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Abstract

This thesis is a collection of five journal papers and one conference paper. The thesis
is on pose alignment and point correspondence estimation for 3D point clouds, and
inverse kinematics of industrial robots. The approaches proposed in this thesis are
based on conformal geometric algebra, which is an extension of Euclidean geometry
which enables efficient descrition of geometric objects such as line, plane and sphere
geometry, as well the calculation of the intersection between such objects.

The thesis presents a novel approach for the initial alignment between two point
clouds called the Curvature-Based Descriptor. The curvature-based descriptor is a
descriptor which describes the local curvature around a point in the point cloud.
The local curvature is expressed with two spheres generated using conformal ge-
ometric algebra. The thesis also presents preprocessing steps which are used to
segment the point cloud to extract only the parts of the point cloud that are nec-
essary for the alignment, and a keypoint extraction method which extracts certain
points from the point cloud, making the point correspondence more accurate.

The inverse kinematics presented in this thesis is an analytic solution which
uses conformal geometric algebra. The solution is presented for the Kuka KR6
R900 sixx robot and the Universal Robots UR5 robot. All singularities and all
configurations are accounted for in the solutions.

The thesis has several experimental results. These experiments are presented
in each paper, and show the results from various methods performing point cloud
alignment. The results show that it is possible to achieve a sub-millimeter accuracy
for position estimation of an object using state-of-the-art methods when using both
3D and 2D cameras combined. The results also show that the curvature-based
alignment method, after applying the preprocessing steps presented in the thesis,
achieve a sub-millimeter accuracy on its own, an accuracy that is not achieved with
any of the other 3D alignment methods.
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Chapter 1

Introduction

What did the beach say when the tide came in?
Long time no sea.

1.1 Background and Motivation

This thesis is part of the project "Energy saving transmission control for heavy
duty vehicles" in collaboration with Kongsberg Automotive. The overall goal is to
create more efficient heavy duty vehicles, and one of these aspects is to create more
efficient servo clutches. This thesis specifically looks at how the production of these
servo clutches can be improved using 3D cameras to detect the car parts so that
they can be assembled with robots.

Currently, the assembly process at Kongsberg Automotive is done manually, and
in order to increase their production, the whole or parts of the assembly process
should be automated. A fully automated production line is more efficient and less
prone to errors. In order to successfully implement an automated production line,
the position of all the assembly parts has to be known at all times. If there is
an error between the actual position of the part and the measured or estimated
position, the assembly process might be stopped, or in worst case, the parts or even
the robots may break.

A widely used technique to ensure accurate positioning of an object is to use
fixtures. Fixtures are either clamps or trays that hold the objects in place, and are
constructed so that the object is forced into a specific, known position. This works
for objects that are standardized and produced in large volumes, but the car parts
from Kongsberg Automotive change frequently depending on the specifications
from the customer. The dimensions and mounting holes of the servo clutch are
specific to different cars, which changes the behaviour of the assembly process
almost weekly. This means that these clamps and trays would have to be changed
as frequently, which is not a desirable outcome.

This thesis has these considerations in mind. The main task is to investigate
methods that estimates the position of objects with the accuracy required to com-
plete the assembly task, and that are sufficiently flexible so that they can be
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1. Introduction

changed depending on the specifications from the customer. The company has
provided a set of car parts and their CAD models, and the task is to estimate the
position of these objects with a sub-millimeter accuracy based only on the provided
CAD model.

1.1.1 Computer Vision

Computer vision is a broad term that encompasses all methods and technologies
that enables computers to analyze sensor data from cameras. The cameras can
range from microscope cameras to cameras with 360° field of view, and from infrared
to range sensors. Computer vision is used in a wide range of applications such as
medical image analyses, motion tracking, face recognition, automotive industry,
astronomy, and robotics.

One of the advantages of computer vision is that the camera sensor can take
pictures of different objects without directly interacting with them. This makes it
possible to detect multiple different objects without the need of change the setup.
In the scope of this thesis, this means that a camera can detect the position of
car parts as well as the specified dimensions and adjustments, regardless of the
specifications of the customer. This also means that the computer vision algorithm
can adapt to the different CAD models that are provided, and have the flexibility
to detect any of these objects within its field of view.

1.1.2 Conformal Geometric Algebra

Conformal geometric algebra is an extension to Euclidean geometry which makes it
possible to model geometric objects such as lines, planes and spheres. The algebra
is also constructed so that it is possible to calculate the intersections between these
objects.

In the scope of this thesis, conformal geometric algebra can be used to describe
objects mathematically and to calculate the interactions between them. This makes
it possible to model the objects that are detected with computer vision as well as
the inverse kinematics of the robots.

1.2 List of publications

This thesis is based on the following publications

Journal publications
[31] A. Kleppe, O. Egeland. Inverse Kinematics for Industrial Robots using Con-

formal Geometric Algebra. Modeling, Identification and Control: A Norwe-
gian Research Bulletin, 37(1):63-75, 2016.

[55] A. Sveier, A. L. Kleppe, L. Tingelstad, O. Egeland. Object Detection in Point
Clouds Using Conformal Geometric Algebra. Advances in Applied Clifford
Algebras, 27(3):1961–1976, 2017.

[30] A. L. Kleppe, A. Bjørkedal, K. Larsen, and O. Egeland. Automated assembly
using 3D and 2D cameras. MDPI Robotics, 6(3):14, 2017.
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1.3. Main Contribution

[33] A. L. Kleppe, L. Tingelstad, O. Egeland. Coarse Alignment for Model Fitting
of Point Clouds using a Curvature-Based Descriptor. IEEE Trans. Automa-
tion Science and Engineering. Conditionally Accepted.

[32] A. Kleppe, O. Egeland. A Curvature-Based Descriptor for Point Cloud Align-
ment using Conformal Geometric Algebra. Advances in Applied Clifford Al-
gebra., 28(2):50, 2018.

Conference publications
[29] A. Kleppe, L. Tingelstad, and O. Egeland. Initial alignment of point clouds

using motors. ACM International Conference Proceeding Series, Part F1286,
2017.

1.3 Main Contribution

The objective of this thesis was to investigate solutions that can estimate the
position of objects with the accuracy that is required to perform an assembly
operation. The solutions produced by this thesis used 3D cameras and conformal
geometric algebra to achieve this.

The main contributions of this thesis are
• A proposed analytical inverse kinematics solution for industrial robots using

conformal geometric algebra.
• Several proposed methods for object detection and pose estimation, which

estimates the position of an object based on its CAD model using a 3D
camera. These methods use conformal geometric algebra to achieve this.

• Experimental results which show that the above methods achieves a sub-
millimeter accuracy, which is required for assebly.

• Experimental results showing that the same accuracy can be achieved with
state-of-the-art pose estimation methods if they are combined with pose es-
timation methods using a 2D camera.

1.4 Thesis Outline

This thesis is a collection of six papers, and is structured as follows
• Chapter 2, Point Cloud Alignment introduces point cloud alignment and

the 3D-3D registration problem. It continues to present how point clouds are
generated, and how this affects the alignment process.

• Chapter 3, Descriptors presents a particular branch of methods that are
used for point cloud alignment, called descriptors. The chapter presents the
general approach and gives an explanation of some of the state-of-the-art
descriptors.

• Chapter 4, Conformal Geometric Algebra presents the conformal geo-
metric algebra, which is an extension to the Euclidean algebra. The chapter
also explains the different geometric objects that can be generated from it,
and how the intersection between them is calculated.

3



1. Introduction

• Chapter 5, Applications of Conformal Geometric Algebra presents
three applications for conformal geometric algebra, which are used in this
thesis: Sphere fitting, model fitting using RANSAC and inverse kinematics.

• Chapter 6, Curvature-Based Descriptor presents one of the main con-
tributions of this thesis, the curvature-based descriptor, which uses conformal
geometric algebra to perform point cloud alignment.

• Chapter 7,Experiments presents the general experimental setup which
were used in the different experiments. The experiments themselves are cov-
ered in the papers, but this chapter goes more in depth of the overall setup.

• Chapter 8. Conclusion: concludes the thesis, and presents some future
work.

• Chapter 9, Publications presents the published papers.

4



Chapter 2

Point Cloud Alignment

What do you call a fish with no eyes?
Fsh.

This chapter presents the 3D-3D registration problem and an overview of the
types of methods that attempts to solve it. The mechanics of generating point
clouds are also presented.

2.1 3D-3D Registration Problem

The 3D-3D registration problem [34] is well-established in computer vision, and
is still an area of active research. In this problem, the task is to find the optimal
displacement between two sets of points. Due to its fundamental nature, it appears
in several fields of research, such as in object recognition, tracking, robotics, medical
image analysis, graphics and data fusion.

In the 3D-3D registration problem, we define two sets of points, often referred
to as point clouds: The model point cloud X and the observation point cloud Y .
These point clouds are usually results from sampling 3D CAD models or scanning
objects or scenes with a range sensor, where the model point cloud is the reference
object, usually sampled from a CAD model. The observation point cloud is usually
captured with a 3D camera, and the task is to find the model point cloud within
the scene point cloud. An example of the two types can be seen in Figure 2.1.

The problem involves two sub-problems: Calculation of the displacement be-
tween the two point clouds, and estimation of the point correspondences between
each point in the point clouds [11].

The mathematical description of the 3D-3D registration problem is: Consider
the set of points X = {xi}, i = 1, . . . , nx with the Euclidean vector representation
xi ∈ R

3, and the set of points Y = {yj}, j = 1, . . . , ny with the Euclidean vector
representation yi ∈ R

3. Then the displacement is calcuated by the minimization of

E(R, t) =

nx∑
i=1

‖yj∗ −Rxi − t‖2 (2.1)

5



2. Point Cloud Alignment

(a) A set of point clouds of a CAD
model

(b) A point cloud of an object taken
with a 3D camera

Figure 2.1: A sample of different point clouds taken of the same object; one CAD
model and one real object

with respect to R ∈ SO(3) and t ∈ R
3, where yj∗ is the point in Y which corre-

sponds to the point xi.
The correspondence between point yj∗ and xi is estimated by the minimization

problem
j∗ = argmin

j
‖yj −Rxi − t‖ (2.2)

2.2 Iterative Closest Point (ICP)

A large number of methods have been proposed to solve the registration problem
in 3D [51, 11], where ICP [6, 13, 45] is widely used.

The ICP algorithm is an Expectation-Maximization algorithm [34] as it alter-
nates between solving the two sub-problems of displacement and correspondence
estimation, until both reaches a local minimum. When solving one of the two sub-
problems, the method uses the previous estimate of the displacement sub-problem
when solving the point correspondence sub-problem, and vice versa.

The first step of the ICP algorithm is to move both point clouds to the origin.
This is done by defining the two point clouds X̃ and Ỹ as

X̃ = {x̃i} = {xi − x}, x =
1

nx

∑
xi∈X

xi, i = 1, . . . , nx (2.3)

Ỹ = {ỹj} = {yj − y}, y =
1

ny

∑
yj∈Y

yj , j = 1, . . . , ny (2.4)

(2.5)

6



2.2. Iterative Closest Point (ICP)

The translation t is then found by

t = y − x (2.6)

After the translation is found, the ICP method finds the rotation matrix and the
point correspondence by iteratively solving two optimization problems: The point
correspondence and the rotation displacement. First, the point correspondence is
found by finding which of the points in Ỹ are currently closest point to x̃i by
solving the equation for each point x̃i ∈ X̃

j∗(k) = argmin
j

‖ỹ(k)
j −R(k)x̃i‖ (2.7)

where k = 1, 2, 3, . . . nk is the number of iterations of the ICP algorithm. Here,
R(1) = I.

When the point correspondences are found, the second sub-problem is solved:
Finding the displacement between the point clouds. The rotation can be found by
solving Procustes’ problem

R = argmin
Q

‖Qx̃i − ỹj‖ (2.8)

such that QQT = I and detQ = 1.
Procustes’ problem is solved by first defining the matrices [X̃] and [Ỹ ] as

[X̃] =
[
x̃1 x̃2 . . . x̃nx

]
(2.9)

[Ỹ ](k) =
[
ỹ
(k)
1 ỹ

(k)
2 . . . ỹ

(k)
ny

]
(2.10)

(2.11)

and defining the matrix [M ](k) as

[M ](k) = [Ỹ ](k)[X̃]T (2.12)

which if solved using singular value decomposition is [M ](k) = UΣV T and results
in the rotation matrix

R̃(k) = Udiag(1, 1, det(UV T))V T (2.13)

The point cloud Ỹ is then updated so that

ỹ
(k+1)
j = R̃(k)ỹ

(k)
j , j = 1, 2, 3, . . . , ny (2.14)

and the rotation matrix is updated so that

R(k+1) = R(k)R̃(k) (2.15)

The final results of the ICP algorithm occurs after k∗ iterations, when the
method has converged.

A known drawback with Expectation-Maximization algorithms is that they can
only achieve local minimal solutions. This means that ICP alone cannot solve the
3D-3D registration problem. In order for ICP to work successfully, two criteria have
to be fulfilled:

7



2. Point Cloud Alignment

• The two point clouds have to be sufficiently close to each other. This is a
results of the Expectation-Maximization algorithm. If the two point clouds
are not sufficiently close to each other, the ICP algorithm can potentially be
stuck in a local minimum, which is not the global minimum.

• The two point clouds must overlap each other. This means that the point
clouds has to cover the exact same surface, and that one point cloud must
not cover a larger surface than the other. This is because the ICP algorithm
is based on solving Procustes problem, which assumes that all the points have
a 1-to-1 correspondence. It also only tries to find the correspondence for the
points in X, which means that the size of X should be smaller than Y .

There are several methods that have expanded on the ICP algorithm to make it
achieve a global optimal solution, such as GO-ICP [60] and Sparse ICP [9]. Other
methods try to find an initial alignment which improves the initial conditions before
applying ICP. These methods are called coarse registration methods, since they
solve the 3D-3D registration problem globally, but not optimally, resulting in a
initial pose that converts the 3D-3D registration problem to a local optimization
problem.

2.3 Coarse and fine registration

As mentioned, the methods for solving the 3D-3D registration problem can be split
into coarse and fine registration methods, where course registration methods are
used to calculate the initial conditions for the fine registration methods, such as
ICP, which calculates an accurate solution when good initial conditions are given.

Coarse registration problems can be further split into global and local coarse
registration problems. Global coarse registration problems use global properties of
the point clouds, such as centroid or principal component analysis to find the initial
alignment, while local coarse registration methods will match local properties, such
as color or curvature in order to find the initial alignment.

The global approaches perform best if the two point clouds overlap. That way
the centroid and other global properties are equal in the two point clouds. Examples
of these are [38] and [12], where skeletons techniques are used, and [46], where
features based on viewpoint is used. [29] is also a global approach which uses the
geometric properties of the point cloud to find an initial alignment.

