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Abstract 

Ensuring that the energy need predicted by energy modelling corresponds 

to the actual energy need, will be strictly important in the close future with 

the increase in the number of low-energy buildings and retrofitting projects 

and with the refining of regulations. Occupant behaviour is indicated as one 

of the biggest uncertainties in energy modelling. Thus, an improvement in 

the description of the occupant behaviour is needed. This thesis discusses 

one of the possible methods to analyse the monitored data and to apply a 

deduction approach to improve the energy model from the point of view of 

the occupant behaviour. A comprehensive data-driven approach for the 

assessment of the impact of occupant behaviour on the energy need is 

proposed. The presented methods are applied and validated through a case 

study regarding a residential building block in Milan, Italy. 

In the first phase, a clustering methodology for creating five representative 

electricity daily load profiles is proposed. The implementation of machine 

learning techniques emerged from literature as the appropriate tool for the 

task. A two-level approach is used composed by a Self-Organizing Map, a 

Neural Network technique, coupled with the k-means algorithm, a classic 

machine learning method. The k-Nearest Neighbour algorithm is 

implemented to extend the results to the whole year. In the second phase, a 

detection method is proposed to estimate the presence of occupants in the 

household. The technique is based on the analysis of the electricity 

consumption data to detect the occupancy through the exploitation of the 

k-Nearest Neighbour algorithm. The extension to the whole year relies on the 

clustering obtained in the previous task. The resulted presences and electric 

load clusters emerged with different daily profiles, that can be ascribed to 

different types of families and habits. Highlighting three scenarios of energy 

spenders: energy-aware user, standard user and energy-intensive user. In the 

last phase, the schedules generated in the previous steps are used to assess 

the impact of the occupant behaviour on the heating energy need during a 

year and the modelled result is compared with the real registered data. 

Keywords: Occupant behaviour, Energy modelling, Clustering techniques, 

Residential buildings, Energy needs 
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Definitions and Conventions 

ISO 52000-1:2017 [1] 

- DELIVERED ENERGY: energy, expressed per energy carrier, supplied to 

the technical building systems through the assessment boundary, to 

satisfy the uses taken into account or to produce the exported energy; 

- ENERGY NEED FOR HEATING OR COOLING: heat to be delivered to or 

extracted from a thermally conditioned space to maintain the intended 

space temperature conditions during a given period of time; 

- ENERGY SOURCE: source from which useful energy can be extracted or 

recovered either directly or by means of a conversion or transformation 

process. Example: oil or gas fields, coal mines, sun, wind, the ground 

(geothermal energy), the ocean (wave energy, ocean thermal energy), 

forests etc.; 

- ENERGY USE (FOR SPACE HEATING OR COOLING OR DOMESTIC HOT 

WATER): energy input to the heating, cooling or domestic hot water 

system to satisfy the energy need for heating, cooling (including 

dehumidification) or domestic hot water respectively; 

- ENERGY USE FOR LIGHTING: electrical energy input to a lighting system 

- ENERGY USE FOR OTHER SERVICES: energy input to appliances 

providing services. Example: elevators, escalators, home appliances, TV, 

computers, etc.  

EnergyPlus Manual [2] 

- THERMAL ZONE: space or a group of spaces having similar conditioning 

requirements, such as the same thermal setpoints or a single thermal 

controlling device. It is the thermal unit used in modelling in the software 

EnergyPlus.  

- SCHEDULE: it defines the presence of occupancy, equipment, lighting or 

HVAC operation, heating and cooling temperature setpoints, 

transparency and the activation of some components (such as the 

shading devices). It can be defined directly in the software if it is a series 

of defined repeated values or can be derived from an external file that 

assigns to each time-step a specific value. 

Comma “,” is used as decimal separator in the whole thesis. 
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1. Introduction 

1.1. Buildings and energy use 

All over the world, the building sector and its industry are one of the major 

users in terms of energy and materials [3]. In the European Union, the 

residential building sector counts for the 25,4 % of the total yearly energy use 

[4]. Particularly, in Italy (in 2015 [5]), the residential buildings used 27,9 % of 

the total final consumptions (Figure 1.1). Therefore, in the last decades, the 

interest in reducing the impact of the building sector is greatly increased [6]. 

Specifically, the building industry is coping with the reduction of the energy 

need. As a matter of fact, the used energy is mainly exploited to ensure 

adequate comfort levels for the occupants, through heating and cooling 

systems [7]. Scientists, worldwide, are aware that a change in our way of 

energy usage is inevitable in the next future. The Intergovernmental Panel on 

Climate Change’s (IPCC) in the Fourth Assessment Report (2007) showed that 

the potential of emissions’ reduction in the residential and commercial fields by 

2020 is about 29 % [8]. 

 

Figure 1.1: Final Energy uses for sector (%) in Italy in 2015. From ref. [5]  

 

In the last years, also authorities started to face the problem. Governments 

established new policies to decrease the energy use in the building sector [9]. 

These regulations have the purpose of guaranteeing adequate conditions in 
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the indoor environments but also of increasing the energy performance of 

future and existing dwellings [3]. At the same time, it is evident a growing 

public consciousness about global warming and sustainability issues. 

Governments, economies, and businesses are preparing for a carbon-

constrained future [10]. Nevertheless, further efforts need to be made to 

achieve appreciable results in the environmental sustainability, and to sensitize 

the users [6]. 

1.2. European Union’s Directives 

The European Union has designed the Energy Efficiency Directive [11] (firstly 

in 2004 and lastly updated in 2012) that mandates legally binding measures to 

foster energy efficiency and that defines guidelines to help the EU countries to 

reach their 20 % energy efficiency target by 2020, incrementing the efficiency 

at different levels of energy production and consume. The policy requirements 

are minimum targets and each member state, by submitting a National Energy 

Efficiency Action Plan (NEEAP), can introduce more stringent measures. 

Annually, each member state has to report the progress towards the national 

standard. Regarding the buildings, the minimum specified requirements [11] 

are: 

- EU countries have to apply energy efficient renovations to at least 3 % 

of buildings owned and occupied by central government,  

- EU governments must only purchase buildings which are highly energy 

efficient,  

- EU countries have to draw-up long-term national building renovation 

strategies which can be included in their National Energy Efficiency 

Action Plans. 

European Union has implemented also the Energy Performance of Buildings 

Directive (EPBD), the first version is dated 2002, then replaced by a new 

version in 2010, and with a proposed update of 2016 [12]. This legislative 

instrument, together with the EU Building Stock Observatory [13], has the aim 

to track the energy performance of buildings and promote the increase of 

efficiency and the use of smart technology in existing and future buildings. 

Also, in this case, the directive shows only the minimum requirements that each 

EU-member state must actuate. It underlines [11] that: 
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- energy performance certificates are to be included in all advertisements 

for the sale or rental of buildings,  

- EU countries must establish inspection schemes for heating and air 

conditioning systems or put in place measures with equivalent effect,  

- all new buildings must be nearly zero energy buildings by 31st December 

2020 (public buildings by 31st December 2018),  

- EU countries must set minimum energy performance requirements for 

new buildings, for the major renovation of buildings, and for the 

replacement or retrofit of building elements (heating and cooling 

systems, roofs, walls and so on), 

- EU countries have to draw up lists of national financial measures to 

improve the energy efficiency of buildings, and  

- EU countries must draw-up long-term national building renovation 

strategies which can be included in their National Energy Efficiency 

Action Plans. 

Italy, as EU-member, approved the directives and undertook the commitments 

for 2020.  

1.3. Building simulation modelling and the “performance gap” 

According to the objectives expressed by European regulations, advanced 

building simulation models are becoming increasingly important to support 

new constructions or renovation design. They are a cost-effective method to 

assess the impact of buildings and they can be used in the design phase to 

optimize interventions, in terms of energy, costs and comfort [14] leading 

towards high-performance and sustainable buildings [15]. Building 

performance simulation (BPS) can be seen as an economical and technically 

flexible tool to study a real scale building [7]. Although the aim is to recreate 

as faithfully as possible a real construction, the model will remain different from 

the actual physical object. For this reason, the building performance simulator 

is meant to reproduce a building behaviour with a controlled deviation from 

reality [6].  

 

The common strategy concerns in modelling a building, and through the BPS 

software optimizing it to fulfil the regulations. However, the energy demand in 

buildings does not always decrease after the application of improvements on 

the building envelope and system as suggested by BPS [8]. Technology alone 
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does not assure energy reduction in buildings, leading to a disparity between 

predicted and real energy saving in buildings [3,8,9]. A wide number of 

researchers observed this mismatch between the predicted and the actual 

energy need of modelled buildings. The phenomenon is called “performance 

gap” [14]. According to Carlucci et al. [16], this disparity is mainly attributable 

to: lack of information about the performance of building components that can 

change during time; inappropriate description of the occupancy behaviour; 

failure of the building systems or inadequate maintenance or operation; 

disparities between the design and the construction; lack or inappropriate 

post-occupancy evaluation; limitations of the quality and spatial density of the 

used weather data; intrinsic limitations and uncertainties of the energy 

simulation software.  

 

Studies confirm that Occupant Behaviour (OB) has a key role in the variation 

in energy need of dwellings [3]. As a matter of fact, neither cities nor buildings 

use energy, but the occupants do [9].  The software used in modelling usually 

lack the capacity to describe the individual actions of the building users. The 

major BPS software (e.g., EnergyPlus, IES, eQuest, TRNSYS, etc.) usually 

assume generic profiles, which are not able to reproduce the uncertainty and 

fortuity of occupants’ behaviour or facility managers characteristics over time 

[17]. The OB field is very complex to be investigated and studied; indeed, social, 

cultural, and economic factors provide a further significant contribution 

defining occupants’ attitudes towards energy usage in buildings [6]. Wei et al. 

[18] highlighted that up to twenty-seven factors can affect the occupants’ 

space-heating behaviour in residential buildings, grouped into four main 

categories: 

 

- environmental factors,  

- building and system-related factors  

- occupant related factors  

- and other factors.  

 

Deuble et al. [10] focused the attention on the importance to shift from 

conceptualizing the occupant as a passive recipient of indoor conditions to the 

inhabitant who may play a more active role in the maintenance and 

performance of the building, especially of the high-efficiency ones.  
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In the retrofitting field, this issue is widely evident and studied. The energy 

usage of existing buildings is supposed to decrease after an energy 

refurbishment. But changes in the behaviour of occupants can cause a 

significant gap between the actual and estimated energy need [19]. There is an 

increasing interest in the effectiveness of energy upgrades because of the 

shortfall with the reality, and this deficit is called ‘rebound effect’ [20]. R. Galvin 

in his book [21], underlines the difference between what “energy service” and 

“energy efficiency” mean. The first is a term that defines the benefits people 

enjoy, and the energy is the product that is consumed to provide these 

benefits. The energy efficiency is how much the consumption of fuel is turned 

into benefits for the owner. Especially after a retrofit, a large part of the energy 

efficiency increment is used to raise the level of energy services. The Figure 1.2 

[21] shows the scheme of rebound effect: the improvements in a retrofit 

increase the energy efficiency (in yellow)  that should bring to a fall in energy 

use (in light blue), part of this theoretical fall is used to increase the energy 

services (in grey) and so the result is a smaller fall in the energy use (in purple) 

respect to the theoretical one. 

 

Figure 1.2: Schematic of the rebound effect. From ref. [21] 

 

To explain the causes of this effect, Galvin states that, supposing a detailed and 

good optimization and modelling, the problem of rebound effect can be 
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decreased or avoided with education of the owners. This is a very important 

topic in the perspective of energy efficiency goals of 2020 [11], indeed the 

slowing down of the energy savings can cause the failure of the objectives of 

the national energy policies [19]. Also in the Italian annual report on the energy 

efficiency of April 2017 [5], the ministry of economic development stresses that 

the retrofitting projects are fundamental to increase the efficiency of the built 

environment. However, the rebound effect, if not adequately considered, can 

jeopardize the expected energy savings. 

1.4. Occupancy Behaviour 

The hypothesis that people in buildings can affect the thermal and energy 

performance and the consequent emissions is widely studied nowadays 

[22,23]. People influence energy need passively through their presence, and 

actively through interactions with the systems, appliances, and devices [6]. The 

presence of people in a space changes the internal gains: the higher is the 

number of people, the higher will be the sensible and latent heat produced by 

them. Whilst, the interactions include settings with operable windows and 

blinds, thermostats, plug-in appliances and lights [7], that can change 

respectively the solar gains, the set point for the heating or cooling systems 

and the internal gains due to electric devices in the space.  

The decrease of the interactions between buildings and people cannot be a 

solution in the close future. User influence is thought to be fundamental for the 

well-being of the dwellers, especially in housing. Modern buildings designs have 

to consider this issue and not to avoid it [15]. It is widely believed that 

occupants prefer a high degree of adaptive opportunities [13], as can be 

provided within naturally ventilated buildings as opposed to centrally 

controlled air-conditioned ones [10]. Schakib-Ekbatan et al. [24], underlines 

that the “desire of control” has a strong impact on the well-being of occupants. 

Moreover, understanding how the building is supposed to work and how it 

consumes energy leads to happier and more careful in energy-related actions 

users [9,10]. 

Studies have confirmed that behaviour of occupants plays an important role in 

the differences in energy need, even if the extent of such influence should be 

studied deeper; indeed, the variation in energy use is still large for dwellings 

with the same characteristics [3]. Carlucci et al. [6] observed that virtuous 

behaviours can reduce sensibly the energy need, for both heating and cooling, 
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in poorly insulated buildings. Nevertheless, in highly insulated buildings, the 

people’s actions can result in a negative effect, increasing the heating or the 

cooling demand. In any case, it is established that the occupancy behaviour is 

fundamental in the final consumption of a building. However, the simplistic 

approaches commonly used by designers in building simulation software are 

inadequate to study the interaction between users and dwellings [15]. They use 

similar energy need patterns and profiles that remain static all the yearlong and 

do not account for occupancy-related behaviour [14]. 

Moreover, with the increase of efficiency and optimization of building’s 

characteristics, the sensibility towards occupants and their behaviour on the 

overall energy need will grow [3,15]. For example, if the electric consumption 

is assumed to be constant before and after a building retrofit, it means that, 

after the renovation, the electric consumptions will count more on the final 

energy demand (due to the decrease of energy spent for heating and cooling). 

This shows the higher role played by OB in low energy buildings compared to 

existing and low-efficiency ones. Another consideration can be done on the 

increased airtightness in modern dwellings: the OB will have a greater effect 

on the air change rate due to opening and closing of windows and, by 

consequence, on the energy need [25].  

Building’s regulations are becoming stricter, it follows that highly optimized 

building will be more and more widespread. This fact leads to the emphasis on 

better knowledge about occupancy behaviour models [6]. It is important not 

only to model more realistic scenarios but also quantify the impact of them on 

the energy need. 

Concluding, it is clear that OB has a significant impact on energy usage in 

buildings and represents one of the biggest uncertainties in modelling 

[16,17,26]. There is therefore a strong need to study not only how the 

characteristics of the buildings (called by Schweiker et al. [8] the hardware), 

such as envelopes and the efficiency of mechanical heating and cooling 

systems, etc, affect the building performance, but also, how the human 

behaviour (called the software [8]) does it too.  

Employing different and more accurate occupancy profiles in the building 

performance simulators can increase the reliability of the results, or at least, 

the calculation of their uncertainty bands. On the other hand, this approach 
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makes the modelling process more complex and time-consuming, and this 

should be taken into account [27]. Simulations to recognize the virtuous 

behaviours should be investigated in detail. The study of Fabi et al. [9], 

completed on the university campus of Politecnico of Turin, is quite relevant. 

They demonstrated that the “informed user” is able to affect the annual primary 

energy of the till -29 %. Also, the study of Deuble et al. [10] suggests that the 

people leaving in low energy buildings are tolerant about the internal comfort 

because they are aware of energy need to maintain certain internal levels, and 

states that “‘green’ buildings work best with ‘green’ occupants”. 

1.5. IEA and Annex 66 

The International Energy Agency (IEA) is focusing on the Occupancy 

Behaviour to stress how the phenomenon gained importance in the last years 

[28]. In 1977, the Agreement on Energy in Building and Communities has been 

created to manage research in building energy efficiency. Their priority 

research themes are:  

- integrated planning and building design,  

- building energy systems,  

- building envelope,  

- community scale methods, 

- and real building energy use. 

 

The IEA developed the Annex 66 project, from November 2013 to June 2017. 

This project aim was “to set up a standard occupant behaviour definition 

platform, establish a quantitative simulation methodology to model occupant 

behaviour in buildings and understand the influence of occupant behaviour on 

building energy use and the indoor environment” [28]. Twenty-four countries 

and fifty-five organizations participated in the project. The scope was to better 

understand how people act and how OB can be introduced in the 

methodologies and in the simulation tools. The final hope is to “bridge the gap” 

between the built environment and the occupant behaviour (Figure 1.3). 

Yan et al. [29] explained how the Annex 66 will help to establish a scientific 

methodology framework for the simulation of occupant behaviour, 

comprehending data collection, modelling and evaluation, and software 

integration. Based on previous related studies [30], Yan et al. grouped 

occupant models into three types:  
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- adaptive behaviour models, 

- non-adaptive behaviour models, 

- and occupancy models. 

In the first type, models predict the likelihood of an adaptive action to a given 

state or variable (for example, the probability of the use of the shading devices 

at a given outdoor illuminance). In the second typology, the models predict the 

lifetime of an occupant action or of a state of a building component with which 

the occupants interact (for example, the lifetime of the state of the lights, on 

or off, before it is changed). Finally, in the third category, the models predict 

the presence of people. It can be forecasted as timing or frequency of 

entrances and exits or as lifetime of an uninterrupted occupancy/vacancy 

state. 

 

Figure 1.3: Annex 66 - bridging the gap. From ref. [28] 

 

1.6. Occupant behaviour in modelling 

Occupant behaviour contributes significantly to the energy need of a building 

but studying it in depth is not a simple task. The occupancy issue requires a 

multidisciplinary approach, between engineering and social sciences to be 

completely understood. A wide range of driving forces has a significant 
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influence on the actions and presence of people in dwellings. IEA, in the final 

report of Annex 53 [25], grouped these forces into five main groups: biological, 

psychological, social, time, and physical parameters. It can be inferred that to 

create a model that assembles all these characteristics can be complex. 

Nowadays, six main typologies of occupant models are available to describe 

the phenomenon [6]: psychological models, average value models, 

deterministic models, probabilistic models, agent-based models, and action-

based models. These methods can be used for mainly two aims [25]: modelling 

the OB to understand the behaviour itself or to reveal the relationships with 

the energy demand. For the first aim, some examples are the theory of planned 

behaviour [31] or the MODE model of attitude-behaviour processes [32]. The 

second aim is the one of more interest concerning the energy field, and 

different methods can be used to achieve it, the list is reported in Figure 1.4 

(according to [25]). 

 

Figure 1.4: Scheme of the main methodology to model occupancy behaviour to predict 
energy demand in buildings. From ref. [25] 

 

Deterministic models use predefined typology of occupancy as input in 

computer simulations. The occupancy by nature is related to randomness 

elements, and the building simulation tools are not capable to include it in the 

deterministic equations of thermodynamics. The result is that usually the 

occupants are modelled with predefined fixed schedules or with rules (e.g. 

lights are turned on if the illuminance level is below a certain threshold). 

