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Abstract
Mixed mode loading often has a significant effect on fracture behaviour in compo-
nents. Cracks is in many cases the reason for failure or fracture of a component. All
of the mechanisms of cracks and fracture behaviour are still not completely known.
This also applies for the three dimensional loading case of mixed mode I/II/III.
This thesis will therefore study the existing theory on two dimensional, and three
dimensional mixed mode loading. Mixed mode I/II/III brittle fracture behaviour of
polymethyl methacrylate, PMMA, will be studied experimentally and theoretically,
using pre-cracked CTS specimens. This specimens contains pre-cracks and will be
subjected to different mixed mode loading conditions, ranging from pure mode I to
pure mode II and pure mode III. During this thesis, a mixed mode I/II/III loading
device were designed and used for the experimental procedure. Experiments were
conducted on all twenty five combinations of the loading device. The presented
mixed mode loading device allowed mixed mode I/II/III loading combinations in
steps of 22.5◦, for in and out of plane rotations. After the conducted experiments,
fracture loads were obtained. In-plane crack initiation angles and out of plane crack
initiation angles were measured for all of the fractured specimens. These experi-
mentally obtained results were then compared with predictions of various fracture
criteria. Maximum tangential stress criterion, MTS, generalized maximum tangen-
tial stress criterion, GMTS, and the criterion by Richard were used for numerical
predictions in this thesis. Numerical analysis were conducted by obtaining results
from three-dimensional finite element simulations in Abaqus, and applying them in
different fracture criteria. The criteria showed a good relation with experimentally
obtained angles.
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Sammendrag
Flermode-last har ofte en signifikant effekt når det kommer til bruddadferd i kom-
ponenter. Sprekker er i mange tilfeller årsaken til feil eller brudd i en komponent
eller struktur. Det eksisterer fortsatt mekanismer for sprekker og bruddadferd som
ikke er kjent. Dette gjelder også for flermode lasttilefeller i tre dimensjoner, I/I-
I/III. Denne masteroppgaven vil derfor studere eksisterende teori av flermode-last i
to og tre dimensjoner. Bruddoppførsel av PMMA under tre-dimensjonal flermode-
last, vil bli undersøkt ved hjelp av fysiske eksperiment og teoretiske beregninger.
Prøvestykker av typen CTS, vil bli benyttet for strekktesting. Dette prøvestykket
er konstruert med en påbegynt sprekk. Prøvestykket vil bli utsatt for ulike tre-
dimensjonale flermode-last kombinasjoner, fra ren mode I til ren mode II og ren
mode III. I denne masteroppgaven vil en test-rigg, som tillater flermode-last i tre
dimensjoner, bli designet og konstruert. Denne test-riggen ble benyttet i de fysiske
eksperimentene. Tester ble gjennomført i riggens tjuefem last kombinasjoner. Test-
riggen kan belaste prøvestykket, med flermode-last, i steg på 22.5◦, rotasjon om to
akser. Etter at strekktestene var gjennomført ble bruddlaster hentet. Vinkler, og
vridningsvinkler, ble målt på alle prøvestykker ved hjelp av et mikroskop. Resul-
tater fra eksperimentene ble deretter sammenlignet med resultatene fra teoretiske
kriterier og numeriske analyser. Bruddkriteriene MTS, GMTS og Richards kriteria
ble benyttet for teoretisk predikering av bruddvinkler og bruddgrenser. Numeriske
analyser ble gjennomført i programvaren Abaqus, ved hjelp av tre-dimensjonal
elementmetode-simuleringer. Verdier fra Abaqus ble deretter implementert i de
nevnte kriteriene. Kriteriene viste seg å stemme godt med de målte bruddvink-
lene.
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1. Introduction

1 Introduction
This section will cover a short overview of this thesis. The background and moti-
vations are discussed, and the scope of this work is addressed.

1.1 Background & Motivation
Mixed mode loading often has a significant effect on fracture behavior in compo-
nents. Cracks is in many cases the reason for failure or fracture of a component.
When it comes to fracture mechanics, all of the mechanisms of fracture behavior is
still not completely known. This especially applies to the three-dimensional loading
cases of mixed mode I/II/III. Some loading devices exist for the two-dimensional
cases of mixed mode I/II and I/III loading. However, few exist for the three-
dimensional loading case of mixed mode I/II/III. The motivation behind this work
is to contribute to the works on fracture mechanics on this topic, by analyzing a
new mixed mode I/II/III loading device theoretically and experimentally.

1.2 Problem Description
Mixed mode I/II/III brittle fracture behavior of PMMA is studied experimen-
tally and theoretically using CTS specimens containing pre-cracks. The specimens
should be subjected to different mixed mode loading conditions, ranging from pure
mode I to pure mode II and pure mode III. The main goal of this thesis is twofold.
First, to conduct a complete set of experimental results on fracture of pre-cracked
PMMA samples under various in-plane and out of plane loading conditions. These
experimental tests should be conducted by using the new designed mixed mode I/I-
I/III loading device. The second aim of this thesis is to predict the fracture limits
of the tested samples under mixed mode I/II/III conditions using various fracture
criteria. Maximum Tangential Stress, MTS, the Generalized Maximum Tangential
Stress, GMTS, and the Richard criterion are the chosen fracture criteria in this
thesis. The ability of different fracture criteria for predicting the fracture limit and
crack initiation angles of the tested specimens will be evaluated as a final goal.

1.3 Scope of This Work

1.3.1 Objectives

This thesis consists of several objectives. The designed loading device should be
manufactured at the IPM workshop. Material sheets of polymethyl methacrylate,
PMMA, should be ordered. The received PMMA material should be manufac-
tured into several pre-cracked CTS specimens. In addition to the CTS specimen,
dog-bone samples should be manufactured for material data testing. When the
manufacturing of the loading device and CTS specimens are completed, tensile
tests until fracture should be conducted on all of the specimens. The in and out
of plane crack initiation angles on all of the specimens should be measured and
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1. Introduction

fracture loads obtained. All of the experimental results should then be compared
with the theoretical study and numerical analysis.

1.3.2 Limitations

In this thesis, three specimens were made for all of the twenty-five loading device
combinations. For an improved empirical study, more specimens could have been
tested for each of the loading cases. Only one specimen type, pre-cracked CTS,
were tested in this thesis. One, out of two designed loading devices, was manufac-
tured. These limitations are due to financial framework and limited time of this
work. Another limitation of this study is the lack of prior mixed mode I/II/III
experimental data, which makes comparison and verification of this work difficult.

1.4 Previous Work
This master thesis is a continuation of a specialization project from the autumn
of 2017. The specialization project was written by the same author as this master
thesis. The specialization project consisted of the designing and modeling of the
mixed mode I/II/III loading devices, some theoretical study and the set-up of
the numerical simulation model. The design of the loading devices and numerical
analysis setup is also covered in this master thesis to give a better understanding of
the work. The designed mixed mode loading devices are based on previous work.
The first one was based on the AFM Loading device by Nils-Henrik Schirmeisen and
Hans A. Richard. The second three-dimensional loading device is a modification
and combination of the well-known arcan fixture and a new fixture by Ayatollahi
and Saboori. This is further explained in section 2.7.

1.5 Thesis Structure
This thesis follows the scientific writing structure called IMRaD. IMRaD is an
acronym for introduction, method, results, and discussion. Chapter 1 and 2 covers
the introduction part. The method in this thesis consists of modeling, design,
manufacturing, numerical analysis, criteria procedure and experimental procedure.
The chapters covering the methods can be found in chapter 3, 4, 5 and 6. Results
and discussion were covered in chapter 7. The thesis was rounded up with a
conclusion and further work chapter. These were covered in chapters 8 and 9.
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2. Theory & Literature Review

2 Theory & Literature Review
This chapter will cover a brief overview of some of the theoretical background used
in this thesis. In addition to some basic theory, literature is reviewed. Some theory
on finite element analysis and fracture criteria were also covered in chapter 5.

2.1 Linear Elastic Fracture Mechanics
Fracture mechanics concepts that only apply to materials that obey Hook’s law,
see equation 2.1, are called linear elastic fracture mechanics, LEFM. By using the
concepts of linear elastic fracture mechanics, a linear elastic material behavior is
assumed, see illustration to the right in figure 2.1. A common material behavior
for metals is a linear stress-strain response, followed by a non-linear behavior, see
illustration to the left in figure 2.1 [1].

σ = E · ε (2.1)

σ 

ε

E

σ 

ε

E

Figure 2.1: Left: Linear and non-Linear material behaviour, Right: Linear-elastic
material behaviour.

2.2 Poly(Methyl Methacrylate), PMMA
The experiments done in this thesis uses specimens of the material Poly(Methyl
Methacrylate), often called PMMA. PMMA is a polymer typically used for win-
dows, lenses, clear shields and bone cement. The material is brittle at room tem-
perature, relatively cheap and has transparent properties. The transparency helps
when studying cracks and kinks in cracked specimens. PMMA has a typical linear
elastic fracture behaviour. This can be seen to the right in figure 2.1 [1, 2].

2.3 Stress Analysis of Cracks
For isotropic linear elastic materials, subjected to a remote load, one can derive
an expression for the stress in the body. By defining a polar coordinate system
with an origin at the crack tip, the stress field in the cracked body can be given by
equation 2.2 [1].
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2. Theory & Literature Review

σij =

(
k√
r

)
· fij(θ) +

∞∑
m=0

Am · r
m
2 · gmij (θ) (2.2)

σij is the stress tensor, r and θ are geometrical properties (angle and distance to
the stress body, see figure 2.3), k is a constant and fij is a dimensionless function of
θ. For higher order terms, Am is the amplitude and gmij is a dimensionless function
for the m-th term [1].

Any crack configurations contain the leading term 1√
r
, when r approaches zero, the

term approaches infinity. Other terms approach zero or are finite [1].

2.3.1 Stress Intensity Factor

A crack can experience three different modes of loading. These can be explained
as opening, shearing and tearing of a crack, see figure 2.2. The three modes are
often called Mode I, opening, Mode II, shearing, and Mode III, tearing. A crack
can undergo all of these three modes, alone or in a combination of two or three.
Mode I, II and III produces the 1√

r
singularity, but k and f is mode dependent,

see equation 2.2 [1].

The constant k is replaced by the stress intensity factor, K. The relation between
k and K is given by K = k ·

√
2π. Stress intensity factors are often denoted to KI ,

KII and KIII , which implies which mode load the crack is applied. Stress field at
the crack tip for mode I can now be written as given in equation 2.3. For a singular
stress field on the crack plane, the stress field can be written as equation 2.4. Here,
the θ = 0 which gives equal stresses in y and x-direction [1].

lim
x→0

σ
(I)
ij =

KI√
2πr
· f (I)ij · (θ) (2.3)

σxx = σyy =
KI√
2πr

(2.4)

Opening Mode, K I Shearing Mode, KII Tearing Mode, KIII

Figure 2.2: Fracture mode I, II and III
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2. Theory & Literature Review

2.4 Mixed Mode Loading
Mixed mode fracture occurs when the fracture modes I, II and III occurs in a com-
bination. These three modes can be explained as opening, shearing and tearing of
a crack or a notch, see figure 2.2 [3]. The occurrence of a combination of only mode
I and II is often called plane mixed mode or 2D mixed mode, and the combination
of mode I, II and III are often called spatial mixed mode or 3D mixed mode. The
crack tip’s stress distribution is given by equation 2.5-2.10. For plane mixed mode
problems, equation 2.5-2.7 are applied. The method is called near-field solution
[4, 5].

σr =
KI

4
√
2πr

{
5cos

(
θ

2

)
− cos

(
3θ

2

)}
− KII

4
√
2πr

{
5sin

(
θ

2

)
− 3sin

(
3θ

2

)}
(2.5)

σθ =
KI

4
√
2πr

{
3cos

(
θ

2

)
+ cos

(
3θ

2

)}
− KII

4
√
2πr

{
3sin

(
θ

2

)
+ 3sin

(
3θ

2

)}
(2.6)

τrθ =
KI

4
√
2πr

{
sin

(
θ

2

)
+ sin

(
3θ

2

)}
+

KII

4
√
2πr

{
cos

(
θ

2

)
− 3cos

(
3θ

2

)}
(2.7)

In the case of spatial mixed mode problems, additional three equations are added.
As shown in equation 2.8-2.10. For plane strain σz is defined as shown in equation
2.10. However, for plane strain σz = 0 [4].

τrz =
KIII√
2πr

sin

(
θ

2

)
(2.8)

τφz =
KIII√
2πr

cos

(
θ

2

)
(2.9)

σz = ν(σr + σθ) =
8ν

4
√
2πr

{
KIcos

(
θ

2

)
−KIIsin

(
θ

2

)}
(2.10)

The equations are referring to r, ν, and z. These are co-ordinates in a cylindrical
coordinate system originated at the crack tip. ν is the rotation about the z-axis
and r is the x-direction, see the illustration to the right in figure 2.3 for all stress
fields [4]. The illustration shows a kink. This is the propagation of a small crack,
with another angle than the original crack [1].

5



2. Theory & Literature Review

2.5 The Elastic T Stress
The stress field at a crack tip, for isotropic linear elastic materials, is given by
equation 2.2. This equation is given with m-th higher order terms. This is an
infinite power series with the first term consists of a 1√

r
. The second term consists

of r and so on [6]. Often, only the first, singular, term is used, and the higher
orders are neglected. This leads to a single-parameter description of the stress field
at the crack tip.

The third of the higher order terms vanishes at the crack tip, but the second term
remains. This second term, which often is neglected, can have a considerable effect
on stresses in the plastic zone, and the shape of the plastic zone [1]. Equation 2.11
covers the first two terms of Williams solution [6] for a crack in isotropic elastic
materials.

σij =
KI√
2πr
· fij(θ) +

T 0 0
0 0 0
0 0 vT

 (2.11)

The uniform stress in x-direction, see figure 2.3, is given by T . vT is the stress
in z-direction in-plane strain. Biaxiality ratio, B, is an often used dimensionless
factor, including T-stress and the stress intensity factor, see equation 2.12. For
cracks exposed to mode I loading, the T-stress and K values scale with the amount
of applied load.

B =
T ·
√
πa

KI
(2.12)

If remote normal stress is applied to an infinite thick plate, with a crack going
through the thickness, the biaxiality ratio is equal to −1. T stress is given by
equation 2.13 for common laboratory specimens.

T =
B · P

A ·
√
πaW

· f ·
( a
W

)
(2.13)

A specimen with negative T-stress lose constraint fast with deformation, and a
specimen with positive t-stress generally leads to high constraints, under plastic
conditions. The crack tip constraint of different geometries, can be indicated by
the biaxiality ratio, B. A, W and a are dimensions for the chosen geometry.

Equation 2.12 or 2.13 can be used to obtain the t-stress for a given load. If the
t-stress is calculated using equation 2.13 under a plastic condition, the t-stress esti-
mation has no physical meaning. This is due to T-stress being an elastic parameter.
Cases with plastic deformation lead to a higher amount of errors in T-stress, and
it’s inferred stress fields.
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2.6 Fracture Criteria
Theoretical criteria were used for investigating fracture limits and to predict crack
initiation angles. Numerous criteria exist for the loading case of mixed mode I/II.
For the mixed mode cases of I/III, II/III and I/II/III, few fracture criteria exists
[7]. Some of these are the extended maximum tangential stress criterion (Extended
MTS) [8], the Pook criterion [9, 4], Richard criterion [4], criterion of Schöllmann
[10], the maximum principal stress criterion [11, 10], the empirical elliptical criterion
[12] and the extended generalized maximum tangential stress criterion (Extended
GMTS) [7].

However, the existing fracture criteria for mixed mode I/II/III are not very sensitive
to the effects of mode III, and some are not able to predict fracture direction [7].
This thesis will focus on the extended general GMTS criterion and the three-
dimensional Richard criterion for the cases of general mixed mode I/II/III, mixed
mode I/III and II/III.

As mentioned above, several criteria exist for the mixed mode case of I/II. This
thesis will focus on the well known maximum tangential stress criterion (MTS) [13]
and generalized maximum tangential stress criterion (GMTS) [14] for the in-plane
mixed mode loading cases. The GMTS criterion is based on the MTS criterion.
The MTS criterion takes basis in the equations for crack tip stress distribution, see
equation 2.5-2.10. The GMTS criterion takes the higher order T-stress into con-
sideration, see section 2.5 for further explanation of T-stress. Several experiments
show that the GMTS criterion is in better agreement with test data than the MTS
criterion [15, 16, 17, 18].

2.6.1 Fracture Criteria Formulation

In this subsection, the extended GMTS criterion is derived from the crack tip
stress field equations. The same approach is used for the in-plane GMTS and MTS
criteria. The only difference is that the terms that consist of T-stress are removed
from the MTS formulation, and the terms including KIII is neglected for in the
in-plane mixed mode I/II cases. This presented formulation of the extended GMTS
criterion is adapted from the works of Ayatollahi [7].

The stress field under general mixed mode I/II/III loading are presented in equation
2.14-2.19. These equations consists of singular terms, see chapter 2.5, and non
singular terms, see equation 2.5-2.10. They are valid for linear elastic homogeneous
materials.
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σrr =
1√
2πr

[
KI

4

{
5cos

(
θ

2

)
− cos

(
3θ

2

)}
+
KII

4

{
−5sin

(
θ

2

)
+ 3sin

(
3θ

2

)}]
+ T · cos2(θ) +O · (r 1

2 )

(2.14)

σθθ =
1√
2πr

[
KI

4

{
3cos

(
θ

2

)
+ cos

(
3θ

2

)}
+
KII

4

{
−3sin

(
θ

2

)
− 3sin

(
3θ

2

)}]
+ T · sin2(θ) +O · (r 1

2 )

(2.15)

σrθ =
1√
2πr

[
KI

4

{
sin

(
θ

2

)
+ sin

(
3θ

2

)}
+
KII

4

{
cos

(
θ

2

)
+ 3cos

(
3θ

2

)}]
− T · sin(θ)cos(θ) +O · (r 1

2 )

(2.16)

The stress intensity factor for mode I, II and III are given by KI−III . Poissons’s
ratio is given by v, and (r, θ, z) indicates directions in the cylindrical coordinates,
see figure 2.3. T-stress is given by T and O · r 1

2 represents the higher order terms.
These higher often terms are often removed close to the crack tip.

σθz =
KIII√
2πr

cos

(
θ

2

)
+O · (r 1

2 ) (2.17)

σrz =
KIII√
2πr

sin

(
θ

2

)
+O · (r 1

2 ) (2.18)

σzz =

{
0, Plane Stress

v(σθθ + σrr), Plane Strain (2.19)

As mentioned above, this formulation is derived using the same approach as for
the MTS criterion [13]. This criterion is based on two hypotheses. They are given
as [7]:

Fracture initiates radially from the crack tip in the direction along which the
tangential stress possesses its maximum value.