Global approaches have the advantage that the point cloud as a whole is consid-
ered. This means that it is invariant to the density of the point cloud, and that the
computation time is not necessarily exponentially related to the size of the point
cloud. The drawback with the global approaches is that the point clouds have to
completely overlap. This has to be taken into consideration when considering the
viewpoint of the camera when taking a 3D picture of the object.

The local approaches uses so-called descriptors to produce an initial alignment.
A descriptor describes the local properties surrounding a point, such as color,
curvature and relationship between surface normals. The descriptors from both
point clouds can then be compared to each other, not only relying on the position
of the points, but also the shape and curvature of the surrounding surface or the
color or texture of the surrounding surface. This results in a more reliable point

8



2.4. The Geometry of Point Clouds

correspondence estimate between the descriptors, and therefore the points that
they describe. This correspondence is then used to find the displacement between
the two point clouds, resulting in an initial alignment. Example of local approach
coarse registration methods are: Point Signatures [15], Spin Images [28] and Point
Feature Histograms [47, 48].

Local approaches are the most flexible when it comes to partly overlapping
point clouds. In ideal situations, a local approach can find the initial alignment
between two point clouds that hardly overlap. The drawback with these methods
is that they are very dependent on the shape and structure of the point clouds. If
a point cloud has few features, such as distinct shapes, edges or corners, then the
descriptors are hard to distinguish from each other, making it harder to find the
correct correspondence. The descriptors are also dependent on the size of the point
cloud, since a descriptor has to be made for each point in the point cloud. In some
cases, the descriptors are also dependent on the density of the point cloud, making
large and detailed point clouds harder to process.

The use of either global or local approaches to find the initial alignment, depends
on the point clouds themselves. If the task is to locate an object within a scene,
then the advantage of small overlap goes in favour of the local approaches, while
if the point clouds have large featureless surfaces, the global approaches are more
suitable, since, in these cases, descriptors are harder to distinguish from each other.

2.4 The Geometry of Point Clouds

The geometry of a point cloud is important to consider when analyzing a point
cloud. In this section, some general terms used throughout the thesis are defined, as
well as a description of the camera model and its impact on representing geometry.

2.4.1 2D and 3D

The terms 2D and 3D are frequently used in this thesis, and it is important to
understand the difference.

2D: are two-dimensional images. These are images where the data points are
structured in a two-dimensional grid pattern or pixels. Examples of this are
RGB images, where RGB is short for Red, Green, Blue and measurements.
In 2D cameras, the measured colors are projected onto an image plane.

3D are three-dimensional images. These images are mostly represented by Eu-
clidean points. Point clouds that sample the whole surface of an object and
point clouds that sample the surface of an object viewed from a specific angle
are both considered 3D point clouds. 3D images can also be measured with
3D cameras, such as RGB-D cameras, where the D is short for distance.

2.4.2 Surface normals

A surface normal is a vector which is perpendicular to the surface of an object
at a given point. This is the vector which defines the tangent plane at the point.

9



2. Point Cloud Alignment

Assume that the surface

[f(u, v)] =

⎡⎣fx(u, v)fy(u, v)
fz(u, v)

⎤⎦ (2.16)

is a function of u and v and that a given u and v results in the specific Euclidean
point puv = [f(u, v)]. Then the surface normal is defined as

nuv = ± δ

δu
f(u, v)× δ

δv
f(u, v) (2.17)

There are always two surface normals on a given surface, which is represented
by the plus and minus. On an enclosed surface, these are often referred to as the
inward-pointing normal and outward-pointing normal. It is not possible to deter-
mine which is inward-pointing and outward-pointing without any specific informa-
tion about the surface and the object.

2.5 3D Camera Models in Projective Geometry

When a 3D camera captures an image of a scene, it is processed in the same way
as when it is captured with a 2D camera. This section describes how the projective
geometry of the camera affects the representation of an object.

2.5.1 Pixel coordinates

The camera frame c is fixed to the camera, where the xcyc plane as the focal plane,
and the zc axis is the optical axis pointing out of the camera lens. The origin of c
is called the optical center. The relative position between a point p and the optical
center is given by the vector [r]cp, such that

[r]cp =

⎡⎣xy
z

⎤⎦ , [r̃]cp =

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦ (2.18)

where [r̃]cp is the homogeneous representation of [r]cp.
All cameras have a camera sensor, which detects the light that enters the camera

lens. A camera will typically have in the order of a million small photosensitive light
sensors, which detects the incoming light, and each of these corresponds to a pixel.
A pixel is the smallest element of a digital image.

When a picture is taken, the distance from the point p and the camera sensor
is measured, and also the index of the pixel that measured this distance. The result
is a pixel coordinate system, where each pixel contains a distance measurement.

The camera model is also called the pin-hole model, since all the light passes
through the optical center of the camera frame, c, and hits the camera sensor
which lies on the retinal plane. The retinal plane is parallel to the focal plane, and
is placed at a distance f in the negative zc direction. f is called the focal length.
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zc
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xc
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Retinal plane

rip

f
Focal plane

c

Figure 2.2: The pinhole model. In the picture, focal plane is the xcyc
plane, and the image plane and retinal plane are parallel to the focal plane with a

distance f apart.

The image plane is a virtual plane which is opposed to the physical retinal plane,
and is placed a distance f in the positive zc direction from the focal plane. The
image displayed on the image plane is the same as the one captured by the camera
sensor on the retinal plane, but rotated by an angle of π around the zc axis. This
is seen in Figure 2.2.

The coordinates of point p when projected onto the image plane. The pixel
coordinate vector [r]fp is therefore

[r]fp =

⎡⎣f x
z

f y
z
f

⎤⎦ (2.19)

The camera sensor captures one measurement per pixel, and the pixel coordi-
nates are integer coordinates. Given the point p, the projection onto the image
plane is given as

[p̃]i =

⎡⎣uv
1

⎤⎦ (2.20)

where

u =
f

ρw

x

z
+ u0, v =

f

ρh

y

z
+ v0 (2.21)
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2. Point Cloud Alignment

where ρw is the width of a pixel and ρh is the height of a pixel. In most cameras
ρw = ρh. u0 and v0 is the coordinate position of where the zc axis intersects the
image plane.

2.5.2 Distance measurement

In a 3D camera, a distance measurement is taken at each pixel coordinate. This
means that when the camera generates a 3D point, the point is given as

[pm] =

⎡⎢⎣
z√

f2+(u0−u)2
(u0 − u)

z√
f2+(v0−v)2

(v0 − v)

z

⎤⎥⎦ (2.22)

where z is the distance measurement.
It is important to note that the measured point is directly related to z, since the

x and y coordinates cannot be measured. This means that any noise that affects
the measurement of z will also affect the measurements x and y.

2.5.3 Point Cloud Density

When generating a point cloud with a 3D camera, there are two ways of defining
the density of the point cloud: The number of points that are generated by the
camera, and the number of points that covers an object in the point cloud.

The number of points that are generated by the camera is directly related to
ρw and ρh. The smaller ρw and ρh, the greater the point density. This is specified
by the resolution of the camera.

The second way of calculating point cloud density is how many points cover
an object. This is not only related to the resolution of the camera, but also the
distance between the object and the camera, as seen in Figure 2.3. Because of this,
the impact of the noise increases the further away the object is from the camera.

2.6 Point Cloud Sampling

Point cloud sampling is when an object is measured and a point cloud is generated
to represent that object. This can either be by capturing a point cloud with a 3D
camera, or by sampling points from a 3D CAD model.

3D CAD models are generated from a set of points called vertices, and each of
them have at least a connection to two other points. The connections are called
edges. The smallest geometric shapes that are generated by these connected edges,
usually triangles, are called faces.

When sampling a 3D CAD model, the two main methods are overall sampling
and viewpoint sampling. Overall sampling generates one point cloud for the whole
3D CAD model. There are several methods for sampling this way, where the most
used are:

• Monte Carlo sampling [36] also known as uniform random sampling, where
n random points on the surface of the CAD model are chosen.

12



2.6. Point Cloud Sampling

A

B

Figure 2.3: The black square represents the 3D camera. The dashed lines are the
distance measurements. It can be seen that fewer points are sampled from box A
than from box B, because it is further away from the camera.

• Stratified sampling [39] or triangle subdivision sampling, where each tri-
angle in the CAD model is sampled based on a voxel grid distributed across
the CAD model.

• Poisson disk sampling [16] where each vertex in the CAD model is sam-
pled, and then the number of samples are later reduced based on if the local
density of the vertices is to large.

The main purpose of these methods is to sample the CAD model as uniformly
as possible without any prior knowledge of the model.

With viewpoint sampling, a virtual 3D camera takes pictures of the CAD model
from multiple angles [8]. This results in one point cloud per picture taken, as seen
in Figure 2.4

The advantage with using multiple viewpoints contrary to sampling the whole
point cloud is that if you wish to compare a CAD model to a point cloud captured
by a 3D camera, then the scene from the camera represents one viewpoint of the
object in question. As seen in Figure 2.5, the points from the CAD model and
the scene does not correspond to each other when sampling with overall sampling.
Also, if a concave shape is sampled, then the inside is sampled, which will never
be seen on a 3D camera, as evident in Figure 2.5.

2.6.1 k-Nearest Neighbour Search vs Radius Search

When using local coarse registration methods, the local properties of a point pi

are analyzed. In order to analyze the local properties, the surface around the given
point is measured. Then a set of points Ni is defined which is a neighbourhood
of points around point pi. There are mainly two methods of acquiring the set Ni:
k -nearest neighbour search and radius search.

k -nearest neighbour search (k-NN) [17], is a classification method where the k
closest points to pi are chosen, where k is a user-defined parameter. The method
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2. Point Cloud Alignment

Figure 2.4: Point clouds of one car part from multiple viewpoints.

Figure 2.5: The black square represents the 3D camera. The dashed lines are the
distance measurements. The red dots are the measurements from a camera or a
viewpoint sampling, while the green dot are uniformly sampled such as with overall
sampling. It can be seen that there are multiple green dots that do not correspond
to any of the red dots captured by the camera.
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2.6. Point Cloud Sampling

Figure 2.6: Comparison between k-NN and radius search. The blue point is the
point pi, and the yellow points are the points selected with a 6-NN search. The
points within the red area are selected by the radius search. The black box is the
camera.

is mostly used in classification and regression, and is one of the simplest machine
learning algorithms.

The advantage of using k-NN is that the number of neighbours are consistent,
making the computation time consistent and dependent on k. If a point cloud is
set up in a k -d tree structure [5], finding the k neighbours is a O(k log n) operation,
where n is the number of points in the point cloud.

The drawback is that the method is resolution dependent, so that the total
surface covered by k points depends on the point cloud density. This also means that
when considering the projective geometry that occurs when generating point clouds
from a certain angle, the point sampling is skewed, as shown in Figure 2.6. Another
problem with the k-nearest neighbour search is that the method is dependent on
the distance from the camera. This is because the point density of the point cloud
changes the further away the points are, which can be seen in Figure 2.7.

2.6.2 Segmentation

When performing a 3D-3D registration, it is beneficial to use only the parts of the
point clouds that are necessary, so that the overlap is as large as possible.

When capturing a point cloud with a 3D camera, the scene usually contains
more than just the object that is to be registered, such as tables, floors, walls,
backgrounds and even other objects. Segmentation is therefore often used to sepa-
rate the different parts in the scene, instead of trying to find the object within the
whole point cloud.
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2. Point Cloud Alignment

(a) k-NN performed on an object close to the camera. The result is that about half of the side of
the box is selected.

(b) k-NN performed on an object far from the camera. The result is that the whole side of the box
is selected.

Figure 2.7: Performing a k-NN with k = 5. It can be seen that the result is depen-
dent on the distance between the camera and the object.

This has two effects: It firstly splits one big point cloud into many smaller point
clouds. Each point cloud can then be analyzed separately, and can be categorized
based on their position, such as backgrounds, or their shape, such as walls and
tables which are flat. This limits the number of point clouds and therefore also
the search area, which increases the chance of finding a best fit. The second effect
is that it makes it possible to perform global coarse registration methods on each
point cloud, because the global properties of a point cloud segment will be easier
to examine and compare. For instance, if a point cloud depicting objects on a table
is segmented into one point cloud per object and one for the table, then the global
properties of each point cloud can be analyzed to estimate which object is which.

There are several strategies to perform segmentation [24], which include edge-
based segmentation, region growing segmentation, model fitting segmentation and
machine learning segmentation:

• Edge-based segmentation algorithms [42, 44] detect edges and determine
the outlines of a segment, and group together the points that are within the
outlines.

• Region growing segmentation algorithms [7] start with selecting random
points within a point cloud. The algorithm then grows from the points to
include their neighbouring points if they have similar characteristics, such as
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2.6. Point Cloud Sampling

color and curvature.

• Model fitting segmentation algorithms such as Hough Transforms [3] and
RANSAC [21] specify a reference model, and segments based on which points
fit the model and which does not.

• Machine learning segmentation algorithms use classification methods
based on machine learning to segment the point cloud.

Which segmentation algorithm yields the best results, depends highly on the
type of point cloud. For instance, in [55], RANSAC was chosen, as the majority of
the points represented the flat table.
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Chapter 3

3D Descriptors

I have a lot of jokes about unemployed people.
But none of them work.

As mentioned in Chapter 2, descriptors are used in coarse registration methods
to describe specific object properties of the point cloud, such as colors, textures,
shapes and curvatures. Global descriptors describe the point cloud as a whole, and
only one descriptor is generated per point cloud. Local descriptors describe the
surrounding area around given points, called keypoints, and are therefore generated
for each keypoint in the point cloud.

3.1 Keypoints

An aspect to consider when calculating descriptors, especially local descriptors,
is the size of the point cloud. A point cloud may contain thousands of points,
which hampers the execution time of the methods. Another problem with dense
point clouds is that the difference between the surrounding area of a point and its
neighbouring point may be very small, which makes their descriptors so similar
that they are hard to tell apart.

To counter this problem, we can select only a few points in the point cloud,
so-called keypoints [50]. This lowers the number of descriptors that has to be gen-
erated, and if the selected points are characteristic in some way, the descriptors are
also notably different from each other.

For instance, a point cloud depicting a box has large flat surfaces. Most of the
points in the point cloud has a surrounding area which is flat, and the points will
be difficult to distinguish from each other. In this case, it would be more beneficial
to select the points near the corner of the box, since these have a more unique
characteristics. An example of a keypoint extraction is seen in Figure 3.1.

