


the VO algorithm is able to do, the SBMPC algorithm will seem to not react to the other
obstacles when such maneuvering is taking place. Testing the algorithm with a higher
update frequency in such scenarios may be investigated in future work.

A specific dangerous scenario was found in the simulation, shown in Figure 6.15. The
own-ship has give-way responsibility for the obstacle on the right, and at the same time a
number of false tracks appear on the port side of the own-ship. As the own-ship makes col-
lision avoidance maneuvers for both the false tracks and the true obstacle, the result is the
own-ship being ”squeezed” between the tracks. Ideally, the own-ship should have adjusted
speed and course such that the true obstacle was passed behind with a large margin. Based
on this encounter handling, it seems like the cost of violating stand-on responsibility is
higher than violating give-way responsibility. This is not a desired behaviour and should
be taken care of. A proposed solution is to decrease the penalty for starboard turning and
maybe decrease the nominal course change penalty.

Continuing with the scenario in Figure 6.15, it is not only the own-ship that makes the
situation more risky that it should have been. Based on the small distance between the own-
ship and the obstacle vessel, the obstacle vessel should have initiated collision avoidance
maneuvers, even though the own-ship does not comply with the COLREGS. This may be
a result of the modification of the fcollision function described in subsection 3.3.4, where
the velocity obstacle is not considered during stand-on when the distance is more than
2000 meters. As the distance here is clearly less than 2000 meters, this should not have
been a problem, but as a situation like this is able to occur, adjustments to the collision
handling should be done.
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Figure 6.15: A dangerous scenario where the own-ship is near a collision with obstacle 1. The
combination of having a high number of false tracks on the left side and at the same time having
a true obstacle on crossing course to the right, result in the own-ship keeping it’s desired velocity
straight ahead.
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6.5 Overall discussion

6.5.1 VO vs SBMPC

The overall performance of the COLAV algorithms seems to be in favor of the VO al-
gorithm. It handles almost all encounter types in all test cases in a very good way, a
consistency that is highly appreciated. This is also supported by Figure 6.16, where the
spread of the scenario scores for all test cases are shown. All the VO simulations are seen
to get about the same distribution of scores, while the SBMPC simulations show a higher
score variation. To sum up, the overall trends in Figure 6.16 are in accordance with the
mean scores presented in the previous test cases.

Figure 6.16: Histogram showing the spread of scores for all test cases.

A repeating aspect mentioned multiple times earlier in this thesis, is the tuning of the
SBMPC algorithm. Having the combination of little time and a high number of tuning
parameters, the task of finding the best parameters was difficult. The resulting parameters
was seen to give desired behaviour in most cases, but as the tuning process was done
when the obstacles state were perfectly known (ground truth), the algorithm has not been
adopted to the more challenging situations.

As described in subsection 3.3.4, the VO algorithm was modified such the behaviour was
more in compliance with the evaluation metrics. Given that the evaluation metrics are
a perfect representation of the COLREGS, this approach is logical and should improve
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the algorithms COLREGS compliance. But, as the evaluation metrics may not always
comply perfectly with the COLREGS, this approach of algorithm tuning may not be ideal.
Different tuning approaches may give better behaviour for realistic scenarios, but as these
evaluation metrics have been adopted by the COLAV community as the evaluation metrics
to be used, this approach is reasonable.

What may be an additional ”advantage” for the VO algorithm compared to the SBMPC
algorithm is that the obstacles use the VO algorithm for COLAV. Being able to adapt the
VO behaviour through testing to the obstacles which also were using VO, was easier than
adapting the SBMPC to the VO. This is mostly due to the simpler COLAV approach used
in the VO algorithm. Nevertheless, a COLAV method should be able to adapt and function
well in a setting where other COLAV algorithms are operating.

6.5.2 Rule 13+16

During all the test cases, the number of encounters where the own-ship was overtaken by
an obstacle vessel (Rule 13+16) was too small to give a reliable discussion based on the
result from a specific test case. However, by combining the results for this encounter type
for all the test cases, a discussion can be done.

With one exception, the rule score for encounter Rule 13+16 was the lowest for both
COLAV algorithms in all test cases. The VO algorithm gets almost the same score in all
test cases, while the SBMPC algorithm finds itself close to zero for the last test case. This
is a critically low encounter score and should be investigated.

For a vessel of the size of the PSV, the number of real life encounters of this type may
be relatively more than represented in these test cases. As a large vessel often needs to
follow the shipping lanes, overtaking other large vessels presented in the shipping lanes
may occur relatively often. With this is mind, the number of Rule 13+16 encounters should
be increased. Modifying the existing testing scheme to choose more of the initial obstacle
courses which will yield overtaking scenarios is easy to do. With the addition of decreasing
the initial speed of the obstacles, this will give more Rule 13+16 encounters and should be
considered as a part of the future work.

