated LJ force field. There are two conditions that need to

be fulfilled in order to apply this tail correction. The first is that gi k (r ) must be unity be-

yond cutoff, rc , such that the integrals in equations 4.1-4.2 can be evaluated analytically.

The second is that the system is a homogeneous liquid. For the methanol-water mixture,

long-range tail correction is only applied to the energy and pressure for the Lennard-Jones

portion of the pair interactions.

4.1.1 Ideal and Real Lennard Jones Mixtures

Reduced units were used for both LJ mixtures since this made it possible to study the

problems at a more general level, in addition to making it more easily comparable to other

studies of LJ mixtures. Definitions are found in list of reduced units. The interactions of

like and unlike particles were modelled by the LJ potential with a cut-off set to rc = 3σ11.

The LJ parameters for both mixtures are found in table 4.1, where the interaction between

unlike particles were obtained using Lorentz-Berthelot combining rules [68]-[69]

σ12 = σ11 +σ22

2
, ε12 =p

ε11ε22 (4.3)

Table 4.1: LJ parameters used for simulations of ideal and real LJ mixtures. Values were
chosen in order to reproduce the work by Galata et al. [23].

Mixture ε11 ε22 ε12 σ11 σ22 σ12

Ideal 1 1 1 1 1 1
Real 1 0.5968 0.7726 1 0.7677 0.8838
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Both systems consisted of 20,000 particles. The production runs were performed in the

canonical ensemble (NV T ) with a reduced temperature of T = 0.93, and in the isobaric-

isothermal ensemble (N pT ), with the same temperature and a reduced pressure of p =
0.47. All initial configurations were created by starting off with placing 20,000 particles

of type 1 at random positions inside a large simulation box (V = 5003), in order to avoid

overlap between particles. Applying the thermostat and barostat with the required tem-

perature and pressure, eventually compressed the box to its equilibrium volume. In order

to make sure that the simulation remained stable, the time step was set to ∆t = 0.002,

and the relaxation times of the temperature and pressure were set to 100 ·∆t = 0.2 and

1000 ·∆t = 2 respectively. The total number of time steps for the initialization was 10 ·106.

By manually changing the identity of the particles from type 1 to type 2 in the end con-

figuration file, the five desired compositions were obtained. The different compositions

investigated were x1 = 0.05,0.25,0.50,0.75,0.95. These were then equilibrated for an ad-

ditional 10 ·106 time steps before starting the production runs. During the equilibriation

and production runs the time step was set to ∆t = 0.0036, and the relaxation times of the

temperature and pressure were set to 100·∆t = 0.36 and 1000·∆t = 3.6 respectively. Differ-

ent values were tested for the relaxation times, in order to determine which gave the least

fluctuations around the mean value. All production runs consisted of a total of 50 · 106

time steps, divided into five parallels for computation of standard deviations.

4.1.2 Methanol-Water Mixture

The force field developed by Weerasinghe and Smith [9] was chosen to represent methanol

in the mixture. This model was specifically designed to reproduce the experimental KB

integrals in aqueous methanol mixtures, as a function of the methanol mole fraction.

The total molecule is nonpolarizable, and the methyl group (CH3) is modelled as one,

spherical particle, with parameters taken from reference [70]. The methanol molecules

are therefore rigid triangles with fixed bond lengths and angles, where the charges are sit-

uated on each particle. This methanol force field was designed to be used with the SPC/E

water model [71] [72], which therefore was chosen to represent water in this work. The

water molecules modelled by the SPC/E water model are also rigid triangles with charges

situated on each atom, while the LJ sites are situated on the oxygen atoms. Bond lengths

and angles are presented in table 4.2 for both molecule types.
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Table 4.2: Angles and bond lengths for the rigid methanol molecules [9] and SPC/E water
molecules [72], modelled by the KB force field.

Force field Bond length [Å] Angle [degree]
Water
SPC/E O-H = 1.000 H-O-H = 109.47

Methanol
KBFF CH3-O = 1.430 CH3-O-H = 108.49

O-H = 0.945

The interactions between the molecules in the mixture were described by a pair poten-

tial combining the LJ potential and the electrostatic interactions. The cut-off was set to

15 Å, meaning that the particles separated by a distance longer than 15 Å experience zero

interaction from the LJ potential. The electrostatic forces were calculated using Ewald

summation [45], where the pairwise interactions within the cut-off distance were com-

puted directly, while interactions outside the cut-off distance were computed in recipro-

cal space (see section 3.1.3 for further explanation). The force field parameters for like

particles of both molecules are given in table 4.3, while parameters for unlike particles

were calculated using geometric mean given by

σi k =p
σi iσkk , εi k =p

εi iεkk (4.4)

Table 4.3: Force field parameters for the methanol molecules [9] and SPC/E water molecules
[72] modelled by the KB force field

Force field Atom ε [kcal/mol] σ [Å] q [C] m [g]
Water
SPC/E O 0.1555 3.166 -0.8476 15.9994

H 0 0 0.4238 1.008
Methanol
KBFF CH3 0.2073 3.748 0.30 15.0347

O 0.1555 3.192 -0.82 15.9994
H 0.0210 1.580 0.52 1.008

The production runs were performed in the canonical ensemble (NV T ) with the tem-

perature set to T = 300 K. Three different compositions were investigated, xMeOH = 0.30,

0.50, 0.70. All initial configurations were created by placing the a total of 500 molecules

at random positions inside a large simulation box (V = 10003 Å3), in order to avoid over-

lap between particles. The simulation box was then compressed to its equilibrium size by
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applying the N pT barostat with the required pressure of 1 atm. The simulation box was

then replicated once in each direction in space, giving a total of 8,000 molecules. This was

followed by 106 equilibriation steps before starting the production runs. All production

runs consisted of a total of 50 ·106 time steps, divided into five parallels for computation

of standard deviations. The time step was for all simulations set to ∆t = 1 fs, while the re-

laxation time for temperature was set to 100·∆t = 100 fs. The relaxation times for pressure

during initialization was set to 1000 ·∆t = 1000 fs.

4.2 Radial Distribution Function

The RDF is calculated by determining the total number of particles within a range of dis-

tances r from one central particle [38]. For the LJ mixtures this calculation was performed

for all particles in the system, each time centered on the current particle. The range of

distances represented spherical shells around the central particle, or rather bins in a his-

togram, in which all the neighbouring particles were sorted. This was performed for the

three different types of interactions present in the mixture, that is, the 1-1, 2-2 and 1-2

interactions. For the methanol-water mixture, the central atom in both molecule types

was considered to be oxygen, and the RDF was therefore computed between the oxy-

gen atoms in each molecule, representing the three different interactions MeOH-MeOH,

water-water and MeOH-water. The bins were of uniform size in radial distance, and the

values of gi k (r ) for each bin were then calculated by scaling it by the number of particles

it would contain if the particles of type k were uniformly distributed [73]. This was per-

formed using the built in compute rdf function in LAMMPS with the rerun command,

which reads the configuration files from the original simulation, and performs the desired

computations. Equation (3.41) was used to correct for finite size effects, and the KB inte-

grals were calculated using equation (3.38) both from the original RDF and after applying

Ganguly finite size correction.

For the LJ mixtures, two different sampling rates were used for the computation of the

RDF. The system’s configuration was sampled every 100 and every 10,000 time step, cre-

ating a total of 500,000 and 5,000 snapshots respectively. The radial distance from the

central particle ranged from 0 to L0/2, where L0 is the minimum size of the simulation

box over the course of the N pT simulation. For NV T simulations the volume was con-

stant, and L0/2 was therefore be equal to half the size of the simulation box at all times. To

investigate how the computation of the RDF depend on the bin size, or rather the num-

ber of bins, three different total number of bins were investigated, 150, 1,000 and 2,000.

37



4. COMPUTATIONAL PROCEDURE

For the methanol-water mixture, the system’s configuration was sampled every 100 step,

creating a total of 500,000 snapshots. The radial distance from the central particle ranged

from 0 to half the size of the simulation box, divided into 3,000 bins.

4.3 Small System Method

For the SSM calculations of all mixtures, the system’s configuration was stored from the

trajectory every 100 time step. For each configuration, 10 random positioned points in-

side the simulation box were used to position the center of the small systems, giving a

total of 5×106 samples for each small system volume V. The small systems were spher-

ical and centered at randomly chosen points, pc = (xc, yc, zc). All particles with position

pp = (xp, yp, zp) satisfying (xp − xc)2 + (yp − yc)2 + (zp − zc)2 ≤ R2 were placed inside the

sphere of radius R. For the LJ systems, 100 different sized small systems were investigated.

These had a radius R increasing linearly from the size of a particle to little under half the

minimum size of the simulation box over the course of the N pT simulations (Rmax = 14

for the ideal LJ mixture and Rmax = 13 for the real LJ mixture). For the methanol-water

mixture, each molecule’s center of mass was regarded as its position, and 200 different

sized small systems were investigated, with a radius increasing linearly from 1 Å to 20 Å.

4.4 Lattice Partitioning

For every sampled configuration, eight different lattices of eight different grid sizes were

superimposed on the minimum volume of the simulation box over the course of the N pT

simulation (for the NV T simulations, the total simulation box was used). This gave eight

different values of the scaling parameter λ ≈ 1, 0.5, 0.333, 0.25, 0.2, 0.1667, 0.143, 0.125,

which produced unequal amount of samples for subvolumes of different size. From one

simulation snapshot, the number of samples are 1, 8, 27, 64, 125, 216, 343 and 512 for the

different sized subvolumes respectively. The values of 〈Ni 〉, 〈Ni Nk〉 where calculated as

averages over subvolumes of the same size. The averaging method proposed by Galata et

al. [23] was also tested. This method included calculating the fluctuations in each lattice

cell, before calculating the values of GV
i k, j (λ) in each cell, followed by averaging over all

cells to obtain GV
i k (λ) (see section 3.4.1 for further explanation). For the LJ mixtures, the

instantaneous number of particles in each lattice cell was calculated by LAMMPS during

the simulations. For the methanol-water mixture, each molecule’s position was given by

its center of mass.
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5 Results and Discussion

The following sections present the KB integrals obtained by using the different methods

presented in section 3. These methods can be sorted into two main categories: 1) inte-

gration of the RDF and 2) calculation of fluctuations in number of particles. Different

variations within these methods are thoroughly analyzed, in order to determine how they

affected the final value of the KB integral in the thermodynamic limit. The results of the

LJ mixtures are first presented, followed by a comparison to theoretical values when these

are available. Lastly, the results of the methanol-water mixture are presented and ana-

lyzed.

5.1 Lennard-Jones Mixtures - Radial Distribution Function

The method proposed by Krüger et al. [19] was used to calculate the KB integrals for finite

volumes by integration of RDF. The finite-sized KB integrals were calculated from equa-

tion (3.38) for volumes of radius 2R, where the integral was solved numerically using the

trapezoidal method. These volumes represented the shells used for computation of the

RDFs, and ranged up to half the size of the simulation box. Equation (3.38) states that, for

an integration limit of 2R, the KB integrals are calculated for volumes of radius R. Con-

sequently, the largest volume the KB integrals were calculated for, was one with diameter

equal to half the length of the total simulation box. Plotting the values of GV
i k as func-

tions of the inverse systems size 1/R display the expected linear behaviour in the region

1/R → 0, as illustrated in figure 5.1 for the ideal LJ mixture at x1 = 0.75. The values of Gi k

were then determined by extrapolation to the thermodynamic limit, using linear curve

fitting with the polyfit function in MATLAB [74].

In order to apply this method, the KB integrals of finite volumes first need to be con-

verged. The condition for convergence is that values calculated for the larger volumes

should approach one value as a function of system size. After 4 ·106 time steps this was

observed for both components at equimolar composition (x1 = 0.50), while only the ex-

cess components reached convergence for other compositions. After 10 ·106 time steps,

convergence was reached for all compositions of both LJ mixtures.
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Figure 5.1: Finite size KB integrals for the ideal mixture at x1 = 0.75 as a function of
inverse system size, calculated using equation (3.38). The value of the KB integrals in the
thermodynamic limit, Gi k , was found by linear curve fitting to the region marked by vertical
lines.

Besides from the effect of simulation time, four different factors, and their influence on

the value of the KB integral in the thermodynamic limit were investigated. These were:

1. Which ensemble was used during the simulation run.

• N pT ensemble.

• NV T ensemble.

2. The total number of bins (shells) used for computation of RDF.

• 150 bins.

• 1,000 bins.

• 2,000 bins.

3. How often the simulation trajectory was sampled.

• Every 10,000 time step.

• Every 100 time step.

4. Applying the Ganguly finite size correction to the RDF.

The results of the KB integrals in the thermodynamic limit obtained from simulation in

the N pT ensemble are presented in this section, while the equivalent figures of the sim-

ulation in the NV T ensemble are found in appendix B. First, the behaviour of the RDF is

discussed.
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The RDF showed unexpected behaviour at large distances. As stated in section 2.3.1, and

explained in section 3.3.1, the RDF of both ideal and non-ideal, open systems should

approach unity, while it should approach (1− 1/N ) for closed systems. For the systems

studied here, some of the RDFs instead approached a value a little higher than unity, sta-

bilizing at ∼ 1.00004. It was first believed to be caused by density changes arising from

the fluctuations of the total volume of the simulation box in the N pT ensemble, but the

same behaviour was also observed in the NV T ensemble. The fluctuating volume could

therefore not be causing this behaviour.

Technically, gi k (r ) displaying a value little higher than unity is interpreted as a system

with a little higher probability of finding a particle of type k a distance r from a particle of

type i, compared to an uniform distribution of component i. This is not believed to be the

case for the systems studied here, since the densities of both components were observed

to be uniform. Also, since this was observed for both LJ mixtures at all compositions, and

in both ensembles, it is more likely that something methodical caused this behaviour.

It is therefore believed to be a result of how the RDF was calculated by LAMMPS. One

possible explanation could be long-range tail corrections that were applied during the

simulation. Applying this correction assumes that the RDF is unity beyond cut-off. Since

the cut-off was rc = 3σ, and the RDF curves were observed to still fluctuate for r larger

than 3σ, this condition did not hold for the LJ systems (see figures 5.4-5.7 in the following

sections). This could have changed the actual dynamics of the system for the N pT sim-

ulation, since it is designed to correct the values of pressure and energy [67]. However,

since the same behaviour also was observed for the NV T simulations, it is not likely that

the tail corrections caused the discrepancies. To further validate this, the simulations for

ideal LJ mixture at x1 = 0.50 was repeated without tail corrections. This resulted in the

same behaviour as explained above, thereby confirming that it was not caused by the tail

corrections. The actual cause could not be further determined, but it is believed to be

connected to the normalization or counting of particles performed by the RDF calcula-

tion, or other settings applied during the simulations.

The results obtained using different total number of bins is presented for the ideal and

real LJ mixtures in figures 5.2-5.3 respectively, and further discussed in section 5.1.1. The

effect of sampling rate is discussed in section 5.1.2, while the effect of applying the Gan-

guly finite size correction is discussed in section 5.1.3. First, the trends as functions of

mole fraction are analyzed.
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Figure 5.2: KB integrals for the ideal
LJ mixture calculated using the RDFs of
the system and equation (3.38), followed
by extrapolation to the thermodynamic
limit. The error bars represent two stan-
dard deviations.

As expected for an ideal mixture [75], the KB integrals for like components (G11 and G22)

show symmetric trends as functions of mole fraction. They both also show better statistics

for compositions with higher mole fractions of their respective component. In contrast,

the KB integrals for the 1-2 interaction vary less with mole fraction, and retain approx-

imately the same precision at all compositions. Both of these effects were most likely

caused by the precision of the RDF. For system with low mole fractions of component i

(xi = 0.25 or xi = 0.05), the RDF of like particles of this type, gi i (r ), was computed for

fewer pairs than the RDF for the excess component, gkk (r ). This resulted in a poorer av-

erage for component i, which in turn gave larger standard deviations for the KB integrals.

As stated above, the finite-volume KB integrals of these compositions also required longer

simulation time to reach convergence for the the component of lowest mole fraction. The

trend is different for the 1-2 interactions because the number of pairs of unlike particles

remained large enough to provide good average values, with low standard deviations, also

in the outer ranges of the mole fraction scale.
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Figure 5.3: KB integrals for the real
LJ mixture calculated using the RDFs of
the system and equation (3.38), followed
by extrapolation to the thermodynamic
limit. The error bars represent two stan-
dard deviations.

