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Problem description

With the trend of increasing amounts of spatio-interval data, the goal of the this
thesis is to investigate efficient algorithms for joining datasets on spatio-interval
properties. The task is to study existing techniques for spatial and interval
joins, development of new algorithms and experimental evaluation.
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Abstract

This thesis studies existing techniques for both spatial join and interval join. Us-
ing existing methods and algorithms for join operations two new algorithms for
spatio-interval join is developed. Parallelization techniques from work on spa-
tial join and interval join are applied to the two spatio-interval join algorithms
and a parallel algorithm is presented for each of them. The results from imple-
menting these algorithms show that it is possible to solve the spatio-interval by
modifying the existing algorithms and that the parallelization techniques can
be successfully applied to the spatio-interval join algorithms.



Sammendrag

Denne oppgaven undersøker eksisterende teknikker for å utføre join operasjoner
for rom og intervall. Ved bruk av eksisterende metoder og algoritmer blir to
nye algoritmer for join av data p̊a b̊ade rom og intervall samtiding utviklet.
Parallelliseringsteknikker fra arbeider med intervall join og romlig join blir s̊a
benyttet p̊a de to algoritmene til å lage to parallelle algoritmer for å utføre join
p̊a rom og intervall samtidig. Resultatene fra implementasjonen av disse algo-
ritmene viser at det er mulig å utføre en join operasjon p̊a b̊ade rom og intervall
ved å modifisere de eksisterende algoritmene. I tillegg ser vi at parallellisering-
steknikkene for de eksisterende algoritmene for intervall join og romlig join kan
brukes p̊a de nye algoritmene for b̊ade romlig og intervall join.
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Chapter 1

Introduction

Spatio-interval data is data containing both a spatial area as well as an interval
of some kind. This data can be created in many different scenarios. If you
have the GPS tracker in your smart-phone enabled it generates spatio-interval
data about your geographical position at all times. Weather data is another area
which contain a lot of spatio-interval data. Measurements of weather events like
rainfall, temperature and pressure will all include a spatial component as well
as an interval in time [5]. With the rise of the internet of things more and more
internet connected sensors exist, these can all potentially create spatio-interval
data.

This thesis tries to solve the problem of a spatio-interval join. That is a join
of data where both a spatial component and an interval component overlaps.
In the case of data generated from a smartphone a spatio-interval join could
for example be used to find which phones where at the same location during a
given interval in time.

Several methods and algorithms for conducting both interval and spatial joins
already exists today. One of the more common approaches for spatial join in
main memory is the plane sweep method [10] which will be discussed in section
5.2. For interval join one method is the endpoint-based interval join proposed
in [3]. The endpoint-based interval join will be discussed in section 5.1. Several
database systems already support interval and spatial operations. Examples of
this are SQL:2011 [11] and SpatialHadoop [8]. These algorithm will be expanded
upon in this thesis. New algorithms for spatio-interval join will be created by
modifying and adding to the existing algorithms.

The algorithms discussed here are main memory algorithms. The growing mem-
ory sizes in modern computers along with the increasingly lower price of mem-
ory has enabled larger data to be processed in main memory, and most modern
database vendors already provide an in-memory solution [12]. To fully utilize
the computing power of modern processors, it is necessary to design paral-
lel algorithms. In this thesis two different parallel algorithms for solving the
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spatio-interval join are presented.

Using the existing algorithms for spatial and interval join, this thesis will de-
scribe some new algorithms for spatio-interval join. The thesis starts with an
overview of some related works in chapter 2, before explaining some key concepts
and definitions as well as a more in-depth explanation of the spatial and interval
algorithms used in chapter 3. In chapter 4 an overview of some key concepts in
computer architecture and parallel processing are described. In chapter 5 the
spatial join and interval algorithms used in the thesis are explained. Chapter
6 discusses some possible optimizations for the algorithms described in chapter
5. In chapter 7 several sequential algorithms and methods for spatio-interval
join is described, while chapter 8 shows how this algorithms can be parallelized.
Chapter 9 describes how the algorithms where implemented and chapter 10
presents and discusses some experimental results. The final chapter outlines
some possible future work in the area of spatio-interval join.
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Chapter 2

