
Unsupervised Object Detection in Images
from Maritime Environments

Kristoffer Kleven Krossholm

Master of Science in Cybernetics and Robotics

Supervisor: Edmund Førland Brekke, ITK
Co-supervisor: Arild Nøkland, Kongsberg Seatex

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

i

Problem description

The goal of this thesis is to explore unsupervised machine learning methods from the

field of computer vision to extract information from images about objects that might

interfere with the operation of an autonomous vessel. The work should extend the de-

velopments of the candidate’s fifth year specialization project by mitigating identified

drawbacks. A promising method should be implemented and tested.

ii

iii

Preface

This thesis concludes my master’s degree in Cybernetics and Robotics at the Norwegian

University of Science and Technology.

I would like to thank my supervisors, Associate Professor Edmund Brekke Førland

and Arild Nøkland at Kongsberg Seatex, for their valuable guidance and feedback through-

out the work of this thesis. Also, the people at office G234 deserves gratitude for their

contribution to an extraordinary academic atmosphere.

The work in this thesis has been carried out with support by Kongsberg Seatex.

Kongsberg Seatex has provided image data and hardware used for implementation and

computation. In addition, they have provided a simple software library for loading im-

ages and metadata into memory. Apart from this, the object detection algorithm is fully

implemented by myself.

Trondheim, June 2018

Kristoffer Kleven Krossholm

iv

v

Abstract

Autonomous surface vehicles (ASVs) are likely to revolutionize the maritime industry in

the near future. To obtain situation awareness and avoid collisions, information from

various types of sensors is needed. Visual cameras mounted on an ASV provide a de-

tailed description of its surroundings.

In this thesis, an algorithm for object detection in images based on unsupervised

learning is implemented and tested. Different from supervised learning, unsupervised

learning algorithms have no ground truth to use as guidance for learning what type

of objects it should detect. This saves a large amount of human labor, and enables

detection of objects the algorithm has not seen before.

The object detection algorithm is based on a neural network, specifically an autoen-

coder, that is trained to represent visual ocean features well, while highlighting what it

consider anomalous. Hence, the algorithm relies on the assumption that objects are

represented as anomalies in the image data.

The evaluation shows that the algorithm at its best is able to detect all objects. How-

ever, this comes at the expense of a high number of false positives. The maritime envi-

ronment contains a lot of natural features, such as waves, that stand out visually. These

are often considered anomalous by the algorithm, and therefore detected as objects.

vi

vii

Sammendrag

Autonome overflatefartøyer vil trolig revolusjonere den maritime industrien i nær frem-

tid. Ulike typer sensorer er nødvendig for å gi informasjon til å oppnå situasjonsforståelse

og unngå kollisjoner. Visuelle kameraer montert på fartøyet kan brukes til å gi en detal-

jert beskrivelse av fartøyets omgivelser.

I denne masteroppgaven er en algoritme for objektdeteksjon i bilder basert på ikke-

ledet læring implementert og testet. Ulikt ledet læring har ikke-ledet læring ingen fasit

å bruke som veiledning for å lære hva slags objekter som skal detekteres. Dette sparer

svært mye manuelt arbeid, og muliggjør deteksjon av objekter algoritmen ikke har sett

før.

Algoritmen er basert på et nevralt nettverk, nærmere bestemt en auto-enkoder, som

er trent til å representere det visuelle ved det maritime miljøet godt, samtidig som den

fremhever det den anser som uregelmessig. Algoritmen beror dermed på antagelsen

om at objekter er representert som uregelmessigheter i bildene.

Evalueringen viser at algoritmen på sitt beste er i stand til å detektere alle objekter.

Dette kommer imidlertid på bekostning av et høyt antall falske positive deteksjoner. Det

maritime miljøet inneholder mange naturlige detaljer, for eksempel bølger, som skiller

seg ut visuelt. Disse regnes ofte som uregelmessige av algoritmen, og detekteres derfor

som objekter.

viii

Contents

Problem description i

Preface iii

Abstract v

Sammendrag vii

Contents xi

Acronyms xiii

Glossary xv

1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Autonomous operation . 1

1.1.2 Sensor fusion and cameras . 2

1.1.3 Convolutional neural networks and unsupervised learning 3

1.2 Outline . 4

2 Image processing 5

2.1 Image filtering . 5

2.1.1 Convolutional operation . 5

2.1.2 Gaussian smoothing . 6

2.1.3 Edge detection . 7

ix

x CONTENTS

3 Deep learning 9

3.1 Artificial intelligence, machine learning and deep learning 10

3.2 Basics of machine learning . 10

3.2.1 Data . 11

3.2.2 Supervised and unsupervised learning 11

3.3 Artificial neural networks . 11

3.3.1 Building blocks . 12

3.3.2 Layer types . 13

3.3.3 Training a neural network . 16

3.3.4 Regularization . 18

3.3.5 Optimization strategies for training 20

3.4 Autoencoder . 22

3.4.1 Denoising autoencoder . 23

3.5 Evaluation measures . 24

3.5.1 Binary classification . 24

4 Related work of object and anomaly detection 25

4.1 General detection approach with autoencoder 25

4.2 Detection with inpainting autoencoder . 26

4.2.1 State-of-the-art inpainting . 28

5 Image data 31

5.1 Data acquisition . 31

5.2 Data details . 32

5.3 Data exploration . 33

5.3.1 Speed of vessel . 33

5.3.2 Illumination intensity . 34

6 Object detection algorithm 41

6.1 General approach . 41

6.1.1 Assumption and performance implications 41

6.2 Algorithm walk-through . 43

CONTENTS xi

6.3 Autoencoder model . 44

6.3.1 High level hyperparameters . 45

6.3.2 Architecture . 46

7 Experiment and results 49

7.1 Experiment description . 49

7.1.1 Autoencoder training . 49

7.1.2 Evaluation . 52

7.2 Results . 56

7.2.1 Quantitative results . 58

7.2.2 Visual results . 60

7.2.3 Results analysis . 65

7.3 Discussion . 65

8 Concluding remarks 69

8.1 Conclusion . 69

8.2 Further work . 70

Bibliography 75

xii CONTENTS

Acronyms

AI Artificial Intelligence

ASV Autonomous Surface Vehicle

ANN Artificial Neural Network

CNN Convolutional Neural Network

GPU Graphical Processing Unit

GT Ground Truth

MAE Mean Absolute Error

MSE Mean Squared Error

PCA Principal Component Analysis

RGB Red, Green, Blue color model

SGD Stochastic Gradient Descent

xiii

xiv CONTENTS

Glossary

Anomaly Data inconsistent with the rest of the dataset.

Dilation The parameter deciding the jump in extracted input patch of convolutional

layer.

Epoch Number of training iterations over the dataset.

Kernel size The size of the filter kernel.

Minibatch A set of instances fed at a time to a neural network during training.

Ownship The ship having the principal eye-point.

Padding The amount of zeros appended to the spatial axes of an input feature map.

Stride The parameter deciding the downsampling in a convolutional layer or upsam-

pling in a deconvolutional layer.

Tensor A multidimensional array.

Texture Structured content that is repeatedly visible in the image.

xv

xvi CONTENTS

Chapter 1

Introduction

1.1 Background and motivation

Ever since the first industrial revolution, technological progress has increased in speed

and made each generation of human kind capable of achievements beyond the imag-

ination of their ancestors. At the time, Industry 4.0 is claiming its territory, bringing

increased connectivity, more available data, robots and autonomy on many levels. Au-

tonomous vehicles play a major role within this revolution.

1.1.1 Autonomous operation

Vehicles able to operate without any human interaction have several benefits. Acci-

dents caused by human errors are greatly reduced, leading to a large improvement in

safety. Energy efficiency is optimized, reducing environmental impact. Vehicles are de-

signed only for their purposes, not constrained by the requirement of carrying human

operators. Human capital is made available for other purposes when not needed to

operate the vehicle. All of these implications are highly welcome from an economical

perspective. Also, autonomous vehicles can reach out in harsh environments without

endangering humans, enabling search and rescue and discovery missions otherwise

not possible to carry out.

1

2 CHAPTER 1. INTRODUCTION

Autonomous surface vehicles (ASVs) are likely to have a huge impact in the mar-

itime industry. As over 90% of the world’s trade is carried by sea [42], the potential im-

plications are enormous. The automotive companies have been pioneers in the devel-

opment of self-driving cars, and a lot of the technology is also applicable in maritime

use-cases. Still, different environments must be taken carefully into account. The ob-

vious fact that roads are still while ocean is not might make things seem easier for car

manufacturers. However, the surroundings of cars at roads are quite tight and may

include clutter such as pedestrians, cyclists and other cars. Vessels are likely to be sur-

rounded by other vessels nearby harbour, but is often left with a lot of space once at

open sea.

1.1.2 Sensor fusion and cameras

Sensor fusion is a key component to provide situation awareness for ASVs. Fusing in-

formation from several sensors is needed to exploit the strengths of each of them, and

bring a certain level of redundancy. The visual camera is a very important sensor in this

system, and has a quite different approach for detection than what radar and lidar have.

Seagoing vehicles have long used radar to detect obstacles such as vessels and shore,

leading to a range of available radars specifically designed for maritime applications

[19]. Ship radar provide a 360 degree field of view, accurate long-range distance mea-

surement, robustness towards weather and illumination conditions, but lack short-

range accuracy and details about detected obstacles. Newer types of radar designed

for the automotive industry have better short-range performance and can hence com-

plement regular ship radar. Lidar offer a highly detailed 3D map of the close surround-

ings which include accurate distance measurement and make obstacle classification

possible. Its high price is an apparent drawback, and it is less robust towards weather

conditions than radar since it operates in the visual spectrum.

Visual and infrared spectrum cameras also provide detailed descriptions of nearby

surroundings of the vehicle. Infrared cameras are robust towards darkness and difficult

illumination, which is one of the largest disadvantages of visual cameras. Yet, visual

cameras are used widespread by consumers and in industry, which makes them cheap,

1.1. BACKGROUND AND MOTIVATION 3

the technological development very fast and computer vision algorithms well-known

and available. Visual cameras provide high resolution, coloured images well suited for

detection and classification of objects. As opposed to other sensors do visual cameras

in general capture the same information as the human eye.

About sensor selection, interesting observations can be obtained by once again look-

ing at the development for autonomy in the automotive industry. Whereas Google has

chosen to rely on lidar in addition to cameras and radar, Tesla has so far found it unnec-

essary to include lidar. Regardless if lidar proves to be necessary or not in a successful

sensor fusion scheme for ASVs, visual cameras are likely to contribute a lot.

1.1.3 Convolutional neural networks and unsupervised learning

Deep learning based on neural networks is together with reinforcement learning at the

very forefront of artificial intelligence, and is revolutionizing human society in con-

sumer and industrial applications. Convolutional neural networks (CNNs) in particular

have impacted the field of computer vision dramatically in the recent years. Ever since

AlexNet [21] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in

2012 by reducing the localization error from 42.5% to 34.2% [37], all following state-of-

the-art approaches for classification and detection are based on CNNs [2]. It is not very

likely that non-learning based algorithms suddenly should outperform CNNs. Con-

sequently, for the object detection task in this thesis, the most promising approach is

likely to be based on a CNN.

The approach presented in this thesis is based on unsupervised learning. Whereas

supervised learning algorithms are told what the correct outcome is in each case it is

presented with, does unsupervised learning decide by itself what to learn from each

situation. Supervised, state-of-the-art algorithms for object detection balancing accu-

racy [24] and speed [33, 34] perform great at detecting previously seen objects, but not

equally good on unseen objects [49]. Unsupervised learning algorithms does not incor-

porate this distinguishment, and may be trained to become better at detecting unseen

than seen objects. This is an advantage for an ASV application, since it needs to detect

all types of objects in its surroundings, in particular novel ones.