(i)

The onset of fracture occurs when the tangential stress at a critical radial
distance from the crack tip, rc, and along the above direction reaches a critical
value of σc.

(ii)

8
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Figure 2.3: Left: Stress State in θ-Z plane [19], Right: Cylindrical co-ordinate
system and stress comonents at crack front. [4]

Figure 2.3 shows the cylindrical coordinate system used in the equations above. The
kinking angle is given by θ and the twisting angle is given by φ. One assumption
is made to the extended GMTS criterion. This assumption is that the stress state,
in the θ-z plane equal to an element rotated by an angle φ around the coordinate
axis r. This is to make the extended GMTS criterion able to predict out of plane
fracture angle, φ, in addition to in-plane fracture angle, θ. The rotation around
the co-ordinate system r is illustrated to the left in figure 2.3. The stresses given
in equation 2.14-2.19 are combined to make a stress tensor. The stress tensor is
given in equation 2.20 [7].

S =

σrr σrθ σrz
σrθ σθθ σθz
σrz σθz σzz

 (2.20)

Mode II loading leads to kinking of the crack, and mode III loading results in a
twisting of the crack. For the loading cases of mixed mode I/II/III, a combination
of twisting and kinking occurs. This combination results in a more curved form of
crack propagation. Typical crack propagation for pure mode I, pure mode II, pure
mode III and mixed mode I/II/III is illustrated in figure 2.4.

Transforming the coordinate system of (r, θ, z) to (r′, θ′, z′), gives us the trans-
formed stress tensor S′, see to the left in figure 2.3. This can be calculated using
the equation 2.21.

S′ = QSQT (2.21)

9
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Pure Mode I

Pure Mode II Pure Mode III

Mixed Mode I / II / III

θ
- ϕ

Figure 2.4: Crack growth for different fracture modes.

Where Q, in equation 2.21, is the transformation matrix, and QT is the transposed
transformation matrix. Q is given in equation 2.22

Q =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 (2.22)

The transformed stress tensor is given in equation 2.23.

S′ =

σrr σrθ′ σrz′

σrθ′ σθ′θ′ σθ′z′

σrz′ σθz σz′z′

 (2.23)

The tangential stress, including T-stress, is given in equation 2.24. This equation
can be used as the basis for both GMTS and MTS criterion, plane stress, plane
strain and the loading cases of mixed mode I/II, I/III and II/III.

σθ′θ′(θ, φ) =
1√
2πr

(
cos2

θ

2

[
KIcos

θ

2
− 3KIIsin

θ

2
+ 2T

√
2πr(1− cosθ)

]
cos2φ

−KIIIcos
θ

2
sin(2φ) + 2v

[
KIcos

θ

2
−KIIsin

θ

2
+
T
√
2πr

2

]
sin2φ

)
(2.24)
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For the plane stress condition, σzz = 0, the last term in equation 2.24 is neglected
by setting v equal to zero. The plane stress case is given in equation 2.25.

σθ′θ′(θ, φ) =
1√
2πr

(
cos2

θ

2

[
KIcos

θ

2
− 3KIIsin

θ

2
+ 2T

√
2πr(1− cosθ)

]
cos2φ

−KIIIcos
θ

2
sin(2φ)

)
(2.25)

As showed in equation 2.12, the T-stress can be normalized. In the cases of stress
intensity factors for mode II and III in addition to KI , Keff are often introduced
[7]. Keff is called the effective stress intensity factor and is given in equation 2.26

Keff =
√
K2
I +K2

II +K2
III (2.26)

KI is simply replaced by Keff in equation 2.12 whichs forms equation 2.27

B =
T ·
√
πa

Keff
(2.27)

Equation 2.24 can be changed by replacing T
√
2πr with B ·Keff

√
2r/a, as seen

in equation 2.28

σθ′θ′(θ, φ) =
1√
2πr

(
cos2

θ

2

[
KIcos

θ

2
− 3KIIsin

θ

2
+ 2B ·Keff

√
2r

a
(1− cosθ)

]
cos2φ

−KIIIcos
θ

2
sin(2φ) + 2v

[
KIcos

θ

2
−KIIsin

θ

2
+
B ·Keff

√
r/a√

2

]
sin2φ

)
(2.28)

The two main hypothesis of the MTS criterion, and using partial derivative to find
extreme values of two variable functions, leads to a mathematical description of
the extended GMTS criterion. The first hypothesis is shown in equation 2.29 [7].

∂σθ′θ′

∂θ
= 0,

∂σθ′θ′

∂φ
= 0,

∂2σθ′θ′

∂θ2
< 0,

∂2σθ′θ′

∂θ2
∂2σθ′θ′

∂φ2
−
[
∂

∂φ

∂σθ′θ′

∂θ

]2
> 0 (2.29)

The second hypothesis for the MTS criterion is given in equation 2.30. KIC is the
pure mode I fracture toughness, and σc is the critical tangential stress. These two
were obtained for this thesis’s choice of material in section 6.

σθ′θ′ = σc =
KIC√
2πrc

(2.30)
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2.6.2 Maximum Tangential Stress Criterion, MTS

As mentioned above, a well-known fracture criterion is the maximum tangential
stress criterion, MTS. This criterion is valid in the case of mixed mode I/II loading,
and the T-stress is not considered. By neglecting the terms consisting of T , KIII

and φ from equation 2.24, the general tangential stress can be expressed as in
equation 2.31 [7].

σθ′θ′ =
1√
2πr

(
cos2

θ

2

[
KIcos

θ

2
− 3KIIsin

θ

2

])
(2.31)

Combining equation 2.31 and the first hypothesis of the MTS criterion, equation
2.29, gives an implicit expression for the in plane fracture initiation angle, θf , see
equation 2.32. The equation is partial derivative, and trigonometric identities are
used to simplify the expression [13, 4].

KIsinθf +KII(3cosθf − 1) = 0 (2.32)

By combining equation 2.31 with the second hypothesis of Erdogan and Sih, equa-
tion 2.30, an expression for the fracture limit surface is formed, see equation 2.33

KIC = cos
θf
2

[
KI · cos2

θf
2
− 3

2
KIIsinθf

]
(2.33)

An usual presentation of the MTS criterion is through e fracture limit curve and
a mixity parameter-initiation angle curve, e.g. [7, 3, 20, 4]. The mixity paramter,
Me

12, is given by equation 2.34.
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Figure 2.5: Left: Mixity Paramter vs Crack initiation angle Plot Right: Fracture
limit plot, normalised Mode I vs Mode II

12



2. Theory & Literature Review

Me
12 =

2

π
tan−1

(
K1

KII

)
(2.34)

The notation of 12 indicates mode I and II. Figure 2.5 shows two plots. The plot to
the left represent a curve of the relationship between the mixity parameter and the
initiation fracture angle. The plot to the right in figure 2.5 represents the fracture
limit curve for mode I and II for the MTS criterion.

The fracture limit plot indicates where the crack becomes unstable. If the stress
intensity factor exceeds the fracture toughness, the crack becomes unstable [4].
According to this criterion, the in-plane crack initiation angle, θf , for pure mode
II is −70◦ and 0◦ for pure mode I, see figure 2.5.

2.6.3 Generalized Maximum Tangential Stress Criterion, GMTS

As for the MTS criterion, equation 2.24 can be used as the basis to derive the
general form of tangential stress, for the GMTS, mixed mode I/II criterion, see
equation 2.35.

σθ′θ′ =
1√
2πr

(
cos2

θ

2

[
KIcos

θ

2
− 3KIIsin

θ

2
+ 2T

√
2πr(1− cosθ)

])
(2.35)

Combining equation 2.29 and the first MTS hypothesis, 2.35, gives an implicit equa-
tion for the crack initation angle, including the consideration of T-stress, equation
2.36.

KIsinθf +KII(3cosθf − 1)− 16T

3

√
2πrc · cosθf · sin

θf
2

= 0 (2.36)

When combining equation 2.35 with the second MTS hypothesis, equation 2.30, an
expression for the fracture limit surface, including T-stress is formed, see equation
2.37 [7].

KIC = cos
θf
2

[
KI · cos2

θf
2
− 3

2
KIIsinθf

]
− T
√
2πrc · sin2θf (2.37)

The effects of T-stress on the crack initiation angle and fracture limit can be studied
by replacing T and rc with Bαr [14, 7]. T is replaced by the biaxiality ratio, B,
as shown in equation 2.27. The relation αr =

√
2rc/a is used to replace rc. The

plot in figure 2.6 shows the effect of negative T-stress in the generalized maximum
tangential stress criterion. The MTS criterion is also plotted in the same figure for
comparison. Note that the MTS criterion is equal to Bαr = 0. As shown in figure
2.6, a negative T-stress leads to a higher value of normalized mode II, KII/KIC

[14].
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These plots show a constant Bαr, for different crack initiation angles. In real mixed
mode loading cases, the T-stress, which will affect the Bαr, will vary for different
loading cases and initiation angles. Figure 2.7 shows a plot of crack initiation angle
versus mixity parameter, equation 2.34. A negative T − stress, therefore negative
Bαr, leads to a lower crack initiation angle, θf , in a negative direction. Positive
T-stress leads to a higher, in a negative direction, crack initiation angle [14].
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Figure 2.6: Fracture limit plot for different values of negative Bαr [14].
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2.6.4 Three Dimensional Criterion by Richard

As mentioned above, few criteria exist for spatial, three dimensional, mixed mode
problems. This thesis will cover the three-dimensional criterion of Richard [4, 21, 3],
in addition to the extended GMTS criterion derived above. This criterion is a
superposition of the three fracture modes. The stress intensity factors KI , KII

and KIII are all considered in this criterion.

For deriving the spatial criterion, Richards two dimensional fracture criterion is
expanded to three dimensions. Richards in plane fracture criterion consists of two
hypothesis. The equation for fracture limit is given in equation 2.38 [4].

KIC ≥
KI

2
+

1

2

√
K2
I + 4(α1KII)2 (2.38)

It is shown that by setting the parameter α1 equal to 1.155, the fracture limit
curve has a good agreement with the MTS criterion. The equation for in-plane
crack initiation angle is shown in equation 2.39 [4].

θf = ∓

[
155.5◦

|KII |
|KI |+ |KII |

− 83.4◦
(

|KII |
|KI |+ |KII |

)2
]

(2.39)

When extended to three modes, the equation for in plane fracture angle, θf , is
expressed as in equation 2.40. θf < 0◦ for KII > 0 and θf > 0◦ for KII < 0.

θf = ∓

[
A

|KII |
KI + |KII |+ |KIII |

+B

(
|KII |

KI + |KII |+ |KIII |

)2
]

(2.40)

The out of plane, twisting, angle, φf , is expressed in equation 2.41. φf < 0◦ for
KIII > 0 and φf > 0◦ for KIII < 0.

φf = ∓

[
C

|KIII |
KI + |KII |+ |KIII |

+D

(
|KIII |

KI + |KII |+ |KIII |

)2
]

(2.41)

The equations for in plane, and out of plane angles were found to be in good
agreement with the criterion of Schöllmann with the parameters A = 140◦, B =
−70◦, C = 78◦ and D = −33◦ [10, 4].

The equation for fracture limit for Richards three dimensional fracture criterion is
given in equatiopn 2.42.

KIC =
KI

2
+

1

2

√
K2
I + 4(α1KII)2 + 4(α2KII)2 (2.42)

In equation 2.42, α1 = KIC/KIIC and α2 = KIC/KIIIC , where KIC , KIIC and
KIIIC are the fracture toughness for pure mode I, II and III.
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By replacing the paramter α1 with 1.155 and α2 with 1.0, the fracture limit equa-
tion 2.42 fits well with the more complex criterion of Schöllmann [4]. Figure 2.8
shows and illustration of the three dimensional fracture limit curves, generated
from equation 2.42.

The presented three-dimensional plots show the fracture limit for mixed mode
I/II, I/III and II/III loading on the two-dimensional curves. In addition, a three-
dimensional fracture limit surface is plotted, combining the three two dimensional
mixed mode loading cases. This three-dimensional fracture limit surface represents
the mixed mode I/II/III loading cases, see illustration to the left in figure 2.8.

To the right in illustration 2.8, a representation of equation 2.42 is shown. It is
shown that the relation between stress intensity factors KI and KII is in a good
agreement with the MTS criterion, see figure 2.5. With a KII/KIC value of 0.87,
and KI/KIC value of 1.0.
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Figure 2.8: Left: Illustration of Three dimensional fracture limit curves, Right:
3D Criterion of H.A. Richard [4]
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2.6.5 Dimensionless Factors

Ayatollahi et al. [20] suggested a solution method to calculate the onset of brittle
fracture, by implementing dimensionless factors to the GMTS criterion. In this
work the stress intensity factors, KI , KII and the T-stress, T , were replaced with
the dimensionless factors YI , YII and T ∗. The GMTS equation for crack initiation
angle, see equation 2.36, can be rewritten as equation 2.43.

YIsinθf + YII(3cosθf − 1)− 16T ∗

3

√
2rc
a
· cosθf · sin

θf
2

= 0 (2.43)

The second equation of the GMTS criterion, see equation 2.37, can be derived by
KIf to form the equation for plotting the fracture limit curve, see figure 2.6. This
is shown in equation 2.44.

KIC

KIf
= cos

θf
2

[
cos2

θf
2
− 3

2

KIIf

KIf
sinθf

]
− Tf
KIf

√
2πrc · sin2θf (2.44)

KIf , KIIf and Tf are stress intensity factors and T-stress at the fracture load
in each mixed mode loading case. By rewriting equation 2.44 with dimensionless
factors, it can be expressed as equation 2.45 [20].

KIC

KIf
= cos

θf
2

[
cos2

θf
2
− 3

2

YII
YI

sinθf

]
− T ∗

YI

√
2rc
a
· sin2θf (2.45)

The same procedure is followed for the KIIf/KIC relation and can be seen in
equation 2.46.

KIC

KIIf
= cos

θf
2

[
YI
YII

cos2
θf
2
− 3

2
sinθf

]
− T ∗

YII

√
2rc
a
· sin2θf (2.46)

This method can be used for plotting the GMTS curves when the fracture load,
and therefore KIf and KIIf , is unknown. The dimensionless geometry factors, YI ,
YII and YIII , can be calculated by using the relation in equation 2.47 with KI ,
KII and KIII [2].

K = Y σ
√
πa (2.47)

This thesis use the relation in equation 2.48 to calculate the non-dimensional T-
stress, T ∗.

T = σ · T ∗ (2.48)
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2.7 Existing Mixed Mode Loading Devices
The second modeled loading device is a combination of the well-known arcan load-
ing device and a new fixture by Ayatollahi and Saboori [22]. The arcan fixture
covers several degrees of mode I/II combinations. The arcan loading device is
illustrated to the right in figure 2.9 [3].

The new fixture by Ayatollahi and Saboori [22], is a fixture for fracture tests under
mixed mode I/III loading. This fixture is illustrated in the middle in figure 2.9.

In this project, mixed mode loading devices will be designed and simulated. The
first loading device to be modeled was the all fracture mode (AFM) loading device.
This loading device is based on the works of Schirmeisen and Richard [23]. This
loading device is illustrated to the left in figure 2.9.

Figure 2.9: Left: AFM loading device [23], Middle: New mixed mode I/III fixture
[22], Right: Arcan fixture for mixed mode I/II [3].
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3 Modeling of Mixed Mode Loading Devices
This chapter covers the modeling and design method of the two mentioned loading
devices. The first presented loading device is based on Richard’s work, and the
second is a combination of the work by Ayatollahi and the well-known arcan fixture,
see chapter 2.7.

3.1 AFM Loading Device
In this work, fabrication of a mixed mode loading device was needed. Among the
different mixed mode loading devices, an AFM (All fracture mode) fixture was
chosen, see section 2.7. For a correct and accurate fabrication, a CAD model and
detailed machine drawings were made and delivered to the IPM workshop. The
software used for modeling was Siemens NX. See appendix A and B for complete
technical drawings.

3.1.1 Modeling of AFM Specimen

For designing and applying dimensions an article covering the AFM specimen were
used [5]. The specimen has the width, w = 27mm, thickness, t = 0.45w and crack
length, a = 0.5w. The length of the specimen is 150.5mm, and the diameter of the
cylindrical ends are 35mm. As illustrated in figure 3.1, four holes are used to fix
the specimen to the fixture with the help of four pins. The holes for the pins have
a diameter of 10mm. The ends have a 1 mm chamfer, for easier assembly of the
specimen to the fixtures.

Figure 3.1: Caption of AFM specimen, CAD model and technical drawing

3.1.2 Modeling of AFM Fixture

As opposed to the specimen, there were no dimensions or technical drawings for
the AFM fixture. However, in the article used for designing the specimen [5] a
photograph of the assembled fixture and specimen was found. This photograph
was used to get an approximate relationship between the length of the specimen
and the two fixtures. The AFM fixture consists of two identical parts, which fix
the specimen in both ends. As illustrated in figure 3.2, four holes are surrounding
the hole for the specimen. They have the diameter of 10mm and have the purpose
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of connecting the specimen and fixture with pins. The reason for four holes in one
end, instead of two as for the specimen, is symmetry and easier fabrication. With
four holes, the two fixtures are identical, and the holes do not have to be mirrored.
The back of the fixture has a spherical shape with thirteen threaded holes. The
holes are placed in an order so that any combination of Mode I to Mode II and III
can be generated in steps of 30◦.

Figure 3.2: Caption of AFM Fixture, CAD model

3.1.3 Assembly of AFM Loading Device

The assembly consists of two fixtures and one specimen. The fixtures are mirrored
to create symmetrical properties, see figure 3.3. A uni-axial testing device can be
fixed to one of the threaded holes in the fixture, and at the opposing hole on the
second fixture. Different threaded holes will enable different combinations of mixed
mode loading. The threaded holes were fabricated in a way that the center line
of the holes, and the load line of action, always passes through the center of the
specimen [3]. This is illustrated to the right in figure 3.3, where lines from the
threaded holes are crossing at the center of the specimen crack tip.

Figure 3.3: Left: Assembly of AFM Fixture and Specimen, Right: Sketches
crossing at the center of specimen crack tip
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3.2 Mixed Mode I/II/III Loading Device
Because of the somewhat complicated fabrication of the AFM loading device, an-
other mixed mode loading device was modeled. This loading device is a modifica-
tion and combination of the two-dimensional arcan fixture, and the mixed mode
I/III fixture by Ayatollahi and Saboori [22]. See chapter 2.7. Modeling of the
loading device was done in Siemens NX. Technical drawings were made from the
CAD-model and delivered to IPM workshop for fabrication. Complete technical
drawings can be studied in appendix C, D and E.