Related works

A lot of work has been done on both spatial join algorithms and interval join
algorithms, and some existing work also focus on the area of spatio-interval
operations. For interval joins this thesis mainly focuses on the endpoint-based
index join described in [15] and section 5.1, however several other methods for
interval joins exist. One method is the overlap interval partition join described
in [6]. In a partition join the domain of the input collections are divided into
partitions. The overlap interval partition join algorithm first divides the domain
into equally sized granules, then each interval is assigned to the partition that
consists of the smallest sequence of granules that contain the interval. After the
partitions are created the join algorithm iterates over the partitions of one of
the input collections and joins them with the overlapping partitions of the other
input collection. In [3] a forward scan based plane-sweep method for interval
join is described. The forward scan based plane-sweep first sorts the input
collections by the start endpoint of each interval. The algorithm iterates through
the sorted collections, stopping at each start point in the input collections. For
every interval it encounters the plane-sweep scans forward, outputting a join
with all intervals from the other collection that start before the end of the
current interval.

In [10] many different methods for conducting spatial joins are described, one
of them being the plane-sweep which is discussed more in section 5.2. Another
method described is the nested-loop join. This is the most basic method of
joining. Given two collections of spatial objects the nested loop join simply
compares every element of one collection with every element of the other. An
improvement over the nested loop join is the indexed nested loop join. In the
indexed variant a spatial index is first built for one of the relations, then the
algorithm iterates through the other relation and checks for an intersection by
searching the index of the first collection. In [7] seven methods for indexing
collections of spatial objects are described and evaluated. These include the
R-Tree, the R+-tree, the uniform grid, the quad tree, the K-d tree, the Hilbert
curve and the Z-curve.

5



The R-tree and its variations are a widely used index for spatial objects. In [9]
Guttman describes the R-tree as a height-balanced tree similar to the B-tree.
It is designed so that a spatial search only needs to visit a small number of
nodes. Each leaf node contains a pointer to an object in the database and a
rectangle that is the bounding box of the object it indexes. Every non-leaf node
contains a pointer to a child node further down the tree and a rectangle that
completely encloses all the lower nodes entries. The tree is updated dynamically
when entries are added or deleted. Several variations and optimizations of the
R-tree exists. One of these is the R*-tree described by Beckmann et al. in [1].
The R*-tree mostly works in the same way as the R-tree, the difference is
how it optimizes when inserting and deleting from the tree. The R-tree aims to
minimize the area of each enclosing rectangle of the non-leaf nodes while the R*-
tree tries to minimize the overlap between the rectangles in different branches
of the tree. Additionally the R*-tree introduced the method of reinsertion.
Because the R-tree structure is dependent on the order in which elements are
inserted the R*-tree will delete and reinsert elements when a node reaches a
certain capacity to avoid ending up with a sub-optimal index.

In [18] a method for computing spatio-interval join using R-trees is described.
The method described uses a temporal R-tree, the TR-Tree for short. This
variation of the R-tree is enhanced to store temporal information as well as
the spatial object. Each entry in the tree has two timestamps in addition to
the spatial object. The TR-tree stores a collection of R-trees, where each R-
tree represents an interval in time [17]. The join is then computed by iterating
through one of the indexed relations and traversing the other relation looking
for a join similarly to how it is described in [4].

6



Chapter 3

Preliminaries

R,S
Collections of data. Either spa-
tial data, interval data or spatio-
interval data

r, s Single element from collection

ri, si
Element i from collections R and
S

R ./ S Join of collections R and S

r.start, r.end, s.start, s.end
Start and end of interval associ-
ated with objects r and s

〈ri, si〉 Output tuple of join

Table 3.1: Table of notations

An interval is defined by a start and an end point in a one dimensional con-
tinuous space. The interval join R ./ S is defined as all pairs of intervals r
∈ R, s ∈ S that intersect. Intersection is defined as r.start ≤ s.start ≤ r.end
or s.start ≤ r.start ≤ s.end. Figure 3.1 shows the two interval relations R
and S. An interval join between the two relations would result in the pairs:

Figure 3.1: Interval relations R and S

7



Figure 3.2: Spatial relations R and S

Figure 3.3: Examples of minimum bounding rectangles

〈r1, s1〉, 〈r1, s2〉, 〈r1, s3〉, 〈r2, s1〉, 〈r2, s2〉, 〈r3, s3〉.