The KB integrals for real LJ mixture do not show symmetric behaviour, and neither were

they expected to. However, they did show the same trend as the ideal mixture in magni-

tude of standard deviations. Note that the ranges are different for the two figures 5.2-5.3,

and that the standard deviations actually are of approximately the same magnitude for

the two mixtures. This was expected, since the principles for average values described

previously, also apply for the real LJ system. The linear region for both LJ mixtures was

somewhere between 1/R ≈ 0.3 and 1/R ≈ 0.5 for all compositions.

5.1.1 Effect of Total Number of Bins

The RDFs were calculated using three different total number of bins: 150, 1,000 and 2,000.

The same region was used for extrapolation for all three, in order to eliminate this as a

source of discrepancies in the comparison. Figures 5.2-5.3 show that the KB integrals in

the thermodynamic limit increase with the number of bins, and that all different bin sizes

give the same trends as functions of mole fraction, both in mean values and in magnitude

of standard deviations. This difference between the values also seem to be constant for

all mole fractions, and equal for both the ideal and the real LJ mixture. This was validated

by checking the value of the integral of the largest volume. The difference between this

integral calculated from 150 and 2,000 bins was found to be constant equal to 0.04, while
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for 1,000 and 2,000 it was constant equal to 0.003. The fact that it was constant for both

mixtures and all mole fractions suggests that there was something methodical causing the

differences.

Figure 5.4 shows the finite size KB integrals and the values of (g11(r )−1) for the equimo-

lar composition of the ideal mixture, calculated using 150 and 2,000 bins. All data points

calculated by the RDF consisting of 150 bins fall on the curve of the RDF consisting of

2,000 bins, but 150 bins does not give good enough resolution provide accurate integra-

tion. This is most clearly observed in the first peak, which is higher for 2,000 bins than it

is for 150 bins. There is also a small difference arising close to R = 1, but the area between

the two curves at this point is smaller than the difference under the highest peak. This

suggests that the integration over the highest peak has the largest effect on the final value

when calculating KB integrals in this manner.
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Figure 5.4: RDF of the ideal mixture at x1 = 0.50 computed using 150 bins and 2,000 bins.
The KB integrals were calculated using equation (3.38), and are shown as a function of the
radius R of the volume they were calculated.The simulation trajectory was sampled every
100 time step, and finite size correction have not been applied.

As an attempt to increase the accuracy of the integration over the highest peak, Simpson’s

method [76] was tested, but the results did not change significantly. This means that the

error arising from using too few data points can not be made up for by using a more ac-

curate integration method. It should also be noted that the differences between the final

results become smaller as the number of bins become higher. This suggests that a suf-
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ficiently large number of bins is reached when the final value of the KB integral does no

longer change upon increasing the number of bins.

5.1.2 Effect of Sampling Rate

The simulation trajectory was sampled both every 100 time step and every 10,000 time

step. For most systems, the sampling rate did not change the final value of the KB integral,

but for the outer ranges of the mole fraction scale, some differences occurred. For these

compositions (x1 = 0.05 and x1 = 0.95), sampling every 10,000 time step resulted in a lot

of noise in the curve of the component with the lowest mole fraction, which is a clear

indication of poor average values [77]. This is illustrated for RDFs of the ideal mixture at

x1 = 0.05, calculated using the two different sampling rates and 2,000 bins in figure 5.5.
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Figure 5.5: RDF of the ideal mixture at x1 = 0.05 computed by sampling the simulation
trajectory every 100 time step and every 10,000 time step. The KB integrals were calculated
using equation (3.38), and are shown as a function of the radius R of the volume they were
calculated. RDF was calculated using 2,000 bins and finite size correction have not been
applied.

For the example shown here, the noise lead to an increased value in the highest peak,

thereby also increasing the value of the integral. However, it did not affect the final value

as much as the difference in bin size, and no systematical trend, governing for all sys-

tems was observed. Still, it is another indicator that the integration over the first peak is
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of great importance when attempting to achieve accurate KB integrals in the thermody-

namic limit.

5.1.3 Effect of Finite Size Correction

The correction proposed by Ganguly et al. [8] was applied to the RDF of all systems in

order to correct for finite size effects. However, it did not give the expected effect, but

resulted instead in poorer convergence of the KB integrals. One of these cases is illustrated

in figure 5.6 where the original RDF, the corrected RDF and their associated KB integrals

are presented for the ideal mixture at x1 = 0.50.

0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.6: RDF and KB integrals of the ideal mixture at x1 = 0.50 with and without the
Ganguly correction [8]. The KB integrals were calculated using equation (3.38), and are
shown as a function of the radius R of the volume they were calculated. The RDF was
calculated using 2,000 bins and sampling every 100 time step.

This was observed for both LJ mixtures, at all compositions, but the difference was larger

in the outer ranges of the mole fraction scale. The explanation is probably the unexpected

behaviour of the RDF, as discussed initially. The Ganguly correction was designed to cor-

rect for the depletion of particle type k around a particle of type i arising from the finite

size of the simulation box. As explained previously, some of the RDFs did not reflect this

behavior, but indicated instead excess of particles in the cases where depletion was ex-

pected (for example figure 5.5 which has a asymptote indicating positive excess). This is

even more clearly illustrated by figure 5.7 for the ideal LJ system at x1 = 0.50, where the
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original RDF has a value a little above unity in the limit, and the corrected RDF has an

even larger value. The correction equation therefore probably overestimated the deple-

tion, which resulted in too high values for the RDF, and more drifting asymptotes for the

KB integrals. The Ganguly correction itself, is believed to work exactly as intended, but it

assumes a different behaviour of the RDF. The KB integrals in the thermodynamic limit

calculated from the original RDF are therefore believed to be more accurate than the ones

resulting from the corrected RDF.
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Figure 5.7: Zoomed picture of the RDF of the ideal mixture at x1 = 0.50, with and without
the Ganguly correction [8]. The RDF was calculated using 2,000 bins and by sampling every
100 time step.

5.2 Lennard-Jones mixtures - Fluctuation Calculations

From fluctuations in number of particles, the KB integrals in the thermodynamic limit

were obtained using different approaches: SSM as described in section 3.2, the method

proposed by Cortes-Huerto et al. [20] as described in section 3.4, and the method pro-

posed by Galata et al. [23] as described in section 3.4.1. The methods proposed by Cortes-

Huerto et al. [20] and Galata et al. [23] contain several factors that differ from the SSM

approach. All these factors were isolated and analyzed separately, in order to investigate

how each of them affected the final result.
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Four different factors were investigated:

1. Calculation of average values of the finite-volume KB integrals.

• Calculate KB integrals for each subvolume, then calculate average value using

equation (3.49), as proposed by Galata et al. [23].

• First calculating the ensemble averages, then combining these in right-hand

side of equation (2.19), as normally done in the SSM approach.

2. Definition of subvolume.

• Superimposed lattice, as suggested by Galata et al. [23].

• Randomly positioned subvolumes, as normally used in the SSM approach.

3. Scaling equation used to obtain KB integrals in the thermodynamic limit.

• Equation proposed by Cortes-Huerto et al. [20].

• Linear extrapolation, as normally used in the SSM approach.

4. Ensemble of the total simulation box used for sampling of subvolumes.

• N pT ensemble.

• NV T ensemble.

In order to validate that the approach suggested by Galata et al. [23] was implemented

correctly, the KB integrals were first calculated exactly as proposed by the authors. This

also included the method for computation of the average KB integral for each subvolume

(point 1. in the above list). As explained in section 3.4.1, this method does not follow

the principles of equation (2.19), since it calculates fluctuations from time averages for

each lattice cell, while this equation requires ensemble averages. The reproduced results

showed good overlap with the ones originally obtained by Galata et al. [23], confirm-

ing that the method was implemented correctly (see appendix B for figures). To directly

investigate the effect of the different averaging techniques, these results were also com-

pared to the ones obtained using proper ensemble averages. The two different methods

did not give significantly different values for the KB integrals in the thermodynamic limit,

but since the method using ensemble averages is considered as most correct, the averag-

ing procedure proposed by Galata et al. [23] is not included in the further analysis. See

sections 2.2 and 3.4.1 for details on fluctuations and ensemble averages.

Combining the alternatives of points 2. and 3. in the above list made four different com-

binations available for investigation. The KB integrals in the thermodynamic limit calcu-

lated from these four combinations are presented for the ideal LJ mixture in figure 5.8, and

for the real LJ mixture in figure 5.9. The effect of using different definition of subvolumes,

and the effect of using different scaling equations are further investigated in section 5.2.1.

The results presented in figures 5.8-5.9 were obtained by sampling from a total simulation
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box in the N pT ensemble, while the equivalent results for the NV T ensemble are found

in appendix B. How the ensemble of the total simulation box affected the calculated fluc-

tuations is discussed in section 5.2.2. First, the trends as functions of mole fraction are

analyzed. Comparison to RDF results are referring to the results obtained using 2,000

bins, without finite-size corrections.
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Figure 5.8: KB integrals for the ideal LJ
mixture calculated using equation (2.19),
and either linear extrapolation to thermo-
dynamic limit, or the Cortes-Huerto scal-
ing equation (3.42). The error bars rep-
resent two standard deviations.

For the ideal LJ mixture, the KB integrals calculated from the fluctuations show similar

trends to those obtained from integration of RDF. The KB integrals of like components

show mostly symmetric behaviour as a function of mole fraction, and larger standard de-

viations at low mole fractions of their respective component. However, there are some dif-

ferences. Some of the fluctuation methods vary much more with composition, which re-

sulted in some non-symmetrical values, and the standard deviations are in general larger.

For the lattice partitioning especially, the standard deviations are up to five times the mag-

nitude of those obtained by integration of the RDF.

Larger standard deviations in outer ranges of mole fraction scale were observed for all

methods, and were probably a result of the statistics of the component of lowest mole

fraction, specifically for the computation of the average 〈N 2
i 〉. When the total number of

particles of type i is very low (Ni = 1000 for xi = 0.05), the number of pairs of this type in
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each subvolume will be so low that the average fluctuation 〈N 2
i 〉− 〈Ni 〉2 requires longer

simulation time to reach its real average value. After 10 ·106 time steps, the standard de-

viation of Gi i were half of their value after 4 ·106 time steps, while the standard deviations

of Gkk remained rather unchanged. For these compositions, the average values and their

standard deviations could therefore probably have been further improved by longer sim-

ulations. This trend in magnitude of standard deviations is not observed for the 1-2 in-

teractions since the number of pairs of unlike particles in each subvolume remain large

enough to give good averages and low standard deviations, also in the outer ranges of the

mole fraction scale.
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Figure 5.9: KB integrals for the real LJ
mixture calculated using equation (2.19),
and either linear extrapolation to thermo-
dynamic limit, or the Cortes-Huerto scal-
ing equation (3.42). The error bars rep-
resent two standard deviations.

The KB integrals for the real LJ mixture calculated from fluctuations also vary a lot more

with composition than the ones obtained by integrating the RDF. The largest difference is

observed for G11 at x1 = 0.05, where the methods resulted in values that differed by ∼ 0.9.

This real LJ system at this composition also showed unexpected behaviour in the linear

scaling of the property ν22, which is further discussed in section 5.2.2.
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The overall trend, that can be observed in the results of both LJ mixtures, is that the dif-

ferent fluctuation methods mostly provide values that are within two standard deviations

of the other methods. This means that the fluctuation methods do not produce signifi-

cantly different values of KB integrals in the thermodynamic limit. Another trend that can

be observed in figures 5.8-5.9 is that, in general, the results obtained using same subvol-

umes, but different scaling equations are closer than the results obtained using differently

defined subvolumes, but same scaling equation. This suggests that the definition of sub-

volume has the largest effect on the final value of the KB integrals in the thermodynamic

limit.

5.2.1 Effect of Subvolume Definition and Scaling Equation

The averages 〈Ni 〉 and 〈Ni Nk〉 were calculated for different-sized volumes, using both dif-

ferent subvolume types. These were then used to calculate the properties of interest, ni ,

νi k and GV
i k for all subvolume sizes. After 4 ·106 time steps, these properties showed clear

linear regions when plotted as functions of inverse size of the subvolume they were cal-

culated for. An additional 6 ·106 time steps did therefore not result in any visual changes

in those plots. However, as already mentioned, it did improve the statistics for the KB

integrals in the thermodynamic limit for the components of lowest mole fraction, which

means that the statistics were, in fact, improved.

The examples presented in this section are from the real LJ mixture at x1 = 0.75, sam-

pled from a total simulation box in the N pT ensemble. These represent the general trend

observed for both LJ mixtures, at all compositions. The one exception is, as already men-

tioned, the real LJ mixture at x1 = 0.05, which is further discussed in section 5.2.2. The

same region was used for curve fitting of the data points obtained from the different sub-

volume methods, in order to eliminate this as a source of discrepancies in the compari-

son.

The linear scaling method is based on the principles described in section 3.2. This in-

volved calculating the extensive properties ni and νi k for each subvolume size, and plot-

ting these as functions of surface to volume ratio, Ω/V , of their respective systems. The

surface contribution was identified as the slope of the linear region of this curve, while the

volume contribution was identified as the intersection with the y-axis, also recognized as

the value in the thermodynamic limit. These were both determined by linear curve fitting

using the polyfit function in MATLAB [74] for a first degree polynomial.
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Figure 5.10: ni for the real LJ mixture at x1 = 0.75 as a function of the surface to volume
ratio. Results of both subvolume methods (random positioned and lattice partitioning) are
included. Surface and volume contributions were obtained from linear fit to region marked
by vertical lines for both subvolume methods.
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Figure 5.11: νi k for the real LJ mixture at x1 = 0.75 as a function of the surface to volume
ratio. Results of both subvolume methods (random positioned and lattice partitioning) are
included. Surface and volume contributions were obtained from linear fit to region marked
by vertical lines for both subvolume methods.
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In order to directly investigate the effect of the definition of subvolume, the properties ni

and νi k calculated from both subvolume types were plotted together in figures 5.10-5.11.

Strøm et al. [49] showed in their work that the extensive properties, calculated using sub-

volumes of different shapes, fall on the same curve when plotted as functions of surface

to volume ratio. Figures 5.10-5.11 show that for the LJ mixtures, the data points do fall on

the same curve, confirming that both subvolume types provide the same average densities

and fluctuations, under the conditions studied here. Some differences can be observed

for νi k in figure 5.11 as the size of the subvolume approaches the size of the simulation

box. As described in section 3.2, this is because the total simulation box no longer func-

tions as a grand canonical reservoir at this point. For a closed system, a density change

in the subvolume can not occur without a corresponding density change in the reservoir

[49]. This correlation becomes larger as the subvolume approaches the size of the simula-

tion box, and makes the curves drop off and approach zero. A cube and a sphere of equal

area to volume ratio will not have equal volumes. The cube’s volume will be larger, mean-

ing that the above mentioned correlation will be larger for the cube. This is why the values

calculated from cubic subvolumes drop off for smaller values of Ω/V , while the the ones

calculated using spherical subvolumes have a longer linear region. The properties calcu-

lated from cubic subvolumes usually also contain shape effects for smaller subvolumes,

caused by their nook and corners. These are absent for spheres, which is why spherical

subvolumes in general are preferred. For the LJ mixtures studied here, the lattice cells

were not small enough to any display nook and corner effects.

The average number density was for both systems, at all mole fractions, observed to be

constant as a function of system size, hence ns
i = 0. This means that the KB integrals

could be directly calculated for each subvolume size using

GV
i k =V

(〈Ni Nk〉−〈Ni 〉〈Nk〉
〈Ni 〉〈Nk〉

− δi k

〈Ni 〉
)

(5.1)

since this expression now becomes a linear combination of the extensive properties. The

resulting KB integrals were then extrapolated to the thermodynamic limit by plotting

these values as functions of the surface to volume ratio, as shown in figure 5.12. This

approach gave the same results as when surface and volume contributions of ni and νi k

were combined in equation (3.30), and then extrapolated to the thermodynamic limit, as

shown in figure 5.13. The direct extrapolation of GV
i k from equation (5.1) showed smaller

standard deviations than the results obtained by splitting into extensive properties.
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Figure 5.12: GV
i k for the real LJ mixture at x1 = 0.75 calculated directly from equation (5.1),

as a function of surface to volume ratio. Results of both subvolume methods (random posi-
tioned and lattice partitioning) are included. Thermodynamic limit value Gi k was obtained
from linear fit to region marked by vertical lines for both subvolume methods.
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Figure 5.13: GV
i k for the real LJ mixture at x1 = 0.75 calculated from equation (3.30), as a

function of surface to volume ratio. Results of both subvolume methods (random positioned
and lattice partitioning) are included. Thermodynamic limit value Gi k was obtained from
linear fit to all data points.
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The figures 5.12-5.13 do not show the same response to the finite size of the total sim-

ulation box. While KB integrals for Ω/V → 0 in figure 5.12 were clearly affected by the

finite size of the reservoir, the data points in figure 5.13 show no deviations from linearity.