There are several methods to select keypoints, and they are mostly dependent
on prior knowledge of the point cloud. In the experiments done in the thesis, the
prior knowledge is which objects are being detected, the general shape of these
objects, and that these objects are placed on a table. It is possible to use this
information to select the keypoints.
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Figure 3.1: An example of a keypoint extraction method. This image is taken
from [23]

(a) Original point cloud containing 2 304 000
points

(b) Point cloud after down-sampling with a
voxel size of 1mm, containing 375 936 points

Figure 3.2: Down-sampling using voxel grids

3.1.1 Down-sampling

A different approach to lowering the execution time when calculating descriptors
is down-sampling or sub-sampling. Here, the number of points is reduced to a
fixed number, without taking any prior knowledge into account. A widely used
approach is to create a three dimensional grid, also called voxels, which is the
three-dimensional version of pixels. All points within a voxel are grouped together
and averaged into one aggregate point. The effect of this is to reduce the number
of points and to grant a consistent density throughout the point cloud. This is used
is in [46, 47], and a down-sampled point cloud can be seen in Figure 3.2.

A potential problem with down-sampling is that the number of points is re-
duced, which reduces the information content of the point cloud. Moreover, the
resulting density of the point cloud will be lower than the lowest density of the
original point cloud. This limits the accuracy of the representation of the real
object, and therefore also the accuracy of the descriptors that are based on the
down-sampled point cloud.
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3.2 Principal Component Analysis (PCA)

Principal Component Analysis is widely used in statistics, and is used to find the
orthogonal frame where the given data set consists of linearly uncorrelated values,
also called components [56].

The method is based on the computation of a covariance matrix C ∈ R
3×3

defined by

C =
∑
pi∈X

([pi]− p̄)([pi]− p̄)T (3.1)

where p̄ = 1
|X|

∑
pi∈X pi is the centroid of all the points in the point cloud X, and

|X| is the number of points in X.
The covariance matrix C can be decomposed as

Cvi = λivi, i = 1, 2, 3 (3.2)

to find the eigenvalues λi, and their corresponding eigenvectors vi.
Let the eigenvalues be ordered so that λ1 ≥ λ2 ≥ λ3 ≥ 0. Then the direction of

v1 is the direction where the data has the most variation, and v3 is the direction
with the least variation in the data.

PCA can be used to generate a local reference frame [56], making it possible
to create local descriptors which are consistent. A known issue with using PCA
for this, is that the directions of v1, v2 and therefore also v3 have two solutions.
There are several solutions that try to solve this problem, such as [10], where the
sign of the eigenvector vi is determined by calculating the direction of where the
majority of the data is represented. This is done by calculating the equation

sj =
∑
∈X

sign(vT
j pi)(v

T
j pi)

2 (3.3)

where pi ∈ X, and sj is the non-normalized sign of vj .

3.3 Normal Estimation

3D CAD models will have a defined surface for each face of the model, which
makes it possible to include the surface normal when generating point clouds from
3D models.

When capturing a 3D image with a camera, however, the surface normal is not
defined, and an estimate is required. As mentioned in Section 2.4.2, the surface
normal is the normal to the tangent plane at a point. There are several methods to
estimate the surface normal, and a frequently used method is to find the normal of
the least-squares estimate of the plane [37]. The least-squares solution is estimated
at the given point based on the surrounding points. Principal component analysis
can be used to calculate the least-squares plane estimate, where the plane estimate
is spanned from v1 and v2. The surface normal of the plane estimate is therefore
given as ±v3.
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Since every surface has two sides, there will be two possible surface normals at
any given point. On a point cloud captured by a 3D camera it is possible to know
which surface normal is correct, since there is only one side of the surface that is
visible. To calculate which of v3 and −v3 is the visible surface normal, the angle
between the camera and the surface normal is calculated, and normal is selected
from:

ni = v3, if v3 · pi < 0 (3.4)
ni = −v3, if v3 · pi ≥ 0 (3.5)

(3.6)

where ni is the surface normal at pi, and v3 is calculated using PCA of the neigh-
bouring points, Ni, of pi. It is assumed that the camera is at the origin.

3.4 Spherical Coordinate System

There are several descriptor methods that use spherical coordinates rather than
Cartesian coordinates. This is because in a local reference frame of a point, it is
easier to segment the relative position between the center point and the surrounding
points using spherical coordinates.

A spherical coordinate system is constructed by selecting two orthogonal di-
rections, called the zenith, z, and the azimuth reference, x; and the origin, o. A
reference plane is generated which intersects the origin and where the zenith axis
is the normal. The azimuth is a reference direction in the plane. The spherical
coordinates of a point p is given by

Radius r: The Euclidean distance between the point p and the origin o.

Inclination φ: The angle between the zenith z and line segment op, con-
structed by o and p. This is also called the polar angle.

Azimuth θ: The angle between the azimuth reference direction x and the
projection of the line segment op onto the reference plane.

Figure 3.3 shows the setup of the spherical coordinate system.
In the descriptors below, the local coordinate system is generated by selecting

a reference point as the origin, and the normal of that point as the zenith. The
methods use different techniques for selecting the azimuth reference.

The spherical coordinates are used for constructing histograms, where the spher-
ical coordinates are divided into smaller subsections, or so called bins. The number
of bins and how they are divided depends on the descriptor. These subdivisions
are referenced as radial, azimuth and elevation subdivisions, where radial divides
r, azimuth divides θ and the elevation divides φ.

3.5 State-of-the-Art Descriptors

This section lists four descriptors that have very different approaches to generating
descriptors. They are widely used in 3D point cloud alignment.
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Figure 3.3: An illustration of the spherical coordinate system

3.5.1 Point Feature Histogram

The Point Feature Histogram (PFH) [47] generates a histogram for each point
in the point cloud. The method inputs the neighbouring points of that point and
calculates the relationship between them to define the histogram. When histograms
are generated, they are compared with the histograms from other point clouds to
find the point correspondences.

The algorithm for the PFH method is: For each point pi find the k-nearest
neighbour points, generating the set Ni. For each point pair pj ,pk ∈ Ni, we define
ps and pt as

ps = pj , pt = pk, if nj · (pj − pk) ≤ nk · (pj − pk) (3.7)
ps = pk, pt = pj , if nj · (pj − pk) > nk · (pj − pk) (3.8)

where nj and nk are the normals of pj and pk respectively. When ps and pt is
defined, a Darboux frame is constructed where

u = ns (3.9)

v =
(pt − ps)× u

||pt − ps|| (3.10)

w = u× v (3.11)
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This is then further used to to calculate 4 features

f1 = v · nt (3.12)
f2 = ||pt − ps|| (3.13)

f3 =
u · (pt − ps)

f2
(3.14)

f4 = atan2(w · nt,u · nt) (3.15)

which is used to generate the index ix

ix =

4∑
i=1

⌊
fi · d

fiimax − fimin

⌋
· di−1 (3.16)

where fimin and fimax is the theoretical smallest and largest values of fi, and d is
the subdivision of the range (fimax − fimin).

The formula above helps to generate an index. The index has 16 categories,
each representing the 24 possibilities that the four features can generate. The first
category is f1 ≥ 0, f2 ≥ r, f3 ≥ 0 and f4 ≥ 0, while the second category is f1 < 0,
f2 ≥ r, f3 ≥ 0 and f4 ≥ 0, and so on for every combination of fi. Here, r is a
user-defined radius.

While summing up all these indices for all the possible point pairs in Ni, a
histogram is generated, which characterizes the point pi. This histogram is then
compared to other histograms to find the point correspondences.

Fast Point Feature Histogram

A similar approach to the PFH is the Fast PFH [48]. In [48], they first define
the Simplified Point Feature Histogram (SPFH), which uses the same principals
as PFH, but does not use all the point pair combinations in Ni, only the ones
including pi. The method also reduces the number of features from four to three,
omitting f2. The FPFH uses the SPFH and includes an influence region

FPFH(pi) = SPFH(pi) +
1

k

∑
pk∈Ni

1

ωk
SPFH(pk) (3.17)

where ωk is the distance between pi and pk. The method further optimizes the
histogram representation, and represents the histogram in 3 histograms, one for
each feature.

3.5.2 Point Pair Features

The Point Pair Features (PPF) [20] descriptor generates a feature Fij for each
point pair (pi,pj) ∈ X given by

Fij = (||d||,∠(ni,d),∠(nj ,d),∠(ni,nj)) (3.18)

where d = pi − pj , and ni and nj are the normals for pi and pj respectively.
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Voting Scheme

Each of the features Fij are placed in a hash table, both for the model point cloud
M and the scene point cloud S. For each point pair in S, the features FSij are
looked up in the hash table. Then the method searches for a set of similar features
FMij from M . Each of the features gets a vote, and the displacement between
FSij , and FMij is calculated. This continues for all point pairs in S. After this, the
feature FMij with the most votes is chosen, and the displacement between FMij

and FSij is given as the pose estimation.

3.5.3 Signature of Histogram of OrienTation

Signature of Histogram of OrientTation (SHOT) [56], uses both signatures and
histograms, based on the argument that signatures generate 3D structures based
on neighbouring points, while histograms uses neighbouring points to generate
geometric topologies.

The method first generates a reference frame using PCA, with a slight alteration
using [10] so that the frame is not flipped around when there are small changes in
the point positions. The next step is to define a ball around each point pi. This ball
is partitioned in 32 volumes or bins by discretizing the azimuth into 8 values, while
the elevation into 2 values and the radius into 2 values. This gives the 8 · 2 · 2 = 32
bins. The neighbouring points Ni of pi are then categorized into each bin based
on their position relative to the point pi. For each bin, a histogram is generated
by calculating the dot product, hij = ni · nj , between the normal of pi and the
normal for each point in the bin pj .

When the histograms are calculated, they are grouped into one descriptor.
Because the reference frame is calculated as mentioned in [10], the descriptor

is considered rotation invariant.

3.5.4 Radial-based Surface Descriptor

The Radial-based Surface Descriptor (RSD) [35] describes the radial relationship
between a point and its neighbourhood. The algorithm establishes a neighbourhood
Ni for each point pi. For each point pj ∈ Ni, the algorithm generates a sphere
where pi and pj is on the surface, and the surface normals ni and nj are considered
surface normals on the sphere. The features

dij = |pi − pj | (3.19)
cosαij = ni · nj (3.20)

r2ij =
d2ij

2(1− cosαij)
(3.21)

are calculated for each point pair (pi,pj). When this is done for all points in
Ni, the maximum and minimum radius is used to define the descriptor, and the
relationship between the two defines the surrounding surface area. If rmax ≈ rmin,
then the form is spherical or planar, and the bigger difference between rmax and
rmin, the surrounding area has a cylindrical form. This descriptor is then used to
find the point correspondences between the model and data point clouds.
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3.5.5 3D Shape Context

3D Shape Context (3DSC) [22] is an extension of the 2D version, 2DSC, presented
in [4]. 3DSC descriptors are generated for each point p, and uses spherical coordi-
nates to place neighbouring points Ni in bins. The surface normal defines where
the azimuth is zero. The points are placed in bins, where the division of the azimuth
and elevation is equal, while the radial division is logarithmic, making smaller di-
visions closer to the point p. A minimum radius is defined, preventing very small
bins, which are very subjected to noise.

Since the descriptor has a degree of freedom in the azimuth direction, it is not
possible to know the rotation of the descriptor. To prevent this, the descriptor is
rotated n times, where n is the number of divisions in the azimuth, which results
in n descriptors per point.
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Chapter 4

Conformal Geometric Algebra

Why did the farmer get an award?
Because he was out standing in his field.

This chapter presents an introduction to conformal geometric algebra [19, 26].
Conformal geometric algebra is an extension of Euclidean geometric methods, and
allows for an efficient description of spheres, planes, lines and points, including
the displacement of such objects. Moreover, conformal geometric algebra is a valu-
able tool for calculating the intersection between geometric objects and distances
between them.

In this thesis, the underlying physical space is the three-dimensional Euclidean
space, which is represented in conformal geometric algebra by a five-dimensional
space.

4.1 Euclidean Space

The basis of the Euclidean space R
3 is given by the orthonormal vectors e1, e2 and

e3. A vector a is represented by

a = a1e1 + a2e2 + a3e3 (4.1)

where ai = a · ei is the coordinate of a with respect to the basis.
We define b and c in the same manner

b = b1e1 + b2e2 + b3e3 c = c1e1 + c2e2 + c3e3 (4.2)

The vectors a, b and c are used throughout this section to define various properties
of the Euclidean space.

4.1.1 Inner Product

The inner product between the vectors a and b is defined as

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1 + a2b2 + a3b3 (4.3)
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4. Conformal Geometric Algebra

where

ei · ej =
{
1, i = j

0, i �= j
(4.4)

It is noted that the inner product er commutative, so that

a · b = b · a (4.5)

This means that the length |a| of a is given by

a · a = |a|2 (4.6)

Some other useful properties of the inner product are

α · a = αa (4.7)
(a · b) · c = a · (b · c) (4.8)
(a+ b) · c = a · c+ b · c (4.9)

where α ∈ R is a scalar.

4.1.2 Outer Product

The outer product ei ∧ ej between two orthonormal vectors ei and ej satisfies

ei ∧ ej = −ej ∧ ei (4.10)

which implies ei ∧ ei = 0.
The outer product between the vectors a and b is given by

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12 (4.11)

Since the outer product is anti-commutative, then

a ∧ b = −b ∧ a (4.12)

It also follows that

a ∧ a = 0 (4.13)

It is noted that the cross product has the same coefficients as the outer product,
so that

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (4.14)

Note that the basis of a∧b is {e23, e31, e12}, while the basis of a×b is {e1, e2, e3}. In
the terminology of geometric algebra, {e1, e2, e3} is the dual basis of {e23, e31, e12}
in Euclidean space.
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The cross product is in fact the dual form of the outer product. Duality is
described later in this section.

Some useful properties of the outer product are

α ∧ a = αa (4.15)
(a ∧ b) ∧ c = a ∧ (b ∧ c) (4.16)
(a+ b) ∧ c = a ∧ c+ b ∧ c (4.17)

where α ∈ R.

4.1.3 Geometric Product

The geometric product is defined as the sum of the inner and outer product

ab = a · b+ a ∧ b (4.18)

This means that

aa = a2 = a · a+ a ∧ a = |a|2 (4.19)

and

ba = b · a+ b ∧ a = a · b− a ∧ b (4.20)

Because of (4.18) and (4.20), the inner and outer product of vectors can also
be defined by the geometric product where

a · b =
1

2
(ab+ ba) (4.21)

a ∧ b =
1

2
(ab− ba) (4.22)

4.1.4 Blades

A vector a ∈ R
3 is said to be a blade of grade 1, as the space R

3 is spanned from
the orthogonal vectors e1, e2 and e3. The outer product can generate higher grades
between vectors, and a k-blade is defined as the outer product between k vectors.
For instance, a ∧ b is an example of a 2-blade, which is of grade 2. The basis for
grade 2 blades in Euclidean space is

{e23, e31, e12} (4.23)

Another property of blades is that

a1 ∧ a2 ∧ · · · ∧ ak = 0, k > n,ai ∈ R
n (4.24)

which means that the highest grade achieved in R
3 is 3.
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4. Conformal Geometric Algebra

A 3-blade in Euclidean R
3 can be written as

a ∧ b ∧ c = (a ∧ b) ∧ c

= ((a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12)

∧ (c1e1 + c2e2 + c3e3)

= α(e1 ∧ e2 ∧ e3) = αe123 (4.25)

where α is an arithmetical expression of ai, bi and ci for i = 1, 2, 3. The basis for
grade 3 blades in Euclidean space is

{e123} (4.26)

This in turn means that the basis of the multivectors of R3 is given by

{1, e1, e2, e3, e23, e31, e12, e123} (4.27)

An example of a 2-blade and 3-blade is given in Figure 4.1.