Probabilistic models use equations or algorithms to predict the probability of 

a state or action. These methods look at the occupants as if not all the actions 

were determined by an external or internal stimulus but including random 

behaviours. They account stochastic factors that have probabilities as results 

and not “single values”. Different methodologies can be implemented to 

develop this type of models, such as logistic regressions analysis, state-
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transition analyses with Markov chains, Monte Carlo modelling, and Artificial 

Neural Networks (ANN). 

Agent-based models allow representing occupants as individuals with 

autonomous attributes but also simulating the changes of these attributes in 

time. In these methods, each agent (that can be very different objects, from an 

individual human being to a component of the energy network) is in a specific 

state at the beginning of the simulation and it can change state over time due 

to interactions with other agents. Usually, an agent-based model is used in co-

simulation with a building model.  

Action-based models define occupancy as actions that can change the state of 

the location in all the ways (operating with windows, lights, air-conditioning, 

etc.). The movement in the building spaces and the control actions 

(opening/closing of windows, turning on/off of lights, of heating and cooling 

systems, or of the electric appliances) become through patterns, the 

description of the occupants and their behaviours.  

The average value models exploit the parameters of occupancy that influence 

the total energy use of the building for a specific time-step (daily, weekly, 

monthly, etc.). They use different analysis methodology (cluster analysis, 

crowd-sourced inventory databases, genetic algorithm or others) to create a 

simplified OB model regarding internal gains, domestic hot water use, lighting, 

appliances, heating and cooling or ventilation rates. They are suitable to be 

applied to large-scale residences with a large number of very similar or 

identical flats. The inputs data on occupancy can come from different sources, 

for example, statistical databases, time-use surveys, monitoring data of case 

study buildings, questionnaires and surveys, crowd-sourced inventory data, 

personal observations. This thesis will be focused on one methodology 

concerning average values but taking some tools from probabilistic models 

such as the ANN. 

1.7. Conclusion 

Ensuring that the energy use predicted in the design phase corresponds to the 

actual energy use, will be strictly important in the close future with the increase 

in the number of low-energy buildings and retrofitting projects and with the 

refining of regulations. Thus, an improvement in the description of the 

occupant behaviour is needed.  
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This thesis discusses one of the possible methods to analyse the monitored 

data and to apply a deduction approach to improve the energy model from the 

point of view of the occupancy behaviour. The presented methodology helps 

in the creation of yearly schedules for internal gains by appliances and 

presence of people for the energy modelling based on real monitored data. 

Differently from the most used deterministic approaches, this is a stochastic 

methodology that is able to include the intrinsic variability of occupants in the 

residential buildings.  

The input data is the hourly electric consumption per single flat, registered in 

some periods of the year. Using these data, the research defines a 

methodology to improve buildings’ occupancy assessment in energy modelling 

and defines average schedules for electric demand and users’ presence, which 

can be replicated in the context of residential housing. The process can be 

divided into three tasks: 

1. Generation of yearly schedules of electric demand starting from 

incomplete 15-min real registrations, 

2. Detection of yearly occupancy schedules from electricity consumption 

data, 

3. Assessment of the impact of different occupancy (considering both 

presence and electric consumptions) on the overall energy demand of 

the building. 
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2. State of the Art 

This thesis has the final aim of assessing the impact of occupants related 

schedules on the energy use of a residential building. To achieve the goal, a 

process made of subtasks has been established. The following state of art 

illustrates the approaches found in the literature to solve the problems faced 

in this work. It gives just a general overview of the assessment of occupants’ 

impact on energy modelling and then it goes into details in the review of the 

methods for clustering electric load data in buildings and deriving the potential 

presence of occupants from them.   

2.1. Introduction 

The uncertainties such as weather datasets, internal gains, efficiencies, 

occupants, etc., affect the results of energy modelling of buildings. To deal with 

this issue a single and unique output from an energy software is no more seen 

as an adequate and sufficient result. The tendency is to give a range of results, 

in which the actual energy demand will be, counting all the uncertainties.  

The traditional approach to energy modelling is the creation of a model with a 

deterministic set of inputs and the calculation of the energy use of this model. 

However, to better face the problem it is necessary to develop a set of models 

with different variables as inputs and calculate all the energy outputs of these 

models.  

Sun et al. [26], proposed a methodology to estimate the performance of 

energy conservation measures (ECM) that are influenced by uncertainties. The 

focus is mainly on occupants’ behaviour that is indicated as one of the biggest 

uncertainties that affect the effectiveness of building retrofits. Three types of 

OB style (austerity, normal and wasteful) were defined to represent different 

levels of energy consciousness in terms of the control of HVAC, window, lights 

and plug-in equipment. These behaviour’s styles are chosen to be 

representative of the extreme energy savers and spenders. The conclusion is 

that buildings occupied by energy spenders could consume more than twice 

the energy of the energy savers. However, the most interesting part is the 

actual methodology that starts from the variation of the inputs and ends with 

a range of results, in contrast with the traditional approach, as seen in 

Figure 2.1. 
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.  
 

Figure 2.1: Traditional and proposed approaches to energy conservation measures 
evaluation in building energy modelling. From ref. [26]  

 

Azar et al. [17] proposed a framework for Building Performance Simulation 

(BPS) and Agent-Based Modelling (ABM) using a regression surrogate model. 

Such methodology tries to overcome the limitations of BPS in modelling human 

behaviour. In this study, the impact of uncertainty in human actions on energy 

performance is quantified. The conclusion is that the level of control given to 

occupants and/or facility managers, and the way in which these uncertainties 

are taken into account can influence the energy performance of buildings and 

can highly change the range of the possible actual results (Figure 2.2). 

Also, the study of Gaetani et al. [33], shows how uncertainties can influence 

the building performance predictions. In their opinion, it is crucial to include 

the modelling of uncertainties within BPS models. The final aim of the study is 

a step-by-step strategy – the fit-for-purpose OB modelling (FFP-OBm) 

strategy – to select the appropriate OB modelling complexity. However, 

simulations are run also to assess the influence of thermophysical properties 

uncertainty on energy demand for cooling and heating and to assess the 
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effects of increasing modelling complexity for light and blinds operation. The 

result is a series of ranges and still not a single value that tries to predict 

“precisely” the actual energy demand of the considered building office.   

 
 

Figure 2.2: Ranges of energy results based on different level of controls and different 
uncertainties analyses. From ref. [17]  

 

2.2. Electric load clustering 

This thesis tries to find a stochastic methodology, in contrast with the standard 

deterministic approaches, to deal with the occupants’ behaviour in a real case 

study. To achieve this goal, clusters with different scenarios of internal gains 

due to occupants should be developed starting from the registered electric 

data. Regarding this issue, the recent studies are mainly centred on the deeper 

understanding of customers’ daily load patterns for electric suppliers. However, 

they are mainly on large scale and/or on not-residential buildings. 

Chicco et al. [34] studied Load Pattern-Based Classification of Electricity 

Customers with the aim to gain accurate knowledge of the customers’ 

consumption patterns for electricity providers in competitive electricity 
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markets. In their study, two methods were implemented to achieve the result: 

a modified follow-the-leader algorithm and a self-organizing map. The 

conclusion is that both the two methods can effectively assist the electricity 

providers in performing customer classification. The different, but to some 

extent complementary, characteristics of the two methods, suggest using them 

in a way depending on the objectives. This paper shows a case study not 

related to residential buildings though. All surveyed customers were industrial, 

services, and small-business activity buildings. Moreover, a sorting on the 

original data was performed since the measured load patterns refer only to 

weekdays. Also in the following work of Gianfranco Chicco [35], the case study 

consists of 400 load patterns related to non-residential costumers in a 

representative weekday of the intermediate season only. 

Tsekouras et al. [36] developed a two-stage methodology for the classification 

of electricity customers of the Greek power system. It is based on unsupervised 

pattern recognition methods, like k-means, Kohonen adaptive vector 

quantization, fuzzy k-means, and hierarchical clustering. In the first stage, 

representative load curves of various customers are deducted with the help of 

pattern recognition methods. In the second stage, a classification of the 

customers is carried out with the same methods of the first stage. The 

contributions of this research are the formation of typical daily load curves for 

each customer, the optimization of the unsupervised pattern recognition 

methods’ features and the comparison of the performance of the clustering 

algorithms. However, the study considered only the industrial customers of the 

company, being of more interest in that specific case. 

Hernández et al. [37] developed a well-structured methodology composed by 

a cascade application of a Self-Organizing Map (SOM) and the clustering k-

means algorithm to understand the energy consumption patterns. They 

decreased the environments of study from regions and nations to smaller ones. 

The results show that the system adequately finds different behaviour patterns 

without supervision and without any prior knowledge about the data. The 

study gives very good results, but it concerns an industrial park in Spain, in 

which the differences between weekend and weekdays are quite clear, and it 

is not tested in a residential case study. The research pointed out how the 

cascade method of SOM and k-means is helpful in noise reduction in confused 

databases, referring to the work of Vesanto et al. [38] focused on Clustering of 

Self-Organizing Map. 
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Deshani et al. [39] proposed an accurate prediction of electricity demand 

through improved artificial intelligent approaches. This research shows how a 

cluster analysis performed to group similar day types, could contribute 

towards selecting a better set of neuro-forecasters in neural networks. Daily 

total electricity demands for five years were considered for the analysis and 

each date was assigned to one of the thirteen day-types. Three different 

clusters were found using Silhouette plots, and thus three neuro-forecasters 

were used for predictions. This paper illustrates the proposed modified neural 

network procedure using electricity demand data for all Sri Lanka, analysing 

the daily total electricity demands and not focusing on daily load patterns nor 

residential buildings. 

Panapakidis et al. [40] developed a methodology for the investigation of the 

electrical behaviour of buildings, using clustering techniques, exploiting the 

incorporation of smart grid technologies in the building sector. Utilizing a 

university campus as a case study, the proposed methodology is applied to the 

load curves of different buildings leading to the determination of an optimum 

clustering procedure. In fact, the spread of the smart grid technologies enables 

automatic collection of information of the customer’s behaviour along with the 

building’s performance. However, the large quantity of recorded data requires 

efficient processing and interpretation. The methodology presented in this 

research is well described, however, the residential sector, in which a lot of 

variables and uncertainties play important roles, is still not studied.  

Also in the study of Grzegorz Dudek [41], to solve the issue of clustering and 

forecasting, the importance of Machine Learning techniques is stressed. In this 

work, several methods based on neural networks are proposed and compared, 

such as multilayer perceptron, radial basis function neural network, generalized 

regression neural network, fuzzy counter propagation neural networks, and 

self-organizing maps. The study nevertheless, concerns data of all Poland on a 

national scale and the method is not implemented on the single residential 

building. 

Finally, the new work of Capozzoli et al. [42] proposed a general framework 

on load profiles characterisation in buildings, based on the recent scientific 

literature. The methodology concerns a combination of different pattern 

recognition and classification algorithms. The novelty of the research is the 

multi-level and multi-scale implementation of the methods, from sub-system 
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to whole building and from a single building to the stock of buildings. Anyhow, 

the case study does not concern a residential building, in which the daily load 

patterns are noisy and confused. 

Some other researchers focused their attention on the residential sector. 

However, the methodologies always imply very big data samples, or they are 

accompanied by the detailed survey.  

Rhodes et al. [43] studied the measured electricity use data from 103 homes in 

Austin, Texas to determine the shape of demand profiles, to optimise the 

number of normalized representative profiles and to draw correlations based 

on survey data from occupants. The k-means algorithm was implemented to 

cluster the electricity patterns and a regression method was used to determine 

if homeowner survey responses could serve as predictors for the clustering 

results. This analysis found that Austin homes fall into one of two seasonal 

groups with some homes using more expensive electricity than others. The 

regression results indicate that variables concerning the characteristics of the 

family (work, hours of television watched per week, and education levels) have 

significant correlations with average profile shape.  

Also, McLoughlin et al. [44] proposed a clustering methodology in the 

residential sector for Ireland starting from electricity smart metering data. They 

used the method of data mining, that allows for the data to be segmented 

before aggregation processes are applied. Moreover, segmentation allows for 

dimension reduction thus enabling easier manipulation of the data. The study 

implemented three of the most widely used unsupervised clustering methods: 

k-means, k-medoid and Self Organising Maps (SOM). The best performing 

technique is then evaluated in order to segment individual households into 

clusters based on their pattern of electricity use across the day. After this 

process, each class load profile is linked to household characteristics by 

applying a multi-nominal logistic regression to the data. As a result, households 

and the manner with which they use electricity in the home can be 

characterised based on individual customer attributes. 

Both the studies of Viegas et al. [45,46] include surveys to better understand 

the differences between the tenants of residential buildings. In the first work, 

they proposed a methodology predicting the typical daily load profile of 

electricity usage based on static data obtained from surveys, with the intent to 
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determine consumer segments based on the metering data using the k-means 

clustering algorithm, to correlate survey data to the segments, and to develop 

statistical and machine learning classification models to predict the demand 

profile of the consumers. Whilst in the second work, they proposed a 

methodology for predicting the typical daily load profile of electricity usage 

based on static data using fuzzy clustering and modelling.  

The new work of Ali et al. [47] started from a data set similar to the one 

available for the study reported in the present thesis, although with a far wider 

data sample of 400 houses. They proposed a study on data mining techniques 

(including exploratory data analysis and pre-processing, frequent patterns 

mining and associations, classification /characterization, clustering and outlier 

deduction) to explain and evaluate which techniques is useful for the better 

understanding of electricity load profile consumption data to improve the new 

power system by understanding large-scale load profile data. 

2.3. Occupants’ presence deduction 

The second task of this thesis is the determination of occupancy profiles. This 

topic represents one of the main issues in commercial and residential buildings. 

For example, heating, cooling, ventilation and lighting systems depend on the 

estimation of occupancy to work correctly. Even if the potential applications 

of occupancy detection are numerous, it is still complex and expensive. The 

analyses with sensors, like in the work of Jorissen et al. [48] or Kim et al. [49], 

are the common method to register very big data of occupancy. The prevailing 

detectors are passive infrared (PIR) sensors, cameras or magnetic reed 

switches. Nevertheless, they are expensive and complex, they must be 

purchased, installed, calibrated, powered and maintained. Moreover, the 

privacy issues inhibit the implementation of such methods in the residential 

buildings.  

Another quite simple method to gain data on occupancy is Time-User Surveys 

(TUS), as reported in the study of Aerts et al. [50]. Their methodology uses 

data from Belgium Time Use Survey of 2005. The novelty of the model is the 

introduction of “typical occupancy patterns”. Hierarchical clustering 

techniques on individual occupancy profiles are implemented and then, 

probabilistic occupancy profiles are obtained applying the probability to transit 

from a certain state to another and the duration probability, which both are 

time-dependent. Also, the methodology proposed by Buttitta et al. [22] 
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introduced a new occupancy model from Time Use Survey data, using data 

mining clustering techniques. The methodology is divided into two steps: 

identification and grouping of households with similar daily occupancy profiles, 

and then, the creation of probabilistic occupancy profiles. However, these 

relatively simple methods can be only used in residential dwelling energy 

modelling that use occupancy time-series as inputs, not yet available in this 

case study.  

The papers of Kleiminger et al. [51,52] are in the intersection between two main 

areas of study: 

− sensing deployments to detect occupancy and improve energy 

efficiency in residential and commercial buildings; 

− analysis of electricity consumption data to observe and influence users’ 

electricity consumption behaviour. 

The presented methodology, firstly proposed by Kleiminger in his work of 2013 

[51]and then improved in his work of 2015 [52] exploited the electricity meters 

as occupancy sensors. They showed that supervised machine learning 

algorithms can extract occupancy information with an accuracy between 83% 

and 94%. They use a feature set of 10 and 35 characteristics of the registered 

electric load that are related somehow to the activation state of appliances, 

hence to the presence of occupants. 

2.4. Conclusion 

This thesis work is focused specifically on residential buildings provided with a 

relatively small data sample and no surveys. This represents a typical work 

condition for professional though it has not yet been widely studied in the 

literature. Moreover, the proposed methodology is a comprehensive process 

that can be followed to improve the energy modelling results from the point of 

view of occupants’ behaviour.  

Specifically, the work of Ali et al. [47], is relevant for the overall process of data 

mining techniques that can be followed. Adaptation of the studies of 

Hernández et al. [37] and Vesanto et al. [38] can be implemented and 

optimized to achieve the first task of the problem. Finally, to accomplish the 

task of presence detection, the papers of Kleiminger et al. [51,52] are adjusted 

and refitted to the characteristics of the available data.  
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From the nature of the available data and its size, data mining and 

unsupervised machine learning emerged as promising techniques in this case 

study, for both tasks. These methods are indeed useful for noise reduction [53] 

and for pattern recognition in a wide variety of data samples (confused, large-

scale, small, etc.). 
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3. Machine Learning and Artificial Neural 

Networks 

Due to the characteristics of the database available for the case study reported 

in this thesis, common statistical methods are not sufficient to extract an 

adequate insight. Machine Learning techniques were therefore implemented. 

These complex topics are usually outside of the building engineering 

educational programs; thus, this chapter is intended to provide a knowledge 

background and a brief summary of the theory of Machine Learning and 

Artificial Neural Network.  

The theory explained in this chapter is extracted from the following source 

books: Introduction to Machine Learning by Ethem Alpaydin [54], Neural 

Network and Machine Learning by Simon Haykin [55], Machine Learning by 

Tom Mitchell [56], A Brief Introduction to Neural Networks by David Kriesel 

[57], Business Intelligence by Carlo Vercellis [58], Fundamentals of Neural 

Networks by Laurene Fausett [59].  

3.1. Machine learning 

The sequence of instructions to reach an output starting from an input is called 

algorithm. Sometimes, the instruction is easy and available, but, in complex 

problems, this is not always true. Analyses such as pattern recognition, 

regression or classification in a large dataset can no longer be done through 

manual processes. The idea is to transfer the task to find the best configuration 

of an algorithm to solve a problem to the machine.  Moreover, people who are 

able to perform such analyses are rare and manual analysis is time expensive. 

For these reasons, there is a growing interest in techniques that can be run 

automatically by machine that can analyse data and automatically extract 

information from them, learning from them. Obviously, in most cases, a base 

knowledge has to be provided to the machine, to learn from it. Machine 

learning means programming computers to find the best solution to a problem 

using past experiences or example data. The assumption of the machine is that 

the near future will be quite similar to the time in which the example data was 

collected, and the prediction also is expected to be right. The model may be 

predictive, to make predictions in the future, or descriptive, to gain knowledge 

from data, or both. The machine will be able to detect regularities and patterns 

in the close future learning from the past, even if the process may be difficult 
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to be identified completely, result with a good and useful approximation is 

possible. Psychology, cognitive science or neuroscience aim to understand the 

process underlying the learning process in animals and humans. On the 

contrary, in engineering, the aim of machine learning is to build useful systems 

to fit models to data and reproduce the process of induction. Scientists collect 

data making experiments and observations, then they try to extract knowledge 

finding a simple model that explains what the observed in the data. This is what 

machine learning does: it extracts general rules from a set of examples to 

generalize the outputs to new similar cases.  

3.1.1. Learning processes 

Based on the presence or not of a target feature, the learning process can be 

subdivided into three main categories: supervised, unsupervised and 

reinforcement learning.  

In supervised learning, a target feature is set for each record: it represents the 

ground truth, the sure result, and can be a class or a continuous quantity. In 

unsupervised learning, no target feature is expressed, and the aim is to find 

similarities and differences in the data. The group of reinforcement learning 

methods is characterized by the presence of a target, but not an absolute one 

as in supervised learning, and it depends on a sequence of targets.  