This is because these were calculated from the surface and volume contributions of the

extensive properties in the linear regions, where the fluctuations were not affected by the

finite size of the closed reservoir. Both figures also show that the two subvolume types do

not always extrapolate to the same value, even when their curves overlap. This explains

the differences between the final values obtained by the different methods observed in

figures 5.8-5.9, and is further discussed later in this section.
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Figure 5.14: λGV
i k for the real LJ mixture at x1 = 0.75 calculated from equation (3.42),

as a function of the parameter λ = (V /V0)1/3. Results of both subvolume methods (ran-
dom positioned and lattice partitioning) are included. Thermodynamic limit value Gi k was
obtained as the slope of linear fit to the region marked by vertical lines.

Figure 5.14 illustrates the procedure of the scaling method proposed by Cortes-Huerto et

al. [20], where the KB integrals were calculated using equation (5.1), multiplied by the

factor λ and plotted as a function of λ. The KB integral in the thermodynamic limit were

then determined by finding the slope of the linear region, using the polyfit function in

MATLAB [74] for a first degree polynomial. This region included approximately the same

subvolume sizes as used for linear extrapolation. The two scaling methods are therefore

essentially the same, since they both utilize how the KB integrals scale linearly with the

inverse size of the subsystems. The only difference is that the reference for the Cortes-

Huerto scaling is the volume of the total simulation box, while the reference for the linear

extrapolation is the shape dependent coefficient, cs = Ω/V 2/3, discussed by Strøm et al.
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[49]. The Cortes-Huerto equation does not take the finite size of the reservoir into account

as long as only the KB integrals of the smallest subvolumes are used for scaling. A sugges-

tion that could improve the scaling technique is introduced later in this section.

The values obtained in the thermodynamic limit by Cortes-Huerto equation were overall

close to the ones obtained by linear scaling, except for at the lowest mole fractions. The

differences observed for the different scaling equations were probably related to differ-

ences in location of the region used for curve fitting. These cover many of the same sized

subvolumes, but they do not completely overlap. When using the Cortes-Huerto scaling

equation, the linear region can be harder to identify than when using linear extrapolation.

In their original paper, Cortes-Huerto et al. [20] introduced the conditions that should be

used to determine which data points to include in the curve fitting. These are as follows:

the smallest subvolume must be larger than Vξ, while the upper limit of the scaling factor

λ is 0.3. For the systems studied here, the structural correlation length is ξ ≈ 7, giving a

volume, Vξ ≈ 1,437, that corresponds to a scaling factor of λ ≈ 0.37. This means that the

region that should be used for the extrapolation does not exist for the LJ systems studied

here. To get a region that could be used for extrapolation for these systems, according to

the condition given by Cortes-Huerto et al. [20], the number of particles would need to

be double the amount used in this work. If the method requires systems this large to pro-

vide trustworthy results for dense systems, the whole point of extracting KB integrals from

small sized simulations disappears. Since the scaling normally performed by SSM essen-

tially is the same as the one proposed by Cortes-Huerto et al. [20], this would mean that

they both fail when using subvolumes smaller than Vξ. However, figure 5.14 shows that

using the values extracted from the linear fit, inserted in equation (3.47) still provide good

fit of the remaining data points. The curves also show that λGi k approach −δi k /ρi when

λ = 1, which the expected behaviour when the KB integrals are calculated for a closed

simulation box (see section 2.4). It is therefore possible that the condition for minimum

subvolume sizes is not as strict as originally stated by Cortes-Huerto et al. [20].

Since all data points obtained from different subvolume types fall on the same curve for

both scaling methods, the difference in the values of KB integrals thermodynamic limit

were probably a consequence of the accuracy of the curve fitting. This argument is also

substantiated by the fact that direct extrapolation of the values calculated from equation

(5.1) gave smaller standard deviations than when in addition extrapolating the extensive

properties. The difference in the thermodynamic limit value obtained from the differ-

ent subvolume types are therefore probably a result of their difference in number of data

points within the linear region. This number for the lattice partitioning was 5, while the
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same region contained 32 data points from the randomly positioned subvolumes. This

means that each data point calculated from the lattice partitioning had a much larger

influence on the fitted curve, compared to the influence of one data point from the ran-

domly positioned subvolumes. As explained in section 4.4, the lattice partitioning also

created an unequal number of samples per subvolume, which resulted in large differences

in their standard deviations. For the second largest subvolumes, the standard deviations

were in general ten times the standard deviation of the smallest subvolumes, meaning

that these probably should not have been weighed equally in the curve fitting. As ear-

lier mentioned, longer simulation time affected the standard deviations of the results ob-

tained from lattice subvolumes much more the ones obtained from random positioned

subvolumes. This could be related to the fact that the lattice cells were at all times right

next to each other, and therefore not producing independent samples. The values ob-

tained from each different-sized subvolume therefore required longer simulation time to

reach their real average value, which lead to slower convergence of the linear region. The

superimposed lattice is therefore a less robust sampling method.

The accuracy of the results in the thermodynamic limit could be improved in two ways.

The first alternative is longer simulations, which would result in improved statistics for

each data point. The second alternative is to generate additional data points in the lin-

ear region, which would improve the statistics of the fitted curve without having to run

longer simulations. When using the lattice partitioning, the number of data points is con-

strained by the size of the total box, and the only way to improve the statistics of Gi k is

therefore longer simulation time. When using the randomly positioned subvolumes, all

sizes within the total reservoir are available. In addition, the statistics of these data points

could be improved by increasing the number of points (samples) used for positioning of

the subvolumes. However, this would increase the time spent on these calculations. An

even faster method of obtaining more data points in the linear region, would be to use

subvolumes with linearly increasing reciprocal sphere radius 1/R. Since the data points

used for curve fitting in linear scaling and Cortes-Huerto scaling cover the approximately

the same range of subvolume sizes, this would increase the number of data points used

for curve fitting by both methods.

It would also be possible to better exploit the data points already available, had they been

calculated from cubic subvolumes. Strøm et al. suggested an alternative scaling equa-

tion that could be used for the extensive properties, also for those calculated in the largest

embedded subvolumes (equation (3.32) described in section 3.2). However, this requires

subvolumes of same shape as the reservoir, which means that it could not be used for the
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data points obtained from the randomly positioned subvolumes used in this work. The

Cortes-Huerto equation is already designed to describe the whole range of different-sized

subvolumes inside a closed reservoir of finite size. It could therefore be possible to calcu-

late corrected values of Gi k and Ci k already obtained from the linear curve fitting. This

could be obtained by using the values of these as initial guesses, and perform least squares

curve fitting of the total equation (3.47) for all data points. This would lead to values of

Gi k and Ci k that were more in agreement with the entire range of subvolumes.

5.2.2 Effect of Ensemble

The underlying principle of sampling fluctuations in this manner is that the subvolumes

produce particle fluctuations from the grand canonical ensemble. If the simulation box

itself also is in the grand canonical ensemble, this assumption will be valid for all differ-

ent sizes of subvolumes. However, if the simulation box is in a different ensemble than the

grand canonical (for example the NV T , N pT or NV E ensemble), the assumption is only

good for subvolumes much smaller than the reservoir. These are therefore the only sub-

volumes that can be used to extract grand canonical fluctuations. Most previously pub-

lished work were performed using a reservoir in the NV E or NV T ensemble [20] [21] [24]

[25] [49] [51] [78], but a few studies have also reported use of the N pT ensemble [8] [23].

This section presents a direct comparison of the effect of the ensemble of the reservoir.

Both the values in the thermodynamic limit, and the values calculated for different-sized

subvolumes are compared. It is important to distinguish between ensemble of the sim-

ulation box and ensemble of the small systems. When N pT - or NV T -results are men-

tioned in the following section, it therefore refers to the particle fluctuations calculated

the embedded subvolumes in a simulation box in the N pT or NV T ensemble, and not

from actual N pT or NV T ensembles. Particle fluctuations can not be directly calculated

from N pT or NV T systems, since these both have constant number of particles.

The KB integrals in the thermodynamic limit obtained from the N pT simulations were

presented previously in this section, while the results obtained from the NV T simula-

tions are found in appendix B. These values showed some differences in the outer ranges

of the mole fractions, but the overall magnitude of the differences were not significant.

To directly investigate the effect the ensemble of the reservoir, the values of νi k for the

real LJ mixture at x1 = 0.75 are plotted for both ensembles in figures 5.15-5.16. Figure 5.15

displays the behaviour close to the thermodynamic limit, while figure 5.16 compares the

results for the whole range of different-sized subvolumes.
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Figure 5.15: νi k for the real LJ mixture at x1 = 0.75 as a function of the surface to volume
ratio. Results obtained by sampling fluctuations from a total simulation box in the N pT
and NV T ensemble are both included.
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Figure 5.16: νi k for the real LJ mixture at x1 = 0.75 as a function of the surface to volume
ratio for the whole range of volumes used for sampling. Results obtained by sampling
fluctuations from a total simulation box in the N pT and NV T ensemble are shown. For
Ω/V > 1 these completely overlap.
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The expected behaviour of the property νi k for volumes close to the size of the reservoir

was discussed in the last section. At the other end of this scale, for subvolumes of the size

of one particle, the property, νi k , for like components is expected to approach the num-

ber density, while it for unlike component should approach zero (see section 3.2). Figure

5.16 clearly shows that the result obtained from N pT and NV T simulations both follow

this expected behaviour, since n1 = 0.65 and n2 = 0.22 for this system.

Both figures 5.15-5.16 also show that the data points completely overlap for the smaller

subvolumes (Ω/V > 1), but that differences arise for larger subvolumes. This difference

is largest for ν11, which probably is because component 1 is in excess for this compo-

sition, and therefore also representing the main part of the particle fluctuations. The

N pT -results display a longer linear region, while the NV T -results start approaching zero

for smaller subvolumes. This behaviour can be explained by the connection between

the density changes in subvolume and reservoir, as described in the previous section.

The fluctuating volume of the N pT simulation box probably lead to a density change

in the reservoir that amplified the particle fluctuations of the largest embedded subvol-

umes. These fluctuations could be artificial, meaning that they are not represented by

any known ensemble, or they could be a result of the direct relation between the µV T en-

semble and the N pT ensemble given by equations (2.13)-(2.12). As stated in section 2.2,

the relative fluctuations of volume in the N pT ensemble are equal to the relative fluctu-

ations in number of particles in the µV T ensemble, if the constant volume of the µV T

system is equal to the average volume of the N pT system. Equation (2.12) is only valid

for particle fluctuations in one-component systems, but the behaviour observed in figure

5.15 could suggest that the connection has a similar effect on the particle fluctuations of

the excess component in mixtures. It is clear that a connection is reflected by the data,

but the question is now whether the extended linear region of the N pT -results represent

proper grand canonical fluctuations due to it. In order to investigate this connection di-

rectly, the particle and volume fluctuations were calculated for a pure system consisting

only of component 1. Since ns = 0 also was valid for the pure system, the isothermal com-

pressibility could be directly extrapolated from

κT T = V

kB

〈N 2〉−〈N〉2

〈N〉2
(5.2)

The results of the isothermal compressibility for the pure system, calculated for the different-

sized subvolumes embedded in total simulation boxes in the N pT and the NV T ensem-

ble are presented in figure 5.17. These both extrapolate close to the same value in the
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thermodynamic limit, but show very different behaviour for the largest of the embed-

ded volumes. The NV T -results start approaching zero when the size of the subvolume

approaches the size of the simulation box, while the N pT -results display a more linear

behaviour. However, values of κT T calculated from these subvolumes deviate from the

extrapolated line, which means that they do not represent proper grand canonical fluctu-

ations.
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Figure 5.17: κT T for a pure system of component 1, calculated directly using equation (5.2).
Results obtained by sampling fluctuations from a total simulation box in the N pT and NV T
ensemble are shown. The hexagon represent value calculated from volume fluctuations by
equation (2.13), and the diamond represent the value calculated from solving equation (2.7)
numerically.

The particle fluctuations for a volume, V, should give results equal to the volume fluctu-

ations of average volume, 〈V 〉, equal to V. The isothermal compressibility was therefore

calculated from volume fluctuations of the total simulation box in the N pT ensemble

using equation (2.13), and included in the plot at the position corresponding to the sur-

face to volume ratio of the total simulation box. κT T was also calculated from equation

(2.7), by systematically increasing the pressure of the system, such that the volume was

obtained as a function of pressure. The differential (∂V /∂p) was then solved numerically,

and included in the plot at Ω/V = 0. Figure 5.17 shows that neither of those data points

fall on the extrapolated line. This could mean that either, the sampled particle fluctua-

tions did not represented grand canonical distributions properly, or that both alternative

methods for computation of κT T failed. However, the tail corrections could have affected

the output value of the pressure, which in turn would have affected the values of (∂V /∂p)T
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and the average volume fluctuations. This would explain why the values of κT calculated

from equation (2.7) and (2.13) differ by up to 10%, from the value calculated from particle

fluctuations.

It also is possible that the linear region is misrepresented in figure 5.17, and that it ac-

tually expands closer to Ω/V → 0. Including 30 more data points in this direction, and

leaving out 10 in the other end, resulted in a line that better fit the two individual data

points, as shown in figure 5.18. However, it resulted in much larger difference in the ex-

trapolated value of the N pT -result and the NV T -results, in addition to a poorer fit of the

NV T -data than what was shown in figure 5.17.
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Figure 5.18: κT T for a pure system of component 1, calculated directly using equation (5.2).
Results obtained by sampling fluctuations from a total simulation box in the N pT and NV T
ensemble are shown. The hexagon represent value calculated from volume fluctuations by
equation (2.13), and the diamond represent the value calculated from solving equation (2.7)
numerically.

As already mentioned, the real LJ mixture at x1 = 0.05 showed unexpected behaviour, de-

viating from the rest of the cases investigated. This is shown in figure 5.19, where both ν22

and ν12 obtained from a total simulation box the N pT ensemble are increasing for larger

sized subvolumes. This strengthens the argument stating that the particle fluctuations

are amplified by volume fluctuations, since the volume of the simulation box for this sys-

tem fluctuated ∼ 2% from the mean value, while all other systems only fluctuated ∼ 0.5%

from the mean value. The fluctuations in number of particles calculated from embedded

volumes in the NV T simulation box also show much larger values for this system than
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what was observed for other compositions (figure 5.11 represents this behaviour). This

means that the system is, in fact, characterized by large particle fluctuations at this com-

position, and that they were not just a result of density changes in the total system. The

large fluctuations could indicate that the system is close to the critical point, or that two

phases were present. To investigate whether the system was heterogeneous, a histogram

of the number of particles in the smallest lattice cells was calculated, and presented in

figure 5.20. If two phases were present, this histogram would consist of two peaks, rep-

resenting the two different densities in the system. Figure 5.20 instead consists of only

one, clear peak at ∼ 39, recognized as the average number of particles inside the smallest

lattice cells. This indicates that the system is homogeneous, but it is still possible that it is

close to the critical point, given the large magnitude of the fluctuations.
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Figure 5.19: νi k as a function of the surface to volume ratio for the real LJ mixture at
x1 = 0.05. Fluctuation sampled from a total simulation box in the N pT and the NV T are
both included.

All together, the results presented in this section show that the particle fluctuations calcu-

lated in subvolumes are clearly affected by the volume fluctuations in the N pT ensemble.

A reservoir in the NV T is therefore considered to be a safer choice. Figures 5.17-5.18 il-

lustrate the difficulty often encountered when attempting to determine the linear region,

while the behaviour of the real LJ mixture at x1 = 0.05 showed the importance of checking

the behaviour of the extensive properties. The expected behaviour of νi k is well known,

and discrepancies are therefore more easily discovered. The same discrepancies are not

as easily observed for plots of the directly calculated KB integrals.
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Figure 5.20: Particle number distribution for the smallest lattice cells of the real LJ mixture
at x1 = 0.05.

