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Problem Description
Autonomous ships and autonomous surface vehicles in general need automatic collision
avoidance (COLAV) for safe navigation. Such methods can use a variety of information
sources, including communication-based solutions such as AIS and exterospective sen-
sors such as radar and camera. The methods must be able to resolve situations of varying
complexity and often with limitations both in available information and in maneuver pos-
sibilities.

This project will build on previous work on automatic testing of COLAV methods using
DNV GL’s CyberSea simulator. This work includes implementation and comparison of
the velocity obstacle (VO) and scenario-based model-predictive control (SBMPC) meth-
ods for COLAV in this framework, and closing the loop with simulation of radar tracking
in this framework. In this project, the candidate will further enhance the testing by study-
ing more challenging tasks and circumstances. Relevant problems include:

1. Multi-target tracking with track initialization. False tracks and misdetections in-
evitably occur in a target tracking system, and this will affect the performance of the
COLAV method. Multi-target tracking methods are needed whenever target ships
move so close to each other that their tracks risk being confused.

2. Dealing with land. Constraints posed by the sea shore may severely limit the pos-
sible actions that the COLAV methods can choose between. Methods such as VO
may need additional tweaks to function adequately at all when land is present. Also,
areas near sea shore can often be troubling sources of false tracks in the tracking
system.

3. Several subsequent COLREGS situations. Previous work on COLAV testing in Cy-
berSea has only considered situations with up to 3 vessels approaching the same
point through geometric iterative testing. While additional complexity due to more
vessels approaching each other simultaneously is unlikely, situations where a double-
digit number of vessels interact in rapid succession are common in the real world.

4. COLREGS violation and rogue behaviour in general. It is important that the COLAV
methods are able to make sensible judgments when a ship for some reason violates
COLREGS, or suddenly does something unexpected. Smaller boats with high ma-
neuverability can be difficult to track, especially near the sea shore.

The goal of this project will be to study how at least two COLAV methods cope with at
least two, and possibly more, of these challenges.
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Abstract
The development of Autonomous Surface Vessels (ASVs) has during the recent years seen
a great progress. When being completely developed, these vessels may be used in a va-
riety of scientific and commercial operations, eventually leading human based operations
redundant.

An ASV needs a well-functioning Collision Avoidance (COLAV) system in order to oper-
ate at sea where other obstacles such as vessels and land are present. In addition of being
able to handle collision situations, the COLAV system needs to comply with the rules
for avoiding collision at sea (COLREGS). To retrieve the necessary information of the
surroundings, the COLAV system utilizes a number of information sources. This may in-
clude exteroceptive sensors such as radar and cameras, or communication-based solutions
such as the automatic identification system (AIS). In order to enable COLAV, the sensor
information needs to be included into the state estimation of the surrounding obstacles.
This is done by the use of a tracking system.

In this thesis, a COLAV system including a multi-target tracking system based on the Joint
Integrated Probabilistic Data Association Filter (JIPDAF) and two COLAV algorithms,
one based on the Velocity Obstacle (VO) and another method called Scenario-Based Model
Predictive Control (SBMPC), has been tested in a wide variety of ASV scenarios. The sce-
narios are generated with a new method which challenges the COLAV system to a high
number of succeeding vessel interactions. To evaluate the COLAV system’s scenario per-
formance, a number of evaluation metrics used to determine COLREGS compliance are
applied.

The COLAV system have been implemented on a Platform Supply Vessel (PSV) and the
testing has taken place in a simulated environment. The results from the testing show that
when exposed to a small amount of noise, the tracking system delivers accurate obstacle
estimates to the COLAV algorithm, resulting in good evaluation scores. In more challeng-
ing scenarios which includes considerably more noise, the tracking system delivers more
fluctuating obstacle estimates and a high number of false tracks, resulting in poor perfor-
mance of the SBMPC algorithm, while the VO algorithm performs remarkably well.
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Sammendrag
Utviklingen av autonome overflateskip (ASV) har de siste årene sett stor fremgang. Når
det en gang i fremtiden vil eksistere et utall variasjoner av ASVer til bruk for både forskn-
ingsmessige og kommersielle operasjoner, vil man til slutt se at menneskelig-baserte op-
erasjoner blir overflødige.

En ASV trenger et velfungerende system for kollisjonsunngåelse (COLAV) for å kunne
operere til sjøs der det finnes andre hindringer som f.eks. fartøyer og land. I tillegg
til å kunne håndtere kollisjonssituasjoner, må COLAV-systemet overholde reglene for å
unngå kollisjon til sjøs (COLREGS). For å innhente den nødvendige informasjonen om
omgivelsene, bruker COLAV-systemet en rekke informasjonskilder. Dette kan omfatte ek-
steroceptive sensorer som radar og kameraer, eller kommunikasjonsbaserte løsninger som
det automatiske identifikasjonssystemet (AIS). For å muliggjøre COLAV må sensorinfor-
masjonen inngå i estimering av de omkringliggende fartøyers posisjon og hastighet. Dette
gjøres ved bruk av et målfølgingssystem.

I denne oppgaven er et COLAV-system som inkluderer et multimålfølgingssystem basert
på målfølgingsmetoden Joint Integrated Probabilistic Data Association Filter (JIPDAF)
og to COLAV-algoritmer, en basert på hastighetshindringer (VO) og en annen metode som
kalles Scenario-Based ModelPredictive Control (SBMPC), testet i en rekke ASV-scenarier.
Scenarioene er generert med en ny metode som utfordrer COLAV-systemet til et høyt antall
av etterfølgende skipsinteraksjoner. For å evaluere COLAV-systemets scenario-utførelse,
brukes en rekke evalueringsmål for å bestemme i hvor stor grad reglene til sjøs (COL-
REGS) har blitt overholdt.

COLAV-systemet er implementert på et plattformforsyningsfartøy (PSV) og testingen har
skjedd i et simulert miljø. Resultatet fra testingen viser at når COLAV-systemet blir utsatt
for en liten mengde støy, gir målfølgingssystemet nøyaktige fartøyestimater til COLAV-
algoritmen, som resulterer i gode evalueringsskår. I mer utfordrende scenarier som in-
neholder betydelig mer støy, leverer målfølgingssystemet mer fluktuerende fartøyestimater
og et høyt antall falske mål, noe som resulterer i dårlig evalueringsskår for SBMPC-
algoritmen, mens VO-algoritmen yter bemerkelsesverdig godt.
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Chapter 1
Introduction

1.1 Motivation and Background

The technological advance the world has seen the last century has opened the possibilities
for a much higher level and wider range of automation. With the benefits of cost reduc-
tion and general efficiency enhancements, the concept of automation has infiltrated and
influenced more or less the entire modern industrial society. Ranging from the clothes and
food making industries to more complex production chains like oil refining and aircraft
production, they all have taken part in this revolutionary progress. Based on the positive
and much wanted aftereffects, it seems natural that automation will continue its journey to
affect and improve even more areas.

In the latest years, more intelligent, complex systems called autonomous systems have
started to appear. Instead of being a specialist in one single task (as an automated system),
the autonomous system expands its field of responsibility - it is able to complete and
execute more general defined problems with the use of intelligent reasoning. Everyday
applications such as cutting the grass, cooking, cleaning etc. may now be performed by
autonomous robots. More safety critical systems like autonomous cars has yet to be fully
allowed, but the testing has yield promising results [2, 9].

Where the progress of automation for land-based transportation has been evident, the de-
velopment in the maritime sector has also seen changes. A number of companies have
started experimentation and development of autonomous vessels [43, 15, 49]. Together,
these are to be used in both cargo and human transportation - a step in the direction of a
fully autonomous sea environment.
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As the maritime traffic density is estimated to increase in the future, the need for more effi-
cient sea transportation is evident. When, in addition, there has been an increase in serious
and very serious accidents at sea [14], the possibilities for Autonomous Surface Vessel
(ASV)s clearly is present. In order to be commercialized, ASVs will need to prove to be
as safe or safer than a humanly operated vessel [49] - a challenging [56], but reasonable
requirement that has yet to be fulfilled.

One of the most challenging aspects when it comes to the development of ASVs, is to
make a system that is able to not collide with any surrounding obstacles during travel. This
is called Collision Avoidance (COLAV), and despite being investigated since the Second
World War [57], still remains a challenge.

1.2 Previous work

Maritime COLAV has been studied and discussed in a variety of ways by numerous people.
Tam et al. [57] gives a historical perspective of COLAV development and path planning,
especially focusing on close range encounters. It includes a walk-through of previously
published papers and tries to identify the better approaches and issues in close range ma-
rine navigation. Another historical review is given by Manley [42]. He presents the en-
abling technologies that have made Unmanned Surface Vessels (USVs) emerge to such
a useful platform for marine operations, and gives a prediction of the future outlook of
USVs.

Statheros et al. [54] follows along the same lines as [57], and presents a spherical un-
derstanding of autonomous ship navigation for collision avoidance together with some
theoretical COLAV background. Both classical methods based on mathematical models
and algorithms, and more soft-computing techniques based on Artificial Intelligence (AI)
are discussed. The paper also explains the link between the development of COLAV algo-
rithms and the human cognitive abilities.

A great number of direct methods on how to solve the COLAV problem exist. Kuwata et al.
[38] presents a collision avoidance algorithm based on what is called the Velocity Obsta-
cle (VO). It is an autonomous motion planning algorithm which calculates safe velocities
based on the positions and velocities of other obstacles at a given time. Other COLAV
methods rely on the concepts from Model Predictive Control (MPC) in order to solve the
COLAV problem [37, 17, 28]. By utilizing a dynamic vessel model, weather information,
grounding conditions etc., the Scenario-Based Model Predictive Control (SBMPC) by Jo-
hansen et. al [37] simulates future trajectories of all vessels in a situation, which is used to
determine compliance with the The International Regulations for Preventing Collision at
Sea (COLREGS).

One of the main challenges when developing a COLAV algorithm is the ability to evaluate
its performance. A COLAV algorithm should behave as specified by the COLREGS, but
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since these rules where composed during a time when one was to use ”common sense”
when interpreting the rules, the formulation is somewhat vague and non-deterministic.
Sparse research exists on the area of applying COLREGS evaluation to COLAV algo-
rithms. The first extensive work on this topic was done by Kyle Woerner [63], where a set
of metrics was developed to be used in the evaluation of COLAV algorithms.

A collision avoidance algorithm relies on information of the surroundings - information
often provided by a system called Automatic Identification System (AIS). AIS delivers
exact state information of the vessel carrying it to all other vessels in some vicinity which
also carries an AIS system, but having such a system is not an international requirement,
especially not for smaller vessels [35]. To be able to detect and retrieve state information
of all vessels, independent of AIS, other types of sensors are necessary, e.g. radar, Light
Detection And Ranging (LIDAR) and cameras. Since all sensor data contains some sort of
noise, the data can not be considered to give perfect information. Hence, there is a need for
some kind of pre-processing of the sensed data before it is used by the COLAV algorithm.

Target tracking aims to establish tracks based on a time series of measurements from sen-
sor data. False measurements should be filtered out, and even though not being directly
available from the sensed data, positions and velocities should be estimated. When hav-
ing multiple targets in a surveillance region, the tracking problem can be divided into two
subproblems: filtering and data association [6]. Filtering is the process of estimating the
targets kinematic state, while data association is the process of determining which mea-
surements originates from which targets and which measurements are false measurements
(clutter).

A popular single-target tracking method is Bar-Shalom’s Probabilistic Data Association
Filter (PDAF) [4]. The method relies on a number of assumptions - two of them being:
initialized targets and a Gaussian distribution of the past target state information. The
PDAF is extended to include track initiation and track death in the the Integrated Proba-
bilistic Data Association Filter (IPDAF) by Musicki [47]. Both the PDAF and the IPDAF
can be used in multi-target tracking applications, but only as multiple single-target filters,
resulting in poor performance when targets get in close vicinity of each other [6]. A multi-
target extension of the PDAF, the Joint Probabilistic Data Association Filter (JPDAF) is
given in [24], where the main difference compared to the PDAF is the calculation of the
association probabilities. All the methods above are combined in the Joint Integrated Prob-
abilistic Data Association Filter (JIPDAF) [46] - a multi-target tracking method with target
existence integration.

The research regarding COLAV with a tracking system utilizing exteroceptive sensors
is limited, but some publications exist. Shuster et al. [51] evaluates a COLAV system
utilizing a low-cost radar and a laser range sensor for tracking surrounding vessels with
the tracking method JPDAF. A high-speed ASV equipped with a maritime radar, is used to
demonstrate the performance of the PDAF tracking method alongside a COLAV method
based on the Dynamic Window (DW) approach in [18].
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1.3 Objective and scope

This thesis is a continuation of the MSc thesis of Paal Kristian Minne [44]. He developed
a framework for enabling automatic testing of collision avoidance algorithms. This was
done by extending a vessel simulator (CyberSea) by DNV GL to include a Guidance,
Navigation and Control (GNC) system together with a metric system used to evaluate
maritime collision scenarios. Two COLAV algorithms were implemented, one based on
the velocity obstacle [38] and the other based on a SBMPC algorithm [37]. The evaluation
system was based on the work by Kyle Woerner [63].

The main intention of this thesis is to further improve the realistic aspects of the CyberSea
simulator, where the final goal is to have a completely emulated COLAV system. Minne
did not include a tracking system, thus relying on always getting perfect surrounding state
information. In this thesis, a multi-target tracking system with track initialization is imple-
mented. False tracks and misdetections inevitably occur in a target tracking system, and
will affect the performance of the COLAV method.

The previous work on COLAV testing in CyberSea has only considered situations with up
to 3 vessels approaching the same point at the same time. Further increasing the number of
vessels in such situations will not be tested, as this type of scenarios is unlikely in the real
world. Instead, a new testing scheme made to provide successive interactions between a
larger amount of vessels, is presented. Inspired by real world situations, this is to enhance
the testing of the COLAV system.

When being challenged to noisy measurements, and in general, difficult conditions for
maritime COLAV, the COLAV algorithms should be able to make sensible judgments in
order to follow the rules of the sea (COLREGS) and to avoid collision. With the addition of
having smaller boats with high maneuverability on crossing courses, the tracking system
should be able to give sufficient state information of the surrounding obstacles.

1.4 Contributions

The main contributions of this thesis are:

• Implementation of a tracking system based on the JIPDAF into an already existing
COLAV testing framework. Although being given, the tracking system needed to
be completely redefined in order to work in the new environment.

• A completely new testing scheme which enables testing of a COLAV system in a
high number of successive obstacle scenarios, is presented.

• Testing of an entire COLAV system in a wide range of scenarios with varying track-
ing and COLAV conditions , and with the presence of other vessels with different
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maneuverability.

In addition to the main contributions listed above, a number of smaller improvements and
changes have been carried out:

• To be able to use the evaluation system implemented by Minne in the new testing
scheme, the stand-on penalties had to be adjusted in order to not penalize movement
towards the desired path. Additional bugs were fixed, and an number of other im-
provements were performed to make the evaluation metric coincides more with the
COLREGS.

• The SBMPC algorithm was initially tuned by Minne, but because of an error in the
simulator configuration, the extensive job of retuning the algorithms parameters had
to be done. In addition, the algorithm has been modified to include the existence
probability of the obstacle vessels.

• To improve the COLREGS compliance of the VO algorithm, the cost function in the
algorithm has seen several modifications.

• A new smaller boat with higher maneuverability is implemented to make the testing
scheme more realistic.

1.5 Thesis structure

Chapter 2 presents the mathematical concepts used to model and control the ASVs used
in this thesis, in addition to a section describing the relevant COLREGS rules. Chapter
3 introduce maritime COLAV, where the focus is given to the COLAV algorithms VO
and SBMPC. In chapter 4, the concepts and methods for handling uncertain measurement
data are presented, including a number of different tracking methods. The simulation
and testing environment is explained in chapter 5, while chapter 6 presents the results
and a discussion from the COLAV scenario testing. The last chapter, chapter 7, conclude
the work done in this thesis, with an additional section describing a number of possible
extensions and problems that should be investigated in future work.

1.6 Terminology

To reduce the confusion when it comes to definitions and the use of specific names and
terms, this section provides a description of some of the most used terms and their defini-
tions.
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• ”Own-ship” is the ship under consideration, and can be seen as ”our” ship, hence
the term own-ship.

• ”Obstacles” or ”targets” represents the same. These are other vessels in some vicin-
ity of the own-ship, which may or may not be visible.

• The terms ”COLAV algorithm” and ”COLAV method” are used to specify a specific
collision avoidance method, e.g. SBMPC.

• ”COLAV system” is used to define an entire collision avoidance system. In this
thesis, this includes a COLAV algorithm and a tracking system.
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Chapter 2
Vessel modeling, navigation and
control

This chapter introduces the concepts and methods used to control and model the ASVs
used in this thesis. A section presenting the rules of the sea (COLREGS) is also included.

2.1 Guidance, Navigation and Control (GNC)

GNC covers the design of systems controlling unmanned vehicles that are moving under
water, on the surface or in space [25]. In this thesis, we will cover all of these subjects, but
the main focus will lie on the concepts of guidance and navigation.

Guidance is in this context the concept of finding the desired position, velocity and accel-
eration of a marine vessel. This process is done continuously by examining the current
situation of the surroundings (which may include weather and wave information) and the
vessels current state. Advanced optimization methods are often used to do the explicit
calculation of the optimal trajectory or path for the ASV to follow. After determining the
desired state of the vessel, this state information is handed to the motion control system.

Navigation is in general the science of directing a vehicle by determining its world state
(i.e. position, attitude etc.). Global Navigation Systems (GNSS) together with sensors
such as cameras, LIDAR and radar are used to determine the state of the surroundings. By
combining the sensors with mathematical observers, the predicted state estimate will be
improved and give the most accurate description to the guidance system.
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For dynamically moving systems like ASVs, the Control part covers the determination of
control forces and moments by the actuators such that the desired position and velocity are
reached. Constructions of the control algorithm often involves the aspects of feedback and
feedforward control.

2.2 Vessel modeling and control

This section will present the modeling scheme and the mathematical necessities used to
model and control the marine vessels. The material is heavily based on [44], and the
methods and notation are from [25].