4.1.5 Multivectors

Multivectors are the sums of different k-blades, where a k-vector is defined as the
sum of k-blades. For instance, a bivector is defined as

A〈2〉 = a12e12 + a23e23 + a31e31 (4.28)

A multivector can also be the sum of different types of blades, and the most
general form is

A = a1e1 + a2e2 + a3e3 + a12e12 + a23e23 + a31e31 + a123e123 (4.29)

which includes all the base elements of the Euclidean space.

Reverse and Inverse of Blades

The reverse of a blade A〈n〉 is denoted Ã〈n〉, and is given by

A〈n〉 = e1 ∧ e2 ∧ · · · ∧ en (4.30)

Ã〈n〉 = en ∧ en−1 ∧ · · · ∧ e1 (4.31)

Since the outer product has the property given in (4.12), the reverse of a blade
A〈k〉 can be written as

Ã〈k〉 = (−1)k(k−1)/2A〈k〉 (4.32)

For the three-dimensional Euclidean space, this means that

Ã = a ∧ b ∧ c = c ∧ b ∧ a = −A (4.33)

The inverse of a blade A is denoted A−1, and is defined as

A−1 =
Ã

|A|2 (4.34)

and is therefore the same as the reverse of the blade if |A|2 = 1.
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a

b

a ∧ b

(a) A 2-blade representation. Here, the
size of a ∧ b is the area of the parallelo-
gram.

a

b

a ∧ b

(b) A 2-blade representation. Here, the
size of a∧ b is the area of the circle. The
orientation of the blade is indicated by
the arrows

a

b

a ∧ b ∧ ca ∧ b ∧ cc

(c) A 3-blade representation. Here, the
size of a∧b∧c is the area of the volume.

Figure 4.1: Two different representations of a 2-blade, and a representation of the
3-blade.

4.1.6 Pseudoscalar and Duals

The pseudoscalar is defined as the blade of highest grade in the specified space.
In a Euclidean space R

3, the pseudoscalar is defined as IE = e123 = e1 ∧ e2 ∧ e3.
The pseudoscalar can be used to construct duals of multivectors. The dual of a
multivector A is

A∗ = AI−1
E = A · I−1

E (4.35)

For the Euclidean space R
3 the inverse of the pseudoscalar is defined as

I−1
E =

ĨE
|IE |2 = ĨE

= e3 ∧ e2 ∧ e1 = −IE (4.36)
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Note that also the dual can be reversed

A∗ · IE = A∗IE = AI−1
E IE

= A (4.37)

The dual of a dual can also be calculated as

(A∗)∗ = (AI−1
E )I−1

E

= −(−AIE)IE

= AI2
E = −A (4.38)

The dual of the different base elements are

1∗ = −e123

e∗1 = −e23

e∗2 = −e31

e∗3 = −e12

e∗123 = 1

e∗23 = e1

e∗31 = e2

e∗12 = e3

(4.39)

4.2 Conformal Geometric Space

The conformal geometric space is constructed by adding two extra dimension, e+
and e−, which are orthonormal to each other and the vectors in the Euclidean
space, e1, e2 and e3, which is written

e+ · ei = 0 (4.40)
e− · ei = 0 (4.41)
e+ · e− = 0 (4.42)

for i = 1, 2, 3. It is given that

e2+ = 1 e2− = −1 (4.43)

Since the conformal geometric space is defined this way, it is written as R
4,1.

These two basis vectors are usually replaced by two other orthonormal basis
vectors, e0 and e∞, defined by

e0 =
1

2
(e− − e+), e∞ = e− + e+ (4.44)

Here e0 represents an arbitrary point at the origin, and e∞ represents the point
at infinity. It follows from the properties of e+ and e− that

e20 = e2∞ = 0, e0 · e∞ = −1 (4.45)

The basis vectors of the conformal geometric space of a Euclidean space R
3 is

then given as

{e0, e1, e2, e3, e∞} (4.46)
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4.2. Conformal Geometric Space

The basis of the conformal geometric space is

{1,
e1, e2, e3, e0, e∞,

e23, e31, e12, e10, e20, e30, e1∞, e2∞, e3∞, e0∞,

e123, e120, e230, e310, e12∞, e23∞, e31∞, e10∞, e20∞, e30∞,

e1230, e123∞, e230∞, e310∞, e120∞,

e1230∞} (4.47)

which is a total of 32 elements.

4.2.1 Duals and Pseudoscalar

The pseudoscalar in conformal geometric algebra is

IC = e0 ∧ e1 ∧ e2 ∧ e3 ∧ e∞ (4.48)

And the inverse of the pseudoscalar has the same property as that of I−1
E

I−1
C =

ĨC
|IC |2 = ĨC

= e∞ ∧ e3 ∧ e2 ∧ e1 ∧ e0 = −IC (4.49)

The dual in conformal geometric algebra is defined as

A∗ = AI−1
C (4.50)

where the dual can be reversed

A∗ · IC = A∗IC = AI−1
C IC

= A (4.51)

4.2.2 Representation of Euclidean Objects

In conformal geometric algebra there is a set of geometric objects that can be con-
structed using the inner product and outer product. These objects are characterize
as either flats or rounds [19], where flats are flat objects, such as lines and planes,
and round objects are round, such as circles and spheres.

Points

A Euclidean point p ∈ R
3 is defined as

p = p1e1 + p2e2 + p3e3 (4.52)

and has the column vector representation

[p] =

⎡⎣p1p2
p3

⎤⎦ (4.53)
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4. Conformal Geometric Algebra

In conformal geometric algebra, the conformal geometric point P represents the
point p with the function

P = p+
1

2
p2e∞ + e0 (4.54)

and has the column vector representation

[P ] =

⎡⎣ [p]
1
2p

2

1

⎤⎦ (4.55)

It is noted that the scaling of a conformal point αP = αp + 1
2αp

2e∞ + αe0 will
represent the same Euclidean point p. This means that P and αP are equivalent
for all α �= 0.

A property of the conformal point P is that if the point p is at the origin,
p = 0, then P = e0 results in the point at the origin. If p is infinitely far away
from the origin, then P = e∞.

The Euclidean distance between two points pA and pB can be found by using
the inner product between PA and PB , which is seen from

PA · PB = (pA +
1

2
p2
Ae∞ + e0) · (pB +

1

2
p2
Be∞ + e0)

= pA · pB +
1

2
p2pA · e∞ + pA · e0 + 1

2
p2
Ae∞ · pB

+
1

4
p2
Ap

2
Be∞ · e∞ +

1

2
p2
Ae∞ · e0 + e0 · pB +

1

2
p2
Be0 · e∞ + e0 · e0

= pA · pB − 1

2
p2
A − 1

2
p2
B

= −1

2
(p2

A − 2pA · pB + p2
B)

= −1

2
(pA − pB)

2 (4.56)

Rounds

The two-dimensional round is the circle, and is given by the outer product between
three points

C = PA ∧ PB ∧ PC (4.57)

The sphere is the three-dimensional round, and is the outer product between
four points

S = PA ∧ PB ∧ PC ∧ PD (4.58)

The dual of a sphere can be written as

S∗ = P − 1

2
r2e∞ (4.59)
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where P is the center of the sphere and r is the radius. The column vector for S∗

is written as

[S∗] =

⎡⎣ p
1
2 (p

2 − r2)
1

⎤⎦ (4.60)

It is worth noting that if r = 0, S∗ is identical to P , which means that a point is
a sphere with zero radius.

The radius of a sphere can be found with the dual of the sphere squared

S∗2 = S∗ · S∗ = (P − 1

2
r2e∞) · (P − 1

2
r2e∞)

= P · (P − 1

2
r2e∞)− 1

2
r2e∞ · (P − 1

2
r2e∞)

= P · P − P · 1
2
r2e∞ − P · 1

2
r2e∞ +

1

2
r2e∞ · 1

2
r2e∞

= 0 +
1

2
r2 +

1

2
r2 + 0

= r2 (4.61)

The one-dimensional round is known as a point pair, is constructed by taking
the outer product between two points

Q = PA ∧ PB (4.62)

Each point in the point pair can be found by using

P± =
Q±

√
Q2

−e∞ ·Q (4.63)

An important observation is that the dual of a circle is a point pair and vice
versa, and they have the same radius. This can be thought of with having a sphere,
where the two "poles" of the sphere generate the point pair. If so, then the "equa-
tor" of the sphere is the dual of the point pair, and is indeed a circle.

Flats

Flats are all Euclidean objects that are flat, or have no curvature.
A plane is a three-dimensional flat, and is the outer product between three

points and the point at infinity

Π = PA ∧ PB ∧ PC ∧ e∞ (4.64)

The dual of a plane can be written as

Π ∗ = n+ δe∞ (4.65)
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where n is the normal of the plane and δ is the distance between the plane and
the origin. The column vector for Π ∗ is written as

[Π ∗] =

⎡⎣nδ
0

⎤⎦ (4.66)

The distance between a point P and a plane Π is found from

P ·Π ∗ = (p+
1

2
p2e∞ + e0) · (n+ δe∞)

= p · n+ δp · e∞ +
1

2
p2e∞ · n

+
1

2
p2δe∞ · e∞ + e0 · n+ δe0 · e∞

= p · n− δ (4.67)

The two-dimensional flat is a line, and is the outer product between two point
and the point at infinity

L = PA ∧ PB ∧ e∞ (4.68)

The one-dimensional flat is known as a flat point, and is the outer product
between a point and the point at infinity

φ = PA ∧ e∞ (4.69)

4.2.3 Intersections

In conformal geometric algebra, it is possible to calculate the intersection between
various geometric objects. The intersection between the two geometric objects A
and B is defined as

M∗ = A∗ ∧B∗ (4.70)

where M is referred to as the meet. This also means that

M = M∗ · IC = (A∗ ∧B∗) · IC
= (AI−1

C ∧BI−1
C ) · IC

= AI−1
C · (BI−1

C · IC)
= A∗ ·B (4.71)

Which comes from a property of blades that is

(A〈k〉 ∧B〈l〉) ·C〈m〉 = A〈k〉 · (B〈l〉 ·C〈m〉) (4.72)

where A〈k〉 is a k-blade, B〈l〉 is a l blade, C〈m〉 is a m-blade, and that 1 ≤ k, l,m ≤ n
and m ≥ k + l.
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An example of this is the intersection between a line L and a plane Π . The
intersection between the two is

M = Π ∗ ·L
= Π ∗ · (PA ∧ PB ∧ e∞)

= (Π ∗ · PA)(PB ∧ e∞)− (Π ∗ · PB)(PA ∧ e∞) + (Π ∗ · e∞)(PA ∧ PB)

= ((n+ δe∞) · PA)(PB ∧ e∞)− ((n+ δe∞) · PB)(PA ∧ e∞)

= dA(PB ∧ e∞)− dB(PA ∧ e∞)

= (dAPB − dBPA) ∧ e∞ (4.73)

where dA and dB are the distances between the plane Π and the points pA and
pB respectively. Note that the resulting calculation is a flat point, which with some
further calculations can be defined as M = PC ∧ e∞, where PC is the intersecting
point between Π and L. An example is shown in Figure 4.2.

Another example is the intersection between two spheres, where if they inter-
sect, the resulting intersection is a circle. If the spheres only touch at the surface,
the resulting intersection is a point, and if they do not intersect, the result is an
imaginary circle. This is shown in Figure 4.2.
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4. Conformal Geometric Algebra

(a) Intersection between a line and a plane.
The intersecting float point is seen in green.

(b) The intersection be-
tween two spheres shown
as a green circle.

(c) The intersection be-
tween two spheres shown
as a green point.

(d) The intersection be-
tween two spheres shown
as a green imaginary cir-
cle.

Figure 4.2: Examples of different intersections.
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Chapter 5

Applications of Conformal
Geometric Algebra

How did the tree feel in spring?
Releaved.

5.1 Sphere Fitting

This section explains the theory behind the sphere fitting method presented in [18],
which finds an op timal sphere estimate based on a set of points. The section starts
by explaining the Sampson distance [52], which is a least-squares function which is
minimized when fitting spheres to points, followed by the Rayleigh quotient, which
explains how the Sampson distance relates to the generalized eigenvalue problem,
and the optimal solution to the eigenvalue problem. The Pratt fit is then presented,
which is a circle fitting algorithm using the method described above, followed by
how this can be extended to become a sphere fitting algorithm using conformal
geometric algebra.

5.1.1 Sampson Distance

Consider the circle g(x) = 0 in the xy-plane, where

g(x) = a(x2 + y2) + dx+ ey + f = 0 (5.1)

and x = [x, y]T. Note that a �= 0 for circles, and a = 0 for lines. The gradient is

∇g(x) =

⎡⎣2ax+ d
2ay + e

0

⎤⎦ = 2a

⎡⎣x− x0

y − y0
0

⎤⎦ (5.2)

where x0 = − d
2a and y0 = − e

2a are the coordinates of the center of the circle. The
gradient ∇g(x) at the point x, which is on the circle, has the direction from the
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center of the circle, x0, to the point

x = x0 +
∇g(x)

2a
(5.3)

where x0 = [x0, y0]
T. The norm of the gradient is

|∇g(x)|2 = (2ax+ d)2 + (2ay + e)2

= 4a2x2 + 4adx+ d2 + 4a2y2 + 4aey + e2

= 4a(a(x2 + y2) + dx+ ey + f) + d2 + e2 − 4af (5.4)

Consider the point xi, which is not on the circle g(x). The distance from xi to
the x can be approximated by

g(xi) = g(x) +∇g(x)(xi − x) (5.5)

Since g(x) = 0, it can be rewritten as

g(xi) = ∇g(x)(xi − x) (5.6)

and it follows that

|xi − x|2 =
g(xi)

2

|∇g(x)|2 = δi (5.7)

The distance δi is called the Sampson distance [52].
From (5.1) it is seen that a(x2 + y2) + dx+ ey+ f = 0 so the magnitude of the

gradient will satisfy

|∇g(x)|2 = d2 + e2 + 4af = 4a2r2 (5.8)

where r is the radius of the circle. The Sampson distance of the circle to the point
xi will then be

δ2i =
g(xi)

2

|∇g(x)|2 =
(a(x2

i + y2i ) + dxi + eyi + f)2

d2 + e2 − 4af
(5.9)

This expression of the Sampson distance is used in the Pratt fit [41].