5.3 Lennard-Jones Mixtures - Comparison to Theoretical Values

A large number of different properties are available from combinations of KB integrals

of mixtures [79]. Some of the most interesting ones are the derivative of the chemical

potential (∂µ1/∂x1)T,p , isothermal compressibility κT , and the partial molar volumes V1

and V2. Results obtained from KB integrals in the figures presented in this section are

calculated from a total simulation box in the NV T ensemble, and show the results of all

different fluctuation methods, and the RDF results using 2,000 bins without finite-size

corrections. A more thorough investigation of the accuracy of the methods is given in

section 5.3.3.

5.3.1 Ideal Lennard-Jones Mixture

The property ∆G12 = G11 +G22 − 2G12 is a part of many expressions for thermodynamic

properties and has a theoretical value of zero for ideal mixtures [4]. The accuracy of this

value therefore determines the accuracy of many of the properties calculated. Figure 5.21

shows ∆G12 as a function of mole fraction of component 1, where it becomes clear that

the integration of RDF gave the results closest to zero. The fluctuation method that show

the best accuracy is the one using randomly positioned subvolumes and linear scaling.

Figure 5.22 shows (∂µ1/∂x1)T,p calculated from (2.20) as a function of mole fraction of

component 1, together with the theoretical prediction given by equation (2.6). The KB

integrals are only included in the calculation of this property through∆G12. The accuracy

of (∂µ1/∂x1)T,p is therefore completely governed by the accuracy of ∆G12, which means

that the trends in figures 5.21-5.22 are exactly the same.
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Figure 5.21: ∆G12 = G11 +G22 −2G12 for the
ideal LJ mixture, calculated from KB integrals
obtained by the different fluctuation methods
and RDF using 2,000 bins. The error bars
represent two standard deviations.
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Figure 5.22: (∂µ1/∂x1)T,p for the ideal LJ
mixture, calculated from KB integrals com-
bined in equation (2.20). Theoretical predic-
tion given by (2.6). The error bars represent
two standard deviations.
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The isothermal compressibility was calculated by combining the KB integrals in equation

(2.21). In addition to ∆G12, this equation also includes the term G11G22 −G2
12, and the

individual KB integrals for like interactions multiplied by their associated concentration.

As already mentioned in section 2.2, κT is also available through two other methods. The

first method uses equation (2.13) to calculate the isothermal compressibility from fluctu-

ation of the total volume of the simulation box. The second is systematically increasing

the pressure of the system, in order to solve equation (2.7) numerically. Figure 5.23 shows

the results of these two methods, together with the results calculated from the KB inte-

grals. All methods, except the integration of the RDF, provided constant values of κT as

a function of mole fraction. This was expected for the ideal mixture since it actually was

a pure system with differently labelled particles. The standard deviations for all methods

are now smaller in the outer ranges of the mole fraction scale, which probably is a result

of the weighting of the KB integrals of the different components in equation (2.21).
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Figure 5.23: κT for the ideal LJ mixture, cal-
culated from KB integrals combined in equa-
tion (2.21), from volume fluctuations using
equation (2.13), and by solving (2.7) numer-
ically. The error bars represent two standard
deviations.
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Another interesting trend in figure 5.23 is the differences between the results obtained us-

ing equation (2.7), volume fluctuations, and particle fluctuations. These show the exact

same relative trend as displayed for the pure system in figure 5.17. That is, the value ex-

trapolated from particle fluctuations is found between the values calculated from volume

fluctuations and the ones calculated using equation (2.7). This suggests that the value

calculated from volume fluctuations does not represent the value in the thermodynamic

limit (which is for V →∞) but instead gives κT for the finite-sized volume of total simula-

tion box. The method involving equation (2.7) is a more well known, established method,

known to produce accurate values of the isothermal compressibility [30]. These results

are therefore regarded as the reference value of the isothermal compressibility for the LJ

systems. However, as already mentioned, it is possible that they are not thermodynam-

ically consistent with the results calculated from the RDF and the particle fluctuations,

due to the tail corrections.

Figures 5.24-5.25 show the partial volumes calculated from equation (2.22) of compo-

nents 1 and 2 respectively. It should be noted that these are presented in reduced LJ units,

which means that they are given per particle instead of per mole. They are not proper par-

tial molar volumes, and is therefore instead referred to as partial volumes. For the ideal

mixture, the partial volumes of both components should be equal to the volume per par-

ticle of the total system [2]. All methods show good overlap, but the closest ones are the

results obtained from integrating the RDF, and the results of the fluctuation calculations

using random positioned subvolumes. The magnitude of the standard deviations reflect

those observed in figure 5.21, meaning that the ∆G12 expression has a large influence on

the partial volumes. The individual KB integrals for like particles are also included in the

expression, but these are multiplied with their associated concentration. The result is

that the large standard deviations the KB integrals for like particles, observed at low mole

fractions, does not have a large effect on the partial molar volumes.
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Figure 5.24: V1 for the ideal LJ mixture, cal-
culated from KB integrals combined in equa-
tion (2.22). Black line represents volume per
particle for the total system. The error bars
represent two standard deviations.
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Figure 5.25: V2 for the ideal LJ mixture, cal-
culated from KB integrals combined in equa-
tion (2.22). Black line represents volume per
particle for the total system
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5.3.2 Real Lennard-Jones Mixture

All of the above introduced properties can also be calculated for the real LJ mixture. No

theoretical prediction exists for comparison, but the isothermal compressibility can still

be calculated from the volume fluctuations by equation (2.13), and by solving equation

(2.7) numerically. Figure 5.26 show a similar trend to the one observed for ideal mixture,

but the differences are much larger for low mole fractions of component 1. This reflects

the behaviour discussed for this system in section 5.2.2, where very large particle fluctu-

ations and volume fluctuations were observed. The rapid increase in κT is another indi-

cation that the system gets closer to its critical point as the mole fraction of component 2

increases. As stated in section 3.2, the fluctuation calculations will not work for systems

close to the critical point, which could explain the large differences from the reference

value.
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Figure 5.26: κT for the real LJ mixture, calcu-
lated from KB integrals combined in equation
(2.21). Calculated from volume fluctuations
using equation (2.13), and by solving (2.7) nu-
merically. The error bars represent two stan-
dard deviations.

Figures 5.28-5.29 show the partial molar volumes calculated from equation (2.22) of com-

ponents 1 and 2 respectively. In contrast to the equivalent results of the ideal LJ mixture,

the results for the real LJ mixture show significant variations with mole fraction. This is

expected for the real LJ mixture, since the total volume of the simulation box is not con-
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stant as a function of mole fraction, and the interparticle forces are different. As stated

in section 2.1, the most well known and established method for computation of partial

molar properties is from data of the molar property as a function of mole fraction. For

the LJ systems, which has all their properties expressed in reduced units, the volume per

particle V /N is instead calculated. By finding the slope of this curve, the partial molar

volumes can be calculated from

(
∂V

∂N1

)
T,p,N2

= V

N
+ (1−x1)

(
∂
(V

N

)
∂x1

)
T,p

(5.3)

(
∂V

∂N2

)
T,p,N1

= V

N
−x1

(
∂
(V

N

)
∂x1

)
T,p

(5.4)

Equations (5.3)-(5.4) were solved using the polyfit function in MATLAB [74] to fit a 4th

degree polynomial to V /N . Since only seven data points are used for curve fitting, it will

not fit the data points perfectly, and some artificial curvature is introduced, as can be

seen in figure 5.27. The results of this method, represented by the solid lines in figures

5.28-5.29, should therefore by no means be regarded as the correct result for the partial

molar volumes, but they give an idea of how the trends should look. Both figures 5.28-5.29

show that the results calculated from particle fluctuations give partial volumes closer to

those obtained by using equations (5.3)-(5.4).
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Figure 5.27: Volume per particle for the real LJ mixture, as a function of mole fraction.
The lines solid show the 4th degree polynomial fitted to the data points using the polyfit
function in MATLAB [74].
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Figure 5.28: V1 for the real LJ mixture, calcu-
lated from KB integrals combined in equation
(2.22). The error bars represent two standard
deviations.
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Figure 5.29: V2 for the real LJ mixture, calcu-
lated from KB integrals combined in equation
(2.22). The error bars represent two standard
deviations.
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5.3.3 Evaluation of Methods

Since all results for the two LJ mixtures are presented in LJ units, the absolute values of

these results themselves do not give much information about real life properties. The

comparison and analysis of the different methods is therefore in this section presented

as relative to theoretical values, when these are available, or results of a method that is

believed to provide accurate results. Figure 5.30 shows the difference between the the-

oretical value of (∂µ1/∂x1)T,p calculated from equation (2.6), and the ones obtained by

using KB integrals and equation (2.20). This figure shows that the method using the in-

tegration of the RDF clearly gives the lowest percentage difference, which is below 1% for

all mole fractions. The fluctuation method that gives the lowest percentage difference is

the one using random sampled subvolumes and linear scaling, which is below 2% for all

mole fractions.
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Figure 5.30: Percentage difference between
(∂µ1/∂x1)T,p calculated from (2.20) and the-
oretical prediction given by equation (2.6) for
the ideal LJ mixture.

The same percentage difference can be calculated for the isothermal compressibility for

both the ideal and the real LJ mixture. The results calculated using equation (2.7) are nor-

mally expected to give the most correct results of this property. As already mentioned,

it is possible that these reference values are not thermodynamically consistent with the

results calculated from the RDF and the particle fluctuations, due to the tail corrections.
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However, they are the only values available for comparison, and were therefore used to

compute the differences presented in figures 5.31-5.32 for the ideal and real LJ mixtures

respectively. In contrast to the trends observed for (∂µ1/∂x1)T,p , the result obtained from

RDF now show up to ∼ 23% difference from the reference value, while the fluctuation

methods are all giving result differentiating by 8−12%. As also previously observed, the

fluctuation methods using random subvolumes and linear scaling gives the smallest rela-

tive difference from the reference value, at about 8% for all mole fractions.
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Figure 5.31: Percentage difference between
κT calculated from (2.21) and calculated by
numerical differentiation of equation (2.7) for
the ideal LJ mixture.

These trends are again different for real LJ mixture. Both methods show very large dif-

ferences for x1 = 0.05, which are up to 60% for fluctuation methods and 35% for the re-

sult calculated from integration of the RDF. For the fluctuation methods, this difference

becomes lower as x1 increases, and is around 10% for x1 = 0.95, which is similar to the

percentage differences observed for the ideal mixture. From figure 5.26, it can be seen

that the absolute difference for the results obtained using the RDF is the same for all mole

fractions, except x1 = 0.05. This means that the percentage value is larger for high mole

fractions of component 1 only because the absolute values become smaller here. Hence,

the percentage differences obtained by integration of RDF presented in figure 5.32 do not

show how the accuracy of the RDF method vary with mole fraction. However, it does give

information about the difference in accuracy between this method and the fluctuation
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methods, where it can be seen that RDF provides a much more accurate result for low

mole fractions of component 1, while the fluctuation methods provide better results for

high mole fractions of component 1. This suggests that for computation of isothermal

compressibility, the fluctuation method is a better alternative as long as the system is suf-

ficiently far from the critical point.
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Figure 5.32: Percentage difference between
κT calculated from (2.21) and calculated by
numerical differentiation of equation (2.7) for
the real LJ mixture.

The overall accuracy can be analyzed by the factor k, which is calculated as explained in

appendix A. The closer to zero this value is, the better is the total accuracy of the calcu-

lated results. To check the total accuracy of the calculated partial volumes, the volume

per particle was calculated from V /N = x1V1 + x2V2, and compared to the actual volume

per particle, calculated from the size of the total simulation box. Table 5.1 presents the

k-values for (∂µ1/∂x1)T,p , κT and V /N for the ideal LJ mixture, while table 5.2 presents

the k-values of κT and V /N for the real LJ mixture. The k-values of (∂µ1/∂x1)T,p and κT

for both LJ mixtures reflect the behaviour presented in 5.30-5.32. The property that does

show surprising k-values is the volume per particle. These values are so small that they

hardly differ from zero, which should mean that all methods work equally well. This was

unexpected since differences in these values were observed in figures 5.28-5.29. The vol-

ume per particle is clearly not much affected by the values of the component with the

lowest mole fraction, since the final result is the same for all methods. The overall accu-
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racy of the properties (∂µ1/∂x1)T,p and κT are also better for the NV T ensemble.

Table 5.1: k-values for ideal Lennard-Jones mixture, comparing overall accuracy of values
calculated from KB integrals to the true values of the same property. Values of k were
calculated as explained in appendix A, where equation (2.6) represents the true value for
(∂µ1/∂x1)T,p , the results of solving equation (2.7) numerically represents the true value of
κT , and the volume per particle is calculated using V /N = x1V1+x2V2. Significant numbers
were determined by the standard deviations of k.

Method
N pT k(∂µ1/∂x1)T,p k(κT ) ·105 k(V /N ) ·1031

Linear extrapolation (lattice) 0.11 7.5 1.6
Linear extrapolation (random position) 0.027 4.9 2.0
Cortes-Huerto eq. (lattice) 0.15 8.4 1.8
Cortes-Huerto eq. (random position) 0.14 7.6 2.0
RDF (2000 bins) 0.0021 25.8 1.8

NV T
Linear extrapolation (lattice) 0.09 7.0 2.6
Linear extrapolation (random position) 0.02 1.65 3
Cortes-Huerto eq. (lattice) 0.07 4.5 1.0
Cortes-Huerto eq. (random position) 0.08 3.6 1.6
RDF (2000 bins) 0.0021 25.8 1.8

Table 5.2: k-values for real Lennard-Jones mixture, comparing overall accuracy of values
calculated from KB integrals to the true values of the same property. Values of k were
calculated as explained in appendix A, where the results of solving equation (2.7) numerically
represents the true value of κT , and the volume per particle are calculated using V /N =
x1V1 +x2V2. Significant numbers were determined by the standard deviations of k.

Method
N pT k(κT ) ·102 k(V /N ) ·1031

Linear extrapolation (lattice) 2.02 2.4
Linear extrapolation (random position) 1.96 2.5
Cortes-Huerto eq. (lattice) 2.19 2.4
Cortes-Huerto eq. (random position) 1.86 1.5
RDF (2000 bins) 1.24 1.9

NV T
Linear extrapolation (lattice) 1.574 2.2
Linear extrapolation (random position) 1.484 1.9
Cortes-Huerto eq. (lattice) 1.54 2.0
Cortes-Huerto eq. (random position) 1.57 2.5
RDF (2000 bins) 1.24 1.9
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There are two important factors to evaluate when comparing the output values of differ-

ent methods. These are accuracy (meaning that the results are close to reference values)

and precision (which means low standard deviations). Between the fluctuation meth-

ods, the method involving randomly positioned subvolumes and linear scaling was by far

providing the most precise precise results. The standard deviations of this method were of

approximately the same magnitude as those obtained by integration of RDF. The accuracy,

on the other hand, must be evaluated from the figures 5.30-5.32 and tables 5.1-5.2 com-

bined. From the values presented in tables 5.1-5.2, there is no clear method that is con-

sistently providing the most accurate results, neither between the integration of the RDF

and the fluctuations methods, nor between the fluctuation methods themselves. How-

ever, the differences observed in figures 5.31-5.32 show that the isothermal compressibil-

ity is much more accurately calculated from the fluctuation methods, provided that the

system is sufficiently far from its critical point. Among the fluctuation methods, the lin-

ear extrapolation and randomly positioned subvolumes is more often than the remaining

methods providing results closer to the reference values

Another thing that is of importance when evaluating the effectiveness of the different

methods, is the computational effort and the amount of postprocessing that has to be

done to get the final results. Initialization, equilibriation and production runs made up

600 CPU hours per composition. For a total simulation box in the NV T ensemble, the

instantaneous number of particles in the lattice subvolumes were tracked by LAMMPS

during the simulation. This was therefore the most cost effective method, since it only

required one additional CPU hour for postprocessing of the LAMMPS output files. The

RDF calculations for both ensembles, and the instantaneous particle numbers for the lat-

tice in the N pT ensemble, were calculated by the rerun command in LAMMPS, which

required an additional 400 CPU hours. The Python code calculating particle fluctuations

in randomly positioned subvolumes spent 125 CPU hours. LAMMPS has a command for

the purpose of computing the RDF, and there are several other postprocessing tools avail-

able [80] [81]. For fluctuation calculations, no such tool exits, and the method must be

implemented by oneself. The integration of RDF is therefore the most available and es-

tablished method. The computational time spent on calculations of fluctuations of the

randomly positioned subvolumes could probably have been shortened by using a pro-

gramming language that is more efficient in performing computations on large amounts

of data. This could also be used to compute RDF, which would require less computational

time, and the problems regarding the behaviour of the calculated RDF, discussed in sec-

tion 3.3.1, could probably have been avoided.
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One last question that should be answered, is whether the methods are easy to use. The

largest problem when using the fluctuation methods is how sensitive these are to the ex-

trapolation, as shown in section 5.2.2. It can be difficult to visually determine how close to

Ω/V → 0 the linear region expands, especially in the cases where it is gradually changing.