2.2.1 Marine vessel modeling

Two coordinate frames are used to describe the matrices and vectors: the North-East-
Down (NED) reference frame, dentoed {n}, and the body-fixed reference frame, denoted
{b}. The body-fixed reference frame is a moving coordinate frame that is fixed to the
vessel, while the NED reference frame is a constant coordinate frame fixed to the earth.
To give the reader an example of the notation used, the position of the origo of the body-
fixed frame {b} with respect to the inertial (NED) frame {n}, expressed in the inertial
frame, is given by pnb/n = [x, y]T .

3 Degress of Freedom (DOF) vessel model

The vessel model used in this thesis a 3 DOF model for displacement vessels, originally
from [25]. When only interested in the horizontal motion, this model is simple and will
give sufficient accuracy for the given application.

The dynamics associated with the motion in heave, roll and pitch are neglected, and it is
assumed that the vessel has homogeneous mass distribution with xz-plane symmetry and
that the origo of the {b} frame is set in the center line of the vessel. The vectorial form of
the equations of motion for a marine craft with this 3 DOF model can be written as

η̇ = R(ψ)ς
Mς̇ +CRB(ς)ς +CA(ς)ς +D(ς)ς = τ + τwind + τwave

(2.1)

where

η =
[
pnb/n
ψ

]
(2.2)

is the position and orientation of the vessel, and pnb/n = [x, y]T . R(ψ) is the transfor-
mation matrix from the body-fixed frame {b} to the NED frame {n}, given by the Euler
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angle ψ around the z-axis and

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.3)

ς = [vbb/n, r]T = [u, v, r]T is the linear and angular body-fixed velocity vector. The gener-
alized forces acting on the ship from the actuators are denoted, τ , while the environmental
forces from wind and waves, are denoted τwind and τwave.

The total inertia matrix M = MRB + MA, consisting of the rigid body inertia matrix
(MRB) and the hydrodynamic added mass matrix (MA), is given by

MRB =

m 0 0
0 m 0
0 0 Iz

 , MA =

Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 (2.4)

where m is the mass of the vessel and Iz is the moment of inertia about the z-axis. The
hydrodynamic coefficients (the elements of the added mass matrix MA) together with m
and Iz defines the behaviour and maneuverability of the vessel.

The rigid body and added mass coriolis-centripetal matrices, are given by

CRB(ς) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 , (2.5)

CA(ς) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (2.6)

where xg is the x-component of the vector from the center of gravity of the vessel to the
origin of the {b} frame, ~rg = [xg, yg, zg]T .

The damping matrixD(ς) usually consists of both non-linear and linear damping, but we
will approximate the damping by only including the linear damping. By not including the
non-linear damping, the complexity of the controller design is reduced and the directional
stability is enhanced [44]. The damping matrix is given by

D(ς) =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 . (2.7)

For a more thorough description of this 3 DOF vessel model, the reader is referred to [25].
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2.2.2 Low level controllers

To control the vessels (in surge, sway and yaw), [44] implemented a feedback linearizing
Multi-Input Multi-Output (MIMO) controller, given by

τ =

FxFy
Fn

 = M(−Kpς̃) + n(ς) (2.8)

Kp =

Kp,1 0 0
0 Kp,2 0
0 0 Kp,3

 , Kp,1,Kp,2,Kp,3 > 0 (2.9)

ς̃ = ς − ςd =

uv
r

−
udvd
rd

 (2.10)

where M is the inertia matrix from the 3 DOF vessel model and n(ς) is the non-linear
component

n(ς) = CRB(ς)ς +CA(ς)ς +D(ς)ς. (2.11)

The surge is assumed to equal the speed - a valid assumption, especially for large vessels.
Thus, ud is the desired speed given by the guidance system. vd is set to 0 as the controller
is used for path following, and rd is the desired yaw given by the heading controller

rd = Kp,ψ(ψd − ψ), Kp,ψ > 0. (2.12)

Controller gains

Both vessels used in this thesis (see subsection 5.1.3) are controlled by Equation 2.8 and
Equation 2.12. The controller gains used for the Platform Supply Vessel (PSV) are

KPSV
p =

1 0 0
0 1 0
0 0 1

 , KPSV
p,ψ = 0.08

and the controller gains for Gunnerus are

KG
p =

0.1 0 0
0 0.1 0
0 0 0.1

 , KG
p,ψ = 0.12.

2.2.3 ILOS guidance

The Line of Sight (LOS) guidance method is frequently used for path-following. The
method steers the vessel towards the path defined by the previous and the current way-
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points. If a heading controller is implemented, the desired heading may be given as the
angle between the path and the LOS vector (shown as ψd in Figure 2.1). This will lead the
vessel to track the path given by the waypoints.

Minne [44] describes a LOS guidance law from [25] used for following straight line paths
described by a sequence of waypoints, [pn1 ,pn2 , ...]T . By choosing the straight line between
two waypoints (pnk = [xk, yk]T and pnk+1 = [xk+1, yk+1]T ), the guidance scheme will use
the properties shown in Figure 2.1 to steer the vessel towards the straight line.

The angle between the north axis and the path line, called the path-tangential angle αk, is
a positive angle used to rotate the coordinates of the vessel to a path-fixed reference frame

αk = atan2(yk+1 − yk, xk+1 − xk). (2.13)

The coordinates of the vessel can then be described by

ε =
[
s(t)
e(t)

]
= Rp(αk)T (pn − pnk ) (2.14)

where pn = [x(t), y(t)]T is the position of the vessel, and the rotation matrix is given by

Rp(αk) =
[

cos(αk) −sin(αk)
sin(αk) cos(αk)

]
. (2.15)

s(t) is called the along-track distance and e(t) is the cross-track error, both shown in
Figure 2.1.

For path-following, the control objective is to make the cross-track error (e(t)) tend to zero

lim
t→∞

e(t) = 0. (2.16)

One method used to insure both Equation 2.16 and that the vessel steers along the LOS
vector, is called Lookahead-based steering. Minne [44] implemented an integral variation
of the LOS, called Integral Line of Sight (ILOS), used for situations where there exists
unknown disturbances such as ocean currents etc.

The desired course (or heading) is given by

χd(e) = αk + χr(r) (2.17)

χr(e) = −arctan
(
e+ σeint

∆

)
, ∆, σ > 0 (2.18)

where

ėint = ∆e
(e+ σeint)2 + ∆2 . (2.19)

∆ is the predefined lookahead distance and does the same as the proportional gain in a
regular P-controller. The smaller the size of ∆, the more aggressive heading to accomplish
e(t) → 0 is given by the controller. A larger ∆ will result in a much slower convergence
of the track-loss error, but there will be a greater deal of movement in the LOS direction.
The radius of the circular arc (in Figure 2.1) is found by the relation e(t)2 + ∆2 = R2

LOS .
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Figure 2.1: Line of sight guidance. Inspired by figure in [25].

ILOS guidance parameters

Both vessels used in this thesis (see subsection 5.1.3) use the same ILOS guidance param-
eters, given as

∆ = 2000, σ = 2.

The parameters for Gunnerus could be tuned differently as it is a much smaller vessel than
the PSV, however, the presented parameters resulted in a satisfying behaviour for both
vessels.

2.3 International regulations for avoiding collisions at sea
(COLREGS)

The current regulations used to determine correct behaviour for vessels at sea is called
the COLREGS, officially published by the International Maritime Organization (IMO) in
1972. These rules have a much longer history - dating back to the industrial revolution
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where the need for a set of standardized rules to be used in international waters became
apparent. From this time until 1972, a set of rules gradually emerged, culminating into the
COLREGS. After publishing the rules in 1972, they have been ratified by more than 140
countries - representing more than 97 percent of the world’s shipping tonnage [1].

The COLREGS include 38 rules divided into five sections: Part A - General, Part B -
Steering and Sailing, Part C - Lights and Shapes, Part D - Sound and Light signals, Part E
- Exemptions. In this thesis, the focus has been on Part B - Steering and Sailing, where the
rules of how a vessel should behave in collision situations are described. More specific,
only the rules 8(b,d), 13, 14, 15, 16 and 17 are used. The next subsection will give the
reader a more detailed description of these rules.

2.3.1 Rule description

This subsection provides an overview of the COLREGS rules used in this thesis. The
presented material is from [34] and [44].

22.5 ∘

Beam

22.5 ∘

Figure 2.2: COLREGS overtaking situation. The dashed lines represent the velocity vectors of the
vessels, while the continuous lines show the desired paths given by the COLREGS.
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Rule 8 - Action to avoid collision

For vessels in situations with a risk of collision, the action taken should be made in ample
time and the action itself should be readily apparent. In addition, the action taken should
result in a passing at a safe distance, and it should be in accordance with the other rules in
Part B.

Rule 13 - Overtaking situations

A vessel shall be deemed to be overtaking an other vessel when coming up from a direction
more than 22.5 degrees abaft the other vessels beam. The overtaking vessel should keep
out of the way of the vessel being overtaken. This situation is illustrated in Figure 2.2.

Rule 14 - Head-on situations

This occurs when two power-driven vessels are meeting on reciprocal or nearly reciprocal
courses and there is a risk of collision. Each vessel should alter their course to starboard
such that so that each shall pass on the port side of the other. Figure 2.3 shows a head-on
situation.

Figure 2.3: COLREGS head-on situation.

Rule 15 - Crossing situations

The vessel which has the other on her starboard side should keep out of the way of the
other and avoid passing ahead of the other vessel. Two crossing situations are shown in
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Figure 2.4.

Figure 2.4: COLREGS crossing situations.

Rule 16 - Action by give-away vessel

Every vessel which is directed to keep out of the way of another vessel, shall so far as
possible, take early and substantial action to keep well clear.

Rule 17 - Action by stand-on vessel

The vessel which is classified as the stand-on vessel, should keep her course and speed.
However, if it becomes apparent that the other vessel is not taking appropriate action to
keep out of the way, the stand-on vessel shall take action to avoid collision.
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Chapter 3
Maritime collision avoidance

This chapter presents some of the theory and methods used in maritime collision avoidance
systems. It starts by giving a background story of the development of COLAV for ASVs,
continuing with two sections about the COLAV methods used in this thesis, namely the
VO algorithm and the SBMPC algorithm. At last, there is a section describing some of the
other existing maritime COLAV algorithms.

3.1 Background

Autonomous Surface Vessels (ASVs), Unmanned Surface Vessels (USVs) or Autonomous
Surface Crafts (ASCs) are all different names of mostly the same category of vessels. As
the names imply, the operator is removed from the direct control of the vehicle - leaving
itself to decide what to do in a given situation. Mostly, the purpose of using a vessel is
to transport something or someone from one place to another. Two main aspects can be
derived from this: one is concerned with the problem of following a path connecting the
start and end point - called path planning. The other aspect is about not crashing into other
vessels or objects when following this path. This is called collision avoidance (COLAV).

Simple collision avoidance methods for maritime vessels started to appear in the early
1960s [57]. The focus of these early studies were situations where two ships were on a
collision course. One of the proposed solutions was a starboard maneuver where the LOS
vector should rotate counter clockwise during the maneuver. Since then, there have been
numerous studies related to the same situation but also more complex situations have been
studied.
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Since the early 90s, research regarding path planning for marine vessels has seen a huge
growth [57]. Path planning can be divided into two groups: the deterministic approach and
the heuristic approach. The deterministic approach finds the best solution by following a
set of predefined steps, while the heuristic method is only interested in finding an accept-
able solution by searching through a subspace of the total search space. As a result, the
heuristic approach requires less computation time and is preferred in simpler and faster
systems.

A similar distinction is seen for COLAV algorithms, where they can be divided into re-
active and deliberate algorithms [17]. Deliberate methods generate global paths based on
available data of the complete environment [52], while reactive algorithms only consider
the immediate available information from sensor data. Reactive algorithms are often pre-
ferred when the environment changes rapidly because of their usually low computational
cost, but as the decisions are based on only local information, these algorithms might find
suboptimal paths. All COLAV methods described in this thesis are reactive methods.

Today, the vessels are still controlled by humans, but assisted by advanced maritime con-
trol systems. The transition to a completely autonomous fleet of vessels may be a gradual
process, ranging over a period of a few decades [49]. The first applications is expected
to be on existing upgraded vessels, where a reduced number of crew members still is
on-board, ready for specific tasks or in case of problems. However, as mentioned in the
introduction, a number of high-level autonomous projects have started to appear [15, 43].

By introducing unmanned ships, a number of new possibilities regarding ship design and
production opens up. When having no people on board, there is no need for a deck-
house. Additional human-based constraints may also be removed, resulting in a cheaper
and lighter ship which is able to carry even more cargo. Being a company owning a fleet of
autonomous vessels, operation optimization and profit maximization may also be easier;
the best combination of route, cargo, maintenance schedule and fuel price for the fleet as
a whole can be identified by looking at individual ships [49].

Although bringing a wide variety of benefits, and the potential of reducing human based
errors, the introduction of autonomy to the maritime sector also induce a number of new
risks that need to be addressed. The identification of these risks and being able to handle
them in a satisfying manner is crucial.

3.2 Maritime COLAV based on model predictive control

Originally proposed by Johansen et al. [37], SBMPC is a collision avoidance method
based on the more familiar concept called MPC. MPC is a model based controller design
procedure which has proven to be effective in different types of applications, especially in
the process industry [61]. MPC in general can be summarized as follows:
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• A model of the plant is used to predict future states over finite prediction horizon
based on a sequence of inputs.

• An optimal set of control inputs are found by minimizing an objective function over
the prediction horizon.

• The first control input of the optimal set is applied to the plant. This process is
repeated at the next time step when measurement updates are available.

A number of other maritime COLAV methods also relies on the concepts from MPC. In
[28], a COLAV system with COLREGS compliance uses the SBMPC method to reduce
the dependability of knowing the exact guidance scheme. The result is a COLAV system
where it is possible to switch guidance strategies on the same vessel while running the
same SBMPC COLAV algorithm. Eriksen et. al [17] presents a deliberate COLAV method
based on the MPC principles and nonlinear programming. It is used as a middle level
COLAV method in a three layer hybrid COLAV architecture.

3.2.1 SBMPC architecture

In the SBMPC method, the objective function and its constraints are defined by the plant
model in addition to environmental forces, risk formalization, hazard and operational costs
and objectives. The main challenge is to find the optimal solution of the optimization
problem. Because of the complex nature of collision avoidance scenarios, non-convex
optimization formulations may arise, leaving the task of finding the optimal solution harder
and in some cases impossible. As a collision avoidance system, not finding a solution may
not be an alternative.

In order to mitigate these problems, concepts from the literature on robust MPC can be
used. A simple, but effective approach used in [37], is to select the control behavior based
on a comparison between cost and feasibility among a finite set of possible control behav-
iors. This is used in the SBMPC implementation, and thus avoiding the numerical opti-
mization present in conventional MPC. The drawbacks by doing this, is reduced degrees
of freedom available for control, making the process of determining the set of possible
control behaviours even more important.

As seen from Figure 3.1, the COLAV system requires information about the obstacles cur-
rent state as well as their future trajectories. For the mission planning module, navigation
information such as position, heading and velocity is needed to calculate a desired path.
The path information is then handed to the autopilot, but if this nominal trajectory causes
risk of collision, the COLAV system will adjust the trajectory such that collision is avoided
and COLREGS is satisfied. This new trajectory is chosen to be as close to the nominal one
as possible.

The modularity of the architecture proposed in Figure 3.1 shows that the COLAV system
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Figure 3.1: Overview of the modules and the information flow in the SBMPC architecture [37].

is separated from the steering system and mission planning module - making it easy to
change COLAV system or add it to existing system where additional safety is required.

3.2.2 SBMPC COLAV

The collision avoidance functionality in the SBMPC architecture is based on a set of as-
sumptions and choices. It is assumed that the COLAV system operates much faster than
real time - making it able to calculate the ”best” control input in a real-time system. The
optimization problem is solved for a given prediction horizon with re-optimization at reg-
ular intervals, often when new sensor data is available. The total set of scenarios is then
given a cost based on a predicted possibility for grounding, collision hazards and COL-
REGS compliance. The control input associated with the scenario with lowest score is
then passed on to the autopilot. The overall steps in the COLAV module can then be
summarized by:

1. For each control behaviour, the future trajectories of the own-ship and the obstacles
are predicted.

2. The trajectories (own-ship and obstacles) from one control behaviour, are evaluated
by assigning a cost based on a set of criteria. This criteria set may include risk of
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collision, COLREGS compliance etc.

3. Select the control behaviour that yields the lowest cost, and apply the first input to
the system.

4. Repeat this loop when new sensor measurements are available.

Trajectory prediction

Uncertainty in both the own-ship trajectory and trajectories of obstacles is one of the gen-
eral challenges for a COLAV method. To estimate the obstacles future states, a simple
straight line trajectory estimate is often used. It is assumed that the obstacles will continue
with the same velocity which they had at the last time step. When having little or no in-
formation on where the obstacles future path is going to lie, this simple estimation scheme
will provide enough accuracy, but more complex estimation schemes can also be applied.

The estimation of the own-ship’s trajectory is easier since ship dynamics information often
is attainable in addition to path information (from the path planner module). This makes
it possible to realize a manoeuvring model describing the ships motion. In this thesis, a 3
DOF horizontal plane motion model described in section 2.2.1 is used for this purpose.

Control behavior selection

The control behavior is decided by evaluating a finite number of different control behav-
iors. During the (future trajectory) estimation process, different control behaviour may be
applied. One such set of control behaviours, is called a scenario. Higher performance can
be expected if using different control behaviours, but at the cost of computational power.

Since a systems computational power is limited, not all control behaviors can be tested.
According to [37], a minimum set of alternative control behaviors that should be tested is:

• Course offset at {-90, -75, -60, -45, -30, -15, 0 , 15, 30, 45, 60, 75, 90} (in degrees).

• Keep speed (nominal propulsion), slow forward, stop and full reverse propulsion
commands.

The control behaviours are given by offsets, i.e., if ”keep speed” and a course offset
of 0, the nominal velocity is chosen. The propulsion commands are given by PC ∈
{−1, 0, 0.5, 1}.

Assuming that only one control behavior is used on the entire prediction horizon, there are
13 · 4 = 52 control behavior combinations. From a safety perspective it is desirable to test
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more than just one control behaviour. Let’s say the system is allowed to make p number
of changes to the control behavior, then the total number of scenarios to be tested is 52p.
This number grows exponentially with respect to the number of control behavior changes,
so from a computational point of view, the least amount of changes should be applied.