4 CHAPTER 1. INTRODUCTION

Another benefit of unsupervised learning is that the lack of supervision makes it re-

quire far less human labor. Even though large public datasets are available [36], specific-

purpose algorithms often benefit from training on domain data, which is an expensive

procedure to supervise. Consequently, no supervision makes far more data accessible

at a small cost. One can argue that both approaches are needed in an adequate sen-

sor fusion scheme; the supervised algorithm is qualified to detect the most common

and well-known objects, while the unsupervised algorithm is capable of detecting both

novel and known objects.

1.2 Outline

This thesis is organized according to the following outline:

• Chapter 2 and 3 provides theoretical background about image processing and

deep learning.

• Chapter 4 presents related work of unsupervised object and anomaly detection,

with particular focus on relevant research about autoencoders.

• Chapter 5 describes the image data used to evaluate the detection algorithm and

train the autoencoder the algorithm is based on.

• Chapter 6 presents the object detection algorithm and the model of the convolu-

tional autoencoder.

• Chapter 7 describes the experiment of training the autoencoder and the evalua-

tion results of the detection algorithm.

• Chapter 8 concludes this thesis and brings suggestions for further work.

Chapter 2

Image processing

In a computer vision perspective, image processing involves applying a filter to an im-

age to change its properties. Image filtering is a simple process, yet very useful for sev-

eral operations. The range is from fundamental tasks such as noise smoothing and edge

detection to more advanced computer vision algorithms including convolutional neu-

ral networks presented in Chapter 3. The content of this chapter is based on Forsyth

and Ponce [9] and Szeliski [38], and the exposition is similar to the one in [41].

2.1 Image filtering

2.1.1 Convolutional operation

In a simple form, image filtering can be described as computing weighted sums of

pixel values adjacent to a centre pixel to extract information about the area. Pattern

of weights is commonly referred to as the kernel of the filter. Filters are usually imple-

mented by use of the convolutional operation, denoted∗. For a two-dimensional image

I of size (i , j) and a filter kernel K of size (m,n), the output image S of the convolutional

operation is given by (2.1).

S(i , j) = (K ∗ I)(i , j) =∑
m

∑
n

I (i −m, j −n)K (m,n) (2.1)

5

6 CHAPTER 2. IMAGE PROCESSING

2.1.2 Gaussian smoothing

Gaussian filter is a very popular approach for smoothing of images, which is useful for

high-frequency noise reduction and applied in a number computer vision algorithms

as pre-processing. In the two-dimensional continuous case, the gaussian filter kernel

is the function describing a gaussian distribution. With standard deviation σ, it is given

by

G(x, y) = 1

2πσ2 exp

(
−x2 + y2

2σ2

)
(2.2)

To work with digital image data, the gaussian filter kernel is approximated to the

discrete domain. An example of kernel size 5×5 with σ= 1 is shown in (2.3).

G(m,n) = 1

256



1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1


, σ= 1 (2.3)

One should note that due to different approximation techniques and requirements

on accuracy, there exist more than one unique gaussian filter kernel for a given kernel

size and standard deviation. The effect of gaussian smoothing is shown in Figure 2.1.

2.1. IMAGE FILTERING 7

Figure 2.1: Gaussian smoothing applied to an image. Top left: original image. Top right:
σ= 1. Bottom left: σ= 5. Bottom right: σ= 20.

2.1.3 Edge detection

Edge detectors refer to any type of filter specifically designed to detect edges. This is

particularly useful since edges are simple types of shapes that often form the basis for

more complex patterns. Edges in images are built by large intensity variations within a

quite small spatial domain. By computing the gradient in each of the two spatial dimen-

sions separately, one obtain large values at horizontal and vertical edges. A Sobel filter

is a simple type of filter that compute the gradient. To detect horizontal and vertical

edges, the filter kernels Ky and Kx are convolved with the image.

Ky =


−1 −2 −1

0 0 0

1 2 1

 , Kx = K T
y (2.4)

A lot of images contain high frequency noise not necessarily visible to the human

eye on regular print or computer screens. Edge detectors like the Sobel filter are very

sensitive to this noise, yielding just noise as output if convolved directly with an im-

age. Therefore, a better approach is to apply a smoothing filter like the gaussian before

8 CHAPTER 2. IMAGE PROCESSING

applying Sobel. Figure 2.2 shows the response of the filter kernels Ky and Kx after the

input image is convolved with a gaussian filter with standard deviation σ= 10.

Figure 2.2: Sobel filter applied to an image. Left: original image I . Middle: Ky ∗G ∗ I .
Right: Kx ∗G ∗ I .

Chapter 3

Deep learning

Image processing presented in Chapter 2 is fundamental to solve several computer vi-

sion tasks, both by traditional feature-based and modern learning-based techniques.

Feature-based methods use domain knowledge to derive analytic models used to ex-

tract information from images. Modern, learning based techniques make general pur-

pose models suitable to specific tasks by presenting domain data to them. Convolu-

tional neural networks (CNNs) have achieved state-of-the-art results in tasks such as

object detection and classification in images [37], and are fundamental in the object

detection approach presented in this thesis. Before CNNs are described, a general un-

derstanding of deep learning is needed.

This chapter situates deep learning within machine learning and artificial intelli-

gence, provide an overview of machine learning basics and describe artificial neural

networks quite detailed. Also, autoencoders and relevant evaluation measures are pre-

sented. Apart from where cited otherwise, the structure and content of this chapter is

heavily based on the book Deep Learning by Goodfellow et. al. [10] and F. Chollet’s book

Deep learning with Python [7].

9

10 CHAPTER 3. DEEP LEARNING

3.1 Artificial intelligence, machine learning and deep learn-

ing

Artificial intelligence (AI), machine learning and deep learning are three closely related

fields of research. A common way to distinguish them, is to define AI as the broadest

term of the three, machine learning as a subfield of AI and deep learning as a subfield

of machine learning. Such a separation is illustrated by the venn diagram in Figure 3.1.

Figure 3.1: The relationship between the terms artificial intelligence, machine learning
and deep learning.

3.2 Basics of machine learning

Machine learning is a subfield of artificial intelligence, recognized by its ability to learn

from data rather than being programmed to follow a predefined set of rules. Machine

learning algorithms are designed to find statistical structures in the data presented,

in order to learn its own rules for automating the task at hand. Typical tasks for ma-

chine learning algorithms are regression, classification, anomaly detection, transcrip-

tion, machine translation, synthesis, denoising and density estimation [10]. To learn

rules, the algorithm needs a measure of performance of its goal, e.g. to maximize the

accuracy of the algorithm.

3.3. ARTIFICIAL NEURAL NETWORKS 11

3.2.1 Data

The data presented to the algorithm for it to learn, is referred to as training data. Even

though statistical structures in training data might be interesting in itself, the value of

well-performing machine learning algorithms is that they can be trained to do useful

operations to new data, referred to as test data. In other words, the learning algorithm

should be able to generalize from training scenarios to scenarios it has never seen be-

fore. This can be difficult to achieve, and a typical problem that arises is that the learn-

ing algorithm overfits, meaning that it fits too precisely to the training data for it gen-

eralize well to the test data. The opposite case is when the algorithm fits too loosely, it

underfits. The best way to make a learning algorithm generalize well, is to train it on

more data [7]. However, gathering data is an expensive procedure and not always fea-

sible. Regularization is any modification of the learning algorithm or the data to fight

overfitting and improve generalization.

3.2.2 Supervised and unsupervised learning

A broad categorization of machine learning algorithms can be obtained by dividing

them into supervised and unsupervised algorithms. Unsupervised algorithms are pre-

sented with a dataset, for instance represented as a two-dimensional array of examples

at one axis and corresponding attributes on the other, and learns the structure repre-

senting the data. Supervised algorithms is presented with the same dataset, in addition

to an associated label for each example in the data. The supervised algorithm then

learns the mapping from the attributes to the label.

3.3 Artificial neural networks

The key component of deep learning is the artificial neural network and feedforward

neural network in particular, recognized by the fact that information is passed forward

through the network without any feedback connections. Feedforward neural networks

are quite simply general mathematical models created with the goal approximate any

function. For example, a regressor described by the function y∗ = f ∗(x) maps an in-

12 CHAPTER 3. DEEP LEARNING

put x to an output y∗. By adjusting its parameters θ, a feedforward neural network

y = f (x;θ) approximates the regressor. Neural networks with feedback connections are

called recurrent neural networks (RNNs). Since RNNs are not used in this thesis, feed-

forward neural networks will simply be referred to as neural networks.

3.3.1 Building blocks

A way to describe artificial neural networks at a lower level, is to define their build-

ing blocks neurons being organized in layers. A neuron computes the weighed sum of

its inputs and a bias term, typically followed by a nonlinear activation function which

makes the network capable of modeling nonlinear phenomenons. This is visualized in

Figure 3.2. More neurons with similar properties coupled together form layers, which

again can be used to form the network structure shown in Figure 3.3. The weights and

bias terms of the network are the parameters that are adjusted during training. Hyper-

parameters are parameters that describes the network structure at a higher level and is

set before training. Examples of hyperparameters are the number of neurons in a layer,

the number of layers and the activation function of choice. The process of training and

more about hyperparameters is described throughout this chapter.

x0

f (+)b0 ∑
i=0

n

wixi

b0

w0

w1

x1

w2

a0

x2

Figure 3.2: The three inputs xi and corresponding weights wi in addition to a bias term
b0 are passed to a single neuron. f is a nonlinear activation function, and the output of
the neuron is its activation a0.

3.3. ARTIFICIAL NEURAL NETWORKS 13

x0

a2

a0

a1

dense layerinput layer

b0

w0

0

w0

1

x2

x1

x3

y0

output layer

Figure 3.3: A simple neural network with a single hidden dense layer. Figure inspired by
[41].

3.3.2 Layer types

A layer in a neural network is simply a way to organize neurons and how they are con-

nected. Without any strict definition, there exist indefinitely many different types of

layers. In this section, two of the most popular layer types are presented. Dense lay-

ers are a simple type, while convolutional layers form the basis for any convolutional

neural network.

Dense layers

Dense layers, also called fully connected layers, are the simplest layer type used in neural

networks. A neuron in a dense layer is connected to all activations in the previous layer.

Hence, the dense layer is able to learn global patterns, which for image data means

patterns built by all pixels in the input image. A major drawback with dense layers is

that they are computationally expensive to train, since the number of parameters they

include is very large.

14 CHAPTER 3. DEEP LEARNING

Convolutional layers

Convolutional layers utilizes the convolution operation, as stated in (2.1), to learn local

patterns, i.e. patterns built by the values in a small area in the input. F. Chollet [7] points

out two important properties of learning local rather than global patterns by applying

convolutional layers, since "the visual world is fundamentally translation invariant and

spatially hierarchical".

• Patterns learned are translation invariant, such that a pattern learned in a spe-

cific location can be recognized anywhere afterwards. In contrast, a dense layer

would need to learn the pattern again for every new location it shows at. This

property can also be called parameter sharing [10], since the same filter kernel

(with the same parameters) is used all over the input image.

• Patterns learned are ordered in spatial hierarchies, in the sense that the first lay-

ers learn simple patterns like edges, and the following layers learns increasingly

complex patterns.

For images, learning local patterns is obtained by applying filter kernels in a similar

way as in standard image processing, however the difference lies in how the parame-

ters of the kernel are decided. In standard image processing, fixed, handcrafted filter

kernels are used to obtain a certain property, for instance detection of vertical edges.

In convolutional layers the kernels consist of parameters (weights) that are subject to

change during training, such that the model learns its own filter kernels. There are only

practical limitations on how many filter kernels a convolutional layer can have.

A convolutional layer is described by four hyperparameters:

• The filter size K decides the spatial receptive field of each activation in the output.

Larger K also increase the number of parameters involved with the layer.

• The number of filters F . Larger F increase the number of parameters and decides

the output depth.

• The stride S decides how many pixels the center of the extracted patch is dis-

placed while sliding over the entire input. S > 1 effectively downsamples the spa-

3.3. ARTIFICIAL NEURAL NETWORKS 15

tial extent of the output.

