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Summary

We study the effect of hyperfine interaction in the persistent spin helix (PSH) by
investigating the nuclear spin pumping caused by non-equilibrium electron spin dy-
namics. In the first two chapters we rederive, based on already published literature,
the PSH diffusion equation and a formalism for calculating the nuclear spin pump-
ing from non-equilibrium electron spin dynamics. To get some useful insight into
the procedure we use, and to show that it actually works, we calculate the nuclear
spin pumping in a proof of principle setup in chapter 4. The nuclear spin pumping,
and its effects, in the PSH is studied in chapter 5. We find that the lowest-order
effect of the nuclear spin polarization stabilizes the electron spin structure. Some
higher-order contributions introduce higher-order harmonics, which also rotate the
spin structure out of the plane of the helix. The stabilizing effect is considerable
when 100 % of the nuclei are polarized. However, for a more realistic nuclear spin
polarization, the effect is small.
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Sammendrag

Oppgaven tar for seg hvordan interaksjonen mellom kjernespinn og elektronspinn
p̊avirker en spesiell elektronspinnstruktur kalt persistent spin helix (PSH), ved å
undersøke pumpingen av kjernespinn fra ikke-likevekt elektronspinndynamikk. I de
to første kapitlene utleds en diffusionsligning for PSH strukturen og en formalisme
for å regne ut pumpingen av kjernespinn fra ikke-likevekt elektronspindynamikk,
basert p̊a allerede publisert litteratur. For å f̊a en bedre innsikt i prosedyren som
brukes, og for å vise at den faktisk virker, regnes kjernespinnpumpingen ut i et
konseptbevisoppsett i kapittel 4. Kjernespinnpumpingen, og dens effekter, i PSH
strukturen studeres i kapittel 5. Resultatene viser at den laveste-ordens effekten
av kjernespinnpolariseringen stabiliserer elektronspinstrukturen. Høyere-ordens
bidrag introduserer høyere-ordens harmoniske bølger, som ogs̊a roterer spinstruk-
turen ut av helix-planet. Den stabiliserende effekten er betydelig n̊ar 100 % av
kjernene er polariserte. For en mer realistisk kjernespinnpolarisering er effekten
liten.
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Chapter 1

Introduction

1.1 Spintronics

Spin is an important property in quantum mechanics. It was originally postulated
as an intrinsic ”internal” angular momentum of the electron, in an attempt to ex-
plain experiments by Stern and Gerlach [2]. A theoretical foundation came in 1928,
when Dirac showed how the spin degree of freedom followed naturally in relativ-
istic quantum mechanics [3, 4]. Dirac introduced a relativistic wave equation that
fully describes spin 1

2 particles, i.e. fermions, and the spin-statistics theorem that
states that fermions(bosons) have half-integer(integer) spin, and its wave-function
is antisymmetric(symmetric) upon particle exchange. The physical properties of
fermions, and how their spin degree of freedom couples to fields, can be understood
through a nonrelativistic expansion of the Dirac equation in orders of 1

c , where c
is the light speed. To lowest orders in 1

c , the spin’s coupling to magnetic fields
is simply given by the Zeeman effect, while the spin’s coupling to electric fields is
given by spin-orbit coupling through the Hamiltonian

Hso =
eh̄

4m0c2
σ ·
(
∇V × p

m0

)
, (1.1)

where σ is the vector of Pauli matrices, V is the electrostatic potential, p is the
electron momentum, m0 is its rest mass, and h̄ = h

2π where h is Planck’s constant.
The h̄ dependence shows that spin-orbit interaction is a pure quantum mechanical
effect.

At the end of the 90’s, a field called spintronics emerged [5, 6, 7], which stud-
ies the spin degrees of freedom in solid state physics, and tries to create devices
that take advantage of spin properties. Within this field, information storage and
transfer devices are of special interest since spin polarization can be generated and
manipulated using external magnetic fields. Such devices offer enhanced operation
speed and lower energy consumption when compared to electronic devices. An
already successful spintronic device is the giant magnetoresistive (GMR) sandwich
structure [8, 9], with alternating ferromagnetic and non-magnetic layers of metal.

1



2 Chapter 1. Introduction

GMR structures are used in disk drive read/write heads due to their sensitivity to
changing magnetic fields.

During the last decade, semiconductor devices with intrinsic spin-orbit coupling
have frequently been studied as platform for spintronic devices. The advantage of
such devices is that one could generate and manipulate spin-polarized currents by
purely electrical means, without the need for localized magnetic fields or ferromag-
netic components. Another advantage of such a platform is the already developed
experience and advanced techniques, from electrodynamics, to create mico- and
nanometer-scale solid-state devices based on semiconductors.

A common platform for creating low-dimensional semiconducting structures is
the 2D electron gas (2DEG) [10], where the energy levels of the conduction band
electrons are strongly quantized in one spatial direction. This confines the electrons,
on the nanometer scale, in the quantized direction, and makes them free to move
in two spatial dimensions. A much used method to create 2DEGs is by using high-
electron-mobility transistors (HEMTs) [11], which use the heterojunction between
two semiconducting materials, e.g. GaAs and AlGaAs, to confine the electrons in
a triangular quantum well, as illustrated in figure 1.1.

In 2DEGs, spin-orbit coupling arises due to space-inversion asymmetry of the
potential in which the electrons move. The asymmetry may result from an inversion-
asymmetric crystal lattice, so-called bulk inversion-asymmetry, or from an inversion-
asymmetric confining potential or structural inversion-asymmetry. The spin-orbit
coupling arising from bulk and structure inversion asymmetry are called Dressel-
haus [13] and Rashba [14] spin-orbit interaction, respectively [15]. For explicit
expressions, we focus on GaAs 2DEGs grown in the [001] = ẑ crystallographic
direction, where the spin-orbit field behaves as a momentum-dependent in-plane
magnetic field. The leading-order Dresselhaus spin-orbit interaction reads HD =
β(σyky−σxkx), and the Rashba spin-orbit interaction reads HR = α(σxky−σykx).
Here, β and α are the Dresselhaus and Rashba spin-orbit coefficient respectively,
and k is the electron’s wave vector.

Spin-orbit coupling in 2DEGs has inspired many spintronic concepts, such as

Figure 1.1: Triangular quantum well in a HEMT 2DEG. The heterojunction
between AlGaAs and GaAs creates a triangular quantum well that confines the
electrons in the z-direction. Ei, i ∈ {1, 2} is the energy of the subband i in the
conduction band, and EF is the Fermi energy. Adapted from Mootabian et al. [12].
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the spin Hall effect [16] and the spin field effect transistor (spin-FET) [17]. The
spin Hall effect gives rise to a spin current transverse to the direction of an electric
current, which leads to accumulation of spin-polarization at the lateral boundaries,
which can be controlled by the electric current. The spin-FET is a transistor
based on a 2DEG, where strong Rashba spin-orbit coupling is used as a gate to
rotate the spin current from a ferromagnetic source to a ferromagnetic detector.
These two concepts use the spin-orbit coupling to control the spin polarization,
however, there are also negative effects of spin-orbit coupling in 2DEGs, from a
spintronics point of view. For semiconductors with diffusive spin transport, spin-
orbit coupling gives rise to relaxation of the spin polarization, e.g. through the
Elliott-Yafet and D’yakonov-Perel’ (DP) mechanisms [18]. The relaxation in the
Elliott-Yafet mechanism [19] is caused by spin-orbit coupling that (1) mixes the spin
”up” and spin ”down” states, which results in relaxation due to spin-independent
scattering, and (2) couples to the lattice potential, which results in the creation
of phonons that couple to the electron spin directly. The DP mechanism results
from the spin precession around the intrinsic spin-orbit field, which depends on the
momentum of the electron traveling through the semiconductor. During scattering
events the momentum is changed, thus changing the direction of the spin-orbit
field, which, in combination with diffusive transport, result in relaxation of the
spin polarization. Both of these relaxation mechanisms are dependent on scattering
events to cause relaxation.

1.2 The persistent spin helix

The persistent spin helix (PSH) [20] is a spin structure with promising properties
for transferring polarized spin currents in diffusive systems. The PSH is a result of
the intrinsic spin-orbit coupling in a 2DEG, and arises when the Dresselhaus and
Rashba spin-orbit coefficients are of equal magnitude, i.e. α = β. Experimentally,
this situation could be obtained by tuning the ratio of the field coefficients α/β with
gating, i.e. changing the confining potential. For α = β the spin-orbit Hamiltonian
takes the form Hso = α(σx + σy)(ky − kx) = ασx′ky′ , where x′ points in the
[110]-direction and y′ points in the [1̄10]-direction. In principle this gives rise to
an infinite lifetime of the spin polarization, due to the restored SU(2) symmetry
of the Hamiltonian. The conservation of spin polarization can be understood by
considering the spin-orbit Hamiltonian above. The spin-orbit field points in a fixed
direction (which will be perpendicular to the PSH wave vector), and its magnitude
is proportional to the momentum in the direction of the wave vector. Thus the
spin’s rotation angle is only dependent on the distance traveled in the direction
of the wave vector, i.e. the y′-direction, and does not depend on the specific path
traveled by the electron. An illustration of the PSH is shown in figure 1.2.

The first experimental evidence of the PSH was observed by Koralek et al. [21]
in 2009. By using transient spin-grating spectroscopy on GaAs quantum wells, they
observed enhanced lifetime of two orders of magnitude, compared to the lifetime
of a spin system with diffusive spin transport only, for the spin helices around the
symmetry point α ≈ β. The lifetime of the spin polarization was found to be de-
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Figure 1.2: Illustration of the persistent spin helix in a 2D electron gas. The PSH
is a result of the intrinsic spin-orbit coupling with equal Dresselhaus and Rashba
spin-orbit strength. This makes the spin’s rotation angle proportional to y′, and
independent of momentum. In this figure, z is the growth direction [001], and x′

and y′ are the [110] and [1̄10] crystal directions respectively. Adapted from Koralek
et al. [21].

pendent on temperature, which suggests the effect of electron-electron interactions
that relax the spin structure through the spin Coulomb drag effect [22, 23]. By
comparing the deviation of the maximum lifetime from α = β with theory, they
proposed the cubic (higher order in k) Dresselhaus spin-orbit coupling [24] to be the
main contribution to the breaking of the SU(2) symmetry. In 2012, the evolution of
the persistent spin helix from a local spin excitation in a zincblende semiconductor
quantum well was shown by Walser et al. [25] by using temporal and spatial Kerr
spectroscopy. They also observed that applying an in-plane magnetic field either
destroyed or enhanced the spin structure, depending on its in-plane direction. For
the special case of an external magnetic field with magnitude B = −1 T in the
[110]-direction, the spin structure was rotated into the [100]-direction.

To further improve the lifetime of the PSH, it is necessary to understand its
relaxation mechanisms. We know that electron-electron Coulomb interactions re-
duce the lifetime of the PSH [21], however, these interactions do not break the
SU(2) symmetry. The symmetry breaking may result from the cubic Dresselhaus
spin-orbit interaction, as suggested by Walser et al., and by extrinsic spin-orbit
coupling [26] through the Elliott-Yafet mechanism. To better understand the re-
laxation mechanisms of the PSH, a diffusion equation was derived by Lüffe et al.
(2011) [27] from a semi-classical Boltzmann equation by expanding the spin dens-
ity in terms of winding numbers and orders of momentum. They found that in
the experimentally relevant regime, the lifetime was mainly decided by the cu-
bic Dresselhaus interaction and the electron-electron interactions. Following the
same procedure, Lüffe et al. (2013) [28] derived a spin diffusion equation for the
PSH now including the Hartree-Fock field set up by electron-electron interactions.
They found that for large initial polarizations, the Hartee-Fock field can consider-
ably enhance the PSH lifetime, stabilizing the PSH against the effect of the cubic
Dresselhaus interaction. A surprising effect of the Hartee-Fock field was that the
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higher order harmonics rotated the spin polarization out of the (Sy, Sz) plane,
where Sa is the spin projection in the a-direction. This effect was shown to be
enhanced for large cubic Dresselhaus spin-orbit coupling.

1.3 Hyperfine interaction

It is not only the spin-orbit coupling and electron-electron interactions that cause
relaxation of the spin polarization in 2DEGs. Another source of relaxation is the
hyperfine interaction between the electron spin and the nuclear spins of the host
material. This interaction can cause electron-nuclear spin flips and can result
in a small random spatially varying effective Zeeman field felt by the electron
spins. Under special circumstances, the interaction can also give rise to a feedback
cycle, in which a non-equilibrium electron spin polarization affects the nuclear spin
polarization, which in turn influences the electron spin dynamics. Such feedback
mechanisms are know to be able to lead to dramatic effects, such as very large
nuclear polarizations and hysteresis [29, 30].

In PSH experiments, such feedback mechanisms have always been deliberately
avoided, usually by modulating the sign of the injected electron spin polarization.
One could, however, wonder what would happen if one would not suppress the
build-up of nuclear spin polarization, i.e., not modulate the injected spin polariz-
ation. This could possibly result in a feedback mechanism where the nuclear spin
structure stabilizes the PSH structure. Näıvely one would expect the hyperfine-
induced effective field to have a structure similar to the Hartree-Fock field. Based
on the work done by Lüffe et al. (2013), we could then expect the nuclear spin
density to further enhance the lifetime of the PSH.

We would like to investigate this idea, and see if nuclear spin pumping could
indeed lead to a more stable PSH. To that end we should investigate how effective
the spin pumping is in the PSH setup, i.e. how fast the nuclear spin polarization
is build up, and how this affects the PSH structure. Does the nuclear polarization
follow the PSH structure as we expect, and how would this affect the feedback
mechanism between the nuclear and electron spin structures? Do we observe an
enhanced lifetime of the electron spin polarization as for the Hartee-Fock field?

To answer these questions, we need a diffusion equation for the spin polarization
in the PSH setup. This can be obtained by following the derivation of Lüffe et
al. (2011). We also need to calculate the nuclear spin pumping caused by the
non-equilibrium electron spin dynamics. This has traditionally been calculated
using rate equations [31], where by balancing the rates of nuclear spin flip ”up”
and ”down”, calculated separately using Fermi’s golden rule, one obtains the net
nuclear spin pumping. However, for systems with complicated dynamics, such as
spin-orbit coupled systems, this approach can fall short due to vanishingly small
energy differences between states. Danon and Nazarov (2011) [32] presented an
alternative formalism to investigate the nuclear spin pumping due to hyperfine
interactions with non-equilibrium electron spins, which does not require separation
or basis of electronic states. In this formalism, it is sufficient to investigate the
susceptibilities and fluctuations of the electron spins in order to describe the spin
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dynamics up to second order in the hyperfine coupling. Using this formalism, we
can obtain the nuclear spin pumping from the electron spin diffusion equation.
By then including the effect of the nuclear pumping in the electron spin diffusion
equation, we should obtain a set of coupled equations that describe the full feedback
mechanism between the nuclear and electron spin densities. Investigating these
equations should answer the questions above.

1.4 Outline

The first two chapters of this thesis is based on a preparatory study for the calcula-
tion of the hyperfine interactions in the PSH [1]. Here, we rederive the components
we are going to use to compute the nuclear spin pumping in the persistent spin
helix. This includes the diffusion equation for the PSH system, where we follow
the derivation by Lüffe et al (2011), in chapter 2, and the formalism for calculating
the nuclear spin pumping from electronic fluctuations and susceptibilities, where
we follow the derivation by Danon and Nazarov, in chapter 3.

As a proof of principle, in chapter 4, we calculate the nuclear spin pumping
due to the susceptibilities of the electron spin density for a simpler, continuous
1D electron spin system. The investigated system has diffusive spin transport,
spin relaxation, a constant injected spin polarization, and a magnetic field in the
z-direction. We are not evaluating spin-orbit coupling, thus our results is not
directly comparable to the PSH. The motivation behind the calculation is to get a
better understanding of the procedure, and to show that it actually works, since
these two formalisms have never been combined before.

In chapter 5 we scale the procedure used in chapter 4 to 3D in order to calculate
the nuclear spin pumping in the PSH. We evaluate the nuclear spin polarization
in equilibrium with the electron spin dynamics, and add its effects to the semi-
classical Boltzmann equation. By then following a similar approach as Lüffe et
al. (2013) we derive a diffusion equation for the electron spin in the presence of
hyperfine interaction. Investigating this diffusion equation should give a better
understanding of the hyperfine interaction in the PSH.

We indeed find that the nuclear spin pumping is proportional to the PSH, and
gives rise to an effective magnetic field experienced by the electron spin. This field
mainly stabilizes the PSH, resulting in a longer lifetime of the electron spin po-
larization. However, a higher-order contribution destabilizes the spin structure by
pumping spin polarization into the x-component, as a result of the cubic Dressel-
haus scattering coupling to the hyperfine interaction.

Throughout this report we will use natural units, i.e. we set h̄, c, kB equal 1.



Chapter 2

Spin diffusion equation

In this chapter we derive an equation of motion for the electron spin in the persistent
spin helix. We first describe our model for the PSH, then we define our method
for obtaining the equation of motion, and finally, we derive the equation of motion
for the PSH.

2.1 Model

We consider electrons near the Fermi-surface in a GaAs 2DEG, described in a basis
of Bloch functions. In such a system, the intrinsic spin-orbit coupling behaves as
a momentum-dependent in-plane magnetic field. The main contributions to this
field come from the linear Dresselhaus and Rashba spin-orbit coupling, but but the
symmetry-breaking cubic Dresselhaus spin-orbit contributes as well. The system’s
Hamiltonian can be written as

H = H0 +Himp, (2.1)

where H0 is the general 2DEG Hamiltonian, and Himp contains the contributions
from the electron-impurity interactions. The electron-impurity interactions in the
presence of spin-orbit interactions will, in terms of spin dynamics, contribute to an
effective relaxation of the electron spin polarization. The mechanisms behind this
relaxation are the Elliott-Yafet and DP relaxation, as described in the introduc-
tion. We also assume zero temperature, and thus omit the contribution from the
Coulomb electron-electron interaction [28].

The 2DEG we are considering has intrinsic spin-orbit coupling and a quadratic

dispersion relation εk = k2

2m , where m is the electron mass. We write the 2DEG
Hamiltonian as

H0 =
∑
s,s′;k

ψ†ksH0ss′ψks′ (2.2)

where ψ†ks(ψks) is the creation(annihilation) operator that creates(annihilates) an

7



8 Chapter 2. Spin diffusion equation

electron with momentum k and spin projection s, and

H0ss′ = εk + b(k) · σss′ (2.3)

where the spin-orbit field
b(k) = bR(k) + bD(k) (2.4)

contains contributions from the linear Dresselhaus, cubic Dresselhaus, and Rashba
spin-orbit interactions. An explicit expression for the spin-orbit field b(k) in a
GaAs 2DEG is shown in section 2.1.1.

The electron-impurity interaction is governed by the single-particle Hamiltonian

Himp =
1

V

∑
s,s′;k,k′

ψ†ksUkk′ss′ψk′s′ (2.5)

where V is the volume, that we set equal to one, and Ukk′ss′ is the impurity
potential in momentum space, which we will obtain from the real-space impurity
potential

Û(x) = V imp(x)− λ2
0

4
σ̂ · [k̂ ×∇V imp(x)] (2.6)

with λ0 being a material parameter, and V imp(x) =
∑
i v(x −Ri), where v(x) is

the potential of each impurity, and Ri is the position of the i-th impurity. The
first term contains the contribution from the electron-impurity scattering, while
the second term contains the contribution from extrinsic spin-orbit interaction [26]
between the electron spin and an electric field it experiences due to the gradients
in the impurity potential. We obtain the impurity potential in momentum space,
by evaluating the matrix element

Ukk′ = 〈k|V imp(x)− λ2
0

4
σ̂ · [k̂ ×∇V imp(x)]|k′〉

=

∫
dx φ∗k(x)

(
V imp(x)− λ2

0

4
σ · [k̂ ×∇V imp(x)]

)
φk′(x)

= V imp

kk′ ({Rj})−
λ2

0

4
σ ·
[
k ×

∫
dx φ∗k(x)∇V imp(x)φk′(x)

]
= V imp

kk′ ({Rj})−
λ2

0

4
σ · [k × i(k − k′)]V imp

kk′ ({Rj})

= V imp

kk′ ({Rj})
(

1 +
iλ2

0

4
σ · [k × k′]

)
, (2.7)

where we used the completeness relation for the spatial coordinates
∫
dx |x〉 〈x| =

1, defined a complete, orthonormal set of Bloch-functions as φk(x) = 〈x|k〉 =
eik·xu(x), where u(x) is a periodic function with the same periodicity as the crystal

lattice, and defined V imp

kk′ ({Rj}) =
∑
j v(k − k′)e−i(k−k′)·Rj . Since our setup is a

2DEG, k and k′ are both in-plane, giving

Ukk′ = V imp

kk′ ({Rj})
(

1 + σz
iλ2

0

4
[k × k′]z

)
. (2.8)
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Since the only spin-dependent operator in Ukk′ is the Pauli matrix σz in the second
term, the first term connects states |k〉 and |k′〉 with equal spin projections. The
Pauli matrix σz works as a spin flipping operator for the in-plane spin projections
sx and sy, and thus, the second term connects sates |k〉 and |k′〉 where the in-plane
spin components are flipped.