In this thesis, the evaluated scenarios a are taken from the set where only one control
behaviour is used, i.e. the number of scenarios equals the number of control behaviours.

COLREGS compliance

In order to determine if a collision is at risk and to find out whether or not the COL-
REGS are met, there is a need for a situation identification procedure. From COLAV and
COLREGS literature it is common to distinguish between four different situation types:
crossing, head-on, overtaking, being overtaken. When reaching this stage in the COLAV
process, the trajectories of the own-ship and the obstacles are predicted, making it able to
calculate predicted situations for all the different trajectories.

A

Ahead sector
Ahead sector

Head on 
sector

Figure 3.2: Sector information at a future time step used for hazard evaluation. Inspired by figure
in [37].

Figure 3.2 shows the properties used to determine the situation type at a given time step in a
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given scenario. The green dotted line is the predicted trajectory of the own-ship, calculated
by considering the current state of own-ship in addition to control behaviors and nominal
path given by way-points. The predicted trajectory of obstacle with index i is shown as the
red dotted line. This straight-line prediction is based on the most recent estimates of this
obstacle’s state. The green and red rectangles are used to indicate the position at a future
time step t for the own-ship and obstacle i, respectively. ~Lai (t) is a unit vector pointing in
the LOS direction from the own-ship to obstacle i in scenario a, while ~va0 (t) and ~vai (t) are
the predicted velocities at time t in scenario a for the own-ship and obstacle with index i,
respectively.

A set of Boolean variables are declared to be used in the scenario evaluation:

• To decide if an obstacle is so close that action has to be made in order to comply
with the COLREGS, a variable called CLOSE is set to TRUE if

da0,i(t) ≤ dcli (3.1)

where da0,i(t) is the distance from the own-ship to obstacle i and dcli is a parame-
ter determining the maximum range of where the COLREGS apply. This distance
should be adjusted based on the own-ship and obstacles manoeuvrability and pre-
diction uncertainty.

• The own-ship is said to be OVERTAKEN by obstacle i at time t in scenario a if the
obstacle has higher speed, is close to the own-ship and

~va0 (t) · ~vai (t) > cos(68.5◦) |~va0 (t)| |~vai (t)| (3.2)

where the angle 68.5◦ can be adjusted based on obstacle type and velocity.

• If the bearing angle of ~Lai (t) is larger than the heading angle of the own-ship, the
obstacle with index i at time t in scenario a is said to be STARBOARD of the own-
ship.

• A variable called HEAD-ON is set if obstacle i at time t in scenario a is close to the
own-ship, the obstacle speed ~vai (t) is not close to zero, and

~va0 (t) · ~vai (t) < −cos(22.5◦) |~va0 (t)| |~vai (t)| (3.3)

~va0 (t) · ~Lai (t) > cos(φahead) |~va0 (t)| (3.4)

where φahead is an angle that has to be found. The angle 22.5◦ can be adjusted and
is based on the angle now defined to be 68.5◦.

• Obstacle i is said to be CROSSED at time t in scenario a if it is close to the own-ship
and

~va0 (t) · ~vai (t) < cos(68.5◦) |~va0 (t)| |~vai (t)| (3.5)

where the angle 68.5◦ can be adjusted based on obstacle type and velocity.
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Figure 3.3: SBMPC trajectory prediction. The radius of the circles around the obstacle and the own-
ship are based on the COLREGS distance (dcl

i ) and the safe distance (dsafe
i ). Having an uncertain

estimate of the obstacle’s state will result in larger safety distances. This is illustrated by the larger
circles around the obstacle vessel for the future time step. The green colored vectors around the
own-ship is to visualize all the different search velocities.

Scenario evaluation

Based on the definitions and material presented earlier in this section, the scenario evalu-
ation quantification can be carried out. This is done by assigning a cost to each scenario -
a cost based on these three properties:

• Collision risk factor.

• COLREGS violation.

• Deviation from nominal trajectory.

The collision risk factor is given by
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Rai (t) =

 1
|t−t0|pr

(
dsafe

i

da
0,i

(t)

)qr

, if da0,i(t) ≤ d
safe
i

0, otherwise
(3.6)

where t0 is the current time and t is a future time instant. From a COLREGS perspective,
the parameters dsafei and qr ≥ 1 must be chosen such that appropriate distance are kept
to other vessels. If the predicted state of an obstacle is uncertain, the uncertainty measure
from the tracking system should be used to determine the distance dsafei . The parameter
pr ≥ 1

2 is used to weighting risks that are close in time higher than the ones that appear
later. This is due to more accurate predictions for the short-time risks and because there is
less time to take action. According to [37], typical choices for the exponents are pr = 1
and qr = 4.

To determine if the own-ship is violating any COLREGS rules at time t in scenario a, a
binary term µai (t) ∈ {0, 1} is introduced. µai (t) equals 1 if the COLREGS are violated, 0
if not, and is given by

µai (t) = RULE14 or RULE15 (3.7)

where

RULE14 = CLOSE & HEAD-ON & STARBOARD (3.8)
RULE15 = CLOSE & STARBOARD & CROSSED & NOT-OVERTAKEN. (3.9)

By combining the presented material in this subsection, the total cost associated with sce-
nario a based on available information at time t0, is given by

Ha(t0) = max
i

max
t∈D(t0)

(Rai (t) + κiµ
a
i (t) + f (P a, χaca)) (3.10)

where D(t0) = {t0, t0 +Ts, ..., t0 +Tpred} is the discrete sample times with Ts as sample
interval and Tpred as prediction horizon. f (P a, χaca) represents the cost related to path
following and is given by

f(P, δ) = kP (1− P ) + kχχ
2
ca + ∆P (P − Plast) + ∆χ(χca − χca,last) (3.11)

where kP and kχ are tuning parameters used to prioritize nominal speed and course, while
∆P and ∆χ are penalty functions used to influence the cost in order to prioritize readily
apparent maneuvers. Both course parameters (kχ and ∆χ) include two different parame-
ters based on if the course to be searched results in a turn to starboard or port.

The control behavior with the lowest cost is commanded to the autopilot module.

3.2.3 SBMPC parameter identification

The implementation of the SBMPC algorithm used in this thesis is set to update the control
offset every 10 seconds. This is mainly done in order to reduce the simulation time, and
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because of the slow dynamics of the simulated objects this will not have a significant affect
on the algorithm’s performance.

The minimum value of the safety parameters, dcli and dsafei , are chosen based on the eval-
uation metrics described in 5.3.2. When tracking is performed, each obstacle’s existence
probability is used to adjust dcli and dsafei according to

dcli = min
(

2dcli ,
dcli
εi

)
, (3.12)

dsafei = min

(
2dcli ,

dsafei

εi

)
(3.13)

where εi is the existence probability for obstacle i given by the tracking system. The more
certain the obstacle track is, the smaller the safety distances.

As for the remaining parameters, the values were found by tuning in a controlled environ-
ment until satisfactory behaviour was reached. As the tuning process for this algorithm
is quite comprehensive, the parameters used in this thesis should not be considered to be
perfect and there is a potential for improvement.

Table 3.1 lists all parameter values.

Parameter Value Unit
Tpred 600 s
dcli 2000∗ m
dsafei 1000∗ m
pr 2
qr 10
κi 10
kP 0.1
kχ,port 1
kχ,starboard 0.05
∆P 0.5
∆χ,port 0.5
∆χ,starboard 0.5

Table 3.1: Parameters for the SBMPC algorithm.

3.3 Velocity Obstacle (VO) COLAV

This section presents another COLAV method based on what is called the Velocity Obsta-
cle (VO). Originally developed by [21], the method was used to determine ”safe” velocities
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in dynamic environments for simple motion obstacles, e.g. 2 DOF robot manipulators. By
using the current positions and velocities of the surrounding obstacles to calculate relative
velocities (with the assumption of linear trajectories), safe velocities can be found. Ever
since the method was first released, a number of extensions have been proposed, e.g. the
”Reciprocal Velocity Obstacle” [59] used for navigation among actively moving obstacles
and a crowd simulation in [60].

Kuwata et. al [38] presented an algorithm utilizing the concept of VO in addition of being
able to handle the COLREGS. This system was implemented on a 12 meter long vessel
and tested in situations where up to four obstacles were present. Minne describes a VO
implementation based on the work by [38] and Stenersen [55], which is presented in the
following subsections.

3.3.1 The Veloctiy Obstacle

As defined in [38], the VO of obstacle B for own-ship A is given by

V OAB(vB) = {vA | λ(pA,vA − vB) ∩ (B ⊕−A) 6= ∅} (3.14)

where vB and vA are the velocity of obstacle B and the own-ship, respectively. pA is the
own-ships position, while A ⊕ B = {a + b | a ∈ A, b ∈ B} is called the Minkowski
sum. −A = {−a | a ∈ A} defines the reflection of a set, and λ(pA,vA − vB) is a vector
starting in the own-ships position pointing in the direction of the relative velocity between
the own-ship and the obstacle.

By taking the Mikowski sum of the geometry of obstacleB, B, and the reflection of the set
representation of the own-ships geometry, A, we get the combined geometry. If the centre
of the own-ship lies inside this set, a collision has occurred. Since the Mikowski sum is
a quite expensive calculation, a common simplification is to use a circle approximation of
the geometries of both the obstacle and the own-ship. This is seen in Figure 3.4. The own-
ship is now a circle with radius rA while the combined geometry is a circle with radius
rA + rB .

The interpretation of equation 3.14 can now be carried out. If the relative velocity vector
(vA − vB)) from the own-ship position (pA) to the combined geometry intersects, the ve-
locity vA is said to belong to the velocity obstacle induced by obstacle B (V OAB(vB)) and
will result in a collision. This is seen as the shape of a cone in Figure 3.4 (and Figure 3.5).

Even though the VO algorithm here is only outlined for one obstacle, it is easily trans-
formed to cases where multiple obstacles are present. The only difference is that one will
have an overall VO containing several VO sections (cones) for the individual obstacles.

The process of determining if a velocity lies inside the VO, boils down to find the left and
right edges of the cone induced by the obstacle. This can be done in a variety of ways, but
is not shown here, but we refer to [55] for one of these methods.
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A

Figure 3.4: The left figure shows the true Mikowski sum (based on figure from [38]), while the
circular approximation is shown on the right.

3.3.2 VO with COLREGS compliance

After the simplification process done in the previous section, and the addition that the cone
of the VO from the obstacle has been found, we are left with a simple collision avoidance
system which may be able to stay away of other obstacles. To be able to make more
complex decisions on which velocity to choose, additional functionality has to be added.

When the VO has been found, it is a trivial task to add COLREGS compliance function-
ality. One method, used by [44] originally from [38], is to divide the area around the VO
cone into three different regions (shown in Figure 3.5). Given a velocity, vA, the region
separation is used to determine which side the own-ship will pass the obstacle on. It is
then a straightforward task to check if the COLREGS are satisfied.

Mathematically, to find which region a specific velocity (vA) belongs to, [38] used the
relations given below. If a velocity vA lies in the V3 region - meaning that the relative
velocity points in a direction away from the obstacle, this relation has to be satisfied

(pB − pA) · (vA − vB) < 0. (3.15)
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Figure 3.5: Region separation used to determine which side the ASV will pass the obstacle on.
Inspired by figure in [44].

This velocity will result in larger distance between the own-ship and the obstacle. For
cases when vA is in region V1, we have

V1 = {vA | vA /∈ V OAB(vB), vA /∈ V3, [(pB − pA)× (vA − vB)]z < 0} (3.16)

where [·]z denotes the z component of the vector. Choosing a velocity with these prop-
erties will result in a situation where the ASV will pass the obstacle while having it on
the starboard side. If complying to the COLREGS, this region should not be chosen if the
active situation is either overtaking, head-on, or crossing from the right. Details regard-
ing this is discussed later on. For the last region (V2) to be active, vA has to satify this
expression

V2 = {va | va /∈ V OAB(vB), va /∈ V1}. (3.17)

This will result in a situation where the obstacle is passed by having it on the port side.

It is important to mention that if the obstacle vessel is crossing from the left (and in over-
taking scenarios), no COLREGS constraints are active because the responsible of avoiding
a critical situation lies in the hands of the obstacle vessel. If the obstacle vessel is not com-
plying with the COLREGS, and a dangerous situation is about to occur, the own-ship will
take action as the hazard avoidance in the method is still active.
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3.3.3 VO algorithm walk through

Precollision check

To increase the efficiency of the algorithm, a precollision check is performed before any
other calculation is done. The check removes not-relevant obstacles from further calcula-
tion. To give an example: If an obstacle is visible by the sensor system, but is so far away
in distance that collision is no way near in time and no COLREGS rules apply, then it is
no point in calculating a desired velocity based on state information about this obstacle.

The precollision check starts by calculating the Closest Point of Approach (CPA) between
the own-ship A and the obstacle vessel B. At first, the time to CPA, tCPA, is found by
using the positions and velocities of two vessels

tCPA =
{

0, if ||vA − vB || ≤ εV O
(pA−pB)·(vA−vB)
||vA−vB ||2 , otherwise.

(3.18)

The distance at CPA, dCPA, for the vessels is then calculated by

dCPA = ||(pA + vAtCPA)− (pB + vBtCPA)|| . (3.19)

For each moving vessel given by the sensor system, the algorithm examines COLREGS
compliance only if situations are likely to occur in near future, by checking if

0 ≤ tCPA ≤ tmax and dCPA ≤ dmax (3.20)

are satisfied.

Collision type determination

If the CPA of the obstacle in question satisfies the precollision check, the next step is to de-
termine what kind of COLREGS situation the obstacle will induce. Minne [44] describes
a method from [55] which uses the relative bearing to determine the type of the situation.

The relative bearing is the angle given by

β = atan2(yA − yB , xA − xB)− ψB (3.21)

where pA = [xA, yA], pB = [xB , yB ] and ψB is the yaw angle of the obstacle ship. atan2
is the four-quadrant version of the ordinary arctan function. The situation type is found by
only seeing the relative bearing from the obstacle’s point of view (see Figure 3.6). A new
variable β180 = β − 180◦, called the normalized relative bearing is defined. By applying
this, the four situation types are defined according to:

• Head-on: β180 ∈ [−15◦, 15◦)
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• Crossing from right: β180 ∈ [15◦, 112.5◦)

• Overtaking: β180 ∈ [112.5◦, 180◦) ∪ [−180◦,−112.5◦)

• Crossing from left: β180 ∈ [−112.5◦,−15◦)

Figure 3.6: Determination of situation type. Relative bearing β is shown. Inspired by figure from
[55].

Velocity determination

After determining the current situation type, there is a need to find the ”best” velocity
given these conditions. This is implemented as a search grid of possible headings and
speeds where each cell represents a velocity. For each cell, a cost is assigned based on: if a
collision will occur, if any COLREGS rules are active and how much it deviates from the
nominal velocity given by the ILOS controller. The cost function, originally formulated
by [55], is given by

C
′

ij = αcf
′

collision(ui, ψj) + βcfCOLREGS(ui, ψj) + ṽTijQṽij . (3.22)

f
′

collision is a boolean function returning 1 if a collision will occur with the given speed
(ui) and heading (ψj). If the COLREGS are violated, fCOLREGS returns 1, while αc and
βc are parameters that is used to determine the cost related to collision and COLREGS
violation, respectively. ṽij is given by

ṽij =
[
udcos(ψd)− uicos(ψj)
udsin(ψd)− uisin(ψj)

]
(3.23)

and represents the deviation from the desired speed (ud) and heading (ψd), while Q =

qc

[
1 0
0 1

]
is a weighting matrix used to assign a cost to the velocity deviation. After
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assigning a cost to every pair of speed and heading in the search grid, the pair with the
lowest score is found and fed to the next module in the COLAV system.

3.3.4 Cost function modifications

During the testing phase of the VO algorithm, it was seen that some situations were not
handled in accordance with the COLREGS. The algorithm was seen to handle crossing
situations, especially when being the give-way vessel, in a poor way. The algorithm of-
ten chose to reduce the speed and not alter the course to starboard. This resulted in the
obstacle vessel making avoiding maneuvers, which should not be necessary. There were
also head-on situations where the maneuvers weren’t apparent enough. So, to improve the
performance of the VO algorithm, a new set of functionality is added to the cost function.

As the algorithm already includes which COLREGS situation is active for a given obstacle,
this is used to influence the cost function in a more direct manner. First, we define a speed
penalty function, given by

fspeed =
{

min(1, |ud,last − ui|), if head-on or crossing from left
0, otherwise

(3.24)

where ud,last is the desired velocity from the previous time step. This function will make
speed alteration more expensive, and thus, course alteration relatively cheaper. As this
only will result in more course changes being taken, we need an additional penalty to
make the algorithm prefer course alteration to starboard (when this is desired). If the
current COLREGS situation is either head-on or crossing left, and

ψj − ψd,colreg < 0 (3.25)

where ψd,colreg was the desired heading the last time the COLREGS situation was up-
dated, a new boolean function fport = 1. This function is inspired by the evaluation
penalty PPortTurn described in 5.3.2.

The above cost function additions is made to improve the give-way vessels maneuvers, but
we also need to adjust the stand-on vessel response in crossing situations. This is done by
adjusting the boolean function, f

′

collision. If the current COLREGS situation is crossing
from left and the range to CPA is more than 2000 meters, the new function fcollision
returns 0. Based on the stand-on maneuver penalty in subsection 5.3.2, the stand-on vessel
is allowed to make collision avoiding maneuvers if being close to the CPA. Using the range
2000 meters, the stand-on vessel is not penalized according to this penalty.

The old cost-function (3.22) is replaced with the cost function given in (3.26). ιc and κc
are used to weight the new speed and port penalties, respectively.

Cij = αcfcollision(ui, ψj) + βcfCOLREGS(ui, ψj) + ιcfspeed(ui, ψj)
+ κcfport(ui, ψj) + ṽTijQṽij (3.26)
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3.3.5 VO parameter identification

All parameters used in the VO algorithm are found in Table 3.2. The values are chosen
such that the safety constraints described in 5.3.2 are satisfied.