Supervised learning 

The supervised learning can be thought as learning with a “teacher”. The 

“teacher” has knowledge of the environment and teaches to the machine a 

target attribute with a set of input-output examples without explaining the 

environment itself. The first example is submitted to the machine and the 

teacher; so the teacher provides the machine the desired response for that 

example. The machine can adjust its features to reach the teacher’s response 

as close as possible. The adjustments are performed iteratively, step-by-step, 

till the smaller error between the teacher’s output (the desired response) and 

the machine’s output (the actual response) is reached. After a series of 

examples with the teacher, the machine can be trusted to be left by itself with 

new examples. The supervised learning processes are oriented towards 

prediction and interpretation of the data based on a target attribute, that has 

to be provided.  
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To summarize, the supervised learning procedures correspond to the following 

steps: 

1. entering the input pattern, 

2. forward propagation of the input and generation of the output,  

3. comparing the output with the desired output (teaching input) provides 

an error vector, 

4. corrections of the features are calculated based on the error vector, 

5. corrections are applied to the features of the model. 

Unsupervised learning 

In unsupervised learning, there is no external teacher to oversee the process. 

Hence, there are not labelled examples from which the machine can learn. The 

aim, in this case, is to find regularities in the input. The data are structured such 

that certain patterns occur more often than others and the machine itself finds 

the way to group the similarities.  

The unsupervised learning procedures correspond to the following steps: 

1. initializing the regularity groups, 

2. dividing all the data into these groups, 

3. updating the group's features based on the data, 

4. if the grouping is unchanged, stop or, return to step 2. 

One of the drawbacks of this procedure is that is not always possible to 

understand how the machine learnt to deal with the data. Some features, which 

are important for a scientist, might not be important for the machine and vice-

versa. Anyway, unsupervised learning is a powerful and reliable technique that 

can be helpful when nothing can be set for sure in the dataset.  

Reinforcement learning 

The reinforcement learning is linked with sequences of output. In some cases, 

a single output is not important, but a series of output is significant. It is not 

possible to define the best output in an intermediate state, but an output is 

good if it is part of a good sequence. Example of good series of output is given 

to the machine as the desired response, but it is the machine itself that finds 

the relation between the single action and the good series. Reinforcement 

learning is difficult to perform for two basic reasons:  
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- there is not a teacher that provides the desired output step by step, 

- the learning machine must be able to assign credit and blame 

individually to each input in the sequence of time steps that led to the 

outcome. 

3.1.2. Applications 

Every typology of the learning process has its own practical applications 

(Figure 3.1): the supervised methods are implemented to classifications and 

regression analyses; the unsupervised learning processes are used to clustering 

analyses and dimensionality reduction in a big dataset; the reinforcement 

methods are used to learn to react to a series of data.  

 

 

Figure 3.1: Applications of machine learning and of learning processes. From ref. [60] 

 

Six basic machine learning applications can be identified: 

- classification, 

- regression, 
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- time-series analysis, 

- clustering, 

- association rules, 

- description and visualization. 

The first three tasks use supervised processes since a target sample exists that 

must be explained, based on available features or throughout its evolution in 

time. The other three tasks use unsupervised methods and their goal is to 

express the interrelationships among the available features.  

Classification 

Classification problems are the simplest example of the supervised process. 

Usually, each record of a dataset, whose target class is known, is accessible. 

The algorithm is able to predict the target class of future observations learning 

from the available observations of the past. In classification, the target attribute 

is a categorical variable. Therefore, the algorithm output is part of a finite and 

usually small number of targets. In most applications, the output can also be 

represented by a simple binary variable. It is the categorical nature of the 

output that distinguishes the classification from the regression analyses.  

Regression  

The process is the same of classification, but in this case, the target is not 

discrete but continuous. Again, looking at past examples, the algorithm can 

predict a target value for each new observation. Sometimes, a classification 

problem may be turned into a regression problem and vice versa. 

Time series  

In this typology a temporal dynamic is present. The algorithm is used to predict 

the value of the target variable for one or more future periods.  

Clustering 

Clustering means grouping a data set into N number of clusters Ci, i =1, 2, …, N. 

Usually, it implies that this partitioning is unsupervised. Clustering algorithms 

are able to divide the data into a number of groups trying to minimize some 

criterion or error functions. A cluster is a homogeneous subgroup existing 

within a population. Clustering processes are able to divide the dataset into a 

given number of groups sharing similar features so that the data in different 

clusters have distinctive characteristics. Clustering methods are unsupervised 

procedures because there are no predefined classes or reference examples 
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indicating the target class, so the machine itself finds the useful features for the 

subdivision.   

Association rules  

Association rules are implemented to discover recurring associations between 

groups in a dataset. They are different from clustering because they do not 

divide the dataset into groups, but they only underline frequent relations in the 

features of the dataset. 

Description and visualization  

Sometimes, the purpose is to provide a simple and concise representation of 

the information stored in a large dataset. Differently, from clustering and 

association rules, the descriptive analysis does not subdivide the dataset. These 

techniques are used to reach a concise description and representation of a 

complex dataset. 

3.1.3. The algorithms 

In this paragraph, the algorithms used in this thesis are explained more in detail. 

The k-means 

The k-means algorithm is one of the simplest and most commonly used 

unsupervised learning algorithms. It solves the problem of clustering given a 

fixed number (k) of centroids, one for each cluster. The algorithm takes each 

input of the dataset and associates it to the nearest centroid, in this way the 

early grouping is done. Next, it recalculates the k centroids as barycentre of 

the clusters resulting from the previous step. The inputs are again associate to 

the centroids and a new complete iteration is computed. The calculation ends 

when the centroids change their location of a meaningful distance and the 

inputs associated with a specific centroid become the cluster. For this 

clustering technique, the input can move from cluster to cluster at each 

timestep, during the analysis.  

An example is given in Figures 3.2 a-f. The training examples are shown as dots 

(Figure 3.2 a) and the aim of the analysis is to divide them into two clusters. 

The first two centroids are set randomly (Figure 3.2 b). The clusters’ centroids 

are shown as crosses. The initialization is done classifying the closest dots to 

the first crosses (Figure 3.2 c) and calculating the new centroids (Figure 3.2 d). 

Then these two steps are repeated iteratively (Figure 3.2 e) till the last 
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grouping is performed (Figure 3.2 f). In this simple example, the last Figure is 

obviously the best result, but some real problems are not so simple, and they 

need thousands of iterations to finish. For these complex cases, usually, a 

maximum number of iteration is fixed also to decrease the computation time.  

  

 

Figures 3.2: Representation of the functioning of the k-means algorithm: Training examples 
are shown as dots, and cluster centroids are shown as crosses. (a) Original dataset. (b) 

nearest initial cluster centroids. (c-f) Illustration of running two iterations of k-means. From 
ref. [61] 

 

K-Nearest-Neighbours 

The k-Nearest-Neighbours (KNN) algorithm is used as supervised or 

unsupervised learning algorithms for clustering a dataset. It connects each data 

point to the k closest neighbours. Then, these groups are defined as clusters. 

The advantage of this procedure is that the number of clusters occurs by itself. 

It simply chooses the output looking at the k-nearest examples.  

A simple example is represented in Figure 3.3a-e. The starting space is 

composed of three plus and six minus symbols and the aim is to understand to 

which group the red star belongs (Figure 3.3 a). Imposing k=1 the star will be 

in the plus group (Figure 3.3 b), increasing k=2 the star cannot be classified, 

going to k=3 the star is again in the plus group. Going further, till k=9 (that 

represent all the known sample) the star will be classified as minus because in 

the total group the minus is present in a larger amount (Figure 3.3e). Even if 

the star is very close to the three plus present in the sample, it can be classified 

as plus or minus depending on the number of neighbours considered.  
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Figures 3.3: Example of KNN the problem (b) clustering through KNN with k=1 and the 
output will be “plus”, (c) k=2 and the output will be unknown, (d) k=3 and the output will 

be “plus”, (e) k=9 and the output will be “minus” 
 

3.2. Artificial Neural Networks 

Artificial Neural Networks (ANN), consist of computational algorithms that try 

to simulate the behaviour of a biologic brain and its neurons. They are 

programmed to be capable of machine learning and pattern recognition and 

consequently to solve many types of problems, such as mapping, clustering or 

constrained optimization. 

3.2.1. Biological motivations and components 

The study of the ANN started around 1950 and its first aim was to understand 

the brain and to emulate its capacities. The brain is characterized by the 

capability to learn and change. Moreover, the notions are stored in a distributed 

way, and errors and faults affect in a minor measure its memory. On the other 

hand, computers are able to perform very complex calculations in a very short 

time, but they are passive: the largest part is only memory and data storage.  

The characteristics, taken from Biology, are: 

- self-organization and learning capability, 
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- generalization capability, 

- fault tolerance.  

Clearly, the starting point was the knowledge of the brain and how it works. 

Hence, the ANN were developed starting from the following assumptions: 

- information processing occurs in many simple elements called neurons, 

- signals are passed between neuron through connections links called 

synapses, 

- each connection link has an associated weight, which, in a typical neural 

net, multiplies the signal transmitted, 

- each neuron applies an activation function (usually nonlinear) to its net 

input (sum of weighted input signals) to determine its output signal.  

3.2.2. The Neuron 

To deeply understand how an ANN works, the starting point is studying its 

basic, the neuron. It is composed of three elements (Figure 3.4.): 

- a group of connecting links, also called synapses, each of which is 

characterized by a weight or strength. Specifically, a signal xj at the 

input of synapse j connected to neuron k is multiplied by the synaptic 

weight wkj. The first subscript in wkj refers to the neuron in question, and 

the second subscript refers to the input end of the synapse to which the 

weight refers. The synaptic weight of an artificial neuron may lie in a 

range that includes negative as well as positive values, 

- an adder for summing the input signals, weighted by the respective 

synaptic strengths of the neuron; the operations described here 

constitute a linear combiner. 

- an activation function to limit the amplitude of the output of a neuron. 

The activation function limits the permissible amplitude range of the 

output signal to some finite value. 
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Figure 3.4: Model of a neuron, labelled k. From ref. [55]  

 

The externally applied bias, denoted by bk, can be present to increase or lower 

the net input of the activation function.  

In mathematical terms the neuron k can be described by the equations: 

𝑣𝑘 = ∑ 𝜔𝑘𝑗 ∙ 𝑥𝑗

𝑚

𝑗=0

 

𝑦𝑘 = 𝜑(𝑣𝑘) 

In which 

𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 

where x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the respective synaptic 

weights of neuron k; uk (not shown in Figure 2.2.) is the linear combiner output 

due to the input signals; bk is the bias; φ is the activation function; and yk is the 

output signal of the neuron. The use of bias bk has the effect of applying an 

affine transformation to the output uk of the linear combiner in the model of 

Figure 3.2. 
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The activation function, defined as φ(v), defines the final output of a neuron 

with an induced local field v. Two main types of activation functions are 

described: the threshold function and the sigmoid function. 

The threshold function, also called Heaviside function (Figure 3.5.a), is defined 

as: 

𝜑(𝑣) = {
1     𝑖𝑓 𝑣 ≥ 0
0     𝑖𝑓 𝑣 < 0

 

Hence, the output of the neuron k will be: 

𝑦𝑘 = {
1     𝑖𝑓 𝑣𝑘 ≥ 0
0     𝑖𝑓 𝑣𝑘  < 0

 

In which 

  

𝑣𝑘 = ∑ 𝜔𝑘𝑗 ∙ 𝑥𝑗

𝑚

𝑗=0

+ 𝑏𝑘 

The sigmoid function (Figure 3.5.b) is a strictly increasing function that is 

characterized by a graceful balance between linear and nonlinear behaviour. 

An example is a logistic function defined by: 

𝜑(𝑣) =
1

1 + exp (−𝑎𝑣)
 

In which 𝑎 is the slope parameter of the function. With the variation of the 

parameter  𝑎, the sigmoid functions can have different slopes, for 𝑎 

approaching infinite the sigmoid function becomes a threshold function. This 

type of function assumes a continuous range of values from 0 to 1 and is 

differentiable. 

In non-mathematical terms, the input signals reach the neuron and are 

weighted in the links, and the sum of all these signals is transferred to the 

activation function. The function gives back the output referred to the range in 

which the sum of the inputs lays. After one cycle, it is understood if the neuron 

is activated or not.  
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Figure 3.5: (a) threshold function, (b) sigmoid function for varying 𝑎. From ref. [55] 

 

3.2.3. Network architectures 

Neurons are usually organized in layers, how these layers are organized, and 

their general structure is called architecture. Three main classes of network 

architectures (further organization of the layers) can be identified. 

The simplest form of layered network is characterized by input layers that 

projects into an output layer of neurons (computation nodes), but not vice 

versa. This typology is called Single-Layer Feedforward Networks (Figure 

3.6.a). The input layer is not counted because no computation is performed 

there.  

The second class of the feedforward neural networks is characterized by one 

or more hidden layers. The term “hidden” refers to the fact that these neurons 

are not seen directly from the input or the output layers, but they intervene 

between them. In this case, the computation layers are more than one, and for 

this reason, are called Multilayer Feedforward Networks (Figure 3.6. b). The 

input layer is connected to the first hidden layer, and the output signal is 

transferred to the third layer that can be the output itself or another hidden 

layer, and so on. Typically, the neurons in each layer of the network have as 

their inputs the output signals of the preceding layer only. A feedforward 

network with m source nodes, h1 neurons in the first hidden layer, h2 neurons in 

the second hidden layer, and q neurons in the output layer is referred to as an 

x–h1–h2–y network (e.g. the network in Figure 3.6. b, is called 10-4-2 network). 

This type of network can be fully connected, when every node in each layer is 

connected to every node in the next layer, or partially connected when some 

of the links are missing. 
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The third main class, of less interest in this case study, is composed of the 

recurrent neural networks. In this typology, there is at least one feedback loop. 

These loops can be self-feedback (within the same neuron), or between 

neurons in the same layers. The presence of feedback loops affects the learning 

capability of the network and its performance but increases the complexity and 

the running time of a network.  

          

Figure 3.6: (a) Single-Layer Feedforward Network, (b) Multilayer Feedforward Networks 

(10-4-2) 

3.2.4. Learning procedures and the training  

The most interesting capability of the networks is to learn with problems by 

means of training and, after sufficient training, to be able to generalize. This 

means that the network will be able to solve unknown problems of the same 

typology. There are different ways in which a network can learn, and these are: 

- developing new connections, 

- deleting existing connections, 

- changing connecting weights, 

- changing the threshold values of neurons, 

- varying one or more of the three neuron functions (activation, 

propagation and output function), 
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- developing new neurons, 

- deleting existing neurons. 

The change of the connecting weights is the most common method. It implies 

that there is always a rule according to the modification of the weights, and it 

can be described as an algorithm.  

A training set (P) is a set of training patterns, which are used to train the neural 

net. Different typologies can be described based on the paradigm of learning, 

that it can be unsupervised, reinforcement and supervised learning. In the first 

case, the training set consists only of input patterns, and the net tries to find 

similarities and classes by itself. In the second case, the network, after a 

sequence, receives a value indicating whether the result is right or wrong and, 

possibly, how much it is far from the correct answer. In the last case, the 

training set consists of the input patterns and correct desired outputs so that 

the network receives a precise error vector.  

Let’s suppose to have a single layer neuron with randomly set weights with the 

aim to teach a function by means of training sample. The output of this neuron 

is compared with the ground truth and if there is a mismatch the weights are 

changed and checked again till the output is very close to the ground truth 

value, thus the error is zero or very small. Generally, the aim is to tweak the 

weights in order to minimize the error.  

The learning target is: 

𝑦 ≈ 𝑦̂       𝑜𝑟       𝐸𝑟𝑟 ≈ 0 

In which 𝑦 is the output of the neuron,  𝑦̂ is the ground truth value and Err is the 

error. The error can be calculated with several error functions, some of which 

are: 

𝐸𝑟𝑟 = 𝑦 − 𝑦̂ 

𝐸𝑟𝑟 = |𝑦 − 𝑦̂| 

𝐸𝑟𝑟 =
1

2
|𝑦 − 𝑦̂|2 

𝐸𝑟𝑟 = √(𝑦 − 𝑦̂)2 
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The error function collects all the possible values of output due to all the 

combination of weights of a neuron.  

3.2.5. Gradient descent procedure 

In a gradient descent procedure, a function is minimized or maximized. The 

gradient is a vector 𝑔 defined for any differentiable point of a function that 

points the steepest ascent. The gradient is expressed with the nabla operator 

∇ and the overall notation is: 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = ∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

The gradient descent procedure consists of going downhill step by step, from 

any starting point to minimum toward 𝑔. In the case of neural networks, the 

gradient is a function of the weights, and the function is the error-one that is 

intended to be minimized. In Figure 3.7 an example of a two-dimension 

problem is described; in Figure 3.7.a three-dimensional representation of an 

error function is drawn with the values of the two weights on x- and y- axies 

and the error value on the z-axis. In Figure 3.7.b a top view of the function is 

presented where the steps are visible as the related gradient. Obviously, this is 

just an example and in neural networks the functions are usually multi-

dimensional. Errors may occur during a gradient descent (Figure 3.8), like 

detecting a local minimum (a), quasi-standstill with small gradient (b), 

oscillation in canyons (c), or leaving good minima (d). 

 

 
a           b 

Figure 3.7: (a) 3D view of an error function, (b) gradient descent procedure step by step. 
From ref.  [57]  
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Figure 3.8: Possible errors in the gradient descent procedure. From ref. [57] 

 

The training stops when the error is small enough (minimum or a value close 

enough to the minimum) or when the maximum number of iterations, which is 

specified in the configuration of the algorithm, is reached. In fact, in complex 

cases or in unsupervised networks, where the ground truth is not available, is 

not easy, or is even impossible, to reach a small error. 

Finally, a training is computed when all the inputs are submitted to the network. 

An epoch is the group of all the training submitted in a procedure.  

3.2.6. The Self-Organizing Map 

The Self-Organizing Feature Map (shortly, Self-Organizing Map, SOM) is an 

unsupervised neural network method. It was firstly described by Teuvo 

Kohonen [62], and for this reason, the SOM is also known as Kohonen Map. This 

technique is able to classify data into clusters. Moreover, the SOM can display 

multidimensional data in a low-dimensional grid, and it represents, indeed, also 

a powerful visualization tool. However, SOMs do not describe what the neurons 

calculate but only which neuron is active at the moment. The interest is not in 

the exact output of the neuron but in which neuron provides the output.  

The Map can be mono-dimensional, in which the neurons are like pearls on a 

string (Figure 3.9 a). In this case, every neuron has two neighbours, except for 

the two end neurons. Another type of map is the two-dimensional one. The 

simplest is represented by a square array of neurons, each with four neighbours 
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except the one on the vertex which have only teo neighbours (Figure 3.9 b). A 

very common typology is represented by a sort of honeycomb grid, and the 

neighbourhood rises to 6 for each neuron (Figure 3.9 c). Irregular two-, three-, 

or more-dimensional grids are possible but less used.  

 
    a         b                c 
 

Figure 3.9: (a) mono-dimensional grid map, (b) two-dimensional square-array grid map, 
(c) two-dimensional honeycomb grid map 

The architecture 

A SOM neuron k does not occupy a fixed position ck (a centre) in the input 

space but it moves with the training. A self-organizing map is a set K of these 

neurons. If an input vector is entered, the neuron closest to the input pattern is 

activated, in the input space. The dimension of the input space is referred to as 

N. The neurons are interconnected by neighbourhood relationships. These 

neighbourhood relationships are called topology. The training of a SOM is 

highly influenced by the topology. It is defined by the topology function h (i, k, 

t), where i is the winner neuron, k the neuron to be adapted and t the timestep. 