2.1.1 Spin-orbit coupling

An important interaction in 2DEGs is the spin-orbit coupling, where the electrons
experience a magnetic field due to their movement through an electric field, which
couples to the electron’s spin. The general spin-orbit Hamiltonian can be derived
by expanding the Dirac equation in orders of 1

c , where the spin-orbit interaction
term arises to second order as

Hso =
1

4m0c2
σ ·
(
∇V × p

m0

)
. (2.9)

Spin-orbit coupling in semiconductors arises due to space inversion-asymmetry
of the potential in which the electrons move. We here present two types of inversion-
asymmetry and their respective spin-orbit coupling. The first is called the Dressel-
haus spin-orbit coupling, and is caused by bulk inversion-asymmetry, i.e. the crystal
structure’s point group lacking an inversion center, which makes the electrons ex-
perience an effective electric field. For a GaAs semiconductor with a zinc-blende
crystal lattice the Dresselhaus field reads [20]

bD(k) = γ

 kx(k2
y − k2

z)
ky(k2

z − k2
x)

kz(k
2
x − k2

y)

 , (2.10)

where γ is the cubic Dresselhaus coefficient. x, y and z are here simply the [100]-,
[010]- and [001]-direction, respectively.

For 2DEGs with sufficiently narrow quantum wells we can approximate the
wave vector component along the heterostructure’s growth direction by its average
within the lowest subband in the 2DEG and integrate out the z-dependence. For
a well grown along the [001]-direction we use 〈kz〉 = 0 and β = γ 〈k2

z〉, and obtain

bD(k) = cos 2φ

β′
 −kxky

0

− γ k3

4

 cos 3θ
sin 3θ

0


+ sin 2φ

β′
 ky

kx
0

+ γ
k3

4

 sin 3θ
− cos 3θ

0

 , (2.11)

where vF is the Fermi velocity, φ denotes the angle between the x-axis and the
[100] crystal axis, and θ denotes the angle between the x-axis and the k vector.
β is the bare linear Dresselhaus coefficient, and β′ = β − γ k2/4 is a momentum-
renormalized linear Dresselhaus coefficient, which arises as an effect of the cubic
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Dresselhaus coupling. The linear terms typically dominate since 〈k2
z〉 is much lar-

ger than any other quadratic contribution because of the strong confinement in
the z-direction. In accordance with the PSH structure as we described it in the
introduction, we let the x-axis point in the [110]-direction, i.e. we set φ = π

4 , which
gives

bD(k) = β′

 ky
kx
0

+ γ
k3

4

 sin 3θ
− cos 3θ

0

 . (2.12)

The second kind of spin-orbit coupling we introduce is the Rashba spin-orbit
coupling, which arises due to structure inversion-asymmetry of the confining po-
tential V (r) in semiconductors. When Taylor expanding the confining potential
V (r) = V0 + eE · r + · · · , we see that the lowest order inversion-asymmetry of the
potential is characterized by the electric field E. The coupling of E to the wave
vector k gives rise to the Rashba spin orbit field bR(k) ∝ k × E. In a 2DEG the
confining potential is strictly in the z-direction, i.e. E = êzEz, as illustrated in
figure 1.1 in the introduction. The Rashba spin-orbit coupling in a 2DEG thus
reads

bR(k) = α

(
ky
−kx

)
, (2.13)

where α is the Rashba coefficient, which is essentially proportional to the potential
gradient over the quantum well, and can experimentally be tuned with gating.

The conduction band electrons in the GaAs 2DEG experience the spin-orbit field
as a momentum-dependent magnetic field. Thus, we write the coupling between
the spin-orbit field and the electron spin as

Hso,ss′ = b(k) · σss′ , (2.14)

which is included in the matrix elements for the 2DEG Hamiltonian H0ss′ in equa-
tion (2.3).

2.2 A semi-classical approach

As a starting point for our derivation of the electron spin diffusion equation we use
a semi-classical equation of motion for the spin density sk, based on a Boltzmann
equation. The equation of motion reads

∂tsk + v · ∂sk + 2sk × b(k) = J imp
k (2.15)

where v = k/m is the electron velocity, and Jk
imp is the electron-impurity collision

integral for the spin density. The spin density sk(r) is the average spin polarization
of electrons in state k close to the point r.1 The equation of motion (2.15) states
how sk changes, i.e. ∂tsk, in a semi-classical picture where 1) spin polarization flows
”in and out” of r depending on nearby electron’s spin polarization and velocity, 2)

1There is some uncertainty in the position due to Heisenberg’s uncertainty principle [33].
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spin polarization precesses around the (effective) Zeeman field, 3) scattering events
can change the spin polarization.

The electron-impurity collision integral is obtained by using Fermi’s golden rule,
which for a relevant perturbation H ′ gives the transition rate from an initial state
|i〉 to a final state |f〉,

Γi→f = 2π| 〈f |H ′ |i〉 |2δ(εf − εi)ρi(1− ρf ) (2.16)

where 〈f |H ′ |i〉 is the matrix element between the initial and final state, δ(εk− εk′)
ensures energy conservation, where δ(x) is the Dirac delta function, and ρf(i) is
the occupation probability that encodes the availability of the final(initial) state.
To obtain the electron-impurity collision integral, we investigate all transitions into
and out of |k〉, for the relevant matrix element Ukk′ss′ . This is done by using Fermi’s
golden rule to calculate the transition probabilities in and out of |k〉, summing over
all states, and multiplying with the impurity concentration ni, which gives

Jk
imp = 2πni

∑
k′

{
|Ukk′ss′ |2δ(εk′ − εk)ρk′(1− ρk)− |Uk′ks′s|2δ(εk − εk′)ρk(1− ρk′)

}
= 2πni

∑
k′

|Ukk′ss′ |2δ(εk′ − εk)(ρk′ − ρk), (2.17)

where we used that |Ukk′ss′ |2 = |Uk′ks′s|2. Since the spin diffusion equation de-
scribes the evolution of a spin density, where the spin vector has a value between
± 1

2 , we define the occupation probability for sak(r) as ρak = 1
2 + sak, where a ∈

{x, y, z}.
The probability amplitude |Ukk′ss′ |2 can be obtained by evaluating the matrix

element 〈s|Uk′k |s′〉, where s is the spin projection and Uk′k is given in equation
(2.8) as

〈s|Uk′k |s′〉 = V imp

kk′ ({Rj}) 〈s|
(

1 + σz
iλ2

0

4
[k × k′]z

)
|s′〉

= V imp

kk′ ({Rj})

δss′ +
iλ2

0

4
[k × k′]z

 δsx,−s′x
δsy,−s′y
δsz,s′z

 , (2.18)

where δss′ is the Kronecker delta function that makes sure that the initial and final
spin density have the same spin projection. We take the absolute value squared of
the matrix element above and insert it into equation (2.17), with the occupation
probabilities of the spin densities for their respective spin polarization, to obtain

Jk
imp =−

∑
k′

Wkk′δ(εk′ − εk)

∆sk +
λ2

0

2
[k × k′]z

 −sk′yskx
0


+
λ4

0

16
[k × k′]2z

 skx + sk′x
sky + sk′y
skz − sk′z

 (2.19)

where Wkk′ = 2πni|v(k − k′)|2 is the transition rate, and ∆sk = (sk − sk′).
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2.2.1 Expansion of the spin density

So far, we have obtained a semi-classical equation of motion for the spin density
sk(r). We now want to expand the spin density in terms that capture the dynamics
governed by the equation of motion in order to simplify the derivation of the spin
diffusion equation. This is obtained by considering the D’yakonov-Perel’ regime of
strong scattering.

As we explained in the introduction, the D’yakonov-Perel’ mechanism results
in an effective relaxation of the electron spin polarization in a semiconductor with
intrinsic spin-orbit coupling. The relaxation is caused by momentum altering scat-
tering, which also alters the momentum-dependent spin-orbit field b(k). The DP
relaxation is strongest in the weak scattering regime, where the time between scat-
tering events τ is large. This leads to in a large precession angle b(k)τ , resulting in
a random-walk behaviour of the spin polarization. Stronger scattering thus stabil-
izes the spin polarization. In the D’yakonov-Perel’ regime of strong scattering the
precession angle is small, b(k)τ � 1, resulting in little DP relaxation. This effect
is often referred to as motional narrowing in spectroscopy, e.g. in nuclear magnetic
resonance (NMR) spectroscopy. Motional narrowing in NMR spectroscopy is a
phenomenon where the time-averaged magnetic field experienced by the protons
is smaller than the instantaneous one. This is caused by a spatially varying mag-
netic field and diffusive proton spin transport, and results in a smaller linewidth
for certain resonant frequencies.

In the D’yakonov-Perel’ regime of strong scattering, we can separate spin density
into isotropic and anisotropic parts due to their different dynamic timescales. This
allows us to derive the spin diffusion equation by evaluating a diffusion equation
for the isotropic spin components with respect to the anisotropic components in
their steady-state solutions.

The anisotropic parts of the electron spin density are further expanded in terms
of winding numbers and powers of momentum k to capture the dynamics governed
by the equation of motion. The reasoning behind this expansion can easiest be
seen from the spin-orbit fields in equation (2.12) and (2.13), where in order to
capture the relevant frequencies, one has to expand the spin density in terms of
winding number ±1 with momentum of powers k and k3, and winding numbers ±3
with momentum of power k3. Terms with other winding numbers require coupling
between spin-orbit fields, which is not included to leading order in b(k)τ , and will
be neglected. This gives the expanded spin density,

sk = s0 + sk,1 + s̃k,1 + sk,3 (2.20)

with

s0 = −2π

m
f ′(εk)S (2.21)

sk,1 = f ′(εk)
k

m

∑
n=±1

δkn(x, t)einθ (2.22)

s̃k,1 = f ′(εk)
k3

k2
Fm

∑
n=±1

δk̃n(x, t)einθ (2.23)
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sk,3 = f ′(εk)
k3

k2
Fm

∑
n=±3

δkn(x, t)einθ (2.24)

where kF is the Fermi momentum. The isotropic part of sk is written as a small
spin-dependent shift of the chemical potentials for spin up and spin down along
the local direction of the spin polarization, and the anisotropic components are
expressed in terms of small (spin-dependent) shifts in momentum of the equilibrium
distribution function. This notation ensures that one will obtain the local spin
density S when integrating sk over k. Based on the spin-orbit field in equation
(2.4), one expects sk,1 to couple to the Rashba and bare linear Dresselhaus fields,
s̃k,1 to couple to the renormalization of the linear Dresselhaus field, and sk,3 to
couple to the cubic Dresselhaus field. However, since sk,1 and s̃k,1 are identical at
zero temperature,2 we can omit the contribution from the renormalization of the
Dresselhaus field, i.e. s̃k,1. We thus write the expanded spin density as

sk =
∑

n=0,±1,±3

sk,ne
inθ, (2.25)

with s0 = − 2π
m f
′(εk)S being the isotropic spin component, and sk,n = f ′(εk) kn

kn−1
F m

δkn

being the anisotropic spin components.

2.3 Spin diffusion equation

We will now derive the spin diffusion equation for the model presented in section
2.1, from the semi-classical equation of motion (2.15) and the expanded spin dens-
ity in equation (2.20). Because of the different time scales of the isotropic and
anisotropic components, caused by the DP relaxation, the anisotropic components
instantaneously relax into their new equilibrium configuration when compared to
the isotropic component. This lets us use the following approach: (1) By inserting
the spin density into the semi-classical equation of motion and integrating over
k, we obtain a diffusion equation for the isotropic spin components, as functions
of the anisotropic spin components. (2) We then find explicit steady-state ex-
pressions for the anisotropic components by separating out the relevant winding
number components. (3) Inserting the expression for the anisotropic components
into the isotropic diffusion equation gives the spin diffusion equation.

We define a new basis for the anisotropic spin components that we will use
during the derivation,

δkc(c3) = (δk1(3) + δk−1(−3)) δks(s3) = i(δk1(3) − δk−1(−3)). (2.26)

Our choice of basis is based on the winding number expansion of the spin density in
equation (2.20) and the θ integrals we encounter during the derivation. We will in
this section present our main results, while the full derivation is given in appendix
A.

2At zero temperature, the Fermi-Dirac distribution takes the form of a heaviside function,
f(εk) = θ(kF − k).
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2.3.1 Isotropic diffusion equation

To obtain the spin diffusion equation, we first derive a diffusion equation for the
isotropic spin density. We do this by inserting the spin density in equation (2.20)
into the semi-classical equation of motion (2.15) and integrating over k, i.e.∫

dk
{
∂tsk + v · ∂sk + 2sk × b(k)

}
=

∫
dk J imp

k . (2.27)

This gives us a diffusion equation for the isotropic components of the spin density,

∂tSx =
k2
F

2π

{
1

2m
(∂xδkc,x + ∂yδks,x) + αδkc,z − βδkc,z

}
− γeySx (2.28)

∂tSy =
k2
F

2π

{
1

2m
(∂xδkc,y + ∂yδks,y) + αδks,z + βδks,z

}
− γeySy (2.29)

∂tSz =
k2
F

2π

{
1

2m
(∂xδkc,z + ∂yδks,z)− α(δkc,x + δks,y) + β(δkc,x − δks,y)

}
(2.30)

with δkc(s) = δkc(s) −
γk2F
4β (δkc(s) + δkc3(s3)), and δkc(s) = δkc(s) −

γk2F
4β (δkc(s) −

δkc3(s3)), and γey being the Elliott-Yafet relaxation rate where the electron spin
precess a small angle around the extrinsic spin-orbit field during impurity scatter-
ing, given as

γey =

(
λ0kF

2

)4

τ−1 (2.31)

where τ−1 = mni|v(0)|2 is the inverse lifetime of the electron spin due to isotropic
scattering off a weak impurity potential v(q) in the Born-approximation. We will
use this isotropic spin diffusion equation to obtain a spin diffusion equation for
the spin-orbit system we are evaluating, by finding steady-state expressions for the
anisotropic components appearing in it.

2.3.2 Anisotropic components

To make the isotropic diffusion equation self-consistent, we find steady-state ex-
pressions for the anisotropic components as functions of the isotropic component.
To obtain this, we multiply the semi-classical Boltzmann equation with an angular
part that separates out the winding number ±1 and ±3 components separately
when performing the k integration. For the winding number ±1 part we will use
cos θ and sin θ, while for the winding number ±3 part we will use e±i3θ. We choose
cos θ and sin θ instead of e±iθ for the winding number ±1 part because we then get
the contributions expressed directly in terms of δkc(s).

We also omit the time-derivative term in the spin diffusion equation (2.15) due
to the fast relaxation of the anisotropic components when compared to the isotropic
ones. This is a result of the DP relaxation of the anisotropic components, which we
mentioned in section 1.1 and described in section 2.2.1. This makes the anisotropic
components relax into their new equilibrium configuration almost instantaneously
when compared to the isotropic component.
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winding number ±1

To find the anisotropic components of winding number ±1, we multiply the semi-
classical diffusion equation (2.15) with cos θ and sin θ and integrate over k, i.e.∫

dk γ(θ)
{
v · ∂sk + 2sk × b(k)

}
=

∫
dk γ(θ)J imp

k (2.32)

were γ(θ) ∈ {cos θ, sin θ}. This gives us two coupled equations, one for γ(θ) = cos θ,
and one for γ(θ) = sin θ. By solving the two coupled equations for the anisotropic
components we get

δkc,x =
2πτ1
m

(Sx∂x + γswτ1Sy∂y) + 4πτ1Sz {α (1 + γswτ1)− β′′(1− γswτ1)}
(2.33)

δkc,y =
2πτ1
m

(Sy∂x − γswτ1Sx∂y) (2.34)

δkc,z =
2πτ1
m

Sz∂x − 4πτ1Sx(α− β′′) (2.35)

δks,x =
2πτ1
m

(Sx∂y − γswτ1Sy∂x) (2.36)

δks,y =
2πτ1
m

(Sy∂y + γswτ1Sx∂x) + 4πτ1Sz {α(1 + γswτ1) + β′′(1− γswτ1)}
(2.37)

δks,z =
2πτ1
m

Sz∂y − 4πτ1Sy(α+ β′′), (2.38)

where β′′ = β− γk2F
4 , τ1 =

(
1
τ +

γey
2

)−1
is the effective relaxation time of the winding

number ±1 anisotropic spin components, and γsw =
(
λ0kF

2

)2 1
τ is the ”swapping”

rate of the spin currents, where a gradient in one of the in-plane spin components
generate a current in the other in-plane spin component. We also assumed that(
γsw

2τ1
2 − 1

)
→ −1, which is reasonable in our regime of τ1 � 1. These equations

express the anisotropic spin components of winding number ±1 as functions of the
isotropic spin density S, and will later be used to obtain the spin diffusion equation.

winding number ±3

To obtain expressions for the anisotropic spin components of winding number ±3,
we multiply the semi-classical diffusion equation (2.15) with e±i3θ and integrate
over k, i.e. ∫

dk e±i3θ
{
v · ∂sk + 2sk × b(k)

}
=

∫
dk e±i3θJ imp

k . (2.39)

Solving for the anisotropic components δkc3 = δk3 + δk−3 and δks3 = i(δk3 −
δk−3) gives

δkc3 = γπτ3k
2
F

 Sz
0
−Sx

 (2.40)
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δks3 = γπτ3k
2
F

 0
Sz
−Sy

 , (2.41)

where τ3 =
(

1
τ +

γey
2

)−1
is the effective relaxation time of the winding number

±3 spin components, and γ is the cubic Dresselhaus coefficient. We note that
τ1 = τ3, which is a consequence of our choice of system. Adding e.g. a temperature
dependence or second-order electron-electron interactions would make τ1 6= τ3.

We have now calculated the isotropic spin diffusion equation, and the aniso-
tropic spin components appearing in it, hence we can now obtain the spin diffusion
equation.

2.3.3 Spin diffusion equation

To obtain the spin diffusion equation, we insert the anisotropic spin components in
equation (A.47)-(A.52) and (A.59)-(A.60) into the isotropic spin diffusion equation
(A.25)-(A.27) and obtain

∂tS =

 D∇2 − Γx − γcd − γey 0 Kxz∂x
0 D∇2 − Γy − γcd − γey Kyz∂y

−Kxz∂x −Kyz∂y D∇2 − Γx − Γy − Γsw − 2γcd

S,
(2.42)

where ∇2 = ∂2
x + ∂2

y , D = 1
2τ1v

2
F is the effective diffusion constant, and q0 = 4αm

is the PSH wave vector.