The own-ship radius (rA) and obstacle-radius (rb) are set to ensure a passing distance of
1000 meters. To satisfy rule 8, tmax is chosen to ensure that action is taken in ample time.
The value of dmax is set to a significantly larger value than the combined radius of the
combined geometries. This is to ensure that the algorithm doesn’t assume that a collision
situation is over when it is still taking place.

The cost function’s adjustable parameters are chosen based on this simple logic: Collision
is the most critical, and should be avoided for all cause. Second, the COLREGS should
not be violated. Third, the velocity with the least deviation in speed and heading compared
to the desired velocity given by the ILOS controller should be chosen.

The search grid is divided into evenly sized speed and heading sections. The resolution
is 128 possible headings and 8 possible speeds, where the headings are centered around
the desired heading (ψd). The speed values are in the range [0m/s, 6m/s] and the heading
alterations are in the range [−135◦, 135◦].

Parameter Value Unit
rA 500 m
rB 500 m
tCPA 1200 s
dCPA 2000 m
εV O 0.1
αc 200
βc 100
ιc 50
κc 50
qc 1

Table 3.2: Parameters for the VO algorithm.

3.4 Other COLAV methods

A numerous number of other COLAV methods for marine vessels exist. This section gives
a short description of some of these methods.
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3.4.1 Edge following

Edge following (also called the Bug algorithm) is a simple COLAV algorithm which only
needs the relative angle and the distance to the object to calculate the new control input
[40, 58]. It is used in the fields of robotic navigation and for Underwater Autonomous
Vehicles (UAVs). The algorithm works by keeping a constant distance to the obstacle if
the obstacle lies in the predefined path which the system is to follow. For UAVs, sonar is
often used to estimate the obstacle boundary, but this can be hard or even impossible in
some situations. The algorithms also assumes a holonomic vehicle, which is not true for
an UAV [19]. So, in practise, a robust algorithm of this kind is not that easy to implement.

3.4.2 Dynamic window

Dynamic Window (DW) is another algorithm for collision avoidance used in several ap-
plications [53, 20]. It was originally developed for indoor mobile robots operating in
hazardous and populated environments [26], but as a number of other methods used in
robotics, this method has been applied and transformed for applications in other environ-
ments.

The main concept is to be able to deal with constraints imposed by limited velocities and
accelerations [26]. When computing the next steering command, the method only consid-
ers a short time interval in order to reduce the general motion planning problem. During
this time interval, the trajectories are approximated by circular curvatures, resulting in a
two-dimensional search space of translational and rotational velocities. The search space
is reduced such that the robot is able to stop safely, and by only considering velocities that
can be reached in the next time interval. These velocities form the dynamic window, which
is centered around the current velocity of the robot. A velocity is chosen by maximizing
an objective function on the velocities from the dynamic window.

The DW methods used in marine COLAV often relies on a set of assumptions and approx-
imations. The search space is found by neglecting sway motion and assuming constant
surge speed and yaw rate. To prevent the algorithm from producing infeasible input com-
mands, the dynamics of the vessel is taken into consideration. After the search space is
defined, a trajectory is predicted by maximizing an objective function on the search space.
The objective function is defined in a way which favors progression towards the end goal
and that distances to obstacles are kept. This local reactive COLAV algorithm is more
computationally heavy than for example the VO algorithm, but may perform better.
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3.4.3 Potential field

At last we have a method called potential field [27]. Here, the obstacles are modeled as
repulsive nodes while the target positions are modeled as attractive nodes. The system is
then set up to follow the gradient of this potential field, but because of large and complex
fields, the system may be trapped in local minima. Since the method does not include the
systems dynamics, infeasible solution may also be found. The method has been imple-
mented by numerous people, often in real-time systems, mainly because of its simplicity
and low computational cost.
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Chapter 4
Uncertainty and tracking

This chapter gives an introduction to how sensors and target tracking are used to handle
the uncertainty induced in real-life COLAV scenarios. The first section describes the most
used sensors for ASVs, which is followed by a general introduction to target tracking. The
next sections presents some of the most common target tracking methods, finishing of with
a section describing the implemented JIPDAF tracking system.

4.1 Uncertain world perception

All sensors include some kind of uncertainty. In autonomous systems where sensor in-
formation is a necessity for a well-functioning behavior, the need for sensor data filtering
and processing is evident. No single sensor can provide sufficient performance under all
possible conditions. Hence, in order to guarantee that the surrounding state information
is accurate enough at all times, it is common to include multiple- and different types of
sensors. The process of combining sensor data from multiple disparate sources to give
more accurate information than the sensors would have given individually, is called Sen-
sor fusion [16]. The sensor fusion process needs to be implemented such that subsequent
path planning and COLAV methods always have a detailed description of the surrounding
environment.

For ASVs in maritime environments, where all decision making is heavily based on sensor
data of the surroundings, there is a need for an accurate sensor system. The most used
sensors for ASVs are different types of radar, visual and thermal cameras, and LIDAR
(Light Detection And Ranging). Figure 4.1 illustrates the sensor fusion concept with some
of the possible maritime sensors available.
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In the following, a description of several sensors - their usage, strengths and shortcomings
are presented.

Radar AIS

Cameras

Weather
sensors Depth finder

Sensor fusion
module

Surrounding  
state information 

Figure 4.1: Sensor data are sent to the sensor fusion module for filtering and processing to make it
understandable by the rest of the system. Vessel model is from [23].

4.1.1 Visual and infrared camera

A visual camera provides a digital image over the covered region in space. The image
can be either monochrome or color, and is based on an array of passive light sensors,
as opposed to radar and LIDAR where electromagnetic light is transmitted. Since the
sensors are passive, the range to an object is not given, but can be found by using several
cameras together in a more complex process (stereo vision). The practical use of stereo
vision is limited because of poor accuracy - leaving the problem with range still present.
Several other challenges exist; feature-extraction is non-trivial compared to LIDAR and
radar. When there are large variations of light intensities in the image (very dark and very
bright), the camera struggles to capture the whole image in a good way. Also, when having
only very low light intensity, the visual camera does not perform well [33].

Some visual cameras cover parts of the infrared spectrum (near-IR), making it able to
capture images in dark conditions. Near-IR is reflected from objects also at night, but the
magnitude may be low. To strengthen the near-IR reflections from objects at night, one
can use an external IR source to illuminate the objects. Thermal cameras are used when
the radiation emitted has even higher wavelengths.
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4.1.2 Radar

A radar is an object detection system which uses radio waves to determine the state of the
surroundings. The radio waves transmitted from the radar antenna reflect off the objects
and return to the receiver. The sensor provides relative bearing, range information over a
wide range and possibly elevation. Radar is less affected by weather conditions compared
to the cameras, but echoes from rain, snow and the water surface can be a problem [29].
Reflections of this kind, from elements which are not the objects of interest, and false
measurements, are called clutter. This, together with issues with detecting close range
objects (for traditional pulsed radars), are the most challenging problems when using radar.

4.1.3 Light Detection And Ranging (LIDAR)

LIDAR is a sensor method made to measure the distance to a target by emitting laser light
and measure the reflected pulse with a sensor. Three-dimensional LIDARs can provide a
3D map of the surroundings with very high resolution. For marine applications, LIDARs
can be used for close-range objects where the radar has limited value. One of the draw-
backs when using LIDARs is the handling and processing of the large amount of data.
The range is also heavily influenced by the reflectivity of the objects as well as weather
conditions [33].

4.2 Target tracking

Target tracking is the procedure of estimating the state of a target (obstacle) based on
measurement data given by a sensor system. The state of the target often includes po-
sition, velocity and heading, but additional state information as range, accelerations etc.
may be included - all based on what kind of application the tracking is done. Since the
measurement information often is corrupted (noisy), a method to calculate an estimate
of the target’s state with presence of uncertainty is needed. This is accomplished by, in
addition to estimate the target’s state, give an estimate of the target’s uncertainty and the
uncertainty of the measurements. In situations where there exist several measurements,
the more uncertain measurements are given a lower weight than the measurements with
less uncertainty.

For situations that only includes one measurement per target, methods like the Kalman
Filter [11] or the particle filter [3] can be applied. A more challenging problem appears
when there are several possible measurements per target, and you don’t know which (if
any) measurement is target originated (Figure 4.2). This is one of the main problems
in all tracking systems and is called measurement origin uncertainty or data association
uncertainty.
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Figure 4.2: Situation with several measurements (zi) inside the validation region around the pre-
dicted measurement (ẑ).

In target tracking applications, the measurements from the sensors need to be incorporated
into the target state estimator. When using radar, the reflected signal from the target may
be found within a time interval based on the anticipated range to the target [4]. Detections
within this ”range gate” can then be associated with targets. If more measurements are
available (for instance bearing, time, frequency, line-of-sight angels etc.), these can be
combined to a multidimensional gate. This will make the search much more effective;
instead of searching through the whole measurement space, one chooses the points where
it is most likely that the target is. When a measurement is found within such a gate,
it becomes a valid association candidate, even though it may not originate from the the
target the gate pertains to. Because of this, this type of gate is called a validation gate or a
validation region.

Based on the predicted target state vector, the validation region is formed such that the
target measurement falls in it with high probability, called the gate probability [4], PG.
When one (or more) measurement is found within a validation region, we are faced with
the aspect of data association uncertainty. Misdetections may be present, and if several
measurements, we also need to figure out which of the measurements is target originated,
and in addition calculate the sufficient statistics for the target. This includes the state
estimate and its covariance matrix. Measurements outside the validation region is of no
interest because of the low probability that these are target originated.
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4.3 Motion and measurement model

A tracking method needs a suitable model of the target to be tracked. In tracking applica-
tions, observation data is often limited, making the target model even more important. The
target motion model used in this thesis is a white noise acceleration model [39], known as
a constant-velocity model. This is a very simple model, but it has proven to be suitable for
these type of tasks.

The state vector of our model is defined as x = [N,VN,E,VE], where N and E are the
north and east position of the target, and VN and VE are the north and east velocities of
the target. All parameters are given in the NED reference frame. The complete model is
defined as

xk+1 = FT xk + vk, p(vk) = N (vk; 0,QT ) (4.1)

FT =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , QT = σ2
a


T 4/4 T 3/2 0 0
T 3/2 T 2 0 0

0 0 T 4/4 T 3/2
0 0 T 3/2 T 2

 (4.2)

where T = tk+1− tk, which in general is time-varying. vk is the process noise with prob-
ability density function p(vk), where N denotes the normal distribution. The parameter
σa can be seen as the process noise strength and is chosen in correspondence to the targets
expected maneuverability [62].

We use a linear measurement model of the form

zk = Hxk + wk, p(wk) = N (wk; 0,R) (4.3)

where wk is the measurement noise and p(wk) is the normal probability density function.
H and R are given by

H =
[
1 0 0 0
0 0 1 0

]
, R = σ2

r

[
1 0
0 1

]
(4.4)

The measurement noise covariance matrix R used is constant and diagonal, reflecting an
assumption that the size of the target is larger than the resolution cells [62].

4.4 PDAF

The probabilistic data associating filter is a single-target Bayesian tracking method able to
handle cluttered environments. Originally presented by Bar-Shalom et. al [7], the method
has been applied to a number of different tracking applications [48, 41, 5], mainly because
of its simple and effective tracking scheme.
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The PDAF method calculates the association probabilities to the target being tracked for
each measurements inside the validation region. The calculation is done based on the
distance from the measurement to the estimated target position, i.e. a measurement close
in distance to the estimated target position is given a higher probability of being target
originated than a measurement further away. This concept is shown in Figure 4.3.
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Figure 4.3: PDAF state estimation update where the updated target estimate ẑk|k is weighted based
on the distance from the validated measurements zi

k to the predicted ẑ1
k|k−1.

The PDAF relies on a set of assumptions:

• There is only one target of interest, whose kinematic model is given by equation 4.1
and 4.3.

• The track has been initialized.

• At each time step, a validation region defined by equation (4.10) is set up.

• Among possibly several validated measurements, at most one can be target origi-
nated.

• The remaining measurements are assumed to be clutter or false alarms and are mod-
eled as independent and identically distributed with uniform spatial distribution.
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• The target detections occur independently over time with known probability PD.

• The past information about the target is summarized approximately by

p (xk−1|Z1:k−1) = N (xk−1; x̂k−1,Pk−1) (4.5)

which is the key assumption of the PDAF. Z1:k−1 is the cumulative set of all mea-
surements up to and including time step k − 1.

4.4.1 PDAF Tracking

The propagation of tracks and covariance is assumed to evolve in time as the general
Kalman filter prediction equations

x̂k|k−1 = FT x̂k−1|k−1 (4.6)

Pk|k−1 = FTPk−1|k−1FTT + QT (4.7)
ẑk = Hx̂k|k−1 (4.8)

Sk = HPk|k−1HT + R (4.9)

The Normalized Innovation Squared (NIS) can then be calculated by

NIS = (zik − ẑk)TS−1
k (zik − ẑk) = νiTk S−1

k νik < γG (4.10)

where νik is called the measurement innovation. The NIS defines an elliptic region (the
validation region) where the semiaxes of the ellipsoid are the square roots of the eigen-
values of γGS. γG is the gate threshold which is obtained from the inverse Cumulative
Distribution Function (CDF) of the χ2-distribution with the degrees of freedom equal the
dimension of the measurement vector zk. This threshold is used to determine if the mea-
surement is to be associated with the target, and is usually chosen such that the target falls
in the validation region with high probability (PG).

The state update equation is given by

x̂k = x̂k|k−1 + Kkνk (4.11)

νk =
mk∑
i=1

βikν
i
k (4.12)

βik = 1
c

exp
(
−1

2ν
iT
k S−1

k ν
i
k

)
, i = 1...mk (4.13)

β0
k = 1

c

2(1− PDPG)
γG

mk (4.14)

with νk as the combined innovation, mk as the total number of measurements inside the
validation region and c as a normalization constant. βik is the probability of measurement
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zi being the true target measurement, and β0
k is probability of no measurement being target

originated. The gain Kk and the updated covariance are calculated according to

Kk = Pk|k−1HTS−1
k (4.15)

Pk = β0
kPk|k−1 + (1− β0

k)Pck + P̃k (4.16)

where the covariance of the state updated with the correct measurement is

Pck = Pk|k−1 −KkSkKT
k (4.17)

and the last term, called the Spread of Innovations (SOI), is given by

P̃k = Kk

(
mk∑
i=1

βikν
i
kν

iT
k − νkνTk

)
KT
k (4.18)

All three terms of equation (4.16) can be further analyzed. With probability β0
k , there are

no correct measurements, resulting in no state estimation update. This is shown in (4.16)
as weighting the prediction covariance with β0

k . When there exist a correct measurement,
the second term accounts for this by weighting the updated covariance Pck with 1−β0

k . P̃k
is added to include the measurement origin uncertainty because we do not know which of
the validated measurements is correct. P̃k is positive semidefinite, therefore always adding
more (or no) uncertainty to the system.

Because of the relatively simple state-estimation scheme, PDAFs computational cost is
only about 50% higher than the ordinary Kalman Filter [4]. In multi-tracking scenarios,
the PDAF can be used by running one filter for each target. This becomes problematic if
some of the targets get in close vicinity of each other. Then the risk of track loss increases
and track swapping may occur. A particularly dangerous situation where both tracks is
between the two targets may also occur. These examples are called track coalescence and
is a well-known problem for these kinds of methods.

4.5 JPDAF

The multi-target extension of the PDAF is introduced with the Joint Probabilistic Data
Association Filter (JPDAF) [24]. The main difference compared to the PDAF lies in the
calculation of the measurement-to-target association probabilities. Where the PDAF mod-
els all incorrect measurements as random interference with uniform spatial distribution,
JPDAF allows a validated measurement to originate from another target. In tracking situ-
ations where a neighboring target’s measurement falls in the validation region of another
target over several time stamps, and therefore acts as a persistent interference, the perfor-
mance of the PDAF significantly degrades [4].

In addition of assuming a known number of established tracks in the surveillance region,
the JPDAF relies on some of the assumptions from the PDAF: The past system information
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is summarized by an approximate sufficient statistics, consisting of a Gaussian distributed
mean along with covariances for each target, and each target is modeled by (4.1) - (4.3).

The key element in the JPDAF is the evaluation of the conditional probabilities of the
association hypothesis. An association hypothesis, ak, can be defined as a vector ak =
[ak(1),ak(2), ...,ak(n)]T such that

ak(t) =
{
j if measurement j is claimed by target t
0 if no measurement is claimed by target t

(4.19)

where j = 1, ..,mk and t = 0, 1, ..., n is the number of measurements and targets, respec-
tively.

Based on the modeling of the false measurements, the equation of the joint association
probabilities (P{ak|Z1:k}, where Z1:k is the the cumulative set of observations up until
time k) can be found. (This calculation is not shown here as a more general version of the
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same equation is presented later on for the JIPDAF.)

The state estimation is done in a similar manner as in the PDAF, where it is assumed that
the states of the targets conditioned on the past observations are mutually independent.
To calculate the targets’ state estimates, the marginal association probabilities are needed.
These are obtained from the joint association probabilities by summing over all joint events
in which the marginal event of interest occurs. The remaining estimation is done as in the
PDAF, with the equations (4.11)-(4.18).

4.6 JIPDAF

The Joint Integrated Probabilistic Data Association Filter (JIPDAF) [46] is a multi-target
tracking filter which includes a track quality measure - a direct generalization of the IPDAF
and the JPDAF. Being based on mostly the same concepts as in the PDAF, a high number
of similarities is seen. The kinematic prediction and update steps (section 4.4.1) are, for a
given target, the same as in the PDAF. For each target, all prior measurement information
are approximated by a single Gaussian which defines a validation area around the predicted
measurement. This is then used to determine if a measurement is to be identified with a
target or not. The main difference is the calculation of the association probabilities (as in
the JPDAF), and the addition of track existence probabilities (from the IPDAF).

The following derivation is based on the work from [10, 46, 6].

4.6.1 Assumptions

The number of existing targets is assumed to be nk−1 at time step k − 1, and we assume
that no target births occur. At each time step, the set of new measurements is denoted
Zk, while the cumulative set of measurements up to and including time step k is Z1:k.
In addition, each track is described by a state estimate x̂tk, an error covariance matrix Ptk
and a probability of track existence. The number of false measurements are assumed to
be Poisson distributed with intensity λP , and each existing target survive from time step
k − 1 to k with probability PS .