• The amount of padding P decides in any extra rows and columns with zeros

should be added around the input. A common choice is to zero pad such that

the spatial dimension of the output of the layer is the same as its input.

Figure 3.4 visualizes a convolutional layer in detail. The input feature map has dimen-

sion 5×5×3, corresponding to a very small RGB image. The input is padded with zeros

such that P = 1, and the centre of patches extracted are displaced such that the stride

S = 2. The filter kernel of size K = 5 and number of filters F = 4 is applied to the in-

put by extracting patches from the input and computing the dot product. The given

hyperparameters yield an output feature map of dimension 2×2×4.

16 CHAPTER 3. DEEP LEARNING

dot product

Extracted
input patch
of dimension

5 × 5 × 3

Filter kernel
of dimension

5 × 5 × 3 × 4

Output feature
map of dimension

2 × 2 × 4

Input feature
map of dimension

with padding

5 × 5 × 3

P = 1

Figure 3.4: Convolutional layer. The input patches are extracted with a stride S = 2. The
number of filters F = 4 yields an output feature map of depth 4. Figure inspired by [7]
and [41].

3.3.3 Training a neural network

The process of adjusting the parameters of a neural network to obtain a certain goal, is

called training. The goal is formulated as a optimization problem, such that the net-

work seeks to minimize the loss function. Consider a simple regression problem with

multi-input x and single-output y . We choose the goal to be to minimize the mean

square error between the predicted output ŷ and the ground truth output y over all

the n instances in the training data. For a prediction ŷk = f (xk ;θ),k ∈ [1,n], the loss

function is given by

3.3. ARTIFICIAL NEURAL NETWORKS 17

L = 1

n

n∑
i=1

(f (x i ;θ)− yi)2 (3.1)

A linear regression problem with relatively few data instances could easily be solved

for where the gradient of the loss function is zero, ∇L = 0. However, due to the non-

linear activation function often used in neural networks, most interesting loss func-

tions become non-convex. The common solution to this is to use an gradient descent

optimizer to iteratively train the network to lower the loss function. While a very small

dataset allows for training by regular gradient descent, this soon become infeasible for

larger datasets due to the limited memory of computers. Stochastic gradient descent

optimizers solves this by calculating the gradient descent of a minibatch of instances at

a time, including anything from one to a larger number of instances. Hence, the gradi-

ent is estimated from a relatively small number of instances. Including all the instances

in the training set in a minibach would correspond to regular gradient descent.

The examples in each minibatch are randomly selected. Training on the entire train-

ing set once is called an epoch, and since the training is iterative, the network may

require training for several epochs to obtain satisfying performance. For each epoch,

new minibatches of randomly selected selected examples are created to avoid the same

learning pattern as in the previous epoch. The randomness is important for generaliza-

tion since it introduce noise.

The gradient descent scheme is given in (3.2), where g is the gradient and α is the

learning rate.

θ← θ−αg (3.2)

With the loss function in (3.1), the gradient is approximated from the minibatch of

size n′.

g = 1

n′∇θ

n′∑
i=1

(f (x i ;θ)− yi)2 (3.3)

Neural networks may have many hidden layers. The gradient used for parameter

update of the last layer is computed from the loss with the scheme given above. How-

ever, this is not the case for the hidden layers since they output an activation that cannot

18 CHAPTER 3. DEEP LEARNING

compared directly with a ground truth value.

Back-propagation [35], introduced by Rumelhart et. al. in 1986, is an algorithm for

computing the gradient of any function. Starting out from the loss of the last layer, the

gradients of the hidden layers are computed by recursively applying the chain rule for

gradients. Even though other alternatives exist, back-propagation is the standard ap-

proach for gradient computations in deep learning due to its computational efficiency.

Optimizers

An optimizer is the overall scheme of the optimization process when training a neu-

ral network. The most successful ones are varieties of stochastic gradient descent, de-

scribed by (3.2) and (3.3). The learning rate α in (3.2) is a very important hyperpa-

rameter which can be difficult to set manually. Following, several optimizers computes

adaptive learning rates for different parameters individually [47, 20]. Another common

approach used by optimizers is to add momentum [31], in which a moving average of

the last gradients is used and not only the current one.

3.3.4 Regularization

Regularization refers to any modification of the original neural network and its training

to increase generalization and reduce overfitting. This is a vast field of research within

deep learning. The best way to increase generalization is to train the model on more

data, but gathering data can be an expensive exercise. Therefore, common modifica-

tions involve to reduce the network capacity, add terms in the loss function, augment

the input data by various transformations and to make sure the network does not train

too long. Table 3.1 shows a selection of regularization techniques with a short descrip-

tion. Dropout and batch normalization is explained in more detail in the following sec-

tions.

3.3. ARTIFICIAL NEURAL NETWORKS 19

Table 3.1: Selection of common regularization techniques.

Description
Early stopping More training make the model fit better to the training data.

To fit well to the test data, training should by stopped at the
right time.

Reduce model Reduce the number of trainable parameters by reduce the
capacity number of neurons and layers and change layer type. Fewer

parameters can describe less complex patters, thereby less
likely to overfit.

Weight decay Add terms in the loss function penalize large weight
parameters. Weights closer to zero improves generalization.

Data augmentation For image data, applying transformations such as rotation,
translation, shear and zoom with random, but controlled
strength generates realistic new data from existing data.

Dropout Randomly set activations to zero. The technique is elaborated
below.

Batch normalization Adaptively normalizing each minibatch of values keeps the
input distribution of a layer fixed, which both speeds up
training and acts as regularizer. The technique is elaborated
below.

Dropout

A very powerful regularization technique called dropout introduced by Srivastava et. al.

[40] has become common for training neural networks due its great performance and

simplicity. When dropout is applied to a layer, the activations of neurons are randomly

set to zero, such that they are "dropped out" from the network. The dropout rate p

defines the fraction of the neurons in a layer that is set to zero. Figure 3.5 shows an

example of dropout applied to an activation matrix.

Figure 3.5: Dropout applied to a feature map with the dropout rate p = 0.25. Figure
inspired by [7].

20 CHAPTER 3. DEEP LEARNING

Applying dropout to a neural network leads to the following:

1. During training, the activations are randomly set to zero in the layers where dropout

is applied. This corresponds to sampling different "thinned" networks for each

training case.

2. During testing, no activations are set to zero. Instead, and to make up for the

dropped-out activations during training, all activations are scaled down accord-

ing to the dropout rate, such that the expected output the same as during training.

As pointed out in [40], how dropout affects the network can be interpreted in dif-

ferent ways. Firstly, it can be seen as randomly sampling sub-networks of the original

network and averaging the output of all the sub-networks during testing. This is similar

to combining an ensemble of models, even though one should note that the models in

the dropout-case share parameters and are thus not independent. Combining mod-

els has shown to nearly always improve performance of machine learning models [40].

Secondly, dropout can be seen as a way of introducing noise to the particular layer it

is applied in. Random noise can break up patterns present in the data but not in the

process the data samples from, e.g. due to sampling bias and non-random noise. Effec-

tively, dropout acts as a regularizer such that the neural network is less likely to overfit

and more likely to generalize well to new data. It is computationally efficient, and works

well on nearly any model that is trained by stochastic gradient descent-based optimizer

[10].

3.3.5 Optimization strategies for training

Whereas optimizers are algorthims that applies to the overall training process, other

strategies that optimize training on a lower level exist. Normalization techniques are

one of those, with batch normalization as the most influential so far.

Batch normalization

A well known fact of neural network training is that normalizing the input speeds up the

learning process [23], since it keeps the distribution of the input fixed during training.

3.3. ARTIFICIAL NEURAL NETWORKS 21

Assuming the data is Gaussian distributed, the normalization is done by subtracting the

mean to center the data around zero, and to divide by the standard deviation to obtain

unit variance. For a one-layer neural network, normalizing the input of the first and

only layer is sufficient. However, for a deep model with several layers, it is advantageous

if one could ensure that the input of all layers have fixed distribution.

During training of a deep neural network, a minibatch of training examples is usu-

ally considered at each step, and the trainable parameters of each layer are updated

according to the gradient descent of that minibatch. By use of back-propagation, the

gradient computation propagates from the last layer to the first layer. A small change in

the parameters in the last layers may in some cases be amplified throughout the deep-

ness of the network, creating a relatively large change in the activation in the first layers.

This may lead to a significant change of input distribution of the last layers.

Ioffe and Szegedy [17] introduced batch normalization in 2015 to address this prob-

lem. Consider a batch of images defined by a four dimensional tensor with dimensions

(N , H ,W,C), where N is the number of images in the batch, H and W are the spatial axes

and C is the channel axis. For each channel, normalization along the (N , H ,W) axes are

done by computing the mean and variance of those axes together, and reparametrizes

the values such that the distribution in each channel stays fixed [44, 10]. Now, each

layer can assume a certain channel distribution, which allows for higher learning rate

and deeper networks than what was feasible from before. Batch normalization has also

proven to act very well as regularizer since the reparametrization introduces both ad-

ditive and multiplicative noise. This effect is so evident that dropout either can be re-

duced in strength or removed entirely.

Recent research shows that there are drawbacks of normalizing along the batch axis

in certain scenarios. Very small batch sizes lead to less accurate mean and variance

estimation than for larger batch sizes, which reduces the original effect of batch nor-

malization. In those cases, alternative normalization methods should be considered.

Group normalization by Wu and He [44] normalizes for each sample N along all the

spatial axes and a subset (a group) of the channels, computing the mean and variance

within that subset. Wu and He show that group normalization has performance that

22 CHAPTER 3. DEEP LEARNING

almost can compete with batch normalization in most regular scenarios, while it out-

perform batch normalization for very small batch sizes.

3.4 Autoencoder

An autoencoder is a neural network with the overall goal to copy its input to its output. It

consists of two parts: an encoder and a decoder. The encoder e encode the input x to a

hidden representation or code h, while the decoder d decode the hidden representation

to the output or reconstruction r . Thus, r is given by (3.4) and the overall structure of

the autoencoder is visualized in Figure 3.6.

r = d(h) = d(e(x)) (3.4)

de

xn

h

x2

x1

x0

r0

r1

r2

rn

Figure 3.6: Autoencoder with input dimension n. The encoder e encodes the input to
the hidden representation or code h of arbitrary dimension and the decoder d decodes
the hidden representation to the reconstruction r .

Autoencoders are trained in the same way as any other feedforward neural network,

but uses its input as ground truth and seeks to minimize the difference between in-

put and output. Since the training procedure do not require any manual labeling of

ground truth, autoencoders may be regarded an unsupervised learning algorithm [10],

a view adopted in this thesis. Another option [7] is to consider autoencoders as self-

supervised, in the sense that they supervise their own learning with their input.

3.4. AUTOENCODER 23

By constraining the network and hidden code in various ways, the autoencoder can

learn useful aspects about the input data. For instance, if the hidden code is of lower di-

mensionality than the input, the trained autoencoder acts as a compression algorithm

since it is forced to learn the most important properties of the input. Such an autoen-

coder architecture may yield a hidden code containing similar information to the out-

put of principal component analysis (PCA); they are both a low-dimensional represen-

tation of the input. However, there are several differences: PCA finds linear combina-

tions of the original dimensions and outputs the dimensions that explain the greatest

variance, by including the exact variance each dimension explain. Autoencoders does

not yield a similar ordering of its dimensions based on the information it contain. By

the use of nonlinear activation functions, autoencoders capture patterns that PCA is in-

capable of. This make them serve as a "nonlinear generalization of PCA", and yield far

better representations in many applications [13]. In addition to dimensionality reduc-

tion, numerous other applications of autoencoders exists, and a selection of relevant

examples is reviewed in Chapter 4.

3.4.1 Denoising autoencoder

A denoising autoencoder is a variety of an autoencoder in which the input data is cor-

rupted with noise, yet it is trained to reconstruct the non-corrupted version of the input

[10]. Thus, the autoencoder should become more robust towards the particular type

of noise added than what originally is the case. Additionally, it can be applied to the

computer vision task known as image restoration, where the goal is to restore the input

image with increased quality.