γcd =
1

8
γ2τ3k

6
F (2.43)

is the D’yakonov-Perel’ relaxation rate due to the precession between electron-
impurity scattering events for the winding number ±3 anisotropic spin components,
and

Γx(y) =
1

4
Dq2

0

{
1∓ 2

β

α
(1− ζ) +

β2

α2
(1− ζ)2

}
, (2.44)

where ζ =
γk2F
4β , is the D’yakonov-Perel’ relaxation rate for the winding number

±1 anisotropic spin components. The DP relaxation of the Sx(y) component is
a consequence of precession about the y(x)-component spin-orbit field. The Sz
component thus experience both of the in-plane spin-orbit fields, but also get a
correction due to the spin-flipping of the in-plane components, due to extrinsic
spin-orbit coupling, given by

Γsw =
1

2
γswτ1Dq

2
0

{
1− β2

α2
(1− ζ)2

}
. (2.45)

The three quantities in equations (2.43)-(2.45) relax the spin components, and are
thus in the diagonal elements of the spin diffusion equation. From these expressions
we can see explicitly that stronger scattering, which gives smaller D and τ1(3),
stabilizes the spin polarization. The off-diagonal elements, however, couple the
spin components. For our choice of φ = π

4 in section 2.1.1, where φ is the angle
between the x-axis and the [001] crystal axis in our 2DEG, the coupling between
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the in-plane components is zero. The coupling between the in-plane components
and the z-component, however, is given by

Kxz(yz) = Dq0

{
1∓ β

α
(1− ζ)

}
+

1

2
γswτ1Dq0

{
1± β

α
(1− ζ)

}
, (2.46)

which contains contributions from the intrinsic and extrinsic spin-orbit coupling.
The spin diffusion equation derived above is valid for any GaAs 2DEG with

intrinsic spin-orbit interaction and φ = π
4 , with no assumption about the the spin-

orbit coupling strengths. Below, we find the diffusion equation for the PSH, by
setting the the Rashba spin-orbit coupling strength equal the renormalized linear
Dresselhaus spin-orbit coupling strength, i.e. α = β(1− ζ).

2.3.4 PSH diffusion equation

We have derived a spin diffusion equation for a GaAs 2DEG with intrinsic spin-
orbit coupling and electron-impurity interaction. What we now want to find is the
spin diffusion equation for the persistent spin helix structure. To obtain this, we
evaluate the spin diffusion equation (2.42) for the symmetric case of equal Rashba
and renormalized linear Dresselhaus coupling strengths, i.e. we set α = β(1 − ζ),
which gives

∂tS =

 D∇2 − γcd − γey 0 γswτ1Dq0∂x
0 D∇2 −Dq2

0 − γcd − γey 2Dq0∂y
−γswτ1Dq0∂x −2Dq0∂y D∇2 −Dq2

0 − 2γcd

S.
(2.47)

To check the validity of the obtained diffusion equation, we investigate the fully
SU(2) symmetric case of no relaxation, i.e. γcd(ey) = 0. We then substitute an
initial spin polarization S(x) = S0(0, 0, cos q0y), similar to the setup of Koralek et
al. (2009), into the diffusion equation and solve for equilibrium. This gives

S(y, t) =
S0

2

(
(e−4Dq20t − 1) sin q0y

(e−4Dq20t + 1) cos q0y

)
, (2.48)

which in the steady-state limit, i.e. t → ∞, reduces to the persistent spin helix
state. The time-evolution of the fully SU(2) symmetric PSH in equation (2.48) is
illustrated in figure 2.1.

We will use the diffusion equation (2.47) to calculate the effects of hyperfine
interaction in the PSH in chapter 5. To do so, we first need a formalism to evaluate
the nuclear spin pumping caused by the non-equilibrium spin dynamics described
by equation (2.47). We derive such a formalism in chapter 3.
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Figure 2.1: a, b, Illustration of the time-evolution of the initial state S(y) =
S0(0, 0, cos q0y) into the PSH structure for a GaAg 2DEG with no spin relaxation,
and Rashba and linear Dresselhaus intrinsic spin-orbit coupling of equal magnitude,
for the y- and z-component respectively.



Chapter 3

Nuclear spin pumping

In our derivation of the spin diffusion equation above we neglected the contribution
from the 2DEG’s nuclear spins. However, in a real system with non-zero nuclear
spins the so-called hyperfine interaction is always present, which couples the elec-
tron spins to the magnetic field caused by the nuclear magnetic dipole moments
[34]. The effective magnetic field experienced by one electron in the presence of
one nucleus is given by the vector potential

A =
µ0

4π

µ̂× r
r3

(3.1)

where µ0 is the vacuum permeability, µ̂ is the nuclear magnetic dipole moment,
and r is the vector pointing from the nucleus to the electron. By substituting
this vector potential into the Pauli-Schrödinger equation, and averaging over the
electron wave function, one obtains the Hamiltonian that governs the hyperfine
interaction between the electron and nucleus. This is straightforward given that
the electron and nucleus are sufficiently separated, as for electrons in p-, d- and
f-orbitals. However, for electrons in s-orbitals, which have a non-zero wave function
as r → 0, one has to introduce a relativistic correction with a far higher magnitude
than the spin-spin interaction between the electron and nucleus. This correction is
caused by the large electrostatic potential experienced by the electron when r → 0.
Calculating this correction and averaging over s-type orbitals yields

ĤHF =
2

3
µ0g0µBγnŜ · K̂|ψ(0)|2, (3.2)

where g0 is the free electron g-factor, µB is the Bohr magneton, γn is the nuclear
gyromagnetic ratio, Ŝ(K̂) is the electron(nuclear) spin operator, and |ψ(0)| is the
magnitude of the electron wave function at the nucleus. The electron wave function
ψ(r) can, in a semiconductor lattice, be described as a product of a Bloch function
u(r) and an envelope function Ψ(r) [35], which gives

ĤHF =
2

3
µ0g0µBγnηŜ · K̂|Ψ(0)|2, (3.3)

19
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where η = |u(0)|2. The prefactor is collected in a hyperfine coupling energy A =
2
3µ0g0µBγnηv

−1
0 , where v−1

0 is the density of nuclei, and can be assumed to be
independent on the nuclear position in a GaAs 2DEG. By writing the product of
the electron spin operator and the magnitude of the envelope function as a three
dimensional spin density Ŝ(r) we obtain

ĤHF = Av0Ŝ(r) · K̂. (3.4)

The hyperfine interaction Hamiltonian in a GaAs 2DEG, where the conduction
band electrons are in s-type orbitals, can now be obtained by summing over all
nuclei,

ĤHF =
∑
n

Av0Ŝ(rn) · K̂n, (3.5)

where rn is the position of nucleus n. To get a qualitative understanding of this
expression we write out the inner product as

Ŝ · K̂ =
1

2

(
2ŜzK̂z + Ŝ+K̂− + Ŝ−K̂+

)
, (3.6)

where J± = Jx ± iJy is the ladder operator that raises(lowers) the angular mo-
mentum in the z-direction. One can see here that the hyperfine interaction may
cause electron-nuclear spin flips, which for non-equilibrium electron spin dynamics
can lead to dynamic nuclear spin polarization [34].

We wish to investigate how the hyperfine interaction, described by the Hamilto-
nian above, affects a PSH structure in a GaAs 2DEG. To do so we need to investig-
ate how the nuclear spin structure is affected by the non-equilibrium spin dynamics
in the PSH structure. We will in this chapter rederive a formalism to calculate the
nuclear spin pumping from the local electron spin susceptibilities and fluctuations,
as presented by Danon and Nazarov [32]. This will give an equation of motion for
the expectation value of the nuclear polarization 〈K̂〉 which is dependent on the
electron spin dynamics, or more precisely, the local electron spin susceptibilities
and fluctuations.

Danon and Nazarov’s formalism is based on time-dependent perturbation the-
ory, which will be derived in the first part of this chapter. We then follow the
derivation presented by Danon and Nazarov to obtain an equation of motion for
〈K̂〉.

3.1 Time-dependent perturbation theory

Our starting point for the derivation of the nuclear spin pumping will be a time-
evolution expression of the density matrix which we derive using time-dependent
perturbation theory.

3.1.1 Interaction picture

The interaction picture [36] can be interpreted as an intermediate picture between
the Schrödinger and Heisenberg picture. The time-dependence in the Schrödinger
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picture is governed by the wave-function, i∂|ψ(t)〉
∂t = Ĥ |ψ(t)〉, while the time-

dependence in the Heisenberg picture is governed by the operators, ∂Â(t)
∂t =

i[Ĥ, Â(t)]−, where [· · · ]−(+) denotes the commutator(anti-commutator). In the
interaction picture, however, the Hamiltonian is split into a simple static part and
a small perturbation which may be time-dependent,

Ĥ = Ĥ0 + Ĥ ′(t), (3.7)

where one assigns the time-dependence of the operators to be governed by the static
part Ĥ0, and the dynamics of the wave-function to be governed by the perturbation
Ĥ ′(t), i.e.

∂ÂI(t)

∂t
= i[Ĥ0, ÂI(t)] (3.8)

i
∂ |ψI(t)〉

∂t
= Ĥ ′I(t) |ψI(t)〉 , (3.9)

where the subscript I indicates that the operator/wave-function is in the interaction
picture. Note that the Hamiltonian in equation (3.9) is in the interaction picture
and therefore has to satisfy the time-dependence governed by equation (3.8). The
advantage with the interaction picture is in time-dependent perturbation theory,
where Ĥ ′(t) acts as a small perturbation to a simple Hamiltonian Ĥ0 with well
known solutions.

Operators and wave-functions can be transformed from the Schrödinger picture
to the interaction picture with the following relations

ÂI(t) = eiĤ0tÂe−iĤ0t, (3.10)

|ψI(t)〉 = eiĤ0t |ψ(t)〉 . (3.11)

The first relation follows directly from equation (3.8), while the second relation
follows from the first relation and the expectation value’s independence on choice
of picture, i.e. 〈Â(t)〉 = 〈ψI(t)| ÂI(t) |ψI(t)〉 = 〈ψ(t)| Â |ψ(t)〉.

3.1.2 Time-evolution operator

The time-evolution of a state in the Schrödinger picture is determined by the time-
evolution operator Û(t, t′) [36], that acts on a state |ψ(t′)〉 at time t′ and returns
a state |ψ(t)〉 at time t, i.e.

|ψ(t)〉 = Û(t, t′) |ψ(t′)〉 . (3.12)

Û(t, t′) is a unitary operator, i.e. it satisfies Û−1(t, t′) = Û†(t, t′) = Û(t′, t). If the
underlying Hamiltonian is time-independent, the time-evolution operator can be
written as an exponent operator1

Û(t, t′) = e−iĤ(t−t′). (3.13)

1The exponent operator [36] is defined by the Taylor series of the exponential function, i.e.

eÂ ≡ 1 + Â+ ÂÂ
2!

+ · · ·
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Before we introduce the time-evolution operator for a time-dependent Hamiltonian,
we introduce the time-ordering operator T ,

T {Â(t1)B̂(t2)} = θ(t1 − t2)Â(t1)B̂(t2) + θ(t2 − t1)B̂(t2)Â(t1), (3.14)

where θ is the heaviside function defined as: θ(t1 − t2) =

{
1, t1 ≥ t2
0, t1 < t2

. T makes

sure that the operator with the smallest time t acts first on the state. We now
introduce the time-evolution operator for a time-dependent Hamiltonian as

Û(t, t′) = T
{

exp

(
−i
∫ t

t′
dτĤ(τ)

)}
. (3.15)

We have so far only looked at the time-evolution operator in the Schrödinger pic-
ture. However, in time-dependent perturbation theory we need the time-evolution
operator in the interaction picture.

To obtain the time-evolution operator in the interaction picture we note that
Ĥ ′I(t) alone governs the time-evolution of the states in the interaction picture. The
time-evolution operator in the interaction picture thus reads

ÛI(t, t
′) = T

{
exp

(
−i
∫ t

t′
dτĤ ′I(τ)

)}
, (3.16)

where Ĥ ′I(τ) also has to satisfy the time-dependence of operators in the interaction
picture,

Ĥ ′I(t) = eiĤ0tĤ ′(t)e−iĤ0t. (3.17)

To find a relation between the time-ordering operator in the interaction picture
and the Schrödinger picture we use that the expectation value is independent on
choice of picture,

〈ψ(t)|Û(t, t′)|ψ(t′)〉 = 〈ψI(t)|ÛI(t, t′)|ψI(t′)〉 = 〈ψ(t)|e−iĤ0tÛI(t, t
′)eiĤ0t

′
|ψ(t′)〉 ,

(3.18)
which gives

Û(t, t′) = e−iĤ0tÛI(t, t
′)eiĤ0t

′
. (3.19)

We will later use this relation to find a time-dependent expression for the density
matrix in the interaction picture with respect to a well known density matrix ρ0

at t = t0.

3.1.3 The density matrix

In quantum mechanics we encounter two different types of systems. Systems that
can be represented by a state vector |i〉 in an appropriate Hilbert space, called pure
states, and systems described by a statistical ensemble of pure states, called mixed
states. Mixed states are used to describe systems where the wave-function of the
whole system is not known, but where we can obtain a probability of observing
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each state in an ensemble. To describe such mixed states we use the density matrix
ρ̂ [36], where each state in an ensemble is assigned with a probability pi. For an
ensemble of n states, the density matrix reads

ρ̂ =

n∑
i=1

pi |i〉 〈i| . (3.20)

The expectation value of an operator Â in the density matrix formulation is given
as

〈Â〉 =

n∑
i=1

pi 〈i|Â|i〉 = Tr[Âρ̂], (3.21)

for a normalized density matrix, i.e. Tr[ρ̂] = 1. The density matrix of a pure state
simply reads ρ̂ = |i〉 〈i|, and thus has to satisfy the conditions ρ̂2 = ρ̂ and Tr[ρ̂2] = 1.
A mixed state, however, does not satisfy these conditions. One can thus investigate
whether a density matrix describes a pure or mixed state by evaluating Tr[ρ̂2].

For a system S containing two subsystems S(1) and S(2) one can obtain a
reduced density matrix operator, ρ̂(i), i ∈ {1, 2}, where ρ̂(1) contains all the relevant
information about subsystem S(2), and can be used to calculate the properties of
S(1). The reduced density matrix operator is obtained by tracing out the degrees
of freedom of one of the two subsystems, e.g.

ρ̂(1) = Tr2[ρ̂]. (3.22)

If the two subsystems cannot be separated by a tensor product, i.e. S = S(1) ⊗
S(2), information about the off-diagonal elements, i.e. the coherence, of the density
matrix is lost when tracing out one of the subsystems. We will later use this to
obtain a reduced density matrix for the nuclear spins by tracing out the electron
spin degrees of freedom.

3.1.4 Time-dependent perturbation theory

We here derive a time-evolution expression for the density matrix in the interaction
picture, using the adiabatic approach, and solve it iteratively [36]. The time-
evolution of states in the interaction picture is governed by the small perturbation
Ĥ ′(t) alone, which ensures that the higher order iterations (in our case, higher than
second-order) can be neglected in a perturbative approach.

Our starting point will be a density matrix described by a Hamiltonian as given
in equation (3.7), with a simple initial state at t = t0 → −∞. The initial state
can e.g. be an eigenstate of Ĥ0 or a simple thermal state. This requires that the
perturbation Ĥ ′(t) is turned off at t = t0, such that the density matrix ρ̂0 is determ-
ined by Ĥ0 only. The perturbation is then turned on adiabatically by including an
exponential time-dependence, Ĥ ′(t) → eηtĤ ′, where η is an infinitesimally small
positive number, and the perturbation is assumed to be constant Ĥ ′(t) = Ĥ ′. The
density matrix, for any time t > −∞, can then be written as

ρ̂(t) = Û(t, t0)ρ̂0Û(t0, t), (3.23)
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where Û here describes the time-evolution due to Ĥ(t) = Ĥ0 + eηtĤ ′. Formally we
only consider t = 0, where the perturbation is exactly Ĥ ′. We then use the relation
between the time-ordering operator in the Schrödinger and interaction picture in
equation (3.19) to obtain

ρ̂(t) = e−iĤ0tÛI(t, t0)ρ̂0ÛI(t0, t)e
iĤ0t, (3.24)

where we used that ρ̂0 is stationary under Ĥ0, i.e. ρ̂0 = e−iĤ0t0 ρ̂0e
iĤ0t0 . We now

introduce the density matrix in the interaction picture, and find a relation between
the density matrix in the Schrödinger and interaction picture,

ρ̂I(t) =
∑
n

pn(t) |ψn,I(t)〉 〈ψn,I(t)|

=
∑
n

pne
iĤ0t(t) |ψn(t)〉 〈ψn(t)| e−iĤ0t

= eiĤ0tρ̂(t)e−iĤ0t. (3.25)

Inserting the expression in equation (3.24) gives the relation between the density
matrix in the interaction picture at time t and t0,

ρ̂I(t) = ÛI(t, t0)ρ̂0ÛI(t0, t). (3.26)

By substituting ÛI(t, t
′) with equation (3.16) and taking the derivative with respect

to t, we obtain a time-evolution equation for ρ̂I(t),

dρ̂I
dt

= −i
[
Ĥ ′I(t), ρ̂I(t)

]
−. (3.27)

Since we know the initial density matrix at t0 we can approximate the time-
evolution equation iteratively by integrating from t′ = t0 = −∞ to t′ = t,

ρ̂I(t)− ρ̂0 =

∫ t

−∞
−i
[
ĤI(t

′), ρ̂I(t
′)
]
−dt
′, (3.28)

and inserting the expression for ρ̂I(t) back into the time-evolution equation (3.27).
This gives an iterative approximation of the time dependence of the density matrix,

dρ̂I(t)

dt
= −i

[
Ĥ ′I(t), ρ̂0

]
− −

∫ t

−∞

[
Ĥ ′I(t),

[
Ĥ ′I(t

′), ρ̂0

]
−

]
−dt
′ + · · · . (3.29)

Note that the leftmost Hamiltonian in the second term on the right hand side is
not to be integrated over, and so forth for higher order perturbation terms. This
iterative approximation will be our starting point for the derivation of the nuclear
spin pumping.

3.2 Nuclear spin pumping

We have so far derived a time-dependent perturbation theory expression for the
density matrix in the interaction picture. When we now derive the nuclear spin
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pumping we will use the hyperfine Hamiltonian in equation (3.5) as perturbation,

Ĥ ′I(t) =
∑
n

Av0Ŝ
a
I (rn, t)K̂

a
I,n(t), (3.30)

where the superscript implies the Einstein summation convention [37]. We can
assume that the nuclear spin operators are time-independent on the time-scale of
the electron fluctuations due to the different typical time scales of the electron and
nuclear spin dynamics, i.e. we set K̂a

n(t) = K̂a
n. For the rest of this chapter all

operators will be in the interaction picture, thus we omit the index I for simplicity.

To derive an expression for the nuclear spin pumping we trace out the electron
degrees of freedom from the time-evolution expression of the density matrix in
equation (3.29), and insert the hyperfine coupling Hamiltonian in equation (3.30)
as perturbation. We keep terms up to second-order in the hyperfine coupling Av0

because the second-order terms capture the electron-nucleus spin flips, which acts
as an effective two-particle operator.

We obtain a time-evolution equation for the reduced density matrix of the
nuclear spin system ρ̂k by tracing out the electron spin degrees of freedom from
equation (3.29) to second-order in Av0,

dρ̂k(t)

dt
= Tre

{
−i
[
Ĥ ′(t), ρ̂0

]
− −

∫ t

−∞

[
Ĥ ′(t),

[
Ĥ ′(t′), ρ̂0

]
−

]
−dt
′
}
. (3.31)

We assume that the initial density matrix ρ0 can be separated by a tensor product
ρ̂0 = ρ̂e0 ⊗ ρ̂k0 , i.e. no coherence, such that

dρ̂k(t)

dt
= Tre

{
−i
[
Ĥ ′(t), ρ̂e0 ⊗ ρ̂k0

]
− −

∫ t

−∞

[
Ĥ ′(t),

[
Ĥ ′(t′), ρ̂e0 ⊗ ρ̂k0

]
−

]
−dt
′
}
.

(3.32)
However, tracing out the electron spin degrees of freedom introduces correlation
functions of the electron spin coordinates that enter Ĥ ′I(t). One can see that, by
separating the unconnected and connected correlators, the correlators that are not
fully-connected2 are higher order iteration terms for the first-order perturbation
term. We collect the not fully-connected correlators in the first-order perturbation
term by substituting ρ̂k0 → ρ̂k(t). Thus we only keep the fully-connected correlators
resulting from the trace, which we indicate by a line over the trace symbol,

dρ̂k(t)

dt
= Tre

{
−i
[
Ĥ ′(t), ρ̂e0 ⊗ ρ̂k(t)

]
− −

∫ t

−∞

[
Ĥ ′(t),

[
Ĥ ′(t′), ρ̂e0 ⊗ ρ̂k(t)

]
−

]
−dt
′
}
.