4.6.2 Target existence and visibility modeling

Target existence propagation is modeled as a Markov chain. Musicki and Evans [46] uses
a Markov model which distinguishes three possibilities: the target exists and is detectable
(with a known probability of detection, PD), the target exists but is not detectable and the
target does not exist.
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In this thesis, a similar approach for target existence is used, but track existence and track
visibility (detectability) are separated and assumed decoupled. This means that death prob-
ability is assumed to not depend on the prior visibility state. If we denote the predicted
existence probability by εtk|k−1 and the predicted visibility probability by ηtk|k−1, the pre-
diction equations are given by[

εtk|k−1
1− εtk|k−1

]
=
[
pε11 pε12
pε21 pε22

] [
εtk−1

1− εtk−1

]
(4.20)[

ηtk|k−1
1− ηtk|k−1

]
=
[
pη11 pη12
pη21 pη22

] [
ηtk−1

1− ηtk−1

]
. (4.21)

For both models, the Markov chain coefficients must satisfy

pε11 + pε12 = pε21 + pε22

= pη11 + pη12

= pη21 + pη22 = 1 (4.22)

By assuming no-target births, the multi-target Markov model is given entirely given by
the survival of existing targets. The death probability for a given target is assumed to be
PS = 0.25.

4.6.3 JIPDAF data association

As for the JPDAF, the JIPDAF relies on the calculation of the joint association probabili-
ties, P{ak|Z1:k}. Using Bayes’ formula, the joint association probabilities can be written

P{ak|Z1:k} =P{ak|Zk,mk, Z1:k−1} ∝ p[Zk|ak,mk, Z1:k−1]P{ak|Z1:k−1,mk}
=p[Zk|ak,mk, Z1:k−1]P{ak|mk}. (4.23)

The next step is to find concrete expressions for each term in (4.23).

The likelihood of measurement function

Let ϕ denote the number of false measurements in event ak. Following along the lines of
[10], the first term of (4.23) can be written as

p[Zk|ak,mk, Z1:k−1] = 1
V ϕ

∏
t:ak(t)>0

[
λlt,ak(t)

]
(4.24)

where V is the volume of the surveillance region and lt,ak(t) is the likelihood ratio defined
by

lt,ak(t) = 1
λ
N [zak(t)

k ; Hx̂t,ak(t)
k ,HPt,ak(t)

k HT + R]. (4.25)
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The posterior event-conditional states and covariances used to define the likelihood ratio,
are given by

x̂t,ak(t)
k =

{
x̂tk|k−1 if ak(t) = 0
x̂tk|k−1 + Kt

k(zak(t)
k −Hx̂tk|k−1) if ak(t) > 0

(4.26)

Pt,ak(t)
k =

{
Ptk|k−1 if ak(t) = 0
(I−Kt

kH)Ptk|k−1+ if ak(t) > 0
(4.27)

where Kt
k = Ptk|k−1HT (HPtk|k−1HT + R)−1 is the Kalman gain for track number t.

The prior joint association probabilities

Given the hypothesis ak, the number of false measurements ϕ and the number of assumed
detected targets mk − ϕ are given. Defining a new vector δ(ak), used to indicate which
targets have an associated measurement corresponding to event ak, the second term of
equation (4.23) can be rewritten as

P{ak|mk} = P{ak|δ(ak),mk}P{mk|δ(ak)}P{δ(ak)}. (4.28)

Continuing on, the unconditional probability of the combined events in δ(ak), is based
entirely on the individual detection events. This yields

P{δ(ak)} =
∏

t:ak(t)=0

(1− εtk|k−1P
t
Dη

t
k|k−1)

∏
t:ak(t)>0

εtk|k−1P
t
Dη

t
k|k−1 (4.29)

where εtk|k−1 and ηtk|k−1 are the prior existence and visibility probability of target t, re-
spectively. Assuming that the number of false measurements are Poission distributed with
the rate λPV , we have

P{mk|δ(ak)} = eV λP
(V λP )ϕ

ϕ! . (4.30)

The second term in (4.28) is obtained from the following reasoning: Given the targets-
with-measurement vector δ(ak), we have mk!

ϕ! equally likely permutations of the measure-
ments assumed to be target originated, where each permutation will lead to a different
association hypothesis (ak). Therefore,

P{ak|δ(ak),mk} = ϕ!
mk! (4.31)
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The posterior joint association probabilities

Combining the equations (4.29)-(4.31) to one equation and multiplying it by the likelihood
(4.24), the posterior probabilities of the association hypothesis are given by

P{ak|Z1:k} ∝
∏

t:ak(t)=0

(1− εtk|k−1PDη
t
k|k−1)

∏
t:ak(t)>0

εtk|k−1PDη
t
k|k−1l

t,ak(t) (4.32)

where it is seen that the V terms have been canceled and the λP terms have been moved
into the proportionality constant. This can be done as the power of λP is always mk [6].

4.6.4 Marginal association probabilities

Based on the same principle as in the PDAF, we want to merge different hypothesis such
that one is left with one Gaussian for each track. Moreover, we want to find the marginal
probabilities, i. e. the probabilities for measurement j originating from target t, given by

βt,jk ∝
∑

ak s.t. ak(t)=j

P{ak|Z1:k}. (4.33)

Once these have been calculated, the posterior Gaussian approximation for each track can
be found by

ptk(xtk) ∝
mk∑
j=0

βt,jk N (xtk; x̂t,jk ,Pt,jk ) ≈ N (xtk; x̂tk,P
t
k). (4.34)

The merged state x̂tk and covariance Ptk are found by using the state update equations from
section 4.4.1.

4.6.5 Posterior existence and visibility probabilities

The last step of the tracking scheme is to update each tracks existence and visibility prob-
abilities. First, we define the quantities

εt,0k =
(1− PDηtk|k−1)

1− εtk|k−1PDη
t
k|k−1

εtk|k−1 (4.35)

ηt,0k = (1− PD)
1− PDηtk|k−1

ηtk|k−1 (4.36)

representing the posterior existence and visibility probabilities given that no measurement
originates from target t. The marginal existence and visibility probabilities can then be
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calculated by

εtk = βt,0k εt,0k +
mk∑
j=1

βt,jk (4.37)

ηtk = 1
εtk

βt,0k εt,0k ηt,0k +
mk∑
j=1

βt,jk

 . (4.38)

The derivation of (4.37) and (4.38) can be found in [10].

4.6.6 Efficiency improvements

As the number of association hypothesis grows exponentially with respect to the number of
measurements and tracks, the calculation of the marginal association probabilities (4.33)
may be too expensive to calculate completely. If the calculation is based on, for example,
2 tracks and 2 measurements, the calculation is perfectly feasible. However, if the number
of tracks and/or measurements are increased by only a few numbers, approximations is
needed. To mitigate this problem, several techniques can be used.

The first efficiency improvement is to use validation gating, the same concept as in the
PDAF, section 4.4.1. This ensures that, for each track, only the most likely measure-
ments are included in the association calculation. Another similar approach for multi-
target methods, is to cluster all tracks which shares associated measurements, together
(Figure 4.5). As the number of tracks and measurements are reduced, the resulting num-
ber of association hypothesis is significantly reduced.

Several other techniques for complexity mitigation exist [13, 32, 45], where we will take
a deeper look at Murty’s M-best method [13] as this is used in the implemented tracking
system.

Murty’s M-best method

Murty’s M-best method tries to generate the M-most probable association hypothesis. This
is done by utilizing another method, called Auction, which is used for solving the more
general optimal assignment problem. The main concept in the action method is that we
have a set of customers bidding for a larger set of items. The algorithm terminates when
all customers are satisfied with their items.

Continuing with Murty’s method, the method maintains a list L of problem-solution pairs,
AM = (Ap,As), where the problem Ap is a score matrix and the solution As represents
an assignment of measurements to tracks. The values of the score matrix Ap is based
on the association probabilities from the hypothesis represented by As. The idea is to

50



z ̂ 

t1

k|k−1

z
t1

k,2

z
t1,2

k,1

z ̂ 

t2

k|k−1

z ̂ 

t3

k|k−1
z
t3

k,1

z
t2,4

k,2

z ̂ 

t4

k|k−1

z
t4

k,1

Figure 4.5: All tracks which have associated measurements in common, are connected to one clus-
ter. This is seen as the grey colored union of the given validation regions.

first solve the original assignment problem by using the Auction method. The method
then takes the current best problem-solution pair and removes the current assignments
before recalculating this new modified assignment problem. This is used to gradually
move towards a better assignment solution. The method terminates when a given number
of solutions have been found or there are no problems left in L.

4.7 The JIPDAF implementation

In addition to the JIPDAF theory given in section 4.6, the implemented JIPDAF tracking
system needs some additional functionality in order to work. The next section describes the
method used to initiate tracks, followed by a section describing how radar measurements
are emulated. In the last section, all tracking parameters are given.
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4.7.1 Track initiation

The track initiation procedure used in this thesis is a simple, yet effective approach. At
each time steps, all measurements not associated with any target are stored to the next time
step. At the next time step, for each measurement from the new set of non-associated mea-
surements, the distance to all the previous non-associated measurements are calculated. If
the distance for any measurement are closer than some specified max range, a new track is
formed with a set of predefined initiation parameters.

Denoting the set of non-associated measurements, %k−1, we have

|%dk − %bk−1| < Tvmax d = 1, ..., ϕk, b = 1, ..., ϕk−1 (4.39)

where vmax is chosen to be larger than the maximum velocity of the vessel and T = tk −
tk−1 is the tracker sample time. If equation (4.39) is satisfied, the associated measurements
are used to generate the initial values (covariances etc.) for a new track. For each new
track, the existence and observability probabilities are set to εtinit = 0.5 and ηtinit = 0.8.

The implemented tracking system does not directly distinguish between a tentative track
and a confirmed track. All existing tracks are treated the same inside the tracking system,
but for a track to be delivered to the COLAV algorithm, the existence probability needs to
exceed 0.5. This is to ensure that only high probability tracks are treated as true obstacles.
Setting this threshold to be higher than 0.5 is also to make sure newly initiated tracks are
not included.

4.7.2 Radar measurement emulation

The radar measurement emulation is done by adding random measurements to the mea-
surement vector from a simulated radar grid, shown in Figure 4.6. The grid resolution is
set to 1000× 512, where 1000 is the number of sections in the radial direction and 512 is
the number of sections in azimuth.

As the simulator environment doesn’t include support for a Poisson distribution, the num-
ber of clutter measurement is drawn from a uniform distribution with a given average. The
average number of clutter measurements is calculated based on the probability that a false
measurement appears in a given cell, denoted PFA. By varying PFA and the detection
probability PD, different tracking conditions can be emulated.

4.7.3 Tracking parameters

As the implemented tracking system utilizes the motion and measurement model in sec-
tion 4.3, methods from the PDAF in subsection 4.4.1 in addition to JIPDAF theory from
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Figure 4.6: A radar grid around the vessel is created, where a random number of measurement are
detected.

section 4.6, a number of parameters has to be defined. These are listed in Table 4.1.

Parameter Value
σa 1.5
σr 1
PG 0.99
pε11 0.99
pε12 0.01
pε21 0
pε22 1
pη11 0.9
pη12 0.1
pη21 0.48
pη22 0.52

Table 4.1: Parameters used in the implemented tracking system.

4.8 Other tracking methods

4.8.1 Multi Hypothesis Tracker

The Multi Hypothesis Tracker (MHT) method uses a completely different procedure for
state-update and measurement handling; alternative hypothesis are maintained and propa-
gated further in time. This makes it possible to postpone which measurement to choose if
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the information available at that time is uncertain or missing. So, whenever observation-
to-track conflict situations occur, a new data association hypothesis is formed. Instead of
merging the hypothesis as in PDAF/JPDAF, the hypothesis is propagated into the future
in anticipation that upcoming data will resolve the uncertainty [8]. For each hypothesis,
a probability is given based on how well the measurements fits the tracks which are con-
tained in the hypothesis.

The logic which the MHT relies on, namely having several hypothesis at the same time, is
both its weakness and strength. The number of hypothesis (and tracks within this hypothe-
sis) may see an exponential growth because of the addition and propagation of hypothesis.
Techniques like clustering, track pruning and merging have been developed to mitigate
this problem.
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Chapter 5
Simulation setup

This chapter presents the modules and methods used to simulate and evaluate the COLAV
system. The simulator environment is first presented, followed by a description of how the
scenarios are generated. The final section introduces the evaluation metrics used to quan-
tify COLREGS compliance. Figure 5.1 shows the overall modules and the chronological
order of the testing process.

COLAV simulation
in CyberSea

Scenario
generationTest case Evaluation

tool

Simulation

Scenario
generation
parameters

Simulation
logs

Own-ship's
state

New
obstacles

Figure 5.1: Overview of the testing procedure. The test case decides what type of scenarios are
to be simulated, which is defined by the scenario generation parameters. During the simulation
process, the scenario generation module generates scenarios based on the initial scenario generation
parameters given by the test case and the own-ship’s state. After finishing the simulation process,
the simulation logs are delivered to the evaluation tool for further analysis. The analysis is based on
a number of evaluation metrics used to determine COLREGS compliance.

55



5.1 Simulation environment

5.1.1 HIL and SIL testing

The testing of the COLAV system is done in the framework of a simulator provided by
DNV GL, called CyberSea. CyberSea enables what is called Hardware-In-the-Loop (HIL)
testing. HIL testing means that there is something physical connected to the real-time
simulation [12]. When performing HIL-testing in the maritime sector, the physical vessel
is often replaced by a HIL-simulator. The HIL-simulator emulates the vessels motion in
response to simulated environmental conditions, failure modes injected by the user etc.,
while the control software typically runs on a seperate hardware module [36]. HIL testing
is not directly used in this thesis, instead the testing technique called Software-In-the-Loop
is used.

In general, SIL testing is used to test the software of a system. All required hardware
modules are emulated - making it easier to control the process execution [12]. In addition,
not depending on physical equipment, sometimes heavy or impossible to ship to the same
location, makes the testing process much more flexible; all testing may be done at one
location, maybe fully virtual in a cloud-based solution. One of the main challenges when
it comes to SIL-testing is the accuracy of the emulated hardware-modules. To be a reliable
testing method, the model accuracy has to be as close to the real-life modules as possible.

As seen by the gray colored box in Figure 5.2, the distinction between the emulated hard-
ware and the rest of the system is evident. The main point is that the control system should
not be able to tell the difference between the emulated hardware and a real marine ves-
sel. In the simulator we find accurate ship dynamic modelling together with actuators and
sensors.

In general, simulation compared to real-life testing is much more effective. The simulation
can be much faster than real-time, quality control is easier to introduce, specific tests cases
are easier to provoke, time and money savings etc. Also, more dangerous situations can
be tested without damaging equipment or people.
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Figure 5.2: Overview of the modules in the CyberSea simulator. The green boxes represents mod-
ules provided by DNV GL, while the ”blue” modules have been implemented by Minne and in this
thesis. The figure is based on a figure from [44].
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5.1.2 CyberSea

An overview of the modules used in the CyberSea simulator are presented in Figure 5.2.
The ”PSV Hull” module models the dynamics of the hull of a PSV, the ”Thrusters” module
models the thruster dynamics, the ”Thruster Allocation” module implements the distribu-
tion of generalized forces to the thrusters, while the environmental forces such as waves,
current and wind are modeled by the last green colored module.

The blue colored boxes are additional modules implemented to enable testing of COLAV
systems. The yellow colored box defines the entire emulated ASV (the own-ship), while
the boxes ”outside” of this are assumed separated from the ASV system. It is important
to notice that the module and signal information shown in Figure 5.2 is not complete, i.e.
only the most important information are presented.

5.1.3 Vessel models

In order to make the simulation process more realistic, two vessels with significantly dif-
ferent maneuverability are used as obstacle vessels. A PSV will serve as the large slowly
state changing vessel, while the NTNU-boat Gunnerus will provide the simulation with a
smaller faster moving vessel with higher maneuverability.

The PSV modeled in CyberSea is used as the System Under Test (SUT) in this thesis. This
model is an accurate 6 DOF model with thruster allocation. The obstacles are modeled
by the simpler 3 DOF maneuvering model described in section 2.2.1. Thus, the obstacle
PSVs are not modeled with the same accuracy as the own-ship PSV. This is because the 3
DOF model will give sufficient behavior accuracy for this application.

The 3 DOF model relies on maneuvering information such as hydrodynamic coefficients
etc. This information is not listed explicitly as the values of the different parameters may
be hard to interpret. If the reader find it crucial to know, all PSV information can be found
in section 4.2 in [44]. The data for Gunnerus are based on a number of Planar Motion
Mechanism (PMM) tests performed prior to Gunnerus’ refit [50, 30].

Both vessels use the same low level controllers and ILOS guidance method, but the con-
troller gains are adjusted for the specific vessel. This is due to the fact that Gunnerus
doesn’t have the same power system as the PSV. The controller gains are listed in subsec-
tion 2.2.2.
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Figure 5.3: A PSV similar to the one used in this thesis. Image source: https://www.flickr.
com/photos/zeesenboot/10317626005/.

Platform supply vessel

The first vessel is a Platform supply vessel (PSV), normally used to supply offshore oil
and gas platforms with equipment and personnel. The PSV weights about 15500 tons, has
a length of 116 meters and is 25 meters wide. A similar vessel as the PSV is shown in
Figure 5.3.

Gunnerus

The second vessel is NTNU’s research vessel R/V Gunnerus (Figure 5.4). Gunnerus is
equipped with a dynamic positioning system and the latest technology for a variety of re-
search activities. It is also used for educational purposes for the marine courses at NTNU,
as it contains both a lecture room and a set of useful laboratories. Gunnerus has a length
of 31 meters, a width of about 10 meters and weights 75 tons.

5.2 Testing methodology

5.2.1 Iterative geometric testing

Woerner [63] presented a testing scheme called Iterative Geometric Testing (IGT), where
the purpose was to make a testing scheme that challenges a COLAV system to a wide range
of collision scenarios. The COLAV system was to be exposed to multi-vehicle, multi-
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Figure 5.4: R/V Gunnerus starboard side view. Image source: https://www.ntnu.edu/
oceans/gunnerus.

rule and conflicting scenarios. The main idea is to set an initial configuration (speed and
heading) of the obstacles while varying the configuration of the own-ship. After defining
the time to collision, a common collision point is calculated - a point where all ships
will collide if no action to avoid collision are taken. To add some sort of randomness
to the scenarios, uniformly or normally distributed noise is added to the initial obstacle
configuration. A large number of collision scenarios are generated by keeping constant
obstacle configuration while alter the initial configuration of the own-ship.