For the spatial join the spatial component is defined as some multidimensional
object in Euclidean space. The spatial join on this component is defined as an
intersection or overlap of two objects. Figure 3.2 show the two spatial relations
R and S. Performing a spatial join between R and S would result in the follow-
ing pairs: 〈r1, s3〉, 〈r2, s1〉, 〈r2, s2〉, 〈r2, s3〉, 〈r3, s1〉, 〈r3, s2〉. The objects in this
example are all axis-aligned rectangles. In the general case of spatial join the
objects can be of all shapes. The spatial join in the general case can be divided
into two stages, the filtering stage and the refinement stage [10]. In the filtering
stage an approximation of the objects are used, then in the refinement stage
the inaccurate results that resulted from the approximation is removed. A com-
monly used approximation method for two-dimensional objects is the minimum
bounding rectangle. MBRs are the smallest rectangle that completely encloses
the original objects. Some examples of MBRs are shown in Figure 3.3. In this
thesis only the filtering stage of the spatial join is solved, so all spatial objects
are assumed to be axis-aligned rectangles.

If R is a spatio-interval relation then for each tuple ri, 1 ≤ i ≤ n, ri contains
both the start and end value of the interval as well as coordinates for the spatial
component. In the case where the spatial component is a MBR the tuple con-
tains the coordinates for two of the corners. The spatio-interval join is defined
as the intersection of the results from the spatial join and the interval join. If
Figure 3.2 describes the spatial component of the relations r and s and 3.1 de-
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scribes the interval component then the result from executing the spatio-interval
join would be the following pairs: 〈R1, S3〉, 〈R2, S1〉, 〈R2, S2〉, 〈R2, S3〉.

9



Chapter 4

Computer Architecture

This section gives a brief introduction to the architecture of modern computers,
and some of the motivation for developing an in-memory parallel algorithm.

4.1 von Neumann architecture

Modern computer architectures are mostly based on the von Neumann archi-
tecture, which was described in [16]. The von Neumann architecture primarily
consists of three parts: the control unit, the arithmetic unit and the memory.
The control unit is responsible for the logical control of the program. It is
responsible for transferring data between the memory and the arithmetic unit
as well as sending instructions to the arithmetic unit. The arithmetic unit is
responsible for executing the calculations sent to it by the control unit. The
main operations for the arithmetic unit is the four basic math operations: ad-
dition, subtraction, multiplication and division. Although it can be capable of
doing other operations as well. The memory component is responsible for stor-
ing all the data needed by the program as well as storing intermediate values
transferred by the control unit during execution. Figure 4.1 shows a high-level
overview of the architecture.

4.2 Computer memory

In [16] memory is treated like a single component, in modern computer archi-
tectures this is not the case. The speed of memory can be a major bottleneck
in the system, typically large inexpensive memory runs at a slower speed. To
enable the system to perform at high speed while still having large memory ca-
pabilities the computer have several forms of memory divided into a hierarchy.
Close to the processor is the fastest and smallest memory the process registers

10



Figure 4.1: von Neumann architecture

Figure 4.2: The memory hierarchy

as well as the cache. The cache is often subdivided into more than one layer.
These are used to hold data already present at the lower levels that are to be
used by the processor. After the cache comes the main memory, consisting of
RAM. Lastly there is the disk storage, which is the slowest and largest memory.
Modern computers normally have a large amount of main-memory. This de-
velopment has lead to more algorithms being able to assume that all necessary
data is transferred to the main-memory first instead of having to optimize for
I/O between the disk storage and the main-memory.