5.1.2 The Rayleigh quotient

Consider the minimization of the function

f(x) =
xTPx

xTQx
(5.10)

where x ∈ R
n and P and Q are positive definite symmetric n × n matrices. It is

assumed that P is positive definite, which means that xTPx > 0 for all x �= 0.
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The condition for optimality is

∂f(x)

∂x
= 2

Px(xTQx)−Qx(xTPx)

(xTQx)2
= 0 (5.11)

This gives

Px(xTQx) = (xTPx)Qx (5.12)

and it follows that the minimum is achieved when

Px = f(x)Qx (5.13)

The solution for this problem is found from the generalized eigenvalue problem

Px = λQx (5.14)

The generalized eigenvalues λi and the corresponding eigenvectors vi satisfies (P −
λiQ)vi = 0 for i = 1, . . . , n. The optimal solution is then x∗ = kv∗

i where k �= 0 is a
scaling factor the can be selected freely, and v∗

i is the eigenvector which corresponds
to the smallest positive eigenvalue λ∗

i . Moreover, the optimal solution is f(x∗) = λ∗
i .

5.1.3 The Generalized Eigenvalue Problem

The generalized eigenvalue problem is written

Ax = λBx (5.15)

where A = AT and B = BT are symmetric n × n matrices, and B is positive
definite. Then the matrix B has n positive eigenvalues μi > 0 for i = 1, . . . , n and n
orthonormal eigenvectors mi so that Bmi = μmi. The matrix M = [m1, . . . ,mn]
is orthogonal, and satisfies MTM = I. It follows that BM = DM , where D =
diag(μ1, . . . , μn), and B can be transformed to a diagonal form by

MTBM = D = diag(μ1, . . . , μn) (5.16)

The generalized eigenvalue problem can then be transformed into the form

MTAMy = λDy (5.17)

where x = My. Define N = D−1/2M where D−1/2 = diag(μ−1/2
1 , . . . , μ

−1/2
n ),

which gives NTBN = I. Then the generalized eigenvalue problem becomes

NTANz = λz (5.18)

where x = My = Nz. It is seen that the eigenvalues of the generalized eigenvalue
problem will be the same as the eigenvalues of NTAN .

From Sylvester’s law of inertia it follows that the eigenvalues λi of NTAN will
be related to the eigenvalues γi of A so that there will be the same number of
positive eigenvalues, negative eigenvalues and eigenvalues equals to zero.

41



5. Applications of Conformal Geometric Algebra

If instead A is positive definite and B is positive semidefinite, then B will
have at least one eigenvalue that is equal to zero. This implies that the matrix N
becomes undefined. In this case the problem can be reformulated as

Bx =
1

λ
Ax (5.19)

Then it follows that the eigenvalues 1
λ will be related to the eigenvalues μi of B

so that there will be the same number of positive and negative eigenvalues 1/λi as
there are positive and negative μi respectively. If μn = 0, then the corresponding
eigenvalue λn will be undefined.

If the case where μi > 0 for i = 1, . . . , n − 1, and μn = 0, then it follows that
there will be n − 1 positive eigenvalues λi for i = 1, . . . , n − 1 and one undefined
eigenvalue λn. It follows that the smallest eigenvalue is λn−1 > 0.

5.1.4 Eigenvalues and the Rayleigh quotient

Consider the minimization of the function

f(x) =
xTPx

xTQx
(5.20)

where x ∈ R
n. Suppose that P = PT > 0 is positive definite.

A necessary condition for the minimum of f(x) is that the optimal solution
x∗ is an eigenvector v∗

i of the generalized eigenvalue problem Px = λQx. The
minimum value of the function is then f(x∗ = λ∗

i ).
If Q has one negative eigenvalue and n− 1 positive eigenvalues, then the gen-

eralized eigenvalue problem will have one negative eigenvalue and n − 1 positive
eigenvalues. The function f(x) cannot be negative. This means that the minimum
value of f(x) is achieved with the smallest non-negative eigenvalue of the general-
ized eigenvalue problem.

If Q has one eigenvalue equal to zero and n − 1 positive eigenvalues, then the
generalized eigenvalue problem Qx = 1

λPx will have one eigenvalue equal to zero,
which means that the corresponding eigenvalue λi will be undefined. The minimum
value of f(x) is achieved with the smallest eigenvalue of the generalized eigenvalue
problem.

5.1.5 The Pratt Fit

The Pratt fit [41, 14] is a circle fitting method based on the minimization of the
Sampson error g(x

|∇g(x)| using the approximation (5.8) for the gradient. The objective
function to be minimized is then

LP (c) =

n∑
i=1

g(xi)
2

|∇g(x)|2 =

n∑
i=1

(a(x2
i + y2i ) + dxi + eyi + f)2

d2 + e2 − 4af
(5.21)

where c = [a, d, e, f ]T. The objective function can be written as

LP (c) =
cTZTZc

cTNc
=

cTMc

cTNc
(5.22)
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where M = ZTZ and

Z =

⎡⎢⎣(x
2
1 + y21) x1 y1 1

...
...

...
...

(x2
n + y2n) xn yn 1

⎤⎥⎦ (5.23)

and

N =

⎡⎢⎢⎣
0 0 0 −2
0 1 0 0
0 0 1 0
−2 0 0 0

⎤⎥⎥⎦ (5.24)

Here, the matrix M is positive definite, while N has eigenvalues λN1 = 2, λN2 =
λN3 = 1 and λN4 = −2.

Based on the results from the Rayleigh quotient, the minimum is found from
the generalized eigenvalue problem

Mc = λNc (5.25)

Due to the eigenvalues of N , this generalized eigenvalue problem has four eigen-
values λ1, . . . , λ4, where λ1 ≥ λ2 ≥ λ3 > 0 and λ4 < 0.

The minimum of the objective function us therefore LP (c
∗) = λ3, which is

found for the optimal solution c∗ = v3, where v3 corresponds to the smallest
positive eigenvalue λ3.

5.1.6 Sphere Fitting

In conformal geometric algebra, a sphere S can be fitted to a point cloud pi,
i = 1, . . . , n as proposed in [18] by minimizing the objective function

f(S∗) =
n∑

i=1

(S∗ · Pi)
2

S∗2 (5.26)

where
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5. Applications of Conformal Geometric Algebra

This method is an extension to the Pratt fit. The condition for optimality is

(
1

n

n∑
i=1

Pi(Pi · S∗)) ∧ S∗ = 0 (5.28)

This condition is satisfied when

1

n

n∑
i=1

Pi(Pi · S∗) = λS∗ (5.29)

where λ �= 0 is a scalar.
This follows as a ∧ b = 0 −→ a = γb. When a and b are non-zero vectors and

γ �= 0is a scalar. In coordinate form this gives

[Q][S∗] = λ[S∗] (5.30)

where

[Q] =
1

n

n∑
i=1

[Pi][Pi]
T[M ] (5.31)

where

[Pi] =

⎡⎣ [pi]
1
2p

2
i

1

⎤⎦ , [M ] =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎤⎥⎥⎥⎥⎦ (5.32)

It is seen that the condition for optimality is that λ is an eigenvalue of Q.
The objective function is

L =
1

n

n∑
i=1

(PiS
∗)2

S∗2 =
[x]T[Pi][Pi]

T[S∗]
[S∗]T[S∗]

(5.33)

=
[S∗]T[Q][S∗]
[S∗]T[S∗]

=
[S∗]Tλ[S∗]
[S∗]T[S∗]

= λ (5.34)

This means that the minimum value of the objective function is achieved for
the smallest positive eigenvalue λ. The sphere is then given by [S∗] = αv, where
α is a scalar that is selected to scale the expression for the sphere, and v is the
eigenvector corresponding to the eigenvalue λ.

5.2 RANSAC

RANdom SAmpling Consensus (RANSAC) [21] is an iterative model fitting method,
which can be efficiently used even with a data set with many outlier. The method
starts with a mathematical model, and finds which data points support the model
and which do not. The mathematical model is generated from a random set of
points.

For each iteration the steps of the RANSAC algorithm is as follows
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5.3. Inverse Kinematics

1. Randomly sample a minimum subset of data points x̂k from the data set
X, that are used to generate the model candidate Mk(x̂k). Here, k is the
iteration of the RANSAC algorithm

2. Categorize all the data points either as inliers or outliers. Inliers support the
model candidate Mk(x̂k), while outliers oppose it.

3. If Mk has more inliers than the currently optimal model candidate M∗, then
Mk becomes the new optimal solution, M∗ = Mk.

There are four parameters that are required to develop a specific RANSAC
algorithm

• Mk(x̂k), which is the function for generating the mathematical model
• n, which is the number of iterations.
• f(Mk,xi), which finds the error between the model Mk and the point xi ∈
X.

• ET , which defines the error tolerance which is required for a point to be
classified as an inlier, so that f(Mk,xi) < ET .

5.2.1 RANSAC and Conformal Geometric Algebra

For point cloud analysis, RANSAC is often used to define a geometric object that
fits the points in the point cloud. An example of this is in [55], where the 3D camera
takes pictures of a scene, and that scene contains a table with several objects on top.
The interesting points are those of the objects, but most of the points represents
the table. In order to perform a segmentation, a RANSAC method is set up so that
it tries to fit the 3D point cloud to a plane, which will separate inliers, the points
that represent the table; and the outliers, the points that represents the objects on
top of the table.

In order to construct a model candidate of a plane in conformal geometric
algebra, three points are required. This means that for each iteration, three random
points are selected, x̂k = {PAk,PBk,PCk}, where Pjk is the conformal geometric
point representing the Euclidean point xj , for j = {A,B,C}.

The plane model candidate Mk is constructed as

Mk(x̂k) = PAk ∧ PBk ∧ PCk ∧ e∞ (5.35)

and the error function f(Mk,xi) is

|M∗
k · Pxi

| < ET (5.36)

where Mk is a conformal geometric plane, and Pxi is the conformal geometric
point of the Euclidean point xi.

5.3 Inverse Kinematics

Analytical inverse kinematics is a well-developed problem in robotics. Solutions
are available as text-book material for revolute robots with a spherical wrist, or
with three consecutive parallel axes [53, 54]. The solutions are given in terms of
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5. Applications of Conformal Geometric Algebra

trigonometric expressions, which are straightforward to find, although they can
be somewhat involved. The complexity of the equations is partly related to the
book-keeping of the different solutions related to shoulder left or right, elbow up
or down, and wrist flipped or not.

Conformal geometric algebra provides additional insight into the problem. The
inverse kinematics has been previously solved for a robot with 5 revolute joints
in terms of spheres, planes and lines, and the intersection of these geometric ob-
jects [26, 27, 61]. This is extended in this thesis to an inverse kinematics solution
for the Kuka KR6 R900 sixx and the Universal Robots UR5.

An example of the advantage granted by conformal geometric algebra is when
determining elbow up and elbow down. Assume a robot arm with a known position
of the wrist, Pw, and the base, Pb, and an upper arm with a length of du and a
lower arm with a length of dl, where the upper arm is attached to the base and
the lower arm attached to the wrist, see Figure 5.1a.

The range of solutions for the elbow joint given the upper arm is the a circle
with a radius du from the base, while for the lower arm it is a circle with a radius
dl from the wrist. On a standardized 6DOF robot, the elbow, wrist and base lie on
the same plane Π , which means that the two circles also lies on Π .

Geometrically, this means that the solution to elbow position is where the two
circles intersects, as seen in Figure 5.1b and Figure 5.1c. In conformal geometric
algebra, the two circles can be generated by

Cw = Π · (Pw − 1

2
d2l ) Cb = Π · (Pb − 1

2
d2u) (5.37)

where Cw is the circle originating from the wrist point Pw with the radius dl, while
Cb is the circle originating from the base, Pb, with the radius du. Note that the
circles are generated by intersecting the plane Π with a sphere S∗ = P − 1

2r
2 using

(4.71).
The intersection between the two circles is a point pair, which geometrically

means that there are two points of intersections between the circles. These two in-
tersections are the solutions to either elbow up or elbow down, and can in conformal
geometric algebra be calculated as

Q = C∗
w ·Cb (5.38)

The point pair Q contains the full solution to the elbows position, and in that way
makes it possible to chose which configuration of elbow up and elbow down that
should be chosen. Note that the intersection between the two circles is calculated
in the same way as (5.37), using (4.71).

To find the individual points in the point pair, we use (4.63) so that

P± =
Q±

√
Q2

−e∞ ·Q (5.39)
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5.3. Inverse Kinematics

Pw

Pb

dl

du

(a) A general robot arm with an elbow up config-
uration.

Pw

Pb

dl

du

Cw

Cb

(b) The robot arm with an elbow up configu-
ration. The elbow joint is at the intersection
of Cw and Cb.

Pw

Pb
dl

du

Cw

Cb

(c) The robot arm with an elbow down config-
uration. The elbow joint is at the intersection
of Cw and Cb.

Figure 5.1: The intersection of the two spheres Cw and Cb shows the solution to
the elbow joint.
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5. Applications of Conformal Geometric Algebra

where P± are the elbow up and elbow down configurations. With this we can define
the configuration variable ke so that

ke =

{
1, Elbow up
−1, Elbow down

(5.40)

and can find the elbow point Pe by

Pe =
Q+ ke

√
Q2

−e∞ ·Q (5.41)

This solution to the elbow up/elbow down configuration is geometrically intu-
itive, and easy to visualize.
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Chapter 6

Curvature-based Descriptor

I read a book about anti-gravity.
It was hard to put down.

In this section we propose the curvature-based descriptor, which is a novel ap-
proach for 3D point cloud alignment. The descriptor is first described in [33]. It uses
conformal geometric algebra to generate a descriptor. Section 9.5 and Section 9.6
presents the two papers published on the descriptor, and a detailed description will
follow in this section.

6.1 Overview

The curvature-based descriptor starts by first selecting keypoints in the point clouds
X and Y based on the geometry of the neighbourhood of each point. This is
done by using principal component analysis and shape factors. A descriptor is
then calculated for each keypoint in X and Y , where each descriptor consists
of two spheres. Each sphere represents the local curvature around the point in
two orthogonal directions. The point correspondence is established between these
descriptors, which then is used to estimate the pose between the two point clouds.

6.2 Keypoint Extraction

For each point pi ∈ X, the set of neighbouring points Ni is found using a radius
search selection with a given distance r. As described in Section 2.6.1, radius search
selection is preferred over a k-nearest neighbour scheme because it is independent
of resolution.