3.2.1 Modeling of CTS Specimen

The CTS specimen has six holes to allow a pinned connection to the fixture. It’s
width is, w = 37.5mm, thickness, t = 10mm and crack length, a = 18.8mm. The
length of the specimen is 60mm, and it has six holes, with a diameter of 6mm, for
the pinned connections, see figure 3.4. The presented CTS specimen is based on
the specimen used for mixed mode I/II testing, with the Arcan fixture, by Richard
and Sander, see figure 2.9 [24].

Figure 3.4: Caption of CTS specimen, CAD model and technical drawing

3.2.2 Modeling of C-Fixture

The specimen is fixed to a fixture referred to as the c-fixture, because of its shape.
As illustrated in figure 3.5, there are three holes to allow pinned connection to the
specimen. In addition to the specimen holes, five holes are covering the rounded
edge of the fixture. These holes allow connection to the second fixture. They are
modeled in a circular pattern in steps of 22.5◦, at a radius of 45mm from the
specimen center (crack tip). In the case of a two dimensional CTS loading device,
the load is applied directly to these holes. In that case, the fixture allows pure
mode I, pure mode II and a mixed mode loading combinations in steps of 22.5◦
between fracture mode I and II. In this work, the fixture is connected to a second
fixture to allow third-dimensional mixed mode loading.
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Figure 3.5: Illustration of modeled C-Fixture

3.2.3 Modeling of J-Fixture

The c-fixture is connected to a second fixture. This second fixture is referred to as
the j-fixture, because of its shape. As shown in figure 3.6, the j-fixture has a hole
across its body to allow pinned connection to the c-fixture. The j-fixture also has
five holes, covering the edge, in a circular pattern. These holes are also modeled in
steps of 22.5◦ from the specimens crack tip center. During physical experiments,
the load is applied through these holes. The combination of mode III, to the mixed
mode loading combination, is determined by which of these holes the load is applied
to.

Figure 3.6: Illustration of modeled J-Fixture
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3.2.4 Forks

To translate the force from the tensile testing machine, to the loading device, two
forks were designed, see figure 3.7. They were designed with a gap, to insert the
j-fixture, and is connected to the fixture using pins. The solid end has a thickness
of twelve mm, and is designed to fit the grips of the tensile testing machine. The
testing machine grips are basic clamps, which uses hydraulic force for clamping.

Figure 3.7: Illustration of Modelled Forks

3.2.5 Assembly of Mixed Mode I/II/III Loading Device

The assembled loading device consists of two j-fixtures, two c-fixtures, and one
specimen, see figure 3.8. All the holes on the j- and c-fixture were designed in a
way, so all center lines crossed the center of the specimen crack tip.

When the specimen is assembled, pinned connections go through the specimen
fixture, the specimen, and the c-fixture. The desired combination of mode I and
II is selected by connecting the j-fixture to different holes in the c-fixture. The
same concept applies for the j-fixture, different combinations of mode III loading is
determined by which hole the load, from the uniaxial testing machine, is applied.
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Figure 3.8: Illustration of assembled Mixed Mode I/II/III Loading Device
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4 Manufacturing Method
This chapter will cover the fabrication process of the presented loading device, and
specimens. Technical drawings, used for manufacturing, are covered in appendices
C, D and E.

4.1 CTS Specimen
As mentioned above, the chosen material for the cracked specimens was PMMA,
see chapter 2.2. A large plate of this material was ordered and cut into smaller
pieces before delivering it to the ’Realfabsbygget’ workshop, for manufacturing of
the specimens. The PMMA plate can be seen to the left in figure 4.4.

The dimensions of the cracked specimen can be studied in appendix C. As illus-
trated in the technical drawing, the crack length, a, is set to 18.75 mm. The main
issue with the fabrication was the making of the crack.

The thinnest available blade had a thickness of 0.5 mm. However, the desired
thickness of the crack was 0.2 mm. This was solved by using the 0.5 mm saw for
18.5 mm of the crack length and cutting the remaining 0.25 mm crack length with
a razor blade. The manufactured specimen is shown to the right in figure 4.4.

The razorblade cutting process is illustrated in figure 4.1. In this figure, a scaled
up image of the crack tip is presented. In the middle of the figure, the crack tip
after manufacturing is shown. The crack tip had a squared front, with a width of
0.5 mm, after the 0.5 mm saw. To the right in figure 4.1, an illustration of the
crack tip, after the razor blade cutting, is shown. This resulted in a sharper crack
tip.

0.5 mm

0.2 mm

Figure 4.1: Left: Cracked specimen, Middle: Machined crack, Right: Crack tip
after the razor-blade cutting process
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4.2 Mixed Mode I/II/III Loading Device
After the mixed mode I/II/III loading device was modeled, as explained in chapter
3, the drawings, and step-files were delivered to the IPM workshop for fabrication.
The fabrication method used for these fixtures were CNC (computer numerical
control) milling.

Figure 4.2 presents the completed c-fixtures. Both parts were found to be precisely
and identical. This was measured and controlled with a caliper as measuring tool.
The symmetry of the c-fixtures was important for correct force distribution, from
the tensile testing machine to the crack tip. Six small pins were made for fastening
the CTS specimen to the c-fixtures. These were cut from a solid steel rod. Edges
of the pins were graded, for a smoother penetration in the c-fixture. Figure 4.3
shows the manufactured j-fixtures. The complete components were found to be in
a good agreement with the designed CAD models. In addition to the initial design,
a small hole was drilled for the pinhole for c-fixture connection. This was done to
obtain a smoother pin penetration, and to avoid a vacuum. Figure 4.5 shows this
small hole, on the j-fixture surface.

Figure 4.5 shows the complete assembled loading device, with the manufactured
forks to the right. The forks were used to transform the force from the tensile
testing machine to the loading device and specimen. As seen in the figure, six
pins were used to fasten the specimen to the c-fixtures. Two additional pins were
used to fasten the j-fixture to the c-fixture. Bolts and nuts were used to fasten the
forks to the j-fixtures. This was due to the heavy weight of the j-fixtures. Most of
the weight was held by the bolts, instead of adding more out of plane force to the
specimen than tended.
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Figure 4.2: Manufactured c-fixtures.

Figure 4.3: Manufactured j-fixtures.
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Figure 4.4: Left: Ordered PMMA plate, Right: Manufactured mixed Mode CTS
specimens.

Figure 4.5: Left: Manufactured assembly, Right:Manufactured forks.
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5 Numerical Analyses & Criteria Procedure
This chapter will cover a numerical analysis of the designed loading devices and
specimens, numerical outputs from the analysis and some fracture criteria proce-
dures. After the design and modeling of the loading device, all of the parts were
saved as step-files and imported to the simulation software, Abaqus.

5.1 Numerical Analysis Set-up for Loading Device
5.1.1 Properties

The step-file of the loading device was imported to Abaqus and assembled. Two
different materials were assigned to the specimen and the fixtures. The specimen
was assigned the material polymethyl methacrylate, PMMA. This is also the ma-
terial used for the physical specimens. PMMA has transparent properties, which
makes visual tracking of crack initiation angles easier.

The material was assigned Young’s modulus of 2900 MPa and a Poisson’s ratio of
0.35 [25, 26]. The fixtures were manufactured from steel, which is stiffer than the
specimen material. This led to the assumption that deformation would only occur
in the specimen, and not in the fixture. See chapter 5.2. For the fixtures, steel
was applied. The steel material was assigned Young’s modulus of 193 GPa and a
Poisson’s ratio of 0.25 [27].

5.1.2 Interactions & Constraints

As mentioned in the modeling chapter, pins were used to connect the specimen
to the c-fixture, and the c-fixture to the j-fixture. To simplify the model, pins
were not imported. Instead, these connections were simulated using constraints
and interactions in Abaqus. This is illustrated to the left in figure 5.1. To simulate
pins, multiple point constraints, MPC, were used. They establish a relation between
degrees of freedom in nodes [28].

In this case, a reference point, at the center of pinholes, were constrained to the
inner surface of the hole. This is illustrated to the right in figure 5.1. This constraint
was applied to all pinned surfaces between the specimen and c-fixtures, eighteen
in total. Between the mentioned MPC constraints, a connector section was made.
The type for this connector section was a beam. This was applied by choosing
two reference point, with attached MPC constraint. This was done for each of the
six specimen holes. In this way, MPC constraints were connected in sets of three.
This lead to a total of six beam connections. Because of the assumption of no
deformation in the fixtures, a different type of constraint was chosen to simulate
these pins. For the two pins connecting the two c-fixtures to j-fixtures, a rigid pin
constraint was used to simplify to FEA model. Verification of this assumption was
conducted in chapter 5.2.
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Figure 5.1: Overview of different Interactions and Constraints used in the loading
device model set-up

5.1.3 Partitioning & Crack Assignment

To be able to apply correct mesh, and crack properties to the specimen, it was
partitioned into smaller parts. Because this is a three-dimensional model, the face
was first partitioned using the sketch method in Abaqus. The partitioning of the
face was then used for partitioning the cell, using the extrude/sweep edges method.

The specimen was partitioned into four squares, and one additional circle, see figure
5.2. The circle has an origin in the specimen center. The circle has a radius of 5
mm. The circle was divided into eight parts, see illustration to the right in figure
5.2. This circle was added at the crack tip, to provide a finer mesh in this area.
This finer mesh was necessary for the stress intensity factor simulations.

Figure 5.2: Illustration of the Specimen Partitioning Process and Crack
assignment
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For assigning the crack, the tool assign seam was used. Two of the partition lines
were chosen, illustrated with an orange line in figure 5.2. After the seam was
assigned, a crack was created. The chosen type was contour integral, to be able
to obtain K values. Crack extension direction was applied by using q vectors. For
the singularity options, the midside node of elements was changed from half the
length to one-quarter of the length. After assigning the crack, a new history output
was made. To obtain stress intensity factors, the domain ’crack’ was selected. A
number of ten contours were applied, and the type was set to stress intensity factors,
maximum tangential stress. T-stresses were obtained in addition to K-values. This
was done with the same procedure, by applying T-stress as a new history output.
A number of ten contours was also applied in this case.

5.2 Verification of Fixtures
Previous in this chapter, it was assumed that no stresses and deformation of im-
portance would appear in the c- and j-fixture. The assumption was based on the
fact that the material of the fixtures, steel, was stiffer than the material properties
of the specimen, PMMA. This was verified by studying the local stresses in these
fixtures when the model was set-up for simulation. As a safety factor, the load
2000 N was applied during this verification. Figure 5.3 illustrates the first stress
study of the fixtures. Pure mode I was set up and simulated. In the visualization,
a display group was made, and the specimen was hidden. This allowed an isolated
study of stresses in the fixtures, and neglect the stresses in the specimen. As shown
in figure 5.3 the maximum occurring stress in both fixtures was 21.62 MPa. This
stress was found in the c-fixture, in the area around the pinned connection with
the specimen. For the j-fixture, the maximum stress was found at the end of its
pinhole. This is illustrated in the figure with a section view along the y-z plane.

Fixture stresses were studied for all loading cases. Figure 5.4 illustrates stresses
for loading case α = 90◦-β = 90◦ and α = 45◦-β = 45◦. These were the loading
cases with highest obtained stresses in the fixtures. For the α = 90◦-β = 90◦ case,
the highest stress was 97.9 MPa. This stress concentration was found around the
pin holes for specimen fixture. For the α = 45◦-β = 45◦ case, the highest stress
was 70.8 MPa. This maximum stress concentration was found around the loading
holes on the j-fixture.

The highest obtained stress during all loading cases was found to be 97.9 MPa,
which is below the yield stress of the chosen steel material. This led to the con-
clusion that deformation would occur in the specimen, rather than in the fixtures.
After the fixture stress study, all simulations were set up for the simulation case.
The applied load was set to 1000 N . The FEA model for each simulation was
studied to verify that the model behaved as intended. Figure 5.5, illustrates the
deformation of the specimen for pure mode I, II and III. The visualization of de-
formation is scaled fifty times.
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Figure 5.3: Von Mises stresses in fixtures during Pure mode I, Middle: Max von
Mises stress in J-fixture, Right: Max von Mises stress in C-fixture

Figure 5.4: Left: Fixture stresses for loading case α = 90◦ & β = 90◦, Right:
Fixture stresses for loading case α = 45◦ & β = 45◦

Figure 5.5: Illustration of deformed specimen. Left: Pure Mode I, Middle: Pure
Mode II, Right: Pure Mode III
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Figure 5.6: Illustration of deformed loading device. Left: α = 45◦ & β = 45◦,
Middle: α = 45◦ & β = 0◦, Right: α = 67.5◦ & β = 25◦

Figure 5.6 illustrates the deformed FEA models for three different loading cases.
They were studied to see if the constraints and conditions behaved as intended.
They were also used to look for unwanted surface penetrations. All of the twenty-
five loading device combinations were set-up and simulated, and studied for ex-
pected behavior.

5.2.1 Fixture & Specimen Mesh

After the verification of the fixtures and specimens, a finer mesh was applied.
This finer mesh led to computer heavy and time-consuming simulations, which was
conducted on a workstation owned by NTNU. This workstation was accessed by
using a VPN, virtual private network. For the four fixtures, element shapes were
set to Tet. The j-fixtures were assigned four elements to its thickness. The c-fixture
were assigned five elements to its thickness. This is illustrated in figure 5.7. As
mentioned earlier, the material for the fixtures has a much higher stiffness than
the specimen. Because of this, it was assumed that no considerable stresses would
occur in the fixtures. See chapter 5.2 for validation.

Two different element shapes were assigned to the specimen. For the four-square
partitions and the R = 5 circle, a hex-dominated element shape was selected. For
the rest of the specimen, the element shape hex was selected. The technique for
meshing was sweep, with the algorithm type medial axis. The function local seeds
were used to assign more elements in areas were a finer mesh was desired. Eight
elements were chosen for the specimen thickness. For the circle around the crack
tip, a finer mesh was desired. A circular mesh, with element sizing from large to
small, was created. With elements getting smaller as they get closer to the center
of the circle, see figure 5.7. Ten elements were assigned on each of the four lines in
the r5 circle. A quadratic geometric order and family 3D stress were chosen for all
elements. After the meshing of the specimen, it had a total of 10 840 elements.
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Figure 5.7: Top: Specimen mesh, Middle: C-Fixture mesh, Bottom left: J-fixture
mesh, Bottom right: Assembly mesh
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5.2.2 Total Mesh & Element Types

Table 1 shows the element type, number of elements and number of nodes for the
two fixtures and the specimen. As mentioned earlier, the meshing of the specimen
was the main focus of this loading device. The element type used in the specimen
was quadratic hexahedral C3D20R. C3D20R-elements are a quadratic, 20-node
brick. This element is illustrated in figure 5.8. Compared to linear elements,
quadratic elements have midside nodes. 20-node brick elements use quadratic in-
terpolation and are often called quadratic elements or second-order elements, [28].

Table 1: Element type, number of elements & nodes for Fixtures & Specimen

Component Element Type Number of Elements Number of Nodes

Specimen Quadratic Hexahedral,
C3D20R 10 840 50 226

C-Fixtures Quadratic Tetrahedral,
C3D10 2 x 16 528 2 x 25 405

J-Fixtures Quadratic Tetrahedral,
C3D10 2 x 9 324 2 x 15 295

Figure 5.8: Illustration of different element types used in Abaqus [28]

The element type used in the fixtures was quadratic tetrahedral C3D10. See figure
5.8 for illustration. This element has a pyramid shape, and contain ten nodes.
C3D10 also has midside nodes, and they use a modified second-order interpolation.
They are often called modified second-order elements, [28].

5.2.3 Load & Boundary Conditions

To apply loads, coupling constraints were added for all the holes on the j-fixture. A
center reference point was made and set as the couplings master control point, and
the inner surface of the hole was set as the slave surface. The boundary condition
was set to the opposite hole of the load. The type encastre was chosen, and the re-
gion was set to the inner surface of the hole. This boundary condition stops rotation
about all axes and translation in all directions (U1=U2=U3=UR1=UR2=UR3=0).

Another boundary condition was also assigned to the model. This condition was
applied to the reference point, which load and MPC constraint were assigned to.
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The boundary condition type was set to displacement/rotation. For this boundary
condition, translation and rotation around every axis were locked except translation
in the z-direction (U1=U2=UR1=UR2 =UR3=0). This is the same direction the
load was applied to.

5.2.4 Loading Cases

To be able to simulate all combinations of fracture mode one, two and three,
different loading cases had to be applied. From no one, this report will refer to
these combinations with degrees of α and β. α will be used for rotation of the
c-fixture, mode I/II, and β will be used for rotation of the j-fixture, mode III. This
is illustrated in figure 5.9.

Table 2: Overview of α and β degree combinations for all loading cases

Modes Alpha Rotation Beta Rotation Number
I/II α = 0◦, 22.5◦, 45◦, 67.5◦, 90◦ β = 0◦ 5
I/III α = 0◦ β = 22.5◦, 45◦, 67.5◦, 90◦ 4

I/II/III α = 22.5◦ β = 22.5◦, 45◦, 67.5◦, 90◦ 4
I/II/III α = 45◦ β = 22.5◦, 45◦, 67.5◦, 90◦ 4
I/II/III α = 67.5◦ β = 22.5◦, 45◦, 67.5◦, 90◦ 4
II/III α = 90◦ β = 22.5◦, 45◦, 67.5◦, 90◦ 4

Figure 5.9: Illustration of degrees for different loading cases
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When both fixtures is fixed in α = 0◦ and β = 0◦, pure mode one is obtained. To
obtain a pure fracture mode two, the c-fixture is set to α = 90◦ and j-fixture is
set to β = 0◦. For obtaining pure mode I/III, the c-fixture is set to α = 0◦ and
j-fixture is set to β = 90◦.

To obtain results for all combinations, 25 different simulations were set-up. This
was done to obtain all available combinations of fracture modes I/II/III, for this
loading device. The different loading cases were set-up by applying load and bound-
ary conditions, as explained in section 5.2.3, to the desired degrees of β. A pinned
constraint, from the j-fixture through the c-fixture, was applied to the desired de-
gree of α. Table 2 gives an overview of all 25 different combinations of α and β. All
of these combinations are simulated and analyzed later on in this project thesis.

5.3 Stress Intensity Factors & T-Stresses
For each loading case, the stress intensity factors were obtained. As mentioned,
a load of 1000 N was applied, and the history outputs stress intensity factor was
chosen. The stress intensity factors were obtained using contour integral, with
the number of ten contours, this is explained in chapter 5.1.3. This history output
provides stress intensity factor estimates for all three modes, KI ,KII and KIII , for
each node on the crack thickness. As mentioned earlier, the thickness in this study
was set to eight elements. See chapter 5.2.1. The element type for the specimen
was set to quadratic hexahedral, C3D20R, explained in chapter 5.2.2. As covered,
this element type has midside and corner nodes. This results in a total of 17 nodes
along the crack thickness.