Common noise choices are random noise such as Gaussian or uniform distributed

noise, which share characteristics with dropout (Section 3.3.4) applied to the input

layer. Other examples are text and larger patches of n ×m pixels that is dropped out.

For the latter, the task of denoising transforms to the closely related task of inpaint-

ing or synthesis: the autoencoder learns to fill in the masked area based on context of

nearby pixels.

24 CHAPTER 3. DEEP LEARNING

3.5 Evaluation measures

3.5.1 Binary classification

Sample space

In binary classification problems, the four outcomes of true positive, false positive, true

negative and false negative define the sample space [32]. They can be expressed in

terms of raw counts or in relative terms such as probabilities or proportions. Table 3.2

summarizes how the outcomes are distinguished.

Table 3.2: Contingency table summarizing the sample space in binary classification
problems. Courtesy of [22].

True condition True condition
postive negative

Predicted condition
positive

True positive tp False positive fp

Predicted condition
negative

False negative fn True negative tn

Precision and recall

Precision1 and recall2 are evaluation measures based on the outcomes given in Ta-

ble 3.2. Precision may be interpreted as the fraction of how many selected items are

relevant, while recall is how many relevant items are selected. Their definition is given

in (3.5) and (3.6)

precision = t p

t p + f p
(3.5)

recall = t p

t p + f n
(3.6)

1Precision is also known as confidence or True Positive Accuracy.
2Recall is also known as sensitivity or True Positive Rate.

Chapter 4

Related work of object and

anomaly detection

Unsupervised object detection in computer vision applications by the use of neural net-

works is a quite recent field of research, with the first approach published in 2017 based

on an autoencoder [15]. However, the related field of unsupervised anomaly detection

has been studied extensively [6, 14, 30], with autoencoders as one of several methods.

If one assumes that the objects one wish to detect are represented as anomalies in the

data, anomaly detection approaches can be used to detect objects in images. This is

similar to the methodology followed by [15].

This chapter provides an overview of unsupervised detection approaches based on

convolutional neural networks.

4.1 General detection approach with autoencoder

Detection of anomalous features in images by the use of autoencoders is a well studied

approach based on unsupervised learning [22]. The general procedure is given by the

two following steps:

1. Train the autoencoder as a feed forward neural network on data imaging normal

25

26 CHAPTER 4. RELATED WORK OF OBJECT AND ANOMALY DETECTION

scenarios minimizing the pixel wise reconstruction residual.

2. Apply trained autoencoder on new images and compute the corresponding re-

construction residual. Classify as normal or anomalous depending on the resid-

ual magnitude.

Several varieties of both steps exist. The main discussion of the first step concerns

about what data the model should see during training, and is a discussion for anomaly

detection in general. Consider a dataset consisting of two classes: a normal class and

an abnormal class, but without knowledge of what class each data point belong to. A

common assumption is that the normal class is well sampled, while the abnormal class

is severely under-sampled, due to the nature of abnormalities [30]. This data imbal-

ance often leads to a under-sampled class with high variance and skew distribution,

which must be taken into account when designing any learning algorithm, both with

and without supervision [12]. The problem can be mitigated by taking steps to ensure

that the abnormal class is even less well sampled than originally, and then simplify by

treating the entire dataset as all belonging to the normal class [6]. Such a simplification

is in particular suitable for unsupervised approaches.

How to select a threshold for what is normal and what is not is of focus in the sec-

ond step. Fixed thresholds is the most general approach, and can easily be tuned for

the algorithm to yield the desired ratio of true detections, false detections and missing

detection (precision and recall). Another option is to base the threshold on a moving

average of the pixel values of the set of images, as adopted by [15]. This requires to algo-

rithm designer to make an assumption on the sparsity of detections in the feature map,

in addition to set values for two more parameters.

4.2 Detection with inpainting autoencoder

Following Section 4.1, most former autoencoder for detection train to simply minimize

the residual between input and reconstructed image. Very recent work by Bhattad et.

al. [5] argue that this is a naive and too simple approach. The idea behind using an

autoencoder for detection is that when it is applied to a new image at test time, the au-

4.2. DETECTION WITH INPAINTING AUTOENCODER 27

toencoder should reconstruct the typical image from its training that is the most similar

to the new image. What often happens is that the autoencoder "peeks" and copies its

input image directly through, although with altered resolution. This leads to a small

reconstruction residual even for obvious anomalous features, and thus a low detection

rate.

The proposed solution by [5] is to use a variety of a denoising autoencoder, namely

an inpainting autoencoder. The noise added to the input image of an inpainting au-

toencoder is relatively large patches masking an area of pixels in the image. During

training, the autoencoder is forced to learn how to inpaint the area being masked con-

sidering the context of adjacent pixels. The final output consists of a grid on inpainted

areas merged together to a complete image. This approach ensures that "peeking" is no

longer possible. The autoencoder is still trained to minimize the reconstruction resid-

ual, and the reconstruction residual is used as feature map for anomaly detection, fol-

lowing the same idea as regular detection autoencoders.

To test their anomaly detection approach, [5] perform experiments on images of

celebrity faces, in which the anomalous images are given by photoshops, extreme makeup

and extreme facial expressions. First, tightly cropped face images are obtained using

the Viola-Jones face detector [43]. Then, each image is classified as normal or anoma-

lous based the L-infinity norm of the reconstruction residual, i.e. the localization of

the anomalies are disregarded. Their results show that the no-peeking autoencoder ob-

tain better recall rate than the regular autoencoder based on reconstruction residual,

ranging from twice the performance to about equal performance. For a different appli-

cation, it is straightforward to localize anomalies by applying thresholds instead of the

L-infinity norm, as given in step 2 in Section 4.1.

The domain difference between celebrity faces and objects in maritime environ-

ments is significant. Bhattad et. al. points out that anomaly detection of faces is a suit-

able test domain due to the high level of details and that anomalous faces look quite

similar to typical faces. In comparison, a flat ocean surface is far less dense of details,

and vessels look quite different than ocean. However, the conditions in maritime envi-

ronments are highly varying. Harsh weather conditions may introduce a high level of

28 CHAPTER 4. RELATED WORK OF OBJECT AND ANOMALY DETECTION

details such as waves, foam, water in the air etc. that needs to be well reconstructed

to not be detected as false alarms. Additionally, vessels and other objects should be

detected not just within a short range. At longer distances, it might be very difficult

to distinguish objects from ocean features - objects may cover only a few pixels. Con-

sequently, the different domains might share enough properties to make a detection

approach be suitable for both, even though this can only be determined by conducting

proper experiments.

4.2.1 State-of-the-art inpainting

Inpainting, as a subtask of image restoration, refers to fill in an area being masked in the

input and is an ancient art in itself [4]. The difficulty of the problem is very dependent

on the size of the masked area, since the pixels near the boundary have less ambigu-

ity than the ones in the middle of the mask. Recent research based on convolutional

encoder-decoder (autoencoder) architectures have lead to great progress.

Training loss

Bhattad et. al. [5], discussed in detail in Section 4.2, points out that they explore an

inpainting problem similar to the one in Pathak et. al. [29]. Pathak et. al. proposed an

contextual autoencoder that is trained to minimize two types of losses: the pixel wise

reconstruction loss and an adversarial loss, the adversarial loss as given by generative

adversarial networks (GANs) [11]. [29] points out that the pixel wise reconstruction loss

alone make the reconstructed image look blurry, while adding the adversarial loss leads

to sharper, more realistic looking reconstructions. This is confirmed by Iizuka et. al.

[16] and Yu et. al. [46], who follow up the work of [29] by proposing a more general

autoencoder architecture and a GAN, respectively, for increased quality and realistic-

looking inpainting. They both show improved performance over [29]. Additionally, [46]

suggest improvements to the model of [16] by weighting the pixels near the boundary

more in the pixel wise reconstruction loss, which speeds up training significantly.

However, to detect anomalies in images it might be beneficial to obtain a blurry re-

constructions, hence why [5] choose to use pixel wise reconstruction loss only. A blurry

4.2. DETECTION WITH INPAINTING AUTOENCODER 29

reconstruction make the poorly reconstructed objects stand out in the residual. A re-

construction with generated details that is only a few pixels shifted spatially to the input

image might cause large reconstruction residuals at both normal and anomalous fea-

tures due to the generated details. Also, it makes sense to not use a weighted loss, since

this would facilitate better reconstructions and and thus lower detection rate in some

areas than in others.

Mean absolute error (MAE) and mean squared error (MSE) are common choices of

training loss to minimize the pixel wise reconstruction error. Of the discussed inpaint-

ing autoencoders in this section, MAE is used by [5] and MSE is used by [29, 16]. Both

types were tested by [29] without experiencing any significant difference.

Architecture

The architectures of the mentioned autoencoders share the general characteristics of

convolutional neural networks, but have several differences. An important attribute of

the architecture of inpainting autoencoders is the size of the receptive field. The recep-

tive field is the area of the input image used to compute an output pixel, and it needs

to be larger than the mask for the mask to be inpainted. If the receptive field is slightly

larger than the mask, only the very local context will be used for inpainting. If the re-

ceptive field is far larger than the mask, more global context is available to be used for

inpainting. This is illustrated in Figure 4.1.

receptive field

p2

p1

p2

mask

p1

Figure 4.1: Left: the receptive field is smaller than the mask, hence p1 cannot be in-
painted. Right: the receptive field is slightly larger than the mask, such that local con-
text can be used for inpainting. Figure inspired by [16].

30 CHAPTER 4. RELATED WORK OF OBJECT AND ANOMALY DETECTION

While a convolutional layer have a receptive field equal to its kernel size, a fully con-

nected layer has global receptive field since each neuron is computed by all pixels in the

input image. [5] use a fully connected layer in the bottleneck of their autoencoder and

[29] use a channel-wise fully connected layer to obtain the same global receptive field

but with far less parameters. [16] use only convolutional layers and thereby obtain a

network architecture applicable for arbitrary image sizes. They obtain a large recep-

tive field by using several dilated convolutional layers [45], which uses kernels that are

spread out over a larger area without increasing the number of parameters. As an ex-

ample, dilated convolutional layer with kernel size 5 and dilation rate 2 has the same

receptive field as a regular convolutional layer with kernel size 9, since every second

pixel of the extracted input patch is skipped.

Another difference worth pointing out is that [5] use bilinear interpolation to up-

sample, while [29, 16] use transposed convolutions. Transposed convolution, some-

times referred to as deconvolution [48], is a convolution that applies a backwards stride,

allowing the layer to upsample spatially. The properties of regular convolution includ-

ing learnable filters and nonlinear representations are thus the same for transposed

convolutions. Transposed convolutions are commonly used for dense predictions such

as image segmentation [39, 18] and image restoration [26, 8].

Chapter 5

Image data

The image data used to develop an object detection algorithm must be acquired and

selected very carefully. The data used to measure the performance of the algorithm, the

test data, should contain a representative sample of the scenarios the algorithm will be

applied in. As an example, and object detection algorithm designed for a seagoing ASV

could be tested on images acquired by a car driving on the road, but this would not give

a reliable measure of performance at sea, and is therefore largely meaningless.

Learning based algorithms such as neural networks behave according to how the

algorithm is designed, in addition to how and on what data it is trained. To achieve the

best possible performance on the test data, the algorithms are typically trained on sim-

ilar images, for instance taken by the same cameras in the same environments, as done

in this thesis. By further selecting training data wisely, one can influence the algorithm

to perform as desired in chosen scenarios.

This chapter describes how the data used in this thesis is acquired in addition to

provide qualitative and quantitative details about the training data.

5.1 Data acquisition

Kongsberg Seatex has formed a collaboration with Hurtigruten to collect data from ves-

sel voyages. MS Polarlys, one of Hurtigruten’s vessels, was selected for this purpose. In

31

32 CHAPTER 5. IMAGE DATA

order to get a full field of view, a camera rig of 12 cameras was mounted on four loca-

tions on the vessel, each with an angle of view of 60◦. The camera rig on the vessel seen

from above is illustrated in Figure 5.1. An example of the image data they acquire at a

given point in time is shown in Figure 5.2.