The dimension of the topology is referred to as G. 

The neurons structure is a single-layer architecture (Figure 3.10): the input layer 

is composed by a specific number of neurons equal to the number of input 

variables, the actual neurons layer is a grid of nx × ny neurons operating in 

parallel. The input layer has the only role to distribute the information to the 

computational layer.  
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Figure 3.10: Self-Organizing Map Architecture 

 

Competitive learning approach 

The SOM uses a competitive learning approach: when an input vector is 

presented to the network, the similarity with each neuron’s synaptic weight is 

computed and the weight of the neuron more similar to the input vector is the 

winner. The important feature of the SOM is that not only the weight of the 

winner is modified to be closer to the input vector, but also that the weights of 

all neurons within a certain neighbourhood of the winning one are updated. 

This means that the neurons, that at the beginning are organized according to 

a topology function, can move during the iterations to best fit with the inputs 

(Figure 3.11 shows the initial position of a hexagonal grid and the final position 

after 200 iterations). 

    

Figures 3.11: Initial and Final position of the neurons’ weights  
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The training 

The training of the SOM is performed in the following steps: 

1. the network is initialized with random neuron centres 𝑐𝑘 ∈ 𝑅𝑁  from the 

input space, 

2. a stimulus, i.e. a point p, is selected from the input space 𝑅𝑁 and now this 

stimulus is entered into the network, 

3. the distance ||𝑝 − 𝑐𝑘|| is measured for every neuron k in the network, 

4. the winner neuron i is determined, which is the neuron that has the 

smallest distance to p, i.e. which fulfils the condition 

||𝑝 − 𝑐𝑖|| ≤ ||𝑝 − 𝑐𝑘||        ∀ 𝑘 ≠ 𝑖 

5. the neuron centres are moved within the input space according to the 

rule 

∆𝑐𝑘 = 𝜂(𝑡) ∙ ℎ(𝑖, 𝑘, 𝑡) ∙ (𝑝 − 𝑐𝑘) 

where the values 𝑐𝑘 are simply added to the existing centers. The last 

factor shows that the change in position of the neurons k is proportional 

to the distance to the input pattern p and, as usual, to a time-dependent 

learning rate (t). The above-mentioned network topology exerts its 

influence by means of the function h(i, k, t). 

𝜂 is the learning rate. Its function is to avoid that the later training phases 

forcefully pull the entire map towards a new pattern. For this reason, the SOMs 

often work with temporally monotonically decreasing learning rates and 

neighbourhood sizes. This means that at the beginning of the learning process 

a moving neuron "pulls along” many neurons in its vicinity, in this way the 

randomly initialized network can unfold fast and properly. At the end of the 

process, the network is “stiff” and only a few neurons are moved.  

The topology function 

The topology function ℎ(𝑖, 𝑘, 𝑡) is not defined on the input space but on the grid, 

and it represents the neighbourhood relationships between the neurons. It can 

be time-dependent. The parameter k is the index running through all neurons, 

and the parameter i is the index of the winner neuron. The topology function 

must be unimodal, meaning that it must have exactly one maximum. This 

maximum must be next to the winner neuron i, for which the distance to itself 

certainly is zero. 
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A simple example 

To better understand the  SOMs a simple example from [57] is explained step-

by-step.  

The SOM taken into account is a two-dimensional space, N = 2, while the grid 

structure is one-dimensional (G = 1). The architecture is composed of a layer of 

7 neurons and a learning rate η = 0,5 (Figure 2.12). The neighbour function is  

ℎ(𝑖, 𝑘, 𝑡) = {
1 𝑖𝑓 𝑘 𝑑𝑖𝑟𝑒𝑐𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑜𝑓 𝑖,

1 𝑖𝑓 𝑘 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

The first step is the random initialization of the centres ck (Figure 3.12) and a 

training sample 𝑝 is submitted. Obviously, the closest neuron to  𝑝 is 

represented by the number 3, hence this is the winning neuron.  The position 

of the winning neuron and its neighbours can be recalculated according to the 

learning rule:  

∆𝑐𝑘 = 𝜂(𝑡) ∙ ℎ(𝑖, 𝑘, 𝑡) ∙ (𝑝 − 𝑐𝑘) 

         

Figures 3.12: SOM example, on the right the one-dimensional topology space and on the 
left the two-dimensional input space. The dotted line represents the one-dimensional 

topology in the two-dimensional input space. The neuron 3 is the winning neuron since is 
the closest to p. The neurons 2 and 4 are moved because are in the neighbourhood of 3 in 

the topology.  The arrows represent the movement of the neurons towards the training 
sample p.  
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In which: 𝜂(𝑡) is fixed to 0,5 for simplicity and it is not a function of time; ℎ(𝑖, 𝑘, 𝑡) 

indicates that only the winner neuron and its two closest neighbours (here: 2 

and 4) are allowed to learn by returning 0 for all other neurons; and, the 

factor (𝑝 − 𝑐𝑘) indicates the vector of the neuron k to the pattern p. After the 

adaptation of the neurons 2, 3 and 4 the next pattern is applied, and so on. 

It is important to notice that, even if the neuron 7 seen from the input space is 

considerably closer to the number 3 compared to the neuron 2, neuron 2 is 

learning while the number 7 is not. This is helpful to remind that is the network 

topology that specifies which neuron will learn and which not, and not the 

position in the input space.  
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4. Case study 

The case study is a retrofit project of a residential building in the South-East 

area of Milan.  

Several studies have confirmed the wide potential of retrofits in the residential 

sector. For example, Ballarini et al. [63], conducted a research for IEE TABULA 

project on residential buildings in Europe. They studied the effect of two types 

of retrofits: a standard one, concerning the common measures used within the 

country and an advanced one, concerning the application of the best 

technologies. The study was conducted on four countries representative of the 

North, Middle, South and East areas of Europe (respectively Denmark, 

Germany, Italy and the Czech Republic). They concluded that an energy saving 

of over 45 % can be reached, even with the standard refurbishment. Moreover, 

the variation between the actual situation and the standard retrofit is bigger 

than the variation between standard and advanced renovation. This means that 

being the current built environment poor in efficiency, even with a basic retrofit 

the reduction of consumption and the related emission can be considerable. 

This study only concerns the renovation of the physical part of the buildings 

without considering the occupancy behaviour and other specific issues. 

However, it clearly states that there is a big potential in the retrofit of residential 

buildings. In Europe, this is particularly high because the built environment is 

old and outdated, mainly built before energy standards. The entire sector is 

characterized by low efficiency, especially the buildings constructed between 

1945 and 1980 [64]. 

Therefore the building industry is now facing a critical period in which it is 

trying to aggressively reduce the energy use from one side and it is coping with 

a lot of uncertainties on the other side, such as climate change, building 

operations, government policy change and human behaviour change [26]. 

World’s building energy consumption has steadily increased since 2008, and 

this trend can be caused by population growth, increase in building services 

and comfort requirements, but also by the rise of the hours spent inside 

buildings [65]. To face these problems, the Energy Efficiency Directive [4], the 

Energy Performance of Buildings Directive [11] and the Annex 66 [28] can be 

recalled.  
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The project taken into exam is a retrofit project. The building is a property of 

the Municipality of Milan and thus it is part of the ownership of the central 

government that has to be renovated to fulfil the goal of the energy efficiency 

directives [5, 6]. The project aims to become an example for further 

renovations, with improvements and modifications and can become a source 

of information for future policies in Milan [64]. 

The proposed methodology does not deal with the retrofitting itself, but it 

takes inspiration from it. The final aim is to improve generally the energy 

modelling of the building. The idea is to use the pre-retrofit model (with 

registered data) to increase the knowledge of occupants’ behaviour. The final 

results might be implemented in the post-retrofit model to assess a more 

realistic energy consumption.  

4.1. Project description 

The building is composed of two blocks, named B1 and B2 (Figure 4.1), with a 

total gross surface area of 4633 m2. It hosts 66 residential units for an estimated 

population of 210 people. The building was constructed during the 1980’s with 

an envelope in prefabricated concrete elements, with almost no thermal 

insulation and low-performance windows. The building is made of basements 

and garages, four stories and an attic. B1 has two staircases and a total number 

of twenty-four flats, whilst B2 has three staircases and forty-two flats. The 

building is surrounded by a garden included in the property, in which up to 20 

meters height trees are present.  

The heating system is outdated, and it consists of a centralized system that 

uses fuel oil as the energy carrier. Then, in each apartment, a local gas boiler is 

exploited for domestic hot water (DHW) generation. All the other energy uses 

depend on electric energy from the national grid, except for cookers that use 

natural gas.  
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Figure 4.1: Masterplan view of the case study 

 

The façade renovation, both of the opaque and transparent part, is one of the 

key points of the energy retrofit. An external thermal insulation composite 

system with rendering will be used, as it is common in retrofit projects. The 

external insulation, in fact, will lead to a strong reduction of the thermal 

transmittance and thermal bridges effects and a consequent increase of 

internal thermal comfort. The windows will be renovated with modern high-

efficiency double glazed units. The shading devices (roller blinds with low-

insulated cases) will be replaced with Venetian blinds. This type of shading is 

packable and does not need a case, therefore the voids will be filled with 

insulation decreasing, even more, the thermal bridges in the external envelope. 

In order to control heat loss due to ventilation, allowing for an adequate level 

of indoor air quality (IAQ), a mechanical ventilation system, equipped with heat 

recovery and by-pass, will be installed. A high performance centralized heating 

system will be placed with heat pumps as generation system. On the roof, 

photovoltaic and solar thermal systems will be installed, including electrical 

storage batteries and an energy management system. To reduce as much as 

possible, the electric consumption, the common areas will be equipped with 

B1 

B2 
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high-efficiency LED lamps. However, no intervention will be possible to 

improve both the electrical and the heating systems inside the flats, since the 

renovation must take place with tenants keeping on living inside their 

apartments. 

4.2. The energy model 

On the basis of the existing documentation and in-situ inspections, the 

characteristics and the technical performance of the building were assessed, 

and a dynamic energy model has been created. Energy Plus 8.5.0 was used to 

model the building. The drawing tool was SketchUp 2015, linked with the main 

software through OpenStudio 1.7.0. The description of the energy model in the 

following refers to B1, chosen as representative of the overall project. 

Each flat has been modelled as one heated thermal zone, whereas ground floor 

and the attic were considered as unheated zones (both modelled as a unique 

zone). Also, the two staircases (divided in one zone each for the first floor, and 

one thermal zone each for the other three floors together) were considered 

unheated areas. The surroundings of the building have been characterized by 

the presence of the trees, with a height of ten or eighteen meters (Figure 4.2). 

 

Figure 4.2: Modelled trees underlined in the site plan 
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Figure 4.3 shows the model of B1 while Figure 4.4 displays also the surrounding 

trees and B2. The complete model was used to run the analyses. Each zone was 

named univocally and consequently all the elements that formed it, such as 

walls, windows, roof, and ground (an example can be seen in Figure 4.5). 

Details of the used constructions and features of the model can be found in 

Annex I. 

 

Figure 4.3: Model of B1 without context 
 

 

Figure 4.4: Model of B1 with context, composed of trees and B2 
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Figure 4.5: Example of a univocal name used in the model 

ZONE_TYPOLOGY_EXPOSURE_ORIENTATION_COSTRUCTION_PROGRESSIVE NUMBER 

 

The simulations have been run on yearly base, with hourly time step. To have a 

more precise result the ground temperature has been obtained from the 

weather data ITA_Milano-Linate.160800_IGDG.epw as the monthly average at 

two meters depth. 

Since the aim of this thesis does not concern the plants themselves, the focus 

result is the energy need for space heating to guarantee the comfort in the 

heated thermal zones. Therefore, the heating system was characterized in 

EnergyPlus by an ideal system able to maintain a temperature of 20 °C during 

the heating season, which is defined according to Italian national regulations 

from 15 October to 15 April, for the considered climatic zone. 

4.3. The electric registered database 

The available dataset includes registration for the year 2016 from 1st of February 

to 31st of August, of the building modelled in EnergyPlus. The database includes 

24 households with a 15-minutes time step. The flats in the thesis work are 

sometimes called “zones”, this term derives from the creation of the energy 

model with EnergyPlus where each flat is modelled as a thermal zone. Each 

thermal zone is associated with a progressive number, thus a final code to 

indicate a specific flat can be, for example, Z4, in which Z stands for “thermal 

Zone” and 4 is the related progressive number. 

The raw registered database is shown in Figure 4.6. 
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Figure 4.6: Raw registered data from 01/12/16 to 31/08/16 for the 24 households 

 

As seen in Figure 4.6, the raw registered load of the households shows some 

recording errors and it cannot be easily interpreted. In fact, each household’s 

load is the result of many different variables and characteristics. Moreover, 

within a household, the electric load is composed of a number of appliances, 

which behave differently in terms of energy consumption. 

All data are completely anonymous, and no other data was available at the time 

of this thesis for privacy reason. This situation is similar to the one in which a 

modeller can find himself in a real designing project and he/she tries to improve 

the energy model with the available data. 

4.4.    The weather data 

The research of Erba et al. [66] stresses the impact of different weather 

datasets in the energy modelling of buildings. They compared the energy 

needs resulting from the use of different datasets. The simulations were run 

with five different weather datasets available for Milan. All of them provide 

hourly values of the features needed to run the energy simulations: dry-bulb 

temperature, dew-point temperature, relative humidity, atmospheric pressure, 
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wind direction and speed, global and diffuse horizontal radiation, direct normal 

radiation, and others. Some of these parameters were directly measured, some 

others calculated. The paper shows that the energy simulations are highly 

affected by the choice of the datasets. In fact, the weather represents one of 

the biggest uncertainties in the modelling that has to be taken into account. 

The aim of this thesis work regards the assessment of the impact on the energy 

needs of the schedule of occupants. As validation of the model, a direct 

comparison with the energy needs registered in 2016 can be performed. For 

this reason, a weather data related to 2016 was necessary. The Agenzia 

Regionale per la Protezione dell'Ambiente (A.R.P.A.) provides hourly 

registered data for eight weather stations in the city of Milan. The available 

data are shown in yellow in Figure 4.7 [67]: A-Milano-Niguarda, B-Via Marche, 

C-Via Confalonieri, D-Via Rosellini, E-Via Brera, F-Via Feltre, G-Milano-

Lambrate, H-Via Juvara. The chosen weather station is the one in Via Juvara 22 

(H in the Figure) because is the closest to the building site, with a distance of 

about 9 km.  

 

Figure 4.7: Available registered data from A.R.P.A. Lombardia and the area in which 
building site is located highlighted in red 
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The characteristics of this weather station are: 

NAME:   Milano-Via-Juvara 

PROVINCE:  MI 

REGION:  LOMBARDIA 

ALTITUDE:  122 m a.s.l. + 28 meters on the building roof 

LATITUDE:  45° 28’ N 

LONGITUDE:  9° 13’ E 

TIME FRAME:  11 years 

 

The existing registration for this station includes Precipitation, Dry-Bulb 

Temperature, Atmospheric Pressure, Relative Humidity, Global Solar Radiation, 

Wind Velocity and Direction. The dataset is in hourly steps; therefore the data 

are hourly averages within the previous hour, except Precipitation that is a 

cumulative value. A distinction between direct, diffuse and global radiation is 

missing. 

4.4.1. Watanabe Method 

To complete the weather data to be used in EnergyPlus, the global radiation 

should be divided into direct, diffuse and global solar radiation. To fill this lack 

of registered data the Watanabe simplified method based on the location of 

the weather station was used.  

The Watanabe model, developed in 1983 [68], is able to separate the total 

global irradiance into direct and diffuse components based on the location. 

This method was developed for Japan and it is based on simple geographic 

features of the location. Japan, in terms of latitude, is not much different from 

Italy, and thus, the model can be assumed to be suitable for the case study. As 

a matter of fact, Japan’s latitude goes from 30° N to 45° N, Italy’s one goes 

from 36° N to 47° N. The equations that regulate the model are [69]: 

𝐼𝑏 = 𝐼0 ∙ 𝑆𝐻 ∙ 𝐾𝐷𝑆 ∙ (𝐾𝑇 − 𝐾𝐷𝑆)/(1 − 𝐾𝐷𝑆) 

𝐼𝑑 = 𝐼0 ∙ 𝑆𝐻 ∙ (𝐾𝑇 − 𝐾𝐷𝑆)/(1 − 𝐾𝐷𝑆) 

In which 

𝐼  = global solar irradiance in W/m2 

𝐼𝑏  = direct normal solar irradiance in W/m2 

𝐼𝑑 = diffuse solar irradiance in W/m2 
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𝐼0 = solar constant set at 1355 W/m2 

And  

𝐾𝑇 =
𝐼

𝐼0
∙ 𝑆𝐻 

𝐾𝑇𝐶 = 0.4268 + 0.1934 ∙ 𝑆𝐻 

𝐾𝐷𝑆 = 𝐾𝑇 − (1.107 + 0.03569 ∙ 𝑆𝐻 + 1.687 ∙ 𝑆𝐻2) ∙ (1 − 𝐾𝑇)2            𝑤ℎ𝑒𝑛 𝐾𝑇 ≥ 𝐾𝑇𝐶 

𝐾𝐷𝑆 = (3.996 − 3.862 ∙ 𝑆𝐻 + 1.540 ∙ 𝑆𝐻2) ∙ 𝐾𝑇
3            𝑤ℎ𝑒𝑛 𝐾𝑇 < 𝐾𝑇𝐶 

𝑆𝐻 = sin (𝑎) 

𝑎 is the solar altitude (Figure 4.8) and SH is called “sine of solar altitude”. 

 

Figure 4.8: Angles and geometry of the Sun when viewed from point P. From ref. [70] 
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5. Methodology 

5.1. Introduction 

The aim of the presented methodology is to identify methods and techniques 

that, starting for the actual electricity readings at a building’s meter, support 

the generation of reliable and trustful schedules that represent occupancy and 

the use of electric devises in dwellings to be used in BPS. Furthermore, a 

method is proposed to identify three types of schedules: for typical energy 

uses, for intense energy uses and for energy-aware uses. 

Seldom the data of electric demand are full and complete, and a deep survey 

or expensive sensors should be used to detect the presence of people inside 

buildings. With the shown methodology the modeller should be able to create 

schedules of the presence of people and their electric uses for a full year 

starting from a relatively small sample of data.  

This work can be divided into three main sub-tasks: 

1. from the data registered by a smart meter, generation of the yearly 

schedule of electric uses for all the thermal zones in the energy model, 

2. from the data registered by a smart meter, detection of the presence of 

people, 

3. assessment of the impact of the electricity use and occupancy 

schedules on the overall energy demand for space heating of a 

residential building. 

An overview of the methodology is given in Figure 5.1 and is explained in detail 

in this chapter.  

The registered raw data were pre-processed to be cleaned up by errors in the 

data registration and storage. Next, all missing values were filled with null 

values. Thus, a workable dataset was created for each apartment. Finally, the 

original dataset was normalized to allow clustering into groups. The creation 

of the clusters was fundamental to identify patterns in the electricity use of 

each apartment and was adopted to generate three completely new yearly 

schedules for each thermal zone of the building’s energy model (TASK 1). After 

this step, starting again from the workable datasets, occupancy inside each 

thermal zone was deducted and the related yearly schedules were created with 

an hourly resolution (TASK 2). With the full-year schedules, the energy model 
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of the building was set, and some energy simulations were run to assess the 

impact of these three different schedules on the energy need of the entire 

building, and the results were compared with the actual energy need of the 

building (TASK 3). 