To obtain the desired K-values, a text-file had to be opened. The text-file is created
in the same directory as the FEA model and the file-name ends with .DAT. The K
factor estimates are at the bottom of this text-file.

Figure 5.10 is a caption of the DAT file for the results from load case α = 0◦ and
β = 0◦. The relevant stress intensity factors are the ones of the tenth contour.
These are located at the bottom right in figure 5.10. At the left in this row, one
can see the order of K values. The figure also highlights the number 216. This
is the node number. In this case, node number 216 is the first node on the crack
thickness. Node number two is called 217 and so on. As shown in the figure, the
k values are KI = 22.18,KII = −1.94e − 02 and KIII = −7.21e − 03 for the first
node in the crack thickness, for this loading case.

These three stress intensity factors (K values), for the tenth contour, was obtained
for every 17 nodes, for each 25 of the loading cases. K values was was sorted
into KI ,KII and KIII in tables, see appendix F, G and H. All of the twenty-five
simulations, loading device combinations, resulted in 1275 stress intensity factors.
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Figure 5.10: Caption of K factor Estimates from DAT-File

From these, the same amount of geometry factors were calculated, by applying
the relation in equation 2.47. The stress, σ, in equation 2.47 was calculated by
inserting the applied load of 1000 N and the area of the specimen cross section,
37.5mm · 10mm. The geometry factors along the thickness were plotted in the
following figures, 7.1, 7.2, 7.3, 7.4 and 7.5. All of the results are covered in chapter
7 and the appendices I, J and K.

To obtain the t-stress, the history output type was set to t-stress. As for the stress
intensity factors, this history output also creates a DAT file. A caption from this
DAT file is shown in figure 5.11. The t-stress estimate, for the 10th contour, for
each of the 17 nodes along the specimen thickness are shown in appendix L. The
obtained t-stresses are presented and discussed in chapter 7. Figure 5.11 shows
four nodes, for the loading case of α = 0◦ and β = 0◦. The dimensionless t-stress,
T ∗, was obtained by applying the relation in equation 2.48, see chapter 2.6.5. All
of the dimensionless t-stresses are shown in appendix M, and presented in chapter
7.

Figure 5.11: Caption of T-Stress Estimates from DAT-File
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5.4 Criteria Procedure
This subsection will cover some of the fracture criteria procedure and solution
methods used in this thesis. After the numerical results were calculated, values
could be used in the different fracture criteria. Some of the simpler criteria could
be written and solved implicit, and others had to be derived and written as explicit
functions.

5.4.1 Mixed Mode I/II

The criteria predictions for mixed mode I/II was straightforward solutions. For
the MTS criterion, equation 2.32 were used to predict θ for each loading device
position. θ values were put into plots with Me

12. The estimated θ values were
then put into equation 2.33 to plot the fracture limit curves. The same procedure
were used for GMTS, see equation 2.36 and 2.37, and for dimensionless factors, see
chapter 2.6.5. In the works of Smith et al. [14] a solution method, for plotting the
MTS and GMTS criterion for mixed mode I/II cases, were proposed. Equations
were derived as functions of one parameter, θ. This solution method was used for
plotting the mixed mode I/II curve in figure 2.5. This was solution method for
GMTS were not used in this thesis, as it assumes constant T values. The step by
step solution above was therefore conducted instead.

5.4.2 Mixed Mode I/III

MTS
For the loading cases of mixed mode I/III, the criteria MTS, GMTS, and Richard
were used for predictions. In the works of Liu et al. [19], the MTS criterion for
mixed mode I/III were derived. The out of plane crack initiation angle was given
as equation 5.1, and the fracture limit relation were given as expressed in equation
5.2.

φf =
1

2
· tan−1

[
2KIII

(2v − 1)KI

]
(5.1)

KI

KIC
· cos2φf −

KIII

KIC
· sin2φf +

2vKI

KIC
sin2φf = 1 (5.2)

In addition to the mixity parameters of mode I/II, Aytollahi et. al [7] presented
relations for mixity parameters of mode I/III and II/III as well, these can be studied
in equation 5.3 and 5.11.

Me
13 =

2

π
tan−1

(
KI

KIII

)
(5.3)

By placing the relation from equation in equation 5.3 an equation for I/III mixity
parameter as a function of φ were made, see equation 5.4. This equation was used
when plotting the curve for theMe

13 in steps of φ, see chapter 7. The python script
used for plotting this relation can be studied in appendix P.
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Me
13 =

2

π
tan−1

(
2

tan(2φ)(2v − 1)

)
(5.4)

The relation in equation 5.4.2 was also used in equation 5.2. Two equations were
derived, KI/KIC as a function of φ and v, given in equation 5.5, and KIII/KIC

as a function of φ and v, given in equation 5.6. The python script covering the
fracture limit plots of mixed mode I/III can be studied in appendix Q.

KI

KIC
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1
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2 + 2v · sin2(φ)

(5.5)

KIII
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tan(2φ)(2v−1) +
4v·sin2(φ)

tan(2φ)·(2v−1) − sin(2φ)
(5.6)

GMTS
For the plotting of the GMTS criterion for mixed mode I/III loading, a step by step
solution was performed. This was due to the complex equations, and a function
with one changing parameter was not easily derived. Therefore, equation 2.24 were
derived by replacing KII = 0 and θ = 0. The derived equation is given in 5.7.

σθθ =
1√
2πrc

(
KI · cos2(φ)−KIII · sin(2φ) + 2v

[
KI +

T
√
2πrc
2

]
sin2(φ)

)
(5.7)

By applying the first hypothesis of GMTS, equation 2.29, an equation for crack
initiation angle, φf , were found, see equation 5.8. This relation was used to cal-
culate φ. The equation was solved implicitly in excel, by inserting KI , KIII and
T values obtained from Abaqus. These equations were also solved by applying the
dimensionless factors YI , YIII and T ∗, see chapter 2.6.5.

−KIcos(φ)sin(φ)−KIII ·cos(2φ)+2v

[
KI + T

√
2πrc ·

1

2

]
cos(φ)sin(φ) = 0 (5.8)

When φ were found for each of the mixed mode I/III loading device combinations,
the obtained values were placed in equation 5.9 and 5.10. When the KIC/KI and
KIC/KIII were obtained for each loading combinations, they were inverted to and
plotted as fracture limit plots, KI/KIC - KIII/KIC . The plots can be studied in
chapter 7 and the python scripts can be found in appendix Q.
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5.4.3 Mixed Mode II/III

For the mixed mode cases of II/III, two crack initiation angles were present, θ and
φ. In these mixed mode situations, the Richard criterion was used for prediction.
This was due to the low obtained T values, this is discussed in chapter 7. Equations
2.40 and 2.41 were used to predict the in and out of plane crack initiation angles
for each loading device position. These were plotted with the mixity parameter,
Me

23, see equation 5.11. All plots were presented in chapter 7.

Me
23 =

2

π
tan−1

(
KII

KIII

)
(5.11)
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6 Experimental Procedure
This chapter consists of the testing of this thesis. The material used for all of the
tests were PMMA. Dog-bone tests were conducted to gather and verify material
properties. These were followed by mixed mode tests, with the designed loading
device.

6.1 PMMA Dog-bone Testing
In addition to the 90 CTS samples, four dog-bones samples were manufactured.
They were manufactured from the same PMMA plate as the CTS specimens. Two
of the samples were cut out in a transverse direction on the PMMA plate, and the
other two in a longitudinal direction. Figure 6.1 shows photographs of the four
manufactured dog-bone samples. These dog-bone specimens were also manufac-
tured at Realfagsbygget.

The dog-bone specimens have the length of 69 mm, the outer width of 12.5 mm
and a thickness of 3 mm. Two curves with a radius of R30 can be found on each
side of the specimen, with a minimum width of 5 mm. These measurements and
features are illustrated to the left in figure 6.1.

A MTS tensile testing machine was used for the dog-bone tests. To be able to
obtain the precise inputs for the tensile test, and to calculate a stress-strain curve,
a caliper was used. Despite precise fabrication methods of the specimen, some
variations in the measurements may occur. The caliper was used to measure four
different values, the specimen width at the center of the specimen, the length of
the curved area and the thickness for three positions along the curved area of the
specimen. All of these values are presented in tabular 3. An illustration of the
location of the measurements are found beneath this tabular, see figure 6.2.

Figure 6.1: Left: Dogbone measurements, Middle and Right: Two longitudinal
and transverse dog-bone specimens.
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Table 3: Specific measurements of all four dog-bone specimens

Specimen Type & Number Width t1 t2 t3 Length
Longitudinal 1 5.04 3.01 2.98 3.00 29.17
Longitudinal 2 5.02 3.00 2.98 3.01 28.84
Transverse 1 5.02 2.99 2.98 2.99 29.06
Transverse 2 5.02 2.99 2.98 3.00 28.98

Figure 6.2: Illustration of t1, t2, t3, width and length measurements of the
dog-bone specimen.

After the caliper measuring, the tensile tests were initiated. The dog-bone speci-
mens were mounted to the tensile testing machine with clamps. This is illustrated
to the left in figure 6.3. After the mounting, the test was initiated. The load is
applied until fracture occurs. A closeup of the fractured specimen is illustrated to
the right in figure 6.3.

After fracture occurs, the test is stopped, and the text file is saved to a chosen
directory. The outputs of the test were time, elongation and load. These outputs
were used to create a stress-strain curve. Engineering stress and engineering strain
were calculated.

Figure 6.3: Left: Tensile test overview, Middle: Specimen closeup before fracture,
Right: Specimen closeup after fracture.
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The engineering strain was calculated by dividing the elongation by the original
length, see table 3. The engineering stress was calculated by dividing the applied
load by the cross-section. The cross section is calculated by multiplying the width
by the thickness, t3, see table 3 [2].

The calculated engineering stress and strain are presented in figure 6.4. Each of the
four plots consists of 9300 points. Small variations of were found. The maximum
stress for the longitudinal specimen number one was 66.63 MPa, 65.47 MPa for
longitudinal number two, 65.69 MPa for transverse number one and 66.39 MPa
for transverse specimen number two. The average of these values were used as the
tensile strength, εt, through this thesis. Average tensile strength was calculated to
be 66.05 MPa. The stress-strain curves for each PMMA sample all have a brittle
form, which can be expected from this polymer at room temperature. By comparing
the plots in figure 6.4, almost no variation was found between the longitudinal and
transverse specimens. This shows an isotropic material behavior. An isotropic
behavior was expected for this material, see chapter 2.2.
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Figure 6.4: Four Stress-Strain plots for each of the four PMMA dogbones.
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6.2 Mixed Mode I/II/III Testing
6.2.1 Loading Device Setup

For the mixed mode I/II/III testing, a MTS tensile testing machine was used. A
testing machine, with a higher capacity than the dog-bone specimen tests, was
used. Mainly because of hydraulic controlled grips. This was needed to get a
good and steady grip, to be able to install the forks rigidly and perpendicularly.
The perpendicular installation of the forks was important to ensure desired testing
results, and to be able to obtain results for pure fracture modes. In addition to
a perpendicular installation, it was important to align the two forks with respect
to each other. After proper installation, the forks did not have to be moved or
changed during all of the mixed mode tests. The finished installed forks is shown
in the photography to the left in figure 6.5.

After the installation of the forks, the j-fixtures could be mounted. Instead of pins,
bolts were used for assembling the j-fixtures to the forks. This was due to the
weight of the j-fixture, and to prevent this weight to add more torsion, mode III,
to the loading case than desired. The j-fixtures was installed in the desired angle,
and the bolts were fastened with nuts.

A j-fixture installation with the angle of β = 45◦ is shown in middle of figure
6.5. When the j-fixtures were installed in the correct position, the c-fixture and
specimen could be installed. The specimen was assembled to the c-fixture before
both were mounted to the j-fixtures. The specimen was installed to the c-fixture
with the help of six pins, as explained in chapter 4. The c-fixtures and specimen
were then fastened to the j-fixture with the help of two pins. This is shown in
the photography to the right in figure 6.5. A c-fixture installation with the angle
α = 0◦ is shown in figure 6.5.

Figure 6.5: Left: Fork Setup, Middle: J-Fixture Setup, Right: C-Fixture and
specimen setup
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6.2.2 Mixed Mode Testing Cases

Each of the twenty five loading cases, see table 2, were set up as explained in
chapter 6.2.1 and figure 6.5. Because of the bolted connection between the forks
and j-fixtures, all of the combinations for each j-fixture were conducted before
changing the β angle. Three specimens were tested in each combination, which
gave a total of 75 initial fracture tests. A few more samples were used for retesting.
Figure 6.6 to 6.10 shows three out of five c-fixture loading case for each of the five
j-fixture loading cases. Each of the figures shows e sideways view of the j-fixture
position to the left, followed by three isometric views of three different c-fixture
positions, α = 0◦, α = 45◦ and α = 90◦.

Figure 6.6: Three out of five loading cases for J-fixture angle β = 0◦.

Figure 6.7: Three out of five loading cases for J-fixture angle β = 22.5◦.
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Figure 6.8: Three out of five loading cases for J-fixture angle β = 45◦.

Figure 6.9: Three out of five loading cases for J-fixture angle β = 67.5◦.

Figure 6.10: Loading positions for J-fixture angle β = 90◦, Pure Mode III.
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Figure 6.11 shows the load-displacement plots for three of the twenty-five mixed
mode loading cases. The plots show the loading cases of pure mode I, pure mode II
and pure mode III for the mixed mode CTS specimen installed in the loading device.
Each plot consists of about fifteen thousand points. The plots were constructed
from the text files generated from the MTS tensile testing machine. Python scripts
were used for plotting and management of the large amounts of data. The fracture
load for all of the twenty-five mixed mode loading combinations can be found in
chapter 7. The load-displacement plots have a brittle form, as expected for the
chosen material, PMMA, see figure 6.4. A slightly curved relation between load
and displacement can be seen at the beginning of each loading case, see figure 6.11.
This can be due to adjustments between the moving parts and pins in the loading
device.
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Figure 6.11: Load-Displacement curves for the loading case of Pure Mode I, Pure
Mode II and Pure Mode III.
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6.3 Specimen Crack Paths
After three specimens had been tested for each of the twenty-five loading cases,
the fractured specimens were studied. Crack paths and kinking angles were easily
studied, due to the transparency properties of PMMA. In this section, both the
in-plane crack angle, θ, and the out of plane crack angle, φ were studied.

6.3.1 In Plane Crack Path

Figure 6.12 shows a photography of five fractured specimen. Each of the specimens
represents one loading case, for each of the five combinations for j-fixture angle
β = 0◦. Only one out of three specimens for each loading case is presented, due to
similar features.

From right to left in figure 6.12, the loading case is changed by increasing the c-
fixture angle of 22.5◦. It was shown that for each increment of the c-fixture angle,
the kinking angle also increases.

Figure 6.12: Specimen in plane crack paths for all C-fixture combinations, of
J-fixture position β = 0◦.

Figure 6.13: Specimen in plane crack paths for all C-fixture combinations, of
J-fixture position β = 22.5◦.
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Figure 6.14: Specimen in plane crack paths for all C-fixture combinations, of
J-fixture position β = 45◦.

Figure 6.15: Specimen in plane crack paths for all C-fixture combinations, of
J-fixture position β = 67.5◦.

Figure 6.16: Specimen in plane crack paths for all C-fixture combinations, of
J-fixture position β = 90◦, Pure Mode III.
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To the right in figure 6.12, a pure mode I fracture case is shown, as expected from
the loading case alpha = 0◦, β = 0◦, see table 2. This is a straight and plane
crack, with no in-plane or out of plane angle. To the left in figure 6.12, the cracked
specimen of a pure mode II case can be seen. A large in-plane crack angle can be
seen. The crack stops when it enters one of the six pin holes.

Figure 6.13 shows five specimens for five c-fixture combinations, of the j-fixture
position β = 0◦. The increasing in-plane crack angle for each position of α, were
found to be almost similar to the case of α = 0◦, figure 6.12. However, the β
position of 22.5◦ gives a twisting, out of plane angle, to the kink as well. The out
of plane angle is further discussed in chapter 6.3.2.

The next presented loading case is all five c-fixture combinations of, the j-fixture
position β = 45◦, see figure 6.14. Compared to the two previous presented β
positions, β = 0◦ and β = 22.5◦, the in-plane crack angle is not increasing in
the same extent for each c-fixture position. A slightly more curved kink is also
observed, where the cracks are straight for β = 0◦ and β = 22.5◦. The β position
of 45◦ gives larger out of plane angel of the kink, than for the case of β = 22.5◦.
The out of plane angle is further discussed in chapter 6.3.2.

For the case of β = 67.5◦ and β = 90◦, the in plane angle did not change much with
the different combinations of c-fixture, see figure 6.15 and 6.16. Altough there is a
visual change in the out of plane angle, which is further discussed in chapter 6.3.2.
The testing of the j-fixture case β = 90◦, led to some of the specimens breaking
into three pieces or more. This loading case led to some inequalities in the fracture
pattern. However the fracture loads, see chapter 7.2, shows consistent test results.
All of the exact measure angles can be studied in chapter 6.3.3.
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6.3.2 Out of Plane Crack Path

All of the out of plane angles, for β = 0◦, can be studied in figure 6.17. The two
specimens to the left in the figure gives a bad representation of the out of plane
angle. This is because of the crack arrest in the pin holes, see figure 6.12 and 6.13.
The crack arrest in the pin hole also applies for the two specimens to the left in
figure 6.18. The out of plane angles for all fractured specimens can be studied in
figure 6.17-6.21. A good overview of the increasing of out of plane angle can be
given by studying the α = 45◦ specimen for all β positions, see center specimen
in figure 6.17-6.21. The out of plane angle for α = 45◦/β = 0◦ can be seen as flat
and the out of plane angle of α = 45◦/β = 90◦ can be seen as sharp. Note that all
of the loading positions in figure 6.21 were pure mode III. An isometric projection
and overview of all fractured specimens can also be studied in figure 6.22.

Figure 6.17: Specimen out of plane crack paths for all C-fixture combinations, of
J-fixture position β = 0◦.

Figure 6.18: Specimen out of plane crack paths for all C-fixture combinations, of
J-fixture position β = 22.5◦.
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Figure 6.19: Specimen out of plane crack paths for all C-fixture combinations, of
J-fixture position β = 45◦.

Figure 6.20: Specimen out of plane crack paths for all C-fixture combinations, of
J-fixture position β = 67.5◦.