6.5.3 Metric modifications

The metrics used for evaluation of the COLAV system are heavily based on the metrics
from [63]. As described in section subsection 5.3.2, being able to reuse the same metrics
for the new testing scheme used in this thesis, some modifications to the stand-on vessel
evaluation had to be done. The modifications used may result in a higher score being given
than what should have been given. The point is, comparing the results from the test cases
done in this thesis directly to other work on the same topic may not be applicable. How-

94



ever, the comparison given internally in this thesis between the two COLAV algorithms
and the different test cases certainly is applicable.

6.5.4 Domain discussion

Having a large vessel as the PSV used in this thesis as the SUT, a discussion of what
domains are useful to investigate is reasonable. When a PSV is in transit out on the open
sea where there only exist other large vessels equipped with AIS, the collision avoidance
problem is not that hard (relatively speaking) and may be assumed solved by [22] or [37].
On the contrary, vessels like the PSV may find itself near shore or in other situations where
smaller faster vessels are present. A fully autonomous vessel should also be able to handle
such environments, with the addition of situations with poor visibility properties. The test
cases presented in this section is used to imitate such situations.

The ground truth test case can be seen as a situation where the PSV moves in an area with
a high number of large vessels. This can be near oil rigs where other PSVs and vessels are
present. As for the normal conditions test case, a situation with clear sky and good visible
conditions, but no good AIS information available, could be the realistic counterpart. The
last test case may be a real life situation where the PSV is approaching a large town in
heavy foggy weather and a high number of nearby vessels is present.
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Chapter 7
Conclusion and future work

7.1 Conclusion

A COLAV system including a tracking system based on the JIPDAF and the COLAV al-
gorithms VO and SBMPC have been tested in a wide variety of relevant ASV scenarios.
The tracking is done by emulating noisy radar measurements from the true obstacle mea-
surements. Based on the track information from the tracking module, a COLAV algorithm
enables automatic collision avoidance. The testing has been executed in a simulated envi-
ronment where a high number of succeeding collision situations have been simulated. To
evaluate the COLAV system’s scenario execution, a number of evaluation metrics used to
determine COLREGS compliance have been applied.

When exposed to no or little amount of noise, the tracking system provides accurate esti-
mates of the obstacles positions and velocities. The resulting performance of the COLAV
system depends on which COLAV algorithm is being used, where the VO algorithm is
seemed to handle all encounter types in a more satisfying way than the SBMPC algo-
rithm. However, the SBMPC method may suffer from poor parameter tuning, thus having
a potential of significant performance improvement.

In more challenging scenarios where the noise is raised to considerably higher values,
the tracking system’s obstacle estimates are highly fluctuating and some times completely
missing, in addition of having a high number of false tracks. These challenging conditions
result in lower evaluation scores for both COLAV algorithms, especially the SBMPC al-
gorithm. However, given the high number of false tracks present in the simulations and
despite getting lower evaluation scores, the VO algorithm performed remarkably well.
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7.2 Future work

As this thesis covers a wide range of research areas, there is a great potential for improve-
ments and future work. In the following, a number of suggestions for future work are
given.

Dealing with land

Constraints posed by the sea shore may limit the possible actions the COLAV methods can
choose between. While the SBMPC method easily can include handling of land [37], the
VO method may need additional tweaks to work at all in the presence of land.

SBMPC parameter tuning

The SBMPC algorithm may have a considerable potential regarding the tuning parameters.
This should be investigated, or other COLAV methods based on MPC [28] may be looked
into for future implementation.

Include tracking for obstacles

To further enhance the realistic aspects of the noisy scenario simulations, target tracking
should be enabled on all vessels in a scenario. It is then possible to identify and investigate
the more dangerous situations which may appear in similar real life situations.

COLAV while path following

In this thesis, all obstacles and the own-ship follow straight-line paths in the scenario
simulations. Investigation on how the COLAV system handles non-straight obstacle and
own-ship paths should be done as this is how most of real-life situation is carried out. The
evaluation metrics may need additional modifications to work in such situations.

Additional sensors

The implemented system only contains radar measurement emulation. A number of other
sensors (cameras, LIDAR etc.) may be implemented, as this is common on real life vessel.
A sensor fusion module combining all the sensor information may then also be needed.
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Overtaking when own-ship has give-way responsibility (Rule 13+16)

During the simulations, it was seen that the handling of Rule 13+16 encounters was quite
poor for both COLAV algorithms. As this may be one of the more common encounter
types for vessels with the size of the PSV, further investigation is needed. This can be
accomplished by using the testing scheme with a restricted range of initial obstacle courses
and a low maximum initial obstacle speed.
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Nomenclature

Collision avoidance

αc Parameter used to determine the cost related to a collision.