Cortes-Huerto et al. suggested restrictions that should be used to determine the location

of the linear region, but as explained in section 5.2.1, this was not possible to apply for the

LJ systems studied here. The linear region of the KB integrals calculated from RDF also

needs to be determined visually, but this one is normally more distinct than those of the

fluctuation methods.

5.4 Methanol-Water Mixture

Even though differences could be observed in the values of (∂µ1/∂x1)T,p , κT and Vi calcu-

lated from KB integrals of the LJ mixtures, the KB integrals themselves were mostly within

two standard deviations of those calculated from other methods. To investigate if larger

differences arise for more complex mixtures, all the above evaluated methods were also

tested for the methanol-water mixture. In section 2.2 it was determined that the particle

fluctuations of the largest of the embedded systems in a N pT -simulation box were af-

fected by the fluctuating volume. This made it harder to determine the extent of the linear

region, and is probably also why tables 5.1-5.2 show that the NV T simulations provided

better overall accuracy for all properties investigated. The simulations of the methanol-

water mixture were therefore performed in the NV T ensemble.

By following the procedure suggested in section 5.1.1, 3,000 bins was determined to be

sufficient for the RDF calculations. The behavior of the RDF at large R, described in sec-

tion 5.1.3, was also observed for the methanol-water mixture. This means that it is even

more likely that the computation of RDF by LAMMPS caused this difference. Finite size

corrections were therefore not applied for the RDFs of methanol-water mixture either.

The way the sampling was performed for LJ mixtures was not optimal, since it resulted in

a large number of data points in regions not available for extrapolation. For the methanol-

water mixture, a larger number of different sizes was therefore investigated. In order to

optimize number of data points available for curve fitting, the sizes of the subvolumes

were also constrained to those that were expected to produce values in the linear region.

The maximum radius of spherical subvolumes used for the methanol-water mixtures was

therefore R = 20 Å, which was based on where the linear region was observed for the LJ

mixtures. This extended to Ω/V ≈ 0.75 for most systems, which corresponds to a subsys-
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tem of radius ∼ 20Å. The linear region is not guaranteed to be found for the same sized

subvolumes for all systems, but the LJ result does give an idea of its location for other

systems. As later shown in figures 5.34-5.35, the subvolumes chosen here sufficiently cov-

ered the linear region for the methanol-water mixture. First, the KB integrals in the ther-

modynamic limit, calculated from all different methods are analyzed as function of mole

fraction.
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Figure 5.33: KB integrals for the
methanol-water mixture calculated using
equation (2.19) and or from RDF using
equation (3.38), followed by extrapola-
tion to the thermodynamic limit. The
error bars represent two standard devia-
tions.

Figure 5.33 show the thermodynamic limit value of KB integrals calculated from the fluc-

tuation methods and by integration of RDF. All data points are within two standard de-

viations of the ones obtained by other methods, which means they still did not give sig-

nificantly different results. The methods used in this work also provided results that were

close to those reported by Weerasinghe and Smith [9], in the original paper that first intro-

duced the methanol force field. See appendix B for figures of excess coordination number

that can be directly compared with the result reported by Weerasinghe and Smith [9].

Similarly to the LJ mixture, the results obtained by lattice partitioning show the largest

standard deviations, at around twice the magnitude of those obtained from randomly po-

sitioned subvolumes. The linear scaling is still the most precise fluctuation method, with
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standard deviations comparable to those obtained by integration of RDF. The y-axis of

the plots in figure 5.33 do not cover the same range, but the data points are displayed

for ranges of the same size. This means that how the properties vary with mole fraction,

and the magnitude of the standard deviations can be directly compared. The KB integrals

representing the water-water interactions are consistently positive, while the other two

are negative. The one that varies the most as a function of mole fraction is GMeOH−Water,

while the standard deviations of GWater−Water are larger than for the other two. For the

composition with highest mole fraction of water (xMeOH = 0.30), the magnitude of the

standard deviation of GWater−Water is actually comparable to the one of GMeOH−MeOH. This

is different from what was observed for the LJ mixtures, where the component in excess

always showed better statistics, both for G11 and for G22. However, the results presented

here are similar to the results obtained by Weerasinghe and Smith [9], which means that

they could have been caused by precision of the force field.

As for the LJ mixtures, the number density was constant for all subvolume sizes. Hence,

the KB integrals could be calculated directly using equation (5.1). Figures 5.34-5.35 show

the procedure of the curve fitting using the linear extrapolation and Cortes-Huerto scaling

equation respectively, for the methanol-water mixture at xMeOH = 0.50.
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Figure 5.34: GV
i k for the methanol-water mixture at xMeOH = 0.50 calculated directly from

equation (5.1), as a function of the surface to volume ratio. Results of both subvolume
methods (random positioned and lattice partitioning) are included. Thermodynamic limit
value Gi k was obtained from linear fit to region marked by vertical lines for both subvolume
methods.
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In contrast to the LJ mixtures, the lattice partitioning and randomly positioned subvol-

umes are now giving different results in the linear region in figure 5.34. The difference is

probably due to the correlated fluctuations in the lattice subvolumes, as discussed ear-

lier. This correlation could be larger for the methanol-water system because it consists of

more complex components than the LJ system. It is also possible that fluctuations simply

are more correlated because the lattice subvolumes are smaller for this system, due to the

smaller size of the total simulation box. The length of the total simulation box varies with

composition, but its average value for the methanol-water mixture was ∼ 70 Å, while it

was ∼ 145 Å for the LJ systems.
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Figure 5.35: λGV
i k for methanol-water mixture at x1 = 0.50 calculated from equation (3.42),

as a function of the parameter λ. Results of both subvolume methods (random positioned
and lattice partitioning) are included. Thermodynamic limit value Gi k was obtained as the
slope of linear fit to the region marked by vertical lines.

Recall that, the restriction for subvolume sizes introduced by Cortes-Huerto et al. [20],

stated the smallest subvolume should not be smaller than Vξ (which corresponds to a

spherical subvolume of radius equal to ξ) and that the largest subvolume used for curve

fitting should correspond to λ= 0.3. The RDF for the methanol-water system at xMeOH =
0.50 in figure 5.36, shows that this system has a structural correlation length of ξ ≈ 12 Å,

which corresponds to λ≈ 0.27, and a surface to volume ratio of Ω/V = 0.25 for spherical

subvolumes. Figure 5.34 shows that the fluctuations calculated for volumes much larger

than this, clearly were affected by the finite size of the simulation box, and should not be

used for extrapolation. This means that the lower limit of the restriction introduced by
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Cortes-Huerto et al. [20] does not accurately describe the location of the linear region of

this system either. A linear region still appears, despite the fact that the assumptions these

restrictions arise from were not fulfilled (see derivation of equation (3.47) in section 3.4).

It is therefore instead believed to arise due to the thermodynamics of small systems, and

the proportionality between their extensive properties and the inverse systems size. As

already mentioned in section 5.2.1, this shows, that for finite size KB integrals, the linear

scaling and the Cortes-Huerto equation are essentially the same.
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Figure 5.36: RDF of the methanol-water mixture at xMeOH = 0.50.

The isothermal compressibility and the partial molar volumes were calculated from com-

binations of KB integrals by equations (2.21) and (2.22) respectively. The isothermal com-

pressibility was in addition computed by solving equation (2.7) numerically, and pre-

sented in figure 5.37. The results computed from KB integrals for the compositions xMeOH =
0.50 and xMeOH = 0.70 are not significantly different from the results computed by equa-

tion (2.7). However, the results at the lowest mole fraction show larger differences. As

introduced in section 2.1.2, an approximate value of κT for mixtures can be calculated

from

κT =φiκ
0
T,i +φkκ

0
T, j (5.5)

whereφi is the volume fraction of component i, and κ0
T,i is the isothermal compressibility

of a pure system of component i. Since the real life values of isothermal compressibility

for pure methanol and water are κ0
T,MeOH = 12.3 ·10−5atm−1 κ0

T,Water = 4.6 ·10−5atm−1 [82],
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it is more likely that the values calculated by KB integrals represent the real life values for

methanol-water mixtures at this compositions. This argument is also substantiated by

the fact that the force field was developed for the purpose of providing accurate estimates

of the KB integrals of the system, and not necessary other properties of a true methanol-

water mixture. It is therefore believed that the isothermal compressibility computed by

solving equation (2.7) is more accurate for this specific force field, but that the KB integrals

better represent the true values of a real life mixture of methanol and water.
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Figure 5.37: κT for the methanol-water mix-
ture, calculated from KB integrals combined
in equation (2.21), from volume fluctuations
using equation (2.13), and by solving (2.7) nu-
merically. The error bars represent two stan-
dard deviations.

Both the values of κT presented in figure 5.37 and the partial molar volumes in figures

5.38-5.39 closely resemble the results reported by Weerasinghe and Smith [9] and experi-

mental data [83] [84]. Through the use of KB integrals, a simple molecule model is there-

fore able to accurately reproduce experimental values just as well as more complex and

polarized force fields [85] [86]. However, the experimental data can not be used to eval-

uate the accuracy of the different methods, since the exact values of the KB integrals for

the force field are not necessarily equal to the exact values of the KB integrals for a real life

methanol-water mixture.
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Figure 5.38: VMeOH for the methanol-water
mixture, calculated from KB integrals com-
bined in equation (2.22). The error bars rep-
resent two standard deviations.
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Figure 5.39: VH2O for the methanol-water
mixture, calculated from KB integrals com-
bined in equation (2.22). The error bars rep-
resent two standard deviations.
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The reference values for κT showed so large standard deviations that comparison to the

values calculated from KB integrals does not provide much information about their ac-

curacy. The most accurate method for the methanol-water system could therefore not be

determined by studying only these three compositions. The values ofκT and Vi calculated

from the fluctuation methods barely differ from each other, but the difference between

these, and the ones obtained from integration of RDF is ∼ 10% for κT , and ∼ 1% for the

partial molar volumes. These percentage values are approximately the same as observed

for the LJ mixtures. This suggests that the relative errors presented for the LJ mixtures

in section 5.3.3 are representative for the different methods, and that approximately the

same relative errors can be expected for other mixtures. However, the behaviour of only

the two properties κT and Vi do not provide enough information to make a final conclu-

sion.
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6 Conclusion and Perspectives

A systematic comparison of the different methods available for computation of KB inte-

grals in the thermodynamic limit was conducted. The methods were represented by two

categories: integration of RDF and particle fluctuations in grand canonical systems. Both

involved extracting the KB integrals in the thermodynamic limit from the ones computed

for different-sized finite volumes. The variations within each category, and their impact

on the KB integrals in the thermodynamic limit were thoroughly analyzed. Consequently,

the most efficient method could be determined by considering four factors: accuracy,

precision, computational time and availability.

The method involving integration of the RDF of the system showed dependence on the

following: 1) number of shells used for computation of the RDF 2) how often the simula-

tion trajectory was sampled and 3) applying finite size corrections to the RDF. The com-

mon factor of the first two was found to be the good resolution of the first peak of the

RDF. This was achieved by sampling the simulation trajectory every 100 step and using a

large enough number of bins. Sufficient number of bins was found when the integral un-

der the total curve no longer changed upon increasing the number of bins. At this point,

the trapezoid method provides precise integration. The finite size correction proposed by

Ganguly et al. [8] could not correct for the drifting asymptotes of the finite-size KB inte-

grals. However, the source of this is not believed to be the finite size correction, but rather

how the RDF is computed in LAMMPS. These RDFs showed unexpected behaviour, that

became evident at large R, where it did not show the expected depletion of particles for a

closed system. The finite size correction, which assumes that this depletion is present, is

therefore believed to have enlarged this behaviour.

The factors investigated for the fluctuation based methods were: 1) definition of subvol-

ume and 2) scaling equation used to obtain estimates of the KB integrals in the thermody-

namic limit. The different subvolume types investigated were the one normally used by

SSM, which is placing the subvolumes at random positions inside the simulation box, and

the superimposed lattice proposed by Galata et al. [23], where each lattice cell is regarded

as a subvolume. For all systems studied here, the randomly positioned subvolumes re-

sulted in better precision than the ones defined by lattice partitioning. This is related to

the quality of the curve fitting used to extract the KB integrals in the thermodynamic limit.

The different subvolume sizes available from lattice partitioning is constrained by the size

of the total simulation box, which resulted in few data points, and poor curve fitting. The
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statistics of each data point calculated from the lattice subvolumes are also affected by the

correlated fluctuations in neighbouring boxes. The method using randomly positioned

subvolumes is therefore more flexible, and can achieve better precision with less compu-

tational effort.

The different techniques used to obtain the KB integrals in the thermodynamic limit from

fluctuation calculations were the linear extrapolation, as normally used in SSM, and a

recently proposed equation by Cortes-Huerto et al. [20]. Neither method could be deter-

mined to outperform the other in both accuracy and precision. However, it was found that

the uncertainties in KB integrals in the thermodynamic limit obtained by both methods

were caused by the uncertainties of the curve fitting. Direct extrapolation of the finite vol-

ume KB integrals therefore provide better precision than by first extrapolating the proper

extensive properties individually. It is important to keep in mind that this only can be per-

formed for quantities that can be expressed as a linear combination of the proper exten-

sive properties. Also, the expected behaviour these extensive properties is better known

for both small and large embedded volumes, meaning that discrepancies are more easily

revealed. Both methods suffer from difficulty in determining the linear region, which in

some cases may have affected the extracted value of the KB integral in the thermodynamic

limit. When calculating KB integrals, the scaling methods were therefore determined to

work equally well.

Comparison of fluctuations obtained from subvolumes in a total simulation box in the

N pT and NV T ensemble showed that the fluctuating volume of the N pT ensemble in-

troduced unwanted contributions to the fluctuations in number of particles. Only ensem-

bles with constant volumes should therefore be used for sampling of subvolumes. Here,

the RDF results show better accuracy since these did not depend on the ensemble of the

reservoir. The ensemble of the reservoir was discovered to have the largest impact on the

fluctuations in the systems close to the critical point, while the RDF provided better accu-

racy here as well. Integration of RDF is also the most available method, since several tools

exist for its computation, while the fluctuation method must be implemented by one-

self. However, the only way to obtain better statistics is by longer simulation time, while

the fluctuation method can faster achieve better statistics by sampling a larger number

of subvolumes per simulation snapshot. The accuracy of two methods depend on which

property is calculated, but the errors introduced to the isothermal compressibility by the

RDF method is much larger than the error introduced to the derivative of the chemical

potential by the fluctuation method.
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Considering all factors above, it was determined that the fluctuation method, using ran-

domly positioned subvolumes is the most efficient way of obtaining KB integrals in the

thermodynamic limit, provided that the system is sufficiently far from the critical point.

The way it was implemented in this work was not optimal, and suggestions for improve-

ment are therefore: 1) sampling subvolumes with linearly increasing reciprocal sphere

radius 1/R in order to maximize the number of data points in the regions used to extract

KB integrals in the thermodynamic limit or 2) take into account the finite size of the reser-

voir by using an equation designed for this purpose, and the fluctuations calculated for

all different-sized subvolumes, meaning either the one proposed by Cortes-Huerto et al.

[20] (equation 3.47) or the one proposed by Strøm et al. [49] (equation (3.32)).