Figure 6.21: Specimen out of plane crack paths for all C-fixture combinations, of
J-fixture position β = 90◦, Pure Mode III.
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β = 90°, Pure Mode III 

β = 22.5° β = 0° 

β = 45° β = 67.5° 

Figure 6.22: Isotropic projection photographs of all of the fractured specimens,
with α = 0◦ to the right and α = 90◦ to the left.
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6.3.3 Measured Crack Initiation Angles

All of the out of plane and in-plane angles were measured by using a microscope.
Some of the microscope photographs can be studied in figure 6.23. Angles were
measured by placing two straight lines manually, to fit the crack, and measuring
the angle between these drawn lines. This was done with high accuracy, but some
deviations from reality may still occur. With a higher amount of out of plane
angles, the in-plane angles were found more difficult to measure. This can be seen
in the loading case of α = 90◦/β = 45◦ in figure 6.23. These may lead to some
deviations from the actual angles. The out of plane angle for the specimens with
crack arrest in the pinhole were also found difficult to measure precisely. All of
the measured specimen angles can be studied in table 4. The sign of the angles
was set to negative because of the practice in previous work and fracture criteria
[29, 7, 16].

Table 4: Overview of all microscope measured in plane, and out of plane crack
initiation angles.

Modes Alpha & Beta Rotation In Plane, θf Out of Plane, φf
I α = 0◦, β = 0◦ 0◦ 0◦

I/II α = 22.5◦, β = 0◦ −21.29◦ 0◦

I/II α = 45.0◦, β = 0◦ −35.15◦ 0◦

I/II α = 67.5◦, β = 0◦ −55.71◦ 0◦

II α = 90.0◦, β = 0◦ −68.19◦ 0◦

I/III α = 0◦, β = 22.5◦ 0◦ −19.23◦
I/III α = 0◦, β = 45.0◦ 0◦ −37.08◦
I/III α = 0◦, β = 67.5◦ 0◦ −46.71◦
II/III α = 90◦, β = 22.5◦ −53.80◦ −10.41◦
II/III α = 90◦, β = 45.0◦ −40.35◦ −19.26◦
II/III α = 90◦, β = 67.5◦ −37.53◦ −40.05◦
I/II/III α = 22.5◦, β = 22.5◦ −33.83◦ −8◦
I/II/III α = 22.5◦, β = 45.0◦ −18.04◦ −36.61◦
I/II/III α = 22.5◦, β = 67.5◦ −15.42◦ −48.96◦
I/II/III α = 45.0◦, β = 22.5◦ −45.99◦ −9.36◦
I/II/III α = 45.0◦, β = 45.0◦ −25.03◦ −18.47◦
I/II/III α = 45.0◦, β = 67.5◦ −17.52◦ −44.39◦
I/II/III α = 67.5◦, β = 22.5◦ −67.13◦ −25.34◦
I/II/III α = 67.5◦, β = 45.0◦ −32.91◦ −13.67◦
I/II/III α = 67.5◦, β = 67.5◦ −20.99◦ −38.25◦

III α = 0◦, β = 90◦ 0◦ −42.02◦
III α = 22.5◦, β = 90◦ 0◦ −42.37◦
III α = 45.0◦, β = 90◦ 0◦ −53.19◦
III α = 90.0◦, β = 90◦ 0◦ −54.43◦
III α = 67.5◦, β = 90◦ 0◦ −53.04◦
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α = 90°, β = 22.5° 

α = 22.5°, β = 22.5° 

α = 67.5°, β = 22.5° 

α = 90°, β = 67.5° α = 45°, β = 90° 

α = 0°, β = 45° 

α = 45°, β = 22.5° 

α = 22.5°, β = 0° 

Figure 6.23: Microscope photograpies and measurements of out of plane, and in
plane crack initiation angles.
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7 Results & Discussion
This chapter will cover the results and discussion for all 25 loading device combina-
tions, see table 2. Theoretical and experimental data were gathered and compared.
The numerical analyses set-up and criteria procedure for these results were covered
in chapter 5. The experimental procedure was covered in chapter 6.

7.1 Geometry Factors
7.1.1 Geometry Factors for Mixed Mode I/II

As mentioned, all Y-values used for the plots can be studied in the appendices.
How to obtain the Y-values were covered in chapter 2.6.5. All Y-values for this
subsection, geometry factors for Mode I/II, can be found in appendix I, J and K.
Each appendix contains Y values for each mode, I, II and III, for all twenty-five
fixture combinations. The appendix tables show the geometry factors for each 17
nodes, along the specimen thickness. The reason for 17 nodes along the thickness,
is given by the mesh properties. Eight elements were assigned for the specimen
thickness, and quadratic elements were applied, this is explained in section 5.2.1
and 5.2.2. The plots in figure 7.1 show the specimen thickness along their horizontal
axis. Instead of 17 nodes, the thickness is given in mm. The length between each
node is 0.625 mm. The vertical axis, in the mentioned plots, shows the geometry
factors given dimensionless.

The loading case α = 0◦/β = 0◦ shows symmetric Y-values along the specimen
thickness. This is a pure mode I loading case, and the plot shows YII and YIII
values almost equal to zero. This indicates that the simulated model behaves as
intended for a pure mode I loading case. The maximum YI for this case is 1.1. This
maximum value can be located at the center nodes of the specimen. All the plots
in figure 7.1, except for pure mode II ,α = 0◦, β = 90◦, have similar YI behaviour.
A symmetric form with maximum values at the specimen center nodes, and lowest
values at the specimen surface nodes, z/t = 0 and z/t = 10.

As the loading cases approaches towards pure mode II, the YII values increases.
This can be studied in figure 7.1 plots, for cases α = 22.5◦/β = 0◦, α = 45◦/β = 0◦,
α = 67.5◦/β = 0◦ and α = 90◦/β = 0◦. The highest YII values were obtained for
pure mode II. These were found to be 1.4, see appendix J. Unlike the YI plots, the
YII plots show maximum values at the specimen surfaces, and lowest values at the
center nodes. The YII plots were still found to be symmetric.

When approaching pure mode II, the mode I/II analysis also resulted in higher
YIII values, which indicates a relation between YII and YIII . As shown in the
plots in figure 7.1, the YIII values have a descending form. The maximum YIII
value is found for pure mode II, and was found to be 0.7. The maximum YIII
values were found at the surface ,z/t = 0. Opposite minimum values were found
at the opposite specimen surface, z/t = 10.
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Figure 7.1: Plot of Geometry Factors along specimen thickness for Mixed Mode
I/II.
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7.1.2 Geometry Factors for Mixed Mode I/III

The mixed mode I/III loading cases can be studied in figure 7.2. All of these plots
shows symmetry for YI and YIII values, and a descending plot for YII values. As
the loading cases approach towards pure mode I, the YI values increases and YIII
values decreases. Both YI and YIII plots have higher values at the specimen center.
However, the YIII plots show a clear top at the thickness 5 mm, were the YI plots
are flatter.

As expected, the YI values for pure mode III were close to zero. This case also
shows maximum YIII values. The plot for pure mode III, α = 0◦/β = 90◦, also
indicates a relation between YII and YIII .
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Figure 7.2: Plot of Geometry Factors along specimen thickness for Mixed Mode
I/III.
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7.1.3 Geometry Factors for Mixed Mode I/II/III

Figures 7.3 and 7.4 shows the twelve plots for all mixed mode I/II/III cases, as
presented in table 2. All loading cases in figure 7.4 shows a descending plot for YII
values. YIII values are also descending for every loading case except α = 22.5◦/β =
90◦ and α = 45◦/β = 90◦. For these cases, YI values have a symmetric plot, with
maximum values for the nodes inside the specimen. The two YI plots for cases
α = 22.5◦/β = 90◦ and α = 45◦/β = 90◦ are almost flat, with values close to zero.

The last six loading cases for mixed mode I/II/III are shown in figure 7.4. These
show a descending YII plot for all loading cases. They also show descending YIII
values for every loading case except α = 67.5◦/β = 90◦, which shows a peak value
at the specimen center , z/t = 5. For these six loading cases, the YI values have a
symmetrical form, with maximum values for the center nodes.

62



7. Results & Discussion

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3

G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 22.5◦, β = 90◦

YI
YII
YIII

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3

G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 22.5◦, β = 67.5◦

YI
YII
YIII

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3

G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 22.5◦, β = 45◦

YI
YII
YIII

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3
G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 22.5◦, β = 22.5◦

YI
YII
YIII

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3

G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 45◦, β = 90◦

YI
YII
YIII

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
z/t

−2

−1

0

1

2

3

G
eo
m
et
ry

Fa
ct
or

[N
on

-D
im

en
sio

na
l]

α = 45◦, β = 67.5◦

YI
YII
YIII

Figure 7.3: Plot of Geometry Factors along specimen thickness for Mixed Mode
I/II/III.
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Figure 7.4: Continued - Plot of Geometry Factors along specimen thickness for
Mixed Mode I/II/III.
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7.1.4 Geometry Factors for Mixed Mode II/III

Figure 7.5 shows Y value plots for the four mixed mode II/III loading cases. They
show descending YII and YIII values for all loading cases except α = 90◦/β = 90◦.
YI values are close to zero for all four mixed mode II/III loading cases. The
loading case α = 90◦/β = 90◦, in figure 7.5, is almost identical to the loading case
α = 0◦/β = 90◦ in figure 7.2. They are both pure mode III loading cases.
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Figure 7.5: Plot of Geometry Factors along specimen thickness for Mixed Mode
II/III.
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7.2 Mixed Mode I/II/III Fracture Loads
The fracture loads for each of the mixed mode I/II/III combinations can be studied
in figure 7.6. As mentioned earlier, three tensile tests were conducted for each of the
twenty-five loading device combinations. Figure 7.6 shows five different plots. Each
plot presents the five c-fixture combinations, α, for each j-fixture, β, combination.

To the top left in figure 7.6, fracture loads for β = 0◦ can be studied. For the
loading case of pure mode I, α = 0◦/β = 0◦, the three fracture loads were 886.36
N , 713.14 N and 791.02 N . For each fracture load, the critical values of stress
intensity factors, KIf , KIIf and KIIIf , were calculated. These were determined
by using the relation in equation 2.47. In this case, the stresses, σ, were calculated
by applying the fracture loads. The geometry factors, Y , for each loading case
can be found in appendices I, J and K. For the three mentioned fracture loads,
in the case of pure mode one, the critical stress intensity factors, KIf , were 20.26
MPa

√
mm, 16.30 MPa

√
mm and 18.08 MPa

√
mm. These gave an average KIf of

18.22 MPa
√
mm. This average KIf , for pure mode one, was used as the fracture

toughness, KIC , in this thesis. By applying the relation in equation 2.47, each
of the KIf , KIIf and KIIIf were calculated, for all three specimens for each of
the twenty-five loading cases. This led to a number of 225 critical stress intensity
factors. The average Kf ’s for each loading case can be studied in table 5.

The plots in figure 7.6 shows an increasing fracture load for α = 0◦ cases, for each
steps of β. The average fracture load was 796.84 N for pure mode I, α = 0◦/
β = 0◦, and 2180.06 N for pure mode III, α = 0◦/β = 90◦, see table 5. For each
of the β positions, a slight descending fracture load can be seen from α = 0◦ to
α = 45◦. From α = 45◦ to α = 90◦ the fracture load increases, resulting in a higher
fracture load for α = 90◦ than for the cases of α = 0◦.

As mentioned, 75 initial tensile tests were conducted with the mixed mode loading
device. The remaining samples were used for retesting some of the loading device
combinations. The fracture tests for the j-fixture position of β = 90◦ resulted in
high fracture loads. These fracture loads also had a relatively large spread in test
data, see the plot in figure 7.6. Note that the fracture loads for β = 90◦ have a
flatter curve for the different α positions, than for the other β cases. Even though
the α angle is changing, the loading case is still considered as pure mode III. The
β = 90◦ case were some of the first conducted tensile tests. A large spread of
data may be due to some set-up adjustments at the beginning of the conducted
experiments. When considering which loading case to retest, the spread in fracture
loads was studied. One sample was used for retesting the case of α = 45◦/β = 67.5◦

and the rest were used for all β = 90◦ combinations. Apart from the loading case
of β = 90◦ and α = 45◦/β = 67.5◦, the tests results in figure 7.6 show consistency
in fracture loads for each mixed mode loading situation.
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Figure 7.6: Fracture load plots, covering fracture tests for all loading device
combinations.
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Table 5: Average fracture loads and critical stress intensity factors for all mixed
mode loading cases.

Fracture Fixture Avg. Avg. Avg. Avg.
Modes Positions Load KIf KIIf KIIIf

- - [N] [MPa
√
mm] [MPa

√
mm] [MPa

√
mm]

I α = 0◦, β = 0◦ 796.84 18.22 0 0
I/II α = 22.5◦, β = 0◦ 833.04 20.09 5.124 0
I/II α = 45.0◦, β = 0◦ 779.72 16.55 10.81 0
I/II α = 67.5◦, β = 0◦ 976.76 14.52 22.58 0
II α = 90.0◦, β = 0◦ 1295.36 0 36.77 0

I/III α = 0◦, β = 22.5◦ 928.20 22.39 0 2.706
I/III α = 0◦, β = 45.0◦ 1285.92 36.73 0 9.697
I/III α = 0◦, β = 67.5◦ 1174.41 41.65 0 24.44
II/III α = 90.0◦, β = 22.5◦ 1189.88 0 34.79 7.052
II/III α = 90.0◦, β = 45.0◦ 1277.91 0 39.95 18.81
II/III α = 90.0◦, β = 67.5◦ 1519.20 0 43.33 47.60
I/II/III α = 22.5◦, β = 22.5◦ 928.51 22.24 5.921 2.944
I/II/III α = 22.5◦, β = 45.0◦ 1090.25 30.79 7.676 8.911
I/II/III α = 22.5◦, β = 67.5◦ 1075.41 36.41 9.733 23.89
I/II/III α = 45.0◦, β = 22.5◦ 877.24 19.62 12.57 3.477
I/II/III α = 45.0◦, β = 45.0◦ 1025.04 26.67 16.22 10.37
I/II/III α = 45.0◦, β = 67.5◦ 1070.44 29.98 19.17 27.41
I/II/III α = 67.5◦, β = 22.5◦ 972.37 15.19 23.19 5.034
I/II/III α = 67.5◦, β = 45.0◦ 1116.06 19.89 28.81 14.49
I/II/III α = 67.5◦, β = 67.5◦ 1254.95 21.47 31.69 36.84

III α = 0◦, β = 90.0◦ 2180.06 0 0 102.5
III α = 22.5◦, β = 90.0◦ 2227.38 0 0.981 104.6
III α = 45.0◦, β = 90.0◦ 2025.65 0 1.444 95.23
III α = 67.5◦, β = 90.0◦ 2007.01 0 1.687 94.37
III α = 90.0◦, β = 90.0◦ 1920.47 0 1.659 90.38

As mentioned above, table 5 shows all the average values of the calculated critical
stress intensity factors. These values are necessary for the criteria used in this
thesis, see chapter 2.6. The values are divided by the fracture toughness, KIC ,
and used for plotting and comparison with the fracture limit curves, for different
criteria. The values of KIf = 18.22 MPa

√
mm was used as the fracture toughness,

KIC , in this thesis. Out of all the tested pure mode III cases, the α = 0◦/β = 90◦

case was used as the pure mode III case in later comparisons. The three highest
loads of this pure mode III loading case were used for plotting of test results in
chapter 7.4. For the fracture modes of I/II, the table shows a descending KIf from
pure mode I to pure mode II. An increasing KIIf can be seen from pure mode I
to pure mode II. Trends like this were studied and compared with the geometry
factors in chapter 7.1 to control the results. As seen in table 5, some critical stress
intensity factors were set to zero. This is due to low geometry factors in these
mixed mode situations. An example of this is for the loading case of pure mode II,
where YI was 0.036 and YIII was 0.00, see appendices I, J and K.
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7.3 T-Stress
As for the geometry factors, the T-stress for all the loading device combinations
were estimated using Abaqus. The procedure to obtain these values were explained
in chapter 5. The T-stresses along the specimen thickness were studied. All of these
values, along the seventeen nodes, can be found in appendix L. The T-stresses were
necessary for the GMTS criterion. This fracture criterion is an extension of the
MTS criterion, with an additional term including T-stress, see chapter 2.

After all of the T-stresses were obtained, the dimensionless T-stresses were calcu-
lated by applying the relation in equation 2.48. The dimensionless T-stress is given
the symbol T ∗ in this thesis. See chapter 2.6.5 to study how the dimensionless
factors can be used in the fracture criteria. All of the calculated T ∗-stresses can
be found in appendix M. All of the T-stress estimates were of negative values, and
therefore the dimensionless T ∗-stresses were negative.

7.3.1 T-Stress for Mixed Mode I/II

Figure 7.7 shows five plots. Each of the plots presents the T ∗-stresses along the
specimen thickness, for mixed mode I/II loading cases. The α = 0◦/β = 0◦ presents
the pure mode I case, and α = 90◦/β = 0◦ is the T ∗-stress plot for pure mode II.
The plots for the cases of α = 0◦, α = 22.5◦, α = 45◦ and α = 67.5◦ in figure 7.7
all have similar patterns. The two highest T ∗ values were found at the third node
from each surface. The two lowest values were found at the surface nodes. All of
the plots in figure 7.7 were found to be symmetrical about the specimen center,
z/t = 5.

For each increasing step of α = 22.5◦, the T ∗-stress decreases. At the surface node,
z/t = 0, the T ∗ value was -0.81 for α = 0◦/β = 0◦ and -0.51 for α = 67.5◦/β = 0◦.
For the case of pure mode II, the T ∗ values were found to be almost zero for each
node. The overall decreasing T ∗ values, from pure mode I to pure mode II, also
affected the highest values at the nodes z/t = 1.25 and z/t = 8.75. The difference
between these two peaking values, and the rest of the loading cases T ∗ values,
decreases for each increasing step of α = 22.5◦. A visualization of this effect is
clear in the α = 67.5◦/β = 0◦ plot, see figure 7.7.

The T ∗ values for mixed mode I/II show decreasing values from pure mode I to
pure mode II. The works of Ayatollahi [20] shows increasing T ∗ values from pure
mode I to II. In this work, a SCB specimen was used. The SCB specimen is circular
with different angles on the pre-cracks. The different specimens make it hard to
compare the results of Ayatollahi with the work in this thesis. However, his work
shows a negative T ∗ value close to -1, for pure mode I, which is close to the obtained
value in this thesis. Ayatollahi obtained a positive T ∗-stress value of 3, for pure
mode II.
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Figure 7.7: Plot of Dimensionless T -Stress along specimen thickness for Mixed
Mode I/II.
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7.3.2 T-Stress for Mixed Mode I/III

The plotted T ∗-stress for the case of mixed mode I/III can be seen in figure 7.8. As
the steps of β angle increases from β = 22.5◦ to β = 67.5◦, the T ∗ values increases.
The value in the center node, z/t = 5, increases from -1.03, for β = 22.5◦ to -1.5
for β = 67.5◦. For all the loading cases of mode I/III in figure 7.8, a maximum T ∗

value can be found at the third node from both of the specimen surfaces, z/t = 1.25
and z/t = 8.75.