  

Figure 5.1: Flow chart of the methodology 

Utilized software  

To accomplish the first two tasks, a few statistical and machine learning 

techniques were exploited with IBM SPSS Statistics 24 and MATLAB R2017a. 

TASK 1 TASK 2  

TASK  3 
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To perform the third task, an energy model of the building was built for and 

simulated with the dynamic energy simulation engine Energy Plus 8.5.0.  

In particular: 

- SPSS was exploited for the statistical analysis of the data, 

- MATLAB was used for exploiting the appropriate machine learning 

techniques and for managing big matrixes of data, 

- EnergyPlus was exploited for the energy simulations of the building 

model. 

5.2. Task 1 

This task aims at generating a representative yearly schedule for the electric 

demand for each apartment, starting from the workable datasets of dwellings’ 

electricity use. To accomplish this objective, the daily electricity load curves 

were clustered in several meaningful clusters. For each cluster, three load 

curves were drawn: the typical represented by the median, the energy intense 

use represented by the third quartile and the energy-aware use represented by 

the first quartile. The three final scenarios correspond to low, medium and high 

electrical consumption. A detailed flowchart of the steps adopted in this task 

is reported in Figure 5.2. 

 

Figure 5.2: Flowchart of the steps of Task 1 
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The starting point of the data is the 15-minutes-step electric demand registered 

for 23 flats. The process is composed by a pre-processing phase in which the 

data is cleaned and formatted into a csv file, and by an understanding phase 

useful to go deeper in the study of the variables and of the registered data 

from a qualitative and quantitative point of view. Next, in third phase, a 

clustering technique is adopted to collect into groups similar daily electricity 

load curves. To extend the results to a full-year schedule, a classification of the 

known days is coupled with a prediction phase, using a machine learning 

technique.  

5.2.1. Data processing 

Data processing is an important step that can affect the final result. Usually, the 

real raw data is incomplete and contains errors or outliers. Moreover, to be able 

to perform statistical analyses is important to assign codes and to names 

numerical values, easily understandable by the commonly used software (SPSS 

in this case). The steps followed to create the actual datasets for statistical 

analyses (Figure 5.3) are: 

- data cleaning: outliers are removed, and the inconsistency of data is 

resolved; 

- data reduction: the representation of data is reduced but producing 

similar analytical results (in this case, the reduction is in terms of time 

step, from a 15-minutes registration the datasets is reduced at hourly 

timesteps); 

- data transformation: the data are normalized and aggregate if needed; 

- data integration: integration of multiple database and completion with 

attributes into a single and useable formatted file. 

 

Figure 5.3: Data Pre-processing steps 

 

Part of the Data transformation is the association between the electric demand 

with the characteristics of the hour, of the day or of the flat that is related to a 
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registration. Therefore, a fundamental step is the selection of the features 

useable in this specific problem and that can be relevant to the work. From the 

literature, all the variables that can affect the registered data (electric demand) 

were found, and then, among them, only the exploitable ones were chosen. The 

selection was made mainly on two bases: availability and exploitability of the 

variable. In fact, some variables were not available in the datasets, by 

consequence, even if from literature they are indicated as highly connected 

with the electric use of buildings might not be exploited in this case study. On 

the other hand, some other variables can be available but not exploitable in 

this case because constant within all the datasets. As a matter of fact, the 

registration is coming from different flats in the same building, thus with the 

same architectural and locational characteristics.  

The result is a clean and functional file to be used in a statistical tool. 

5.2.2. Data understanding 

The data understanding is performed with different statistical techniques, with 

the aim to develop a deep insight of the dataset and to identify relationships 

between several variables of the problem. The outcomes of this phase are 

summary tables and graphs that show the trends and main characteristics of 

the datasets. The followed scheme is performed in steps: 

1. statistical analyses of variables that can affect the electric demand; 

2. correlation analyses between variables; 

3. statistical analyses of the registered data; 

4. correlation analyses between the registered data and variables. 

The main statistical analyses used in this step are correlation analysis, for 

exploring the direct relationships in the sample, T-test and ANOVA to 

investigate the difference between groups of data. These methods are used 

both to compare the variables between one another but also to check if there 

is a direct relationship between the variables that can affect the electric 

demand and the registered data. 

Variables analyses 

The first step is understanding the nature of the variables and data involved in 

the analyses. The variables are divided into continuous and categorical [71].  
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The continuous variables, also called quantitative variables, are the one in 

which the value can be any number in the range of the extremes. This category 

is further subdivided into interval and ratio variables. The first case groups the 

variables that can be measured along a continuum and they have a numerical 

value.  The ratio variables are interval variables, but the 0 (zero) corresponds 

to none of that variable. An example is the temperature measured in Kelvin, the 

zero in this case means that there is no temperature; other examples are height, 

mass or distance. 

The categorical variables, also called discrete or qualitative variables, can be 

further classified as nominal, ordinal or dichotomous. Nominal variables have 

two or more categories but without an order. An example of a nominal variable 

would be classifying where people live in the Italy by region. In this case, there 

will be many more levels of the nominal variable (20 in fact), but the number 

associated with each region is not referred to any order. Dichotomous variables 

are nominal variables which have only two categories or levels. Ordinal 

variables are variables that have two or more categories just like nominal 

variables only the categories can also be ordered or ranked.  

Relation between variables 

Correlation is used to study the strength of linear relations between two 

continuous variables [72]. They give the strength of the correlation and the 

direction (positive or negative). If a correlation is positive means that if one of 

the variables increases the same does the other if it is negative with the 

increase of the first variable a decrease in the other is registered. The resulting 

index can go from -1 to +1, the extreme values correspond to perfect 

correlations, whilst zero is a complete no correlation result, the other cases can 

be interpreted as in Figure 5.4, according to Deborah J. Rumsey [73]: 

 

Figure 5.4: Interpretation of the correlation results. 

 

http://www.dummies.com/store-search.html?query=Deborah+J.+Rumsey
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The correlation has a direct representation with the scatterplots. They show on 

the two axes the variables taken into considerations and each point is 

positioned with the corresponding two values. The perfect negative or positive 

correlation means that the points are all positioned in one line, on the contrary 

when no correlation occurs, the points are in a noisy cloud. Scatterplots related 

to specific values of correlation are shown in Figure 5.5. 

 

 

Figure 5.5: Correspondence between correlation values and scatterplots. From ref. [74] 

 

In the performed analyses the Spearman’s rho correlation was used. The more 

commonly used Pearson’s correlation coefficient is used if the dataset is 

normally distributed, thus it performs a parametric analysis, and it works on the 

data in the sample. The Spearman’s rank correlation coefficient performed a 

not-parametric analysis, thus when the data are not normally distributed. 

Moreover, it works on the ranks of the datasets, in fact, it orders the two 

datasets, object of the correlation, from the smallest to the biggest and it 

analyses the increasing trends. 

Differences between groups 

To assess the differences between groups T-test and ANOVA are implemented. 

They are both tests to assess the differences in the variance of groups but with 

differences in the assumptions and characteristics of the independent 

variables. 

The T-test compares only two groups at the time, thus the independent 

variable must be a binary variable, it means that divides into two groups the 

sample. The independent-sample T-test was exploited to compare the mean 

scores of two different groups of conditions. SPSS gives the results of Levene’s 

test for equality of variance, it checks if the variances of the two compared 

groups are approximatively equally distributed. If the Levene’s test Sig. value 

is ≤ 0,05 (i.e. probability) means that the variances of the two groups are not 

the same, therefore the assumption of equal variance is violated. In this second 

-1     -0,09 -0,05             0    +0,05        +0,09         +1 
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case, SPSS is able to calculate a T-test that compensates the difference in the 

variances called “equal variances not assumed”. There is a significant difference 

between the groups if the Sig. (2-tailed) values are below 0,05 in the actual T-

test ‘s results.  

The ANOVA (analysis of variance) compares the mean scores of more than two 

groups. There is an independent variable which has different levels, 

corresponding to features or groups. Firstly, it tests the null hypothesis: 

𝐻0: 𝜇
1

= 𝜇
2

= 𝜇
3

= ⋯ = 𝜇
𝑘
 

In which 𝜇 is the group mean and k is the number of groups. If this is false it 

means that the alternative one is true: 

𝐻1: 𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙 

Then, it compares the variance between the different groups with the 

variability in each group and the ratio F of this two variability is calculated. The 

higher is the F, the larger is the variability between the groups compared to 

the one within the groups. 

5.2.3. Clustering 

Clustering means grouping a data set into an N number of clusters Ci, I =1, 2, …, 

N. To solve the clustering problem two methods of machine learning were 

used: Self-Organizing Map and k-means. Chapter 3 is recalled for theory. Both 

are partitive clustering algorithms. They are able to divide the data into a 

number of groups trying to minimize some criterion or error functions. The 

number of clusters is predefined in both cases, and the followed steps are: 

1) initialize the clusters centroids, 

2) group the data, 

3) update the cluster centroids, 

4) if the partitioning is unchanged stop, otherwise return to step 2. 

Two level approach 

It this methodology, a two level-approach clustering method was used, 

combining the unsupervised neural network method, Self-Organizing Map 

(SOM), with the more classic unsupervised k-means algorithm (Figure 5.6). 
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Figure 5.6: Two-Levels Clustering approach 

 

The Self-Organizing Map is an unsupervised neural network method and it is 

able to classify data into clusters. The SOM is a powerful visualization tool 

because it can display multidimensional data in a low-dimensional grid. 

The k-means algorithm is one of the simplest and most commonly used 

unsupervised learning algorithms. It solves the problem of clustering given a 

fixed number (k) of centroids, one for each cluster. The algorithm takes each 

input of the data set and associates it to the nearest centroid. As next step, it 

recalculates the k centroids as barycentre of the clusters resulting from the 

previous step. The inputs are again associated with the centroids and a new 

complete iteration is computed.  

The SOM algorithm is used to create proto-clusters that are further grouped 

with a k-means algorithm to find the final clusters. As shown by Vesanto et al. 

[38] and Hernàndez et al. [37], this two-levels approach gives better results 

than directly clustering of dataset. The two main benefits, are the minimization 

of the computational cost and the noise reduction. The proto-clusters are local 

averages of the original samples and, for this reason, less sensitive to single 

high or low cases in the data sample.  

SOM’s features 

The first step is to define the number of proto-clusters and cluster from which 

the features of the SOM and k-means will depend. To achieve a good result it 

is fundamental the choice of a number of clusters as outputs of the SOM. The 

SOM Toolbox for Matlab Report [53] was followed to set this parameter. The 
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final choice is: a 2-dimensional map with hexagonal lattice and the size is given 

by the heuristic formula  

𝑚 = 5√𝑛 

In which 𝑚 is the final number of proto-clusters, 𝑛 is the number of data sample 

given as input. Finally, the ratio of the side-lengths of the lattice would be the 

ratio between the two biggest eigenvalues of the covariance matrix of the 

given data, and the actual side-lengths are then set in such a way that their 

product is as close as possible to the desire 𝑚.  

To improve the results of the SOM, on the real value of the hourly electric use, 

a normalization on the maximum value reached in the day was performed. In 

this way, the SOM can recognize the actual peaks and the shape of the daily 

electric pattern without being disturbed by the absolute value of it. 

k-means algorithm’s features 

The number of final clusters useful to describe the data sample was set using 

the Davies-Bouldin Index (DBI). This index was introduced in 1979 [75] and it 

is able to evaluate a clustering algorithm. It is an internal evaluation method, 

this means that the validation is made using features and quantities of the 

dataset itself. After several preliminary analyses, the number k of the final 

clusters in the k-means is fixed at 5. This value gives a good result based on 

the description of data, but at the same time do not create small clusters. It is 

able to assess the difference between the clusters on the base that each cluster 

should be different from the others. A low value of the DBI means that the 

clustering is better.  

An increase in the number of clusters leads to better results but will increment 

the complexity of the following analysis and result less robust to 

generalizations.  

The result is shown in Figure 5.7: 
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Figure 5.7: Results of DBI analyses on the dataset 
 

5.2.4. Classification 

Classification is also known as pattern recognition or discrimination. There are 

a lot of Classification methods, such as decision trees and rule induction, 

machine learning techniques such as k-nearest neighbours (KNN) and density 

estimation. In this methodology, a K-Nearest-Neighbours algorithm from 

machine learning is used to solve the classification problem because it is 

commonly used because it is easy to interpret, and it has a low calculation time.  

The algorithm, being a supervised learning procedure, needs a training set and 

an application set. In this case, the training set is the part of the year in which 

the registration is available and on which the previous tasks were performed. 

Each day, in this set, is characterized by the association with a final cluster. The 

application set, instead, is the part of the year in which no registration of 

electric consumption was available, thus it could not be associated with any 

cluster. To run these analyses, the application of MATLAB Classification 

Learner was used. A cross-validation of 5 folds is implemented to avoid 

overfitting problems. The key issue is to define the predictors and the 

responses. The algorithm will learn automatically how to link a response to one 

or more features and it will be able to predict responses to a new set of 

features. The response, in this case, is the cluster in which the day taken into 

exam is. The difference between Working day or Not Working day, the 

difference between Heating and Cooling season was used as predictors. 
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Moreover, to give a time sequence to the days of the year without using the 

months and day (of not interested in this specific case) the average daily 

external temperature and its variation were added as predictors. The KNN is 

able then, to assign to each day of the year the cluster related to its specific 

predictors. 

The result of this task is the full year schedule for all the flats in the building. 

Each day of the year is related to one cluster, with corresponding first, second 

and third quartiles of the average electric consumption of all the days that are 

in the specific cluster. These three daily loads can be seen as three typologies 

of families corresponding to different scenarios: energy-aware user, standard 

user and energy-intensive user. 

5.3. Task 2 

The input of this task is again the measured electric use, whilst the goal is to 

detect the occupancy presence in the flats. The used methodology is an 

adaptation to this case study from the work of Kleiminger et al. [51,52]. They 

identify, in the electrical load curve, features that may be indicative of the 

presence of occupants in the household. For example, clear indicators for 

occupancy are switching events in the load curve that require the interaction 

of occupants. On the other hand, electric consumption related to appliances 

such as fridges, freezers and standby devices are not directly related to the 

occupancy state. The idea is that some numerical features of the electric 

consumption within an hour can be seen as indicative of the presence of 

occupants. The average electric consumption within an hour, its standard 

deviation, its minimum and the maximum values and its sum of the absolute 

differences (SAD) are all quantities related to the presence of people that are 

using and changing the electric consumption. In particular: a high average 

value, a high minimum and high maximum values usually corresponds to the 

use of electric equipment that can increase the consumption from the base 

electric use; a high standard deviation and a high SAD corresponds both to 

high changes in the electric consumption within the hour that can be 

associated with turning on/off of devices and usually it’s related with the 

presence of people in the flat.  

To perform this analysis some steps were implemented to prepare the data set 

and run the analyses. The process is shown in Figure 5.8. 
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Figure 5.8: Flowchart of task 2 
 

5.3.1. Data processing 

The data processing of this task is composed of cleaning and transformation. 

These two steps have to be performed with the specific scope that the data 

has to be useable for the exampled methodology by Kleiminger. This means 

that all the hours in which the data is not sufficiently accurate to detect the 15-

minutes step registration might not be part of the sample. The transformation, 

in this case, is the association to each hour the listed features: average, 

minimum and maximum, standard deviation and SAD.  

5.3.2. Classification 

The presented methodology is not related to the assessment of the accuracy 

of different Machine Learning classification methods. For this reason, according 

to Kleiminger et al. [7], the k-Nearest Neighbours algorithm was used, because 

it is the one with the highest average accuracy within all the households and 

seasons. The paper shows the accuracy for different classification methods, 

such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN), 

Thresholding (THR) and Hidden Markov Model (HMM), the results are shown in 

Table 5.1 and Figure 5.9. 

The classification is based on the learning procedure explained in the previous 

chapter, and to simplify the problem a simple heuristic unsupervised 

occupancy detection was implemented, by comparing the current electricity 

consumption to the mean of the night-time consumption and proposing 
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possible ground truth occupancy schedules to the user, as suggested in [52]. 

The ground truth is a dichotomous variable, in which 1 is related to the presence 

and 0 corresponds to the absence of people. 

           

Table 5.1: Results of the accuracy of different classification methods. From ref. [51] 
 

 

Figure 5.9: Average accuracy of the different classification methods taken into exam. From 
ref. [51] 

 

5.3.3. Prediction 

These final step of the process is called prediction, in fact, no clustering 

analyses were performed. The clusters of the previous task were taken and 

applied to the occupancy daily patterns of the classification outcome. The 

result is a continuous variable (average value), between 0 and 1, corresponding 

to the probability of occupancy in a specific hour of the day for each cluster. 

For the presence of people, one scenario is proposed, linked to the probability 

of presence. When the average is below 0,33 the corresponding probability will 
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be 0% when is between 0,33 and 0,66 will be 50% and, when above 0,66 will 

correspond to 100%. This is shown in Figure 5.10. 

The final probability is then multiplied by the number of people that are 

supposed to live in the apartment on the base of the net floor area of the 

bedrooms. If the area is above 12 m2 is considered suitable for 2 people, if above 

8 m2 but below 12 m2 1 person is considered according to the Regolamento 

Edilizio del Comune di Milano [76]. 

 

Figure 5.10: Relation between the average occupancy value and the final probability of 
occupancy used in the schedule 

 

5.4. Task 3 

Task 3 concerns the energy simulation of the building with the schedules 

created in task 1 and 2. These schedules affect the internal gains due to the 

people in the building and thus, they affect the energy use of the building itself. 

To run the final simulations EnergyPlus was deployed.  

EnergyPlus is exploited running three scenarios, related to the average case 

and the two extremes. The schedules are used to create combinations of 

different inputs in the EnergyPlus model and it gives as result a range of energy 

needs (Figure 5.11). Modelling the extremes cases in terms of internal gains due 

to presence of people and electric appliances, the result are the two extreme 

cases also in terms of energy need.  
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The focus will be on the span in the energy needs due to the different 

combinations of the occupancy schedules used. The final result is not anymore 

a single value as in the traditional energy modelling, but range of results in 

which the real case should be.  

As final validation of the methodology, these results are compared with the 

real registered data of 2016 of the building block. The supply company 

provided the delivered energy to the building site for 2016, whilst, the energy 

simulation will result with the energy need for the building. Thus, the energy 

need for space heating has been calculated applying an estimated global 

seasonal energy efficiency of 0,7. 

In these simulations, the weather data of 2016 was used. It is created from the 

registration of the weather station of Milano-Via Juvara provided by A.R.P.A. 

Lombardia. For details, read the paragraph 4.4. 

 

 
 

Figure 5.11: Task 3 scheme 
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6. Results and Discussion 

It is reminded that the flats in this thesis are sometimes called “zones”, this term 

derives from the creation of the energy model in EnergyPlus where each flat is 

modelled as a thermal zone and defined with a progressive number. Thus, a 

final code to indicate a specific flat can be Z4, in which Z stands for thermal 

Zone and 4 is the related progressive number. 