β Bearing angle.

β180 Normalized bearing angle.

βc Parameter used to determine the cost related to COLREGS viola-
tion.

pA Position vector for own-ship, in VO algorithm.

pB Position vector for obstacle B, in VO algorithm.

vA Velocity vector for own-ship, in VO algorithm.

vB Velocity vector for obstacle B, in VO algorithm.

χca,last Previous course offset.

χca Course offset.

∆χ,port Parameter used to prioritize readily apparent port maneuvers.

∆χ,starboard Parameter used to prioritize readily apparent starboard maneuvers.

∆P Parameter used to prioritize readily apparent speed maneuvers.

εV O Distance used to determine if two vessels are close.

ιc Parameter used to weight cost of speed penalty.

κi Cost function parameter used to weight COLREGS violation.
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λ Parameter used to determine the length of the velocity vector in the
VO algorithm.

A Set representation of own-ship.

B Set representation of obstacle B.

Cij New VO cost function.

C′

ij Original VO cost function.

Ha Total cost associated with scenario a.

Rai Collision risk factor.

V1 Region on the left side of the obstacle seen from the own-ship.

V2 Region on the right side of the obstacle seen from the own-ship.

V3 Region in a direction away from the obstacle.

µai Binary term used to determine COLREGS violation.

ψd,colreg Desired heading the last time the COLREG situation was updated.

ũ Deviation from the desired speed and heading.

κc Parameter used to weight cost of port penalty.

~Lai Unit vector pointing in the LOS-direction of own-ship to obstacle i
in scenario a.

~va0 Own-ships velocity in scenario a, in SBMPC algorithm.

~vai Velocity of obstacle i in scenario a, in SBMPC algorithm.

D The set of discrete sample times in the SBMPC algorithm.

da0,i Distance from own-ship to obstacle i in scenario a.

dCPA Distance between the vessels at CPA.

dcli Distance parameter used to determine the maximum range of where
COLREGS apply.

dmin Maximum distance for a collision situation to be examined.

f Cost related to path following.

fcollision Modified version of f
′

collision.

f
′

collision Boolean function used to determine if a collision will occur.

fCOLREGS Boolean function used to determine if the COLREGS is violated.
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fport Boolean function used to determine if port penalty is to be added.

fspeed Boolean function used to determine if speed penalty is to be added.

kP Parameter used to weight nominal speed.

kχ,port Parameter used to penalize port maneuvers.

kχ,starboard Parameter used to penalize starboard maneuvers.

kχ Parameter used to prioritize nominal course.

PC Propulsion command.

pr Collision risk factor parameter used to weight time.

Plast Previous propulsion command.

qc Parameter used to weight cost of velocity deviation.

qr Collision risk factor parameter used to weight distance.

rA Radius of the circular approximation of own-ship.

rB Radius of the circular approximation of obstacle B.

t Time index.

Ts Sample interval in the SBMPC algorithm.

tCPA Time to CPA.

tmax Maximum time for a collision situation to be examined.

ud,last Desired velocity from the previous time step.

V OAB The velocity obstacle induced by obstacle B for obstacle A.

CLOSE Boolean variable used to determine if an obstacle is close.

CROSSED Boolean variable used to determine if the own-ship is in a crossing
situation.

HEAD-ON Boolean variable used to determine if the own-ship is in a head-on
situation.

OVERTAKEN Boolean variable used to determine if the own-ship is being over-
taken.

RULE14 Boolean variable used to determine if COLREGS rule 14 is vio-
lated.

RULE15 Boolean variable used to determine if COLREGS rule 15 is vio-
lated.
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Evaluation metrics and scenario generation parameters

P∆χapp
Non-readily apparent course change penalty.

P∆Uapp
Non-readily apparent speed change penalty.

P17
∆U Stand-on speed change penalty.

P17
∆χ Stand-on course change penalty.

P∆ Non-readily apparent maneuver penalty.

P17
∆ Stand-on maneuver penalty.

PDetectPortTurn Port turn penalty.

PLateManeuver Late maneuver penalty.

PPassAhead Pass ahead penalty.

SPortToPortPassing Port to port passing score.

P0 Position of own-ship at the start of a scenario.

Pcol Collision point between own-ship and obstacle.

Pest Estimated path position of own-ship.

Pinit Initial obstacle position.

χinit Initial obstacle course.

σ2
wx

Collision point noise strength.

nO Number of obstacle in a scenario.

nS Number of succeeding scenarios in a testcase.