For the case of pure mode III, α = 0◦/β = 90◦, the T ∗ values have a flat curve, with
node values close to zero. This was also the case for the loading device position of
α = 90◦/β = 0◦, see figure 7.7.
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Figure 7.8: Plot of Dimensionless T -Stress along specimen thickness for Mixed
Mode I/III.
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7.3.3 T-Stress for Mixed Mode I/II/III

Figure 7.9 and 7.10 presents all the plots for T ∗-stress along the specimen thickness,
for the mixed mode I/II/III loading cases. For the case of α = 22.5◦/β = 22.5◦,
the T ∗ values were increasing for each step until α = 22.5◦/β = 67.5◦. The T ∗-
stresses for the loading case of α = 22.5◦/β = 90◦ shows a flat curve close to zero.
These same trends were also seen for the remaining loading cases in figure 7.9 and
7.10. Decreasing T ∗ values from α = 45◦/β = 67.5◦ to α = 45◦/β = 22.5◦ and
from α = 67.5◦/α = 67.5◦ to α = 67.5◦/β = 22.5◦. Flat curves close to zero
were also found for the mixed mode loading positions of α = 45◦/β = 90◦ and
α = 67.5◦/β = 90◦.

Even though similar trends for mentioned loading cases where observed, the T ∗
values were not the same. The center node, z/t = 5, values for α = 22.5◦/β = 67.5◦

was -1.4 and -0.71 for α = 67.5◦/β = 67.5◦. This shows a decreasing T ∗ value for
an increasing α angle.

In the loading case of mixed mode I/II/III, all three loading device positions with
β = 90◦ resulted in T ∗ values close to zero. The loading cases with β = 90◦ can
be categorized as pure mode III. The different α angles do not seem to affect the
pure mode III, β = 90◦, cases.
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Figure 7.9: Plot of dimensionless T -stress along specimen thickness for Mixed
Mode I/II/III.
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Figure 7.10: Continued - Plot of dimensionless T -stress along specimen thickness
for Mixed Mode I/II/III.
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7.3.4 T-Stress for Mixed Mode II/III

The T ∗ values across the specimen thickness for the mixed mode loading cases of
II/III were presented in four plots, see figure 7.11. All of these plots have flat
curves, with T ∗-stresses close to zero. The loading device angles for these mixed
mode positions, all include an α angle of 90◦. The α = 90◦/β = 0◦ case for mixed
mode I/II in figure 7.7 also resulted in a similar plot. All of the presented values
for the loading cases including β = 90◦ resulted in close to zero T ∗-stresses.
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Figure 7.11: Plot of Dimensionless T -Stress along specimen thickness for Mixed
Mode II/III.
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7.4 Fracture Criteria & Test Results
This subsection will cover this thesis’ presented fracture criteria and its respective
test data. The criteria were used to predict different parameters. The first cases
were in and out of plane angles of the fractured specimens. The second was the
normalized stress intensity factors. These are critical stress intensity factors divided
by mode I fracture toughness, KIf/KIC , KIIf/KIC and KIIIf/KIC . The criteria
used in this thesis were MTS, GMTS, and Richard [13, 14, 4]. When applying the
geometry factors and T-stresses, the center node value, z/t = 5 were used. This
is because of the plane strain condition. These criteria are further explained in
chapter 2.6 and 5.4.

7.4.1 Mixed Mode I/II

The first comparison of fracture criteria and test data were the mixed mode case
of I/II. Two plots are presented, see figures 7.12 and 7.13. Figure 7.12 shows the
plot of in-plane crack initiation angle, θf , versus mixity parameter, Me

12. The
criteria show an in-plane angle of −70◦ for pure mode II and 0◦ for pure mode
I. The criteria shows increasing in-plane angles from pure mode I to II, presented
as a curved plot. Both the MTS and GMTS criterion has similar behavior, but a
slightly lower curve can be observed for the GMTS criterion. The test data consist
of five points, representing the five loading device combinations for mixed mode
I/II. The test data at the point of θf = 0◦ and Me

12 = 1.0 presents the loading case
of pure mode I. The test data to the left, at the point of θf = −70◦ andMe

12 = 0.0,
presents the loading case of pure mode II. The mixed mode test data shows similar
curve as the MTS and GMTS criterion. However, the measured angles were found
to be slightly below the criteria. As discussed in chapter 7.3.1, all of the obtained
T- and T ∗-stresses were of negative values. As presented in figure 2.7, a negative
T-stress for the mixed mode case of I/II would result in a GMTS curve below
the MTS curve. This was also discussed by Ayatollahi et al. [7, 14]. Therefore,
the measured crack initiation angles below the MTS criterion could be expected
because of the negative T values. The in-plane crack initiation angles, θf , were
some of the easiest angles to measure, see chapter 6.3.3. However, there may be
some deviation between the measured angles and the actual crack initiation angles.
All of the measured angles and criteria values were also presented in table 6.

As seen in equations 2.36 and 2.37, the only thing that separates the GMTS cri-
terion from the MTS criterion is the last term. This term includes the T-stress.
With the low T-stresses obtained in this thesis, the T-stress terms of equation 2.36
and 2.37 were found to be small. The small values resulted in the terms including
T-stress being close to zero. When this term was found to be close to zero, the
GMTS criterion followed a similar path as the MTS criterion. The GMTS criterion
for θf is shown as a dotted line in figure 7.12. The MTS criterion showed a good
agreement with the test data for in-plane crack initiation angles for the mixed mode
I/II cases. T ∗ values of greater magnitude would have given a GMTS curve with
greater deviation from the MTS curve.
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Figure 7.12: Plot of measured in plane crack initiation angle, θf , and the angle
predictions of MTS and GMTS criterion.

The presented test data is similar to the data for AECT and AECS specimen
presented by Aliha [29]. These data show a curve similar to MTS, slightly below
the angles of the criterion. The presented T ∗ values for AECT and AECS specimens
starts at 0 for pure mode I and ends at -4 for pure mode II. This results in a GMTS
curve that deviates from the MTS curve [29].

Figure 7.13 presents the fracture limit plots for the mixed mode I/II loading cases.
The presented plot shows normalized mode II, KII/KIC , on the y-axis and normal-
ized mode I, KI/KIC , on the x-axis. The plotted criteria in this figure are GMTS,
MTS and Richard. The dotted line presents the MTS criterion, the dashed/dotted
line presents the GMTS criterion and the solid line presents the Richard criterion.
Circular markers presents the normalized critical stress intensity factors, calculated
from the mixed mode tensile tests. For each test point, the critical stress intensity
factors were obtained by applying the fracture load and geometry factor to equation
2.47. This factor is then normalized by dividing with the fracture toughness, KIC .
The average of the the three different critical stress intensity factors can be found in
table 5. Each loading device position have three test data points, which are spread
in a linear form from the axis origin. For the loading case of pure mode I, the three
normalized points were found at KI/KIC = 1.11, 0.99 and 0.89. For these three
mode I cases, the KII/KIC values were found to be zero. For the loading case of
pure mode II, the KII/KIC values were 2.02, 2.03 and 1.99. This value shows a
critical stress intensity factor of pure mode II, KIIf , being twice the magnitude as
the critical stress intensity factor for pure mode I, KIf . Critical stress intensity
factor for pure mode I is also called fracture toughness, KIC . Test data in the
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transition from pure mode I to II have a circular pattern, with a relatively small
spread. Mixed mode cases with least spread in data were obtained for the loading
positions of α = 22.5◦/β = 0◦ and pure mode II. As discussed, the the T ∗ values
for mixed mode I/II were found to be small, see chapter 7.3.1. T ∗ values for pure
mode II were found to be close to zero, as shown in figure 7.7. This effect is shown
on the GMTS curve in figure 7.13, where the curve ends at the same point for pure
mode II as the MTS criterion. For larger T ∗ values, closer to pure mode I, the
GMTS curve has a greater deviation from the MTS curve. The GMTS presents
larger values of KII/KIC as excepted from the negative T -Stresses, see figure 2.7.
However, the GMTS criterion was found to be below the mixed mode test data. In
this case, the best fitting criterion was the one by Richard [3]. Where parameter
α1 = KIC/KIIC and α2 = KIC/KIIIC , see chapter 5.4 and table 5.

The obtained normalized fracture limit of KII/KIC = 2.0, for pure mode II, was
higher than expected. In the works of Aliha, the highest value of KII/KIC for
pure mode II was about 1.4. This was obtained for the AECT specimen [29].
Ayatollahi presented test results that had values of KII/KIC = 0.4 for pure mode
II [20]. In this work, positive T ∗ values of 3.0 were obtained for pure mode II.
This comparison presents a great variation of obtained KII/KIC relations for pure
mode II, for different specimen types of PMMA. In another study by Aliha et al.
[16] the values of KII/KIC varies from 0.3 to 1.7 for different specimen types of
the same rock material. The referred test data also presents a great deviation from
the MTS criterion.
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Figure 7.13: Fracture limit curves by the criteria of MTS, GMTS and Richard
compared with mixed mode I/II test data.
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7.4.2 Mixed Mode I/III

Figure 7.14 presents four plots. Mixed mode test data, GMTS criterion and MTS
criterion for plane stress and plane strain. Measured angles for pure mode III
shows an out of plane crack initiation angle of −42.02◦. This angle is close to the
predicted criterion angle of −45◦. All of the exact measured angles and criterion
predictions can be studied in table 6. Transitioning from pure mode II to I, the
measured angles have a curved form ending in φf = 0◦ for Me

13 = 1.0.

The MTS curve for plane strain showed higher values than the plane stress curve.
However, plots generated from GMTS criterion and MTS plane strain criterion
were found to be close. Even though the curves were close, the GMTS criterion
shows slightly lower values. This was expected from the negative T ∗ values [7]. The
similar values of GMTS and MTS were also expected, due to the low obtained T ∗
values. The difference between the criterion procedure for plane strain and stress
was explained in 5.4.

The GMTS criterion and MTS, for plane strain, both have a good fit with the
measured angles from the mixed mode I/III test data. The test data with the
highest deviation from the criteria was for the loading case of α = 0◦/β = 67.5◦.
In this loading position, the measured angle was φf = −46.71◦, and the predicted
GMTS angle was φf = 37.52◦. This deviation can be a result of inaccuracy of the
microscope angle measurements.
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Figure 7.14: Plot of measured out of plane crack initiation angle, φf , and the
angle predictions of MTS and GMTS criterion.
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Figure 7.15: Fracture limit curves by the criteria of MTS, GMTS and Richard
compared with mixed mode I/III test data.

Figure 7.15 shows the fracture limit for the mixed mode I/III loading cases. In the
figure, six plots were presented. Two plots of the MTS criterion, one of GMTS, one
for the Richard criterion and all the mixed mode I/III test data. MTS criterion was
plotted for plane stress and plane strain. The two MTS plots and GMTS curves
have similar forms, with estimated values of KIII/KIC = 1 for pure mode III
and KI/KIC = 1.0 for pure mode I. This curve is similar to the extended GMTS
criterion for mixed mode I/III, obtained by Ayatollahi [7]. Richard’s criterion,
with α1 = 0.50 and α2 = 0.18, shows a KIII/KIC = 5.61 for pure mode III and
KI/KIC = 1.0 for pure mode I.

The test data of this thesis shows a good fit for the criterion predictions of pure
mode I and pure mode III. However, the mixed mode test data transiting from
mode I to mode III, did not seem to fit the criterion predictions. The loading cases
of α = 0◦/β = 22.5◦, α = 0◦/β = 45◦ and α = 0◦/β = 67.5◦ all seem to have
values of greater magnitude for normalized mode I, KI/KIC . These high values
originate from the large YI values and fracture loads for these loading positions,
these can be seen in figure 7.2. Higher YI values and higher fracture loads, than
for pure mode I, results in greater KIf values, see table 5. When the KIf values
was greater than KIC , the normalized KI/KIC values were found to be as high as
2.49 for β = 67.5◦, see figure 7.15. The high YI values for mixed mode I/III can be
due to some deviations, from the loading device experiments, with respect to the
Abaqus model. The works of Saboori et al. [22] shows a mixed mode I/III fracture
limit test data with normalized mode III values of 1.2 for pure mode III. In this
work, a different specimen geometry and loading device was tested.
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7.4.3 Mixed Mode II/III

The plots in figure 7.16 presents the measured in-plane crack initiation angle and
the angles predicted by Richard criterion. This figure covers five loading device
positions for the mixed mode II/III loading cases. This loading case results in
two crack initiation angles, in-plane and out of plane. The out of plane angle can
be studied in figure 7.17. Due to the two different angles, the microscope angle
measuring was somewhat more difficult, see figure 6.14, 6.15 and 6.16.

The measured angles in figure 7.16 show a similar curve as the criterion of Richard.
Out of the five test data, the measured angles for pure Me

23 = 0.0 and Me
23 = 1.0

had the best fit with the criterion of Richard. These are the mixed mode cases of
pure mode II and III. The criterion predicts an in-plane angle of θf = 0◦ for pure
mode III and θf = −71.32◦ for pure mode II. Which is similar to the MTS and
GMTS prediction for mixed mode I/II.

Even with a similar curved form as the criterion, the test data were found to be
of lower magnitude than the criterion predictions. Ayatollahi [7] presented a lower
criteria curve for the in-plane crack initiation angle for mixed mode II/III loading
cases. His work also shows that the simplified criterion by Richard is in good
agreement with his extended GMTS criterion for the mixed mode II/III loading
cases. The criterion shows to be in good agreement with Schöllmanns and Pooks
three dimensional fracture criteria for in-plane angle [30, 4, 10].
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Figure 7.16: Plot of measured in plane crack initiation angle, θf , and the angle
predictions of the Richard criterion.
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Figure 7.17: Plot of measured out of plane crack initiation angle, φf , and the
angle predictions of the Richard criterion.

Figure 7.17 presents the Richard criterion for out of plane crack initiation angles,
for mixed mode II/III loading cases. The criterion predicts an out of plane crack
initiation angle of φf = 0◦ for pure mode II, and φf = −44.77◦ for pure mode
III. Obtained measured data was found to be φf = −54.43◦ for pure mode III and
φf = 0◦ for pure mode II.

Measured out of plane angles for the mixed mode II/III loading cases were found to
be in a good agreement with the Richard criterion. The works of Ayatollahi showed
higher values for negative T values [7]. The measured angles in this thesis show
lower values than the Richard criterion for the loading cases of α = 90◦/β = 22.5◦

and α = 90◦/β = 45◦, and higher for α = 90◦/β = 67.5◦ and α = 90◦/β = 90◦.
The Richard criterion of φf , for mixed mode II/III, were found to be in good
agreement with the extended criterion of Ayatollahi and the three-dimensional
criteria by Pook and Schöllmann [30, 7, 4, 10].

The mixed mode II/III fracture limit prediction can be studied in figure 7.18. In
addition to the criteria predictions, mixed mode test data were plotted as circular
markers. The five loading device positions, transitioning from pure mode II to III,
can be seen as mixed mode data sets in pair of three markers. Richard’s criterion
shows a descending plot from pure mode II to III. For the criterion, with α1 = 0.50
and α2 = 0.18, the normalized mode II value of pure mode II was found to be
2.0, and the normalized mode III value for pure mode III were 5.6. The criterion
with α1 = 1.155 and α2 = 1.0, shows descending curve from KII/KIC = 0.8 to
KIII/KIC = 1.0.
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Figure 7.18: Fracture limit curves by the criterion of Richard compared with
mixed mode II/III test data.

The plot in figure 7.18 shows a good agreement between the Richard criterion,
α1 = 0.50/α2 = 0.18, and the mixed mode II/III test data. Where α1 being
KIC/KIIC and α2 being KIC/KIIIC . The Richard criterion of α1 = 1.155/α2 =
1.0 was found to be very similar to the more complex criterion of Schöllmann
[4, 10]. Which is also shown to be in good agreement with the MTS criterion [4].
The Richard α1 = 1.155/α2 = 1.0 criterion was also found to be in good agreement
with the extended MTS criterion for mixed mode II/III, by Ayatollahi [7]. As
mentioned, the Richard α1 = 0.50/α2 = 0.18 criterion shows a good agreement
with the mixed mode test data. To calculate the correct α1 and α2 parameters,
the fracture toughness for pure mode I, II and III were required. KIIC and KIIIC

were not found to be as recognized as the well-known fracture toughness, KIC . To
calculate these, the fracture load for all three modes, with the respective specimen,
is required. However, when comparing results with test data, all of the fracture
loads are necessary regardless. For MTS and GMTS, only the KIC is required.

As discussed in this thesis, the values of KIC shows a great variation for different
specimen geometries, for the same material [20, 25, 31]. One should therefore
obtain own KIC values. The MTS criterion shows a good fit with the measured
test data of angles in this thesis. However, the criterion does not fit well with the
values of normalized mode I, II and III values. The works of Aliha and Ayatollahi
showed a good mixed mode test data fit with the GMTS criterion [16, 20]. In this
works, a greater magnitude of T -stresses were obtained. Due to the low T values
obtained in this thesis, the GMTS and MTS criterion did not show much deviation.
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7.4.4 Comparison of Measured and Theoretical Predictions of Fracture
Angles

Table 6 lists all of the measured angles, side by side with the angles calculated by
criteria. For the cases of mixed mode I/II and I/III, the GMTS criterion was used.
For the rest of the the criterion of Richard was used, see chapter 5.4 and 2.6. Most
of the criteria predicted angles show a good agreement with the measurements.
Largest deviation was found for the mixed mode I/II/III cases.

As mentioned earlier in this thesis, the combination of in and out of plane angles,
made precise angle measurements difficult, see figure 6.14 and 6.23. For the cases of
no twisting angle, the cracks showed a straight form. By increasing the amount of
mode III to the loading case, the cracks gained more curve. This changing in crack
angle, made it difficult to find the exact crack initiation angles for some loading
cases, see chapter 6.3.

Table 6: Overview of α and β degree combinations for all loading cases.