(3.33)

We now insert the hyperfine Hamiltonian in equation (3.30) into the time-
evolution of the reduced density matrix and use that the trace over electron degrees

2For a correlation function 〈SS〉, the fully-connected correlator 〈SS〉c is given by 〈SS〉 =
〈SS〉c + 〈S〉 〈S〉.
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of freedom is invariant under cyclic permutation to obtain

dρ̂k(t)

dt
=− iAv0

∑
n

〈Ŝa(rn, t)〉
[
K̂a
n, ρ̂

k(t)
]
−

− (Av0)2
∑
n,m

∫ t

−∞
dt′
(
〈Ŝa(rn, t)Ŝ

b(rm, t
′)〉c K̂

a
nK̂

b
mρ̂

k(t)

− 〈Ŝb(rm, t)Ŝa(rn, t
′)〉c K̂

a
nρ̂

k(t)K̂b
m − 〈Ŝa(rn, t)Ŝ

b(rm, t
′)〉c K̂

b
mρ̂

k(t)K̂a
n

+ 〈Ŝb(rm, t)Ŝa(rn, t
′)〉c ρ̂

k(t)K̂b
mK̂

a
n

)
(3.34)

dρ̂k(t)

dt
=− iAv0

∑
n

〈Ŝa(rn, t)〉
[
K̂a
n, ρ̂

k(t)
]
−

− (Av0)2
∑
n,m

∫ t

−∞
dt′
(
〈Ŝa(rn, t)Ŝ

b(rm, t
′)〉c

[
K̂a
n, K̂

b
mρ̂

k(t)
]
−

− 〈Ŝb(rm, t)Ŝa(rn, t
′)〉c

[
K̂a
n, ρ̂

k(t)K̂b
m

]
−

)
(3.35)

with 〈· · ·〉 = Tre{· · · ρ̂e0} being the expectation value and 〈· · ·〉c = Tre{· · · ρ̂e0} being
the expectation value for the fully connected terms.

We have so far obtained an expression for the time-evolution of the reduced
nuclear density matrix with the hyperfine Hamiltonian as perturbation. To ob-
tain the dynamics of the averaged nuclear spins we we investigate the following
expectation value:

d 〈K̂a
n〉

dt
= Trk{K̂a

n

dρ̂k(t)

dt
}. (3.36)

We set K = 1
2 for simplicity such that we can use the product relation for spin- 1

2

particles:3 K̂a
nK̂

b
m = δnm( i2ε

abcK̂c
n + 1

4δ
ab), where εabc is the Levi-Civita symbol.

By inserting equation (3.35) into equation (3.36) we find that the first term reads

d 〈K̂a
n〉

dt

(1)

= Trk{K̂a
n

dρ̂k(t)

dt
}(1) = −iAv0

∑
m

〈Ŝb(rm, t)〉Trk{K̂a
n[K̂b

m, ρ̂
k(t)]−}

= −iAv0

∑
n

〈Ŝb(rm, t)〉Trk{[K̂a
n, K̂

b
m]−ρ̂

k(t)}

= εabcSbn 〈K̂c
n〉 (3.37)

where we defined Sbn = Av0 〈Ŝb(rn, t)〉, and used that the trace is invariant under
cyclic permutation. This term describes the first-order effects of the hyperfine
interactions, i.e. the precession of the nuclear spins around the average electron

3In reality all Ga and As nuclei have spin K = 3
2

, but this usually does not lead to qualitatively
different behavior.
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spin polarization. The second-order contributions from equation (3.36) read

d 〈K̂a
n〉

dt

(2)

= −(Av0)2
∑
m,l

∫ t

−∞
dt′ Trk

{
〈Ŝb(rm, t)Ŝc(rl, t′)〉c K̂

a
n

[
K̂b
m, K̂

c
l ρ̂
k(t)

]
−

− 〈Ŝc(rl, t)Ŝb(rm, t′)〉c K̂
a
n

[
K̂b
m, ρ̂

k(t)K̂c
l

]
−

}
. (3.38)

We define the correlation functions of the spin density as

Rabnm =

∫ t

−∞
dt′ 〈[Ŝa(rn, t), Ŝ

b(rm, t
′)]+〉c , (3.39)

χabnm = −i
∫ t

−∞
dt′ 〈[Ŝa(rn, t), Ŝ

b(rm, t
′)]−〉c , (3.40)

and we will later see that only the local correlation functions contribute, where
Rabnn are the classical fluctuations of the electron spin density at rn, and χabnn is
the stationary susceptibility of the electron spins, i.e. the linear response of the
spin density Sa(rn) due to a constant local magnetic field Bb(rn). The connection
between the correlation function in equation (3.40) and the local susceptibility
is shown in Appendix B. We now substitute the expectation values appearing
in equation (3.38) with linear combinations of the correlation functions above to
obtain

d 〈K̂a
n〉

dt

(2)

= − (Av0)2

2

[
(Rbcml + iχbcml)Trk

{[
K̂a
n, K̂

b
m

]
−K̂

c
l ρ̂
k(t)

}
− (Rbcml − iχbcml)Trk

{
K̂c
l

[
K̂a
n, K̂

b
m

]
−ρ̂

k(t)
}]
. (3.41)

By writing out the commutators, using the product relation of spin- 1
2 particles,

and defining the nuclear spin expectation values as 〈· · ·〉 = Trk{· · · ρ̂k} we get

d 〈K̂a
n〉

dt

(2)

= − (Av0)2

2

(
Rbcml 〈[[K̂a

n, K̂
b
m]−, K̂

c
l ]−〉+ iχbcml 〈[[K̂a

n, K̂
b
m]−, K̂

c
l ]+〉

)
= − (Av0)2

2

(
Rbcnn 〈δbcK̂a

n − δacK̂b
n〉 − χbcnl 〈εabd[K̂d

n, K̂
c
l ]+〉

)
=

(Av0)2

2

(
Rbann 〈K̂b

n〉 −Rbbnn 〈K̂a
n〉+

1

2
εabcχbcnn

)
. (3.42)

These terms contain the second-order effects of the hyperfine interactions and de-
scribe the resulting nuclear pumping in terms of the local fluctuations and suscept-
ibilities of the electron spins.

Collecting the first and second-order terms gives an expression for the pumping
of the nuclear spins caused by the non-equilibrium spin dynamics,

d 〈K̂a〉
dt

= εabcSb 〈K̂c〉+
(Av0)2

2

(
Rba 〈K̂b〉 −Rbb 〈K̂a〉+

1

2
εabcχbc

)
, (3.43)
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where we omitted the subscript n. Recall that this is the pumping of nuclear spin
at the point rn and thus has the unit 1

s . The first term contains the effect of the
nuclear spins precessing around the average electron spin polarization and is thus
linear in the hyperfine coupling Av0. The second term contains the contributions
from the stationary susceptibilities and fluctuations of the electron density, χab

and Rab, respectively, and is of second-order in the hyperfine coupling Av0. The
contribution from the electron spin susceptibilities determine the pumping of the
nuclear spin, whereas the fluctuations of the electron spin density contribute to the
relaxation of the nuclear spin towards 〈K̂〉 = 0. We rewrite the expression for the
nuclear spin dynamics to better separate the different contributions,

d 〈K̂a〉
dt

= εabcSb 〈K̂c
n〉+

1

2
Qab 〈K̂b〉+

1

4
P a, (3.44)

where
Qab = (Av0)2(δabRcc −Rba), (3.45)

P a = (Av0)2εabcχbc, (3.46)

is the contribution from the electron spin fluctuations and stationary susceptibil-
ities, respectively. As previously mentioned, the repeated superscripts imply the
Einstein summation convention.

This concludes the derivation of the nuclear spin pumping formalism. We will
use this formalism to calculate the nuclear spin pumping in a one-dimensional
continuous system as a proof of principle calculation in chapter 4, and in the
persistent spin helix in chapter 5.



Chapter 4

Proof of principle

In this chapter we will show how one can calculate the nuclear spin pumping by
using the formalism from chapter 3 on a system with a diffusion equation similar
to what we obtained in chapter 2, which has previously never been done. The
motivation behind the proof of principle calculation is to get a better understanding
of the formalism, and to show that it actually works, before using it to calculate
the nuclear spin pumping in the PSH setup. We will focus on the hyperfine-
induced spin pumping by only including the pumping terms (susceptibilities) in
our pumping equation, and incorporate the contribution from the electron spin
fluctuations to relaxation of the nuclear spin polarization into a phenomenological
rate 1/τk, which can have contributions from many other origins as well.

We investigate a simple one dimensional setup, where the dynamics of the
electron spins are described by the diffusion equation

∂S(x)

∂t
= D

∂2S(x)

∂x2
− 1

τe
S(x) +Qδ(x) +Bẑ × S(x) (4.1)

where D is the diffusion constant, τe is the electron spin relaxation rate, B is an
extrinsic, uniform magnetic field in the z-direction, and Q is a constant source of
injected spin polarization at x = 0. The problem is effectively one-dimensional,
however, the spin density S is three-dimensional with units m−3.

There are both similarities and differences when comparing this system to the
PSH structure. They are similar in the sense that they are both only dependent
on one coordinate, and that they both contain diffusive spin transport and spin
relaxation. The PSH, however, relies on having significant spin-orbit interaction,
which is absent in equation (4.1). Our motivation behind the spin injection setup
is to make it similar to what one would investigate experimentally, e.g. by optical
injection of spin or a semiconductor-ferromagnet junction. Depending on choice of
spin injection method, one gets a factor 2 difference for systems that only allow
diffusive spin transport in one direction compared to systems with diffusive spin
transport in both directions. We will use the same spin injection source when
calculating the nuclear pumping in the PSH in chapter 5, which is similar to the
setup investigated experimentally by Walser et al. [25].

29
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In order obtain an expression for the nuclear spin pumping in our system we
need to calculate the local magnetic susceptibilities χab(x), i.e. the electron spins’
linear response to a perturbative, local magnetic field B′b(x). To find the effect of
the perturbative magnetic field we first calculate the steady-state solution of the
unperturbed diffusion equation (4.1). We then add a perturbative magnetic field
term B′(x)× S(x) to the diffusion equation and calculate the first-order response
to the perturbation. The difference caused by the perturbative magnetic field then
gives us the magnetic susceptibilities we need.

4.1 Steady-state solution

We start by calculating the steady-state solution to the unperturbed diffusion equa-
tion. The diffusion equation (4.1) in steady-state reads

D
∂2S(0)(x)

∂x2
− 1

τe
S(0)(x) +Qδ(x) +Bẑ × S(0)(x) = 0, (4.2)

where S(0)(x) is the steady-state solution. Due to the source term, this differential

equation is easiest solved in Fourier space. We use the relations F
[
∂nf(x)
∂xn

]
(k) =

(ik)nf̃(k) and F [δ(x)](k) = 1, where f̃(k) = F [f(x)](k) =
∫∞
−∞ dxf(x)e−ikx is the

Fourier transform of f(x), to obtain

−Dk2S̃
(0)

(k)− 1

τe
S̃

(0)
(k) +Q+BF [ẑ × S(0)(x)](k) = 0. (4.3)

This is a set of three coupled linear equations, one for each spatial component of
the spin density, with solution

S̃
(0)

(k) =


(Dk2+ 1

τe
)Qx−BQy

(Dk2+ 1
τe

)2+B2

(Dk2+ 1
τe

)Qy+BQx

(Dk2+ 1
τe

)2+B2

Qz
Dk2+ 1

τe

 . (4.4)

The steady-state solution in real space can then be obtained by taking the inverse
Fourier transform. This is trivial for the z-component, which reads

S(0)
z (x) =

√
τe

2
√
D
Qze

− |x|√
Dτe . (4.5)

This describes the spin density we would get for a system where the injected spin
is parallel to the z-axis. In such a system, there is no precession of spin density
into the xy-plane since the injected spin polarization is parallel to the external
magnetic field B. The spin density in equation (4.5) describes the diffusion and
decay of the injected spin, where

√
Dτe is the electron’s diffusion length, i.e. the

average length an electron travels in time τe, and
√

D
τe

is the electron’s diffusion
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velocity, i.e the electron’s average velocity, in the x-direction, in the time period τe
after injection of spin. The diffusion length decides how fast the spin polarization
decays, while the diffusion velocity, together with the injected spin density, decides
the spin density’s magnitude. The spin density is illustrated in figure 4.1c.

For the coupled x and y components we have to use a different approach. We

define a linear combination of the x- and y-component as Z̃(x) = S̃
(0)
y (x)+iS̃

(0)
x (x),

where S
(0)
x = Im(Z) and S

(0)
y = Re(Z), that reads

Z̃(k) =
Dk2 + 1

τe
− iB

(Dk2 + 1
τe

)2 +B2
(Qy + iQx)

=
1

Dk2 + 1
τe

+ iB
(Qy + iQx), (4.6)

This linear combination can then easily be inverse Fourier transformed, which gives

Z(x) =
(Qy + iQx)

2D
√

1
Dτe

+ iBD

e
−|x|

√
1

Dτe
+iBD

=

√
1
Dτe
− iBD (Qy + iQx)

2

√(
1
τe

)2

+B2

e
−|x|

√
1

Dτe
+iBD . (4.7)

We further simplify by defining a + ib =
√

1
Dτe

+ iBD and γ−1 = 2
√

( 1
τe

)2 +B2

such that

Z(x) = γ(a− ib)(Qy + iQx) e−|x|(a+ib)

= γ(a− ib)(Qy + iQx) (cos b|x| − i sin b|x|) e−a|x|. (4.8)

By then using the relations S
(0)
x = Im(Z) and S

(0)
y = Re(Z), we obtain the x- and

y-component of the spin density in real space

S(0)
x (x) = γ

[
cos b|x|(aQx − bQy)− sin b|x|(aQy + bQx)

]
e−a|x| (4.9)

S(0)
y (x) = γ

[
cos b|x|(aQy + bQx) + sin b|x|(aQx − bQy)

]
e−a|x|. (4.10)

We compare these expressions, for the in-plane components of the spin density,
to the z-component in equation (4.5) to investigate the effect the external magnetic
field has on the electron spin density. We here see that a drives the diffusive
spin transport and b drives the precession of spin density in the xy-plane. By
investigating the expressions for a and b,

a =

√
1

Dτe
+
√

( 1
Dτe

)
2
+(BD )

2

2 b = sgn (B)

√
− 1
Dτe

+
√

( 1
Dτe

)
2
+(BD )

2

2
, (4.11)

one can see that a presents an effective renormalization of the inverse diffusion
length 1√

Dτe
due to the magnetic field, which reduces the diffusive spin transport
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for the in-plane components when compared to the z-component, and that b has the
same sign as B and arises as a consequence of the magnetic field. The magnitude
of spin polarization driven by a and b is determined by γa and γb, respectively.

To further investigate the effects of the external magnetic field on the spin
density, we look at the special case of Q||x̂. The in-plane components of the spin
density then read

S(0)
x (x) = γ (cos b|x|Qxa− sin b|x|Qxb) e−a|x| (4.12)

S(0)
y (x) = γ (cos b|x|Qxb+ sin b|x|Qxa) e−a|x|, (4.13)

and is illustrated in figure 4.1a and 4.1b, respectively. We here see that in the
absence of a magnetic field, i.e. B = 0, we get the same solution as for the z-
component above, as expected. Hence, for B = 0 the three spin components
decouple and take the same for as equation (4.5).

To see how the electron spin’s lifetime τe affects the spin density we investigate
the large τe limit, i.e. τe →∞. In this limit the diffusion length

√
Dτe →∞, which

effectively removes the spatial damping of the spin density. Also, the diffusion
velocity

√
τe
D → ∞ which leads to an infinite build up of spin polarization. This

is caused by the constant injection of spin polarization Q in the absence of spin
relaxation.

4.2 Steady-state solution of the perturbed system

We now add the perturbative magnetic field term B′×S(x) to the diffusion equa-
tion. Adding this term introduces higher powers of B′ in the solution. Since we
only need the linear response to B′ to find the susceptibilities we substitute S(x)

with the B′-independent spin density S(0)(x). The spin diffusion equation with
the perturbative magnetic field then reads

∂S(x)

∂t
= D

∂2S(x)

∂x2
+Qδ(x)− 1

τe
S(x) +Bẑ × S(x) +B′ × S(0)(x). (4.14)

We investigate the diffusion equation at steady-state, and define Q′(x) = Qδ(x) +

B′ × S(0)(x), which gives

D
∂2S(1)(x)

∂x2
− 1

τe
S(1)(x) +Bẑ × S(1)(x) +Q′(x) = 0, (4.15)

where S(1)(x) is the steady-state solution to the perturbed diffusion equation. The
only difference between this differential equation and the one solved in section 5.1
is that this one contains a continuous source instead of a point source. Since we
have already solved the differential equation with a point source, we use a Green
function to solve the differential equation with a continuous source.

A requirement for using the Green function approach is that Q′(x) has be zero

on its boundaries, which is satisfied for Q′(x), since limx→±∞ S
(0)(x) = 0. We
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Figure 4.1: a, b, Illustration of the steady-state solution and its dependence on
the magnetic field B for a constant source Qx = Q0 for the x- and y-component
respectively. c, Illustration of the steady state solution for a constant source Qz =
Q0. The spin density is independent of B since S||B.
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define a linear differential operator L such that

LS(1)(x) = −D∂
2S(1)(x)

∂x2
+

1

τe
S(1)(x)−Bẑ × S(1)(x) = Q′(x), (4.16)

and the Green function G(x, x′) as a function satisfying

LG(x, x′) = δ(x− x′), (4.17)

i.e. the system’s response to a point source at x = x′ with weight 1. To find the
relation between Q′(x) and the Green function we express the continuous source
as an integral over an infinite number of point sources,

Q′(x) =

∫ ∞
−∞

Q′(x′)δ(x− x′)dx′

=

∫ ∞
−∞

Q′(x′)LG(x, x′)dx′

= L
∫ ∞
−∞

G(x, x′)Q′(x′)dx′, (4.18)

where we used that L only acts on x in the last step. We insert this relation into
equation (4.16) to obtain a Green function expression for the spin density,

S(1)(x) =

∫ ∞
−∞

G(x, x′)Q′(x′)dx′, (4.19)

where the spin density is described by an infinite number of Green function re-
sponses to an infinite amount of point sources that define the continuous source
Q′(x).

We then follow the same approach for the unperturbed spin density to find the
point source Qδ(x′) expressed in terms of G(x, x′):

Qδ(x) =

∫ ∞
−∞

Qδ(x′)δ(x− x′)dx′

=

∫ ∞
−∞

Qδ(x′)LG(x, x′)dx′

= LQG(x, 0), (4.20)

which gives us the steady-state solution for the unperturbed system expressed as
a Green function response,

S(0)(x) = QG(x, 0). (4.21)

Since the perturbed and unperturbed systems have the same differential op-
erator L, their Green functions have to be equal, as stated by equation (4.17).
Equation (4.17) also states that the Green function is only dependent on the dis-
tance between x and x′, i.e. G(x, x′) ≡ G(x − x′). By comparing the Green
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function expressions for S(1)(x) and S(0)(x), we see that one can obtain S(1)(x)

from S(0)(x) by substituting Q → Q′(x′) and x → x − x′, and integrate over x′.
This gives the steady-state solution to the perturbed diffusion equation,

S(1)(x) =

∫ ∞
−∞

dx′

×

 γ
[{
Q′x(x′)a−Q′y(x′)b

}
cos bχ−

{
Q′y(x′)a+Q′x(x′)b

}
sin bχ

]
e−aχ

γ
[{
Q′y(x′)a+Q′x(x′)b

}
cos bχ+

{
Q′x(x′)a−Q′y(x′)b

}
sin bχ

]
e−aχ

Q′z(x′)
√
τe

2
√
D

e
− χ√

Dτe

 ,

(4.22)

where χ = |x−x′|. For the special case Q′(x′) = Qδ(x) we recover the unperturbed
solution S(0)(x), as expected.