Ssafety Safety metric.

tS Duration time of scenario.

tttc Time to collision.

tmaxttc Maximum time to collision.

tminttc Minimum time to collision.

tttp Time to path.

vinit Initial obstacle speed.

vmaxinit Maximum initial obstacle speed.

vmininit Minimum initial obstacle speed.
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wx Collision point noise.

Vessel modeling and control

αk Path-tangential angle.

ε Along-track distance and cross-track error vector.

η Position and orientation vector.

τ Generalized forces and moments from the actuators.

τwind, τwave Environmental forces from wind and waves.

ς Linear and angular velocity vector.

ςd Reference values to the feedback linearizing MIMO controller.

CA Added mass coriolis-centripetal matrix.

CRB Rigid body coriolis-centripetal matrix.

D Damping matrix.

Kp Proportional gain in the feedback linearizing MIMO controller.

KG
p Proportional gain in the feedback linearizing MIMO controller for

the Gunnerus vessel.

KPSV
p Proportional gain in the feedback linearizing MIMO controller for

the PSV vessel.

M Inertia matrix.

MA Added mass matrix.

MRB Rigid body inertia matrix.

n Non-linear component of the feedback linearizing MIMO controller.

pn Vessel position vector in ILOS guidance.

pnb/n Position of origo in body-fixed frame expressed in the inertial frame.

pnk Waypoint position vector.

R Rotation matrix.

χd Desired course.

χr Velocity-path relative angle.

∆ Lookahead distance in ILOS guidance.

ψ Euler angle about the z axis.
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ψd Desired heading, in the heading controller.

σ Tuning parameter in ILOS guidance.

ς̃ Error between reference values ςd and the actual values ς .

ψ̃ Error between desired heading and actual heading.

~rg The vector from center of gravity of the vessel to origo in the {b}
frame.

{b} Body-fixed reference frame.

{n} Inertial reference frame.

e Cross-track error.

eint Integral term in ILOS guidance.

Fx, Fy, Fz Force and moment components of the τ vector.

Iz Moment of inertia about the z-axis.

Kp,1,Kp,2,Kp,3 Components of the proportional gainKp.

Kp,ψ Proportional gain in the heading controller.

KG
p,ψ Proportional gain in the heading controller for the Gunnerus vessel.

KPSV
p,ψ Proportional gain in the heading controller for the PSV vessel.

m Mass of vessel.

N Body-fixed moment about the z axis.

r Body-fixed angular velocity about the z axis.

s Along-track distance.

u, v Body-fixed linear velocities in the x and y direction.

ud, vd, rd Components of the reference values vector ςd.

X,Y Body-fixed forces in the x and y direction.

x, y Body-fixed positions in the x and y direction.

xg, yg, zg x, y and z components of the ~rg vector.

xk, yk Inertial-fixed waypoint position in the x and y direction.

Target tracking

(̂·)k|k−1 Predicted (a priori) estimate.
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(̂·)k Updated (a posteriori) estimate.

βik Probability of measurement i being target originated.

βt,jk Probability of measurement j originating from target t.

νk Combined innovation.

νik Measurement innovation for measurement i.

ak An association hypothesis.

δ Targets-with-measurement vector.

ηtinit Initial visibility probability.

ηtk Visibility probability for target t.

γG Gate threshold.

x̂k Estimated state vector.

x̂t,ak

k Posterior event-conditional state.

λP Poisson distribution intensity of false measurements.

AM A problem-solution pair.

Ap A score matrix.

As A solution matrix.

L List of problem-solution pairs, AM .

N Normal distribution.

σa Process noise strength.

σr Measurement noise strength.

Ft State transition matrix.

H State observation matrix.

Kk Kalman gain.

Pk State covariance matrix.

Pck Covariance of state updated with the true measurement.

QT Process noise covariance matrix.

R Measurement noise covariance matrix.

Sk Predicted measurement covariance matrix.
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vk Process noise vector.

wk Measurement noise vector.

xk State vector at time step k.

xt,ak

k Posterior event-conditional covariance.

zk Measurement vector.

zik I-th measurement at time step k.

P̃ck Spread of innovations.

εtinit Initial existence probability.

εtk Existence probability for target t.

ϕ Number of false measurements.

%k The set of non-associated measurements.

i Measurement index.

j Target index.

k Discrete time index.

lt,ak Likelihood ratio.

mk Number of validated measurements.

n Number of targets.

p Probability density function.

PD Detection probability.

PG Gate probability.

PS Death probability.

pFA False measurement rate.

T Time step in motion model.

V Volume of the surveillance region.

vmax A parameter chosen to be larger than maximum velocity.

Zk The current set measurements.

Z1:k The cumulative set of measurements up until time k.

NIS Defines the elliptic region called the validation region.
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