Fracture Fixture Measure Criterion Measure Criterion
Modes Positions θf θf φf φf

I α = 0◦, β = 0◦ 0◦ 0◦ 0◦ 0◦

I/II α = 22.5◦, β = 0◦ −21.29◦ −25.84◦ 0◦ 0◦

I/II α = 45.0◦, β = 0◦ −35.15◦ −46.04◦ 0◦ 0◦

I/II α = 67.5◦, β = 0◦ −55.71◦ −59.28◦ 0◦ 0◦

II α = 90.0◦, β = 0◦ −68.19◦ −70.99◦ 0◦ 0◦

I/III α = 0◦, β = 22.5◦ 0◦ 0◦ −19.23◦ −18.8◦
I/III α = 0◦, β = 45.0◦ 0◦ 0◦ −37.08◦ −29.71◦
I/III α = 0◦, β = 67.5◦ 0◦ 0◦ −46.71◦ −37.52◦
II/III α = 90◦, β = 22.5◦ −53.80◦ −71.32◦ −10.41◦ −12.21◦
II/III α = 90◦, β = 45.0◦ −40.35◦ −66.57◦ −16.02◦ −21.59◦
II/III α = 90◦, β = 67.5◦ −37.53◦ −54.71◦ −40.05◦ 31.79◦

I/II/III α = 22.5◦, β = 22.5◦ −33.83◦ −26.58◦ −8◦ −7.09◦
I/II/III α = 22.5◦, β = 45.0◦ −18.04◦ −23.21◦ −36.61◦ −13.48◦
I/II/III α = 22.5◦, β = 67.5◦ −15.42◦ −19.99◦ −48.96◦ −22.77◦
I/II/III α = 45.0◦, β = 22.5◦ −45.99◦ −44.45◦ −9.36◦ −7.29◦
I/II/III α = 45.0◦, β = 45.0◦ −25.03◦ −39.62◦ −18.47◦ −13.94◦
I/II/III α = 45.0◦, β = 67.5◦ −17.52◦ −33.71◦ −44.39◦ −23.69◦
I/II/III α = 67.5◦, β = 22.5◦ −67.13◦ −59.27◦ −25.34◦ −8.60◦
I/II/III α = 67.5◦, β = 45.0◦ −32.91◦ −53.56◦ −13.67◦ −16.15◦
I/II/III α = 67.5◦, β = 67.5◦ −20.99◦ −44.41◦ −38.25◦ −26.40◦

III α = 0◦, β = 90.0◦ 0◦ 0◦ −42.02◦ −45.17◦
III α = 22.5◦, β = 90.0◦ 0◦ 0◦ −42.37◦ −44.47◦
III α = 45.0◦, β = 90.0◦ 0◦ −2.25◦ −53.19◦ −44.52◦
III α = 67.5◦, β = 90.0◦ 0◦ −2.67◦ −53.04◦ −44.64◦
III α = 90.0◦, β = 90.0◦ 0◦ −2.77◦ −54.43◦ 44.77◦
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7.4.5 Three Dimensional Mixed Mode Criterion

The three-dimensional criterion by Richard can be seen in figure 7.19. The plot
shows the normalized mode II,KII/KIC , on its z-axis, normalized mode I,KI/KIC ,
on the y-axis and normalized mode III, KIII/KIC , on the x-axis. In this criterion
α1 = 1.155 and α2 = 1.0. These parameters result in a good agreement with
the three-dimensional criterion of Schöllmann [10, 4]. The three-dimensional crite-
rion of Schöllmann results in a good agreement with the extended GMTS criterion
for mode I/II, I/III and II/III of Ayatollahi, with Bαr = 0 (MTS) [7]. As dis-
cussed in chapter 7.4, the MTS criterion predictions were not found to be a good
prediction for the test data obtained in this thesis. Richard compared the crite-
rion, for α1 = 1.155/α2 = 1.0, with test results of different steels, and aluminum
[32, 33]. In this work, most of the test data did not fit well with the Richard,
α1 = 1.155/α2 = 1.0, criterion.
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Figure 7.19: Plot of three dimensional mixed mode criterion of Richard, with
α1 = 1.155 and α2 = 1.0, and mixed mode test data.
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The three dimensional criterion by Richard, with parameters α1 = 0.50 and α2 =
0.18, can be seen in figure 7.20. The wire-frame presents the Richard criterion, and
markers presents test data. In addition to the plot in figure 7.19, this plot includes
the test data for mixed mode I/II/III. These can be seen as markers formed as
diamonds. As expected from the two dimensional Richard criterion, see figure 7.13,
7.15 and 7.18, the parameters of α1 = 0.50/α2 = 0.18 presents a more accurate
representation of the test data. In the works of Richard, a more accurate criterion
estimate was obtained when replacing α1 and α2 with the relations KIC/KIIC

and KIC/KIIIC [33, 21]. The python script used for these plots can be studied in
appendix R.
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Figure 7.20: Plot of three dimensional mixed mode criterion of Richard, with
α1 = 0.50 and α2 = 0.18, and mixed mode test data.
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8. Conclusion

8 Conclusion
In this work, general mixed mode I/II/III fracture assessments were studied ex-
perimentally and theoretically. A new mixed mode I/II/III loading device was
designed, manufactured and used for testing of pre-cracked CTS specimens. Ex-
periments were conducted on all twenty-five combinations of the loading device,
on specimens of PMMA. The presented mixed mode loading device allowed mixed
mode I/II/III loading combinations in steps of 22.5◦, for in and out of plane rota-
tions. From the experimental procedure, fracture loads were obtained, and in and
out of plane angles were measured. The theoretical study in this thesis consisted
of numerical analyses, simulations, and fracture criteria.

The presented geometry factors in this thesis showed different values across the
specimen thickness. YI values were in most loading cases found to be peaking at
the specimen center, but YII and YIII often had descending values from surface to
surface. All of the geometry values were found to be symmetric about the specimen
center. A coupling effect for YII and YIII was found, the presence of YII lead to
the presence of YIII values and vice versa. Alternating values of T-stresses across
the specimen thickness were also obtained. The peaking value was consistently
the third node from the specimen surface. All values were found to be symmetric
about the specimen center.

MTS and GMTS criteria were found to be accurate for predicting in-plane and
out of plane crack initiation angles. Small deviations between GMTS and MTS
were obtained, due to the low values of T-stresses. The criteria predicted slightly
higher angles for mixed mode I/II and slightly lower angles for mixed mode I/III.
The Richard criterion, with A = 140◦, B = −70◦, C = 78◦ and D = −33◦, gave
a good prediction for out of plane crack initiation angles for mixed mode II/III
cases. The in-plane angle prediction resulted in slightly higher values than the
measured angles. MTS and GMTS predictions for mixed mode fracture limits
were found to be conservative. The fracture limit for pure mode II was found to
be twice the magnitude as the predicted values. For the loading case of pure mode
III, the obtained fracture limit was five times higher than for the MTS prediction.
Richard’s criterion was found to be a relatively good prediction method for the
fracture limits, except from some of the cases of mixed mode I/III. Even with a
better fit, the criterion predictions for the fracture limit were still found to be
conservative in most mixed mode I/II/III loading cases. To present a satisfying
prediction with the criterion of Richard, KIC , KIIC and KIIIC are required. For
the predictions of MTS and GMTS, only KIC needs to be obtained.
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9. Further Work

9 Further Work
In this thesis, mixed mode I/II/III loading cases were studied experimentally and
theoretically. Two loading devices were designed for the thesis, but only one of
them were manufactured. It could be of interest to manufacture the second, AFM,
loading device and compare mixed mode test results. In addition to another mixed
mode loading device, other specimens could be tested as well. In this thesis, pre-
cracked CTS specimens were used for testing. It would be interesting to also
conduct testing of notched CTS specimens, with different notched radius for com-
parison. As illustrated by the GMTS criterion, low deviations from the MTS
criterion were obtained due to the low T -stresses of pre-cracked CTS specimen. It
would be of interest to test a specimen with a greater amount of T -stresses to get
a better study of the GMTS criterion.

For the theoretical study in this thesis, mainly three fracture criteria were analyzed.
These were MTS, GMTS and Richard’s criterion. It would be of interest to study
other criteria as well. For two-dimensional mixed mode cases, the ASED criterion
could be analyzed. For the cases of three dimensional mixed mode loading, the cri-
teria by Pook and Schöllmann could be added to the experimental data validation.
In addition to the criteria, it could be of interest to study the numerical analysis
of mixed mode I/III further, which gave values of great magnitude.
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XXVI



N. Python Script For Mixed Mode I/II Crack Angle Plots

N Python Script For Mixed Mode I/II Crack Angle
Plots

import matplotlib.pyplot as plt
import numpy as np
import math
from numpy import genfromtxt
import matplotlib
from matplotlib.backends.backend_pdf import PdfPages

matplotlib.rcParams[’text.latex.preamble ’]=[r"\usepackage{lmodern}", r
"\usepackage[utf8x]{inputenc}", r"\
usepackage[T1]{fontenc}" ]

params = {’text.usetex ’ : True ,
’font.size’ : 11,
’font.family ’ : ’lmodern ’,
’text.latex.unicode ’: True ,
}

matplotlib.rcParams.update(params)

x = np.arange(0 , -80 , -0.01) # Grid of 0.01 spacing from -2 to 10
pi = math.pi
B0 = 0
#B02 = 0.2
#B04 = 0.3

#A = [0.01681432 , 0.363683038 , 0.631648616 , 0.84103086 ,0.999440392]
A = [0, 0.363683038 , 0.631648616 , 0.84103086 ,0.999440392]
B = [-68.19 , -55.71 , -35.15 , -21.29 , 0

]

C = [0.01681432 , 0.363683038 , 0.631648616 , 0.84103086 ,0.999440392]
D = [ -70.99379237 , -59.27677991 , -46.03887117 , -25.84751055 ,-0.

038512885]

cos2 = np.cos(((x*pi)/180)/2)
sin2 = np.sin(((x*pi)/180)/2)
cos = np.cos((x*pi)/180)
sin = np.sin((x*pi)/180)

a = ( (3*cos) - 1 ) / (sin)
b = (8/3) * B0 * (cos/cos2)
b2 = (8/3) * 0.2 * (cos/cos2)
b3 = (8/3) * 0.375 * (cos/cos2)
b4 = (8/3) * -0.2 * (cos/cos2)
b5 = (8/3) * -0.4 * (cos/cos2)
b6 = (8/3) * -0.6 * (cos/cos2)
b005 = (8/3) * -0.05 * (cos/cos2)

sqrt_ab = np.sqrt(a** 2 + b** 2 +1)
sqrt_ab2 = np.sqrt( a **2 - b **2 + 1 )
#ab3 = (a**2 - b**2) / (-a -b * sqrt_ab2)
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Me005 = (2 / pi) * ( np.arctan( (a** 2 - b005 **2) / (-a-b005 * (np.
sqrt( a** 2 - b005 ** 2 + 1 ) ) ) )
)

Me = (2 / pi) * ( np.arctan( (a **2 - b **2) / (-a-b * (np.sqrt( a**
2 - b **2 + 1 ) ) ) ) )

Me2 = (2 / pi) * ( np.arctan( (a **2 - b2 **2) / (-a-b2 * (np.sqrt( a
**2 - b2 ** 2 + 1 ) ) ) ) )

Me3 = (2 / pi) * ( np.arctan( (a **2 - b3 **2) / (-a-b3 * (np.sqrt( a
**2 - b3 ** 2 + 1 ) ) ) ) )

Me4 = (2 / pi) * ( np.arctan( (a **2 - b4 **2) / (-a-b4 * (np.sqrt( a
**2 - b4 ** 2 + 1 ) ) ) ) )

Me5 = (2 / pi) * ( np.arctan( (a **2 - b5 **2) / (-a-b5 * (np.sqrt( a
**2 - b5 ** 2 + 1 ) ) ) ) )

Me6 = (2 / pi) * ( np.arctan( (a **2 - b6 **2) / (-a-b6 * (np.sqrt( a
**2 - b6 ** 2 + 1 ) ) ) ) )

f = plt.figure(figsize=(8,4))

plt.plot(A, B, ls="None",label = ’Mixed Mode Test Data’, marker="o",
markersize=6 , markerfacecolor=’
white ’ ,markeredgewidth=0.5, c=’k’
,)

plt.plot(Me, x, linestyle=’-’, c=’k’, label=r" MTS", linewidth=0.5)

plt.plot(C, D, linestyle=’-.’, c=’k’, label=r’GMTS’, linewidth=0.6, )
#GMTS

#plt.plot(Me005 , x, linestyle=’-’, marker=’o’ , markersize=4.5 ,
markerfacecolor=’red’ ,
markeredgewidth=0.5 , markevery=130
, c=’k’, label=r’$ B \alpha = 0.2
$’, linewidth=0.75 ,)

#plt.plot(Me2 , x, linestyle=’-’, marker=’o’ , markersize=4.5 ,
markerfacecolor=’k’ ,
markeredgewidth=0.5 , markevery=130
, c=’k’, label=r"$ B \alpha = 0.2
$", linewidth=0.75 ,)

#plt.plot(Me3 , x, linestyle=’-’, marker=’s’ , markersize=4 ,
markerfacecolor=’k’ ,
markeredgewidth=0.5 , markevery=130
, c=’k’, label=r’$ B \alpha = 0.
375 $’, linewidth=0.75 ,)

#plt.plot(Me4 , x, linestyle=’-’, marker=’o’ , markersize=5 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=130
,c=’k’, label=r’$ B \alpha = - 0.2
$’, linewidth=0.75 ,)

#plt.plot(Me5 , x, linestyle=’-’, marker=’s’ , markersize=4 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=130
,c=’k’, label=r’$ B \alpha = - 0.4
$’, linewidth=0.75 ,)
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#plt.plot(Me6 , x, linestyle=’-’, marker=’^’ , markersize=5 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=130
,c=’k’, label=r’$ B \alpha = - 0.6
$’, linewidth=0.75 ,)

plt.gca().invert_yaxis ()
plt.gca().set_xlim([0,1.2])
plt.gca().set_ylim([0,-80])
plt.ylabel(r"Crack Initiation Angle , $\theta_{f}$ ")
plt.xlabel(r"Mixity Parameter , $ M^{e}_{12} $ ")
plt.legend(loc=’lower left’)
plt.grid(True , linestyle=’:’)
legend = plt.legend(frameon = 1, fancybox=False , framealpha=1)
frame = legend.get_frame ()
frame.set_facecolor(’white ’)
frame.set_edgecolor(’k’)
frame.set_linewidth(0.7)

plt.savefig("Theta_I_II_TESTDATA.pdf", bbox_inches=’tight’)

plt.show()
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O Python Script For Mixed Mode I/II Fracture
Limit Plots

import matplotlib.pyplot as plt
import numpy as np
import math
from numpy import genfromtxt
import matplotlib

matplotlib.rcParams[’text.latex.preamble ’]=[r"\usepackage{lmodern}", r
"\usepackage[utf8x]{inputenc}", r"\
usepackage[T1]{fontenc}" ]

params = {’text.usetex ’ : True ,
’font.size’ : 11,
’font.family ’ : ’lmodern ’,
’text.latex.unicode ’: True ,
}

matplotlib.rcParams.update(params)

x = np.arange(0 , -70.5, -0.1)
pi = math.pi
B0 = 0
#B02 = 0.2
#B04 = 0.3

cos2 = np.cos(((x*pi)/180)/2)
sin2 = np.sin(((x*pi)/180)/2)
cos = np.cos((x*pi)/180)
sin = np.sin((x*pi)/180)
tan2 = np.tan(((x*pi)/180)/2)

a = ( (3*cos) - 1 ) / (sin)
b = (8/3) * B0 * (cos/cos2)
b2 = (8/3) * 0.2 * (cos/cos2)
b3 = (8/3) * 0.375 * (cos/cos2)
b4 = (8/3) * -0.2 * (cos/cos2)
b5 = (8/3) * -0.4 * (cos/cos2)
b6 = (8/3) * -0.6 * (cos/cos2)
sqrt_ab = np.sqrt(a **2 + b **2 +1)
sqrt_ab2 = np.sqrt(a**2 + b2 ** 2 +1)
sqrt_ab3 = np.sqrt(a**2 + b3 ** 2 +1)
sqrt_ab4 = np.sqrt(a**2 + b4 ** 2 +1)
sqrt_ab5 = np.sqrt(a**2 + b5 ** 2 +1)
sqrt_ab6 = np.sqrt(a**2 + b6 ** 2 +1)
sqrt_ab22 = np.sqrt( a **2 - b **2 + 1 )
#ab3 = (a**2 - b**2) / (-a -b * sqrt_ab2)
c = -3 * tan2

z = (-a-(b* sqrt_ab)) / ((a** 2 - b** 2))
e = -4 * B0 * tan2 * sin2

z2 = (-a-(b2* sqrt_ab2)) / ((a** 2 - b2 **2))
e2 = -4 * 0.2 * tan2 * sin2
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z3 = (-a-(b3* sqrt_ab3)) / ((a** 2 - b3 **2))
e3 = -4 * 0.375 * tan2 * sin2

z4 = (-a-(b4* sqrt_ab4)) / ((a** 2 - b4 **2))
e4 = -4 * -0.2 * tan2 * sin2

z5 = (-a-(b5* sqrt_ab5)) / ((a** 2 - b5 **2))
e5 = -4 * -0.4 * tan2 * sin2

z6 = (-a-(b6* sqrt_ab6)) / ((a** 2 - b6 **2))
e6 = -4 * -0.6 * tan2 * sin2

KI = 1 / ( cos2 **3 * ( 1 + c * z - e * np.sqrt(1+z **2) ) )
KII = z / ( cos2 **3 * ( 1 + c * z - e * np.sqrt(1+z**2) ) )

KI2 = 1 / ( cos2 **3 * ( 1 + c * z2 - e2 * np.sqrt(1+z2 ** 2) ) )
KII2 = z2 / ( cos2 ** 3 * ( 1 + c * z2 - e2 * np.sqrt(1+z2 **2) ) )

KI3 = 1 / ( cos2 **3 * ( 1 + c * z3 - e3 * np.sqrt(1+z3 ** 2) ) )
KII3 = z3 / ( cos2 ** 3 * ( 1 + c * z3 - e3 * np.sqrt(1+z3 **2) ) )

KI4 = 1 / ( cos2 **3 * ( 1 + c * z4 - e4 * np.sqrt(1+z4 ** 2) ) )
KII4 = z4 / ( cos2 ** 3 * ( 1 + c * z4 - e4 * np.sqrt(1+z4 **2) ) )

KI5 = 1 / ( cos2 **3 * ( 1 + c * z5 - e5 * np.sqrt(1+z5 ** 2) ) )
KII5 = z5 / ( cos2 ** 3 * ( 1 + c * z5 - e5 * np.sqrt(1+z5 **2) ) )

KI6 = 1 / ( cos2 **3 * ( 1 + c * z6 - e6 * np.sqrt(1+z6 ** 2) ) )
KII6 = z6 / ( cos2 ** 3 * ( 1 + c * z6 - e6 * np.sqrt(1+z6 **2) ) )

## J KIC
A = [ 1.111544218 , 0.894316805 , 0.991982611 , 0, 0, 0, 0.838557639 , 0

.726204302 , 0.824063064 , 0.
801800136 , 0.950865039 , 0.970586684
, 1.076899049 , 1.103757686 , 1.
125892908]

B = [-0.000977081 , -0.000786131 , -0.000871983 , 2.024892132 , 2.0330665 ,
1.992755189 , 1.304610844 , 1.