4.3 Parallel processing

Due to physical constraints single core processors can not keep increasing their
speed as fast as before. To keep increasing the speed of computation it is neces-
sary to utilize parallelism [2]. From 1986 to 2002 the performance of processors
increased by 50% every year. After 2002 the progress has slowed down dras-
tically. This has lead to a change in how processors are designed. Instead of
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simply creating faster microprocessors most manufacturers now put multiple
complete processors on a single circuit. The added processors will not necessar-
ily increase the speed of the serial programs designed to run on one processor.
To use the potential of all the processors a program needs to be explicitly written
as a parallel program [14].
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Chapter 5

Interval and spatial join
algorithms

5.1 Endpoint-based interval join

In [15] Piatov et al. describes a method for interval joins called the Endpoint-
based interval join. The EBI algorithm starts by creating a data structure
called the endpoint index for each of the sets in the relation. For each inter-
val ri, 1 ≤ i ≤ n, in an interval relation R the endpoint index contains two
entries. Each entry consists of a timestamp, the type of the endpoint and an
id. For instance the interval ri = 〈ri.start, ri.end〉 would create the two entries
〈ri.start, start, i〉 and 〈ri.end, end, i〉. The endpoints are then sorted by their
timestamp, if the timstamps are equal then start < end. The EBI algorithm
works by scanning the endpoint indices while keeping track of all active inter-
vals for each endpoint index. An interval is defined as active if the algorithm
has encountered the intervals start-endpoint but not its end-endpoint. When
the algorithm encounters a start-endpoint it outputs a join with each active
interval of the other relation. Pseudocode for the basic EBI algorithm is given
in algorithm 5.1.

5.2 Plane-sweep

One method for executing the filtering stage of a spatial join is the plane-sweep,
described in [10]. The plane-sweep algorithm does two passes over the set of
rectangles. The first pass sorts all the rectangles in ascending order by their
left side. Then it sweeps a vertical scan line through the set of rectangles,
stopping each time it encounters a new rectangle at point p. Only the rectangles
that intersect the scan line needs to be checked for an intersection with the
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Algorithm 5.1 EBI algorithm

Input: Interval relations R and S and endpoint indices E r and E s
Output: List of tuples fulfilling the join condition

1: active r ← new Map of tuple identifiers to tuples
2: active s← new Map of tuple identifiers to tuples
3: e r ← first(E r)
4: e s← first(E s)
5: while exists(e r) and exists(e s) do
6: if e r < e s then
7: if e r.type = start then
8: r ← R[e r.tuple id]
9: active r[e r.tuple id]← r

10: for all s in active s do
11: output(r,s)
12: end for
13: else
14: active r.remove(e r.tuple id)
15: end if
16: advance(e r)
17: else
18: if e s.type = start then
19: s← S[e s.tuple id]
20: active s[e s.tuple id]← s
21: for all r in active r do
22: output(r,s)
23: end for
24: else
25: active s.remove(e s.tuple id)
26: end if
27: advance(e s)
28: end if
29: end while
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rectangle associated with p. The rectangles that intersect the scan line are
considered active. To keep track of the active rectangles a specialized data
structure called a sweep structure is used. The sweep structure supports three
operations, INSERT, SEARCH and REMOVE INACTIVE. When encountering
a new rectangle at point p the INSERT operation is used to add the rectangle to
the active set. The REMOVE INACTIVE is used to remove all the rectangles
that are now completely to the left of the scan line and no longer in the active
set. The SEARCH operation is used with the current rectangle as input and
return all active rectangles that intersect the current rectangle. Pseudocode for
the plane-sweep algorithm is given in algorithm 5.2

Algorithm 5.2 Plane-sweep algorithm

Input: Set of rectangles R and S
Output: List of tuples fulfilling the join condition

1: sweep structure r ← create sweep structure
2: sweep structure s← create sweep structure
3: e r ← first(E r)
4: e s← first(E s)
5: while exists(e r) or exists(e s) do
6: if e r < e s then
7: sweep structure r. insert(e r)
8: sweep structure s. remove inactive(e r)
9: OUTPUT ← sweep structure s. search(e r)

10: advance(e r)
11: else
12: sweep structure s. insert(e s)
13: sweep structure r. remove inactive(e s)
14: OUTPUT ← sweep structure r. search(e s)
15: advance(e s)
16: end if
17: end while
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Chapter 6