A principal component analysis is performed on the set Ni, so that the eigenval-
ues λ1, λ2 and λ3, and the eigenvectors v1, v2 and v3 can be found. The eigenvalues
are used to determine the general distribution of the points in Ni, while the eigen-
vectors are used to define the local reference frame.

Since the points are part of a surface, the general distribution of the points
in Ni also defines the general shape of the surface. The shape of the surface can
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6. Curvature-based Descriptor

(a) Point cloud with a shape fac-
tor Cl ≈ 1

(b) Point cloud with a shape fac-
tor Cp ≈ 1

(c) Point cloud with a shape
factor Cs ≈ 1

Figure 6.1: Examples of point clouds with different shape factors.

be analyzed using the eigenvalues of from the principal component analysis using
shape factors [1, 44]

Cl =
λ1 − λ2

λ1 + λ2 + λ3
(6.1)

Cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(6.2)

Cs =
3λ3

λ1 + λ2 + λ3
(6.3)

where Cl+Cp+Cs = 1. If Cl is dominant, then the surrounding point cloud surface
is close to linear; if Cp is dominant, then the point cloud is close to being planar;
while if Cs is dominant, than the surrounding point cloud is spherical or has a form
with volume. An example of such point clouds can be seen in Figure 6.1.

A few assumptions can be made when analyzing shape factors of a point cloud,
especially when the point cloud is taken with a 3D camera, or other projected
point clouds. Firstly, since the points lie on a surface, the curvature of the surface
has impact on the Cs shape factor. This is also true for corners, a property that
is exploited in Harris Corner Detection [25] in 2D images. Secondly, the Cl shape
factor only occurs if the point cloud has a ridge, as shown in Figure 6.2, or as
a result of noise. This can be exploited if the model has characteristic ridge-like
geometries, or to exclude noise patterns.

When all the shape factors are calculated and analyzed, the keypoints can be
selected using the criteria

|Ni| ≥ nmin and (Cl ≥ δl or Cp ≥ δp or Cs ≥ δs) (6.4)

where nmin, δl, δp and δs are user-specified parameters. The parameter nmin spec-
ifies the minimum number of points in Ni that are required in order for the key-
point to be selected. This excludes the points that have a small neighbourhood,
since these are most likely outlier points, and are more subjected to noise. δl, δp
and δs are specified by the user, and they depend on the shape and form of the
point cloud. The purpose is to select parameters so that unique points are selected,
and that these are selected in both X and Y . Having a low value of either δl, δp
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6.3. Sphere Fitting

(a) A drawn representation of a ridge shape. (b) The point cloud representation of Fig-
ure 6.2a. Here, the green points are part of
the ridge. This only occurs when the camera
is viewing the ridge shape from the front.

Figure 6.2: An example of a surface where Cl is large.

or δs selects more points that have that specific characteristics, while high values
chooses fewer points that are more specific. Choosing δ > 1, effectively disregards
that parameter when selecting keypoints. As seen in Figure 6.3, most of the model
consists of flat cylindrical surfaces, which means a large number of points have a
high Cp, while a low number of points have high Cl and Cs.

The selection of keypoints is done in both X and Y , resulting in a set of
keypoints, Xkeypoints and Ykeypoints respectively.

6.3 Sphere Fitting

The sphere fitting method presented in [19], which is explained in Chapter 5, is
modified in the curvature-based descriptor by the introduction of weighting factors
for the points, so that the objective function becomes

f(S) =
n∑

i=1

wi
(S∗ · Pi)

2

S∗2 (6.5)

This has the same effect as modifying the input point data of the minimization
problem. The condition for optimality becomes (

∑n
i=1 wiPi(Pi · S∗)) ∧ S∗ = 0,

which in matrix form is written

G =

n∑
i=1

wi([Pi][Pi]
T)M (6.6)
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6. Curvature-based Descriptor

(a) A CAD model view of object
A, with the approximately same
view angle as in Figure 6.3b.

(b) A 3D camera measure-
ment of object A

(c) A 3D camera measurement
of object B

Figure 6.3: A sample of the keypoint selection process using (6.4) with the parame-
ters n = 200, δl = 0.3, δp = 1 and δs = 0.3. The red points are keypoints, while the
green points are not. It is seen that the keypoints in Figure 6.3a and Figure 6.3b
are similar, while that of Figure 6.3c is different. This is a desired behaviour as the
match between the point cloud in Figure 6.3a and Figure 6.3b will be better than
that of Figure 6.3a and Figure 6.3c.

where [Pi] is the column vector representation of the conformal geometric point
Pi, and

M =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎤⎥⎥⎥⎥⎦ (6.7)

For each keypoint pi, weighting is introduced by defining the two planes

Π i1 = Pi ∧ v1 ∧ v3 ∧ e∞, Π i2 = Pi ∧ v2 ∧ v3 ∧ e∞ (6.8)

where Π i1 is the plane spanned by v1 and v3 through Pi, and Π i2 is the plane
spanned by v2 and v3 through Pi. The two planes are used so that the curvature
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6.3. Sphere Fitting

Figure 6.4: An example of the two spheres and the descriptor. The blue sphere,
Si1, and green spheres, Si2, are illustrated as circles in the figure, for convenience.
The green and blue planes are Π i1 and Π i2 respectively.

along the direction of v1 and v2 can be estimated from

GPi1
=

n∑
i=0

e−γ|Pi·Π ∗
i1|([Pi][Pi]

T)M (6.9)

GPi2
=

n∑
i=0

e−γ|Pi·Π ∗
i2|([Pi][Pi]

T)M (6.10)

where |Pi ·Π ∗
ij | is the distance from the point pi to the plane Π ij , and γ ∈ R is

a weighting parameter. It is seen that the weighting factor in GPij
is unity when

the point pi is on the plane Π ij , and that the weight decreases when the distance
from the plane to the point increases.

The two spheres

[S∗
i1] = αi1vi1∗, [S∗

i2] = αi2vi2∗ (6.11)

are then found from the eigenvector vij∗ corresponding to the smallest positive
eigenvalue λij∗ of the matrix GPij

for j = 1, 2. These two spheres are used to
calculate the descriptor of pi. This is then repeated for all points in Xkeypoints and
Ykeypoints. An example of the two spheres is shown in Figure 6.4.

As noted Section 3.2, there is no way to predictably construct a reference frame
from the resulting orthogonal vectors v1, v2 and v3. The curvature-based descriptor
goes around this, since the spheres do not depend on the directional vectors, but
rather on the planes Π i1 and Π i2. This makes it possible to get the same result
regardless of whether for instance vi or −vi is chosen.
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6. Curvature-based Descriptor

Π i1

pi

ε

Figure 6.5: The green dots are points in the point cloud, and their shade represents
their weight determined by the distance from the plane Π i1. The ε is the small
bias that is generated because there are more points on the left side of Π i1, than
on the right side.

6.3.1 Special Properties

When using the proposed sphere fitting method, the weighting factor weighs the
points in such a manner that the closest points to the plane Π ij are more significant
than those far away. In regards to how projective geometry works, the resolution
of a point cloud decreases the further it is from the camera. In some cases this
means that for a given point pi and its neighbouring points Ni, there are more
points on one side of the plane Π ij than the other, as shown in Figure 6.5. This
results in that the center of the sphere Sij does not lie on the surface of Π ij . This
bias is small, and does not seem to have a noticeable effect on the overall point
correspondence, but it is a property worth exploring.

The weighting factor e−γ|Pi·Π ij | can be rewritten as a Gaussian distribution
such that

exp−γ|Pi ·Π ij | = exp− (x− μ)2

2σ2
(6.12)

where

γ =
1

2σ2
, |Pi ·Π ij | = (x− μ)2 (6.13)

which makes it easier to determine which points that should be chosen. In [33], it
showed that for the specific case, the weight of 0.05 ≤ γ ≤ 0.2 is the recommended,
which is equal to a variance of 0.158 ≤ σ ≤ 0.316. This means that if γ = 0.05,
then points that are 0.316mm away from the plane Π ij has a weight factor of 0.05
or less.
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6.4. Point Correspondence Estimation

r

d

pkp

(a) Sphere esti-
mate of a spherical
surface. r ≈ d.

r
d

pkp

(b) Sphere esti-
mate of a planar
surface. r ≈ d ≈
∞.

r

d

pkp

(c) Sphere esti-
mate of an edge.
r < d.

r

d

pkp

(d) Sphere esti-
mate of a point.
r � d.

Figure 6.6: A sample of resulting sphere estimates on different surfaces. The dif-
ferent values of r and d indicates what the different shapes are.

6.4 Point Correspondence Estimation

The point correspondence method of the descriptor was developed in [32]. For each
keypoint, pi, and their estimated spheres, Si1 and Si2, a descriptor was calculated

Fi = (Si1 + Si2) · Pi (6.14)

=
1

2
((d21 − r21) + (d22 − r22)) (6.15)

(6.16)

where dj is the distance between between the center of the sphere Sij and the point
pi, and rj is the radius of Sij for j = 1, 2. This method was used due to the fact that
in [33], the sphere fitting algorithms were very sensitive to noise when estimating
planar or planar-like surfaces. When the point clouds had a planar shape, the radius
was arbitrary large, making it hard to compare if two keypoints are equal based
on radius alone.

It is the distance δ = d− r, between the keypoint and the surface of the sphere
which determines what shape the keypoint has, as seen in Figure 6.6. The distance δ
can be approximated with the term d2−r2 as shown above, which effectively cancels
out the large r value, since the d value is also arbitrarily large when estimating a
sphere.

To find the point correspondence we solve the minimization problem

min
l

g(Fk,Fl), ∀ Fk ∈ Xkeypoints,Fl ∈ Ykeypoints (6.17)

for each k where

g(Fk,Fl) = (Fk − Fl)
2 =

1

2
(δ2k1 − δ2l1 + δ2k2 − δ2l2)

2 (6.18)

6.4.1 Special Cases

As seen with the special cases in Section 6.3, there are instances where this point
correspondence method might not work optimally. This is because if the value of

55



6. Curvature-based Descriptor

Fi is negative and Fj is positive, then g(Fi,Fj) is will have a minimum even if pi

and pj are not corresponding.

6.5 Pose Estimation

At this stage, all the points xi in Xkeypoints has an estimated correspondence
to a point yj in Ykeypoints. With this correspondence, the pose can be found by
minimizing the distance between each point in the point clouds Xkeypoints and
Ykeypoints. This is straightforward, and can be done in the usual way using SVD as
described in, e.g., [2, 57].

The pose estimation method used in the curvature-based descriptor is the motor
estimation method presented in [58]. This was chosen because it was convenient to
use with the other conformal geometric algebra methods in the descriptor.
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Chapter 7

Experiments

What does a house wear?
Address

7.1 Setup

There has been conducted several experiments throughoutthe work of this thesis,
and they focus on simulating a real world example of automated assembly.

The main setup is a scene which consists of multiple objects placed on a table,
and a camera pointing towards the table and captures the scene.. Two robots are
set up next to the table, and has a working area which covers the whole table. An
overview can be seen in Figure 7.1.

The experiments mostly focused on the two car parts shown in Figure 7.2.
These two parts had sufficiently unique shapes that they could be distinguished
from each other, but also had similarities in their shape. They are constructed in
such a way that they can be assembled into each other, and that there is only one
possible solution, and that the margin for error is under 1mm and 1°. This is a
very likely scenario in an assembly situation, and also a very challenging task in
computer vision. There were many more car parts to that were provided, but it
was concluded that a solution that worked for the two parts in Figure 7.2 would
also work for the other car parts with some parameter tweaked.

7.2 Camera

There were three different 3D cameras that were used in this thesis: Xtion PRO
LIVE by Asus, Kinect v2 by Microsoft and Zivid by ZividLabs.

7.2.1 Asus XtionPRO LIVE

The Xtion PRO LIVE camera is an RGB-D camera with 640x480 resolution at
30Hz. The camera uses structured lights to measure the distances, and works on a
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7. Experiments

Figure 7.1: Overview of the Agilus robot cell. The two Agilus robots stand adjacent
to each other, with a table between them. The camera is placed on the wall behind
the table. In the image, the Kinect v2 is set up on the back wall.

(a) Car part A (b) Car part B

Figure 7.2: A 3D rendering of the two car parts used in the experiments.

58



7.3. Point Clouds

range from 0.8m to 3.5m. The accuracy is not specified, but according to [43] the
noise is measured to be ±3.99mm

m .
This camera was the first 3D camera that was used, but the initial experiments

showed that the accuracy and resolution was not sufficient to perform an accurate
initial alignment.

7.2.2 Microsoft Kinect v2

The Kinect v2 camera is an RGB-D which uses time-of-flight to measure the dis-
tance. The resolution is 512x424, and has a range from 0.5m to 4.5m. The accuracy
is not specified, but according to [43] the noise is measured to be ±3.88mm

m .
This camera was used for most of the experiments. The accuracy was sufficient

to perform initial alignment, and was used in the experiments in [55] and [30]. As
shown in the experiments, the accuracy is not less than a millimeter, which makes
it hard to achieve the specified accuracy with only this camera.

Though it is not documented, there were some initial experiments that showed
that the distance measurements drifted depending on how long the camera was
on. The camera was placed 1m away from a wall and the camera took continuous
measurements for 30 minutes, with over 20 000 measurements. The measurements
showed that the measurements changed over the course of the experiment, and
varied with about 1.5 cm. This is because the components inside the camera are
heated up over time, which changed the characteristics of the camera.

7.2.3 ZividLabs Zivid 3D Camera

The Zivid camera is a RGB-D camera which uses light projection to measure the
distances. The camera has a resolution of 1920x1200, and has a range from 0.6m
to 1.1m. The accuracy of the camera is 0.1mm at a distance of 0.6mm.

The camera was used in [32] and [33], and the results show that it is possible
to achieve the sub-millimeter accuracy that is required for the assembly operation.

7.3 Point Clouds

There were two main methods of acquiring point clouds in the conducted experi-
ments: Viewpoint sampling on the CAD models, and 3D camera capturing on the
physical objects.

Viewpoint sampling has been discussed in Section 2.6 and is where a 3D CAD
model is rendered in a 3D image from different viewpoints using a virtual 3D
camera. In the experiments, the tessellated sphere module from the PCL library [49]
was used. The module first sets the CAD model in the origin of a 3D space, then
a sphere is created so that it encapsulates the model. This sphere is divided into
polyhedrons, as shown in Figure 7.3, where a virtual camera is placed in each
corner of the polyhedron, pointing towards the origin. In the experiments, a sphere
constructed from 80 triangles where used, resulting in 42 corners, which resulted in
42 viewpoint point clouds per CAD model. The resolution of these images depended
on the experiment, and ranged from 90× 90 pixels to 400× 400 pixels.
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7. Experiments

Figure 7.3: A tessellated sphere surrounding a CAD model. Each of the green dots
is a viewpoint position for the virtual camera.

Figure 7.4: The Kuka KR6 sixx R900 Agilus robot.