4.3 Electron spin susceptibilities

In order to find the local electron spin susceptibilities we have to investigate the
difference in spin density caused by the perturbative magnetic field, i.e. δS(x) =

S(1)(x)−S(0)(x). By recalling that Q′(x) = Qδ(x) +B′×S(0)(x), we see that we

can obtain δS(x) from S(1)(x) by substituting Q′(x′) → Q′′(x′) = B′ × S(0)(x′),
giving

δS(x) =

∫ ∞
−∞

dx′

×

 γ
[{
Q′′x(x′)a−Q′′y(x′)b

}
cos bχ−

{
Q′′y(x′)a+Q′′x(x′)b

}
sin bχ

]
e−aχ

γ
[{
Q′′y(x′)a+Q′′x(x′)b

}
cos bχ+

{
Q′′x(x′)a−Q′′y(x′)b

}
sin bχ

]
e−aχ

Q′′z (x′)
√
τe

2
√
D

e
− χ√

Dτe

 .

(4.23)

From equation (B.3) in Appendix B we get an expression for δS(x, t) in terms of
the electron spin correlation functions, now with a uniform magnetic field B,

δSa(x, t) = −i
∫ t

dt′
∫
drBb 〈[Ŝa(x, t), Ŝb(x′, t′)]−〉

= lylz

∫
dx′Bbχab(x, x′) (4.24)

where la is the length of the 2DEG in the a-direction, and χab(x, x′) =

−i
∫ t
dt′ 〈[Ŝa(x, t), Ŝb(x′, t′)]〉 is an electron spin density correlation function. The

factor lylz is a result of the 3D spin density only being dependent on x. By com-
paring the two expressions for δS we see that the local correlation function χab(x),
i.e. the local susceptibilities, is obtained from equation (4.23) by omitting the dx′

integration, setting x′ = x, dividing by lylz, and finding the terms linear in Bb,
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giving

χxy(x) = γa
lylz

S
(0)
z (x) χyx(x) = − γa

lylz
S

(0)
z (x)

χzx(x) =
√
τe

2lylz
√
D
S

(0)
y (x) χxz(x) = − γ

lylz

(
aS

(0)
y (x) + γS

(0)
x (x)

)
χyz(x) = γ

lylz

(
aS

(0)
x (x)− bS(0)

y (x)
)

χzy(x) = −
√
τe

2lylz
√
D
S

(0)
x (x).

(4.25)

4.4 Nuclear spin pumping

We can now calculate the nuclear spin pumping caused by the local electron spin
susceptibilities by using equation (3.44). We incorporate the contribution from the
local electron spin fluctuations, Qab, in a phenomenological relaxation rate 1

τk
of

the nuclear spin polarization, which can have many sources, e.g. the coupling to
lattice vibrations. The equation of motion for the expectation value of the nuclear
spin then reads

d 〈Ka(x)〉
dt

=
1

4
(Av0)2εabcχbc − 1

τk
〈Ka(x)〉 , (4.26)

where l0 is the lattice constant in the one-dimensional system. By inserting the
local susceptibilities we obtained in section 4.3 we obtain

d 〈K(x)〉
dt

=
(Av0)2

4lylz

 γa+
√
τe

2
√
D

−γb 0

γb γa+
√
τe

2
√
D

0

0 0 2γa

S(0)(x)− 1

τk
〈K(x)〉 .

(4.27)
The pumping term origins from the second-order hyperfine interaction, which can

be seen from the prefactor (Av0)2

4 . The matrix in equation (4.27) describes how the
nuclear spin polarization responds to the presence of the electron spin polarization.
The matrix elements determine the magnitude of the spin pumping, and are de-
pendent on the electron spin’s lifetime and diffusion constant, and on the external
magnetic field. The off-diagonal elements arise due to the external magnetic field
in the z-direction, that couples the in-plane components of the electron and nuclear
spin polarization. For the diagonal elements, the z-component is slightly smaller
than the x and y components for any B 6= 0, as can be seen from

γa =

√
τe

2
√
D

1√
2

√√√√1 +

√
1 + (τeB)

2

1 + (τeB)2
. (4.28)

Following the arguments for γa and γb from section 4.1 we find that the matrix
becomes diagonal for B = 0. This makes the pumping term proportional to the
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electron spin density. Thus, in the absence of an external magnetic field, the nuclear
spin polarization K will always be proportional to S. The electrons experience
this nuclear spin polarization as an effective magnetic field B ∝ K, which is also
proportional to S. The relaxation term relaxes the nuclear spin polarization and
ensures that there exists a steady-state solution to the pumping equation with a
finite nuclear spin polarization.

To explain the nuclear spin pumping’s dependence on the lengths ly and lz, we
investigate the local electron spin correlation functions where they appear,

χab(x) = −i
∫
dt′ 〈[Ŝa(x, t), Ŝb(x, t′)]〉 . (4.29)

This expression describes correlations between the electron being at the point x at
time t and t′. The larger the system the more space is available for the electrons to
diffuse into. This makes it less likely that the electron’s path crosses x twice, which
reduces this local correlation function. Thus, even if the system is effectively one-
dimensional, the availability for electrons to diffuse into the y and z dimensions
reduces the local electron spin correlation functions, and hence also the nuclear
spin pumping.

We further investigate the case where only the nuclear spin polarization con-
tributes to B, since this is what we will investigate in chapter 5 for the PSH. We do
this by considering a setup where the initial electron spin polarization is injected in
the z-direction, with no external magnetic field. The electron spin density is then
given by equation (4.5), and the effective magnetic field is determined through the
hyperfine coupling B = A 〈K〉. Since the electron spin polarization only has a
z-component, the pumping of nuclear spin polarization caused by the electron spin
dynamics reads

d 〈Kz(x)〉
dt

=
(Av0)2

2lylz
γa S(0)

z (x)− 1

τk
〈Kz(x)〉 , (4.30)

which is, as expected, parallel to S. When the nuclear spin polarization grows, γa
becomes smaller, which leads to a decreasing pumping rate. This can be seen in
figure 4.2, where the nuclear spin pumping caused by the electron susceptibilities,
i.e. the first term in equation (4.30), and its dependence on the magnetic field
B arising from the nuclear spin polarization, is shown for a constant spin source
Qz = Q0. We investigate the steady-state solution of equation (4.30) in the limit
Bτe � 1. In this limit, the leading order terms in the Taylor expansion of γa read

γa ≈
√
τe

2
√
D

(
1− 3

8 (Bτe)
2
)
. Inserting this into the nuclear pumping expression (4.30)

gives

d 〈Kz(x)〉
dt

=
(Av0)2

2lylz

√
τe

2
√
D

(
1− 3

8
(A 〈Kz(x)〉 τe)2

)
S(0)
z (x)− 1

τk
〈Kz(x)〉 , (4.31)

with steady-state solution

〈Kz(x)〉 =
−32e

|x|√
Dτe + 2

√
162e

2|x|√
Dτe + 6ζ2

3Aτeζ
, (4.32)
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Figure 4.2: Illustration of the nuclear spin pumping caused by the electron spin
susceptibilities, and its dependence on the magnetic field B arising from to the
nuclear spin polarization, for a constant spin source Qz = Q0.

where ζ =
A3v20Q0τ

2
e τk

Dlylz
. An illustration of the solution is shown in figure 4.3, where

one can see that the magnitude of the spin polarization is dependent on the electron
and nuclear spin properties appearing in ζ. The spatial decay is different compared
to the one appearing in the electron spin density. This can be explained through
the γa expansion in equation (4.31), which increasingly reduces the nuclear spin
pumping the bigger the nuclear spin polarization is. This reduces the nuclear
spin pumping, and polarization, more the smaller the x, which flattens out the

exponential function appearing in the electron spin density S
(0)
z in the pumping

equation.
We evaluate the nuclear spin polarization at the point of electron spin injection,

i.e. 〈Kz(0)〉, in the limit of large spin injection, Q0 � Dlylz
A3v20τ

2
e τk

, to find an estimate

of the theoretical maximum nuclear spin polarization that can be obtained from
the nuclear spin pumping pumping caused by the non-equilibrium electron spin
dynamics. This is realized by setting ζ � 1 and x = 0 in equation (4.32), and gives
a nuclear spin polarization of

〈Kz(0)〉max
=

2
√

6

3Aτe
, (4.33)

which has the order of magnitude in a GaAs 2DEG, with A ∼ 100 µeV [34] and
τe ∼ 100 ps [38], of ∼ 0.10. An estimate for the order of magnitude of electron
spin injection Q0 needed to obtain 〈Kz(0)〉max

can be found by evaluating the scale
Dlylz

A3v20τ
2
e τk

.
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Figure 4.3: Illustration of the steady-state nuclear spin polarization in a system
with electron spin injection along the z-axis.

Since only the nuclear spin polarization contributes to B in our PSH setup,
which makes B parallel to S, we are not interested to further investigate equation
(4.27) for B non-parallel to S, i.e. the in-plane components of equation (4.27).

For the PSH we predicted that the nuclear spin polarization would affect the
electron spin polarization through a feedback cycle. We see that this is not the case
for our proof of principle setup with parallel electron and nuclear spin polarization
since Sz is independent of B. This is because only the anisotropic components of
the spin density couple to a parallel magnetic field, as we will see in chapter 5,
which is not present in our proof of principle setup. We hence have to evaluate a
changing S for the PSH in chapter 5, due to the feedback cycle. This is done by
always assuming that the electron spin density is in equilibrium, while the nuclear
spin polarization slowly changes, which is a consequence of the vastly different time
scales of the electron and nuclear spin dynamics.

We have now shown that we can use the formalism derived in chapter 3 to
calculate the nuclear spin pumping in a system described by a equation of motion
similar to what we derived for the PSH in chapter 2. In the next chapter we will
calculate the nuclear spin pumping in the PSH, and investigate how this affects the
electron spin structure through a feedback cycle.
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Chapter 5

Hyperfine interaction in the
PSH

In chapter 4 we calculated the nuclear spin pumping in a simple spin-injection setup.
By following the same approach, we will in this chapter calculate the nuclear spin
pumping in the PSH. As in chapter 4, we only consider the build up of nuclear spin
polarization caused by the electron spin’s magnetic susceptibilities. By then adding
the contribution from the nuclear spin polarization to the semi-classical equation of
motion from chapter 2, we calculate the feedback effects of the hyperfine interaction
in the PSH.

5.1 Nuclear spin pumping in the PSH

In chapter 2 we derived the following equation of motion for the electron spin
density in the persistent spin helix,

∂tS =

 D∇2 − γcd − γey 0 γswτ1Dq0∂x
0 D∇2 −Dq2

0 − γcd − γey 2Dq0∂y
−γswτ1Dq0∂x −2Dq0∂y D∇2 −Dq2

0 − 2γcd

S.
(5.1)

In order to calculate the nuclear spin pumping caused by the electron spin dynamics
we make some simplifications to the equation of motion above. Firstly we assume
that the spin density does not have an x-dependence, which is the case that has
been investigated experimentally [21][25], such that ∂xS = 0. This makes the
x-component of the spin density decouple from the y and z components. We
also assume that the relaxation of the electron spin components is governed by
a phenomenological isotropic relaxation rate 1/τe, which includes the Elliot-Yafet
mechanism, cubic Dresselhaus coupling, as well as other sources of relaxation. This
is done to make the problem simpler and this part of the description more general,
and because it would be näıve to assume that the Elliot-Yafet relaxation would be
the only effect that relax the spin density. To calculate the steady-state solution

41
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of the equation of motion we add a spin injection source, similar to the one we
investigated in chapter 4. For a three-dimensional PSH, the injected spin is in
the xz-plane. In a real system this source could be realized by a semiconductor-
ferromagnet junction, assumed that the sample width is small enough to ensure
uniform spin injection along the x-axis and no boundary effects. The electron spin
equation of motion then reads

∂tS(y) =

 D∂2
y − 1

τe
0 0

0 D∂2
y −Dq2

0 − 1
τe

2Dq0∂y
0 −2Dq0∂y D∂2

y −Dq2
0 − 1

τe

S(y) +Qδ(y).

(5.2)
To obtain an expression for the nuclear spin pumping in the PSH we need to

calculate the local magnetic susceptibilities of the electron spin. This is obtained
through a similar approach as we followed in chapter 4, i.e. we 1) calculate the
steady-state solution of the electron spin equation of motion, 2) add a perturbative
magnetic field and calculate the new steady-state solution, 3) obtain the susceptib-
ilities from the difference in spin polarization caused by the perturbative magnetic
field.

5.1.1 Steady-state solution

As in chapter 4, we calculate the steady-state solution of equation (5.2) in Four-
ier space. By evaluating equation (5.2) at steady-state, and taking the Fourier
transform, we obtain −Dk2

y − 1
τe

0 0

0 −Dk2
y −Dq2

0 − 1
τe

2iDq0ky
0 −2iDq0ky −Dk2

y −Dq2
0 − 1

τe

 S̃(0)
(ky) +Q = 0,

(5.3)

where ky is the y-component of the momentum vector, and S̃
(0)

is the Fourier
transformed steady-state spin density. Since the x-component of the spin density
is decoupled from the y and z components, we first solve for the x-component,
before solving for the coupled y and z components.

The x-component is obtained by simply taking the inverse Fourier transform of

S̃
(0)
x , which gives

S(0)
x (y) =

√
τe

2
√
D
Qx e

− |y|√
Dτe . (5.4)

To solve for the coupled y and z components, we first solve for the Fourier trans-
formed y and z components in equation (5.3), giving

S̃(0)
y (ky) =

D
(
2iq0kyQz + (k2

y + q2
0)Qy

)
+ 1

τe
Qy(

1
τe

+D(ky − q0)2
)(

1
τe

+D(ky + q0)2
) (5.5)

S̃(0)
z (ky) =

D
(
−2iq0kyQy + (k2

y + q2
0)Qz

)
+ 1

τe
Qz(

1
τe

+D(ky − q0)2
)(

1
τe

+D(ky + q0)2
) . (5.6)
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Since we can not easily calculate the inverse Fourier transform of these expressions,

we define linear combinations of the two components as S̃
(0)
+ = S̃

(0)
y + iS̃

(0)
z and

S̃
(0)
− = S̃

(0)
y − iS̃(0)

z , such that S
(0)
y = 1

2

(
S

(0)
− + S

(0)
+

)
and S

(0)
z = i

2

(
S

(0)
− − S

(0)
+

)
.

Inserting the expressions for S̃
(0)
y and S̃

(0)
z above gives

S̃
(0)
+ (ky) =

Qy + iQz
1
τe

+D(ky + q0)2
(5.7)

S̃
(0)
− (ky) =

Qy − iQz
1
τe

+D(ky − q0)2
. (5.8)

These expressions can easily be Fourier transformed by shifting the transformation
variable ky → ky ± q0, giving

S
(0)
+ (y) =

√
τe

2
√
D

e
− |y|√

Dτe (cos q0y + i sin q0y) (Qy + iQz) (5.9)

S
(0)
− (y) =

√
τe

2
√
D

e
− |y|√

Dτe (cos q0y − i sin q0y) (Qy − iQz). (5.10)

The y and z components of the spin density in real space are then obtained by

using the relations S
(0)
y = 1

2

(
S

(0)
− + S

(0)
+

)
and S

(0)
z = i

2

(
S

(0)
− − S

(0)
+

)
,

S(0)
y (y) =

√
τe

2
√
D

(Qy cos q0y −Qz sin q0y) e
− |y|√

Dτe (5.11)

S(0)
z (y) =

√
τe

2
√
D

(Qz cos q0y +Qy sin q0y) e
− |y|√

Dτe , (5.12)

which describe a damped PSH structure. This can be seen by evaluating the
electron spin density with a spin injection strictly in the z-direction, i.e. Qz = Q0,
which gives the PSH we obtained in chapter 2, and that was investigated by Walser
et al. [25].

The x-component of the spin density in equation (5.4) describes the damping of
the x-component of the injected spin. The y and z components of the spin density
is given in equation (5.11) and (5.12), respectively. One can here see the precession
of the injected spin as a function of y caused by the intrinsic spin-orbit field aligned
with the x-axis.

In the next section we add a perturbative magnetic field to the PSH setup
and calculate the new steady-state solution. We can then, by evaluating the dif-
ference in the spin density caused by the perturbation, obtain the local magnetic
susceptibilities we need to calculate the nuclear spin pumping in the PSH.

5.1.2 Perturbed steady-state solution

We now add a perturbative magnetic field term B × S(0)(y) to the equation of
motion (5.2),

∂tS(y) = D̂S(y) +Qδ(y) +B × S(0)(y) (5.13)
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where D̂ is the diffusion matrix as given in equation (5.2). As in chapter 4, we

define a new source Q′(y) = Qδ(y) + B × S(0)(y) such that we can obtain the
perturbed steady-state solution from the unperturbed solution through our Green
function approach. By using our result from section 4.2 we find that by substituting
Qδ(y)→ Q′(y) and y → y − y′, and integrating over dy′, we obtain the perturbed
spin density

Sx(y) =

√
τe

2
√
D

∫
dy′ Q′x(y′) e

− |y−y
′|√

Dτe (5.14)

Sy(y) =

√
τe

2
√
D

∫
dy′

{
Q′y(y′) cos q0(y − y′)−Q′z(y′) sin q0(y − y′)

}
e
− |y−y

′|√
Dτe (5.15)

Sz(y) =

√
τe

2
√
D

∫
dy′

{
Q′z(y

′) cos q0(y− y′) +Q′y(y′) sin q0(y− y′)
}
e
− |y−y

′|√
Dτe . (5.16)

We can now find the electron spin’s susceptibilities by investigating the spin density
difference caused by the perturbative magnetic field.

5.1.3 Susceptibilities

The difference in spin density δS(y), caused by the perturbative magnetic field, is

obtained by substituting Q′(y)→ B × S(0)(y) in equation (5.14)-(5.16), giving

δSx =

√
τe

2
√
D

∫
dy′e

− |y−y
′|√

Dτe (ByS
(0)
z −BzS(0)

y ) (5.17)

δSy =

√
τe

2
√
D

∫
dy′e

− |y−y
′|√

Dτe

{
(BzS

(0)
x −BxS(0)

z ) cos q0(y − y′)

−(BxS
(0)
y −ByS(0)

x ) sin q0(y − y′)
}

(5.18)

δSz =

√
τe

2
√
D

∫
dy′e

− |y−y
′|√

Dτe

{
(BxS

(0)
y −ByS(0)

x ) cos q0(y − y′)

+(BzS
(0)
x −BxS(0)

z ) sin q0(y − y′)
}
. (5.19)

Following the argumentation from section 4.3, we obtain the local electron spin
susceptibility χab(y) by omitting the dy′ integration, setting y′ = y, dividing by
lylz, and finding the terms linear in Bb, giving

χxy(y) =
√
τe

2lylz
√
D
S

(0)
z χyx(y) = −

√
τe

2lylz
√
D
S

(0)
z

χzx(y) =
√
τe

2lylz
√
D
S

(0)
y χxz(y) = −

√
τe

2lylz
√
D
S

(0)
y

χyz(y) =
√
τe

2lylz
√
D
S

(0)
x χzy(y) = −

√
τe

2lylz
√
D
S

(0)
x .