Optimizations

6.1 Lazy endpoint-based index join

When the EBI algorithm encounters a start endpoint of an interval r1 from
R it scans the active set of the other relation S, actives. If the subsequent
endpoints it encounters are the start endpoints of r2 and r3, actives will be
scanned to more times, even though it has remained unchanged. To avoid this
the algorithm can be modified so that actives is not scanned until the next
endpoint encountered is an endpoint in S, there are no more endpoints in R or
the buffer is full. Instead of immediately scanning actives, r is inserted into a
buffer. When the buffer is full or if an endpoint form S is encountered actives is
scanned, then for each interval s in actives the buffer is scanned and it outputs
a join with every r in the buffer. Choosing the size of the buffer determines
much of the performance gain. Ideally the buffer should fit in CPU cache so
that scanning the buffer is much quicker than scanning the active set [15].

6.2 Gapless hash map

The active set in the EBI algorithms needs a data structure that is fast to
insert intervals into, remove intervals and scan through. Hash tables are a good
alternative for fast insert and removal, as these can be done in time complexity
O(1). Unfortunately hash tables are not the most efficient data structure for
scanning. To enable the hash map to efficiently scan its elements a new data
structure called a gapless hash map is introduced in [15]. The goal of the
gapless hash map is to at all times have the elements stored in a continuous
area in memory. This is done by storing pointers to the elements in a hash
table. Every element then stores a key, a pointer to the next element (if there
are more elements in the same bucket), the value and a pointer to the previous
element or the hash table index if its the first element in its bucket. Then
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each time an element is inserted it is appended to the end of the memory area.
Deleting entries are done by first checking if it is the last entry in the storage
area. If this is not the case, the entry is swapped with the last one before
deleting, and references are updated. This data structure enables the scanning
to simply step through the continuous area of memory.

6.3 Linear orderings

A linear ordering is a total order on multidimensional objects, it creates a linear
traversal of all objects. One linear ordering is the Z-order. The Z-order divides
the domain of the spatial objects into grid cells and each cell is divided into
smaller cells. The grid is then traversed in a ”Z” pattern and each block at
each level of division is fully traversed before moving to the next. In the plane-
sweep algorithm described in the previous section the input is sorted by one
dimension. For one dimensional objects, like intervals, a one dimensional sort
will ensure that neighbouring objects will be next to each other in the ordering.
For multidimensional objects this is not the case. Because of this linear orderings
play an important role in spatial join techniques, as they will in general keep
neighbouring multidimensional objects close together in the ordering [10]. To
traverse objects in a Z-order an object can either be assigned to the smallest
enclosing cell or an point in the object, for instance the center, can be used to
assign the object to a cell. The plane-sweep method can be adapted to use the
Z-order instead of sorting the objects by one dimension.

6.4 Sweep structure implementation

How the sweep structure is implemented can have a major impact on the per-
formance of the spatial plane-sweep algorithm. In [10] five alternative data
structures for the sweep structure are presented. These are:

• Simple linked list

• Interval tries

• Dynamic segment tree

• Interval tree with a skip list

• Dynamic priority search tree

Excluding the linked list all these have a runtime of O(log(n)) for the search
operation. Where n is the combined size of the two collections being joined.
The linked list has runtime of O(n) in the worst case, but in general the sweep
structures will contain significantly fewer elements than the entire collection.
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Chapter 7

Sequential algorithm

In this chapter two different approaches to the spatio-interval join will be de-
scribed. One is based on the EBI algorithm discussed in section 5.1, the other
is based on the spatial plane-sweep discussed in section 5.2.

7.1 Spatial EBI algorithm

The first spatio-interval join algorithm is created by slightly modifying the EBI
algorithm to include a check for an intersection on the spatial component. Most
of the algorithm works in the same way as the basic EBI algorithm. The differ-
ence is that when the algorithm encounters a start endpoint and loops over the
active set to find the intersections an additional check for intersection is done
on the spatial component of the objects corresponding to the intervals before
adding a spatio-interval intersection to the output. Pseudocode for the spatial
EBI algorithm is shown in algorithm 7.1. Since the spatial component of the
objects are MBRs a check for an intersection between them can be done in time
O(1). Because of this the runtime of the spatial EBI algorithm is the same
as the normal EBI algorithm which has a runtime of O(n2) in the worst case.
This is because for every iteration of the algorithm where it encounters a start
endpoint it has to scan through the active set of the other collection, which can
in the worst case contain n elements. In the average case however the active
sets will be much smaller.