6.1. Task 1 

6.1.1. Data processing 

Cleaning 

Some periods of the original dataset are characterised by errors or they are 

totally missing the registration. To correct the inconsistent data, these periods 

are deleted from the dataset. In fact, a substitution can alter the dataset and 

modify the result. The dataset includes the electric load with a 15-minutes time-

step from the 1st of February 2016 to the 31st of August 2016, for 24 flats of the 

B1. Some days in all the dataset are missing, they are 29/02, 6-7/03, 3-8/05. 

Moreover, other periods of time are characterized by a lack of data, in 

particular: 

- Completely Z3 and Z13, because, respectively, closed contract and 

empty,  

- Z4 from 12/06 to 31/08, 

- Z5 from 14/08 to 31/08, 

- Z14 from 19/06 to 29/08, 

- Z29 from 02/03 to 31/03. 

Reduction 

The first actual alteration of the data consists in the reduction. This step has 

the aim to reduce the representation of the data in volume, obtaining same or 

similar results. In this case, the data reduction is performed on the time-step 

base. The available dataset is registered every 15 minutes as electric power in 

Watt, to obtain an hourly value the average within the hour is performed. In 

this way, possible eluded outliers are reduced, and they affect less the overall 

results. An example of the data reduction from 15-minutes time step to hourly 

values can be seen in Figure 6.1. The red line represents the registered original 

data for the zone number 4 in the 1st of February, whilst the blue line represents 
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the hourly values on which the further data processes are made. This reduction 

is applied to all the data set, decreasing the noises and the complexity of the 

problem, being the final aim an hourly schedule.  

 
 

Figure 6.1: Example of data reduction from 15-min to hourly values for 01/02/2016 of Z4 
 

Transformation 

The aim of the first statistical analyses is to understand if the electric load can 

be easily predicted looking at some features, on different scales (hourly, daily 

or flat-scale). As a first approximation, the electric load can be thought to be 

influenced by some variables, such as the installed electrical equipment, or the 

number of people living in a household. These influencers are numerous; 

therefore, a detailed literature review is performed. In Table 6.1, all the variables 

that can affect the electric load are listed with one or more references in which 

each one is explicitly related to the electric use.  

The first column of Table 6.1 categorizes the “family” of the variable. Four main 

groups of influencers are found to be related to: 

- the location and the weather,  

- the features of the household,  

- the indoor conditions, 

- the characteristics of the family living in the flat. 

The second column lists the variables in different colours. The colour of the 

variable corresponds to the final exploitability, thus: 
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- red is for the variables that are not exploitable in this case study, 

- green is for the variables that are exploitable and mark a difference 

within hours, 

- blue is for the variables that are exploitable and mark a difference within 

flats. 

The third column lists how the variable is affecting the load. In fact, the 

registered electric demand is composed by the sum of the electric demand of 

all the installed electric appliances inside a household. To simplify the 

understanding of which variable can affect the load and how, four main electric 

spenders can be highlighted: lighting, equipment (e.g. kettle, microwave, 

phone etc), small electric heating or cooling system (e.g. fans, stoves, etc), and 

leisure appliances (e.g. computers, television, etc). Even if the heating system 

of the building block does not rely on the electric load, in the energy spenders 

is important to add the small electric heating and cooling systems because are 

quite popular in the Italian context. Movable or ceiling fans, small heaters, or 

added conditioners are common equipment to improve the internal comfort 

during very hot or cold days, especially in old buildings in which local 

discomfort can be registered. In Table 6.1, in the column called “Affecting”, 

these four main categories are listed as follows: 

- Lt = lighting, 

- S = small electric heating/cooling systems, 

- E = equipment, 

- Ls = leisure. 

The last column lists the works in which can be found the variable. Some of 

them are indicated in many papers; however, just a few of them are inserted in 

the table as a reference.  
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Family Variable Availability Affecting  Reference 

Location 
/Weather 

External radiation Yes Lt Mardaljevic 2009 [77] 

  
External 
temperature 

Yes S Sandels 2015 [78] 

  
Workdays / 
Holidays 

Yes All Paatero 2006 [79] 

  Day of the week Yes All Butitta 2017 [22] 

  Precipitation Yes All - 

  Cost of electricity Yes 
E + S + 
Ls 

- 

  Hour of the day Yes 
Lt + E + 
Ls 

Paatero, 2006 [79] 

  
Heating/Cooling 
Season  

Yes All 
Paatero 2006 [79], Sandels 
2015 [78] 

  Renewables on site 
Yes but 
Constant 

All Galvin 2016 [21] 

  House demand limit 
Yes but 
Constant 

Sum Capasso 1994 [80] 

Flat 
characteristics 

Orientation Yes Lt + S Mardaljevic 2009 [77] 

  Floor Yes Lt + S Menezes 2012 [81] 

  n° rooms Yes 
E + S + 
Ls 

Yohanis 2007 [82] 

  Floor Area Yes 
E + S + 
Ls 

Yohanis 2007 [82] 

  Window/Wall ratio Yes Lt Bokel 2007 [83] 

  Insulation 
Yes but 
Constant 

S Sandels 2015 [78] 

  g-value 
Yes but 
Constant 

Lt Mardaljevic 2009 [77] 

  Shading type 
Yes but 
Constant 

Lt Tzempelikos 2005 [84] 

  Typology 
Yes but 
Constant 

All Yohanis 2007 [82] 

Indoor 
Indoor Air 
Temperature 

No S Sandels 2015 [78] 

  Internal Illuminance No Lt Mardaljevic 2009 [77] 

Family type n° people No All 
Capasso 1994 [80], Yohanis 
2007 [82] 

  Sex No All 
Capasso 1994 [80], Yohanis 
2007 [82] 

  Age No All Shimoda 2004 [85] 

  Income No All 
Capasso 1994 [80], Yohanis 
2007 [82] 

  Nationality No All - 

  Occupation No All 
Capasso 1994 [80], Yohanis 
2007 [82] 

 Shading operation No Lt Tzempelikos 2005 [84] 

 Efficiency No All Menezes 2012 [81] 

 Electric Car No E Clement-Nyns 2010 [86] 

  Installed equipment No All 
Capasso 1994 [80], Menezes 
2012 [81] 

Table 6.1: List of variables that can affect the electric demand with related references 
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The variables without reference are just hypothesis that can (or might not) be 

verified in this case study. Precipitation, at first look not related to the electric 

demand, could be a variable in the non-working day on the decision to stay at 

home or go out, especially during the summer period. The nationality of the 

family is added to the variables, assuming that different habits and comfort 

perception can differ due to the culture and the origin, even if not available in 

the dataset. 

Integration 

The integration step is fundamental to get the data in a usable format to run 

the analyses. The variables are chosen on the base of their exploitability and 

added in a spreadsheet with the registered data. To implement the dataset in 

IBM SPSS Statistics, the characteristics of each variable have to be set. The 

Table 6.2 summaries the list of the selected variables with their features. In the 

table, the code used in SPSS Statistics is listed, with the unit of measurement 

if available and the domain. 

 Name Code Unit Domain Characteristics 

B
E

T
W

E
E

N
 H

O
U

R
S

/
D

A
Y

S
 

External radiation Rad W/m2 [0 ≤ x ≤ 931,30] Continuous Scale 

External temperature Temp °C [1,60 ≤ x ≤ 33,80] Continuous Scale 

Precipitation Prec mm [0 ≤ x ≤ 29,60] Continuous Scale 

Month Month - [2; 3; 4; 5; 6; 7; 8] Categorical Ordinal 

Day of the Month Day - [1; 2; 3; 4; 5; 6; …31] Categorical Ordinal 

Hour of the day Hour - [0; 1; 2; …; 23] Categorical Ordinal 

Day of the Week WD - [0; 1; 2; 3; 4; 5; 6; 7] Categorical Ordinal 

Day or Night DN - [-1; 0; 1] Categorical Nominal 

Workdays / Not Working WNW - [-1; 1] Categorical Nominal 

Season (heating or 
cooling) 

CH - [-1; 1] Categorical Nominal 

Cost of electricity Cost - [-1; 1] Categorical Ordinal 

B
E

T
W

E
E

N
 Z

O
N

E
S

 

Orientation Orien - [1; 2; 3; 4] Categorical Nominal 

Zones Zone - [2; 4-7; 14-29] Categorical Nominal 

Floor Floor - [0; 1; 2; 3] Categorical Nominal 

n° rooms n°Rooms - [1; 2; 3] Categorical Ordinal 

Floor Area Area m2 [37,87 ≤ x ≤ 95,28] Continuous Scale 

Window / Floor ratio WIFl - [0,103 ≤ x ≤ 0,196] Continuous Scale 

 

Table 6.2: List of selected variables and their features 
 

The first distinction is between categorical and continuous variables. 

Categorical variables are subdivided into ranks, whilst the continuous ones 

allow all the possible values in the domain. A further distinction between the 

categorical ones is between nominal and ordinal. In the first case, the ranks do 
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not correspond to a sequence, but just to mere numerical substitution of 

names. An example can be the distinction between working and non-working 

day, since there is not an order between the two categories and the associated 

number is helpful to distinguish them. On the other hand, a categorical ordinal 

variable expresses a sequence, usually temporal. For example, the number 

associated with the day of the week is related to the name itself but also to an 

order repeated from 1 to 7, and the same can be said for the months. 

Variables description 

The weather variables are derived from the registration of the weather station 

of A.R.P.A. Lombardia, located in Via Juvara [67]. The external radiation is the 

global radiation in Watt on square meters, calculated as the hourly average of 

the measured data. The external temperature is the hourly average 

temperature of the registration in Celsius Degrees. Precipitation is the hourly 

cumulative value in mm. 

The month, the day of the month, the hour of the day and the day of the week 

variables are inserted to give a temporal distinction that can be used as the 

variable itself, but also to subdivide into groups the data sample in the SPSS 

software.  

Day or night is inserted as a categorical variable. Day is indicated with 1, and it 

is related to the hours in which there is solar radiation in the shortest day of the 

year (the winter solstice), thus from 8 a.m. to 4 p.m. Whilst, night is indicated 

with -1, and it is related to the hours in which there is not solar radiation in the 

shortest night of the year (the summer solstice), thus from 10 p.m. to 4 a.m.  

The variable working/non-working day is introduced as the difference between 

the weekdays and all the other days in which usually people do not go to work 

or school. The non-working days are the weekends and all the national holidays.  

The difference between the heating and the cooling season is set according to 

Art. 9 of D.P.R. 26/08/93 [87]. Milan belongs to climatic zone E, so the heating 

season is from 15/10 to 15/4.  

The cost of electricity is added as variable because, in bi-hourly tariff contracts 

the cost of the electricity decreases during the nights, weekends and national 

holidays, a graph of the typical week can be seen in Figure 6.2. Some families, 

especially in periods of economic hardship, can decide to shift the use of some 
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electric devices (such as the washing machine or the dishwasher) in the hours 

in which the cost is lower. 

 

Figure 6.2: Distribution of the “electricity cost” variable during a typical week, with the 
distinction between high and low cost 

 
 

The orientation is set according to the position of the main windows of each 

flat. The orientation is a categorical variable with values from 1 to 4, in which 1 

is South-West, 2 is Noth-West, 3 is North-East and 4 is South-East. 

The zone is simply the progressive number used to distinguish the flat. It is 

useful to create graphs and groups in SPSS Statistics.  

The floor is related to the storey at which the flat is, it is a categorical variable 

with a range from 0 to 3. 0 is for the mezzanine, 1, 2, 3 are for the first, second 

and third floor. 

The variable “n°Rooms” is set as the number of bedrooms in the flat, the area 

is calculated as the net useful floor area, and the window/floor ratio is the ratio 

between the net area of the windows and the net useful floor area. 

6.1.2. Data understanding 

In this section, traditional statistical methods and visualization graphs are 

exploited to understand the kind of variables and of database. Lastly, a 

correlation test is performed to understand better the links between the 

variables and the electric registered data.  
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Statistical analyses on and within variables 

For the categorical variables, codebooks and descriptive statistics are enough, 

whilst, in the case of continuous variables, histograms and box plots are added 

to have a visual description. The relative tables and graphs can be found in 

Section I of Annex II. 

The result of the correlation test is of major importance and it is shown in Table 

6.3. The Spearman’s rho correlation coefficient expresses the relation between 

the two variables taken into exam, with a maximum of 1 or -1, corresponding to 

perfect positive and negative correlations. In the case of nominal categorical 

variables, the sign is not always relevant, being not related to an order.  

A positive correlation can be found between the variable day/night and the 

global radiation, as expected. A moderate correlation is registered between 

day/night and the cost of electricity. A positive correlation is registered 

between the cooling and heating season variable and the external temperature. 

This result is predictable. An expected strong correlation is registered also 

between working and non-working day and the day of the week. An almost 

moderate correlation is found between the working/non-working variable and 

the cost of electricity. A moderate correlation is registered between the cost 

of electricity and the radiation, in fact, during the night hours, the electricity is 

always low-cost. Finally, a very strong correlation (almost perfect) is registered 

between the floor qrea and the number of bedrooms in a flat. This result is 

predictable. Further graphs to describe the main correlations can be found in 

the second section of Annex II. 

From these simple test, can be said, that some variables are dependent on 

others, and for this reason, they can be avoided to simplify the problem. 

Nevertheless, any variable is deleted before the correlation test with the 

electric demand data.  For example, one variable between the number of rooms 

and the area could be avoided, but to understand which one, a correlation test 

with the registered data should be performed to identify which one affects 

more the electricity demand. 



 

Correlations 

 
DN CH WNW WD Prec Temp Rad Cost n°Rooms Area WiFl 

S
p

e
a
rm

a
n

's
 rh

o
 C

o
rre

la
tio

n
 C

o
e
ffic

ie
n

t 

DN 
 

1,000 ,000 ,000 ,000 -,004 ,177** ,881** ,646** ,000 ,000 ,000 

CH 
 

,000 1,000 -,029** ,005 -,046** ,731** ,173** -,013** ,000 ,000 ,000 

WNW 
 

,000 -,029** 1,000 -,727** -,074** -,004 ,007 ,451** ,000 ,000 ,000 

WD 
 

,000 ,005 -,727** 1,000 ,052** ,005 -,011** -,328** ,000 ,000 ,000 

Prec 
 

-,004 -,046** -,074** ,052** 1,000 -,196** -,063** -,051** ,000 ,000 ,000 

Temp 
 

,177** ,731** -,004 ,005 -,196** 1,000 ,369** ,171** ,000 ,000 ,000 

Rad 
 

,881** ,173** ,007 -,011** -,063** ,369** 1,000 ,623** ,000 ,000 ,000 

Cost 
 

,646** -,013** ,451** -,328** -,051** ,171** ,623** 1,000 ,000 ,000 ,000 

n°Rooms 
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 1,000 ,935** -,078** 

Area 
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,935** 1,000 -,229** 

WiFl 
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 -,078** -,229** 1,000 

**. Correlation is significant  

Table 6.3: Correlation results between variables 

7
9
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Statistical analyses of the registered electric data 

The analyses start with descriptive statistics, summarized in Table 6.4. The 

maximum is less than the standard maximum of 3 kW. This value shows that 

ideally there are no outliers that can seriously affect the result. The values of 

Skewness and Kurtosis indexes prove that the distribution is far from a normal 

distribution, as can be seen also in the frequency graph in Figure 6.3. The values 

are moved towards zero (as the positive Skewness value shows) and the high-

values are rare compared to the low-ones. 

Descriptives 

 Statistic Std. Error 

E
le

c
tr

ic
 D

e
m

a
n
d

 W
 

Mean 193,3 ,646 

Median 136,0  

Variance 42968,1  

Std. Deviation 207,3  

Minimum 0  

Maximum 2691  

Range 2691  

Skewness 3,1 ,008 

Kurtosis 13,5 ,015 

 

Table 6.4: Descriptive statistics of the electric data 
 

 

Figure 6.3: Frequency graph of the electric data 
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To understand better the trends of the electric demand in the building some 

other graphs are exploited for a visual and easy interpretation. 

Figure 6.4 shows the daily sum of the electric demand of all the flats in the 

whole period from 01/02 to 31/08. The use of electricity in the dwellings slightly 

decrease along the seasons. This trend can be simply justified thinking about 

the decrease in the electricity spent for lighting during the summer period, in 

which the days are longer with a higher incidence of sunny days. 

 
 

Figure 6.4: Total electric demand of the flats in the period from 01/02 to 31/08 
 

Figure 6.5 shows the monthly average electric demand of the flats and again a 

negative trend can be seen going from February to August. However, July is 

characterized by an increase in the electric consumptions compared to the 

close moths, showing an average value comparable with February and March. 

A hypothesis to this behaviour is the increased use of small cooling electric 

devices in that month, one of the hottest according to the Global Climate 

Report of 2016 [88]. August shows a lower consumption probably due to the 

fact that summer holidays in Italy are usually in this month, and in the building, 

some families could be out for long periods. However, this is just a hypothesis 

that cannot be taken for granted. 
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Figure 6.5: Monthly average of the electric demand 
 
 

 

Figure 6.6: Daily average of the electric demand 
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Figure 6.6 shows the average electric demand of the flats on a daily base. 

Sunday is characterized by the highest value of average electric use. This result 

can be ascribed to the fact that people could stay at home more than working 

days, resulting in an increase of the electric demand. 

Moving to the hourly base, Figure 6.7 shows the mean electric demand in the 

building. This daily pattern can be used to deduce some characteristics of the 

electric daily load. The early morning is characterized by a very low electric 

demand with the minimum reached around 4 a.m., then, the electricity spent 

increases till the lunch time, around noon. During the afternoon there is an 

almost constant electricity consumption and the maximum values are 

registered in the evening, approximately from 7 to 10 p.m. The evening period 

is sharply higher than the rest of the day, due to the fact that probably, almost 

all the tenants are at home, having dinner, using lighting and/or using leisure 

electric equipment such as television or personal computers.  

To study deeper this pattern, Figure 6.8 shows the same average hourly values 

subdivided into thermal zones, thus in flats. The low-electricity hours around 4 

a.m. are common to all zones at different levels. The absolute value of these 

hours can be proportional to the basic equipment or the standby ones, such as 

the fridge, the freezer or modem, etc. During the day, the different load curves 

differ one from another. It can be noticed that the values can change a lot, with 

the maximum average for zone 24 and minimum averages for zones 6, 14 or 16. 

Also, the trends are different, for example, zone 12 shows a low consumption 

during the afternoon, but two peaks during the lunch and dinner times. Whilst, 

zone 2 shows a peak also during the morning.  

Already from these basic analyses can be seen that the trend is quite complex 

to be studied. The variables that can affect the result are numerous and the 

electric demand is unpredictable. For these reasons, a correlation test between 

the variable and the electric demand is run. 
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Figure 6.7: Hourly average of the electric demand 
 

 

Figure 6.8: Hourly average of the electric demand divided into zones 

 



85 

Correlation test  

Table 6.5 shows that no variable can be considered as highly or moderately 

correlated with the electric demand. A weak correlation is shown with the 

number of rooms and with the floor area. Thus, to a bigger flat corresponds a 

higher electric use, probably due to the higher number of electric appliances 

installed.  