(5.20)
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5.1.4 Nuclear spin pumping

We can now obtain the nuclear spin pumping in the PSH by using equation (3.44).
Since we are only interested in the pumping that arises from the local magnetic
susceptibilities of the electron spins χab, we include the contributions from the
relaxation matrices Rab in a phenomenological relaxation rate of the nuclear spin
components τk, which may also contain other sources of relaxation. The hyperfine-
induced pumping of nuclear spin polarization in the PSH then reads

d 〈Ka(y)〉
dt

=
1

4
(Av0)2εabcχbc(y)− 1

τk
〈Ka(y)〉 . (5.21)

By inserting the susceptibilities above we find that the nuclear spin pumping in
the PSH reads

d 〈K(y)〉
dt

=
(Av0)2

4lylz

√
τe
D
S(0)(y)− 1

τk
〈K(y)〉 . (5.22)

We see that, as we expected from our calculation in chapter 4, the build up
of nuclear spin polarization is proportional to the electron spin density in the
absence of an external magnetic field. The magnitude of the nuclear spin pumping

is determined by hyperfine coupling, the electron’s diffusion velocity
√

D
τe

, the size

of the 2DEG, and the electron spin density
In the next section we will solve equation (5.22) in steady-state to obtain an

expression for the expectation value of the nuclear spin polarization in the PSH.
We will use this most general result to investigate the effect of 〈K〉 on a specific
contribution to spin relaxation, the cubic Dresselhaus interaction. This is done by
adding the effective magnetic field caused by 〈K〉 to the semi-classical equation of
motion from chapter 2, and derive a new diffusion equation for the electron spin
density. We then investigate the feedback effect between the electron and nuclear
spin polarization. Since the nuclear spin polarization described by equation (5.22)
has a similar structure to the Hartree-Fock field, we expect a similar result to what
Lüffe et al. [28] obtained for the PSH in the presence of Hartree-Fock interactions.

5.2 Electron spin diffusion equation

In the previous section we obtained an expression for the pumping of nuclear spin
polarization in the PSH. We will now evaluate the nuclear spin pumping at steady-
state to get an expression for the effective magnetic field experienced by the electron
spin. We then add the contribution from that effective magnetic field to the semi-
classical equation of motion from chapter 2, and derive a new diffusion equation
for the electron spin, which describes the feedback effect between the electron and
nuclear spin density. The setup we will use is slightly simplified when comparing to
chapter 2, in the sense that we neglect the contribution from the extrinsic spin-orbit
coupling with the impurity potential.

Because of the different dynamic time-scales of the electron and nuclear spin,
the electron spin density instantaneously reaches a new equilibrium configuration
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for an infinitesimal change in the nuclear spin polarization. However, because we
anticipate that the change in spin density caused by the hyperfine interaction is
small, i.e. δSHF � S, we use the nuclear spin pumping expression we get from
solving equation (5.22) in steady-state,

〈K(y)〉 =
(Av0)2

4lylz

√
τe
D
τkS(y). (5.23)

The effective magnetic field caused by the nuclear spin polarization is then obtained
by multiplying with the hyperfine coupling energy A, as can be seen from the
hyperfine Hamiltonian (3.4) in chapter 3, to get

B(y) = A 〈K(y)〉 =
A3v2

0

4lylz

√
τe
D
τkS(y) ≡ ηS(y). (5.24)

From chapter 4 we know that an isotropic spin density does not couple to a
parallel external magnetic field. Hence, we have to investigate the electron spin
dynamics in detail to understand how the electron spin density is affected by the
nuclear spin polarization. This is done by deriving a diffusion equation for the
electron spin density, like we did in chapter 2, which this time includes the effects
of the nuclear spin polarization in equation (5.23). When we calculated the nuclear
spin pumping in equation (5.23) we assumed isotropic relaxation of the spin density.
However, for the electron spin dynamics we will focus on the relaxation by the
cubic Dresselhaus terms to investigate how these are affected by the nuclear spin
polarization. We hence neglect other sources of relaxation, e.g. the Elliot-Yafet
relaxation.

5.2.1 Additional terms in the Boltzmann equation

To investigate the feedback effect between the electron and nuclear spin polariza-
tion, i.e. how the nuclear spin polarization, caused by the non-equilibrium electron
spin polarization, affects the electron spin polarization, we add a term

2sk ×B(r) (5.25)

to the semi-classical equation of motion from chapter 2, and derive a new diffusion
equation for the electron spin. The electron spin equation of motion then reads

∂tsk + v · ∂sk + 2sk × b(k) + 2sk ×B = Jk
imp., (5.26)

where we use a simplified expression for the electron-impurity interaction,

Jk
imp = −

∑
k′

Wkk′δ(εk′ − εk)∆sk, (5.27)

where we have set λ0 to zero because we want to focus the cubic Dresselhaus
interaction’s effect on the spin relaxation.
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As in chapter 2, we expand the electron spin density in terms of winding num-
bers,

sk =
∑

n=0,±1,±3

sn(k)einθ, (5.28)

with s0 = − 2π
m f
′(εk)S being the isotropic component, and sn = f ′(εk) kn

kn−1
F m

δkn

being the anisotropic component with winding number n. We will use a similar
approach as in chapter 2. By substituting the expanded spin density into the semi-
classical equation of motion (5.26) and integrating over θ we obtain a diffusion
equation for s0. We neglect the time-dependence of the anisotropic components
due to the different time-scales of the isotropic and anisotropic components, and
multiply the semi-classical equation of motion with γ(θ) ∈ {cosnθ, sinnθ}, n ∈
{1, 3}. Integrating over θ then gives the expressions for the anisotropic components
of winding number ±n that appear in the isotropic diffusion equation.

5.2.2 Spin diffusion equation

We insert the expanded spin density into the semi-classical Boltzmann equation
and integrate over θ to obtain a time-evolution equation for the isotropic spin
component,

∂ts0 = −v
2

(∂xsc + ∂yss)− sc × bc − ss × bs − sc3 × bc3 − ss3 × bs3, (5.29)

where we defined a new basis for the anisotropic spin components, scn = sn+s−n,
ssn = i(sn−s−n), and the spin-orbit field that couples to the respective anisotropic
components

bc = k(−α+ β′′)êy bs = k(α+ β′′)êx

bc3 = γ k
3

4 êy bs3 = γ k
3

4 êx.

(5.30)

This is identical to the isotropic diffusion equation obtained in chapter 2, except
from the missing Elliot-Yafet relaxation terms.

To make the isotropic diffusion equation self-consistent, we find steady-state
expressions for the anisotropic components appearing in it. We neglect the time-
evolution term due difference in dynamics between the isotropic and anisotropic
components. The anisotropic components are then obtained by multiplying the
semi-classical Boltzmann equation with γ(θ) ∈ {cosnθ, sinnθ}, n ∈ {1, 3} before
integrating over θ. For the winding number ±1 components we multiply with cos θ
and sin θ before integrating over θ, and find that

sc
τ1

= −v∂xs0 + 2bc × s0 + 2B × sc (5.31)

ss
τ1

= −v∂ys0 + 2bs × s0 + 2B × ss, (5.32)
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where τ1 = mni|v(0)|2 is the effective relaxation time of the winding number ±1
components of the spin density. We solve for sc and ss iteratively, and use that
B || s0, which gives

sc = τ̃1 {−v∂xs0 + 2bc × s0 − 2vτ1(B × ∂xs0)

+4τ1B1 × (bc × s0)− 4vτ2
1B(B · ∂xs0)

}
(5.33)

ss = τ̃1 {−v∂ys0 + 2bs × s0 − 2vτ1(B × ∂ys0)

+4τ1B1 × (bs × s0)− 4vτ2
1B(B · ∂ys0)

}
, (5.34)

with τ̃1 = τ1
1+(2Bτ1)2 , where B = |B|. For the anisotropic components of winding

number ±3 we multiply with cos 3θ and sin 3θ before integrating over θ, which gives

sc3
τ3

= 2bc3 × s0 + 2B × sc3 (5.35)

ss3
τ3

= 2bs3 × s0 + 2B × ss3, (5.36)

where τ3 = mni|v(0)|2 is the effective relaxation time of the winding number ±3
components of the spin density. Solving iteratively for sc3 and ss3 gives

sc3 = 2τ̃3 { bc3 × s0 + 2τ3B × (bc3 × s0)} (5.37)

ss3 = 2τ̃3 { bs3 × s0 + 2τ3B × (bs3 × s0)}, (5.38)

where τ̃3 = τ3
1+(2Bτ3)2 .

The electron spin diffusion equation is obtained by substituting the expressions
for the anisotropic spin components into the time-evolution expression for the iso-
tropic spin component, and integrating over k. We then evaluate the diffusion
equation for the PSH condition α = β′′, and use that S||B to obtain

∂tS = D̂S +H1 +H3 (5.39)

with

D̂ =

 D̃(∂2
x + ∂2

y)− γ̃cd 0 0

0 D̃(∂2
x + ∂2

y − q2
0)− γ̃cd 2D̃q0∂y

0 −2D̃q0∂y D̃(∂2
x + ∂2

y − q2
0)− 2γ̃cd

 ,

(5.40)

H1 =2D̃
[
τ1B × ∂2

xS + τ1B × ∂2
yS − ∂y {τ1B × (q0êx × S)}

+ 2∂x {τ1B(τ1B · ∂xS)}+ 2∂y {τ1B(τ1B · ∂yS)}+ q0êx × (∂yS × τ1B)

+ (τ1B · q0êx)(S × q0êx) + 2(τ1B · ∂yS)(τ1B × q0êx)
]
, (5.41)

and

H3 = −2γ̃cdτ3B ×

 Sx
Sy
2Sz

 , (5.42)
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where D̃ = 1
2v

2
F τ̃1 =

1
2 v

2
F τ1

1+(2Bτ1)2 is the renormalized diffusion constant, γ̃cd =
1
8γ

2k6F τ3
1+(2Bτ3)2 is the renormalized cubic Dresselhaus scattering rate, and q0 = 4mα

is the PSH wave vector. The full calculation, from the expressions for the isotropic
and anisotropic components, is given in appendix C. The obtained diffusion equa-
tion is similar to the expression obtained by Lüffe et al. [28] for a static Hartree-Fock
field parallel to the spin polarization profile, as we expected.

The first term in the diffusion equation (5.39) is identical to the one we derived
in chapter 2, except from the neglected spin-orbit coupling to the impurity poten-
tial, and that the diffusion constant D̃ and relaxation rate γ̃cd contain an additional
factor 1

1+(2Bτ)2 , where τ = τ1 = τ3, as a result of the nuclear spin polarization.

Since B is proportional to S, H1(3) contains terms that are non-linear in S, which
have their origin in the coupling of the nuclear spin polarization to the anisotropic
components of winding number ±1(±3) of the electron spin density. H1(3) con-

tains additional factors of τB compared to D̂S which assure the effect of Ĥ1(3) to

be small, and its contribution can be seen as a small deviation from ∂tS = D̂S.

5.3 Feedback effects in the PSH

We here investigate how the diffusion equation (5.39) affects two different PSH
setups. Firstly, we look at how an injected PSH changes with time to lowest order
in γ̃cd

Γ̃
, where Γ̃ is the DP relaxation rate. This is inspired by work done by [28], and

gives an idea of how the nuclear spin polarization is affecting the PSH structure.
Secondly, we investigate how the PSH is affected by equation (5.39) in a system
with spin injection along the x-axis. We choose the x-component of the PSH due to
its simpler spin profile (decay of injected spin polarization) compared to the helix
components, i.e. the y and z components, while still having the same prolonged
lifetime due to the intrinsic spin-orbit field.

5.3.1 Injection of a PSH

To investigate how the PSH is affected by the nuclear spin polarization we look at
how the diffusion equation (5.39) affects the PSH. To get a first estimate of this
effect we inject a PSH, similar to the one we discussed in chapter 2, for then to
turn on the effects of the hyperfine interaction. As mentioned above,H1(3) contains
additional factors of τB compared to the first term, which means that they can be
seen as a small deviation from ∂tS = D̂S. From the diagonal relaxation terms in
D̂ one can see that the PSH spin density is elliptical. Based on this, we inject the
following PSH,

S = S0

 0
− sin q0y

(1− δ) cos q0y

 , (5.43)

where δ is some offset from a circular spin polarization caused by the cubic Dressel-
haus interaction. By writing the effective magnetic field arising from the nuclear
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spin polarization as B = B S
|S| , and inserting this and the injected PSH (5.43) into

the diffusion equation (5.39), we find that with

δ =
γ̃cd

Γ̃

1

1 + 1
2 (τB)2

(5.44)

where Γ̃ = 4q2
0D̃ is the DP relaxation rate, the diffusion equation to lowest order

in γ̃cd
Γ̃

can be written as

∂tS = − S

τ̃PSH
+
S2x

τ2x
+
S3yz

τ3yz
(5.45)

with τ̃−1
PSH = 3

2 γ̃cd being the PSH relaxation rate,

S2x

τ2x
=

S0

3τ̃PSH
τB

(
1− 1

1 + 1
2 (τB)2

) sin 2q0y
0
0

 (5.46)

being the contribution from H3, and

S3yz

τ3yz
=

20

3τ̃PSH

(τB)2

1 + 1
2 (τB)2

 0
− sin 3q0y
cos 3q0y

 (5.47)

being the contribution from H1. The first term in equation (5.45) describes the
temporal decay of the spin helix. The two rightmost terms describe higher-order
harmonics, which is an additional effect of the isotropic spin components coupling
to the nuclear spin polarization.

From this we can see that the hyperfine interaction affects the PSH by in-
creasing the PSH lifetime, introducing higher-order harmonics, and giving rise to
a non-zero x-component. The increased lifetime is a result of the reduction in the
cubic Dressselhaus scattering rate γ̃cd = γcd

1+(2Bτ)2 < γcd. The higher-order har-

monics are a result of the anisotropic spin components coupling to the nuclear spin
polarization, where the non-zero x-component arise from the winding number ±3
anisotropic components. We have shown that the ±3 components give rise to the
cubic Dresselhaus relaxation rate. Hence, the driving of electron spin polarization
out of the yz-plane can be seen as an effect of the nuclear spin polarization coupling
to the cubic Dresselhaus spin-orbit coupling.

The solutions for the higher-order harmonics terms are smaller by factors γ̃cd
Γ̃

[28]. Hence, we write the diffusion equation (5.45) in the γ̃cd
Γ̃
� 1 limit as ∂tS =

− S
τ̃PSH

, which has the time-dependent solution

S(t) = Se
− t
τ̃PSH . (5.48)

This gives the primary effect of the hyperfine interaction in the PSH, which in-
creases the lifetime of the spin helix by reducing the cubic Dresselhaus relaxation
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rate. This effect is dependent on the magnitude of electron spin polarization, since
the electron spin polarization affects the magnetic field appearing in γ̃cd through
the nuclear spin pumping.

We calculate the theoretical maximum feedback effect we can get from equation
(5.48) by assuming that all nuclear spins are fully polarized. A 100 % nuclear spin
polarization corresponds to a magnetic field of ∼ 5 T in GaAs [34], which has a
g-factor of 0.44 [39]. The momentum relaxation time τ is approximately 1 ps in the
PSH [21]. This gives a reduction in the effective cubic Dresselhaus scattering rate
of γ̃max

cd ∼ 0.87γcd. Thus, the nuclear spin polarization can, in theory, maximum
increase the PSH lifetime by 15 %, when all nuclear spins are fully polarized. Figure
5.1 shows the time-dependent relaxation of S(t) for a nuclear spin polarization of
0, 50 and 100 %.

5.3.2 Spin injection along the x-axis

In the last subsection we looked at how the nuclear spin polarization affects an
injected PSH. Here, we investigate how the diffusion equation (5.39) affects the
PSH in a spin injection setup, similar to the setup we looked at in section 5.1. We
focus on the x-component of the PSH because it has a simpler structure than the
helix components, while still having the prolonged PSH lifetime. Due to its simpler
structure, of spatial decay of injected spin polarization, the x-component can be
investigated in more detail analytically, and may even be more useful for spintronic
applications. We assume here a spin injection setup with diffusive transport in
only one direction, which makes y ≥ 0, and doubles the magnitude of the spin

Figure 5.1: Time-dependence of an injected PSH, S(t), in a system with a nuclear
spin polarization of 0, 50 and 100 %. The prolonged lifetime for higher nuclear
polarizations shows how the feedback effect affects the PSH.
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polarizations compared to diffusive transport in both directions.
We investigate the feedback effect governed by equation (5.39) for a spin po-

larization strictly along the x-axis by inserting S||B||x̂ into equation (5.39), which
yields

∂tSx = D̃∂2
ySx − γ̃cdSx + 4D̃∂y

{
τ2B2

x∂ySx
}
, (5.49)

where the last term is the only non-zero contribution from H1. To get an estimate
for the effective magnetic field Bx appearing in equation (5.49) we first solve for
Sx in steady-state with the last term set equal zero, which gives

S(0)
x (y) = S0 e

−y
√
γ̃cd
D̃ , (5.50)

where we used the boundary condition Sx(0) = S0. This solution is used to get
an estimate for the effective magnetic field Bx experienced by the electrons in the
presence of nuclear spin polarization. As we showed in section 5.2, this field is
given by B(y) = ηS(y). Inserting this field into the last term in equation (5.49)
gives us a lowest-order correction,

∂tSx = D̃∂2
ySx − γ̃cdSx + 4D̃∂y

{
(τηS0)2e

−y
√
γ̃cd
D̃ ∂ySx

}
. (5.51)

This differential equation can, in steady-state, be written as a hypergeometric
differential equation,

z(1− z)∂2
ySx + {c− (a+ b+ 1)} ∂ySx − abSx = 0, (5.52)

with parameters a = − 1
2 , b = 1

2 , c = 0 and z = − 1
(2τηS0)2 e

2y
√
γ̃cd
D̃ . The hypergeo-

metric differential equation has six solutions. One of these solutions is finite and
physical, i.e., it decays to zero for y →∞. Since this solution also is negative and
imaginary, we multiply with i. This gives

Sx(y) = iz−b2F1(b+ 1, b, b+ 1− a, z−1), (5.53)

where 2F1 is the Gauss hypergeometric function. We normalize the spin density
by requiring that Sx(0) = S0, which yields

Sx(y) =
z−b2F1

(
b+ 1, b, b+ 1− a, z−1

)
2τη 2F1 (b+ 1, b, b+ 1− a,−(2τηS0)2)

= S0e
−y

√
γ̃cd
D̃

2F1

(
3
2 ,

1
2 , 2,−(2τηS0)2e

−2y
√
γ̃cd
D̃

)
2F1

(
3
2 ,

1
2 , 2,−(2τηS0)2

) . (5.54)

This gives the electron spin density for a PSH with hyperfine interactions and spin
injection along the x-axis.

The spin density in equation (5.54) is plotted in figure 5.2 for three magnitudes
of nuclear spin polarization τηS0 ∈ {0, 0.19, 0.50}. The figure shows howH1 affects
the electron spin density by reducing the spatial decay of spin polarization. We
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see that this effect is largest for small y, which is where the magnitude of nuclear
spin polarization is considerable. For large y the nuclear spin polarization vanishes,

and the spin density converges towards S
(0)
x . From equation (5.54) we can see that

increasing the spin polarization S0 should give the same effect as increasing the
hyperfine coupling η. Increasing the lifetime τ , however, does not have the same
effect since this also alters the the cubic Dresselhaus interaction that is ∝ τ .

Another advantage with the x-component of the PSH, in addition to the simpler
structure and the stabilizing effect of H1, is the absence of coupling to the y and
z components since H3 = 0. When we investigated the helix components of the
PSH in section 5.3.1 we observed that the cubic Dresselhaus interaction combined
with the nuclear spin polarization, i.e. H3, rotated the spin polarization out of the
yz-plane, into the x-component.