Minne [44] proposed a testing scheme based almost entirely on the IGT presented by Wo-
erner, but with the difference that instead of altering the own-ships initial configuration,
this was kept constant while varying the obstacles configuration. Except for this distinc-
tion, the methods basically works the same way.

5.2.2 New testing scheme

The testing schemes presented in the previous section have shown to give satisfactory
results, but there seems to be some potential regarding the connection to real-life scenarios.
The previous work by [44] only considered situations with up to 3 vessels approaching the
same point. While additional complexity due to more vessels approaching each other
simultaneously is unlikely, situations where a larger number of vessels interact in rapid
succession are more common in the real world. Based on this argument and by using the
concepts from the IGT scheme, a new testing scheme is presented.

The main new feature is to not initialize the own-ship to the same state in every scenario.
Having a situation where the own-ship needs to alter the course to avoid collision (or to
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comply with the COLREGS), the resulting own-ship state after completing this scenario
may be in great distance from the desired state. If then there’s a new obstacle vessel
nearby, we have a new collision situation where the own-ship is not in a ”steady state”.
By implementing this concept to the testing scheme, a more realistic course of events will
happen. Figure 5.5 illustrates the main concepts of the proposed testing scheme.

Scenario generation algorithm

At first, we need to define the number of of succeeding scenarios, denoted nS , and the
duration time for each scenario, denoted tS . The own-ship is assumed to be in transit,
heading directly north (this assumption could be relaxed to use the desired heading). For
each scenario, the following steps are performed:

1. Calculate the future point where the own-ship is to reach the path given by the
way-points, denoted Pest = [xest, yest]T . This is done by assuming straight line
motion from the position of the own-ship at the time it crosses from the previous
scenario to the next (P0 = [x0, y0]T ). This is seen as the crossing of the dotted
line in Figure 5.5. Since the own-ship uses a ILOS controller to follow the path, the
estimated pointPest will not lie at the exact position the own-ship would’ve reached
without any vessel interaction, but it will be so close that avoiding maneuvers has
to be taken in order to avoid collision. Pest is assumed to lie on the north axis
(yest = 0), and the calculation of xest is given by

xest =
{
x0 + tttpu0, if own-ship is close to path or heading away from path
x0 + |y0|

v0
u0, otherwise

(5.1)
where u0 and v0 is the speed in the north and east direction at the time the scenario
begins, respectively. The parameter deciding the time to path (tttp) is set to a value
based on the time of the scenario (tS).

2. Pick the number of obstacle vessels to be included in the scenario, denoted nO. This
could be set to a specific value or chosen randomly.

3. Given the estimated future path position Pest, a collision point for each obstacle
Pcol = [xcol, ycol]T is found by adding Gaussian noise to Pest. This may be done
in both spatial directions, but in this thesis we would like a collision point at the
north axis (ycol = 0), which result in

xcol = xest + wx (5.2)

where wx is the Gaussian noise described by the pdf p(wx) = N (wx; 0, σ2
wx

).

4. For each obstacle, a random time to collision is picked from a desired set tttc ∈
[tminttc , t

max
ttc ]. The set of desired time to collision values is chosen based on the time

of the scenario tS .
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5. For each obstacle, pick a random initial course χinit ∈ [0◦, 360◦) and an initial
speed vinit ∈ [vmininit , v

max
init ].

6. Given the initial course and heading of the obstacles, an initial starting pointPinit =
[xinit, yinit]T of all obstacles are calculated. For each obstacle, the starting point is
calculated by

xinit = xcol − tttcvinitcos(χinit) (5.3)
yinit = ycol − tttcvinitsin(χinit) (5.4)

7. Determine obstacle types. Two different types of vessels are used in this thesis. All
obstacle can be the same vessel type or the obstacle type can be chosen randomly.

8. When having multiple obstacle vessels in a scenario, the likelihood of them being
in close vicinity is present. Thus, if an obstacle vessel is defined to be too close to
another vessel, the obstacle vessel is removed from the scenario.

By making the the number of scenarios a large value, this testing scheme will provide
a wide range of collision situations with different active COLREGS rules. One of the
drawbacks is that because of the extensive use of noise (varying parameters) there’s no
guarantee that all desired collision situation types are inspected thoroughly, but if the total
number of obstacles in all scenarios is large, the likelihood of this happening is small.

Minne [44] states that his testing scheme easily can be altered to generate this kind of
successive interaction. The problem with his proposition is that the collision point is
calculated beforehand, making it not reliable due to the non-predictable behavior of the
collision avoidance methods. When predicting the collision position based on real-time
state information (as the testing scheme presented here), the likelihood of the estimated
collision point being a real collision point increases compared to a testing scheme where
the collision point is calculated in advance.
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scenario k−1
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Figure 5.5: Illustration showing the most important concepts of the testing scheme. The estimated
future own-ship position Pest is calculated based on the (green colored) own-ships state at the time
the scenario starts. Based on Pest, 2 collision positions are found for the two (red colored) obstacle
vessels. The obstacles are given a random initial speed and heading, and their initial position are
calculated based on this and a random time to collision. The rotated bell-shaped form on the left
side of the collision points is used to illustrate the variance in distance between the estimated Pest

and the possible collision points.

63



5.3 Maritime COLAV evaluation

The evaluation of a COLAV system may in general include the aspects of safety, efficiency
and protocol compliance. Protocol compliance often includes the safety aspect, but addi-
tional evaluation may be required. The efficiency aspect refers to track deviation distance,
transit time, fuel consumption etc. This however, is not a part of this thesis. The focus will
lie on protocol compliance, more specifically, COLREGS compliance.

This section gives an overview of the metrics used to determine COLREGS compliance
and is heavily based on [44, 31].

5.3.1 Evaluation overview

The evaluation process of a scenario is divided into three steps. First, determine which
rules apply for each encounter in the scenario. The next step is to evaluate the encounters
by the use of the appropriate metrics for the rules found in step one. At last, the total score
of the scenario is given as the lowest encounter score for each scenario.

Some additional evaluation information is listed here:

• Only the COLREGS rules specified in section 2.3 are covered by the metrics.

• All metrics give a score between 0 and 1. S denotes a score, where 0 is the lowest
score and 1 the highest score. P denotes a penalty, where 0 is no penalty and 1 is
the highest penalty.

• A scenario or a situation both describe the same. In this report that is when the
own-ship approaches one or more obstacles and has to take action. An encounter is
defined as the interaction between the own-ship and one obstacle.

• In an encounter, the stand-on vessel should keep her course and speed, while the
give-way vessel should initiate a maneuver to avoid collision.

• In general, the evaluation of an encounter is done based on the own-ships maneu-
vering from the time the obstacle vessel is detectable (observable) for the own-ship
(tdetect) to the time of the closest point of approach (tCPA). The exceptions are
clearly mentioned.

In the first step of the evaluation process, the encounters are categorized according to
Table 5.1.
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Encounter type Description
Rule 13 + 16 Overtaking, own-ship as give-way
Rule 13 + 17 Overtaking, own-ship as stand-on
Rule 14 Head-on
Rule 15 + 16 Crossing, own-ship as give-way
Rule 15 + 17 Crossing, own-ship as stand-on

Table 5.1: Encounter categorization.

5.3.2 Evaluation metrics

This subsection presents the evaluation metrics used to evaluate the encounters from the
simulations. Most of the metrics are the exact same as in chapter 3 in [44], but some have
seen a number of modifications. The most important metrics and the modified ones have
been given a more thorough explanation.

Safety metric

The safety metric is used in all encounters, and tries to quantify the safety of an encounter.
The metric is a score function given by

Ssafety(rCPA) =


1, if Rmin ≤ rCPA
1− γnmRmin−rCP A

Rmin−Rnm
if Rnm ≤ rCPA ≤ Rmin

1− γnm − γcol Rnm−rCP A

Rnm−Rcol
if Rcol ≤ rCPA ≤ Rnm

0, else.

(5.5)

rCPA is the range to the obstacle at CPA, Rmin is the minimum acceptable passing dis-
tance and Rcol is a distance at CPA where a collision most likely would have occurred.
The parameter values are shown in Table 5.2. A more detailed description of this metric
can be found in section 3.2 in [44].

Parameter Value Unit
Rmin 1000 m
Rnm 800 m
Rcol 200 m
γnm 0.4
γcol 0.6

Table 5.2: Parameters used in the safety metric (5.5).
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Non-readily apparent course change penalty

For vessels in a collision situation, the maneuvers taken should be readily apparent. This
is especially important for the give-way vessel; it should make a significant alteration of
course and speed such the stand-on vessel understands her intention. Three penalty metrics
are used to detect non-readily apparent movements: one for course, one for speed and one
for the maneuver overall. The metric for detecting non-readily apparent course changes is
defined by

P∆χapp
(∆χ) , min

(
0, 1−

(
|∆χ|2

∆χ2
app

))
(5.6)

where |∆χ| is the absolute course alteration in a maneuver, and ∆χapp is a course alter-
ation threshold considered readily apparent. 30◦ is a default value used by Minne [44].
|∆χ| is identified by finding the maximum deviation in course between tdetect (the time
the obstacle was detected) and tcpa (the time of closest point of approach).

Non-readily apparent speed change penalty

The metric used for determining non-readily apparent speed change

P∆Uapp
,
δapp − δU
δapp

, where δU = U0 −min (U0δapp, |∆U |)
U0

(5.7)

U0 is the speed at tdetect, ∆U is the maximum deviation in speed from U0 in the interval
[tdetect, tcpa], and δapp is an apparent speed reduction threshold. The default value is 0.5.
This metric is a modified version of the same metric used by Minne. The modifications are
done in order to prevent penalty given if the maximum deviation in speed |∆U | is larger
than U0δapp. In other words, if the speed reduction or increase is larger in magnitude
than what is considered readily apparent, it should not be penalized as it was in Minne’s
penalty. This metric is used to penalize non-readily apparent speed change, it is not used
to penalize nominal speed deviation.

Non-readily apparent maneuver penalty

Both the non-apparent course and speed penalties are combined to a new penalty, which
should detect non-readily apparent maneuvers. This is defined as

P∆ , P∆Uapp
P∆χapp

(5.8)
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Non-readily apparent penalty modifications

In the preliminary project, during heavy oscillating vessel maneuvers caused by high un-
certainty in obstacles state estimates, the non-readily apparent penalties didn’t work as
intended. Due to the large variation in course and speed (induced only by uncertain obsta-
cle estimates), the resulting penalties ended up being close to zero (which was not correct).
To prevent this from occurring in this thesis’ evaluation, all states of the own-ship used in
the calculation of non-readily apparent penalties are filtered by the use of a moving aver-
age filter. When applying a moving average filter, it is important to not remove the true
underlying maneuvering done by the vessel, and only filter out undesired oscillating be-
haviour. Based on the time constants of the own-ship, the span of the filter is chosen to be
100 seconds.

Stand-on course change penalty

The stand-on course change penalty is used to penalize deviation in course when the vessel
should keep her desired course. The metric is obtained from Woerner [63] and is defined
as

P17
∆χ ,

|∆χ| − χmd
∆χapp − χmd

(5.9)

where ∆χ is the maximum course change from tsteady to tcpa. ∆χapp = 30◦ is the
apparent course change defined earlier and Umd = 4◦ is the minimum detectable course
change. The metric is saturated between 0 and 1, and tsteady is defined in the modification
paragraph below.

Stand-on speed change penalty

The stand-on speed change penalty is used to penalize deviation in speed when the vessel
should keep her desired speed. Minne describes a metric given by

P17
∆U ,


0, if |∆U | < ∆Umd
1−

(
U0
Umax

)2
, if ∆U > 0

|∆U |
U0

, if ∆U < 0

(5.10)

where ∆U is the maximum deviation in speed from tsteady to tcpa. Umax is the maximum
speed and Umd is the minimum detectable speed change (0.2 m/s is used). The metric is
saturated between 0 and 1, and tsteady is defined in the modification paragraph below.
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Stand-on maneuver penalty

In situations where the give-way vessel does not comply with the COLREGS, the stand-on
vessel should not be penalized for taking action to avoid collision. Minne [44] developed
a metric which is used to weight the stand-on maneuvering penalties based on the distance
to the obstacle at the time the maneuver was initiated. The penalty is defined as

P17
∆ , 1−

(
rmaneuver −Rstand−on,max

Rstand−on,max −Rstand−on,min

)2
(5.11)

where rmaneuver is the range to the obstacle at the time the maneuver was initiated. A
maneuver initiated with a range of more than Rstand−on,max = 5000m results in no
penalty reduction, while a range of less than Rstand−on,min = 3000m yields no penalty
(full reduction). In between these ranges, there is a smooth transition of penalty reduction.

Stand-on maneuver penalty modifications

Based on the new testing scheme, the stand-on maneuver penalties from [44] need some
adjustments to work as intended. Since the own-ship now may start in a position not on
the nominal path, a maneuver taken in order to get closer to the nominal path should not
be penalized. Thus, we have to figure out what maneuvers are made to get closer to the
nominal path and what maneuvers are made to avoid the obstacles. Since the evaluation
process is done entirely separated from the COLAV simulation (seen in Figure 5.1), it is
not possible to know the exact reasoning behind the maneuvers being taken.

To determine the stand-on metrics, we define a new parameter, called tsteady . As the name
implies, this parameter is used to define when the own-ship is in a steady state. ”Steady
state” is a relative concept, and may be defined in a various of ways. In this thesis, we
define steady state as when the vessel’s heading and speed are close (based on value) to
the nominal heading and speed over a given number of time steps. If a ”steady state” is
not found, another test is performed. This is to check if the vessel’s state (position and
velocity) at tCPA are closer to the desired state compared to the vessel’s state at the time
of detection, tdetect. If this is found to be true, the encounter is given no penalty for
stand-on maneuvers. This is not a perfect approach, as the vessel may perform obstacle-
evasive maneuvers in between the encounter start and end, resulting in no penalty for these
maneuvers.

All stand-on encounters have been adjusted based on the method described above.

Other metrics

The most important metrics used in this thesis is presented above, but a number of other
metrics are also investigated in Chapter 6. All metrics can be found in [44], but a short
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description is given here:

• PDetectPortTurn, binary penalty given if the own-ship makes a port turn when being
stand-on vessel in a crossing encounter.

• PLateManeuver, penalty to determine if actions are made in ample time.

• PPassAhead, binary penalty given in crossing situations where the starboard vessel
is passed ahead by the other vessel.

• SPortToPortPassing , a score to determine the quality of the port-to-port passing.
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Chapter 6
Results and discussion

This chapter presents the results from the testing of the COLAV system. The first section
describes the testing procedure and the overall reasoning behind the testing method. The
next sections present and discuss the results from a set of test cases used to test the COLAV
system, ending with an overall discussion which tries to sum up the most important results.

6.1 Testing overview

The testing has been done by using a set of test cases. A test case is defined as a set of
scenarios where the testing parameters are the same. The testing parameters include the
scenario generation parameters and possibly tracking parameters depending on tracking
being enabled or not. An example of such a set of parameters is shown in table Table 6.1.
The scenarios are generated with the testing scheme presented in subsection 5.2.2.

Three different test cases are used in the testing:

1. Test case - ground truth. This test case is used to see how the COLAV algo-
rithms perform under ideal conditions, i.e. where the exact state of the surrounding
obstacles are known (tracking is disabled). It is then used as a reference base for
comparison for the next test cases.

2. Test case - normal conditions. This test case tries to emulate the conditions that is
usually taking place when a vessel of the size of the COLAV is in transit. The exact
state of the surrounding obstacles are not known, hence, tracking is enabled for this
test case.
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3. Test case - difficult conditions. This test case is made such that the COLAV system
is challenged to difficult tracking and COLAV situations. The main point is to test
the limits of the system and find it’s weaknesses.

For each test case, both the VO and the SBMPC COLAV algorithm have been tested. For
every scenario in each test case, the evaluation metrics described in subsection 5.3.2 are
used to quantify COLREGS compliance for the own-ship (and NOT the obstacles). The
scenario scores are then collected such that it is possible to compare the results between
the different COLAV algorithms.

Both the COLAV and the Gunnerus vessel are used as obstacles in the scenarios, and they
are chosen randomly. Including both vessels in the same test case challenges the own-
ship to react to different types of maneuvering. All obstacles use the VO algorithm for
collision avoidance and no tracking is performed, i.e. the obstacles are always aware of
the own-ship’s exact state and the other obstacles exact state.

To make the understanding of the conditions for each test case easier, a figure showing a
set of the scenarios are shown. The path of the own-ship together with true obstacle paths
and tracks are included. Each of these figures is to show what’s taken place in a fixed
interval of time. It is then possible to compare these plots for the different test cases to see
the differences in the number of obstacles, tracking uncertainty etc. An example of such a
figure is Figure 6.1.

6.1.1 Scenario simulation

In all the upcoming scenarios, the own-ship’s nominal (desired) path lies on the north axis,
and the desired speed is set to 5 m/s. Hence, in the scenario figures, the own-ship will
always try to steer upwards while also moving as close to the north axis as possible. All
obstacles are also set to follow a straight path from their initial position.

For all test cases, the number of obstacles in a scenario is chosen to be 1. During the
simulation, this will result in only 1 obstacle being present. In the testing phase, it was
seen that the removal of the obstacle when the duration time of the scenario was reached,
resulted in an unnatural behaviour as the obstacle suddenly disappearing short time after
being in a collision situation. This could be avoided by choosing a larger scenario duration
time (tS) while keeping the same range for time to collision (tttc), but as this also will
result in the own-ship being able to reach the desired path before the next scenario begins,
this is not done. One of the main points of the testing scheme was to make the own-ship
initial state not being on the desired path. Therefore, this issue was solved by letting each
obstacle be present for two successive scenarios, making the obstacles gradually move
away and out of range of the own-ship. As a result, all scenario figures includes two
obstacles - the new obstacle for this specific scenario (numbered 1) and the obstacle from
the previous scenario (numbered 2). Only the new obstacle is evaluated for the scenario
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under consideration.