In the beginning, due to this result, the number of rooms was taken as 

normalization variable for the clustering step. After several analyses, the 

normalization against the maximum daily value was used though, simplifying 

the clustering step. 
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Table 6.5: Correlation results between variables and electric demand 

 

6.1.3. Clustering 

Self-Organizing Map 

The data is normalized to the daily maximum. The final size of the Self-

Organizing Map is 8 x 42. Thanks to Matlab, it is possible to create graphs to 

help in visualizing a multi-dimensional input space. Figure 6.9 (a) shows the 

topology of the used SOM, and Figure 6.9 (b) shows the connections between 

the neurons. This graph uses blue hexagons to represent the neurons, whilst 

the red lines represent the connection between neighbouring neurons. After 

the running of the SOM, each neuron represents a proto-cluster. Another useful 

graph is the SOM Sample Hits (Figure 6.9 c). It shows how many data points 

are associated with each neuron. The distribution is not even and some neurons 

group many days. Finally, Figure 6.9 (d) shows the SOM Neighbour Distances, 

which presents the following colour coding:  

- the blue hexagons represent the neurons, 
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- the red lines connect neighbouring neurons, 

- the colours in the regions containing the red lines indicate the distances 

between neurons, 

- the darker colours represent larger distances, 

- the lighter colours represent smaller distances. 

The proto-clusters are not sharply subdivided, and any proto-cluster is isolated 

from the others, they are mainly linked together. Obviously, there is a direct 

relation between the two graphs (6.9 c and d).  

 
a   b   c   d 

 

Figure 6.9: (a) Topology, (b) Connections, (c) Hits and (d) Weighted distances of the SOM 
 

The weights themselves can be visualized with the graphs in Figure 6.10. There 

is a weight plane for each element of the input vector (in this case the 24 hours 

of the day). They are a visualization of the weights that connect each input of 

the neurons. The colour coding is the same used in Figure 6.9 d. These graphs 

express the strength of the SOM as a visualization tool. Thus, if the connection 

patterns of two inputs are very similar, can be assumed that the inputs are 

highly correlated. In this case, the inputs of the hours from 2 a.m. to 5 a.m. are 

very similar and at the same time, they are very different from the other inputs. 
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Also the inputs from 9 p.m. to midnight are very similar one to the other. This 

means that these groups of hours show similar values in the data sample. 

Especially the group from 2 a.m. to 5 a.m. corresponds to the daily minimum 

period underlined in Figures 6.7 and 6.8.  

 
 

Figure 6.10: Weights planes for each input 
 

In Figures 6.11, 6.12 and 6.13 are reported, as examples, the first three proto-

clusters with the daily loads grouped. Figures 6.14, 6.15 and 6.16 show the 

corresponding loads not normalized.  
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Figure 6.11: Normalized daily load curves in proto-cluster 1 
 

 

Figure 6.12: Normalized daily load curves in proto-cluster 2 
 

 

Figure 6.13: Normalized daily load curves in proto-cluster 3 
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Figure 6.14: Corresponding original daily load curves in proto-cluster 1 
 

 

Figure 6.15: Corresponding original daily load curves in proto-cluster 2 
 

 

Figure 6.16: Corresponding original daily load curves in proto-cluster 3 
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The normalized graphs are clean and net. This is the evidence of how the SOM 

is working properly to reach the final aim of recognizing the different daily 

patterns in the big data sample. The normalized graphs show, respect to the 

ones with the original values, how the normalization helps to find the daily 

pattern. The different absolute values in the original daily profiles can confuse 

the SOM, bringing to a not-satisfying clustering. The average of the normalized 

daily load in the same proto-clusters is calculated and then submitted to the k-

means algorithm. 

k-means 

For each cluster, two graphs are shown. The first graph explains the three 

different scenarios: energy-aware user, standard user and energy-intensive 

user, calculated as the three quartiles (first, second and third). The second 

graph shows the proto-clusters inside a cluster. These graphs can appear quite 

confused, but a trend in the overall daily loads can be found and it is expressed 

with the three final loads shown in the first graph. Figure 6.17 shows the 

representativeness of each cluster in the data sample. 28 % of the days of the 

original data set are grouped in Cluster 5, 25 % are in cluster 4, 20 % are in 

Cluster 1, 14 % are in Cluster 2, and 13 % are in cluster 3. Any cluster is far more 

representative than others, and thus, the 5 clusters are sorted properly. The 

first analyses run without normalization showed always one cluster far more 

numerous respect to the others. More than 50 % of the daily loads were in this 

cluster. These daily loads were the ones without evident peaks but also the 

ones with a lower average electric demand even if characterized by evident 

peaks if normalized. 

 

Figure 6.17: Clusters’ representativeness in the data sample 
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Cluster 1 

Cluster 1 is characterized by all the days in which there are not evident peaks. 

This is visible in both the graphs that describe the cluster (Figure 6.18). The 

average load is around 150 W. These types of daily loads could be 

representative of the days in which the house is completely empty or the one 

in which the dwellers are at home constantly but using not so many electric 

appliances. For example, a couple of retired people could stay at home all day 

but use few electric devices. Around lunchtime and in the evening, the first 

graph shows in all the three quartiles a slight increase in the electric demand.

 

Figure 6.18: Cluster 1 
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Cluster 2 

Cluster 2, shown in Figure 6.19, presents a two-peaks daily load. The average 

electric use is not far from the value of cluster 1, but the third quartile shows 

high values, that reach almost 500 W. The load rises around 8 a.m. and then 

increase progressively during the afternoon with maximum uses around  6 p.m. 

This cluster could be representative of days in which the occupants go out in 

the morning and gradually go back home during the afternoon. This could be 

a family with children, that go back to school in the afternoon, preparing dinner 

around 7 p.m. The second graph, which visually appears noisier, shows the 

same trend with a very low value around the lunchtime. Just a few days shows 

peaks in this period and in the late evening. 

 

Figure 6.19: Cluster 2 
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Cluster 3 

Cluster 3, described in Figure 6.20, shows a daily load again with an average 

value around 150 W, but without very high peaks. This cluster is characterized 

by a very low consumption during all day, with a small peak in the morning 

around 7 a.m., but quite high values during the night. This cluster could be 

representative of people that are out all day long, going out in the morning and 

coming home in the late evening, having dinner outside or around 8 p.m. The 

increase in the electric load during the night could be attributable to the use of 

washing machine, dishwasher and appliances used for leisure in these hours. 

The second graph is quite noisy but is evident the decrease in the consumption 

during the day, especially around noon.  

 

 
 

Figure 6.20: Cluster 3 
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Cluster 4 

Cluster 4, in Figure 6.21, shows peaks during the evening, around 8 p.m. This 

daily load could be typical of dwellers that are out in the morning, and in the 

afternoon. In terms of pattern and values is not very different from Cluster 1, 

except from the absence of the morning load and the shifting of the evening 

peak from 7 p.m. to 8 p.m. This could be an indication of the different habits of 

the same typology of family composition. For example, Cluster 1 could be 

characterized by electric usage during the morning, such as for the television, 

radio or electric toothbrushes, razors, or kitchen tools, differently from cluster 

4. In addition, the dinnertime could be different for the two cases. 

 

Figure 6.21: Cluster 4 
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Cluster 5 

Cluster 5, shown in Figure 6.22, is characterized by a two-peaks load. The 

maximum values are reached around noon and 8 p.m. These could be 

respectively the lunch and dinner time for any typology of family. During the 

afternoon a relatively low electric use is registered, almost similar to the one 

registered around 4 a.m. in the morning. This could be a sign of the absence of 

people inside the house or of a limited use of electric appliances during these 

hours. The second graph of Cluster 5, shows quite clearly the pattern also with 

the clusterized proto-clusters. 

 

Figure 6.22: Cluster 5 
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6.1.4. Comparison 

Before the generalization of the results of the clustering to all year, a 

comparison between the three scenarios and the registered data is performed. 

To complete the zones 3 and 13, the most similar flats in terms of characteristics 

(orientation, floor, area, window/floor ratio, etc) were used: respectively zone 

6 and 16. 

Figure 6.23 shows the sum of the electric use of the period taken into exam 

(from 01/02/16 to 31/08/16) in MWh. The Q2 scenario (the average) is different 

from the real registered data by 3 MWh. This means that probably all the three 

scenarios are slightly underestimating the electric demand. This difference, 

however, is not big and the combination of these scenarios in the final analyses 

will decrease more this gap.  

 

Figure 6.23: Comparison between the total sum of electric use from 01/02 to 31/08 in the 
building for the three scenarios and the real registered data 
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These results are expected and related to the averages between proto-clusters 

in each cluster. The unique patterns (very low or high) are reduced, together 

with the noise that characterized the real registered data. 

 

Figure 6.24: Comparison between the monthly sum of electric use for each flat for the 
three scenarios and the real registered data 

 

 

Figure 6.25: Comparison between the average electric use from 01/02 to 31/08 in the 
building for the three scenarios and the real registered data 
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6.1.5. Classification 

The KNN is applied with a cubic calculation of the distances with 10 

neighbourhoods. As predictors, the difference between Working day or Non-

Working day, the difference between Heating and Cooling season, the average 

daily external temperature and its variation were used, as explained in the 

paragraph 5.2.4. 

Application 

The application of the KNN gives a cluster of each day of the year, as shown in 

Figure 6.26. The graph shows, as an example, the result for the zone 2. To 

create the yearly hourly schedule, then, each daily cluster is substituted with 

the relative 24 hours patter, as shown in Figure 6.27. The Figure 6.28 shows the 

representativeness of each cluster for the zone 2. Each zone shows different 

percentages, resulting in a unique yearly schedule for three different scenarios. 

The introduction of the predictors related to the temperatures give a temporal 

trend that is clearly visible in Figure 6.26, in which the winter months are 

represented mainly by the cluster 3 and 4, whilst the summer periods by the 

clusters 1, 2 and 5. 

All the results for the other zones can be found in Section III of Annex II. 

 

Figure 6.26: Application of the KNN algorithm to assess the yearly schedule 
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Figure 6.27: Final yearly electric schedule of scenarios Q2 of Zone 2 

  

Figure 6.28: Clusters’ representativeness in the Zone 2 
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6.2. Task 2 

6.2.1. Data processing 

Data processing in this task is composed just of cleaning and transformation. 

Thus, all the hours in which the data is not sufficiently accurate to detect the 

15-minutes step registration might not be part of the sample. In almost all the 

flats February is registered as hourly value and for this reason it is not 

exploitable for this task. Two exceptions are Zone 4 and 22. The transformation 

is the association to each hour of the features: average, minimum and 

maximum, standard deviation and SAD, according to Kleiminger et al. [51]. 

6.2.2. Classification 

The k-Nearest Neighbours algorithm was used because it has been evaluated 

as the one with the highest average accuracy in the work of 2013 of Kleiminger 

et al. [51] and in the update of the research of 2015 [52]. 

The accuracy also, in this case, is high (with a KNN run with the cubic 

calculation of distances and with 10 neighbours), with an average of 86 % within 

the zones, as can be seen in Figure 6.29. 

 

Figure 6.29: Accuracy for the used KNN algorithm for each zone 
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6.2.3. Prediction 

To actually predict the occupancy, the clusters of the previous task were taken 

and applied to the occupancy daily patterns of the classification outcome. The 

average of this outcome is performed in each cluster. The result is a continuous 

variable (average value), between 0 and 1, corresponding to the probability of 

occupancy in a specific hour of the day for each cluster. Then, when the 

average is below 0,33 the corresponding probability will be 0% when is 

between 0,33 and 0,66 will be 50% and, when above 0,66 will correspond to 

100%. The results of each cluster are shown in Figures 6.30-6.34. In these 

graphs, the green line corresponds to the continuous variable resulting from 

the average of the occupancy within the same cluster, the blue line is the final 

discrete occupancy probability.  

 

Figure 6.30: Probability of occupancy in Cluster 1 

 

Figure 6.31: Probability of occupancy in Cluster 2 
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Figure 6.32: Probability of occupancy in Cluster 3 

 

Figure 6.33: Probability of occupancy in Cluster 4 

 

Figure 6.34: Probability of occupancy in Cluster 5 
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The same procedure is followed for the other two quartiles to create three 

scenarios of presence. The quartile 3 represents families whose components 

spend at home more time, whilst, the quartile 1 represents families that spend 

more time outside.  

The result is shown in Figures 6.35-6.6.39. In these graphs the blue line 

represents the discrete occupancy probability given by the average, the red 

line represents the third quartile and the dark blue line represents the first 

quartile.   

 

Figure 6.35: Three scenarios of the probability of occupancy in Cluster 1 

 

Figure 6.36: Three scenarios of the probability of occupancy in Cluster 2 
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Figure 6.37: Three scenarios of the probability of occupancy in Cluster 3 
 

 

Figure 6.38: Three scenarios of the probability of occupancy in Cluster 4 
 

 

Figure 6.39: Three scenarios of the probability of occupancy in Cluster 5 
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6.2.4. Conclusion 

The conclusion is an occupancy probability directly related with each cluster, 

thus it is generalized to all year following the results of the previous task shown 

in Figure 6.26. The three final scenarios with the probability of occupancy are 

summarized in figures 6.40-6.44 for each cluster. In the graphs, the daily 

electric use loads rely on the first axis (on the left), whilst the average 

occupancy probability relies on the secondary axis (on the right). 

The final probability is then multiplied by the number of people that are 

supposed to live in the apartment on the base of the area of the bedrooms. 

 
 

Figure 6.40: Final three scenarios and relative occupancy probability of Cluster 1 
 

 
 

Figure 6.41: Final three scenarios and relative occupancy probability of Cluster 2 
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Figure 6.42: Final three scenarios and relative occupancy probability of Cluster 3 

 
 

Figure 6.43: Final three scenarios and relative occupancy probability of Cluster 4 
 

 
 

Figure 6.44: Final three scenarios and relative occupancy probability of Cluster 5 
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6.3. Task 3 

The aim of the final analyses is to assess the impact of the generated schedules 

on the yearly energy need.  

To achieve this goal, the first analysis is run varying the three scenarios of 

electric demand but using the fixed average presence profile. The analyses 

show 3 scenarios: energy-aware user, standard user and energy-intensive user. 

In the first case, the schedule generated with the first quartile is assigned to all 

the households and it corresponds to the situation of lowest internal gains due 

to lighting and appliances. For this reason, an increase of the energy need is 

expected. In the second case, the average schedule is assigned. The third case 

corresponds to the assignment of high-consumers’ schedule to all the 

households in the building, resulting in the increase of the internal gains. In this 

last case, a decrease in the energy need to maintain the thermal comfort is 

expected. 

The result of this analysis is shown in Figure 6.45. 

 

Figure 6.45: Result of the Case 1 analysis 

 

The average value of energy need for heating is 77,30 kWh/m2yr. The range 

given by the two extreme scenarios goes from a maximum of 78,78 kWh/m2yr 

with the high-consumers’ schedules to a minimum of 74,69 kWh/m2yr with the 

conservative users’ schedules. This variability corresponds to +3 % and -2 % 
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around the average. As expected the increase of the internal gains brought to 

a decrease in the energy need for heating and vice versa with the decrease of 

the internal gains. Considering different internal gains for appliances and 

lighting, the final energy need for heating can vary by 5 % around the average 

scenario. 

To understand the impact of also the presence of the people in the thermal 

zones, a second case analysis is run. The idea is the same, run an average case 

with the standard users’ schedule, and the two extremes cases, lowest and 

highest internal gains. In this case, in addition to the variation of internal gains 

due to appliances and lights, there is also the variation of the internal gains due 

to people and, thus, an increase in the variability of the results is expected. The 

outcome of this second case is shown in Figure 6.46. 

 

Figure 6.46: Result of the Case 2 analysis 

 

The average value of energy need for heating is the same as before, 

corresponding to 77,30 kWh/m2yr. The range given by the two extreme 
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high-consumers’ schedules and high presence, to a minimum of 

70,96 kWh/m2yr with the conservative users’ schedules and low presence. This 

variability corresponds to +8 % and -7 % of the average. As expected the 
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appliances/lighting and presence, the final energy need for heating can vary 

by 15 %. 

In this thesis, the natural ventilation is not modelled in detail, but it can heavily 

affect the results. To understand which the effects can be changing the setting 

of the natural ventilation, two analyses are run with the minimum value of 0,05 

air change/hour as infiltration (ideally set to zero the natural ventilation). The 

two cases are set as the Case 1 and Case 2, thus with a variation of the internal 

gains due to appliances and a variation in the presence of people. The 

outcomes of these two analyses are shown in Figure 6.47. 

 

Figure 6.47: Result of the Case 3 and Case 4 
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heating, thus an estimated global seasonal efficiency of 0,7 was applied to 

calculate the energy need for heating.  

The registered data is not far from the modelled value (Figure 6.48), indicating 

that the overall modelling of the building is able to approximate satisfactorily 

the result, always considering that the energy modelling implies numerous 

variables. However, the followed methodology looks promising and with 

implementation and improvements can really become an asset in the field. 

 

Figure 6.48: Result of four Cases compared to the registered data 
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7. Conclusion and Future outlooks 

In this thesis, a comprehensive data-driven approach for the assessment of the 

impact of occupant behaviour is proposed. The methodology is focused on the 

improvement of the generation of schedules related to occupancy behaviour 

in energy modelling of residential buildings. The presented methods are 

applied and validated through a case study regarding a residential building 

block in Milan, Italy. 

In the first phase, a clustering methodology for creating five representative 

electricity daily load profiles for the residential sector in Italy is presented. The 

implementation of machine learning techniques was found to be appropriate 

for the nature of the data sample and its complexity. In particular, the Self 

Organizing Map, a Neural Network technique, is coupled with the k-means 

algorithm, a classic machine learning method. Moreover, to extend the results 

to the whole year, the k-Nearest Neighbours algorithm is implemented after a 

validation through comparison with the real registered data. Five clusters 

emerged with different daily profiles, that can be ascribed to different types of 

families and habits. 

In the second phase, a detection method is proposed to estimate the presence 

of occupants in the household. The technique does not rely on sensors, but it 

is based on the analysis of the electricity consumption data. To achieve the 

goal, also in this phase, machine learning techniques were implemented. In 

particular, the k-Nearest Neighbours algorithm for the detection of the 

occupancy was used. The extension to the whole year relies on the clusters 

obtained in the previous task. This phase, however, depends on an 

approximation for the creation of the ground truth from which the KNN learnt. 

For this reason, an at least partial survey on occupancy presence, could be 

helpful to validate or improve the methodology. The resulted presences are 

associated with the five daily profiles assessed in the previous step and they 

retrace the different habits of the families.  

In the third phase, the schedule generated in the previous steps are used to 

assess the impact of the occupancy behaviour on the heating energy need 

during a year. The modelled result is compared with the real registered data. 

The range of results for heating can vary around 7 % changing the internal gains 

due to electric appliances and around 15 % changing also the presence of 
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people. The uncertainty of 20 % due to different natural ventilation schedules 

implemented in the analyses is also of great interest.  

7.1. Applications 

The methodology may be a useful tool for several applications.  

The method used in task 1, for the investigation of the electricity load profiles, 

may be valuable as an efficient load profiling analysis in residential buildings, a 

peculiar case in terms of noise in the data sample, complexity of the variable 

and privacy issues. In the residential sector a vast amount of raw data available 

thanks to the smart meters, will need to be processed, to obtain in-depth and 

useful information of the electricity behaviour. This knowledge can be 

exploited by different actors, such as: 

- managers whose aim is to develop strategies for energy savings due to 

good management of renewable systems, 

- distribution system operators and transmission system operators can 

both exploit the identification of energy profiles for the management of 

the grid and of the markets, 

- modellers who do not possess electricity loads for their residential 

buildings models, 

- energy service companies involved in the building management that can 

exploit the information to optimize the energy savings measures, 

- tenants, who can benefit from targeted tariff plans, 

- policymakers who can benefit from the profiles characterization to 

optimize the actions. 