The point clouds captured with a 3D camera came either from the XtionPRO
LIVE, the Kinect v2 or the Zivid camera. The scene was often objects on a table,
and the points that were not part of the objects were mostly removed, either by
hand or with the algorithm shown in [55].

7.4 Robots

The two robots that are used in the experiments are the Kuka KR6 sixx R900, also
known as the Kuka Agilus. The robots are 6DOF, and have a maximum payload
of 6 kg, and a total reach of 901.5mm. An image is shown in Figure 7.4.

The robots were set up with different grippers and camera brackets, depending
on the experiments. These were custom made either in plastic or aluminum.
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7.4. Robots

On both robots there were robotic tool changers and a 6DOF force/torque
sensor on the end-effector, but these were never used in any of the experiments.
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Chapter 8

Conclusion

What do you call a dog magician?
A Labracadabrador

The thesis presented methods for pose alignment and point correspondence
estimation of 3D point clouds and inverse kinematics of robot arms. The approaches
proposed in this thesis are based on conformal geometric algebra, an extension of
Euclidean algebra.

The thesis presented the Curvature-Based Descriptor, a novel approach for
the initial alignment between two point clouds. The curvature-based descriptor
is a descriptor which describes the local curvature around a point in the point
cloud. The local curvature is expressed with two spheres generated using conformal
geometric algebra. The thesis also presented the preprocessing steps which are used
to segment the point cloud using RANSAC, and a keypoint extraction using shape
factors method which extracts certain points from the point cloud, making the
point correspondence more accurate.

The inverse kinematics presented in this thesis is an analytic solution which
uses conformal geometric algebra. The solution was presented for the Kuka KR6
R900 sixx robot and the Universal Robots UR5 robot. All singularities and all
configurations were accounted for in the solutions.

The thesis has presented several experimental results. These experiments show
the results from various methods performing point cloud alignment. The results
show that it is possible to achieve a sub-millimeter accuracy for position estimation
of an object using FPFH as an initial alignment, followed by performing SIFT on
an image taken from a 2D camera attached to a robot arm.

The thesis has also showed through experiments that the curvature-based align-
ment method, after applying the preprocessing, achieve a sub-millimeter accuracy
on its own, an accuracy that is not achieved with any of the other 3D alignment
methods.
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8. Conclusion

8.1 Future Work

An experiment that was not published when using the curvature-based description
showed an interesting result. When using two of the exact same point cloud with
a known displacement between each other, we chose a set of random point as
keypoints. The same points were chosen from both point clouds. This gave a 100%
accurate point correspondence. Our thought is that this is because the points are
random, they are not likely to be similar to each other. It would be interesting to
mimic this behaviour in the keypoint extraction method.

There have been two point correspondence methods that have been presented in
this thesis. One uses the r and d parameters separately to achieve correspondence,
while the other uses the difference between r and d. Both have their advantages,
and should be combined in some form so that they can exploit both advantages.

When selecting a neighbourhood for the shape factors, the proposed method
use principal component analysis. Principal component analysis moves the centroid
to the origin in order to calculate the principal axes, however, in [44] they move the
keypoint itself to the origin. It is shown in the thesis that 3D cameras has projective
geometry, and that this creates a bias to one side. This bias follows when using
centroid, but not when using the selected point. It would be interesting to see if
this has any effect on the performance.
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Chapter 9

Publications

How do trees get online?
They log in.

The following publications come in chronological order. In this section, each
paper is lightly explained, focusing more on the reasoning behind the paper. In the
sections following, the papers are explained in a summary form.

Paper 1 presents inverse kinematics using conformal geometric algebra. When
we first started with inverse kinematics and conformal geometric algebra, there
were examples of its use, such as in [27, 40]. These publications focus on inverse
kinematics in graphic animations, and therefore do not have a full 6DOF solution,
and had not taken singularities and configurations into account to a degree that
they could be implemented on an industrial robot. The paper therefore presents
such a solution.

Paper 2 presents an object detection algorithm which uses conformal geometric
algebra and RANSAC. At the time, we were researching alignment of 3D point
clouds. A problem we faced was that the point cloud captured by the 3D camera
covered a larger surface than that of the objects in the 3D CAD model. The 3D
camera captured the table and the surrounding background as well. We therefore
wanted to use segmentation to select only the objects that were on the table by
estimating the plane of the table and selecting only the points on top of it.

Aksel Sveier was working on RANSAC with conformal geometric algebra at the
time, and through our combined research we found that this could be used as a
object detection algorithm.

Paper 3 presents an alignment method which achieves sub-millimeter accu-
racy. Throughout our research, we found that many of the algorithms for 2D and
3D alignment were limited in their accuracy. Sub-millimeter accuracy was crucial
for the assembly process, so Asgeir Bjørkedal and Kristoffer Larsen started to re-
search if we could combine the different methods in order to achieve the necessary
accuracy.

We therefore developed a method which combined a stationary 3D camera with
a 2D camera attached to a robot arm. The method achieved the necessary accuracy
for an automated assembly.
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9. Publications

Paper 4 presents an initial alignment for point clouds which uses conformal
geometric algebra. The initial idea was to use the least-square optimization method
presented in [59], and that instead of using a point correspondence, we could use
a correspondence between different geometric objects. We therefore developed a
global descriptor method that used geometric algebra.

Paper 5 presents the curvature-based descriptor, which is described in Chap-
ter 6. The method is based on the experiences from Paper 4, and was developed
with sub-millimeter accuracy as a goal. The experiments show that the descriptor
performs better than several state-of-the-art methods for estimating the position
of the objects.

Paper 6 presents an improvement to the curvature-based descriptor. In Paper
5, the point correspondence method used the of the radius and the distance be-
tween the center of the sphere and the keypoint separately, which in some cases
was unstable. The improvement addresses this, and achieves a better point corre-
spondence and an even better position estimation.
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9.1. Paper 1: Inverse Kinematics for Industrial Robots using Conformal
Geometric Algebra

9.1 Paper 1: Inverse Kinematics for Industrial Robots
using Conformal Geometric Algebra

By Adam Leon Kleppe and Olav Egeland

This paper presents inverse kinematics on the Kuka Agilus KR6R900 and the
Univeral Robot UR5 using conformal geometric algebra.

This paper shows a precise example of how conformal geometric algebra can be
used in inverse kinematics, and goes into details such as defining specific configu-
rations and defining singularities.
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Inverse Kinematics for Industrial Robots using
Conformal Geometric Algebra
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Abstract

This paper shows how the recently developed formulation of conformal geometric algebra can be used
for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper
demonstrates that the solution of the inverse kinematics in this framework relies on the intersection
of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable
geometric intuition about the problem. It is believed that this will be very useful for new robot geometries
and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on
inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles
for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or
not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot.
The solutions have been successfully implemented and tested extensively over the whole workspace of the
manipulators.

Keywords: Conformal Geometric Algebra, Inverse Kinematics, Agilus sixx R900, UR5

1 Introduction

Analytical inverse kinematics is a well-developed prob-
lem in robotics. Solutions are available as text-book
material for revolute robots with a spherical wrist, or
with three consecutive parallel axes [Siciliano et al.
(2009); Spong et al. (2006)]. The solutions are given in
terms of trigonometric expressions, which are straight-
forward to find, although they can be somewhat in-
volved. The complexity of the equations is partly re-
lated to the book-keeping of the different solutions re-
lated to shoulder left or right, elbow up or down, and
wrist flipped or not.

The recently developed formulation of conformal ge-
ometric algebra as presented in [Dorst et al. (2009);
Hildenbrand (2013); Perwass (2009)] provides addi-
tional insight into the problem. This formulation has
very efficient tools to define geometric objects in the
form of lines, circles, planes and spheres, and includes

the geometric product, which is used to calculate in-
tersections of such geometric objects and the distance
between different objects. The formulation extends the
3-dimensional Euclidean space with 2 extra dimensions
resulting in a homogeneous space including the point at
infinity. In this formalism, the inverse kinematics has
been previously solved for a robot with 5 revolute joints
in terms of spheres, planes and lines, and the intersec-
tion of these geometric objects [Hildenbrand (2013);
Hildenbrand et al. (2005); Hildenbrand et al. (2006);
Zamora and Bayro-Corrochano (2004)]. These inverse
kinematic solutions have primarily been developed for
graphical rendering, as the focus has been on the link
configurations, whereas the joint angles are only given
in terms of the cosines of the angles, which means that
there is no systematic way of determining the right
quadrant of the joint angles. Still, this work clearly
demonstrates that the conformal geometric algebra is a
very powerful tool for inverse kinematics, which makes
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it interesting to explore this formulation more in de-
tail to investigate how it can be employed to solve and
implement a range of practical kinematic problems in
robotics. To do this we revisit the well-established in-
verse kinematic problem for robots to demonstrate how
conformal geometric algebra can be used in robotics.

In this work we extend the existing solutions for an-
alytic inverse kinematics based on conformal geometric
algebra to obtain a systematic way of calculating the
signs and quadrants of the joint angles. This includes
the calculation of consistent solutions corresponding to
shoulder left and right, elbow up or down and wrist
flipped or not. Moreover, it is shown how the rota-
tional direction of the joint angles are related to the
Denavit-Hartenberg parameters. It is also shown how
to describe links that have both a and d translations
in the Denavit-Hartenberg convention. The proposed
method is implemented for the Agilus R900 Sixx robot,
which is a 6 DOF robot with a spherical wrist, and the
UR5, which is a 6 DOF robot with parallel axes for
joints 2, 3 and 4. Also singularities are discussed, and
it is explained how the singularities appear in the so-
lution based on conformal geometric algebra.

The paper is organized as follows. First a brief pre-
sentation of manipulator kinematics is given. Then
the basics of conformal geometric algebra is presented,
which includes a discussion on how to determine the
sign of rotation in this formulation. Then the imple-
mentation of the analytic inverse kinematics is pre-
sented for the Agilus R900 Sixx and the UR5 robot.

2 Manipulator kinematics

The Denavit-Hartenberg convention is commonly used
for describing robot kinematics. The convention de-
scribes the link transformation in terms the homoge-
neous link transformation matrix

T(i,i−1) = Rotz,θiTransz,diTransx,aiRotx,αi (1)

This can be used to calculate the forward kinematics

T06 =

(
ne se ae pe

0 0 0 1

)
(2)

of a robot with six links as

T06 = T01T12T23T34T45T56 (3)

The Denavit-Hartenberg parameters for the Aguilus
robot are presented in Table 1 and Figure 2b, while
the Denavit-Hartenberg parameters for the UR5 robot
are shown Table 2 and Figure 6b.

Link θi[rad] di[mm] ai[mm] αi[rad]
1 θ1 -400 25 π

2
2 θ2 0 455 0
3 θ3 − π

2 0 35 π
2

4 θ4 +
π
2 -420 0 −π

2
5 θ5 − π

2 0 0 π
2

6 θ6 -80 0 π

Table 1: DH-table for the Agilus R900 sixx robot

Link θi[rad] di[mm] ai[mm] αi[rad]
1 θ1 89.2 0 π

2
2 θ2 0 -425 0
3 θ3 − π

2 0 -392.43 0
4 θ4 109.15 0 π

2
5 θ5 − π

2 94.65 0 −π
2

6 θ6 82.3 0 0

Table 2: DH-table for the UR5 robot

3 Conformal Geometric Algebra

In this paper conformal geometric algebra is used for
the inverse kinematics of robots. The main difference
to the usual geometric formulation used in robotics is
the introduction of the geometric product, and the ex-
tension of the 3 dimensional Euclidean space with 2 ad-
ditional dimensions. This provides us with some very
efficient tools, in particular, the formulation makes it
very simple to define geometric objects in the form of
lines, planes, circles and spheres. In addition, it is easy
to calculate the occurrence of intersections between the
geometric objects, and the distance between objects.
The Euclidean space �

3 is described with the or-
thogonal unit vectors e1, e2, e3. The vectors a and b in
Euclidean space are given by a = a1e1 + a2e2 + a3e3
and b = b1e1 + b2e2 + b3e3. The geometric product is
defined as

ab = a · b+ a ∧ b (4)

where a · b = a1b1 + a2b2 + a3b3 is the inner product,
which is a scalar, and

a ∧ b =(a1b2 − a2b1)e1e2 + (a2b3 − a3b2)e2e3 (5)

+ (a3b1 − a1b3)e3e1

is the outer product, which is a bivector, as it is the
sum of terms including the bivectors e2e3, e3e1 and
e1e2. It is noted that a · b = b ·a, and a∧ b = −b∧a,
and that

eiej = ei · ej + ei ∧ ej =

{
1, i = j

ei ∧ ej , i �= j

where eiej = ei∧ej = −ej∧ei = −ejei whenever i �= j.
It follows that a ∧ a = 0.
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The 5-dimensional conformal space is obtained by
extending the 3-dimensional Euclidean space with 2
orthogonal dimensions with basis vectors e+ and e− so
that e+ · e+ = 1 and e− · e− = −1. A change of basis is
done with e∞ = e−+e+ and e0 = (1/2)(e−−e+), which
implies that e∞ · e∞ = e0 · e0 = 0 and e∞ · e0 = −1.

3.1 Multivectors

A multivector a in Euclidean space is a linear combi-
nation of the basis elements

{1, e1, e2, e3, e2e3, e3e1, e1e2, e1e2e3}
A multivector A in conformal space is a linear combi-
nation of the basis elements

{1, e0, e1, e2, e3, e∞, e0e1, . . . , e0e1e2e3e∞}
The geometric product of two multivectors A and B
is given by

AB = A ·B +A ∧B

The outer product has the property that A ∧ A = 0
for any multivector A.

3.2 Duals and the pseudoscalar

The pseudoscalar in the Euclidean space �3 is IE =
e1e2e3. The Euclidean dual of a multivector a is

a+ = aI−1
E , I−1

E = e3e2e1 (6)

The square of the Euclidean pseudoscalar is I2
E = −1,

and it follows that the dual of the Euclidean dual is
(a+)+ = −a.
The conformal pseudoscalar is Ic = e0IEe∞. The

conformal dual of a multivector A in conformal space
is

A∗ = AI−1
c , I−1

c = e0I
−1
E e∞ (7)

As in the Euclidean case, the square of the pseudoscalar
is I2

c = −1, and it follows that the dual of the dual is
(A∗)∗ = −A.