7.2 Spatio-interval plane-sweep

Similarly to the EBI algorithm, the spatial plane-sweep can also be modified to
solve a spatio-interval join. To check for an interval intersection in the plane-
sweep algorithm the sweep structure needs to be modified. Specifically the
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Algorithm 7.1 Spatial EBI algorithm

Input: Interval relations R and S and endpoint indices E r and E s
Output: List of tuples fulfilling the join condition

1: active r ← new Map of tuple identifiers to tuples
2: active s← new Map of tuple identifiers to tuples
3: e r ← first(E r)
4: e s← first(E s)
5: while exists(e r) and exists(e s) do
6: if e r < e s then
7: if e r.type = start then
8: r ← R[e r.tuple id]
9: active r[e r.tuple id]← r

10: for all s in active s do
11: if s.MBR overlaps r.MBR then
12: output(r,s)
13: end if
14: end for
15: else
16: active r.remove(e r.tuple id)
17: end if
18: advance(e r)
19: else
20: if e s.type = start then
21: s← S[e s.tuple id]
22: active s[e s.tuple id]← s
23: for all r in active r do
24: if s.MBR overlaps r.MBR then
25: output(r,s)
26: end if
27: end for
28: else
29: active s.remove(e s.tuple id)
30: end if
31: advance(e s)
32: end if
33: end while
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SEARCH operation of the sweep structure. The SEARCH method is called
when encountering new objects. Instead of returning all objects that have in-
tersecting MBRs the SEARCH method also checks for an intersection on the
interval component of the objects. Similarly to the spatial EBI algorithm dis-
cussed in the previous section altering the sweep structure to check for an inter-
section of the interval component will not give the algorithm a worse runtime
since this can be done in O(1) time. As discussed in section 6.4 the runtime of
the spatial plane-sweep depends upon the sweep structure implementation. If it
is implemented as a linked list the runtime is O(n2) in the worst case, although
it will be lower in practice. Using any of the other implementations the spatial
plane-sweep has a runtime of O(n ∗ log(n)).
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Chapter 8

Parallel algorithm

To make the algorithms more efficient is important to utilize the full capabilities
of modern CPUs. As discussed in section 4.3 parallel processing is becoming
increasingly more important. This chapter expands upon the sequential algo-
rithms from chapter 7 and describes how they can be parallelized.

8.1 Parallel spatial EBI

In [3] two strategies for parallelizing interval join algorithms are described. The
first is a hash-based partitioning algorithm that expands upon the parallelizing
technique described in [15]. This partitioning algorithm can also be applied
to the spatial EBI algorithm described in section 7.1. The parallelization is
achieved by dividing the input R and S into equally sized partitions. The
tuples of a relation are sorted by their start time, and the i-th tuple is assigned
to a partition using a simple hash-function, i.e. imodk, where k is the number
of partitions. The endpoint indexes are then built separately for each partition.
The joining is done pairwise between all partitions of R with all partitions of S.
Joining is a disjoint operations so the algorithm can run these independently of
each other with no merging in the end. Pseudocode for this approach is given
in algorithm 8.1.

The other partitioning method described is a domain-based partitioning algo-
rithm. In the domain-based method the domain of all the interval is partitioned
into equally sized tiles. Then for each interval r, let tstart be the tile that covers
r.start and tend be the tile that covers r.end. The interval r i assigned to the
partition corresponding to tstart, and r is replicated to each of the partitions
corresponding to {tstart+1, tstart+2, .., tend}. The replicas of r carry a flag to
identify them as replicas. After all the intervals of the relations R and S have
been assigned and replicated a join is computed for each partition of R with
each partition of S. To avoid duplicate joins the join algorithm must be modi-
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Algorithm 8.1 Hash-based partitioning

input: Sets R and S, number of partitions k, hash function h
output: Set of pairs fulfilling the join conditions
for all r in R do

v ← h(r)
Rv ← r

end for
for all s in S do

v ← h(s)
Sv ← s

end for
for all partition Ri of R do

for all partition Si of S do
output← Ri ./ Si

end for
end for

fied to only output a join if one of the intervals is not a replica. Pseudocode for
domain based partitioning is given in algorithm 8.2.