We investigate how H1 affects the spin density close to y = 0, since this is

where the feedback effect is largest. Because of our boundary condition, Sx → S
(0)
x

as y → 0. Thus, to estimate an effect of H1 close to y = 0 we calculate the

Figure 5.2: Feedback effect for the electron spin density in a setup with spin injec-
tion along the y-axis. The spin density is plotted for three different magnitudes of
nuclear spin polarization, τηs0 ∈ {0, 0.19, 0.50}. The plots show that the nuclear
spin polarization slows the decay of electron spin polarization for small x, which is
where the nuclear spin polarization is largest. The red graph shows the feedback
effect’s theoretical maximum, which is obtained with a 100 % polarization of nuclei
at y = 0.
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derivatives of Sx and S
(0)
x . The derivative of Sx at y = 0 reads

∂ySx(0) = −S0

√
γ̃cd

D̃

2F1

(
3
2 ,

3
2 , 2,−(2τηS0

)2
)

2F1

(
1
2 ,

3
2 , 2,−(2τηS0)2

) , (5.55)

which we expand in a Taylor series to second order in 2τηS0,

∂ySx(0) ≈ −S0

√
γ̃cd

D̃

(
1− 3

4
(2τηS0)2

)
. (5.56)

By comparing this to the derivative of S
(0)
x at y = 0, reading ∂yS

(0)
x (0) = −S0

√
γ̃cd
D̃

,

we see that H1 effectively changes the electron spin density by increasing the

diffusion length
√

D̃
γ̃cd
→
√

D̃
γ̃cd

(
1− 3(τηS0)2

)−1
. This has a stabilizing effect on

the spin density, as can be seen from the expression for S(0) in equation (5.50). To
find an estimate for the theoretical maximum feedback effect, we assume a 100 %
polarizaiton of nuclear spin at y = 0, i.e. ηS0 = B0 = 5 T. This gives a diffusion

length of ∼ 1.13
√

D̃
γ̃cd

, and τηS0 ∼ 0.19, which we plotted in figure 5.2. We can

here see that the change in spin density caused by the hyperfine interaction is
indeed small, which confirms our assumption from section 5.2



Chapter 6

Conclusion

Lüffe et al. [28] derived a diffusion equation for the persistent spin helix in the
presence of an effective Hartree-Fock field, which arises from the mean polarization
of the PSH itself, through electron-electron interactions. They predicted enhanced
PSH lifetimes due to the Hartree-Fock field, but also an altering of the spin struc-
ture due to higher-order harmonics. Näıvely, one expects the Hartree-Fock field
to have a similar structure to the effective field set up by a nuclear spin polariza-
tion that is created by the PSH, thus one could expect an enhanced PSH lifetime
due to the hyperfine interactions. This is what we want to investigate. In PSH
experiments, one has deliberately avoided the effects of hyperfine interaction by
modulating the sign of the spin injection. Thus, one could easily investigate the
hyperfine effects experimentally by simply allowing for nuclear spin build-up.

Following work done by Lüffe et al. [27] we rederived a semi-classical diffu-
sion equation for a GaAs 2DEG with Rashba and Dresselhaus intrinsic spin-orbit
coupling and electron-impurity scattering in chapter 2. Our starting point was a
Boltzmann equation for the electron spin polarization in a 2DEG. We then ex-
panded the momentum-dependent spin density in terms of winding numbers and
orders of momentum to capture the relevant frequencies, and derived an effect-
ive spin diffusion equation. From the 2DEG diffusion equation, we obtained the
PSH diffusion equation by investigating the limit of equal Rashba and Dresselhaus
coupling strengths. We further investigated the fully SU(2) symmetric PSH case,
i.e. no spin relaxation, where we obtained the persistent spin helix state in the
steady-state limit, as expected.

Nuclear spin pumping rates in semiconductor-based nanostructures has tradi-
tionally been calculated by balancing rate equations obtained from Fermi’s golden
rule. This procedure falls short for systems with complicated dynamics, such as
spin-orbit coupling. We thus rederived a formalism presented by Danon et al. to
calculate the nuclear spin pumping from non-equilibrium electron spin dynamics
in chapter 3. Using this formalism, one only needs to calculate the electron spin
susceptibilities and fluctuations in order to obtain the nuclear spin pumping up to
second order in the hyperfine interactions.

In chapter 4 we calculated the nuclear spin pumping in a simpler, effectively
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one-dimensional spin-diffusion system as a warm up to the calculation of the nuclear
pumping in the PSH, and to show that the procedure actually works. We calculated
the nuclear spin pumping caused by the non-equilibrium electron spin dynamics,
including spin diffusion, relaxation, a constant point source of spin injection, and
an external magnetic field in the z-direction. We found that in the absence of an
external magnetic field, the nuclear spin pumping was proportional to the steady-
state electron spin distribution S(0)(x). In the presence of a magnetic field, the
z-component remained the same, while for the in-plane components, the nuclear

spin pumping precessed away from the steady-state solutions S
(0)
x (x) and S

(0)
y (x).

Finally, we investigated the case of parallel electron and nuclear spin polarization,
where we obtained a theoretical maximum order of magnitude for the nuclear spin
polarization of ∼ 10 % in the limit of large electron spin injection.

The nuclear spin pumping in the PSH was calculated in chapter 5 and was, as
expected, proportional to the electron spin polarization. By evaluating the nuclear
spin pumping in equilibrium with the nuclear spin relaxation rate we obtained an
expression for the effective magnetic field caused by the nuclear spin polarization.
To then investigate the feedback effect between the electron and nuclear spin po-
larization, we added an additional precession term to the semi-classical Boltzmann
equation from chapter 2. From this equation of motion, which included hyperfine
interaction, we derived a new diffusion equation for the electron spin density by
using a similar approach as in chapter 2.

We then investigated the effects of hyperfine interaction in the PSH by in-
vestigating two different PSH setups. We first looked at how an injected PSH
was affected by the hyperfine interaction in the γ̃cd

Γ̃
� 1 limit. We found that

the hyperfine interaction mainly increased the PSH lifetime, but also introduced
higher-order harmonics and rotated the spin density out of the yz-plane. The finite
x-component was a result of the coupling between the cubic Dresselhaus interac-
tion and the nuclear spin polarization. The stabilizing effect of the PSH lifetime
had a theoretical maximum at 15 %, for a nuclear polarization of 100 %. Secondly,
we looked at the PSH in a setup with injection of electron spin along the x-axis.
We found that the hyperfine interaction stabilized the PSH structure by increasing
the effective electron diffusion length. The effect was largest close to the injection
point, where the nuclear spin polarization was considerable. As an upper limit, we
found that for a nuclear polarization of 100 % the diffusion length was increased
by approximately 13 %.

The main contribution from the hyperfine interaction in the PSH results in an
effective stabilization of the electron spin polarization, just as expected, and as
observed by Lüffe et al. [28] for the Hartree-Fock field. This effect is considerable
when 100 % of the nuclei are polarized. However, from our results in chapter 4 we
know that the nuclear spin polarization arising due to the non-equilibrium electron
spin dynamics is smaller than than 100 %. For a nuclear spin polarization of ∼ 10
%, approximately what we found in chapter 4, the stabilizing effect is less than
0.15 %.
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Appendix A

Derivation of the spin
diffusion equation

This appendix contains the full derivation of the electron spin diffusion equation
derived in chapter 2, section 2.3. The derivation follows closely the derivation
presented in my project report [1].

Throughout the derivation we encounter a lot of angular integrals. We state
the most frequent angular integrals here:∫ 2π

0

dθ e±inθ = 0 (A.1)

∫ 2π

0

dθ cosnθe±imθ = πδn,m (A.2)

∫ 2π

0

dθ sinnθe±imθ = ±iπδn,m (A.3)

where n,m ∈ {1, 3}. This shows that only the terms in the spin-orbit field and
spin density with equal or opposite winding number give a non-zero contribution.

To solve the integration over k, we change the integration variable to εk, due to
the Fermi-Dirac distribution derivatives. To do so, we need the surface elements
dεk, which is obtained from the system’s quadratic dispersion relation, giving dk =
m
k dεk. Since we are assuming zero temperature, the Fermi-Dirac distribution takes
the form of a Heaviside function. Thus its derivative is a delta function, giving
f ′(εk) = −mk δ(kF − k). This gives us a relation for the k integration,∫ ∞

0

dεkk
nf ′(εk) = −knF , (A.4)

that we will use without explicit calculation, together with the surface element dεk,
during our derivation.
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Finally, we repeat the expansion of the spin density

sk =
∑

n=0,±1,±3

sk,ne
inθ (A.5)

with s0 = − 2π
m f
′(εk)S being the isotropic spin component, and sk,n =

f ′(εk) kn

kn−1
F m

δkn being the anisotropic spin components, and the new basis for the

anisotropic components that we defined in section 2.3,

δkc(c3) = (δk1(3) + δk−1(−3)) δks(s3) = i(δk1(3) − δk−1(−3)). (A.6)

This choice of basis is based on the winding number expansion of the spin density
in equation (2.20) and the θ integrals we encounter during the derivation.

A.1 Isotropic diffusion equation

To obtain the spin diffusion equation, we first derive a diffusion equation for the
isotropic spin density. We do this by inserting the spin density in equation (2.20)
into the semi-classical equation of motion (2.15) and integrating over k, i.e.∫

dk
{
∂tsk + v · ∂sk + 2sk × b(k)

}
=

∫
dk J imp

k . (A.7)

We will go through the derivation termwise, starting with the leftmost term.

Time-evolution For the leftmost term, including the time derivative of the spin
density, only the isotropic spin component contributes due to the θ integration.
This gives∫

dk ∂tsk =
1

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k∂t

(
−2π

m
f ′(εk)S +

∑
n=±1,±3

sk,ne
inθ

)

= − 1

m

∫ ∞
0

dk kf ′(εk)∂tS

= −
∫ ∞

0

dεk f
′(εk)∂tS

= ∂tS. (A.8)

This is the only term with time-evolution, thus we can easily obtain an isotropic
diffusion equation by calculating the contributions from rest of the terms.

Spin transport The second term, responsible for the spin polarization currents,
has an angular dependence through the velocity v. Thus only the anisotropic
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components with winding number ±1 contribute, giving∫
dk v · ∂sk

=
1

(2π)2

∫ ∞
0

dk

∫ 2π

0
dθ k

k

m

 cos θ

sin θ

0

 ·
 ∂x

∂y
∂z


−2π

m
f ′(εk)S +

∑
n=±1,±3

sk,ne
inθ


=

1

(2π)2

∫ ∞
0

dk
k2

m

∫ 2π

0
dθ (∂x cos θ + ∂y sin θ)f

′(εk)
k

m

∑
n=±1

δkne
inθ

=
1

4π

∫ ∞
0

dk
k3

m2
f ′(εk)

(
∂xδkc + ∂yδks

)
= − k2

F

4πm
(∂xδkc + ∂yδks) . (A.9)

Spin-orbit coupling The contribution from spin-orbit interaction has an an-
gular dependence through the spin-orbit fields, thus we only expect contributions
from the anisotropic components. The spin-orbit field couples the in-plane com-
ponents to the anisotropic z-component, and vice versa, as can be seen by writing
out the cross product sk × b(k) for an in-plane k,

2

∫
dk sk × b(k) =

2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k

 −sk,zby(k)
sk,zbx(k)

sk,xby(k)− sk,ybx(k)

 , (A.10)

where b(k) is the intrinsic spin-orbit field given in equation (2.4). The only terms
in the spin-orbit field and spin density that couple are the ones with equal winding
number. We will calculate the winding number±1 contributions first, then continue
with the winding number ±3 contributions.

The linear Dresselhaus and Rashba spin-orbit field couple to the winding num-
ber ±1 terms of the spin density. By writing out the expression in (· · · ) for the
winding number ±1 components we get

k2

m
f ′(εk)

∑
n=±1

 −δkn,zeinθby(k)

δkn,ze
inθbx(k)

δkn,xe
inθby(k)− δkn,yeinθbx(k)

 , (A.11)

where bx(k) = sin θ(β′ + α), and by(k) = cos θ(β′ − α). By performing the θ
integration we obtain

πk2

m
f ′(εk)

 −δkc,z(β′ − α)

δks,z(β
′ + α)

δkc,x(β′ − α)− δks,y(β′ + α)

 . (A.12)

Recall that the renormalized linear Dresselhaus coefficient β′ = β − γk2

4 has a
k-dependence. Thus when including the prefactor 2

(2π)2 and performing the integ-
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ration
∫∞

0
dk k

(
equation (A.12)

)
, we get

−k
2
F

2π

 −δkc,z(β′′ − α)
δks,z(β

′′ + α)
δkc,x(β′′ − α)− δks,y(β′′ + α)

 , (A.13)

where β′′ = β − γk2F
4 . This gives the contribution to the spin diffusion equation

from the linear Dresselhaus and Rasbha spin-orbit interaction

−αk
2
F

2π

 δkc,z
δks,z

−δkc,x − δks,y

 , (A.14)

−β
′′k2
F

2π

 −δkc,z
δks,z

δkc,x − δks,y

 , (A.15)

respectively.
The only contributions from the spin-orbit field that couple to the winding

number ±3 term of the spin density are the cubic Dresselhaus terms. We follow
the same approach as for the winding number ±1 contributions, and obtain an
expression for the expression in (· · · ) in equation (A.10) for the cubic Dresselhaus
term,

γk6

4k2
Fm

f ′(εk)
∑
n=±3

 δkn,ze
inθ cos 3θ

δkn,ze
inθ sin 3θ

−δkn,xeinθ cos 3θ − δkn,yeinθ sin 3θ

 . (A.16)

By integrating over θ, we get

γπk6

4k2
Fm

f ′(εk)

 δkc3,z
δks3,z

−δkc3,x − δks3,y

 . (A.17)

We now include the prefactor 2
(2π)2 and compute the integration∫∞

0
dk k

(
equation (A.17)

)
, giving the cubic Dresselhaus terms’ contribution

to the spin diffusion equation,

−γk
4
F

8π

 δkc3,z
δks3,z

−δkc3,x − δks3,y

 . (A.18)

Collecting the terms for the Rashba and the linear and cubic Dresselhaus contri-
bution we get the total contribution from the intrinsic spin-orbit coupling, reading

2

∫
dk sk × b(k) =− αk2

F

2π

 δkc,z
δks,z

−δkc,x − δks,y

− β′′k2
F

2π

 −δkc,z
δks,z

δkc,x − δks,y


− γk4

F

8π

 δkc3,z
δks3,z

−δkc3,x − δks3,y

 . (A.19)
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Electron-impurity interaction For the electron-impurity interactions we start
from equation (2.19), and perform the k′ sum in the continuous limit, i.e.

∑
k′ →

1
(2π)2

∫
dk′ = 1

(2π)2

∫ 2π

0
dθ′
∫∞

0
dk′k′. We start with the the left-most term, con-

taining the sk − sk′ spin dependence. Following the same argument as for the
electron-electron interactions, i.e. no angular dependence, and sk and sk′ having
the same isotropic density S, results in zero contribution.

The second term contains the cross product [k × k′]z = kxk
′
y − kyk

′
x =

kk′(cos θ sin θ′ − sin θ cos θ′). This cross product is the term’s only contribution
to θ, which, when integrated over a period, is zero.

The cross product in the third term reads [k × k′]2z = k2k′2(cos2 θ sin2 θ′ +
sin2 θ cos2 θ′ − 2 cos θ sin θ cos θ′ sin θ′). The anisotropic contribution is zero due
to θ integration of cos2 θeinθ, sin2 θeinθ, and cos θ sin θeinθ, where n ∈ {1, 3} and
θ ∈ {θ, θ′}. Thus, the electron-impurity interaction’s only contribution is

Jk
imp =

λ4
0

2(4π)3m

∫
dkdk′ Wkk′δ(εk − εk′)[k × k′]2z

 Sx(f ′(εk) + f ′(εk′))
Sy(f ′(εk) + f ′(εk′))
Sz(f

′(εk)− f ′(εk′))

 ,

(A.20)
where Wkk′ = 2πni|v(k′−k)|2, with v(k′−k) and ni being the impurity potential
and impurity concentration respectively. The only θ and θ′ dependence is in the
cross product [k×k′]2z and the impurity potential |v(k′−k)|2. The integrals average
out the contribution from the impurity potential to |v(0)|2, and the integrals over
the cross product read∫ 2π

0

dθdθ′(cos2 θ sin2 θ′ + sin2 θ cos2 θ′ + 2 cos θ sin θ cos θ′ sin θ′) = 2π2. (A.21)

We then preform the integration over k and k′:

Jk
imp =

λ4
0ni

32m
|v(0)|2

∫ ∞
0

dkdk′ k3k′3δ(εk − εk′)

 Sx(f ′(εk) + f ′(εk′))
Sy(f ′(εk) + f ′(εk′))
Sz(f

′(εk)− f ′(εk′))


=
λ4

0mni
32

|v(0)|2
∫ ∞

0

dεkdεk′ k
2k′2δ(εk − εk′)

 Sx(f ′(εk) + f ′(εk′))
Sy(f ′(εk) + f ′(εk′))
Sz(f

′(εk)− f ′(εk′))


=
λ4

0mni
16

|v(0)|2
∫ ∞

0

dεk k
4f ′(εk)

 Sx
Sy
0


= −

(
λ0kF

2

)4

τ−1

 Sx
Sy
0


= −γey

 Sx
Sy
0

 (A.22)
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where γey is the Elliott-Yafet relaxation rate where the electron spin precess a small
angle around the extrinsic spin-orbit field during impurity scattering, and is given
as

γey =

(
λ0kF

2

)4

τ−1 (A.23)

where τ−1 = mni|v(0)|2 is the inverse lifetime of the electron spin due to isotropic
scattering off a weak impurity potential v(q) in the Born-approximation.

A.1.1 Isotropic diffusion equation

By collecting the terms for the isotropic diffusion equation, i.e. equations (A.8),
(A.9), (A.19) and (A.22), we obtain

∂tS =
k2
F

2π

{
1

2m
(∂xδkc + ∂yδks) + α

 δkc,z
δks,z

−δkc,x − δks,y


+

(
β − γk2

F

4

) −δkc,z
δks,z

δkc,x − δks,y


+
γk2

F

4

 δkc3,z
δks3,z

−δkc3,x − δks3,y

}− γey
 Sx

Sy
0

 . (A.24)

We collect the isotropic components in a more compact notation to get

∂tSx =
k2
F

2π

{
1

2m
(∂xδkc,x + ∂yδks,x) + αδkc,z − βδkc,z

}
− γeySx (A.25)

∂tSy =
k2
F

2π

{
1

2m
(∂xδkc,y + ∂yδks,y) + αδks,z + βδks,z

}
− γeySy (A.26)

∂tSz =
k2
F

2π

{
1

2m
(∂xδkc,z + ∂yδks,z)−α(δkc,x + δks,y) + β(δkc,x − δks,y)

}
(A.27)

with δkc(s) = δkc(s) −
γk2F
4β (δkc(s) + δkc3(s3)) and δkc(s) = δkc(s) −

γk2F
4β (δkc(s) −

δkc3(s3)). We use this isotropic spin diffusion equation to obtain a spin diffusion
equation for the spin-orbit system we are evaluating, by finding steady-state ex-
pressions for the anisotropic components appearing in it.

A.2 Winding number ±1 components

To find the anisotropic components of winding number ±1, we multiply the semi-
classical diffusion equation (2.15) with cos θ and sin θ and integrate over k, i.e.∫

dk γ(θ)
{
v · ∂sk + 2sk × b(k)

}
=

∫
dk ξ(θ)J imp

k (A.28)

were ξ(θ) ∈ {cos θ, sin θ}. We go through the derivation using the same procedure
as with the isotropic diffusion equation, i.e. we start with the leftmost term.
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Spin transport The first term we investigate is responsible for the spin polariz-
ation currents. Here, only the isotropic component of the spin density contributes
due to the integration over θ. This gives

∫
dk cos θv · ∂sk = − 2π

(2π)2m

∫ 2π

0

dθ

∫ ∞
0

dk k2(∂x cos2 θ + ∂y cos θ sin θ)f ′(εk)S

= − 1

2m

∫ ∞
0

dk k2f ′(εk)∂xS

=
kF
2m

∂xS (A.29)

for γ(θ) = cos θ and, as can be seen from the expression above,

∫
dk sin θv · ∂sk =

kF
2m

∂yS (A.30)

for γ(θ) = sin θ.