One should note that all images, except for the ones taken by camera 5 and 11, show

parts of the ownship in the very foreground, at times including passengers. Any part

of this foreground should obviously not be detected as objects that are fed to the colli-

sion avoidance system of an ASV. Details describing how image data was acquired are

summarized in Table 5.1.

Table 5.1: Details of data acquisition

Dates of origin October 2017 to April 2018

Continuous route
Bergen-Kirkenes-Bergen,
33 port docks one way

Route duration 12 days
Camera model Axis Q3708-PVE
Number of cameras 12
Frame rate Every second

As given in Table 5.1, all cameras capture an image every second. However, the

available dataset does not include images captured at every second for half a year con-

secutively. On average, eight hours of imaging is saved from each day. Additionally, due

to a malfunction in the camera rig on the starboard side, no images from camera 4, 5

and 6 was saved from early March until end of April.

5.2 Data details

The image data is organized according to the point in time the image is taken, hereby

defined as its timestamp. Several attributes associated with each timestamp is saved

in addition to the 12 images themselves. The most important attributes include the

position and velocity of the vessel in addition to a list of other vessels nearby targeted

by their AIS signal1. An overview of image and timestamp details is given in Table 5.2.

1Automatic identification system. The International Maritime Organization (IMO)[1] require all ships over
a certain size, depending on the ship type, to use AIS transponders. In other words, all vessels, in particular

5.3. DATA EXPLORATION 33

Table 5.2: Details and attributes of images and timestamps.

Resolution 1920×2560 pixels
Channels RGB
Representation 8 bit, 0-255
Format jpg
Total number of timestamps 5,507,949
Associated attributes Position, velocity, AIS targets

5.3 Data exploration

A lot of knowledge about the data can be gained by observing the data itself in addi-

tion to the distribution of interesting variables. This is a vital step for in advance of de-

signing any learning based algorithm. Randomly selected examples of images given in

Figure 5.3 show a diversity that motivates for further exploration. To reduce the compu-

tational complexity when estimating distributions, a subset of timestamps is obtained

by only including a timestamp every 30 minute, resulting in subset of 3060 timestamps.

5.3.1 Speed of vessel

The speed of the vessel is interesting because it is a very simple way to determine in

what stage of the voyage the vessel is. As clearly shown in the raw data images in Fig-

ure 5.3, the dataset include images from all stages of voyages, both when the ownship is

docked and when at open sea. Images captured when docked and at open sea contain

very different features, which can be utilized for selecting what features the algorithm

is trained on. Instead of matching vessel positional data with the location of ports, the

speed of the vessel is used to categorize if the vessel is in harbour or at sea. Figure 5.4

shows the univariate distribution of the speed of the vessel as a histogram, illustrating

a very clear distinction between being docked with zero speed and in cruise speed. If

one wish to obtain a dataset that only contain images from when the ownship is at a

distance from harbour, timestamps from when the speed is less than 6 m/s can be re-

moved. This yields a subset that is about 21% smaller than the original set.

small ones, do not necessarily use AIS transponders.

34 CHAPTER 5. IMAGE DATA

5.3.2 Illumination intensity

The variation in illumination and thereby visible features is large in the image data.

Hence, details of when images are captured and the illumination intensity is needed.

The illumination intensity is computed as the mean of all pixel values in images taken

by camera 11. Only camera 5 and 11 is suited for this purpose since these are the only

ones not corrupted by lights from the ownship. Camera 5 is not used due to the mal-

function mentioned in Section 5.1.

The distributions of at what time of day the images are captured and the mean il-

lumination intensity is given in Figure 5.5. In Figure 5.5a, the distribution is approxi-

mately uniform, with slightly more images captured in the hours of early morning and

evening than in the hours at mid day. While this is a reasonable approach for acquiring

images in general, recall that the images are taken far north and mostly during winter.

Consequently, the sun is set a large part of day. The distribution of illumination given

in Figure 5.5b show two quite distinct groups with mean illumination intensity of 30 to

60 and 90 to 140, respectively. Intuitively, the two groups indicates that most images are

captured either in darkness at night or in well-lit conditions at day.

Image selection

Considering the fact that the images taken at night are too dark to show any interest-

ing image features, the number of dark images is quite high. A less skewed dataset is

obtained by careful selection. Of the images with mean illumination below 50, half of

the corresponding timestamps are selected randomly to be removed. Removing all im-

ages with certain characteristics might be detrimental, since one cannot know exactly

the content of the removed images. Removing half randomly is a safer choice and yield

a more balanced dataset. This filtering reduces the size of the dataset with 20%. The

resulting distributions of the hour of day images are captured and the illumination in-

tensity is given in Figure 5.6. Clearly, the distribution of illumination in Figure 5.6b

include far less examples of the first group. As a result, the filtered subset contain more

images captured in daylight than in darkness. Also, it is evident in Figure 5.6a that the

removed examples was mainly captured at early morning and in the evening.

5.3. DATA EXPLORATION 35

cam12

cam11

cam10

cam7

cam8

cam9

cam1

cam2

cam3

cam4

cam5

cam6

Figure 5.1: Schematic overview of camera rig on the ownship. Black dots mark where
cameras are mounted. Gray areas show the approximate field of view of each camera.

36 CHAPTER 5. IMAGE DATA

Figure 5.2: Example of all images taken at a given timestamp. The top row shows camera
1-3, the second shows camera 4-6, the third shows camera 7-9 and the bottom shows
camera 10-12. Images taken by camera 5 and 11 are the only ones without parts of the
ownship in the foreground.

5.3. DATA EXPLORATION 37

Figure 5.3: Randomly selected examples of images showing some of the diversity in the
image data. Details are visible by the use of a PDF-viewer and zoom. A lot of the images
are very dark, some of them are captured when the ownship is docked and some of them
when at open sea. The dark images vary from complete darkness to including visible
features such as lights in the horizon originating from shore or a vessel, reflections in
the ocean surface from the light sources, reflections in water drops on the camera lens
and waves and foam close to the ownship. The images captured in daylight include
varying degree of waves, sea spray and reflections in the ocean surface, in addition to
varying presence of shore.

38 CHAPTER 5. IMAGE DATA

0 2 4 6 8 10
Speed [m/s]

0

100

200

300

400

500

600

Nu
m

be
r o

f e
xa

m
pl

es

Figure 5.4: The univariate distribution of the speed of the vessel based on the subset
sampled every 30 minute. Almost at all times, the vessel has zero speed or more than 6
m/s.

5.3. DATA EXPLORATION 39

0 5 10 15 20
Hour of day

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f e
xa

m
pl

es

(a) The distribution is uniform, except for a
low number captured the very first hour of the
day. Slightly more images are captured in the
early morning and in the evening than in the
middle of the day.

0 50 100 150 200 250
Illumination intensity

0

100

200

300

400

500

Nu
m

be
r o

f e
xa

m
pl

es

(b) The distribution shows two groups. The
first with mean illumination intensity of 30 to
60 and the second with 90 to 140. Assuming
they are Gaussian distributed, the first group
has lower standard deviation than the second.

Figure 5.5: The univariate distribution of the hour of day images are captured and the
mean illumination intensity of the original subset.

0 5 10 15 20
Hour of day

0

20

40

60

80

100

120

Nu
m

be
r o

f e
xa

m
pl

es

(a) The distribution is still uniform, but with
opposite trend than with the original subset.

0 50 100 150 200 250
Illumination intensity

0

50

100

150

200

250

300

Nu
m

be
r o

f e
xa

m
pl

es

(b) The distribution still shows two groups, but
now the peak of the first group is reduced.

Figure 5.6: The univariate distribution of the hour of day images are captured and the
mean illumination intensity of the reduced subset with half of the examples with mean
illumination intensity below 50 removed.

40 CHAPTER 5. IMAGE DATA

Chapter 6

Object detection algorithm

This chapter describes the object detection algorithm implemented and tested in this

thesis. The overall algorithm is presented, in addition to details about the inpainting

autoencoder that takes part in the algorithm.

6.1 General approach

The general approach of the object detection algorithm follows the work presented in

Chapter 4, by using the reconstruction residual of an autoencoder as detection signal.

The reconstruction residual is obtained following the two-step procedure described in

Chapter 4.1. Among the related work, the anomalous face detector proposed by Bhattad

et. al. [5] is of particular interest since it is designed to avoid the direct copying of input

to output yielded by regular autoencoders which make objects less likely to be detected.

This was also found to be a challenge in [22]. The object detection algorithm developed

in this thesis follows their work with certain modifications.

6.1.1 Assumption and performance implications

A highly decisive assumption is needed if an anomaly detector can be applied to detect

objects. The objects one wish to detect are represented as anomalies in the data. If this

41

42 CHAPTER 6. OBJECT DETECTION ALGORITHM

assumption holds, objects such as vessels, small rocks, seamarks, beacon lights and

other unknown objects can be detected since they visually stand out in the ocean.

If most of the mentioned objects are detected, the number of false negatives will be

low, leading to a high recall. A high recall is arguably the most important performance

metric for the detection approach in this thesis, since it tells the ratio of true objects

that are detected vs. undetected. The most dangerous scenarios for an ASV arise if true

objects are not detected.

On the other side, there is a clear cost of detecting objects represented as anomalies.

Numerous features one do not wish to detect might also be represented as anomalies in

the data, thus detected by the object detector. Examples of such features are waves, sea

spray, reflections from sun and other light sources. This may lead to a high number of

false positives, thereby a low precision. Obviously, a very high number of false positives

is not desirable. However, it might be a reasonable price to pay if it allows the recall to

be high.

6.2. ALGORITHM WALK-THROUGH 43

6.2 Algorithm walk-through

A convolutional autoencoder is trained to inpaint masked areas of its input image by

minimizing the pixel wise difference between the original image and the reconstructed

image. The training data is selected to ensure that it mainly show ocean features and

few objects. This facilitates the autoencoder to inpaint ocean more accurately than ob-

jects. The purpose of this is to make the residual larger for objects than for ocean, as

visualized in Figure 6.1. A grid of m rows and n columns is set as a hyperparameter

before training and decides the size of the mask. During training, a minibatch B of im-

ages is considered at each iteration. Each image in the minibatch is masked at different

areas randomly selected of the m ×n different masks, yielding the masked minibatch

Bm .

Figure 6.1: An image of two vessels are masked at different areas. The autoencoder
reconstructs the images and inpaints the masked areas. Top row: The masked ocean is
inpainted quite accurately, causing a low residual. Bottom row: The mask covers the
bows of the vessels. The inpainting is not very accurate, causing a large residual.

After training, the model is applied to test images. Each test image O is masked at

every possible cell in the grid, forming a minibatch Om of m ×n images. The model re-

constructs Om such that the masked areas are inpainted. The inpainted areas merged

together to a single inpainting I. The residual R is the absolute difference of the in-

put image O and the inpainted output image I, converted to single-channel grayscale

representation. Areas are labeled as objects if the pixel value is greater than a given

44 CHAPTER 6. OBJECT DETECTION ALGORITHM

threshold. The threshold is a tuning-parameter that is adjusted according to the user

requirements. A lower threshold leads to more detections, both true and false positives,

while a higher threshold leads to less detections. The object detection algorithm is sum-

marized in Algorithm 1.

Algorithm 1: Object detection with inpainting autoencoder.