The approach used in task 2 exploits the electricity consumption registration 

as an occupancy sensor. Modellers, without an available presence ground truth 

data, or a partial one, can apply the proposed methodology to create presence 

schedules. The first advantage of the approach is the fact that the privacy of 

the tenants is respected. Moreover, with building-size databases, this method 

is a simple and rapid implementation to obtain occupancy schedules. 

The assessment of the occupants in building energy modelling, performed in 

task 3, is of major importance in the last years’ researchers. Understand deeply 

how much the occupants and their habits can impact on the energy need of a 

building is crucial for high-performance buildings. As a matter of fact, the 

occupancy behaviour can change the result and, for this reason, the 
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accomplishment or the failure of an energy target. Knowledge of the impact of 

occupants can be helpful for different operators, such as: 

- policymaker, who can optimize the energy targets considering this 

uncertainty in a defined way, 

- managers whose aim is to develop strategies for energy savings due to 

good management of resources, 

- tenants, who can benefit from the knowledge of good and bad 

behaviours to decrease their expenses, 

- modellers, who can evaluate better the impact of variables in their 

models. 

7.2. Future works 

In future, to improve the results of the second task, a more detailed 

measurement of the electricity might be helpful. A time step of 1 second could 

be optimal. In addition, a ground truth of the presence of people, at least 

partial, can be beneficial for the accuracy of the KNN algorithm.  

From the results of the energy analyses, it is clear that the natural ventilation is 

a big uncertainty that can have a huge impact on the final energy consumption 

of the building. The methodology developed in the thesis for occupancy profile 

generation could be further extended to address natural ventilation too. 
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Annex I 

In this annex, the main details of the EnergyPlus model are listed.  

Constructions 

Vertical Closure 

Code M2 Description MAIN EXTERNAL WALL  

Thermal Resistance 0.82 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 11 

2 
Reinforced Concrete 

(1% steel) 
105.00 2.30 0.046 2300 1.00 130 

3 EPS 1985 40.00 0.07 0.571 25 1.00 100 

4 
Reinforced Concrete 

(1% steel) 
55.00 2.30 0.024 2300 1.00 130 

5 
Lime and concrete 

Mortar 
5.00 0.90 0.006 1800 1.00 23 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.1: Layers description of construction M2 

 

Code M7 Description EXTERNAL WALL OF STAIRS  

Thermal Resistance 0.25 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 11 

2 
Reinforced Concrete 

(1% steel) 
150.00 2.30 0.065 2300 1.00 130 

3 
Lime and concrete 

Mortar 
5.00 0.90 0.006 1800 1.00 22 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.2: Layers description of construction M7 
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Code M7b Description EXTERNAL WALL OF THE ATTIC  

Thermal Resistance 0.25 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
15.00 0.70 

0.021 
1400 1.00 11 

2 
Reinforced Concrete 

(1% steel) 
150.00 2.30 0.065 2300 1.00 130 

3 
Lime and concrete 

Mortar 
15.00 0.90 

0.017 
1800 1.00 22 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.3: Layers description of construction M7b 
 

Code MS Description EXTERNAL WALL ON LOGGIA SIDES  

Thermal Resistance 1.81 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 11 

2 
Reinforced 

Concrete (1% steel) 
150.00 2.30 0.065 2300 1.00 130 

3 
Lime and Cement 

Plaster 
5.00 0.90 0.006 1800 1.00 22 

4 
Sintered expanded 

polystyrene 
40.00 0.04 1.000 30 1.45 60 

5 
External Plastic 

Plaster  
10.00 0.300 0.033 1300 0.84 30 

6 
Sintered expanded 

polystyrene 
20.00 0.04 0.500 30 1.45 60 

7 
External Plastic 

Plaster  
10.00 0.3 0.033 1300 0.84 30 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.4: Layers description of construction MS 
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Code M31 Description ROLLER BLIND CASE  

Thermal Resistance 1.07 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 10 

2 
Reinforced Concrete 

(1% steel) 
55.00 2.30 0.024 2300 1.00 130 

3 EPS 1985 40.00 0.07 0.571 25 1.00 100 

4 
Reinforced Concrete 

(1% steel) 
55.00 2.30 0.024 2300 1.00 130 

6 
Internal Gap of not 

ventilated air 
200.00 1.11 0.180 - - - 

8 
Expanded 

poliurethane 
30.00 0.035 0.857 70 1.03 1 

9 Glued wood Panels 13.00 0.14 0.093 500 1.70 30 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.5: Layers description of construction M31 
 

Code M130/M4 Description EXTERNAL WALL ON LOGGIAS  

Thermal Resistance 0.92 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 11 

2 Hollow Bricks 80.00 0.29 0.280 825 0.84 9 

3 
Not-ventilated Air gap 

Av<500 mm2/m 
50.00 0.28 0.180 - - - 

4 Hollow Bricks 80.00 0.29 0.280 825 0.84 9 

5 
Cement and Lime 

Plaster 
5.00 0.90 0.006 1800 1.00 22 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.6: Layers description of constructions M130 and M4 
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Vertical Partitions 

Code M6 Description VERTICAL PARTITION BETWEEN FLATS 

Thermal Resistance 0.25 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 11 

2 
Reinforced 

Concrete (1% steel) 
150.00 2.30 0.065 2300 1.00 130 

3 
Lime and concrete 

Mortar 
5.00 0.90 0.006 1800 1.00 22 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.7: Layers description of construction M6 

 

Code M8 Description INTERNAL PARTITION ON STAIR CASES 

Thermal Resistance 0.82 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and Gypsum 

Plaster 
5.00 0.70 0.007 1400 1.00 10 

2 
Reinforced 

Concrete (1% steel) 
105.00 2.30 0.046 2300 1.00 130 

3 EPS 1985 40.00 0.07 0.571 25 1.00 100 

4 
Reinforced 

Concrete (1% steel) 
55.00 2.30 0.024 2300 1.00 130 

5 
Lime and concrete 

Mortar 
5.00 0.90 0.006 1800 1.00 23 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.8: Layers description of construction M8 
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Code MP Description INTERNAL PARTITION INSIDE FLATS 

Thermal Resistance 0.82 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 
Lime and concrete 

Mortar 
15.00 0.90 0.017 1400 1.00 23 

2 
Reinforced 

Concrete (1% steel) 
55.00 2.30 0.024 2300 1.00 130 

3 EPS 1985 40.00 0.07 0.571 25 1.00 100 

4 
Reinforced 

Concrete (1% steel) 
55.00 2.30 0.024 2300 1.00 130 

5 
Lime and concrete 

Mortar 
15.00 0.90 0.017 1800 1.00 23 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.9: Layers description of construction M8 
 
 

Horizontal Closures 

Code P1 Description EXTERNAL FLOOR ON GROUND 

Thermal Resistance 0.57 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.170 - - - 

1 Ceramic Tiles  10.00 1.30 0.008 2300 0.84 9999999 

2 Screed in Concrete  50.00 1.49 0.034 2200 0.88 70 

3 Deck in bricks 220.00 0.72 0.306 1800 0.84 9 

4 
Lime and concrete 

Mortar 
10.00 0.90 0.011 1800 1.00 23 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.10: Layers description of construction P1 
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Code P2 Description EXTERNAL FLOOR ON LOGGIAS 

Thermal Resistance 0.37 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.170 - - - 

1 Ceramic Tiles  20.00 1.30 0.015 2300 0.84 9999999 

2 
Screed in Lean 

Concrete  
50.00 0.90 0.056 1800 0.88 30 

3 
Screed in Reinforced 

Concrete 
180.00 2.15 0.084 2400 0.88 100 

4 
Lime and concrete 

Mortar 
5.00 0.90 0.006 1800 1.00 22 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.11: Layers description of construction P2 
 
 

Code S2 Description ROOF ON THE ATTIC 

Thermal Resistance 0.25 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

1 
Screed in 

Reinforced Cocrete 
180.00 2.15 0.084 2400 0.88 100 

2 
Gypsum and Sand 

Plaster 
20.00 0.80 0.025 1600 1.00 10 

- 
Internal Superficial 

Resistance 
- - 0.100 - - - 

 

Table AI.12: Layers description of construction S2 
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Horizontal Partitions 

Code P3 Description INTERNAL FLOOR 

Thermal Resistance 0.36 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.170 - - - 

1 Ceramic Tiles  20.00 1.30 0.015 2300 0.84 9999999 

2 
Screed in Lean 

Concrete  
50.00 0.90 0.056 1800 0.88 30 

3 
Screed in Reinforced 

Concrete 
180.00 2.15 0.084 2400 0.88 100 

- 
External Superficial 

Resistance 
- - 0.040 - - - 

 

Table AI.13: Layers description of construction P3 
 
 

Thermal Bridges 

Code 
Thermal Resistance Thermal Transmittance 

Description 
m2K/W W/m2K 

PT1 0.650 1.54 
Main external Thermal Bridge applied 
on the façades between floors (M2, 

M7) 

PT2 0.410 2.44 
External Thermal Bridge applied on 

the loggias (MS, M130) 

PT3 0.296 3.38 
Internal Thermal Bridge with the 

stairs applied between floors (M6, 
M8, M8S) 

PT4 0.650 1.54 
External Thermal Bridge applied on 

the façade at the last floor 

PT5 0.650 1.54 
External Thermal Bridge applied on 

the loggias at the last floor 

PT6 0.830 1.20 
External Thermal Bridge applied on 

the stairs at the last floor 

 

Table AI.14: Thermal bridges description 
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Glazed Units 

G
la

ss
 

4
+4

.2
/1

6
/3

+3
.2

 

U-Factor W/m2K 3 

SHGC 0.75 

Visible Transmittance 0.82 

Fr
am

e 
an

d
 D

iv
id

er
 

Conductance W/m2K 60 

Width m 0.075 

Solar Absorptance 0.7 

Divider Width m 0.15 

Divider Cond W/m2K 60 

 

Table AI.15: Glass, Frame and divider description 
 

Code General Description 
Number of 

Sashes 
Number of 

Dividers 
Width                 

m 
Height             

m 
Aw total             

m2 
Ag glass       

m2 
Af frame      

m2 

W1 
Window used in the 

bedrooms 
2 1 1.45 1.35 1.96 1.37 0.59 

W2 
Window used rarely 

instead of W1 
3 2 2.10 1.35 2.84 1.76 1.08 

W3 
Window used in the 

bathrooms 
1 0 0.80 1.35 1.08 0.78 0.30 

W5 
Window used in the 

kitchens 
1 0 0.80 2.30 1.84 1.40 0.44 

W5n 
Window used on 

the stair cases 
1 0 0.80 1.35 1.08 0.78 0.30 

W6 
French window 
used on loggias 

2 1 1.45 2.30 3.34 2.60 0.73 

WD 
Entrance door at 

ground level 
1 0 ~ 2.00 ~ 2.6 ~ 5.20 ~ 4.50 ~ 0.70 

WI 
Window used at the 

ground floor 
1 0 0.80 0.65 0.52 0.33 0.20 

WL 
Window used in the 

attic 
1 0 0.57 3.15 1.80 1.26 0.54 

 

Table AI.16: Windows description 
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Shading 

Schedule Nocturnal 10 p.m.-6 a.m. 

Solar Transmittance 0,05 

Solar Reflectance 0,5 

Visible Transmittanve 0,05 

Visible Reflectance 0,5 

Infrared Hemispherical Emissivity 0,9 

Infrared Transmittance 0,05 

Thickness 0,015 m 

Conductivity 0,1 W/mK 

Shade to Glass Distance 0,34 m 

Airflow Permeability 0,05 

Table AI.17: Shading Setting 

Doors 

Code M30 Description DOOR 

Thermal Resistance 0.55 m2K /W 

N Layer th [mm] λ [W/mK] 
 

R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 

 
0.130 - - - 

1 
HD Wood Fibers 

Panels 
9.00 0.160 

 
0.056 900 1.70 72 

2 
Internal Gap of not 

ventilated air 
15.70 - 

 
0.180 - - - 

3 
HD Wood Fibers 

Panels 
9.00 0.160 

 
0.056 900 1.70 72 

- 
Internal Superficial 

Resistance 
- - 

 
0.130 - - - 

 

Table AI.18: Layers description of construction M30 
 

Code M29 Description DOOR AT GROUND LEVEL 

Thermal Resistance 1.51 m2K /W 

N Layer th [mm] λ [W/mK] R [m2K/W] 
Vol Mass 
[kg/m3] 

c [kJ/kgK] Vap Res [-] 

- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

1 Metallic Coating - - 0.001 - - - 

2 Mineral Wool 50.00 0.040 1.250 165 1.03 1 

3 Metallic Coating - - 0.001 - - - 
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- 
Internal Superficial 

Resistance 
- - 0.130 - - - 

 

Table AI.19: Layers description of construction M29 

 

General Settings 

North axis 39° 

Terrain Suburbs 

Solar Distribution Full Exterior 

Minimum number of warup days 25 

 

The ground temperature on the building location is set considering the 2 m- 

depth temperature given by the weather data IGDG of Milano-Linate. 

 

Figure AI.1: Set ground temperature in the EnergyPlus model 

 

Internal gain from Electric Equipment 

Fraction radiat 0,3 

Fraction lost 0,5 
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Annex II 

Section I 

Descriptive statistics of the continuous variables 

Cumulative Precipitation 

Descriptives 

 Statistic Std. Error 

H
o

u
rl

y
 C

u
m

u
la

ti
v
e
 P

re
c
ip

it
a
ti

o
n

 m
m

 

Mean ,1357 ,00302 

Median ,0000  

Variance 1,024  

Std. Deviation 1,01187  

Minimum ,00  

Maximum 29,60  

Range 29,60  

Skewness 15,933 ,007 

Kurtosis 337,462 ,015 

 

Table AII.1: Descriptive Statistics of hourly cumulative precipitation variable 
 

Hourly average temperature 

Descriptives 

 Statistic Std. Error 

H
o

u
rl

y
 A

v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 °

C
 

Mean 18,0938 ,02205 

Median 18,0000  

Variance 54,421  

Std. Deviation 7,37706  

Minimum 1,60  

Maximum 33,80  

Range 32,20  

Skewness -,038 ,007 

Kurtosis -,975 ,015 

 

Table AII.2: Descriptive Statistics of hourly average temperature variable 
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Figure AII.1: Histogram of the hourly average temperature variable 

 

Global radiation 

Descriptives 

 Statistic Std. Error 

G
lo

b
a
l 
R

a
d

ia
ti

o
n

 W
/
m

2
 

Mean 198,4626 ,80836 

Median 29,8500  

Variance 73144,391  

Std. Deviation 270,45220  

Minimum ,00  

Maximum 931,30  

Range 931,30  

Skewness 1,147 ,007 

Kurtosis -,111 ,015 

 

Table AII.3: Descriptive Statistics of global radiation variable 
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Figure AII.2: Histogram of the global radiation variable 

 

Floor Area 

Descriptives 

 Statistic Std. Error 

A
re

a
 

Mean 67,7968 ,06229 

Median 71,3700  

Variance 434,250  

Std. Deviation 20,83865  

Minimum 37,87  

Maximum 95,28  

Range 57,41  

Skewness -,168 ,007 

Kurtosis -1,209 ,015 

 

Table AII.4: Descriptive Statistics of floor area variable 
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Window/Floor ratio 

 
Descriptives 

 Statistic Std. Error 

W
in

d
o

w
/
F

lo
o

r 
A

re
a
 

Mean ,142170 ,0000688 

Median ,138511  

Variance ,001  

Std. Deviation ,0230334  

Minimum ,1026  

Maximum ,1956  

Range ,0930  

Skewness ,334 ,007 

Kurtosis -,584 ,015 

 

Table AII.5: Descriptive Statistics of window/floor ratio variable 

 

 

 
Figure AII.3: Box plot of the window/floor ratio variable 
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Section II 

Boxplots between variables 

 

Figure AII.4: Box plot between Day/Night variable and the Global radiation 
 

 

Figure AII.5: Box plot between Day/Night variable and the Hourly average temperature 
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Figure AII.6:  Box plot between Cooling/Heating season variable and the Average external 
temperature 

 

 
Figure AII.7: Frequency of the Weekdays within the Working or Not Working variable 
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Figure AII.8: Scatter plot between Hourly average temperature and Global Radiation 

 
 

 

Figure AII.9: Box plot between the number of rooms and area of a flat. 
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Section III 

 

Figure AII.10: Final cluster assessment of Zone 3 

 

Figure AII.11: Final cluster assessment of Zone 4 

 

Figure AII.12: Final cluster assessment of Zone 5 
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Figure AII.13: Final cluster assessment of Zone 6 

 

Figure AII.14: Final cluster assessment of Zone 7 

 

Figure AII.15: Final cluster assessment of Zone 12 
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Figure AII.16: Final cluster assessment of Zone 13 

 

Figure AII.17: Final cluster assessment of Zone 14 

 

Figure AII.18: Final cluster assessment of Zone 15 
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Figure AII.19: Final cluster assessment of Zone 16 

 

Figure AII.20: Final cluster assessment of Zone 17 

 

Figure AII.21: Final cluster assessment of Zone 18 
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Figure AII.22: Final cluster assessment of Zone 19 

 

Figure AII.23: Final cluster assessment of Zone 20 

 

Figure AII.24: Final cluster assessment of Zone 21 
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Figure AII.25: Final cluster assessment of Zone 22 

 

Figure AII.26: Final cluster assessment of Zone 23 

 

Figure AII.27: Final cluster assessment of Zone 24 
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Figure AII.28: Final cluster assessment of Zone 25 

 

Figure AII.29: Final cluster assessment of Zone 26 

 

Figure AII.30: Final cluster assessment of Zone 27 
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Figure AII.31: Final cluster assessment of Zone 28 

 

Figure AII.32: Final cluster assessment of Zone 29 
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Figure AII.33: Clusters’ 
representativeness in the Zone 3 

 

Figure AII.34: Clusters’ 
representativeness in the Zone 4 

 

Figure AII.35: Clusters’ 
representativeness in the Zone 5 

 

 

Figure AII.36: Clusters’ 
representativeness in the Zone 6 

 

Figure AII.37: Clusters’ 
representativeness in the Zone 7 

 

 

Figure AII.38: Clusters’ 
representativeness in the Zone 12 
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Figure AII.39: Clusters’ 
representativeness in the Zone 13 

 

Figure AII.40: Clusters’ 
representativeness in the Zone 14 

 

Figure AII.41: Clusters’ 
representativeness in the Zone 15 

 

 

Figure AII.42: Clusters’ 
representativeness in the Zone 16 

 

Figure AII.43: Clusters’ 
representativeness in the Zone 17 

 

Figure AII.44: Clusters’ 
representativeness in the Zone 18 
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Figure AII.45: Clusters’ 
representativeness in the Zone 19 

 

Figure AII.46: Clusters’ 
representativeness in the Zone 20 

 

Figure AII.47: Clusters’ 
representativeness in the Zone 21 

 

 

Figure AII.48: Clusters’ 
representativeness in the Zone 22 

 

Figure AII.49: Clusters’ 
representativeness in the Zone 23 

 

Figure AII.50: Clusters’ 
representativeness in the Zone 24 
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Figure AII.51: Clusters’ 
representativeness in the Zone 25 

 

Figure AII.52: Clusters’ 
representativeness in the Zone 26 

 

Figure AII.53: Clusters’ 
representativeness in the Zone 27 

 

 

Figure AII.54: Clusters’ 
representativeness in the Zone 28 

 

Figure AII.55: Clusters’ 
representativeness in the Zone 29 
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