8.2 Parallel spatio-interval plane-sweep

In [13] a method for partitioning the spatial plane-sweep for parallel processing
is described. By using the same method it is possible to parallelize the spatio-
interval plane-sweep as well. The goal of the parallel algorithm is to split the
domain into several partitions, and then simultaneously process each partition
using several parallel sweep lines. The splitting is done by creating k separate
sweep lines, where k is the number of partitions. Then for every object r
the algorithm checks which sweep line the left and right side of the object
corresponds to. If they both correspond to the same sweep line the object is
added to the partition belonging to that sweep line. If not, the object is added to
the partition belonging to the sweep line that corresponds to the left side of the
rectangle. Then for all the sweep lines the rectangle intersects it is copied to the
partitions corresponding to those sweep lines as well. Similarly to the technique
used in the domain-based partitioning described in the previous section each
replica have a flag indicating that it is a replica. Then when the algorithm
outputs a join it only includes it if at least one of the two elements is not a
replica.
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Algorithm 8.2 Domain-based partitioning

input: Sets R and S, number of partitions k
output: Set of pairs fulfilling the join conditions
Split domain of R and S into k tiles
for all r in R do

tstart ← domain tile covering r.start
tend ← domain tile covering r.end
add r to Rstart

for all tj in 〈tstart+1, tend] do
replicate r to Rj

end for
end for
for all s in S do

tstart ← domain tile covering s.start
tend ← domain tile covering s.end
add s to Sstart

for all tj in 〈tstart+1, tend] do
replicate s to Sj

end for
end for
for all partition Ri of R do

for all partition Si of S do
output← Ri ./ Si

end for
end for
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Chapter 9

Implementation

The algorithms discussed in chapter 7 and 8 have all been implemented from
scratch. The code for these implementations were written in the C++11 pro-
gramming language. Four different algorithms were implemented. The sequen-
tial spatial EBI algorithm, the sequential spatio-interval plane-sweep algorithm
and the two corresponding parallel algorithms. The parallel algorithms were
implemented using the Pthreads library, which is described more in section 9.2.
The parallel spatial EBI algorithm was implemented using the hash-based par-
titioning described in section 8.1 while the parallel spatio-interval plane-sweep
was implemented as described in section 8.2.

9.1 Data structures

The active set in the SEBI algorithm uses the std::map class from the C++
standard library. Getting elements and erasing elements are done in time com-
plexity O(log(n)), where n is the number of elements in the structure. Adding
new elements to the map is done in O(n) time. The sweep structure in the

Figure 9.1: Simple linked list
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spatio-interval plane-sweep algorithm is implemented using a simple linked list.
A simple linked list consists of a series of nodes, each containing a pointer to
the next node as well as the object itself. Additionally the linked list stores
pointers to the first and the last element in the list, the head and the tail. A
visualization is shown in Figure 9.1. Insertion into the list is done by creating a
new node containing the new object. The current tail is then adjusted to point
to the new node and the tail pointer is also adjusted to point to the new node.
Removal of an object is done by scanning through the list. When the node to
be removed is encountered the previous node is adjusted so that it points to the
node after the one to be removed. Inserting into the list is done in O(1) time,
while deleting from the list is done in O(n) time.

9.2 POSIX Threads

POSIX Threads, or Pthreads, is a shared-memory parallel programming frame-
work. Shared-memory means that all threads have access to the same memory.
This leads to a natural way to reason about the parallel program, but it can also
lead to problems with synchronisation and if the programmer is not careful it
can lead to unpredictable behaviour and race conditions [14]. Pthreads imple-
ments the POSIX standard, which is a specification for a variety of software on
Unix-like operating systems. It is implemented as a library that can be linked
with C and C++ programs. Threads are initiated by a call to pthread create.
One of the parameters supplied to pthread create specifies the function that each
thread will execute in parallel. During execution all the threads have access to
variables that are declared globally in the program. To avoid race conditions
when updating shared structures the Pthreads library also supports the use of
mutexes, which are locks set on shared data so that only one thread can update
it at the same time.
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Chapter 10