Set inpainting grid m ×n

for training iterations do

Load minibatch B of training images

Generate masked minibatch Bm by randomly apply one of m ×n masks to

each image in B

Train on Bm and update model parameters

end

Set threshold T

for test iterations do

Load single test image O

Generate masked image batch Om of size m ×n by masking all possible grid

cells in O once

Predict on Om and merge m ×n inpainted areas to single image I

Compute residual image R= |O− I|
Label R> T pixel-wise as objects

end

6.3 Autoencoder model

Bhattad et. al. [5] solves the inpainting problem in a similar fashion as [29], state-of-

the-art for large hole inpainting when proposed in 2016. As discussed in Chapter 4,

improvements have been been shown in more recent work. The autoencoder model

used in this thesis is based on the model for image inpainting proposed by Iizuka et.

al. [16] and modified to suit the detection approach of Bhattad et. al. [5]. Elaborated

in Chapter 4, the inpainting model of [16] consist of two parts: an autoencoder trained

6.3. AUTOENCODER MODEL 45

to minimize the pixel wise reconstruction residual and a discriminator trained to mini-

mize an adversarial loss [11]. The autoencoder make the inpainting consistent with the

area of adjacent pixels, while the discriminator make the inpainting look more realistic

and less blurry.

Following the anomaly detection approach by [5], only the autoencoder minimiz-

ing the reconstruction residual is used for object detection algorithm presented in this

thesis, meaning that the discriminator is excluded. This is reasonable since the original

purpose of the discriminator is to increase the sharpness and detail level of the inpaint-

ing, while this might not be beneficial when the goal is to detect objects. It is undoubt-

edly desirable with high quality inpainting for both tasks, however forcing the model

to generate a detailed inpainted image may be detrimental. Recall that the detection

approach is based on that true objects are detected if they stand out in the residual. If

high-level details are generated in the inpainted image, they are likely to stand out in

the residual in the same fashion as the true detailed objects, causing additional false

positives. Only including the autoencoder also simplifies the model.

6.3.1 High level hyperparameters

Mask

The size of the masks that should be inpainted has a huge impact on the difficulty of

the inpainting task, in addition to affect what objects are most likely to be detected.

Clearly, larger masks are far more difficult than small ones and will be inpainted with

lower quality. A model inpainting large masks will therefore require more training to

achieve similar inpainting quality as a model inpainting smaller areas, if at all.

The mask size affect, but does not dictate, what objects can be detected depending

on their size. Consider an example image showing a vessel surrounded by ocean. If

a mask covers the entire vessel, the inpainting is likely to be ocean only, leading to a

significant reconstruction residual. If a mask covers half of the vessel, the inpainting is

likely to be consistent with the local pixels showing the other half of the vessel, leading

to a less significant reconstruction residual.

A far less significant hyperparameter of the mask is the mask color. The approaches

46 CHAPTER 6. OBJECT DETECTION ALGORITHM

in Chapter 4 varies from black [5], white [29] and the mean pixel value of the dataset

[16]. In this work, the mean pixel value is used. The most likely implication of this

choice is that the loss decreases slightly faster in the beginning of the training process.

Image size and computational load

The original dimension of the images is 1920×2560×3, with the first two axes represent-

ing the spatial extent and the third axis representing RGB color channels. In compari-

son, the face images in the experiments of [5] are 300 times smaller, with the dimension

128×128×3. Showed by [16], the relationship between image size and the computa-

tion time is approximately linear, given their full inpainting model. It is reasonable to

assume a similar relationship also holds for the reduced model of inpainting autoen-

coder alone.

To reduce the computational load, the images are resized spatially to 144×192×3 by

bicubic interpolation. This is a quite aggressive down-sampling, leading to less detailed

images. Even though discarding information is far from ideal, the it makes training

on far more images possible within a reasonable amount of time. To be elaborated in

Chapter 7.1.1, training on 1,723,299 resized images can be done in eight days on the

available GPU. Additionally, training on full-resolution images would require the batch

size being reduced to 1 or 2 images per batch to avoid running out of memory, reducing

the speed-up effect of batch normalization [44].

6.3.2 Architecture

The architecture of the inpainting autoencoder of [16] is the given in Table 6.1. The in-

put images are reshaped to have dimension height, width and channels H ×W ×C =
144× 192× 3. The encoder consist of convolutional layers, two of them with a stride

S = 2, such that the bottleneck of the autoencoder has spatial dimensions H
4 × W

4 . Four

layers of dilated convolutions with increasing dilation rate increase the receptive field

significantly. Recall that the receptive field corresponds to the spatial extent in the in-

put image used to compute the activation of a neuron at a given layer, and needs to

be larger than the masked area if it should be inpainted. The decoder consist of reg-

6.3. AUTOENCODER MODEL 47

ular and transposed convolutional layers. The stride in the transposed convolutions

up-samples the spatial dimension to equal the input dimension. Throughout the au-

toencoder, the number of filters doubles for each spatial down-sampling and is halved

for each up-sampling. The ReLU activation function [27] with range [0,∞] and batch

normalization [17] is used after each convolution except for the very last one, which has

no batch normalization and Sigmoid as activation function. Batch normalization nor-

malize and re-parametrize each batch of inputs along their spatial axes independently

for each channel, speeding up training of deep neural networks significantly. Sigmoid

has bounded output in the range [0,1].

Following the model architecture, the selected training hyperparameters are also

given by [16]. As loss function, the model is trained to minimize the pixel wise mean

squared error (MSE). Discussed in Chapter 4.2.1, both mean absolute error (MAE) and

MSE are common choices for training autoencoders to minimize the pixel wise differ-

ence. In comparison with MAE, MSE penalize large errors more and small errors less

due to the squared norm. For training the inpainting autoencoder proposed by [29],

both types of losses were tested without any significant differences.

Further following [16], to optimize the training process, AdaDelta [47] is selected.

AdaDelta is based on stochastic gradient descent, applies momentum [31] and com-

putes adaptive learning rates for the parameters individually. AdaDelta is slightly dif-

ferent from more recently proposed optimizers such as Adam [20] in the sense that it

does not require the user to select a global learning rate.

48 CHAPTER 6. OBJECT DETECTION ALGORITHM

Table 6.1: Autoencoder architecture.

Layer
Kernel

Stride
Output Output Dilation Receptive

size dimension channels rate field
Input - - 144×192 3 1 1
conv (5,5) (1,1) 144×192 64 1 5
conv (3,3) (2,2) 72×96 128 1 7
conv (3,3) (1,1) 72×96 128 1 11
conv (3,3) (2,2) 36×48 256 1 15
conv (3,3) (1,1) 36×48 256 1 23
conv (3,3) (1,1) 36×48 256 1 31

dil. conv (3,3) (1,1) 36×48 256 2 47
dil. conv (3,3) (1,1) 36×48 256 4 79
dil. conv (3,3) (1,1) 36×48 256 8 143
dil. conv (3,3) (1,1) 36×48 256 16 271

conv (3,3) (1,1) 36×48 256 1 279
conv (3,3) (1,1) 36×48 256 1 287

tran. conv (4,4) (2,2) 72×96 128 1 285
conv (3,3) (1,1) 72×96 128 1 293

tran. conv (4,4) (2,2) 144×192 64 1 291
conv (3,3) (1,1) 144×192 64 1 299
conv (3,3) (1,1) 144×192 3 1 307

Intermedialte layers ReLU and batch norm. after each conv. layer

Loss function Mean Squared Error
Optimizer AdaDelta

Chapter 7

Experiment and results

The object detection algorithm described in Chapter 6 is implemented and tested. The

experiment involves training of the inpainting autoencoder, in addition to details about

how the algorithm is evaluated. The evaluation results are then provided.

7.1 Experiment description

7.1.1 Autoencoder training

Selected training data

In general, a learning based model generalizes better when trained on more data [7].

Also, they learn faster if the examples they train on contain maximum information [28].

Described in detail in this section, several steps of selection are made that effectively

reduce the amount of training data. This was found to be necessary to make training

feasible within a reasonable amount of time, having a single GPU at disposal. The first

step applies to both training and test data. Step 3 and 4 are only applied to training data

and are based on the findings in Chapter 5.3.

1. Define a dataset as images captured every 2.5 second by camera 5 and 11.

2. Shuffle the dataset and put aside 10% for testing purposes.

49

50 CHAPTER 7. EXPERIMENT AND RESULTS

3. From the remaining training data, remove images captured with speed less than

6 m/s.

4. From the remaining training data, remove half of images with mean illumination

intensity less than 50.

Of the total number of timestamps, given in Table 5.2, every 2.5 timestamp in aver-

age is is selected to be used for training and testing. Images are acquired with a frame

rate of 1 frame per second, resulting in that images used are captured every second and

every third second, every other time. This exact selection is slightly odd, however the

explanation is simply that the the model was first was trained on images captured every

fifth second, before the size of the training dataset was doubled.

Further, a simplification is made by only including images captured by camera 5

and 11. Visualized in Figure 5.2, these images do not show any part of the ownship in

the foreground, and can be used for training and testing directly. Images captured by

the other cameras could also be used, but the pixels showing the ownship should have

been removed due to the reason explained in the following paragraph.

Following the detection approach of [5], the autoencoder model should be trained

on images showing as much ocean and as little objects as possible. This facilitates the

fully trained model to reconstruct ocean more accurate than objects desirable to detect.

Based on the data exploration in Chapter 5.3, training data should be selected carefully

to ensure that it fulfills its purpose, motivating for step 3 and 4.

Given in step 3, images are filtered based on the speed of the ownship at the time the

image is captured, as described in Chapter 5.3.1. All images captured when the speed

is less than 6 m/s are removed. Visualized in Figure 5.4, this removes images captured

when the ownship is docked, in addition to a small number of images taken with low

speed nearby harbour. The speed filtering effectively reduces the number of training

images with 21%.

Step 4, discussed in detail in Chapter 5.3.2, aims to balance the dataset between

dark images captured at night and brighter images captured at day. Images captured at

day contain far more information, as seen in Figure 5.3. Visualized in Figure 5.5 and Fig-

ure 5.6, randomly removing half of the images with mean illumination intensity below

7.1. EXPERIMENT DESCRIPTION 51

50 yields a overweight of images captured in daylight without discarding dark images

completely. 20% of the training images are removed by this process.

The entire process of selecting training data leads to a dataset of 1,206,031 times-

tamps. 1
9 of the dataset is put aside for validation during training, leaving 1,072,028

timestamps for training. Due to the malfunction of camera 5 briefly mentioned in

Chapter 5.1, a total of 1,723,299 images were used for training.

Having a large enough training dataset is a common topic of concern for training

any neural network. In comparison, [5] train on 125,253 images in their anomalous

face detection experiment, while [16], using the same inpainting autoencoder model

as in this thesis, train on 8,097,967 diverse images originally meant for scene classifica-

tion. In this thesis, the only relevant scene is the maritime environment seen from the

ownship. Thus, the selected training dataset is likely to include enough images to make

the autoencoder model generalize well.

Implementation details

Details of hardware and software used for implementation is given in Table 7.1.

Table 7.1: Software and hardware implementation details.

Hardware
Graphical processing unit (GPU) Nvidia GTX 1080 Titan
GPU memory 11 GB

Software

Operative System Ubuntu 16.04
Computing platform CUDA 8.0
Programming Language Python 3.6
Deep learning libraries Keras and TensorFlow

Training process

Before training, the weights of the network are initialized randomly from a limited uni-

form distribution, while the bias terms are initialized to zero. For every eighth training

batch during training, the model predicts on a single batch of validation data and com-

putes the loss. The batch size is set to 16.

The training and validation loss throughout training is given in Figure 7.1. As ex-

pected, the losses drop quickly in the beginning of training. Further, the losses con-

52 CHAPTER 7. EXPERIMENT AND RESULTS

Table 7.2: Details of the training process.

Images 1,723,299
Batch size 16
Batches 134,024
Training time 8 days

tinue to drop, but at a far lower rate, both approximately from 0.0006 to 0.0004 during

the last 100,000 iterations. Based on the trend of the losses, it is likely that more training

would lower the losses furthermore. Since the validation loss follows the training loss

accurately, the model is not suspected to overfit to the training data to any noteworthy

extent, additionally motivating for more training. However, for practical reasons the

training is limited to train on all images in the described dataset once. The completed

training process takes approximately eight days on a single GPU, implemented with the

hardware and software given in Table 7.1.

Equally interesting as the losses, during and at the end of training, are the visual

reconstructions, in particular the inpainted areas. Figure 7.2 shows four images from

a validation minibatch, masked at different areas. Most of the masked areas are in-

painted with approximately the same quality as the rest of the reconstructed image.