6.1.2 Results presentation structure

For each test case, the presentation of the results follows the same structure. At first, the
overall scores are presented and discussed. Then, each COLAV algorithm has it’s own
subsection used to investigate and discuss the reasoning behind the scores given to this
COLAV algorithm. If there are any particularly bad results, this is investigated further by
including a specific scenario simulation.

6.2 Test case - ground truth

This test case is used to evaluate the COLAV system when there is no uncertainty regarding
the obstacles positions and velocities. The own-ship and the obstacles always know the
exact positions and velocities of the other vessels.

Parameter Value Unit Description
nS 200 Number of scenarios.
tS 1000 s Duration time of a scenario.
σwx

500 Collision point noise strength.
nO 1 Number of obstacles in a scenario.
tminttc 700 s Minimum initial time to collision for obstacles.
tmaxttc 800 s Maximum initial time to collision for obstacles.
vmininit 2 m/s Minimum initial obstacle speed.
vmaxinit 12 m/s Maximum initial obstacle speed.

Table 6.1: Test parameters for the ground truth test case.

The test parameters used in this test case is given in Table 6.1. The number of scenarios
is chosen such that the likelihood of all the different COLREGS rules being applied is
large. Also, the obstacles initial speed range is made relatively wide such that both types
of overtaking situations may occur. This will also introduce quite different crossing situa-
tions; if an obstacle with high speed crosses from the right, the own-ship may not need to
slow down and/or turn that much to starboard compared to a situation where the speed of
the obstacle is slower. The time to collision parameters are chosen such that the own-ship
should have a reasonable amount of time to adjust course and take action if needed. σwx is
given a value that will result in a great variation in collision points. This will produce, in
addition to direct collision course situations, situations where obstacles will be such close
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that actions have to be made in order to comply with the COLREGS. The time of each
scenario is chosen such that the collision situation is likely to be finished (tS > tmaxttc ). An
overview of the degeneration of the test case is shown in Figure 6.1.
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Figure 6.1: 5000 seconds from the simulation of the ground truth test case. The own-ship is colored
in blue, the obstacle PSVs are red and the Gunnerus obstacles have been given the color yellow.

By looking at the overall mean scores from Figure 6.2 it is clear that the VO algorithm
gets a significantly better score than the SBMPC algorithm. By using the mean rule scores
(also in Figure 6.2), we get more insight in the overall calculation. VO performs better
for all rules, except for Rule 14 which covers head-on situations. As described in subsec-
tion 3.2.3, the tuning of the SBMPC parameters is an extensive task because of the number
of parameters and the nature of the cost function. By focusing more on parameter tuning,
the SBMPC algorithm is expected to get higher evaluation scores. Nevertheless, we will
look into the details and try to find the reasoning behind the scores, for both COLAV
algorithms.
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Figure 6.2: Mean encounter score for each COLREGS rule and the overall mean score, for the
ground truth test case.

6.2.1 Ground truth - VO

A distribution of the encounter types for the scenarios in this simulation is given in Ta-
ble 6.2. We see that most of the encounters are determined to be crossing, while over-
taking encounter when own-ship is give-way vessel is only occurring in 4 scenarios. This
distribution is almost directly given by looking at the testing parameters in combination
with the testing scheme. Since the initial course of the obstacles are chosen uniformly
from all possible courses, and because the combined crossing sections during encounter
determination are larger than the other sections, this is the most likely distribution in the
case of which category got the most number of encounters. As a result, the number of
Rule 13+16 encounters are so low that the combined scores governing this encounter type
should not be considered to be exact.

Encounter type Number Description
Rule 13 + 16 4 Overtaking, own-ship as give-way
Rule 13 + 17 20 Overtaking, own-ship as stand-on
Rule 14 15 Head-on
Rule 15 + 16 76 Crossing, own-ship as give-way
Rule 15 + 17 75 Crossing, own-ship as stand-on

Table 6.2: Ground truth - VO, encounter categorization.

As seen from Figure 6.2, the VO algorithm is given high scores on all rules except for Rule
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14. To find out what lies behind this rule score calculation, we look at Figure 6.3. The
safety and port-to-port passing scores are satisfying, but we see that the penalties covering
non apparent course change and non starboard maneuver are large. To find out the reason
for these high penalty values, we need to look at a specific head on scenario.

Figure 6.3: Score and penalties for rule 14, in the ground truth test case.

Figure 6.4 shows a head on situation from the VO simulation. It is clear that the distance
between the obstacle (1) and own-ship at tCPA is at a desired range, apparent alteration
of course is seen. What is causing the own-ship to not alter the course apparently (to
starboard) seems to be based on its initial state; the own-ship starts in a position located
about 1200 meters east, heading straight north. At this time, it seems like obstacle 1
and the own-ship find themselves just inside the head-on section. The evaluation system
determines which rules apply for a scenario at the start of the scenario and it is not changed
during the scenario. The VO algorithm however, updates the situation type at regular
intervals. In this specific case, this will result in the VO first taking head-on considerations,
but as the situation continues, the situation type inside the VO will be updated to a crossing
from left situation, resulting in the own-ship not taking any action to comply with Rule 14.

By looking at similar situations, this problem seems to be present, but the number of such
situations are limited. This is because this type of situation only occurs if all the conditions
described in the previous paragraph is present. In addition, mitigating this problem may
be difficult as the COLAV algorithm has to update which COLREGS rules apply to be
able to take action if other obstacles appears. However, a solution can be to store which
COLREGS rule apply to a specific obstacle at the time the obstacle was detected, and not
change this during the situation.
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Figure 6.4: Head-on situation where the own-ship does not make a readily apparent course change.
The green circle is the desired passing distance (1000 m). The colour of the own-ship path is given
by the barplot on the right which visualizes the speed (in m/s) of the own-ship.
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6.2.2 Ground truth - SBMPC

The encounter distribution is shown in Table 6.3. Again it is clear that the testing scheme
generates more crossing encounters than overtaking and head-on encounters. As a result,
the Rule13+16 combined scores is not discussed here.

Encounter type Number Description
Rule 13 + 16 7 Overtaking, own-ship as give-way
Rule 13 + 17 16 Overtaking, own-ship as stand-on
Rule 14 13 Head-on
Rule 15 + 16 85 Crossing, own-ship as give-way
Rule 15 + 17 54 Crossing, own-ship as stand-on

Table 6.3: Ground truth - SBMPC, encounter categorization.

The SBMPC algorithm gets on average lower scores than the VO algorithm. It seems like
the algorithm suffers from making course changes when being stand on vessel in cross-
ing situations (Figure 6.5) and that the maneuvers when being give-way vessel is not as
apparent as they should be (Figure 6.6) in addition of passing ahead encounters. This
not so consistent behaviour may be caused by the poor tuning of the COLAV parame-
ters. Based on the available parameters in the SBMPC algorithm, it should be possible to
make the vessels maneuvering more apparent; if being stand-on vessel, no course changes
nor speed changes should be initiated, and if having give-way responsibility, the course
and speed changes should be large in magnitude. In total, this should make the vessel’s
intention clear. The suggestions for accomplishing this are:

• Increasing the path-following parameters kP , kχ such that path deviation only oc-
curs when the vessel is near collision situations or if stand-on responsibility from
COLREGS is active.

• Raise the value of p in order to weight risks that are far away in time less. This
should make the handling of stand-on situations better.

• The penalty functions ∆P ,∆χ should be further increased such that a maneuver is
made only if it deviates by a large value compared to the previous propulsion and
course commands.

As described in subsection 3.3.4, the VO algorithm is not taking enough alteration of
course when being give-way vessel. The SBMPC algorithm seems to be more sensitive in
such cases, resulting in the SBMPC calculating a higher risk of collision compared to the
VO algorithm and therefore adjusting its speed and course more. This may be an additional
factor affecting the penalty scores.
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Figure 6.5: Score and penalties for rule 15-17, in the ground truth test case. NB, the ”Rule 15” and
”Rule 17” bars denote scores.

Figure 6.6: Score and penalties for rule 15-16, in the ground truth test case.

6.3 Test case - normal conditions

This test case is used to evaluate the performance of the COLAV system when ”normal
conditions” are applied. To make comparison between this test case and the ground truth
test case easier, the same scenario generation parameters as given in Table 6.1 is used, and
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in addition, the two tracking parameters PD and PFA (Table 6.4).

Parameter Value Unit Description
PD 0.9 Obstacle detection probability.
PFA 3 · 10−4 False measurement probability.

Table 6.4: Tracking parameters for the normal conditions test case.

Figure 6.7 shows a set of the scenarios from the simulation. The own-ship’s COLAV
algorithm is now using the track information as a decision base to find the new desired
velocity. Because of the somewhat easy parameter settings, the tracks lies almost perfectly
on top of the true obstacle paths. Consequently, the results for this test case compared to
the ground truth test case is expected to be quite similar.
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Figure 6.7: 5000 seconds from the simulation of the normal conditions test case.

The mean scenario scores (Figure 6.8) are, for both COLAV algorithms, higher compared
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to the previous test case. The SBMPC algorithm gets a significantly higher mean score,
where it seems like the Rule 15+16 score is the largest contributor to this positive differ-
ence. For the VO algorithm, we have a massive increase in the score for Rule 14.

Figure 6.8: Mean encounter score for each COLREGS rule and the overall mean score, for the
normal conditions test case.

6.3.1 Normal conditions - VO

Since the scenario generation parameters are chosen the same as in the ground truth test
case, the encounter type distribution given in Table 6.5 follows the same pattern as before.
As for the mean scores in Figure 6.8, the algorithm still performs pretty well in most cases,
and we see a marked increase for the Rule14 score.

By iterating through all scenarios which is classified as head-on, some insight on the im-
proved score for Rule 14 can be deducted. It seems like the specific situation described
under section 6.2.1 where the VO changed COLREGS situation type during the scenario
is not present in any of the scenarios in this test case. This is certainly affecting the score
positively, and is likely the main contributor to the improved score.

6.3.2 Normal conditions - SBMPC

For the SBMPC, the encounter distribution (Table 6.6) is seen to be almost the same as
in the previous test case. On the other hand, the rule scores have generally increased,
especially the score for Rule 15+16. By comparing Figure 6.9 with Figure 6.6, it is clear
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Encounter type Number Description
Rule 13 + 16 6 Overtaking, own-ship as give-way
Rule 13 + 17 27 Overtaking, own-ship as stand-on
Rule 14 25 Head-on
Rule 15 + 16 65 Crossing, own-ship as give-way
Rule 15 + 17 75 Crossing, own-ship as stand-on

Table 6.5: Normal conditions - VO, encounter categorization.

that all the penalty values have decreased by a considerable amount. As the number of
Rule15+16 encounters is large for both test cases, this result cannot only be based on
random coincidences.

Encounter type Number Description
Rule 13 + 16 10 Overtaking, own-ship as give-way
Rule 13 + 17 30 Overtaking, own-ship as stand-on
Rule 14 20 Head-on
Rule 15 + 16 70 Crossing, own-ship as give-way
Rule 15 + 17 70 Crossing, own-ship as stand-on

Table 6.6: Normal conditions - SBMPC, encounter categorization.

Figure 6.9: Score and penalties for rule 15-16, in the normal conditions test case.

The increased Rule 15+16 score may be a result of poor velocity estimates. Consider
Figure 6.10, the tracks seems to follow more or less on top of the true obstacle paths, but
some deviation is seen at the start of the track for obstacle 1. This may contribute to poor
velocity estimates and therefore large variation in the future path estimation, resulting in
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the own-ship making larger alteration of course and speed. Additionally, the adjustment of
dsafei and dcli based on the existence probability (described in subsection 3.2.3) will also
affect this behaviour positively. The combination of these aspects will make the own-ship
take avoiding maneuvers earlier and more drastically while also keeping a larger distance
to the obstacles. Most of the penalty reduction seen for Rule 15+16 is likely to be a result
of this.
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Figure 6.10: A scenario where obstacle 1’s estimate shows some fluctuation when being far away
in distance, resulting in the own-ship making larger alteration of course and speed.
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6.4 Test case - difficult conditions

This last test case is made to challenge the COLAV system, both the tracking system and
the COLAV algorithms. The idea is to make the simulation conditions so hard that unusual
situations will occur, and maybe force undiscovered weaknesses to appear.

Parameter Value Unit Description
nS 200 Number of scenarios.
tS 800 s Duration time of a scenario.
σwx

500 Collision point noise strength.
nO 1 Number of obstacles in a scenario.
tminttc 500 s Minimum initial time to collision for obstacles.
tmaxttc 600 s Maximum initial time to collision for obstacles.
vmininit 2 m/s Minimum initial obstacle speed.
vmaxinit 12 m/s Maximum initial obstacle speed.
PD 0.4 Obstacle detection probability.
PFA 3 · 10−3 False measurement probability.

Table 6.7: Test parameters for the difficult conditions test case.

All testing parameters are listed in Table 6.7. The number of scenarios and obstacles are
the same as in the previous test cases, including the collision point variance and the initial
obstacle speed range. The time to collison range is lowered in order to challenge the own-
ship (and obstacle vessels) to less maneuvering time. To make the tracking conditions
more difficult, the detection probability (PD) is reduced to a significantly lower value,
and the clutter density (PFA) is increased by a factor of 10. As seen in Figure 6.11, the
number of false tracks has certainly increased. The plot only shows the longest false tracks,
meaning that an additional large number of shorter tracks are present. All these false tracks
will affect the COLAV algorithm as they are considered to be true obstacles. Also, observe
that all the true obstacles have a corresponding track, even though there are some deviation
and a smaller number of missing parts.
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Figure 6.11: 5000 seconds from the simulation of the difficult conditions test case.

The overall mean scenario scores in Figure 6.12 show a decrease compared to the other
test cases. As the simulation parameters for this test case are more challenging, this result
is to be expected. On the other hand, while the decrease in score for the SBMPC algorithm
seems to be in accordance with the adjustment of the testing parameters, the VO algorithm
performs remarkably well. Given the number of false tracks and their influence on the
decision making, the evaluation scores should be expected to decrease by a larger amount.

By directing the focus to the rule specific mean scores in Figure 6.12, more insight on the
overall behaviour can be deducted. Whereas the VO algorithm seems to perform almost as
good as earlier, the SBMPC algorithm still handles the stand-on responsibility in a good
way, but the give-way encounters seems to suffer from the more challenging conditions.
Notice that the score for Rule 13+16 is again the lowest for both algorithms. This is
discussed later on.
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Figure 6.12: Mean encounter score for each COLREGS rule and the overall mean score, for the
difficult conditions test case.

6.4.1 Difficult conditions - VO

Table 6.8 shows the encounter distribution for the VO simulation, which is seen to be more
or less the same as earlier.

Encounter type Number Description
Rule 13 + 16 5 Overtaking, own-ship as give-way
Rule 13 + 17 36 Overtaking, own-ship as stand-on
Rule 14 16 Head-on
Rule 15 + 16 56 Crossing, own-ship as give-way
Rule 15 + 17 76 Crossing, own-ship as stand-on

Table 6.8: Difficult conditions - VO, encounter categorization.

As mentioned earlier, the performance of the VO algorithm for this test case was very
good; all encounter types are handled well and there is only a slight reduction in the eval-
uation scores. Comparing the scores to the SBMPC algorithm, in addition of having good
mean scores, the small variation in the scores of the VO algorithm is to prefer, especially
from a safety point of view.

Even though the overall behaviour was satisfying, there were some situations that were
not handled well. This was mainly due to the challenging conditions, but it shows that
there exist weaknesses. Figure 6.13 shows a scenario where the own-ship makes a sudden
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course change towards an obstacle vessel, mainly because of a neighbouring false track
suddenly appearing. As seen from the figure, the obstacle vessel almost immediately turns
the other way around in order to not collide with the own-ship. Since this was the closest
point between these vessels, and given how the false track appeared, one can argue that
the situation was solved in a satisfying manner.

A small number of other similar situations did occur, and even though the COLREGS
evaluation wasn’t always good, the safety distances were maintained at a high level. As
the method weights collision avoidance, and therefore safety, the most, this behaviour is
as expected, but the VO algorithm showed a surprisingly high degree of robustness.

Another aspect which is important to mention is that the scenario (Figure 6.13) may had
seen a totally different outcome if the obstacle vessels also needed to track the other ves-
sels with the same amount of noise and uncertainty as the own-ship is experiencing. In
general, for all the more challenging scenarios, the obstacle vessels may end up ”saving”
the scenarios (from a safety perspective) as they are always aware of the exact state of the
other vessels. To give an example: if the own-ship suddenly alter the course towards an
obstacle (as seen in Figure 6.13), the obstacle vessel will immediately initiate collision
avoiding maneuvers that will (most likely) result in no collision occurring. The point is,
situations where all vessels have uncertain surrounding state information should be inves-
tigated. This is proposed as future work.
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Figure 6.13: A scenario where the own-ship makes a sudden course change towards the obstacle
vessel because of a nearby false track appearing.
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6.4.2 Difficult conditions - SBMPC

As for all previous test cases, the encounter distribution is more or less equal (Table 6.9).
Furthermore, Figure 6.12 shows that the SBMPC algorithm still handles both stand-on
encounter types well, but struggles when it comes to the give-way responsibility. More
specifically, Rule 15+16 and Rule 13+16 get so low evaluation score that further investi-
gation is needed. But, as for the previous test cases, the number of Rule 13+16 encounters
is so low that a discussion for this specific simulation will not be reliable.

Encounter type Number Description
Rule 13 + 16 8 Overtaking, own-ship as give-way
Rule 13 + 17 15 Overtaking, own-ship as stand-on
Rule 14 19 Head-on
Rule 15 + 16 66 Crossing, own-ship as give-way
Rule 15 + 17 86 Crossing, own-ship as stand-on

Table 6.9: Difficult conditions - SBMPC, encounter categorization.

Figure 6.14: Score and penalties for rule 15-16, in the difficult conditions test case.

The overall behaviour of the SBMPC algorithm seems to coincide with the discussion done
under the ground truth test case. The lack of consistent behaviour seems to be amplified
for this test case, but what may surprise is that only the give-way handling is poorer.
This may be a result of the update frequency of the algorithm. Only updating the desired
velocity every 10 seconds (compared to every 0.05 seconds in the VO algorithm) may
make the vessel not respond to the more noisy and faster tracks in this test case compared
to the normal test case. So, instead of making sudden course and speed alterations, as
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the VO algorithm is able to do, the SBMPC algorithm will seem to not react to the other
obstacles when such maneuvering is taking place. Testing the algorithm with a higher
update frequency in such scenarios may be investigated in future work.