Experimental results

In this chapter some experimental results are presented. The tests were executed
on a machine running Ubuntu 16.04. The machine had 128 GB of internal
memory and an Intel Xeon E5-2640 V3 processor with 8 cores and 16 threads.
Most of the tests were done using a data set from the social media platform
Twitter. Each row in the dataset contains a single tweet with metadata. The
metadata contains a bounding box for the area where the tweet originated as
well as a time interval from the tweet was first posted until its first retweet,
that is the time from posting until another user has posted a reference to the
original tweet. These two properties were used as the spatial and the interval
component of each object. To test the spatio-interval join subsets of the whole
dataset which were of different sizes where randomly selected and a self-join
was executed on the subsets. To reduce the amount of random differences in
execution time introduced by the operating system and other processes running
on the machine, each test was run ten times and the average of these runs were
reported.

Figure 10.1: Performance of spatial EBI and spatio-intervals plane-sweep

Figure 10.1 shows the performance of two sequential algorithms when increasing
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the number of elements present in the join operation. As can be seen from the
graph the spatial EBI algorithm outperforms the spatio-interval plane-sweep,
and the distance in performance increases as the number of elements increases.
This can be a result of the sweep structure implementation. It is implemented
using a simple linked list, meaning that the entire sweep structure must be
iterated twice in each iteration of the algorithm. The sweep structure is iterated
both when the SEARCH method and the REMOVE INACTIVE method is
called. In the spatial EBI algorithm only one of the active sets needs to be
iterated once during each iteration.

Figure 10.2: Speedup of parallel spatial EBI

Figure 10.3: Speedup of parallel spatio-interval plane-sweep

The two figures 10.2 and 10.3 show the speedup of the two parallel algorithms
when increasing the number of partitions that the input data is split into. The
speedup result was generated by a self-join of a subset of 50000 elements from
the Twitter data set and varying the number of partitions. Since an individual
thread is created for each partition this is equivalent to increasing the number
of threads in the processor used. The results show that both parallel algo-
rithms have better performance with more cores, and that the performance
gain increases with the number of cores. Figure 10.4 shows a comparison of the
performance of the two parallel algorithms run with 16 partitions. The parallel
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Figure 10.4: Performance of parallel SEBI and parallel SIPS

Figure 10.5: Performance of all four algorithms

spatial EBI algorithm outperforms the parallel spatio-interval plane-sweep algo-
rithm quite significantly as the number of elements increases. This is somewhat
consistent with the performance of the sequential algorithms as the underlying
sequential algorithms are run on every partition in its parallel counterpart. In
Figure 10.5 the performance of all four algorithms implemented is compared.
Both parallel algorithms perform much better then their corresponding sequen-
tial algorithm, and the parallel spatial EBI algorithm is the fastest of the four.
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Chapter 11

Future work

The experimental results show that is possible to solve the spatio-interval join
by modifying the existing algorithms for spatial join and interval join. It is
also possible to significantly reduce the execution time by parallelizing these
algorithms using the same parallelization techniques used for the spatial join
and interval join algorithms. Of the algorithms presented the parallel spatial
EBI algorithm is the most efficient, which is consistent with the performance of
the sequential algorithms. The spatial EBI algorithm is not only more efficient
than the spatio-interval join, it is also easier to implement as the sweep structure
required in spatio-interval plane-sweep requires more implementation then the
data structure used for the spatial EBI. The spatio-interval plane-sweep could
be made more efficient by implementing the sweep structure using a different
data structure as discussed in section 6.4, although this would make it even
more complicated to implement.

For future work both the algorithms can be improved by implementing the
different optimizations discussed in chapter 6. The spatial EBI algorithm can be
made more efficient by implementing a gapless hash-map and by implementing
the lazy evaluation described in section 6.1 and 6.2. The spatio-interval plane-
sweep can be improved by implementing a more efficient sweep structure. It can
also make use of a linear ordering to sort the objects in an order that ensures that
objects close to each other are close in the ordering. The algorithms presented
here should also be measured against existing spatio-interval techniques like the
spatio-interval join from [18] to see how they compare.
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