However, the quality depends on what features the masks cover. This become more

clear in Figure 7.3, in which the very left image from Figure 7.2 is masked and inpainted

at all areas, yielding a fully inpainted image. The inpainted image illustrates that differ-

ent image features are inpainted with different quality, creating a larger residual at the

areas imaging shoreline. Still, the inpainted image is in general very blurry.

7.1.2 Evaluation

Test data selection

Before the detection algorithm is trained, 10% of the image data is randomly selected

and put aside for testing, ensuring that there is no overlap in between training and test

data. On average, the original image data do not contain a lot of objects. To test the

algorithm properly, a diverse test dataset with as many objects as possible should be

prepared. An efficient way to do this is to select data based on the presence of vessels

7.1. EXPERIMENT DESCRIPTION 53

0 20000 40000 60000 80000 100000 120000
Iteration [batch]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Lo
ss

 [M
SE

]

Loss during training
Training
Validation

(a) The entire training process.

0 200 400 600 800 1000
Iteration [batch]

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 [M
SE

]

Loss during training
Training
Validation

(b) The first 1000 iterations.

0 20000 40000 60000 80000 100000 120000
Iteration [batch]

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
Lo

ss
 [M

SE
]

Loss during training
Training
Validation

(c) The entire training process.

Figure 7.1: Training and validation loss during training.

signalling their nearby position by AIS. One should note that there is no guarantee that

the a vessel is visible in the images even though its AIS signal indicates that it is nearby,

but the probability increase significantly. Hence, the data put aside for testing is re-

duced to only contain images captured with one or more vessels within a range of one

kilometer. Among the about 1,200 remaining images, a final subset Xdn of 203 images

is selected manually to maximize the number of objects and diversity. Xdn contain two

subsets: Xd consist of images captured in daylight, while Xn consist of images captured

at night. Table 7.3 provide the number of images and objects in each of the test datasets.

54 CHAPTER 7. EXPERIMENT AND RESULTS

Figure 7.2: Validation images at the end of training. The autoencoder reconstructs the
images and inpaints the masks with a fairly high quality. In the very right image, the
mask covers reflections that are less accurately inpainted, hence a larger residual is ob-
tained.

Figure 7.3: A validation image is masked and inpainted at all areas. The inpainted image
is overall very blurry, although the blurriness is more explicit for the areas representing
the shoreline than the ocean. The ocean is partially inpainted with a texture of horizon-
tal elements.

Labeling of ground truth

The ground truth (GT) in the test data is labeled manually with the two classes given in

Table 7.4. The object class is used to mark all areas containing an object the algorithm

7.1. EXPERIMENT DESCRIPTION 55

Table 7.3: Test datasets.

Name Description Images Objects
Xd Day 147 225
Xn Night 56 35
Xdn Xd ∪Xn 203 260

should detect. The background class is used to mark the background areas that should

be excluded from testing. This include any areas of the shore or the horizon and above.

It does not make sense to test the object detection algorithm on the background since

this is a completely different task than what the algorithm is designed for.

Ideally, the labeling should be on a per-pixel level, since the algorithm output per-

pixel detections. Also, this would increase the accuracy of the testing. Yet, to reduce the

manual workload, rectangular boxes are used to mark areas based on its content, tightly

surrounding the objects that the algorithm should detect. In some cases, labeling is

easy since the images clearly show what type of objects is present. In other cases, it is

very difficult to be certain if the object is actually a vessel, a rock or even an islet. Due

to the uncertainty, these are also labeled as objects, even though the algorithm is not

designed to detect islets and shore.

The labeling is done by visual inspection of the images in full resolution. Examples

of GT boxes are given in the visual results in Section 7.2.2.

Table 7.4: Labeled classes in test images.

Class Description

Object
Vessels, boats, buoys, seamarks, rocks, sea farming equipment,
unknown objects

Background Shoreline or horizon and above

Performance metrics

Recall R and precision P are used to measure the performance of the detection algo-

rithm, computed by the number of true positives t p, false negatives f n and false posi-

tives f p. False positives are also used directly as a performance metric.

Recall measure the number of true positives within the total number of positives.

56 CHAPTER 7. EXPERIMENT AND RESULTS

The total number of positives include true positives and false negatives, i.e. recall is

given by R = t p
t p+ f n . The test data includes in total 260 GT boxes surrounding positives,

as given in Table 7.3. A true positive is obtained if a single pixel within the GT box is

predicted positive, while a false negative is obtained if no pixels within the GT box is

predicted positive. This is summarized in Table 7.5.

Table 7.5: True positives and false negatives for recall computation.

t p Number of GT boxes including at least a single predicted positive pixels.
f n Number of GT boxes including no predicted positive pixels.

Precision is used to measure the number of true positives within the total number of

predicted positives. The predicted positives include true and false positives, i.e. preci-

sion is given by P = t p
t p+ f p . Whereas the total number of positives used for recall is given

by the fixed number of objects, predicted positives used for precision varies depending

on the threshold. At most, predicted positives can be all 4,915,200 pixel in the image.

Often, predicted positive pixels are adjacent to each other since they have detected

the same object. Therefore, it makes sense to consider them as one, defined as a sin-

gle predicted positive cluster. Clearly, there cannot be more predicted positives clusters

than predicted positive pixels. Since predicted positives pixels and clusters provide dif-

ferent information, precision can be computed with both definitions, specified in Ta-

ble 7.6. Predicted positive pixels that are orthogonal or diagonal adjacent to each other

are considered a cluster.

Table 7.6: True positives and false positives for precision computation.

pixels
t p Number of predicted positive pixels within the GT boxes.
f p Number of predicted positive pixels outside the GT boxes.

clusters
t p Number of predicted positive clusters within the GT boxes.
f p Number of predicted positive clusters outside the GT boxes.

7.2 Results

The following sections show how the object detection algorithm perform on the two test

subsets Xd and Xn , containing images captured in day and night, respectively. Also, the

7.2. RESULTS 57

results on the combined test set Xdn are provided. In Section 7.2.2, visual results are

given.

For each of the test sets, recall is plotted against precision and against the number

of false positives. The results are obtained by varying the threshold, as described in

Algorithm 1. Precision and false positives are computed both by individual pixels and

clusters of pixels. The number of false positives are given as mean per image.

58 CHAPTER 7. EXPERIMENT AND RESULTS

7.2.1 Quantitative results

Day

The performance on Xd is given in Figure 7.4. Computed by pixels, given in Figure 7.4a

and Figure 7.4b, a perfect recall R = 1.0 is given for precision P = 0.3 and false positives

f p ≈ 400,000, which is as much as 8% of the entire image. Lowering the recall to R =
0.9 yields far less false positives, f p ≈ 60,000, but precision does not increase by a lot.

Computed by clusters, given in Figure 7.4c and Figure 7.4d, a perfect recall R = 1.0 is

given for precision P = 0.1 and false positives f p ≈ 22,500. False positives are reduced

to f p ≈ 7,000 for a recall R = 0.9. Overall, precision is low for both pixel and cluster

detections.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (pixels)

(a) Recall vs. precision (pixels).

0 50000 100000 150000 200000 250000 300000 350000 400000
False positives [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (pixels)

(b) Recall vs. false positives (pixels).

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (clusters)

(c) Recall vs. precision (clusters).

0 5000 10000 15000 20000
False positives [clusters]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (clusters)

(d) Recall vs. false positives (clusters).

Figure 7.4: Results on test data Xd captured at day.

7.2. RESULTS 59

Night

The performance on Xn is given in Figure 7.5. Computed by pixels, given in Figure 7.5a

and Figure 7.5b, a perfect recall R = 1.0 is given for precision P = 0.85 and false positives

f p ≈ 1,800.

Computed by clusters shown in Figure 7.5c and Figure 7.5d, a perfect recall is given

for precision P = 0.7 and false positives f p ≈ 120. If a low recall is acceptable, R = 0.4,

false positives can be reduced to f p ≤ 1 per image.

For both pixels and clusters, precision is high, i.e. P ≥ 0.7 for all recalls.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (pixels)

(a) Recall vs. precision (pixels).

0 250 500 750 1000 1250 1500 1750
False positives [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (pixels)

(b) Recall vs. false positives (pixels).

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (clusters)

(c) Recall vs. precision (clusters).

0 20 40 60 80 100 120
False positives [clusters]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (clusters)

(d) Recall vs. false positives (clusters).

Figure 7.5: Results on test data Xd captured at night.

60 CHAPTER 7. EXPERIMENT AND RESULTS

Day and night

The performance on the combined dataset Xdn is given in Figure 7.6. Due to the larger

number of images in Xd than in Xn , the combined performance show similar patterns

as the performance of Xd alone.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (pixels)

(a) Recall vs. precision (pixels).

0 50000 100000 150000 200000 250000 300000
False positives [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (pixels)

(b) Recall vs. false positives (pixels).

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - precision (clusters)

(c) Recall vs. precision (clusters).

0 2500 5000 7500 10000 12500 15000 17500
False positives [clusters]

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall - false positives (clusters)

(d) Recall vs. false positives (clusters).

Figure 7.6: Results on test data Xdn captured at day and night.

7.2.2 Visual results

The following figures show the work flow and the output of the detection algorithm

applied to test data. The figures are organized as follows: the first row show original test

images; the second show inpainted images by the inpainting autoencoder; the third row

show the residual of original and inpainted images; the fourth row show the detections

7.2. RESULTS 61

and ground truth (GT) boxes; the fifth row show the detections and GT boxes on top of

the original image. The threshold for detection are in following figures set to T = 130,

which is the threshold used to obtain a recall R = 0.9 on the combined test set Xdn . In

the detection and object map, green GT boxes indicates objects and orange GT boxes

indicates background.

A PDF-viewer with zoom is recommended for studying the visual results. Perhaps

most interesting is the residual image, since the detection map depends on the set

threshold. Objects can only be detected if they "stand out" visually, i.e. their pixel values

are greater than the surroundings.

62 CHAPTER 7. EXPERIMENT AND RESULTS

(a) The vessel is detected. The
seamark to the right close to
shore is in the residual darker
than the surroundings, i.e. it
cannot be detected no matter
the threshold.

(b) Sea spray is detected. (c) Both the vessel and the
seamark to the right are
detected. Reflections and
waves are detected.

Figure 7.7: Test images from Xd .

7.2. RESULTS 63

(a) Sea farming cages to the
right and small island are de-
tected. Waves are detected.
Also, note the large white spot
in the top of the inpainting.

(b) The ship is clearly de-
tected. Waves are detected.

(c) To the right, the vessel is
detected. To the left, a vessel
and sea farming cages are
detected for a lower thresh-
old. Waves are detected.

Figure 7.8: Test images from Xd .

64 CHAPTER 7. EXPERIMENT AND RESULTS

(a) The lights from the ship and
the reflections in the ocean are
detected.

(b) The stern of the left ves-
sel and reflections in front
are detected, however its
brightest light source re-
quires lower threshold to be
detected.

(c) Various parts of the ves-
sel and reflections are de-
tected

Figure 7.9: Test images from Xn .

7.3. DISCUSSION 65

7.2.3 Results analysis

The visual results show that objects in most cases are covered in the inpainted image,

yielding a larger residual for objects than for other areas. This make them possible to

detect for the correct threshold. However, this is equally true for ocean features such as

waves, sea spray and reflections, leading to a high number of false positives. In Xn , the

false positives typically originates from reflections of light sources, located quite close

to the true objects. In Xd , false positives are spread out all over the ocean surface in a

high number.

The high number of false positives is even more evident in the results for Xd given in

Section 7.2.1. For clustered detections, precision is low, meaning that on average there

are more false positives than true positives. For Xn , precision is high, accordingly most

positives are true.

An important aspect about the quantitative results is that they are based on a quite

small test dataset, lowering the accuracy of the computed metrics. This is in particu-

lar true for the night set Xn of only 56 images and 35 objects. For this set, the recall-

precision curves in Figure 7.5 seem slightly noisy, while the recall-false positive curves

are more distinct.