129813816 , 1.28206048 , 0.523716983 ,
0.62108267 , 0.633964385 , 0.

274642702 , 0.281492488 , 0.
287137657 ]

E = [0.904618352 , 0.72783015 , 0.807314419 , 0.043535219 , 0.043710968 , 0
.042844274 , 0.68245115 ,0.59101359 ,0
.670654896 ,0.65253645 ,0.773851324 ,
0.789901574 ,0.876422753 , 0.
898281367]

F = [-0.000795187 ,-0.000639785 ,-0.000709654 ,1.647936767 ,1.654589388 ,1.
621782459 ,1.061743557 ,0.919486869 ,1
.043391185 ,0.426221455 ,0.505461477 ,
0.515945122 ,0.22351502 ,0.229089646
]
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C = [ 1.00000032 , 0.955558889 , 0.753748061 , 0.426828315 , 0.020575759 ]
D = [ -0.000827828 , 0.269614007 , 0.544472129 , 0.734328285 , 0.861342695

]

t = np.linspace(-1, 0.98, 300)

r = np.sqrt( ( 4-(4*t) / (0.98) ) )

f = plt.figure(figsize=(8,4))

#plt.plot(Ktest1 , Ktest2 , linestyle=’-’, c=’k’, label=r’$ B \alpha =
0 $’, linewidth=0.5)

plt.plot(t,r,linestyle=’-’, c=’k’, label=r’Richard $\alpha_{1} = 0.496
, \alpha_{2} = 0.178 $’, linewidth=
0.6)

plt.plot(A, B, ls="None",label = ’Mixed Mode Test Data’, marker="o",
markersize=5 , markerfacecolor=’
white ’ ,markeredgewidth=0.5, c=’k’
,)

#plt.plot(E, F, ls="None",label = ’Mixed Mode Test Data ’, marker ="^",
markersize=4 , markerfacecolor=’
white ’ ,markeredgewidth=0.5, c=’k
’,)

plt.plot(C, D, linestyle=’-.’, c=’k’, label=r’GMTS’, linewidth=1, )
plt.plot(KI, KII , linestyle=’:’, c=’k’, label=r’ MTS’, linewidth=1, )
#plt.plot(KI2 , KII2 , linestyle=’-’, marker=’o’ , markersize=4.5 ,

markerfacecolor=’k’ ,
markeredgewidth=0.5, markevery=20 ,
c=’k’, label=r’$ B \alpha = 0.2 $
’, linewidth=0.75 ,)

#plt.plot(KI3 , KII3 , linestyle=’-’, marker=’s’ , markersize=4 ,
markerfacecolor=’k’ ,
markeredgewidth=0.5 , c=’k’, label=
r’$ B \alpha = 0.375 $’,
linewidth=0.75 ,)

#plt.plot(KI4 , KII4 , linestyle=’-’, marker=’o’ , markersize=5 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5, markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.2

$’, linewidth=0.75 ,)
#plt.plot(KI5 , KII5 , linestyle=’-’, marker=’s’ , markersize=4 ,

markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.4

$’, linewidth=0.75 ,)
#plt.plot(KI6 , KII6 , linestyle=’-’, marker=’^’ , markersize=5 ,

markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.6 $
’, linewidth=0.75 ,)

plt.gca().invert_yaxis ()
plt.gca().set_xlim([-0.001 ,1.2])
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plt.gca().set_ylim([-0.01 ,3])
plt.ylabel(r’Normalized Mode II, $ K_{II} / K_{IC}$ ’)
plt.xlabel(r’Normalized Mode I, $ K_{I} / K_{IC}$ ’)
plt.grid(True , linestyle=’:’)
legend = plt.legend(frameon = 1, fancybox=False , framealpha=1)
frame = legend.get_frame ()
frame.set_facecolor(’white ’)
frame.set_edgecolor(’k’)
frame.set_linewidth(0.7)

plt.savefig("K_I_II_TESTDATA.pdf", bbox_inches=’tight’)

plt.show()
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P Python Script For Mixed Mode I/III Crack An-
gle Plots

import matplotlib.pyplot as plt
import numpy as np
import math
from numpy import genfromtxt
import matplotlib

matplotlib.rcParams[’text.latex.preamble ’]=[r"\usepackage{lmodern}", r
"\usepackage[utf8x]{inputenc}", r"\
usepackage[T1]{fontenc}" ]

params = {’text.usetex ’ : True ,
’font.size’ : 11,
’font.family ’ : ’lmodern ’,
’text.latex.unicode ’: True ,
}

matplotlib.rcParams.update(params)

plt.rcParams[’grid.alpha’] = 1
plt.rcParams[’grid.color’] = "#cccccc"

A = [0.024143993 , 0.923423517 , 0.835689684 , 0.662136782 , 0.99]
B = [-42.02 , -19.23 , -37.08 , - 46.71 , -0

]

C = [0.99 ,0.923423517 , 0.835689684 , 0.662136782 , 0.024143993 ]
D = [ -0.038512885 , -18.82641591 ,-29.68205096 ,-37.53015091 , -45.

17161807 ]

x = np.arange(0 , -70.5, -0.1) # Grid of 0.01 spacing from -2 to 10
pi = math.pi
B0 = 0
v = 0.35
#B02 = 0.2
#B04 = 0.3

cos2 = np.cos(((x*pi)/180)*2)
sin2 = np.sin(((x*pi)/180)*2)
cos = np.cos((x*pi)/180)
sin = np.sin((x*pi)/180)
tan2 = np.tan(((x*pi)/180)/2)

Me = (2/pi) * np.arctan( (-2*cos2) / sin )

Me2 = (2/pi) * np.arctan( 2/ ( np.tan(((x*pi)/180)*2) * (2*v - 1) ) )

f = plt.figure(figsize=(8,4))

plt.plot(C, D, linestyle=’--’, c=’k’, label=r’GMTS’, linewidth=0.5, )
#GMTS
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plt.plot(A, B, ls="None",label = ’Mixed Mode Test Data’, marker="o",
markersize=6 , markerfacecolor=’
white ’ ,markeredgewidth=0.5, c=’k’
,)

plt.plot(Me, x, linestyle=’-’, c=’k’, label=r’MTS (Plane Stress) ’,
linewidth=0.5)

plt.plot(Me2 , x, linestyle=’:’, c=’k’, label=r’MTS (Plane Strain)’,
linewidth=0.75 ,)

plt.gca().invert_yaxis ()
plt.gca().set_xlim([0,1.2])
plt.gca().set_ylim([0,-80])
plt.ylabel(r’Crack Initiation Angle , $\phi_{f}$ ’)
plt.xlabel(r’Mixity Parameter , $ M^{e}_{13} $ ’)
plt.legend(loc=’lower left’)
plt.grid(True , linestyle=’:’)

legend = plt.legend(frameon = 1, fancybox=False , framealpha=1)
frame = legend.get_frame ()
frame.set_facecolor(’white ’)
frame.set_edgecolor(’k’)
frame.set_linewidth(0.7)

plt.savefig("Theta_I_III_TESTDATA.pdf", bbox_inches=’tight ’)

plt.show()
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Q Python Script For Mixed Mode I/III Fracture
Limit Plots

import matplotlib.pyplot as plt
import numpy as np
import math
from numpy import genfromtxt
import matplotlib

import subprocess

###FONT SETUP
#matplotlib.rcParams[’mathtext.fontset ’] = ’stix’
#matplotlib.rcParams[’font.family ’] = ’STIXGeneral ’
#matplotlib.pyplot.title(r’ABC123 vs $\mathrm{ABC123}^{123}$’)
####

plt.rcParams[’grid.alpha’] = 1
plt.rcParams[’grid.color’] = "#cccccc"

plt.rcParams[’text.latex.preamble ’]=[r"\usepackage{lmodern}"]
#Options
params = {’text.usetex ’ : True ,

’font.size’ : 11,
’font.family ’ : ’lmodern ’,
’text.latex.unicode ’: True ,
}

plt.rcParams.update(params)

A = [ 1.11 ,0.89,0.99,0 , 0 , 0 , 1.
336726596 , 1.216868273 , 1.130682478
, 1.953731944 , 1.937279662 , 2.
153666337 , 2.352231729 , 2.252176913
, 2.249900729 ]

B = [ 0 ,0 ,0 ,6.131755706 , 5.719717566 , 5.014213785 , 0.
161569562 , 0.147082339 , 0.1366651
, 0.515757908 , 0.511414736 , 0.
568537792 , 1.38047055 , 1.321750686
, 1.320414846 ]

C = [0.036768501 , 0.689267153 , 0.869332424 , 0.960421104]
D = [0.974867142 , 0.403952147 , 0.229012625 , 0.115950058]

x = np.arange(0 , -45 , -0.01) # Grid of 0.01 spacing from -2 to 10
pi = math.pi
B0 = 0
v = 0.35
#B02 = 0.2
#B04 = 0.3
t = np.linspace(-1, 1, 300)
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cos2 = np.cos(((x*pi)/180)*2)
sin2 = np.sin(((x*pi)/180)*2)
cos = np.cos((x*pi)/180)
sin = np.sin((x*pi)/180)
tan2 = np.tan(((x*pi)/180)*2)

r = np.sqrt( (4- (4*t)) / (0.13) )

Me = (2/pi) * np.arctan( (-2*cos2) / sin )

K1MTS = 1 / ( ( cos ) - ( (sin * sin2) / (-2 * cos2) ) )
K3MTS = 1 / ( (-2* cos2 / sin) - sin2 )

KI_0 = 1 / ( (cos **2) - ( ( tan2 * (2*v -1) * sin2 ) /2 ) + ( 2 * v *
sin ** 2 ) )

KIII_0 = 1 / ( ( (2 * (cos **2) ) / ( tan2 * (2*v-1) ) ) + ( ( 4*v * (
sin ** 2) ) / ( tan2 * ( (2 *v) -1) )

) - sin2 )

f = plt.figure(figsize=(8,4))

plt.plot(A, B, ls="None",label = ’Mixed Mode Test Data’, marker="o",
markersize=6 , markerfacecolor=’
white ’ ,markeredgewidth=0.5, c=’k’
,)

plt.plot(t,r,linestyle=’-’, c=’k’, label=r’Richard $\alpha_{1} = 0.50,
\alpha_{2} = 0.18 $’, linewidth=0.

6)
plt.plot(C, D, linestyle=’-.’, c=’k’, label=r’GMTS’, linewidth=0.5, )
plt.plot(K1MTS , K3MTS , linestyle=’:’, c=’k’, label=r’MTS (Plane

Stress) ’, linewidth=0.5)
plt.plot(KI_0 , KIII_0 , linestyle=’--’, c=’k’, label=r’MTS (Plane

Strain) ’, linewidth=0.5)
#plt.plot(KI_0 , KIII_0 , linestyle=’:’, marker=’o’ , markersize=4.5 ,

markerfacecolor=’white ’ ,
markeredgewidth=0.5, markevery=100 ,
c=’k’, label=r’$ B \alpha = 0 $
(Plane Strain) ’, linewidth=0.75 ,)

#plt.plot(KI3 , KII3 , linestyle=’-’, marker=’s’ , markersize=4 ,
markerfacecolor=’k’ ,
markeredgewidth=0.5 , c=’k’, label=
r’$ B \alpha = 0.375 $’,
linewidth=0.75 ,)

#plt.plot(KI4 , KII4 , linestyle=’-’, marker=’o’ , markersize=5 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5, markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.2

$’, linewidth=0.75 ,)
#plt.plot(KI5 , KII5 , linestyle=’-’, marker=’s’ , markersize=4 ,

markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.4

$’, linewidth=0.75 ,)
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#plt.plot(KI6 , KII6 , linestyle=’-’, marker=’^’ , markersize=5 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5 , markevery=8 ,
c=’k’, label=r’$ B \alpha = - 0.6 $
’, linewidth=0.75 ,)

#plt.gca().invert_yaxis ()
plt.gca().set_xlim([-0.01 ,2.5])
plt.gca().set_ylim([-0.05 ,6.5])

#plt.gca().set_xlim([-0.01 ,1.1])
#plt.gca().set_ylim([-0.05 ,1.1])

plt.ylabel(r’Normalized Mode III , $ K_{III} / K_{IC}$ ’)
plt.xlabel(r’Normalized Mode I, $ K_{I} / K_{IC}$ ’)
plt.legend(loc=’upper right’, frameon=True).get_frame ().set_edgecolor(

’k’)
plt.grid(True , linestyle=’:’)
legend = plt.legend(frameon = 1, fancybox=False , framealpha=1)
frame = legend.get_frame ()
frame.set_facecolor(’white ’)
frame.set_edgecolor(’k’)
frame.set_linewidth(0.7)

#plt.savefig (" K_I_III_TESTDATA.pdf", bbox_inches=’tight ’)

plt.show()
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R Python Script For Three-Dimensional Richard
Criterion

import matplotlib as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
import pylab
import scipy
import matplotlib

matplotlib.rcParams[’text.latex.preamble ’]=[r"\usepackage{lmodern}", r
"\usepackage[utf8x]{inputenc}", r"\
usepackage[T1]{fontenc}" ]

params = {’text.usetex ’ : True ,
’font.size’ : 11,
’font.family ’ : ’lmodern ’,
’text.latex.unicode ’: True ,
}

matplotlib.rcParams.update(params)

fig = plt.figure(figsize = (7, 7))
ax = fig.gca(projection=’3d’)

A = [ 1.111544218 , 0.894316805 , 0.991982611 , 0.053493632 , 0.
053709582 , 0.052644637 , 0.838557639
, 0.726204302 , 0.824063064 , 0.
801800136 , 0.950865039 , 0.970586684
, 1.076899049 , 1.103757686 , 1.
125892908]

B = [0 , 0 , 0 , 2.024892132 , 2.0330665 ,
1.992755189 , 1.304610844 , 1.

129813816 , 1.28206048 , 0.523716983 ,
0.62108267 , 0.633964385 , 0.

274642702 , 0.281492488 , 0.
287137657 ]

C = [0 , 0 , 0 , 0 , 0 , 0
, 0 , 0 , 0

, 0 , 0 , 0
, 0 , 0

, 0]

D = [ 0 , 0 , 0 , 1.895418023 , 1.996767496 ,
1.834027641 , 2.220125775 , 2.

081226443 , 2.272753189 , 2.492993292
, 2.137855032 ,2.500409935 ]

E = [4.644961061 , 5.460748305 , 4.767531798 , 0.384132874 , 0.404672757 ,
0.371691258 , 1.0455161 , 0.

980104721 , 1.070299745 , 2.738277296
, 2.348197211 , 2.746423657 ]

F = [0 , 0 , 0 , 0 , 0 , 0
, 0 , 0 , 0
, 0 , 0 , 0
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]

G = [ 0 , 0 , 0 , 1.336726596 , 1.216868273 ,
1.130682478 , 1.953731944 , 1.

937279662 , 2.153666337 , 2.352231729
, 2.252176913 , 2.249900729 ]

H = [ 6.131755706 , 5.719717566 , 5.014213785 , 0.161569562 , 0.147082339 ,
0.1366651 , 0.515757908 , 0.

511414736 , 0.568537792 , 1.38047055
, 1.321750686 , 1.320414846 ]

I = [0 , 0 , 0 , 0 , 0 , 0
, 0 , 0 , 0
, 0 , 0 , 0

]

J = [0.185773577 ,0.079965391 ,0.053474155 ,1.169966461 ,1.182980523 ,0.
793439555 ,1.745670835 ,1.430518873 ,1
.170262109 ,1.942424082 , 1.695922817
]

K = [0.05433908 ,0.054494085 ,0.085858618 ,0.311519427 ,0.758185373 ,1.
211466534 ,0.440306579 ,0.869843338 ,1
.695699301 ,0.519240325 , 1.08444708]

L = [5.793867375 ,3.595005689 ,4.80359327 ,0.154905901 ,0.209702979 ,0.
262940998 ,0.505182819 ,0.556282387 ,0
.852769474 ,1.274894862 , 1.550765372
]

x = np.linspace(0, 6.5, 300)
y = np.linspace(0, 1, 300)

[x, y] = scipy.meshgrid(x, y)

#z = np.sqrt( (4* (1-y-(x**2))) / (5.336) )
z = np.sqrt( ( 4 - (4*y) - (0.13* (x**2) ) ) / (0.96) )

ax.plot(C,A,B, ls="None",label = ’Mixed Mode I/II Test Data’, marker="
o", markersize=6 , markerfacecolor=
’white ’ ,markeredgewidth=0.5, c=’k’
,)

ax.plot(E,F,D, ls="None",label = ’Mixed Mode II/III Test Data’, marker
="^", markersize=6 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5, c=’k’,)

ax.plot(H,G,I, ls="None",label = ’Mixed Mode I/III Test Data’, marker=
"s", markersize=6 , markerfacecolor
=’white’ ,markeredgewidth=0.5, c=’k
’,)

ax.plot(J,K,L, ls="None",label = ’Mixed Mode I/II/III Test Data’,
marker="D", markersize=5.6 ,
markerfacecolor=’white ’ ,
markeredgewidth=0.5, c=’k’,)

ax.plot_wireframe(x, y, z, label = r’Richard $\alpha_{1} = 0.50 , \
alpha_{2} = 0.18 $’, rstride=5,
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cstride=5, alpha=0.9 , color= ’k’,
edgecolor = ’k’, linewidth=0.4,
linestyle = ’-’)

#ax.plot(X, Y, linestyle = ’-’, color= ’k’, linewidth = 0.8)

ax.zaxis.set_rotate_label(False) # To disable automatic label rotation

ax.set_xlabel(’${K_{III} / K_{IC}}$’)
ax.set_ylabel(’$K_{I} / K_{IC}$’)
ax.set_zlabel(’$K_{II} / K_{IC}$’, rotation=90)

#ax.set_title(’Hokstad ’)

ax.set_xlim3d(0, 6.5)
ax.set_ylim3d(0, 2.5)
ax.set_zlim3d(0, 2.75)

#ax.legend(borderpad=0.3, frameon=True).get_frame ().set_edgecolor(’k’)
#ax.legend ()
legend = ax.legend(frameon = 1, fancybox=False , framealpha=1, ncol=2,

loc=’upper right’)
frame = legend.get_frame ()
frame.set_facecolor(’white ’)
frame.set_edgecolor(’k’)
frame.set_linewidth(0.7)

ax.azim = 45
#ax.elev = -45

plt.savefig("3dplot_newKic.pdf", bbox_inches=’tight’)

pylab.show()
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