The combination of linear extrapolation and randomly positioned subvolumes represent

the procedure used by SSM. This method also has been showing promising potential in

ability to study properties of small systems. This argument is based on the fact that it

is able to accurately reproduce values in the thermodynamic limit from fluctuations in

small systems. In previously published work, this has been showing good overlap [49]

[51], but the results presented here show larger differences. The reason for this could be

further studied by direct comparison of proper grand canonical fluctuations from Monte

Carlo simulations. However, it is possible that the discrepancies only were caused by the

long-range tail corrections, since it gives output values that are not thermodynamically

consistent with the truncated LJ potential, and therefore probably not consistent with the

particle fluctuations either. This should therefore be investigated by running some similar

simulations without long-range tail corrections.
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Symbol Lists

List of Latin symbols.

Symbol Description
a Acceleration vector for particle
b Density of general property B
bs Surface contribution of density of property B
b∞ Volume contribution of density of property B
B General extensive property
B̃ General extensive property
B GC General property in the grand canonical ensemble
B ID B in ideal state
Bi Partial molar B
Bt General property for the total ensemble
ci Bulk molecular concentration of component i
Ci k Proportionality constant in Cortes-Huerto scaling equation [20]
CV Heat capacity at constant volume
E Energy
ELTC Long-range tail corrections for energy
Fi Force vector acting on particle i
gi k Radial distribution function
gideal Radial distribution function of ideal system

g Ganguly
i k Radial distribution function with finite size correction by Ganguly et al. [8]

g∞
i k Radial distribution function of open, infinite system

G Gibbs energy
Gi k Kirkwood-Buff integral of components i and k in thermodynamic limit
GV

i k Kirkwood-Buff integral of components i and k for finite volume V
H Hamiltonian
k Parameter measuring overall fit of curve
kB Boltzmann constant
k Reciprocal vectors in Ewald sum
K Kinetic energy
L Length
L0 Size in one dimension of reservoir (total simulation box)
mi Mass of component i
n Number of moles
ni Number density of particle i
n Vector of positions of image boxes used in Ewald summation
Ni Number of particles of type i
N Number of replicas of small systems constructing an ensemble
p Pressure
p̂ Integral pressure
pLTC Long-range tail corrections for pressure
pi Momentum vector for particle i
qi Charge of particle i
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ri j Distance between particles i and j
rc Cut-off for pair potential
r Position vector
ri Position vector for particle i
R Radius
S Entropy
t Time
T Absolute temperature
U Internal energy
v1 External field contribution to potential energy
v2 Pair interaction contribution to potential energy
v2,i k Pair potential between particles of type i and k
v3 Triplet interaction contribution to potential energy
v Velocity vector
V Volume
V0 Volume of reservoir (total simulation box)
Vξ Volume with radius equal to structural correlation length
V Potential energy
VCoulomb Coulombic interactions
VEwald Ewald sum potential
VLJ Lennard-Jones potential
Vpair Pair potential
w Geometrical function in the method by Krüger et al. [19]
x Coordinate
xi Mole fraction of component i
X Replica energy
y Coordinate
z Coordinate
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List of Greek symbols.

Symbol Description
δi k Kronecker-Delta
ε Potential depth in Lennard-Jones potential
ε0 Dielectric constant
κT Isothermal compressibility
λ Scaling factor in the Cortes-Huerto scaling equation [20] (3.47)
µi Chemical potential of component i
νi k Fluctuation expression based on densities of particles i and k
ρi Bulk molecular concentration of component i
ρ(1)

i Singlet distribution function
ρ(2)

i k Pair distribution function
Ω Surface area
σ Molecular diameter in Lennard-Jones potential
σ2

B Average fluctuation of property B
ξ Structural correlation length
Ξ Grand canonical partition function

Definitions of reduced quantities in Lennard-Jones units.

Quantity Definition in Lennard-Jones Units

Density n∗ = N
V (σ11)3

Energy U∗ = U
ε11

Length x∗ = x
σ11

Mass m∗ = m
m1

Pressure p∗ = p
ε11
σ11

Temperature T ∗ = kBT
ε11

Time t∗ = t
σ11

(
ε11
m1

)(1/2)

Velocity v∗ = v
(

m1
ε11

)(1/2)
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A Statistical Analysis

All results were computed in five parallels. The expression for the standard deviation of
the mean of one data point is

σā =
√∑

(ai − ā)2

N (N −1)
(A.1)

where ai is a separate measurement, ā is the mean value and N is the number of parallels
[87]. When the final properties are parameters found from linear curve fitting with an
expression on the form

y = A+B x (A.2)

the standard deviation of A and B can also be calculated by measuring how well the fitted
curve represent the data points x. As explained in reference [87] the standard deviations
of the parameters A and B are

σA =σy

√∑
x2

i

∆
(A.3)

σB =σy

√
N

∆
(A.4)

where

σy =
√√√√ 1

N −2

N∑
i=1

(yi − A−B xi )2 (A.5)

and

∆= N
∑

x2
i −

(∑
x
)2

(A.6)

The curve fitting is performed by MATLAB, which applies the following expressions to find
A and B

A =
∑

x2
i

∑
yi −∑

xi
∑

xi yi

∆
(A.7)
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B = N
∑

xi yi −∑
xi

∑
yi

∆
(A.8)

The total fit the different methods can be expressed by how close it is to the theoretical
values, or a method that is known to provide accurate results. For the whole range of
mole fractions, the fit can be summarized by the factor k. This factor is the sum of the
squared difference between the each data point and its corresponding theoretical value,
divided by the total number of data points, which in this case is five.

k =
∑

i ∆x2
i

5
=

∑
i (xi ,computation −xi ,theory)2

5
(A.9)

98



B. ADDITIONAL FIGURES

B Additional Figures

The following sections contain additional figures containing supplementary information.
This includes the results of the computations using a total reservoir in the NV T ensemble
and the comparison to the original results obtained by Galata et al. [23]. The latter was
performed in order to make sure that the lattice partitioning suggested by the authors was
correctly implemented.

Figures B.1-B.2 are the results obtained in the NV T ensemble, equivalent to figures 5.2-
5.3 with results obtained in the N pT ensemble. Figures B.3-B.4 are the results obtained
in the NV T ensemble, equivalent to figures 5.8-5.9 with results obtained in the N pT en-
semble. Figures B.5-B.6 show the comparison of the original results obtained by Galata et
al. [23] together with the results obtained applying the lattice partitioning and the aver-
aging method they proposed, in addition to the results obtained using ensemble averages
and lattice partitioning.
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Figure B.1: KB integrals for the ideal LJ
mixture calculated using the RDFs of the
system in the NV T ensemble. The error
bars represent two standard deviations.
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Figure B.2: KB integrals for the real LJ
mixture calculated using the RDFs of the
system in the NV T ensemble. The error
bars represent two standard deviations.
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Figure B.3: KB integrals for the ideal LJ
mixture calculated using fluctuations of
the system in the NV T ensemble. The
error bars represent two standard devia-
tions.
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Figure B.4: KB integrals for the real LJ
mixture calculated using fluctuations of
the system in the NV T ensemble. The
error bars represent two standard devia-
tions.
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Figure B.5: KB integrals for the ideal LJ
mixture calculated in this work using the
average method proposed by Galata et al.
[23], together with their original results.
The error bars represent two standard de-
viations.
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Figure B.6: KB integrals for the real LJ
mixture calculated in this work using the
average method proposed by Galata et al.
[23], together with their original results.
The error bars represent two standard de-
viations.
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Figure B.7: Excess coordination numbers
(Ni k = ρi Gi k) for the methanol-water
mixture calculated using equation (2.19)
and or from RDF using equation (3.38),
followed by extrapolation to the thermo-
dynamic limit. The error bars represent
two standard deviations.
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C Python scripts

The following sections contain Python scripts used for fluctuation calculations and post-
processing of the results. This includes the script used to create initial configurations in
section C.1, the integration of the RDF in section C.2, the fluctuation calculations of LJ
mixtures using random subvolumes in section C.3, the fluctuation calculations of LJ mix-
tures using lattice partitioning C.4 and the fluctuation calculations of the methanol-water
mixture including both random positioned subvolumes and lattice partitioning in section
C.5.

C.1 Creating Initial Configurations

# Master Project
# Vilde Braten
# 15.02.2018

import numpy as np
import os
import sys
from random import randint

def change_id(data,x1,N):
"""
Changes composition of pure mixture by editing write_data file
from LAMMPS.
"""

N1 = 0
N2 = 0
pID = np.zeros((N,1))
pType = np.zeros((N,1))
counter = -1

for i in data[:(N+21)]:
i = i.split()

if (len(i) == 10):
counter += 1
pType[counter] = float(i[2])
pID[counter] = float(i[0])

if (pID[counter] > N*x1):
pType[counter] = 2
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# checking correct number of atoms
for j in pType:

if (j == 1):
N1 += 1

elif (j == 2):
N2 += 1

print(N1,N2)

return pType

if __name__ == "__main__":

INPUT = "initconfig.org"
OUTPUT = "initconfig"
inputFile = open(INPUT, "r")
data = [x for x in inputFile]
inputFile.close()
x1 = 0
N = 20000
res = change_id(data,x1,N)
part = -1

# printing
outputFile = open(OUTPUT, "w")
for i in data:

i = i.split()

if (len(i) == 10):
part += 1
outputFile.write(str(i[0])+" "+str(i[1]) \

+" "+str(int(res[part]))+" ")
for j in i[3:]:

outputFile.write(str(j)+" ")
outputFile.write("\n")

else :
for j in i:

outputFile.write(str(j)+" ")
outputFile.write("\n")
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C.2 Integrating RDF

# Master Project
# Vilde Braten
# vildebr@stud.ntnu.no
# 19.02.2018

import numpy as np
import scipy.integrate
import os
import sys

def corr_rdf(g,r,N,L):
"""
Correcting finite size effects of RDF. Using Ganguly
correction.
"""

if (g.shape[0] != r.shape[0]):
print("Vectors are different length. Exiting")
sys.exit()

inters = g.shape[1]
bins = g.shape[0]

vol = np.zeros_like(r)
deltaN = np.zeros_like(g)
gVDV = np.zeros_like(g)

totvol = L*L*L
meanvol = meanL*meanL*meanL
hbox = L/2.0
rho = np.array([N[0], N[1], N[1]])/meanvol

for j in range(bins):
if (r[j]<hbox):

vol[j] = (4.0/3.0)*np.pi*r[j]**3
else:

print("Cut-off is too long. Exiting")
sys.exit()

for j in range(1,bins+1):
deltaN[j-1,0] = scipy.integrate.trapz((g[:j,0]-1.0)*r[:j]**2 \

*rho[0],r[:j])
deltaN[j-1,1] = scipy.integrate.trapz((g[:j,1]-1.0)*r[:j]**2 \
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*rho[1],r[:j])
deltaN[j-1,2] = scipy.integrate.trapz((g[:j,2]-1.0)*r[:j]**2 \

*rho[1],r[:j])

deltaN = deltaN*4.0*np.pi

for j in range(bins):
gGanguly[j,0] = g[j,0]*((N[0]*(1.0-vol[j]/totvol))/ \

(N[0]*(1.0-vol[j]/totvol)-deltaN[j,0]-1))
gGanguly[j,1] = g[j,1]*((N[1]*(1.0-vol[j]/totvol))/ \

(N[1]*(1.0-vol[j]/totvol)-deltaN[j,1]-1))
gGanguly[j,2] = g[j,2]*((N[1]*(1.0-vol[j]/totvol))/ \

(N[1]*(1.0-vol[j]/totvol)-deltaN[j,2]))

return gGanguly

def KBint_rdf(g,r):
"""
Integrate the pair-correlation function for all interactions.
Using analytical expression for weighting parameter for 3D sphere.
"""

if (g.shape[0] != r.shape[0]):
print("Vectors are different length. Exiting")
sys.exit()

inters = g.shape[1]
bins = g.shape[0]

h = g - 1.0
G = np.zeros_like(g)

for i in range(inters):
for j in range(1,bins+1):

G[j-1,i] = scipy.integrate.trapz(h[:j,i]*r[:j]**2 \
*(1.0-1.5*(r[:j]/r[j-1])+0.5*(r[:j]/ \

r[j-1])**3),r[:j])

G = G*4.0*np.pi

return G

if __name__ == "__main__":
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numPar = 5

inputParam = "inputRDF.txt"
inputData = np.loadtxt(inputParam)
N = [int(inputData[0]), int(inputData[1])]
bins = int(inputData[2])
filename = "rdf%s.out" %(bins)

inputSize = "size.out"
sizeData = np.loadtxt(inputSize)
L = float(sizeData[np.argmin(sizeData[:,0]),0])
L = float(mean(sizeData[:,0]))

gGangulyTOT = []
KBintGangulyTOT = []
KBintTOT = []

for i in range(numPar):
data = np.genfromtxt(filename,skip_header=(4+(bins+1)*i), \

max_rows=bins)
r = data[:,1]
r += r[0]/2.0
g = data[:,2::2]
gGanguly = corr_rdf(g,r,N,L)
KBint = KBint_rdf(g,r)
KBintGanguly = KBint_rdf(gGanguly,r)

gGangulyTOT.append(gGanguly)
KBintGangulyTOT.append(KBintGanguly)
KBintTOT.append(KBint)
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C.3 Fluctuations SSM - LJ mixtures

# Master Project
# Vilde Braten
# 21.03.2018

import numpy as np
import random
import os

def fluct_calc(inputFile):
"""
Reads LAMMPS dump file and calculates density fluctuations.
"""

delta = (maxR-minR)/bins
radial = [(minR + delta*(m+1)) for m in range(bins)]

n1 = np.zeros(bins)
n2 = np.zeros(bins)
n1n1 = np.zeros(bins)
n2n2 = np.zeros(bins)
n1n2 = np.zeros(bins)

random.seed(2873698)

counter = 0
for snapshot in range(numSnap):

# read N
_ = inputFile.readline()
_ = inputFile.readline()
_ = inputFile.readline()
line = inputFile.readline()
N = int(line)

# read box dimensions
_ = inputFile.readline()
line = inputFile.readline()
_boxlo, _boxhi = line.split()
boxlo, boxhi = float(_boxlo), float(_boxhi)

boxL = boxhi-boxlo
hbox = boxL/2
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# move forward by three lines
_ = inputFile.readline()
_ = inputFile.readline()
_ = inputFile.readline()

snapshots = []
for i in range(N):

line = inputFile.readline()
_, ptype, dx, dy, dz = line.split()
snapshots.append([float(ptype), float(dx), float(dy), \

float(dz)])

for k in range(rndSmp):
posx = boxlo + boxL*random.uniform(0,1)
posy = boxlo + boxL*random.uniform(0,1)
posz = boxlo + boxL*random.uniform(0,1)

n_1 = np.zeros(bins)
n_2 = np.zeros(bins)

for snapshot in snapshots:
ptype, dx, dy, dz = snapshot
dx -= posx
dy -= posy
dz -= posz

if (dx > hbox):
dx -= boxL

elif (dx < -hbox):
dx += boxL

if (dy > hbox):
dy -= boxL

elif (dy < -hbox):
dy += boxL

if (dz > hbox):
dz -= boxL

elif (dz < -hbox):
dz += boxL

dr = np.sqrt(dx*dx + dy*dy + dz*dz)

for r in range(bins):
if (dr < radial[r]):

if (ptype == 1):
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n_1[r] += 1.0
elif (ptype == 2):

n_2[r] += 1.0

for g in range(bins):
n1[g] += n_1[g]
n2[g] += n_2[g]
n1n1[g] += n_1[g]*n_1[g]
n2n2[g] += n_2[g]*n_2[g]
n1n2[g] += n_1[g]*n_2[g]

counter += 1.0

n1 /= counter
n2 /= counter
n1n1 /= counter
n2n2 /= counter
n1n2 /= counter

return radial,n1,n2,n1n1,n2n2,n1n2

if __name__ == "__main__":

minR = 1.0
maxR = 14.0
bins = 100
rndSmp = 10
numSnap = 40000

with open("SSM.dump", "r") as inputFile:
radial,n1,n2,n1n1,n2n2,n1n2 = fluct_calc(inputFile)
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C.4 Fluctuations Lattice - LJ Mixtures