7.3 Discussion

An important observation in the visual results is that the size of masks that have been

inpainted the objects location relative to the grid of inpaintings have a huge impact on

value of the residual. As pointed out in Chapter 6, larger masks are more difficult to in-

paint with high quality since the areas in the middle of the mask is located further away

from the non-masked areas. Therefore, objects are more likely to be detected if they

are covered by the middle of a mask, since this cause a large residual. The opposite is

the case in Figure 7.9b, where a light source is located at the edge of two masks, caus-

ing a small residual and no detection for the set threshold. Additionally, the fact that

the mask size is a set as a fixed hyperparameter makes the algorithm scale variant, i.e.

likely to detect certain sized objects more frequent than others. This could be mitigated

66 CHAPTER 7. EXPERIMENT AND RESULTS

by training the model to inpaint masks of various sizes.

The autoencoder model would benefit from more training, since the loss continues

to drop and the reconstructions still are very blurry, in particular the inpainted part of

the reconstruction. In addition, some of the inpainted images, e.g. Figure 7.8a, show

large white spots, a sign of need for more training. Another option to more training

is to modify the training scheme to speed up the learning process. In the experiment

presented in this thesis, the autoencoder model is trained to minimize the residual of

the original and the reconstructed image in the same way as in [5]. However, the de-

tection algorithm does only make use of the inpainted part of the reconstructed image.

A more efficient training scheme would be to minimize the residual of the original and

the inpainted image directly. This could be achieved by put all weight on the inpainted

area of the reconstruction in the loss, and discard the non-inpainted part of the recon-

struction. The final speed-up effect of this modification is very difficult to predict. The

reconstruction problem is removed, but the inpainting problem remains equally diffi-

cult.

The autoencoder was trained on images carefully selected to contain mostly ocean

features. The idea was that this should make the autoencoder inpaint features such as

waves and sea spray more accurately than object features. When inspecting the results,

it is difficult to argue whether this really was achieved or not. Seemingly, the ocean

parts of the inpainted images look more realistic than the background and objects, typ-

ically showing a texture of horizontal elements, but they are still blurred. The inpainted

ocean might look more realistic just because the ocean surface is smoother and less de-

tailed than objects in the first place. An additional observation about the training data

selection, is that one cannot control for the exact content of all images following an un-

supervised regime. Based on all images shown in this thesis, one might suspect waves

to be visible in a large portion of the images, while sea spray is visible less frequent.

The algorithm is designed to detect objects on a per pixel-level, which is the same

as binary classification of each individual pixel. This design has both benefits and lim-

itations that is confirmed by the results. A benefit is that very small objects can be de-

tected, at its smallest down to the size of covering only a single pixel. This allows for very

7.3. DISCUSSION 67

fine-grained detection. However, objects often cover a large number of pixels, resulting

in that the algorithm detects the same object at several locations. Although it would

be useful, the algorithm has no chance of knowing that it has detected a single object

at several locations, rather than several objects located close to each other. Clustering

adjacent pixel detections mitigates, but does not cure this problem.

68 CHAPTER 7. EXPERIMENT AND RESULTS

Chapter 8

Concluding remarks

8.1 Conclusion

An unsupervised object detection algorithm for images is implemented and tested. The

algorithm is based on recent research within anomaly detection [5], and is build upon

an autoencoder that inpaints masked parts of images. The output of the autoencoder

highlights objects which enables them to be detected. The detection algorithm relies

on the assumption that objects are represented as anomalies in the image data.

The results show that the detection algorithm is capable of detecting all objects,

although it also detect features not considered to be objects, such as waves. This re-

sult is expected, due to the briefly mentioned assumption of the detection algorithm.

Consequently, a high rate of false positives is obtained. If 90% of the objects should be

detected, i.e. a recall R = 0.9, the algorithm output 5,000 false positive clustered detec-

tions on average in each image, corresponding to a precision P = 0.18. If no more than

a recall R = 0.5 is required, the false positives are reduced to 250 false positive clustered

detections in each image.

The algorithm is tested in both daylight and in darkness. Due to the fact that objects

in the test set are equipped with light sources, they are detected in both illumination

conditions. In darkness, the algorithm output far less false positives since no ocean

features are visible.

69

70 CHAPTER 8. CONCLUDING REMARKS

The autoencoder is trained on images of ocean and becomes able to inpaint masked

areas, although with distinct blur. More training, different hyperparameter settings and

a more efficient training scheme are likely to increase the inpainting quality, which

again should contribute to higher detection rate.

One should note that evaluation is done on a relatively small test set. Hence, fur-

ther testing in various conditions should be conducted to verify the results. Also, the

obtained results should be compared with different types of detection algorithms. The

detection algorithm may take part in a larger sensor fusion system if the overall system

is able to handle the high number of false positives.

8.2 Further work

Extensive testing and comparison with existing methods are suggested for further work.

In addition, several modifications and improvements of the detection algorithm should

be explored. The following list summarizes the suggestions:

• Perform testing of the detection algorithm on a larger test set to increase the eval-

uation accuracy.

• Compare results to non-learning feature-based detection methods [25, 3] and off-

the-shelf general-purpose supervised learning detection methods [24, 34].

• Train autoencoder on varying mask sizes to avoid inpainting grid pattern and

make the detection algorithm more robust towards scale variance.

• Train autoencoder more and eventually on full resolution images.

• Develop the threshold for abnormality from being fixed to being based on a mov-

ing average [15].

• Incorporate the detection algorithm as part of a sensor fusion system.

Bibliography

[1] AIS transponders - Regulations for carriage of AIS. International Maritime Organi-

zation http://www.imo.org/en/OurWork/safety/navigation/pages/ais.aspx, 2018.

[2] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan, B. C. V. Esesn, A. A. S.

Awwal, and V. K. Asari. The History Began from AlexNet: A Comprehensive Survey

on Deep Learning Approaches. CoRR, abs/1803.01164, 2018.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features (SURF).

Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Pro-

ceedings of the 27th annual conference on Computer graphics and interactive tech-

niques, pages 417–424. ACM Press/Addison-Wesley Publishing Co., 2000.

[5] A. Bhattad, J. Rock, and D. A. Forsyth. Detecting anomalous faces with ’no peeking’

autoencoders. CoRR, abs/1802.05798, 2018.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com-

put. Surv., 41(3):15:1–15:58, July 2009.

[7] F. Chollet. Deep Learning with Python. Manning Publications, Nov. 2017.

[8] J. Dong, X. Mao, C. Shen, and Y. Yang. Unsupervised feature learning with symmet-

rically connected convolutional denoising auto-encoders. CoRR, abs/1611.09119,

2016.

71

72 BIBLIOGRAPHY

[9] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall

Professional Technical Reference, second edition, 2002.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial networks. arXiv, 2014.

[12] H. He and E. Garcia. Learning from Imbalanced Data. Knowledge and Data Engi-

neering, IEEE Transactions, 21:1263 – 1284, 10 2009.

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, July 2006.

[14] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial

Intelligence Review, 22(2):85–126, Oct 2004.

[15] L. Hou, V. Nguyen, D. Samaras, T. M. Kurc, Y. Gao, T. Zhao, and J. H. Saltz. Sparse au-

toencoder for unsupervised nucleus detection and representation in histopathol-

ogy images. arXiv, 2017.

[16] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent image

completion. ACM Trans. Graph., 36(4):107:1–107:14, July 2017.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[18] S. D. Jain, B. Xiong, and K. Grauman. Pixel objectness. arXiv, 2017.

[19] E. Jokioinen, J. Poikonen, M. Hyvönen, A. Kolu, T. Jokela, J. Tissari, A. Paasio,

H. Ringbom, F. Collin, M. Viljanen, R. Jalonen, R. Tuominen, M. Wahlström,

J. Saarni, S. Nordberg-Davies, and H. Makkonen. Remote and autonomous ships:

The next steps. Technical report, Advanced Autonomous Waterborne Applica-

tions, Rolls Royce Marine, 2016.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

BIBLIOGRAPHY 73

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages

1097–1105. Curran Associates, Inc., 2012.

[22] K. K. Krossholm. Unsupervised object detection in video from maritime environ-

ments. Fall project, Norwegian University of Science and Technology, Dec. 2017.

[23] Y. Lecun, L. Bottou, G. B. Orr, and K.-R. Müller. Neural networks: Tricks of the trade.

In G. B. Orr and K.-R. Müller, editors, Efficient BackProp, pages 9–50. Springer,

1998.

[24] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal loss for dense object

detection. CoRR, abs/1708.02002, 2017.

[25] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Com-

put. Vision, 60(2):91–110, Nov. 2004.

[26] X. Mao, C. Shen, and Y. Yang. Image restoration using convolutional auto-encoders

with symmetric skip connections. CoRR, abs/1606.08921, 2016.

[27] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Ma-

chines, pages 807–814. ICML’10. Omnipress, USA, 2010.

[28] G. B. Orr and K.-R. Mueller, editors. Neural Networks : Tricks of the Trade, volume

1524 of Lecture Notes in Computer Science. Springer, 1998.

[29] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context Encoders:

Feature Learning by Inpainting. CoRR, abs/1604.07379, 2016.

[30] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty

detection. Signal Processing, 2014.

[31] B. Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5):1 – 17, 1964.

74 BIBLIOGRAPHY

[32] D. M. W. Powers. Evaluation: From precision, recall and f-factor to roc, informed-

ness, markedness & correlation. Technical report, School of Informatics and Engi-

neering - Flinders University, 2007.

[33] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. arXiv, 2016.

[34] J. Redmon and A. Farhadi. YOLOv3. Technical report, University of Washington,

2018.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. http://www.image-net.org/.

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual

recognition challenge. CoRR, abs/1409.0575, 2014.

[38] R. Sceliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[39] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(4):640–651, April 2017.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014.

[41] E. J. Tangstad. Visual detection of maritime vessels. Master’s thesis, Norwegian

University of Science and Technology, June 2017.

[42] UN-Business. International Maritime Organization.

https://business.un.org/en/entities/13.

BIBLIOGRAPHY 75

[43] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Proceedings of the 2001 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–511–I–518

vol.1, 2001.

[44] Y. Wu and K. He. Group normalization. arXiv, Mar. 2018.

[45] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,

abs/1511.07122, 2015.

[46] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting

with contextual attention. CoRR, abs/1801.07892, 2018.

[47] M. D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv, abs/1212.5701,

2012.

[48] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks.

In In CVPR, 2010.

[49] P. Zhu, H. Wang, T. Bolukbasi, and V. Saligrama. Zero-shot detection. CoRR,

abs/1803.07113, 2018.

	Problem description
	Preface
	Abstract
	Sammendrag
	Contents
	Acronyms
	Glossary
	Introduction
	Background and motivation
	Autonomous operation
	Sensor fusion and cameras
	Convolutional neural networks and unsupervised learning

	Outline

	Image processing
	Image filtering
	Convolutional operation
	Gaussian smoothing
	Edge detection

	Deep learning
	Artificial intelligence, machine learning and deep learning
	Basics of machine learning
	Data
	Supervised and unsupervised learning

	Artificial neural networks
	Building blocks
	Layer types
	Training a neural network
	Regularization
	Optimization strategies for training

	Autoencoder
	Denoising autoencoder

	Evaluation measures
	Binary classification

	Related work of object and anomaly detection
	General detection approach with autoencoder
	Detection with inpainting autoencoder
	State-of-the-art inpainting

	Image data
	Data acquisition
	Data details
	Data exploration
	Speed of vessel
	Illumination intensity

	Object detection algorithm
	General approach
	Assumption and performance implications

	Algorithm walk-through
	Autoencoder model
	High level hyperparameters
	Architecture

	Experiment and results
	Experiment description
	Autoencoder training
	Evaluation

	Results
	Quantitative results
	Visual results
	Results analysis

	Discussion

	Concluding remarks
	Conclusion
	Further work

	Bibliography