A specific dangerous scenario was found in the simulation, shown in Figure 6.15. The
own-ship has give-way responsibility for the obstacle on the right, and at the same time a
number of false tracks appear on the port side of the own-ship. As the own-ship makes col-
lision avoidance maneuvers for both the false tracks and the true obstacle, the result is the
own-ship being ”squeezed” between the tracks. Ideally, the own-ship should have adjusted
speed and course such that the true obstacle was passed behind with a large margin. Based
on this encounter handling, it seems like the cost of violating stand-on responsibility is
higher than violating give-way responsibility. This is not a desired behaviour and should
be taken care of. A proposed solution is to decrease the penalty for starboard turning and
maybe decrease the nominal course change penalty.

Continuing with the scenario in Figure 6.15, it is not only the own-ship that makes the
situation more risky that it should have been. Based on the small distance between the own-
ship and the obstacle vessel, the obstacle vessel should have initiated collision avoidance
maneuvers, even though the own-ship does not comply with the COLREGS. This may be
a result of the modification of the fcollision function described in subsection 3.3.4, where
the velocity obstacle is not considered during stand-on when the distance is more than
2000 meters. As the distance here is clearly less than 2000 meters, this should not have
been a problem, but as a situation like this is able to occur, adjustments to the collision
handling should be done.
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Figure 6.15: A dangerous scenario where the own-ship is near a collision with obstacle 1. The
combination of having a high number of false tracks on the left side and at the same time having
a true obstacle on crossing course to the right, result in the own-ship keeping it’s desired velocity
straight ahead.
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6.5 Overall discussion

6.5.1 VO vs SBMPC

The overall performance of the COLAV algorithms seems to be in favor of the VO al-
gorithm. It handles almost all encounter types in all test cases in a very good way, a
consistency that is highly appreciated. This is also supported by Figure 6.16, where the
spread of the scenario scores for all test cases are shown. All the VO simulations are seen
to get about the same distribution of scores, while the SBMPC simulations show a higher
score variation. To sum up, the overall trends in Figure 6.16 are in accordance with the
mean scores presented in the previous test cases.

Figure 6.16: Histogram showing the spread of scores for all test cases.

A repeating aspect mentioned multiple times earlier in this thesis, is the tuning of the
SBMPC algorithm. Having the combination of little time and a high number of tuning
parameters, the task of finding the best parameters was difficult. The resulting parameters
was seen to give desired behaviour in most cases, but as the tuning process was done
when the obstacles state were perfectly known (ground truth), the algorithm has not been
adopted to the more challenging situations.

As described in subsection 3.3.4, the VO algorithm was modified such the behaviour was
more in compliance with the evaluation metrics. Given that the evaluation metrics are
a perfect representation of the COLREGS, this approach is logical and should improve
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the algorithms COLREGS compliance. But, as the evaluation metrics may not always
comply perfectly with the COLREGS, this approach of algorithm tuning may not be ideal.
Different tuning approaches may give better behaviour for realistic scenarios, but as these
evaluation metrics have been adopted by the COLAV community as the evaluation metrics
to be used, this approach is reasonable.

What may be an additional ”advantage” for the VO algorithm compared to the SBMPC
algorithm is that the obstacles use the VO algorithm for COLAV. Being able to adapt the
VO behaviour through testing to the obstacles which also were using VO, was easier than
adapting the SBMPC to the VO. This is mostly due to the simpler COLAV approach used
in the VO algorithm. Nevertheless, a COLAV method should be able to adapt and function
well in a setting where other COLAV algorithms are operating.

6.5.2 Rule 13+16

During all the test cases, the number of encounters where the own-ship was overtaken by
an obstacle vessel (Rule 13+16) was too small to give a reliable discussion based on the
result from a specific test case. However, by combining the results for this encounter type
for all the test cases, a discussion can be done.

With one exception, the rule score for encounter Rule 13+16 was the lowest for both
COLAV algorithms in all test cases. The VO algorithm gets almost the same score in all
test cases, while the SBMPC algorithm finds itself close to zero for the last test case. This
is a critically low encounter score and should be investigated.

For a vessel of the size of the PSV, the number of real life encounters of this type may
be relatively more than represented in these test cases. As a large vessel often needs to
follow the shipping lanes, overtaking other large vessels presented in the shipping lanes
may occur relatively often. With this is mind, the number of Rule 13+16 encounters should
be increased. Modifying the existing testing scheme to choose more of the initial obstacle
courses which will yield overtaking scenarios is easy to do. With the addition of decreasing
the initial speed of the obstacles, this will give more Rule 13+16 encounters and should be
considered as a part of the future work.

6.5.3 Metric modifications

The metrics used for evaluation of the COLAV system are heavily based on the metrics
from [63]. As described in section subsection 5.3.2, being able to reuse the same metrics
for the new testing scheme used in this thesis, some modifications to the stand-on vessel
evaluation had to be done. The modifications used may result in a higher score being given
than what should have been given. The point is, comparing the results from the test cases
done in this thesis directly to other work on the same topic may not be applicable. How-
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ever, the comparison given internally in this thesis between the two COLAV algorithms
and the different test cases certainly is applicable.

6.5.4 Domain discussion

Having a large vessel as the PSV used in this thesis as the SUT, a discussion of what
domains are useful to investigate is reasonable. When a PSV is in transit out on the open
sea where there only exist other large vessels equipped with AIS, the collision avoidance
problem is not that hard (relatively speaking) and may be assumed solved by [22] or [37].
On the contrary, vessels like the PSV may find itself near shore or in other situations where
smaller faster vessels are present. A fully autonomous vessel should also be able to handle
such environments, with the addition of situations with poor visibility properties. The test
cases presented in this section is used to imitate such situations.

The ground truth test case can be seen as a situation where the PSV moves in an area with
a high number of large vessels. This can be near oil rigs where other PSVs and vessels are
present. As for the normal conditions test case, a situation with clear sky and good visible
conditions, but no good AIS information available, could be the realistic counterpart. The
last test case may be a real life situation where the PSV is approaching a large town in
heavy foggy weather and a high number of nearby vessels is present.
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Chapter 7
Conclusion and future work

7.1 Conclusion

A COLAV system including a tracking system based on the JIPDAF and the COLAV al-
gorithms VO and SBMPC have been tested in a wide variety of relevant ASV scenarios.
The tracking is done by emulating noisy radar measurements from the true obstacle mea-
surements. Based on the track information from the tracking module, a COLAV algorithm
enables automatic collision avoidance. The testing has been executed in a simulated envi-
ronment where a high number of succeeding collision situations have been simulated. To
evaluate the COLAV system’s scenario execution, a number of evaluation metrics used to
determine COLREGS compliance have been applied.

When exposed to no or little amount of noise, the tracking system provides accurate esti-
mates of the obstacles positions and velocities. The resulting performance of the COLAV
system depends on which COLAV algorithm is being used, where the VO algorithm is
seemed to handle all encounter types in a more satisfying way than the SBMPC algo-
rithm. However, the SBMPC method may suffer from poor parameter tuning, thus having
a potential of significant performance improvement.

In more challenging scenarios where the noise is raised to considerably higher values,
the tracking system’s obstacle estimates are highly fluctuating and some times completely
missing, in addition of having a high number of false tracks. These challenging conditions
result in lower evaluation scores for both COLAV algorithms, especially the SBMPC al-
gorithm. However, given the high number of false tracks present in the simulations and
despite getting lower evaluation scores, the VO algorithm performed remarkably well.
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7.2 Future work

As this thesis covers a wide range of research areas, there is a great potential for improve-
ments and future work. In the following, a number of suggestions for future work are
given.

Dealing with land

Constraints posed by the sea shore may limit the possible actions the COLAV methods can
choose between. While the SBMPC method easily can include handling of land [37], the
VO method may need additional tweaks to work at all in the presence of land.

SBMPC parameter tuning

The SBMPC algorithm may have a considerable potential regarding the tuning parameters.
This should be investigated, or other COLAV methods based on MPC [28] may be looked
into for future implementation.

Include tracking for obstacles

To further enhance the realistic aspects of the noisy scenario simulations, target tracking
should be enabled on all vessels in a scenario. It is then possible to identify and investigate
the more dangerous situations which may appear in similar real life situations.

COLAV while path following

In this thesis, all obstacles and the own-ship follow straight-line paths in the scenario
simulations. Investigation on how the COLAV system handles non-straight obstacle and
own-ship paths should be done as this is how most of real-life situation is carried out. The
evaluation metrics may need additional modifications to work in such situations.

Additional sensors

The implemented system only contains radar measurement emulation. A number of other
sensors (cameras, LIDAR etc.) may be implemented, as this is common on real life vessel.
A sensor fusion module combining all the sensor information may then also be needed.
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Overtaking when own-ship has give-way responsibility (Rule 13+16)

During the simulations, it was seen that the handling of Rule 13+16 encounters was quite
poor for both COLAV algorithms. As this may be one of the more common encounter
types for vessels with the size of the PSV, further investigation is needed. This can be
accomplished by using the testing scheme with a restricted range of initial obstacle courses
and a low maximum initial obstacle speed.
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Nomenclature

Collision avoidance

αc Parameter used to determine the cost related to a collision.

β Bearing angle.

β180 Normalized bearing angle.

βc Parameter used to determine the cost related to COLREGS viola-
tion.

pA Position vector for own-ship, in VO algorithm.

pB Position vector for obstacle B, in VO algorithm.

vA Velocity vector for own-ship, in VO algorithm.

vB Velocity vector for obstacle B, in VO algorithm.

χca,last Previous course offset.

χca Course offset.

∆χ,port Parameter used to prioritize readily apparent port maneuvers.

∆χ,starboard Parameter used to prioritize readily apparent starboard maneuvers.

∆P Parameter used to prioritize readily apparent speed maneuvers.

εV O Distance used to determine if two vessels are close.

ιc Parameter used to weight cost of speed penalty.

κi Cost function parameter used to weight COLREGS violation.
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λ Parameter used to determine the length of the velocity vector in the
VO algorithm.

A Set representation of own-ship.

B Set representation of obstacle B.

Cij New VO cost function.

C′

ij Original VO cost function.

Ha Total cost associated with scenario a.

Rai Collision risk factor.

V1 Region on the left side of the obstacle seen from the own-ship.

V2 Region on the right side of the obstacle seen from the own-ship.

V3 Region in a direction away from the obstacle.

µai Binary term used to determine COLREGS violation.

ψd,colreg Desired heading the last time the COLREG situation was updated.

ũ Deviation from the desired speed and heading.

κc Parameter used to weight cost of port penalty.

~Lai Unit vector pointing in the LOS-direction of own-ship to obstacle i
in scenario a.

~va0 Own-ships velocity in scenario a, in SBMPC algorithm.

~vai Velocity of obstacle i in scenario a, in SBMPC algorithm.

D The set of discrete sample times in the SBMPC algorithm.

da0,i Distance from own-ship to obstacle i in scenario a.

dCPA Distance between the vessels at CPA.

dcli Distance parameter used to determine the maximum range of where
COLREGS apply.

dmin Maximum distance for a collision situation to be examined.

f Cost related to path following.

fcollision Modified version of f
′

collision.

f
′

collision Boolean function used to determine if a collision will occur.

fCOLREGS Boolean function used to determine if the COLREGS is violated.
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fport Boolean function used to determine if port penalty is to be added.

fspeed Boolean function used to determine if speed penalty is to be added.

kP Parameter used to weight nominal speed.

kχ,port Parameter used to penalize port maneuvers.

kχ,starboard Parameter used to penalize starboard maneuvers.

kχ Parameter used to prioritize nominal course.

PC Propulsion command.

pr Collision risk factor parameter used to weight time.

Plast Previous propulsion command.

qc Parameter used to weight cost of velocity deviation.

qr Collision risk factor parameter used to weight distance.

rA Radius of the circular approximation of own-ship.

rB Radius of the circular approximation of obstacle B.

t Time index.

Ts Sample interval in the SBMPC algorithm.

tCPA Time to CPA.

tmax Maximum time for a collision situation to be examined.

ud,last Desired velocity from the previous time step.

V OAB The velocity obstacle induced by obstacle B for obstacle A.

CLOSE Boolean variable used to determine if an obstacle is close.

CROSSED Boolean variable used to determine if the own-ship is in a crossing
situation.

HEAD-ON Boolean variable used to determine if the own-ship is in a head-on
situation.

OVERTAKEN Boolean variable used to determine if the own-ship is being over-
taken.

RULE14 Boolean variable used to determine if COLREGS rule 14 is vio-
lated.

RULE15 Boolean variable used to determine if COLREGS rule 15 is vio-
lated.
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Evaluation metrics and scenario generation parameters

P∆χapp
Non-readily apparent course change penalty.

P∆Uapp
Non-readily apparent speed change penalty.

P17
∆U Stand-on speed change penalty.

P17
∆χ Stand-on course change penalty.

P∆ Non-readily apparent maneuver penalty.

P17
∆ Stand-on maneuver penalty.

PDetectPortTurn Port turn penalty.

PLateManeuver Late maneuver penalty.

PPassAhead Pass ahead penalty.

SPortToPortPassing Port to port passing score.

P0 Position of own-ship at the start of a scenario.

Pcol Collision point between own-ship and obstacle.

Pest Estimated path position of own-ship.

Pinit Initial obstacle position.

χinit Initial obstacle course.

σ2
wx

Collision point noise strength.

nO Number of obstacle in a scenario.

nS Number of succeeding scenarios in a testcase.

Ssafety Safety metric.

tS Duration time of scenario.

tttc Time to collision.

tmaxttc Maximum time to collision.

tminttc Minimum time to collision.

tttp Time to path.

vinit Initial obstacle speed.

vmaxinit Maximum initial obstacle speed.

vmininit Minimum initial obstacle speed.
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wx Collision point noise.

Vessel modeling and control

αk Path-tangential angle.

ε Along-track distance and cross-track error vector.

η Position and orientation vector.

τ Generalized forces and moments from the actuators.

τwind, τwave Environmental forces from wind and waves.

ς Linear and angular velocity vector.

ςd Reference values to the feedback linearizing MIMO controller.

CA Added mass coriolis-centripetal matrix.

CRB Rigid body coriolis-centripetal matrix.

D Damping matrix.

Kp Proportional gain in the feedback linearizing MIMO controller.

KG
p Proportional gain in the feedback linearizing MIMO controller for

the Gunnerus vessel.

KPSV
p Proportional gain in the feedback linearizing MIMO controller for

the PSV vessel.

M Inertia matrix.

MA Added mass matrix.

MRB Rigid body inertia matrix.

n Non-linear component of the feedback linearizing MIMO controller.

pn Vessel position vector in ILOS guidance.

pnb/n Position of origo in body-fixed frame expressed in the inertial frame.

pnk Waypoint position vector.

R Rotation matrix.

χd Desired course.

χr Velocity-path relative angle.

∆ Lookahead distance in ILOS guidance.

ψ Euler angle about the z axis.
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ψd Desired heading, in the heading controller.

σ Tuning parameter in ILOS guidance.

ς̃ Error between reference values ςd and the actual values ς .

ψ̃ Error between desired heading and actual heading.

~rg The vector from center of gravity of the vessel to origo in the {b}
frame.

{b} Body-fixed reference frame.

{n} Inertial reference frame.

e Cross-track error.

eint Integral term in ILOS guidance.

Fx, Fy, Fz Force and moment components of the τ vector.

Iz Moment of inertia about the z-axis.

Kp,1,Kp,2,Kp,3 Components of the proportional gainKp.

Kp,ψ Proportional gain in the heading controller.

KG
p,ψ Proportional gain in the heading controller for the Gunnerus vessel.

KPSV
p,ψ Proportional gain in the heading controller for the PSV vessel.

m Mass of vessel.

N Body-fixed moment about the z axis.

r Body-fixed angular velocity about the z axis.

s Along-track distance.

u, v Body-fixed linear velocities in the x and y direction.

ud, vd, rd Components of the reference values vector ςd.

X,Y Body-fixed forces in the x and y direction.

x, y Body-fixed positions in the x and y direction.

xg, yg, zg x, y and z components of the ~rg vector.

xk, yk Inertial-fixed waypoint position in the x and y direction.

Target tracking

(̂·)k|k−1 Predicted (a priori) estimate.
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(̂·)k Updated (a posteriori) estimate.

βik Probability of measurement i being target originated.

βt,jk Probability of measurement j originating from target t.

νk Combined innovation.

νik Measurement innovation for measurement i.

ak An association hypothesis.

δ Targets-with-measurement vector.

ηtinit Initial visibility probability.

ηtk Visibility probability for target t.

γG Gate threshold.

x̂k Estimated state vector.

x̂t,ak

k Posterior event-conditional state.

λP Poisson distribution intensity of false measurements.

AM A problem-solution pair.

Ap A score matrix.

As A solution matrix.

L List of problem-solution pairs, AM .

N Normal distribution.

σa Process noise strength.

σr Measurement noise strength.

Ft State transition matrix.

H State observation matrix.

Kk Kalman gain.

Pk State covariance matrix.

Pck Covariance of state updated with the true measurement.

QT Process noise covariance matrix.

R Measurement noise covariance matrix.

Sk Predicted measurement covariance matrix.
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vk Process noise vector.

wk Measurement noise vector.

xk State vector at time step k.

xt,ak

k Posterior event-conditional covariance.

zk Measurement vector.

zik I-th measurement at time step k.

P̃ck Spread of innovations.

εtinit Initial existence probability.

εtk Existence probability for target t.

ϕ Number of false measurements.

%k The set of non-associated measurements.

i Measurement index.

j Target index.

k Discrete time index.

lt,ak Likelihood ratio.

mk Number of validated measurements.

n Number of targets.

p Probability density function.

PD Detection probability.

PG Gate probability.

PS Death probability.

pFA False measurement rate.

T Time step in motion model.

V Volume of the surveillance region.

vmax A parameter chosen to be larger than maximum velocity.

Zk The current set measurements.

Z1:k The cumulative set of measurements up until time k.

NIS Defines the elliptic region called the validation region.
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