# Master Project
# Vilde Braten
# vildebr@stud.ntnu.no
# 23.02.2018

import numpy as np
import os
import sys

def search_files(dirName):
"""
Searches for all files with names 'latticeSSMX.out' and returns
array of X values sorted by increasing value and array of input
file names sorted by increasing X values.
"""

tmp = os.popen("ls "+dirName).read().split()
fileNames = []
sortNames = []
num = []

for i in tmp:
if (i[:10] == "latticeSSM"):

fileNames.append(i)

for j in fileNames:
if (len(j) == 15):

num.append(int(j[10]))
elif (len(j) == 16):

num.append(int(j[10:12]))

num.sort()

for k in range(len(num)):
for p in fileNames:

if (len(p) == 15):
if (int(p[10]) == num[k]):

sortNames.append(p)

elif (len(p) == 16):
if (int(p[10:12]) == num[k]):

sortNames.append(p)
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return sortNames, num

def time_avg(dirName,sizeName,INPUT,part,numSnap,eqStep,numPar,sampRat):
"""
Calculates time average of density fluctuations and Kirkwood-Buff
integrals as an average over all subvolumes.
"""

inputSize = open(sizeName, "r")
sizeData = np.loadtxt(inputSize)
inputSize.close()
L = float(sizeData[np.argmin(sizeData[:,0]),0])
boxlo = float(sizeData[np.argmin(sizeData[:,0]),1])
boxhi = float(sizeData[np.argmin(sizeData[:,0]),2])

lattice = [int(x**3) for x in part]
steps = numSnap/numPar
limPar = [eqStep+steps*(y*sampRat) for y in range(1,numPar+1)]
print(limPar)

Gavg = []
fluct = []

if (len(INPUT) != len(part)):
print("Vectors are of different length. Exiting")
sys.exit()

for i in range(len(INPUT)):

fullfile = os.path.join(dirName,INPUT[i])
inputFile = open(fullfile, "r")
totData = [z for z in inputFile]
data = totData[3:]
inputFile.close()

timeAvg = np.zeros((lattice[i]*numPar,5))
tmpFluct = np.zeros((numPar,6))
meanG = np.zeros((numPar,3))

vol = (L/float(part[i]))**3

box = -1
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par = 0

for k in data:
k = k.split()
j = [float(l) for l in k]

if (len(j) == 2 and j[0] == 20000000):
break

elif (len(j) == 2 and j[0] in limPar):
par += 1

elif (len(j) == 6):
if (j[3] > boxlo and j[3] < boxhi and j[4] > boxlo and \

j[4] < boxhi and j[5] > boxlo and j[5] < boxhi):

if (box == (par*lattice[i]-1)):
box = lattice[i]*(par-1)

elif (box < (par*lattice[i]-1)):
box += 1

n1 = float(j[1])
n2 = float(j[2])
n1n1 = float(j[1])*float(j[1])
n2n2 = float(j[2])*float(j[2])
n1n2 = float(j[1])*float(j[2])
timeAvg[box] += [n1,n2,n1n1,n2n2,n1n2]

timeAvg = timeAvg/steps
tmpFluct[:,0] = L/part[i]
for n in range(numPar):

tmpFluct[n,1:] = np.mean(timeAvg[n*lattice[i]: \
(n+1)*lattice[i]], axis=0)

for m in range(numPar):
for t in timeAvg[m*lattice[i]:(m+1)*lattice[i]]:

G11 = vol*((t[2]-t[0]*t[0])/(t[0]*t[0]) - 1.0/t[0])
G22 = vol*((t[3]-t[1]*t[1])/(t[1]*t[1]) - 1.0/t[1])
G12 = vol*((t[4]-t[0]*t[1])/(t[0]*t[1]))

meanG[m] += [G11,G22,G12]

meanG = meanG/lattice[i]
Gavg.append(meanG)
fluct.append(tmpFluct)
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return fluct, Gavg

if __name__ == "__main__":

numPar = 5
numSnap = 500000
sampRat = 100
eqStep = 0

INPUT,part = search_files("dir_lattice")
fluctRes, GavgRes = time_avg("dir_lattice","size.out", \

INPUT,part,numSnap,eqStep,numPar,sampRat)
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C.5 Fluctuations - Methanol-Water

# Master Project 2018
# Vilde Braten
# vildebr@stud.ntnu.no
# 14.04.2018

import numpy as np
import scipy.integrate
import os
import sys
import random

def calc_fluct_mol():
"""
Reads LAMMS dump file consisting of methanol and water molecules
and calculates density fluctuations.
"""

delta = (maxR-minR)/bins
radial = [minR + delta*(m+1) for m in range(bins)]

com = np.zeros((Nmol,4))
n1 = np.zeros(bins)
n2 = np.zeros(bins)
n1n1 = np.zeros(bins)
n2n2 = np.zeros(bins)
n1n2 = np.zeros(bins)

random.seed(861924)
counter = 0

boxAvg = np.zeros((pts,6))

# read dump file
for snapshot in range(numSnap):

# read N
_ = inputFile.readline()
_ = inputFile.readline()
_ = inputFile.readline()
line = inputFile.readline()
N = int(line)
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# read box dimensions
_ = inputFile.readline()
line = inputFile.readline()
_boxlo, _boxhi = line.split()
boxlo, boxhi = float(_boxlo), float(_boxhi)

boxL = boxhi-boxlo
hbox = boxL/2.0

# move forward by three lines
_ = inputFile.readline()
_ = inputFile.readline()
_ = inputFile.readline()

snapshot = []
for i in range(N):

line = inputFile.readline()
mol_id, atom_id, atom_type, pos_x, pos_y, pos_z \

= line.split()
snapshot.append([float(mol_id), float(atom_type), \

float(pos_x), float(pos_y), float(pos_z)])

# calculating com of molecules
for l in range(8):

for j in range(l*(Nm+Nw),l*(Nm+Nw)+Nm):
CH3 = snapshot[j*3][2:]
Om = snapshot[1+j*3][2:]
Hm = snapshot[2+j*3][2:]

com[j,0] = 1

for k in range(3):
if (Om[k]-CH3[k] > hbox):

CH3[k] += boxL
elif (Om[k]-CH3[k] < -hbox):

CH3[k] -= boxL
if (Om[k]-Hm[k] > hbox):

Hm[k] += boxL
elif (Om[k]-Hm[k] < -hbox):

Hm[k] -= boxL

com[j,k+1] = (Omass*Om[k] + CH3mass*CH3[k] \
+ Hmass*Hm[k])/Mmass

if (com[j,k+1] > boxhi):
com[j,k+1] -= boxL
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if (com[j,k+1] < boxlo):
com[j,k+1] += boxL

for p in range(l*(Nm+Nw)+Nm,l*(Nm+Nw)+2*Nw):
H1 = snapshot[p*3][2:]
Ow = snapshot[1+p*3][2:]
H2 = snapshot[2+p*3][2:]

com[p,0] = 2

for n in range(3):
if (Ow[n]-H1[n] > hbox):

H1[n] += boxL
elif (Ow[n]-H1[n] < -hbox):

H1[n] -= boxL
if (Ow[n]-H2[n] > hbox):

H2[n] += boxL
elif (Ow[n]-H2[n] < -hbox):

H2[n] -= boxL

com[p,n+1] = (Omass*Ow[n] + \
Hmass*(H1[n]+H2[n]))/Wmass

if (com[p,n+1] > boxhi):
com[p,n+1] -= boxL

if (com[p,n+1] < boxlo):
com[p,n+1] += boxL

# SSM
for m in range(rndSmp):

rndx = boxlo + boxL*random.uniform(0,1)
rndy = boxlo + boxL*random.uniform(0,1)
rndz = boxlo + boxL*random.uniform(0,1)

n_1 = np.zeros(bins)
n_2 = np.zeros(bins)

for molpos in com:
moltype, dx, dy, dz = molpos
dx -= rndx
dy -= rndy
dz -= rndz

if (dx > hbox):
dx -= boxL
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elif (dx < -hbox):
dx += boxL

if (dy > hbox):
dy -= boxL

elif (dy < -hbox):
dy += boxL

if (dz > hbox):
dz -= boxL

elif (dz < -hbox):
dz += boxL

dr = np.sqrt(dx*dx + dy*dy + dz*dz)

for r in range(bins):
if (dr < radial[r]):

if (moltype == 1):
n_1[r] += 1.0

elif (moltype == 2):
n_2[r] += 1.0

for g in range(bins):
n1[g] += n_1[g]
n2[g] += n_2[g]
n1n1[g] += n_1[g]*n_1[g]
n2n2[g] += n_2[g]*n_2[g]
n1n2[g] += n_1[g]*n_2[g]

counter += 1.0

# LATTICE
for part in range(1,pts+1):

numBox = part*part*part
subBoxL = boxL/part
vol = (boxL*boxL*boxL)/numBox
c = [boxlo+subBoxL*w for w in range(part+1)]

N_1 = np.zeros(numBox)
N_2 = np.zeros(numBox)
box_avg = np.zeros(6)

for molpos in com:
moltype, posx, posy, posz = molpos
subBox = -1
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for x in range((len(c)-1)):
xlo = c[x]
xhi = c[x+1]
for y in range((len(c)-1)):

ylo = c[y]
yhi = c[y+1]
for z in range((len(c)-1)):

zlo = c[z]
zhi = c[z+1]
subBox += 1
if (posx < xhi and posx > xlo and \

posy < yhi and posy > ylo and \
posz < zhi and posz > zlo):

if (moltype == 1):
N_1[subBox] += 1

elif (moltype == 2):
N_2[subBox] += 1

for b in range(numBox):
N1 = N_1[b]
N2 = N_2[b]
N1N1 = N_1[b]*N_1[b]
N2N2 = N_2[b]*N_2[b]
N1N2 = N_1[b]*N_2[b]

box_avg += [subBoxL,N1,N2,N1N1,N2N2,N1N2]

box_avg /= numBox
boxAvg[part-1,:] += box_avg

# normalizing
n1 /= counter
n2 /= counter
n1n1 /= counter
n2n2 /= counter
n1n2 /= counter

boxAvg /= numSnap

return radial,n1,n2,n1n1,n2n2,n1n2,boxAvg

if __name__ == "__main__":
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minR = 1.0
maxR = 20.0
bins = 200
pts = 8
rndSmp = 10
numSnap = 100000

Nmol = 8000
Nm = 500
Nw = 500

CH3mass = 15.0347
Hmass = 1.008
Omass = 15.9994
Wmass = Omass+2*Hmass
Mmass = CH3mass+Hmass+Omass

with open("dump.out", "r") as inputFile:
radial,n1,n2,n1n1,n2n2,n1n2,boxAvg = calc_fluct_mol()
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D LAMMPS Scripts

The following sections contain LAMMPS input scrips used for simulations and geome-
try files for the methanol and water molecules. For the LJ mixtures, only the scripts used
for the real LJ mixture are presented as examples. This includes the initialization scrips
in section D.1, the main runscript in section D.2, the rerunscript in section D.3 and the
script used to generate data at different pressures used for computation of isothermal
compressibility in section D.4. The scrips given for the methanol-water mixture are the
initialization scrips in section D.5, the main run script in section D.6, the rerun script
in section D.7 and the script used to generate data at different pressures used for com-
putation of isothermal compressibility in section D.8. In addition, the geometry file for
the methanol molecules is presented in section D.9, while the geometry file for the water
molecules is presented in section D.10.

D.1 Initialization Script - LJ Mixtures

# Master Project 2018
# Vilde Bråten
# vildebr@stud.ntnu.no
# 26.01.2018

variable L equal 500.0

units lj
atom_style full

region box block 0.0 ${L} 0.0 ${L} 0.0 ${L} units box

create_box 2 box

create_atoms 1 random 20000 749302 NULL units box

mass * 1.0

group part1 type 1
group part2 type 2

velocity all create 3.0 87287

pair_style lj/cut 3.0
pair_coeff 1 1 1.0 1.0
pair_coeff 1 2 0.7726 0.8838
pair_coeff 2 2 0.5968 0.7677
pair_modify tail yes
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minimize 0.0 0.0 1000000 1000000

neighbor 0.5 bin
neigh_modify every 10 delay 0 check yes
timestep 0.002

fix ens all npt temp 0.92825 0.92835 0.2 iso 0.4721 0.4721 2

thermo_style custom step time ke pe etotal press lx xlo xhi density
thermo 10000

run 10000000

write_data config/initconf
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D.2 Main Runscript - LJ Mixture

# Master Project 2018
# Vilde Bråten
# vildebr@stud.ntnu.no
# 26.01.2018

units lj
atom_style full

pair_style lj/cut 3.0

read_data config/eqconfig

variable Lx equal lx
variable x0 equal xlo
variable x1 equal xhi
variable y0 equal ylo
variable y1 equal yhi
variable z0 equal zlo
variable z1 equal zhi
variable Nevery equal 100
variable Nrepeat equal 100000
variable Nfreq equal 10000000
variable parStep equal 10000000

mass * 1.0

group part1 type 1
group part2 type 2

pair_coeff 1 1 1.0 1.0
pair_coeff 1 2 0.7726 0.8838
pair_coeff 2 2 0.5968 0.7677
pair_modify tail yes

neighbor 0.5 bin
neigh_modify every 10 delay 0 check yes
timestep 0.0036

fix ens all npt temp 0.92835 0.92835 0.36
iso 0.4721 0.4721 3.6

fix size all print 100 "${Lx} ${x0} ${x1} ${y0} ${y1}
${z0} ${z1} " file postprocessing/size.out screen no
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compute temp all temp
compute pres all pressure temp
compute ke all ke
compute pe all pe

fix calcH all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_ke c_pe c_pres c_temp file postprocessing/pres_en.out

fix volH all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx ave running file postprocessing/volH.out

thermo_style custom step time ke pe etotal press lx density
thermo 10000

dump totSSM all custom 100 dump_files/SSM.dump id type x y z
dump gSSM all custom 10000 dump_files/gSSM.dump id type x y z

dump SSMdump1 all custom 100 dump_files/SSM1.dump
id type x y z

run ${parStep}
undump SSMdump1

dump SSMdump2 all custom 100 dump_files/SSM1.dump
id type x y z

run ${parStep}
undump SSMdump2

dump SSMdump3 all custom 100 dump_files/SSM1.dump
id type x y z

run ${parStep}
undump SSMdump3

dump SSMdump4 all custom 100 dump_files/SSM1.dump
id type x y z

run ${parStep}
undump SSMdump4

dump SSMdump5 all custom 100 dump_files/SSM1.dump
id type x y z

run ${parStep}
undump SSMdump5

write_data config/endconfig
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D.3 Rerunscript - LJ Mixtures