Spin-orbit coupling The second term is responsible for the precession due to
the spin-orbit coupling. We here expect, as for the isotropic diffusion equation,
that the in-plane components couple to the z-component of the spin density, and
vice versa. When calculating the contribution for γ(θ) = cos θ, we get

2

∫
dk cos θsk × b(k)

=
2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k cos θ

 −sk,zby(k)
sk,zbx(k)

sk,xby(k)− sk,ybx(k)


=

2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k2 cos2 θ

 sk,z(α− β′)
0

−sk,x(α− β′)


= − 1

m

∫ ∞
0

dk k2f ′(εk)(α− β′)

 Sz
0
−Sx


= kF (α− β′′)

 Sz
0
−Sx

 , (A.31)
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and for γ(θ) = sin θ we get

2

∫
dk sin θsk × b(k)

=
2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k sin θ

 −sk,zby(k)
sk,zbx(k)

sk,xby(k)− sk,ybx(k)


=

2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk k2 sin2 θ

 0
sk,z(α+ β′)
−sk,y(α+ β′)


= − 1

m

∫ ∞
0

dk k2f ′(εk)(α+ β′)

 0
Sz
−Sy


= kF (α+ β′′)

 0
Sz
−Sy

 . (A.32)

Electron-impurity interaction The electron-impurity interaction gives three
contributions to the winding number ±1 anisotropic components. We calculate
them termwise, starting with the leftmost term. This term contains the first-
order interaction between the electrons and the impurity potential, and gives a
contribution

−
∫
dk

∫
dk′ cos θWkk′δ(εk − εk′)(sk − sk′)

= − 1

(2π)4

∫ 2π

0

dθdθ′
∫ ∞

0

dkdk′ kk′ cos θWkk′δ(εk − εk′)(sk − sk′)

= − 1

(2π)4

∫ 2π

0

dθdθ′
∫ ∞

0

dkdk′Wkk′δ(εk − εk′)f ′(εk) cos θ
k2k′

m

∑
n=±1

δkne
inθ

= − π

(2π)3

∫ ∞
0

dkdk′ Wkk′δ(εk − εk′)f ′(εk)
k2k′

m
δkc

=
1

4π
mni|v(0)|2kF δkc

=
kF
4πτ

δkc, (A.33)

for ξ(θ) = cos θ. For ξ(θ) = sin θ we get

−
∫
dk

∫
dk′ sin θWkk′δ(εk − εk′)(sk − sk′) =

kF
4πτ

δks, (A.34)

as can be seen by replacing cos θ with sin θ above.
The second contribution from the electron-impurity term gives rise to precession

due to extrinsic spin-orbit coupling with the impurity potential. This effect is
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similar to the Elliott-Yafet relaxation, but in lower orders of λ0. The ξ(θ) = cos θ
contribution reads

−
∫
dk

∫
dk′ cos θWkk′δ(εk − εk′ )

λ20
2

[k × k′]z

 −sk′,y

sk′,x

0



= −
1

(2π)4

∫ 2π

0
dθdθ′

∫ ∞
0

dkdk′ kk′ cos θWkk′δ(εk − εk′ )
λ20
2

[k × k′]z

 −sk′,y

sk′,x

0



= −
1

(2π)4

∫ 2π

0
dθdθ′

∫ ∞
0

dkdk′Wkk′δ(εk − εk′ )
λ20
2

cos2 θ sin θ′
k2k′3

m

∑
n=±1

 −δkn,y
δkn,x

0

 einθ
′

= −
π2

(2π)4

∫ ∞
0

dkdk′Wkk′δ(εk − εk′ )
λ20
2

k2k′3

m

 −δks,y
δks,x

0



=
λ20
16π

mni|v(0)|2k3F

 −δks,y
δks,x

0



=
γswkF

4π

 −δks,y
δks,x

0

 , (A.35)

where γsw =
(
λ0kF

2

)2 1
τ is the ”swapping” rate of the spin currents, where a gradient

in one of the in-plane spin components generates a current in the other in-plane
spin component. Performing the same calculation for ξ(θ) = sin θ, we get

−
∫
dk
∫
dk′ sin θWkk′δ(εk − εk′)λ

2
0

2 [k × k′]z

 −sk′,y

sk′,x

0

 = −γswkF4π

 −δkc,yδkc,x
0

 .

(A.36)

The third part of the electron-impurity term gives rise to the Elliott-Yafet
relaxation, as observed for the isotropic diffusion equation. For ξ(θ) = cos θ we get

−
∫
dk

∫
dk′ cos θWkk′δ(εk − εk′)

λ4
0

16
[k × k′]2z

 sk,x + sk′,x

sk,y + sk′,y

sk,z − sk′,z


= − 1

(2π)4

∫ 2π

0
dθdθ′

∫ ∞
0

dkdk′ kk′ cos θWkk′δ(εk − εk′)
λ4

0

16
[k × k′]2z

 sk,x + sk′,x

sk,y + sk′,y

sk,z − sk′,z

 ,

(A.37)



70 Appendix A. Derivation of the spin diffusion equation

where the angular integral yields∫ 2π

0
dθdθ′(cos3 θ sin2 θ′ + cos θ sin2 θ cos2 θ′ + 2 cos2 θ sin θ cos θ′ sin θ′)(sk,a ± sk′,a)

= f ′(εk)
π2

m
k δkc,a, (A.38)

where a ∈ {x, y, z}. By inserting the angular integral into equation (A.37) we
obtain

− π2

(2π)4m

∫ ∞
0

dkdk′ Wkk′δ(εk − εk′)
λ4

0

16
f ′(εk)k4k′3δkc

=
1

8π
mni|v(0)|2k5

F

λ4
0

16
δkc

=
γeykF

8π
δkc. (A.39)

Similar, for ξ(θ) = sin θ we get

−
∫
dk

∫
dk′ sin θWkk′δ(εk − εk′)

λ4
0

16
[k × k′]2z

 sk,x + sk′,x

sk,y + sk′,y

sk,z − sk′,z

 =
γeykF

8π
δks.

(A.40)
We point out that this is, by a factor 1

2 , different from Lüffe’s derivation [27].
However, this is not a big deal, as we will later see, since the Elliott-Yafet relaxation
only contributes to the effective lifetime of the anisotropic components.

A.2.1 Anisotropic components of winding number ±1
We now collect the terms calculated for the winding number ±1 anisotropic
components of the spin density. This gives us two coupled equations, one for
ξ(θ) = cos θ, and one for ξ(θ) = sin θ. The coupling arise in the electron-impurity
interaction term responsible for the spin ”swapping”. By solving the two coupled
equations for the anisotropic components we get

δkc,x = −2πτ1 (Sx∂x + γswτ1Sy∂y) + 4πτ1mSz {α (1 + γswτ1)− β′′(1− γswτ1)}
m (γsw2τ12 − 1)

(A.41)

δkc,y = −2πτ1 (Sy∂x − γswτ1Sx∂y)

m (γsw2τ12 − 1)
(A.42)

δkc,z =
2πτ1
m

Sz∂x − 4πτ1Sx(α− β′′) (A.43)

δks,x = −2πτ1 (Sx∂y − γswτ1Sy∂x)

m (γsw2τ12 − 1)
(A.44)

δks,y = −2πτ1 (Sy∂y + γswτ1Sx∂x) + 4πτ1mSz {α(1 + γswτ1) + β′′(1− γswτ1)}
m (γsw2τ12 − 1)

(A.45)
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δks,z =
2πτ1
m

Sz∂y − 4πτ1Sy(α+ β′′), (A.46)

where τ1 =
(

1
τ +

γey
2 + 1

τe-e,1

)−1

is the effective relaxation time of the winding num-

ber ±1 anisotropic spin components. Because of the short relaxation time τ1, we as-
sume that (γswτ1)2 � 1. Thus we substitute the denominator

(
γsw

2τ1
2 − 1

)
→ −1,

and obtain

δkc,x =
2πτ1
m

(Sx∂x + γswτ1Sy∂y) + 4πτ1Sz {α (1 + γswτ1)− β′′(1− γswτ1)}
(A.47)

δkc,y =
2πτ1
m

(Sy∂x − γswτ1Sx∂y) (A.48)

δkc,z =
2πτ1
m

Sz∂x − 4πτ1Sx(α− β′′) (A.49)

δks,x =
2πτ1
m

(Sx∂y − γswτ1Sy∂x) (A.50)

δks,y =
2πτ1
m

(Sy∂y + γswτ1Sx∂x) + 4πτ1Sz {α(1 + γswτ1) + β′′(1− γswτ1)}
(A.51)

δks,z =
2πτ1
m

Sz∂y − 4πτ1Sy(α+ β′′). (A.52)

These equations show the anisotropic spin components of winding number ±1 as
functions of the isotropic spin density S, and will be used to obtain the spin
diffusion equation.

A.3 Winding number ±3 components

To obtain expressions for the anisotropic spin components of winding number ±3,
we multiply the semi-classical diffusion equation (2.15) with e±i3θ and integrate
over k, i.e. ∫

dk e±i3θ
{
v · ∂sk + 2sk × b(k)

}
=

∫
dk e±i3θJ imp

k . (A.53)

Spin transport The leftmost term is zero because v · ∂ only couples to the
winding number ±1 components of the spin density. This can be seen from the θ
integration, which reads

∫
dθ cos θe±i3θ = 0,

∫
dθ sin θe±i3θ = 0.
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Spin-orbit coupling The spin-orbit interaction term reads

2

∫
dke±i3θsk × b(k)

=
2

(2π)2

∫ 2π

0

dθ

∫ ∞
0

dk ke±i3θ

 −sk,zby(k)
sk,zbx(k)

sk,xby(k)− sk,ybx(k)


=

∫ 2π

0

dθ

∫ ∞
0

dk
γk4

4πm
f ′(εk)e±i3θ

 −Sz cos 3θ
−Sz sin 3θ

Sx cos 3θ + Sy sin 3θ


=

∫ ∞
0

dk
γk4

4m
f ′(εk)

 −Sz
∓iSz

Sx ± iSy


=
γk3

F

4

 Sz
±iSz

−Sx ∓ iSy

 . (A.54)

This gives, as for the isotropic and winding number ±1 anisotropic components, a
coupling between the in-plane components and the z-component of the spin density.

Electron-impurity interaction For the electron-impurity interaction, the
second term does not contribute because of the θ integration of e±i3θ. For the
first and third term, only the winding number ±3 component of the spin density
contributes, which gives

∫
dk

∫
dk′ e±i3θWkk′δ(εk − εk′)(sk′ − sk)

=
1

(2π)4

∫ 2π

0

dθdθ′
∫ ∞

0

dkdk′ kk′e±i3θWkk′δ(εk − εk′)(sk′ − sk)

= − 1

(2π)2

∫ ∞
0

dkdk′ Wkk′δ(εk − εk′)f ′(εk)
k4k′

k2
Fm

δk∓3

=
1

2π
mni|v(0)|2kF δk∓3

=
kF
2πτ

δk∓3, (A.55)
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for the first term, and

−
∫
dk′ e±i3θWkk′δ(εk − εk′)

λ4
0

16
[k × k′]2z

 sk,x + sk′,x

sk,y + sk′,y

sk,z − sk′,z


= − 1

(2π)4

∫ 2π

0
dθdθ′

∫ ∞
0

dkdk′ kk′e±i3θWkk′δ(εk − εk′)
λ4

0

16
[k × k′]2z

 sk,x + sk′,x

sk,y + sk′,y

sk,z − sk′,z


= − 2π2

(2π)4

∫ ∞
0

dkdk′ Wkk′δ(εk − εk′)
λ4

0

16
f ′(εk)

k6k′3

k2
Fm

δk∓3

=
1

4π
mni|v(0)|2

λ4
0

16
k5
F δk∓3

=
γeykF
4π

δk∓3. (A.56)

for the third term. We point out, as for the winding number ±1 anisotropic com-
ponents, that this is different by a factor 1

2 from Ref. [27].

A.3.1 Anisotropic components of winding number ±3
By collecting the terms for the winding number ±3 anisotropic spin components
in equation (A.54)-(A.56) we obtain

δk∓3 =
γπτ3k

2
F

2

 Sz
±iSz

−Sx ∓ iSy

 , (A.57)

where τ3 =
(

1
τ +

γey
2 + 1

τe-e,3

)−1

is the effective relaxation time of the winding

number ±3 spin components. We want to express the winding number ±3 com-
ponents as they appear in the diffusion equation for the isotropic component of the
spin density. This can be obtained by using the basis we defined above:

δkc3 = (δk3 + δk−3) δks3 = i(δk3 − δk−3), (A.58)

which gives

δkc3 = γπτ3k
2
F

 Sz
0
−Sx

 (A.59)

δks3 = γπτ3k
2
F

 0
Sz
−Sy

 . (A.60)
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Appendix B

Susceptibilities

We here show that the local correlation functions χabnn are identical to the
local magnetic susceptibilities to first order in the coupling Hamiltonian Ĥ(1) =∫
drBa(r)Ŝa(r, t) that couples the electron spin to an extrinsic magnetic field. Our

starting point will be the time-evolution equation for the density matrix,

dρ̂I(t)

dt
= −i[Ĥ(1)(r, t), ρ̂I(t)]−. (B.1)

By integrating from t0 to t we find that the difference between the perturbed density
matrix ρ̂(1)(t) and the unperturbed density matrix ρ̂(0) is given by

δρ̂(t) = −i
∫ t

dt′ [Ĥ(1)(r, t′), ρ̂(0)]−. (B.2)

The electron spin density is defined as Ŝa(r, t) =
∑
n Ŝ

a
nδ(r − rn). The change

in the expectation value of the spin density caused by the perturbation is thus
determined by the change in the density matrix alone, such that

δ 〈Ŝa(r, t)〉 = Tr
{
Ŝa(r, t)δρ̂(t)

}
= −i

∫ t

dt′Tr
{
Ŝa(r, t)[Ĥ(1)(r, t′), ρ̂(0)]−

}
= −i

∫ t

dt′
∫
dr′Bb(r′)Tr

{
Ŝa(r, t)[Ŝb(r′, t′), ρ̂(0)]−

}
= −i

∫ t

dt′
∫
dr′Bb(r′) 〈Ŝa(r, t)Ŝb(r′, t′)− Ŝb(r′, t′)Ŝa(r, t)〉

= −i
∫ t

dt′
∫
dr′Bb(r′) 〈[Ŝa(r, t), Ŝb(r′, t′)]−〉 (B.3)

where 〈Â〉 = Tr{Âρ̂(0)} is the expectation value of operator Â in a system described
by ρ̂(0). We write the local magnetic field as Bb(r) = βbδ(r−r′), in order to obtain
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the local susceptibilities, which gives

δ 〈Ŝa(r, t)〉 = −i
∫ t

dt′βb 〈[Ŝa(r, t), Ŝb(r, t′)]−〉 , (B.4)

where χab = −i
∫
dt′ 〈[Ŝa(r, t), Ŝb(r, t′)]−〉 is the local electron spin correlation

function we used in our derivation of the nuclear spin pumping formalism. We
have thus shown that the local magnetic susceptibility is identical to the correlation
function χab.



Appendix C

Calculation of spin diffusion
equation with hyperfine
interaction

This appendix includes the calculation of the electron spin diffusion equation in
section 5.2.2. We start form the already obtained expressions for the isotropic and
anisotropic spin components:

∂ts0 = −v
2

(∂xsc + ∂yss)− sc × bc − ss × bs − sc3 × bc3 − ss3 × bs3 (C.1)

sc = τ̃1

{
−v∂xs0 + 2bc × s0 − 2vτ1(B × ∂xs0) + 4τ1B1 × (bc × s0)− 4vτ2

1B(B · ∂xs0)
}

(C.2)

ss = τ̃1

{
−v∂ys0 + 2bs × s0 − 2vτ1(B × ∂ys0) + 4τ1B1 × (bs × s0)− 4vτ2

1B(B · ∂ys0)
}

(C.3)

sc3 = 2τ̃3 { bc3 × s0 + 2τ3B × (bc3 × s0)} (C.4)

ss3 = 2τ̃3 { bs3 × s0 + 2τ3B × (bs3 × s0)}. (C.5)

Substituting the expressions for the anisotropic spin components into the isotropic
diffusion equation gives

∂ts0 =−
v

2

(
∂xτ̃1

{
−v∂xs0 + 2bc × s0 − 2vτ1(B × ∂xs0) + 4τ1B × (bc × s0)− 4vτ21B(B · ∂xs0)

}
+ ∂y τ̃1

{
−v∂ys0 + 2bs × s0 − 2vτ1(B × ∂ys0) + 4τ1B × (bs × s0)− 4vτ21B(B · ∂ys0)

})
− τ̃1

{
−v∂xs0 + 2bc × s0 − 2vτ1(B × ∂xs0) + 4τ1B × (bc × s0)− 4vτ21B(B · ∂xs0)

}
× bc

− τ̃1
{
−v∂ys0 + 2bs × s0 − 2vτ1(B × ∂ys0) + 4τ1B × (bs × s0)− 4vτ21B(B · ∂ys0)

}
× bs

− 2τ̃3 { bc3 × s0 + 2τ3B × (bc3 × s0)} × bc3 − 2τ̃3 { bs3 × s0 + 2τ3B × (bs3 × s0)} × bs3.

(C.6)

By now preforming the integration over k, dividing by (2π)2, and by using that∫
dk

(2π)2 = S we get an expression where s0 is substituted with S and all properties
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are evaluated by their Fermi values, i.e. k → kF , v → vF . This simplification
occurs due to our zero temperature assumption, and can easily be seen from the
derivation of the spin diffusion equation in chapter two. The diffusion equation
then reads

∂tS =−
vF

2

(
∂xτ̃1

{
−vF ∂xS + 2bc × S − 2vF τ1(B × ∂xS) + 4τ1B × (bc × S)− 4vF τ

2
1B(B · ∂xS)

}
+ ∂y τ̃1

{
−vF ∂yS + 2bs × S − 2vF τ1(B × ∂yS) + 4τ1B × (bs × S)− 4vF τ

2
1B(B · ∂yS)

})
− τ̃1

{
−vF ∂xS + 2bc × S − 2vF τ1(B × ∂xS) + 4τ1B × (bc × S)− 4vF τ

2
1B(B · ∂xS)

}
× bc

− τ̃1
{
−vF ∂yS + 2bs × S − 2vF τ1(B × ∂yS) + 4τ1B × (bs × S)− 4vF τ

2
1B(B · ∂yS)

}
× bs

− 2τ̃3 { bc3 × S + 2τ3B × (bc3 × S)} × bc3 − 2τ̃3 { bs3 × S + 2τ3B × (bs3 × S)} × bs3.

(C.7)

We evaluate the spin-orbit fields at the PSH condition α = β′′, which gives bc = 0
and bs = 2vF kFαêx, and use that S || B, to obtain

∂tS =D̃∂2
xS + D̃∂2

yS + 2D̃q0∂y

 0
Sz
−Sy

− D̃q2
0

 0
Sy
Sz

− γ̃cd
 Sx

Sy
2Sz


2D̃
[
τ1B × ∂2

xS + τ1B × ∂2
yS − ∂y {τ1B × (q0êx × S)}

+ 2∂x {τ1B(τ1B · ∂xS)}+ 2∂y {τ1B(τ1B · ∂yS)}

+ q0êx × (∂yS × τ1B) + (τ1B · q0êx)(S × q0êx) + 2(τ1B · ∂yS)(τ1B × q0êx)
]

− 2γ̃cdτ3B ×

 Sx
Sy
2Sz

 , (C.8)

where D̃ = 1
2v

2
F τ̃1 =

1
2v

2
F τ1

1+(2Bτ1)2 is the renormalized diffusion constant, γ̃cd =
1
8 v

2
F γ

2k6F τ3
1+(2Bτ3)2 is the renormalized cubic Dresselhaus scattering rate, and q0 = 4kFα

is the PSH wave vector. We collect the terms that are independent on B in the
diffusion matrix D̂, and the terms arising due to the winding number ±1 and ±3
components in H1 and H3, respectively, such that

∂tS = D̂S +H1 +H3 (C.9)

with

D̂ =

 D̃(∂2
x + ∂2

y)− γ̃cd 0 0

0 D̃(∂2
x + ∂2

y − q2
0)− γ̃cd 2D̃q0∂y

0 −2D̃q0∂y D̃(∂2
x + ∂2

y − q2
0)− 2γ̃cd

 ,

(C.10)

H1 =2D̃
[
τ1B × ∂2

xS + τ1B × ∂2
yS − ∂y {τ1B × (q0êx × S)}

+ 2∂x {τ1B(τ1B · ∂xS)}+ 2∂y {τ1B(τ1B · ∂yS)}

+ q0êx × (∂yS × τ1B) + (τ1B · q0êx)(S × q0êx) + 2(τ1B · ∂yS)(τ1B × q0êx)
]
,

(C.11)
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and

H3 = −2γ̃cdτ3B ×

 Sx
Sy
2Sz

 . (C.12)