# Master Project 2018
# Vilde Bråten
# vildebr@stud.ntnu.no
# 26.01.2018

units lj
atom_style full

pair_style lj/cut 3.0

read_data config/eqconfig

variable Lx equal 29.3427531845
variable x0 equal 235.3286234077
variable x1 equal 264.6713765922
variable L2 equal ${Lx}/2.0
variable L3 equal ${Lx}/3.0
variable L4 equal ${Lx}/4.0
variable L5 equal ${Lx}/5.0
variable L6 equal ${Lx}/6.0
variable L7 equal ${Lx}/7.0
variable L8 equal ${Lx}/8.0

mass * 1.0

pair_style zero ${L2}
pair_coeff * *

group part1 type 1
group part2 type 2

neighbor 0.5 bin
neigh_modify every 10 delay 0 check yes page 110000 one 11000

compute cube1 all chunk/atom bin/3d
x ${x0} ${Lx} y ${x0} ${Lx} z ${x0} ${Lx}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count1 part1 property/chunk cube1 count
compute 2count1 part2 property/chunk cube1 count
compute size1 all property/chunk cube1 coord1 coord2 coord3
fix totcount1 all ave/time 100 1 100

c_1count1[*] c_2count1[*] c_size1[*]
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file postprocessing/dir_lattice/latticeSSM1.out
mode vector

compute cube2 all chunk/atom bin/3d
x ${x0} ${L2} y ${x0} ${L2} z ${x0} ${L2}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count2 part1 property/chunk cube2 count
compute 2count2 part2 property/chunk cube2 count
compute size2 all property/chunk cube2 coord1 coord2 coord3
fix totcount2 all ave/time 100 1 100

c_1count2[*] c_2count2[*] c_size2[*]
file postprocessing/dir_lattice/latticeSSM2.out
mode vector

compute cube3 all chunk/atom bin/3d
x ${x0} ${L3} y ${x0} ${L3} z ${x0} ${L3}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count3 part1 property/chunk cube3 count
compute 2count3 part2 property/chunk cube3 count
compute size3 all property/chunk cube1 coord1 coord2 coord3
fix totcount3 all ave/time 100 1 100

c_1count3[*] c_2count3[*] c_size3[*]
file postprocessing/dir_lattice/latticeSSM3.out
mode vector

compute cube4 all chunk/atom bin/3d
x ${x0} ${L4} y ${x0} ${L4} z ${x0} ${L4}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count4 part1 property/chunk cube4 count
compute 2count4 part2 property/chunk cube4 count
compute size4 all property/chunk cube1 coord1 coord2 coord3
fix totcount4 all ave/time 100 1 100

c_1count4[*] c_2count4[*] c_size4[*]
file postprocessing/dir_lattice/latticeSSM4.out
mode vector

compute cube5 all chunk/atom bin/3d
x ${x0} ${L5} y ${x0} ${L5} z ${x0} ${L5}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count5 part1 property/chunk cube5 count
compute 2count5 part2 property/chunk cube5 count
compute size5 all property/chunk cube1 coord1 coord2 coord3
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fix totcount5 all ave/time 100 1 100
c_1count5[*] c_2count5[*] c_size5[*]
file postprocessing/dir_lattice/latticeSSM5.out
mode vector

compute cube6 all chunk/atom bin/3d
x ${x0} ${L6} y ${x0} ${L6} z ${x0} ${L6}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count6 part1 property/chunk cube6 count
compute 2count6 part2 property/chunk cube6 count
compute size6 all property/chunk cube1 coord1 coord2 coord3
fix totcount6 all ave/time 100 1 100

c_1count6[*] c_2count6[*] c_size6[*]
file postprocessing/dir_lattice/latticeSSM6.out
mode vector

compute cube7 all chunk/atom bin/3d
x ${x0} ${L7} y ${x0} ${L7} z ${x0} ${L7}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count7 part1 property/chunk cube7 count
compute 2count7 part2 property/chunk cube7 count
compute size7 all property/chunk cube1 coord1 coord2 coord3
fix totcount7 all ave/time 100 1 100

c_1count7[*] c_2count7[*] c_size7[*]
file postprocessing/dir_lattice/latticeSSM7.out
mode vector

compute cube8 all chunk/atom bin/3d
x ${x0} ${L8} y ${x0} ${L8} z ${x0} ${L8}
bound x ${x0} ${x1} bound y ${x0} ${x1}
bound z ${x0} ${x1} units box

compute 1count8 part1 property/chunk cube8 count
compute 2count8 part2 property/chunk cube8 count
compute size8 all property/chunk cube8 coord1 coord2 coord3
fix totcount8 all ave/time 100 1 100

c_1count8[*] c_2count8[*] c_size8[*]
file postprocessing/dir_lattice/latticeSSM8.out
mode vector

compute rdf150 all rdf 150 1 1 2 2 1 2
compute rdf1000 all rdf 1000 1 1 2 2 1 2
compute rdf2000 all rdf 2000 1 1 2 2 1 2

fix rdfcomp150 all ave/time 100 100000 10000000
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c_rdf150[*] file postprocessing/rdf150/rdf150.out
mode vector

fix rdfcomp1000 all ave/time 100 100000 10000000
c_rdf1000[*] file postprocessing/rdf1000/rdf1000.out
mode vector

fix rdfcomp2000 all ave/time 100 100000 10000000
c_rdf2000[*] file postprocessing/rdf2000/rdf2000.out
mode vector

thermo 100000

rerun dump_files/SSM.dump first 0 every 1 dump x y z
box yes scaled yes
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D.4 Script Creating Different Pressure Data - LJ Mixtures

# Master Project 2018
# Vilde Bråten
# vildebr@stud.ntnu.no
# 03.04.2018

units lj
atom_style full

pair_style lj/cut 3.0

read_data config/endconfig

variable eqStep equal 1000000
variable parStep equal 2000000
variable start67 equal ${eqStep}+1*${parStep}
variable start87 equal ${eqStep}+2*${parStep}
variable start107 equal ${eqStep}+3*${parStep}
variable Nevery equal 100
variable Nrepeat equal 2000
variable Nfreq equal 200000
variable Lx equal lx

mass * 1.0

group part1 type 1
group part2 type 2

pair_coeff 1 1 1.0 1.0
pair_coeff 1 2 0.7726 0.8838
pair_coeff 2 2 0.5968 0.7677
pair_modify tail yes

neighbor 0.5 bin
neigh_modify every 10 delay 0 check yes
timestep 0.0036

thermo_style custom step time ke pe etotal press lx density
thermo 10000

compute temp all temp
compute pres all pressure temp

fix pres47 all npt temp 0.92835 0.92835 0.36

130



D. LAMMPS SCRIPTS

iso 0.4721 0.4721 3.6
fix pt47 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}

c_pres c_temp start ${eqStep} file compress/p47.out
fix size47 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}

v_Lx start ${eqStep} ave running
file compress/size47.out

run ${parStep}
unfix pres47
unfix pt47
unfix size47

fix pres67 all npt temp 0.92835 0.92835 0.36
iso 0.6721 0.6721 3.6

fix pt67 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start67} file compress/p67.out

fix size67 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start67} ave running
file compress/size67.out

run ${parStep}
unfix pres67
unfix pt67
unfix size67

fix pres87 all npt temp 0.92835 0.92835 0.36
iso 0.8721 0.8721 3.6

fix pt87 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start87} file compress/p87.out

fix size87 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start87} ave running
file compress/size87.out

run ${parStep}
unfix pres87
unfix pt87
unfix size87

fix pres107 all npt temp 0.92835 0.92835 0.36
iso 1.0721 1.0721 3.6

fix pt107 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start107} file compress/p107.out

fix size107 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start107} ave running
file compress/size107.out
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run ${parStep}
unfix pres107
unfix pt107
unfix size107

write_data config/compressconfig
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D.5 Initialization Script - Methanol-Water Mixture

# Master Project
# Vilde Bråten
# 05.04.2018

atom_style full
units real

lattice fcc 20
region box block 0 1000 0 1000 0 1000 units box

create_box 5 box bond/types 3 angle/types 2 extra/bond/per/atom 2
extra/angle/per/atom 1 extra/special/per/atom 2

mass 1 15.0347
mass 2 15.9994
mass 3 1.008
mass 4 1.008
mass 5 15.9994

pair_style lj/cut/coul/long 15
pair_coeff 1 1 0.2073 3.748
pair_coeff 2 2 0.1555 3.192
pair_coeff 3 3 0.0210 1.580
pair_coeff 4 4 0.0 0.0
pair_coeff 5 5 0.1555 3.166

pair_coeff 1 2 0.1795 3.459
pair_coeff 1 3 0.0660 2.434
pair_coeff 1 4 0.0 0.0
pair_coeff 1 5 0.1795 3.445

pair_coeff 2 3 0.0572 2.246
pair_coeff 2 4 0.0 0.0
pair_coeff 2 5 0.1555 3.179

pair_coeff 3 4 0.0 0.0
pair_coeff 3 5 0.0572 2.237

pair_coeff 4 5 0.0 0.0

bond_style harmonic
bond_coeff 1 0.0 1.430
bond_coeff 2 0.0 0.945
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bond_coeff 3 0.0 1.0

angle_style harmonic
angle_coeff 1 0.0 108.49
angle_coeff 2 0.0 109.47

kspace_style ewald 1.0E-5
pair_modify tail yes

neighbor 2.0 bin
neigh_modify every 1 delay 0 check yes

molecule methanol in.methanol
molecule water in.water
create_atoms 0 random 400 638543 NULL mol methanol 648376 units box
create_atoms 0 random 600 297027 NULL mol water 193756 units box

set type 1 charge 0.30
set type 2 charge -0.82
set type 3 charge 0.52
set type 4 charge 0.4238
set type 5 charge -0.8476

velocity all create 300.0 648376

fix constrain all shake 1.0e-4 100 0 b 1 2 3 a 1 2
fix 6 all npt temp 300.0 300.0 100 iso 1.0 1.0 1000
fix 7 all momentum 100 linear 1 1 1

thermo_style custom step density temp etotal lx press
thermo 100000

run 10000000

write_data config.molmix
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D.6 Main Runscript - Methanol-Water Mixture

# Master Project
# Vilde Braten
# 05.04.2018

atom_style full
units real

pair_style lj/cut/coul/long 15
bond_style harmonic
angle_style harmonic
read_data repconfig.molmix

variable x0 equal xlo
variable x1 equal xhi
variable Lx equal lx
variable L2 equal ${Lx}/2.0
variable Nevery equal 100
variable Nrepeat equal 100000
variable Nfreq equal 10000000

mass 1 15.0347
mass 2 15.9994
mass 3 1.008
mass 4 1.008
mass 5 15.9994

pair_coeff 1 1 0.2073 3.748
pair_coeff 2 2 0.1555 3.192
pair_coeff 3 3 0.0210 1.580
pair_coeff 4 4 0.0 0.0
pair_coeff 5 5 0.1555 3.166

pair_coeff 1 2 0.1795 3.459
pair_coeff 1 3 0.0660 2.434
pair_coeff 1 4 0.0 0.0
pair_coeff 1 5 0.1795 3.445

pair_coeff 2 3 0.0572 2.246
pair_coeff 2 4 0.0 0.0
pair_coeff 2 5 0.1555 3.179

pair_coeff 3 4 0.0 0.0
pair_coeff 3 5 0.0572 2.237
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pair_coeff 4 5 0.0 0.0

bond_style harmonic
bond_coeff 1 0.0 1.430
bond_coeff 2 0.0 0.945
bond_coeff 3 0.0 1.0

angle_style harmonic
angle_coeff 1 0.0 108.49
angle_coeff 2 0.0 109.47

kspace_style ewald 1.0E-5
pair_modify tail yes

neighbor 2.0 bin
neigh_modify every 1 delay 0 check yes

set type 1 charge 0.30
set type 2 charge -0.82
set type 3 charge 0.52
set type 4 charge 0.4238
set type 5 charge -0.8476

fix constrain all shake 1.0e-4 100 0 b 1 2 3 a 1 2
fix 6 all npt temp 300.0 300.0 100 iso 1.0 1.0 1000
fix 7 all momentum 100 linear 1 1 1

compute temp all temp
compute pres all pressure temp
compute ke all ke
compute pe all pe

fix par all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp c_ke c_pe v_Lx file parameters.out

dump alldump all custom 100 dump.out mol id type x y z
dump_modify alldump sort id

thermo_style custom step temp etotal lx press density
thermo 100000

run ${Nfreq}

write_data endconfig.molmix
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D.7 Rerunscript - Methanol-Water mixture

# Master Project 2018
# Vilde Braten
# vildebr@stud.ntnu.no
# 26.01.2018

atom_style full
units real

pair_style lj/cut/coul/long 15
bond_style harmonic
angle_style harmonic
read_data eqconfig.molmix

variable x0 equal xlo
variable x1 equal xhi
variable Lx equal lx
variable hbox equal ${Lx}/2.0

mass 1 15.0347
mass 2 15.9994
mass 3 1.008
mass 4 1.008
mass 5 15.9994

pair_style zero ${hbox}
pair_coeff * *

neighbor 2.0 bin
neigh_modify every 10 delay 0 check yes page 1100000 one 110000

compute rdf all rdf 3000 2 2 5 5 2 5
fix rdfcomp all ave/time 100 100000 10000000 c_rdf[*]

file rdf.out mode vector

thermo 10000

rerun dump.out first 100 every 100 dump x y z box yes
scaled yes
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D.8 Script Creating Different Pressure Data - Methanol-Water Mixture

# Master Project
# Vilde Braten
# 05.04.2018

atom_style full
units real

pair_style lj/cut/coul/long 15
bond_style harmonic
angle_style harmonic
read_data eqconfig.molmix

variable eqStep equal 1000000
variable parStep equal 2000000
variable start67 equal ${eqStep}+1*${parStep}
variable start87 equal ${eqStep}+2*${parStep}
variable start107 equal ${eqStep}+3*${parStep}
variable Nevery equal 100
variable Nrepeat equal 2000
variable Nfreq equal 200000
variable Lx equal lx

mass 1 15.0347
mass 2 15.9994
mass 3 1.008
mass 4 1.008
mass 5 15.9994

pair_coeff 1 1 0.2073 3.748
pair_coeff 2 2 0.1555 3.192
pair_coeff 3 3 0.0210 1.580
pair_coeff 4 4 0.0 0.0
pair_coeff 5 5 0.1555 3.166

pair_coeff 1 2 0.1795 3.459
pair_coeff 1 3 0.0660 2.434
pair_coeff 1 4 0.0 0.0
pair_coeff 1 5 0.1795 3.445

pair_coeff 2 3 0.0572 2.246
pair_coeff 2 4 0.0 0.0
pair_coeff 2 5 0.1555 3.179
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pair_coeff 3 4 0.0 0.0
pair_coeff 3 5 0.0572 2.237

pair_coeff 4 5 0.0 0.0

bond_style harmonic
bond_coeff 1 0.0 1.430
bond_coeff 2 0.0 0.945
bond_coeff 3 0.0 1.0

angle_style harmonic
angle_coeff 1 0.0 108.49
angle_coeff 2 0.0 109.47

kspace_style ewald 1.0E-5
pair_modify tail yes

neighbor 2.0 bin
neigh_modify every 1 delay 0 check yes

set type 1 charge 0.30
set type 2 charge -0.82
set type 3 charge 0.52
set type 4 charge 0.4238
set type 5 charge -0.8476

fix constrain all shake 1.0e-4 100 0 b 1 2 3 a 1 2
fix 6 all npt temp 300.0 300.0 100 iso 1.0 1.0 1000
fix 7 all momentum 100 linear 1 1 1

compute temp all temp
compute pres all pressure temp

fix pres1 all npt temp 300.0 300.0 100
iso 1.0 1.0 1000

fix pt1 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${eqStep} file compress/p1.out

fix size1 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${eqStep} ave running
file compress/size1.out

run ${parStep}
unfix pres1
unfix pt1
unfix size1
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fix pres5 all npt temp 300.0 300.0 100
iso 5.0 5.0 1000

fix pt5 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start5} file compress/p5.out

fix size5 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start5} ave running
file compress/size5.out

run ${parStep}
unfix pres5
unfix pt5
unfix size5

fix pres10 all npt temp 300.0 300.0 100
iso 10.0 10.0 1000

fix pt10 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start10} file compress/p10.out

fix size10 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start10} ave running
file compress/size10.out

run ${parStep}
unfix pres10
unfix pt10
unfix size10

fix pres15 all npt temp 300.0 300.0 100
iso 15.0 15.0 1000

fix pt15 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
c_pres c_temp start ${start15} file compress/p15.out

fix size15 all ave/time ${Nevery} ${Nrepeat} ${Nfreq}
v_Lx start ${start15} ave running
file compress/size15.out

run ${parStep}
unfix pres15
unfix pt15
unfix size15

thermo_style custom step temp etotal lx press density
thermo 100000
run ${Nfreq}
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D.9 Geometry File - Methanol

# LAMMPS

3 atoms
2 bonds
1 angles

Coords
1 1.55000 0.27954 2.15638
2 1.55000 1.55000 1.50000
3 1.55000 2.22754 2.15638

Types
1 1
2 2
3 3

Charges
1 0.30
2 -0.82
3 0.52

Bonds
1 1 1 2
2 2 2 3

Angles
1 1 1 2 3

Special Bond Counts
1 1 1 0
2 2 0 0
3 1 1 0

Special Bonds
1 2 3
2 1 3
3 2 1

Shake Flags
1 2
2 1
3 2
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Shake Atoms
1 1 2
2 2 1 3
3 2 3

Shake Bond Types
1 1
2 1 2 1
3 2
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D.10 Geometry File - Water

# LAMMPS

3 atoms
2 bonds
1 angles

Coords
1 1.55000 2.36649 2.07736
2 1.55000 1.55000 1.50000
3 1.55000 0.73351 2.07736

Types
1 4
2 5
3 4

Charges
1 0.4238
2 -0.8476
3 0.4238

Bonds
1 3 1 2
2 3 2 3

Angles
1 2 1 2 3

Special Bond Counts
1 1 1 0
2 2 0 0
3 1 1 0

Special Bonds
1 2 3
2 1 3
3 2 1

Shake Flags
1 2
2 1
3 2

143



D. LAMMPS SCRIPTS

Shake Atoms
1 1 2
2 2 1 3
3 2 3

Shake Bond Types
1 1
2 1 1 1
3 1
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