3.3 Conformal representation of Euclidean
objects

In this paper the representation of geometric objects
and their duals is based on the formulation in [Dorst
et al. (2009)]. It is noted that an alternative formu-
lation is presented in [Hildenbrand (2013)], where the
direct form of [Dorst et al. (2009)] is presented as the
dual form.
The Euclidean point p is represented in conformal

space by the multivector

P = C(p) = p+
1

2
p2e∞ + e0

Starting from the representation of a point in confor-
mal space the direct representation in conformal space
of several Euclidean geometric objects can be gener-
ated with the outer product.
Let PA, PB and PC be the conformal representation

of the points on a circle in Euclidean space. The direct
representation of the circle in conformal space is then

C = PA ∧ PB ∧ PC

A line in Euclidean space has the direct conformal rep-
resentation

L = PA ∧ PB ∧ e∞

where PA and PB are the conformal representation of
two points on the line. A sphere in Euclidean space
has the direct conformal representation

S = PA ∧ PB ∧ PC ∧ PD

where PA, PB , PC and PD are conformal representa-
tions of points on the sphere that are not all in the
same plane. A plane in Euclidean space has the direct
conformal representation

Π = PA ∧ PB ∧ PC ∧ e∞

where PA, PB and PC are conformal representations of
points on the plane that are not collinear. In addition,
the points PA and PB constitute a point pair

Q = PA ∧ PB

A sphere S has the dual form

S∗ = P − 1

2
ρ2e∞ (8)

where P center point and ρ is the radius of the sphere
in Euclidean space. A plane Π has the dual form

Π∗ = n+ de∞ (9)

where n is the normal vector of the plane in Euclidean
space and d is the distance from the origin.

3.4 Intersections

The intersection or meet M of two geometric objects
A and B represented in the direct form in conformal
space is given in terms of the dual M∗ = A∗ ∧B∗, or,
equivalently, in the direct form as M = A∗ ·B. It is
noted that the intersection of two planes Π1 and Π2 is
the dual line L∗ = Π∗

1∧Π∗
2, the intersection of a plane

Π and a sphere S is the dual circle C∗ = Π∗∧S∗, and
the intersection of a plane Π and a circle C is a dual
point pair Q∗ = Π∗ ∧C∗.
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3.5 Distances

The distance between geometric objects is related to
the inner product in some cases. The Euclidean dis-
tance d from a point P to a plane Π is given by the
inner product in conformal space as d = −P ·Π∗ where
d is positive if the point is in the direction of the normal
vector. The Euclidean distance d between two points
represented by PA and PB is given by d2 = −2PA ·PB .

3.6 Horizon calculation

P2
P1

Qa

Qa

K

d

d

S

Figure 1: The point pair Qa are two points which are
d away from P2 and 90◦ between P1 and P2

Consider two points with conformal representations
P1 and P2. Suppose that the two points are connected
with a link with a 90◦ offset of length d. Then the offset
can be located with the horizon technique presented in
[Hildenbrand (2013)]. First the dual sphere S∗ = P2−
1
2d

2e∞ with center point P2 and radius d is defined.
Next, define the sphere K∗ = P1 − (P1 · S∗)e∞ with
center in P1. Then the intersection of the spheres S
and K will be the horizon defined by the circle

C∗ = K∗ ∧ S∗ (10)

This circle is the set of all points with a 90◦ offset of
length d. The intersection of this circle with a plane
Π that contains both P1 and P2 will give a point pair
Q = C∗ ·Π where the two points of the point pair are
on the tangent line from the point P1 with an offset d
from P2.
An example of this can be seen in Figure 1.

3.7 Calculation of angles

In this section it is shown how to calculate the angle
of rotation between two vectors a and b, and how to

define the sign of the angle according to a defined di-
rection of rotation. The corresponding unit vectors are
given by â = a/‖a‖ and b̂ = b/‖b‖. The geometric
product of â and b̂ is

âb̂ = â · b̂+ â ∧ b̂ (11)

The inner product of the two Euclidean unit vectors â
and b̂ is the usual scalar product, which means that

â · b̂ = cos θ (12)

where θ is the angle between the vectors. The outer
product is

â ∧ b̂ = sin θN̂ (13)

where

N̂ = ± â ∧ b̂∥∥∥â ∧ b̂
∥∥∥ (14)

is a unit bivector that defines the plane of rotation from
â to b̂. The plus applies if the rotation from â to b̂ is
counter-clockwise in the plane defined by N̂ , while the
minus applies if the rotation in clockwise.
Equations 13 and 14 give the following expressions

for the sine and cosine of the angle:

cos θ =
a · b

‖a‖ ‖b‖
sin θ =

a ∧ b

‖a‖ ‖b‖N̂
−1

(15)

where

N̂−1 = ± b̂ ∧ â∥∥∥b̂ ∧ â
∥∥∥ (16)

is the inverse of N̂ , which is equal to the reverse bivec-
tor.
It follows that the angle θ can be computed from

θ = Atan2
[
(a ∧ b) N̂−1,a · b

]
(17)

This approach ensures that the angle is calculated with
the right sign.
In the inverse kinematics problem the two vectors a

and b will typically be directional vectors of a line, or
the normal vector of a plane. The directional vector of
a line L is computed from

(L · e0) · e∞ (18)

while the normal vector of a plane Π is computed from

− (Π∗ ∧ e∞) · e0 (19)

The rotation plane perpendicular to a line L is found
from

N̂ = − (L∗ ∧ e∞) · e0
‖(L∗ ∧ e∞) · e0‖ (20)
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while the rotation plane parallel to a plane Π can be
calculated from

N̂ = − (Π · e0) · e∞
‖(Π · e0) · e∞‖ (21)

Note that the sign of the rotation plane N̂ for a robot
joint must be selected so that the sign of the rotation
is correct. This will be the case if the rotation axis z
of the Denavit-Hartenberg convention is the Euclidean
dual of the rotation plane, that is,

N̂∗ = z (22)

4 Inverse Kinematics of the Agilus
sixx R900 robot

The input parameters to the inverse kinematics are the
position vector pe, the approach vector ae, the slide
vector se and the normal vector ne of the end-effector.
Then the conformal representations of pe and the wrist
position pe + d6ae are given by

Pe = C(pe) (23)

Pw = C(pe + d6ae) (24)

where d6 is the distance between the end-effector and
the wrist, which for the Agilus is 80mm, as shown in
Table 1.
The vertical plane Πc, which is the cross section of

the robot through the wrist point, is then defined by

Πc = e0 ∧ e3 ∧ Pw ∧ e∞ (25)

We define three configurations: Front/Back, which
defines if it is the front or back of the robot that faces
the end-effector; Elbow up/Elbow down, which defines
if the elbow joint is up or down; and Flip/No Flip,
which defines if the wrist joint is flipped or not.
These configurations are selected with the following

parameters:

kfb =

{
1 if front

−1 if back
(26)

kud =

{
1 if elbow up

−1 if elbow down
(27)

kfn =

{
1 if flip

−1 if no flip
(28)

4.1 Finding P1

The position of joint 1 is represented by P1. The
Denavit-Hartenberg parameters for link 1 has non-zero

a and d parameters, which means that there is an off-
set from the rotational axis of joint 1, which is seen
in Figure 2b. This point is on the point pair Q1 that
is found by intersecting a sphere with two planes as
follows:

S∗
0 = e0 − 1

2
ρ2e∞, ρ2 = d21 + a21

Π∗
1x = e3 + d1e∞
Q1 = (S∗

0 ∧Π∗
1x) ·Πc

(29)

This point pair consists of the two possible solutions
for P1. One solution corresponds to robot facing to-
wards the end-effector, while the other corresponds to
the robot facing away from the end-effector. The solu-
tion for P1 is selected according to

P1± =
Q1 ±

√
Q2

1

−e∞ ·Q1
(30)

P1 =

{
P1+ if kfb(P1+ · Pe) > kfb(P1− · Pe)

P1− otherwise
(31)

Figure 6 shows the geometric objects in Equation 29
and the selected P1.

4.2 Finding P2

P2 will be on the circle C2, which is the intersection of
the two spheres

S∗
1 = P1 − 1

2
a22e∞

S∗
w = Pw − 1

2
(d24 + a23)e∞

(32)

where S1 has center point P1, and Sw is centered in
Pw. Then the intersection ofC2 with the vertical plane
Πc will give a point pair Q2, according to

C∗
2 = S∗

1 ∧ S∗
w

Q2 = C∗
2 ·Πc

(33)

This is shown in Figure 4. The points inQ2 are the two
possible solutions for P2, and the solution is selected
depending on the parameter elbow up or elbow down,
and is given by

P2 =
Q2 − kud

√
Q2

2

−e∞ ·Q2
(34)

Both configurations are shown in Figure 4a and Fig-
ure 4b.
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,
(a) The Agilus KR6 R900 sixx robot.

Image taken from www.kuka-
robotics.com

θ1

θ2

θ3

θ4

θ5

θ6

d1

a1 a2

d6

a3

d4

P1x

Pwx

P1

P2

Pe

Pw

(b) The joint frames of the Agilus robot. The joint
position is q = [0,−π

2
, π
2
, 0, 0, 0]T.

Figure 2: Overview of the Agilus KR6 R900 sixx robot.

(a) A overview image of the robot and the geometric objects
used to find P1

(b) A closer view of finding P1

Figure 3: The red sphere is S0, the blue plane is Π1x, the green circle is generated from S0 ∧Πc, and the red
point pair is Q1, where one is picked to be P1.
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(a) The robot and the geometric objects used to find P2. The
robot is configured with elbow up

(b) The robot and the geometric objects used to find P2.
The robot is configured with elbow down

Figure 4: The red spheres are S1 and Sw, the yellow plane is Π1x, the green circle is generated from C2, and
the blue point pair is Q2, where one is picked to be P2.

Figure 5: The robot and the geometric objects used to
find Pwx. The red spheres are S2 and Sw,
the yellow plane is Π1x, the green circle is
generated from Cwx, and the blue point pair
is Qwx, where one is picked to be Pwx.

4.3 Calculating the remaining kinematics

The Agilus has an offset a3 from the joint position P2

to the offset point Pwx, as shown in Table 1. The
point Pwx is found using the horizon technique from
Section 3.6, which gives

S∗
2 = P2 − 1

2
a23e∞

K∗
w = Pw − (P2 · S∗

2)e∞
C∗

wx = K∗
w ∧ S∗

w

Qwx = C∗
wx ·Πc

(35)

Here the solutions for Pwx are the points of the point
pair Qwx, and the solution is selected according to the
arm geometry from the calculations

Π2wc = P2 ∧ Pw ∧Π∗
c ∧ e∞

Pwx =

{
Pwx+ if kfbPwx+ ·Π∗

2wc > 0

Pwx− otherwise

(36)

where

Pwx± =
Qwx ±√

Q2
wx

−e∞ ·Qwx
(37)

Equation 35 and Pwx are shown in in Figure 5.

4.4 Finding the joint angles

The link configurations have now been determined
from the end-effector configuration, and as remarked
by [Dorst et al. (2009)], this is sufficient for graphical
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rendering. The next step is to determine the joint an-
gles. In previous works this has typically been done by
calculating the cosine of the joint angle. This will not
give consistent signs for the joint angles correspond-
ing to the different solution for the arm. This problem
is solved here, and it is shown how to determine the
quadrant of the angle, and also to keep track of the
different solutions.
To do this it is necessary to define the rotation plane

of each joint, and the vectors defining the rotation of
the joint. The point P1x = C(d1e3) and the following
lines are defined:

L1x1 = P1x ∧ P1 ∧ e∞
L12 = P1 ∧ P2 ∧ e∞

Lwxw = Pwx ∧ Pw ∧ e∞
Lwe = Pw ∧ Pe ∧ e∞

(38)

The rotation plane of θ1 is N̂θ1 = e1∧e2, which is the
horizontal base plane, while the rotation plane for θ2
and θ3 is found from the Πc using Equation 21. Next,
the rotation plane for θ4 it is found from Lwxw using
Equation 20, while for θ5 the rotation plane is parallel
to the plane Lwxw ∧ Pe, and its rotation depends on
if it is flipped, i.e. kfn. Finally, −a+

e is the rotation
plane for θ6. The joint angles can then be found from
Equation 17 using the parameters given in Table 3.

4.5 Singularities for the Agilus

There are two singularities in the given model, which
correspond to the physical singularities of the robot.
In the wrist singularity, Pe will be on the line Lwxw.

Then the the rotation plane N̂−1
θ5

becomes undefined
since Lwxw ∧ Pe = 0.
In the shoulder singularity the point Pw will be on

the vertical line defined by e3, and the plane Πc be-
comes undefined since e0 ∧ e3 ∧ Pw ∧ e∞ = 0.

5 Inverse Kinematics for the UR5

The input to the inverse kinematics of the UR5 robot
is pe, ne, se and ae as for the Agilus robot. The con-
formal representation of the end effector position and
the position of joint 5 is found from

Pe = C(pe)

P5 = C(pe − d6ae)
(39)

The configuration parameters are defined as

kud =

{
1 if elbow up

−1 if elbow down
(40)

klr =

{
1 if shoulder right

−1 if shoulder left
(41)

kfn =

{
1 if wrist is not flipped

−1 if wrist is flipped
(42)

First the vertical plane Πc through joints 1, 2, 3 and
4 is found. This is done by finding the point Pc with
an offset d4 from P5. The calculation is done with the
horizon technique to find the circle C5k according to

S∗
c = P5 − 1

2
d24e∞

K∗
0 = e0 − (S∗

c · e0)e∞
C∗

5k = S∗
c ∧K∗

0

(43)

Then the point pair Qc with the two solutions for Pc

is found by intersection C5k with the horizontal plane
through P5:

Qc = C∗
5k · (P5 ∧ e1 ∧ e2 ∧ e∞) (44)

The solution for Pc is selected depending on the pa-
rameter for shoulder right or shoulder left using

Pc =
Qc + klr

√
Q2

c

−e∞ ·Qc
(45)

When the solution for Pc has been selected the vertical
plane Πc is found from

Πc = e0 ∧ e3 ∧ Pc ∧ e∞ (46)

Figure 7 shows the geometric objects in Equation 43
and the point pair Qc.

5.1 Finding P3 and P4

Figure 8: The green planes is Πc⊥ and the red plane is
Πc‖ and the blue line is L45
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θi aθi bθi Nθi offset
1 kfbΠ

∗
c −e2 e1 ∧ e2 0

2 (L1x1 · e0) · e∞ (L12 · e0) · e∞ kfb(Πc · e0) · e∞ 0
3 (L12 · e0) · e∞ (Lwxw · e0) · e∞ kfb(Πc · e0) · e∞ −π

2
4 −Π∗

c −kfbkfn
(
(Lwxw ∧ Pe)

∗ ∧ e0
) · e∞ (L∗

wxw ∧ e0) · e∞ 0
5 (Lwe · e0) · e∞ (Lwxw · e0) · e∞ kfn ((Lwxw ∧ Pe) · e0) · e∞ 0
6

(
(Lwxw ∧ Pe)

∗ ∧ e0
) · e∞ −se −a+

e 0

Table 3: Joint angle parameters for the Agilus robot. It can be verified that the dual of N̂θi is the rotational axis
zi−1 of the Denavit-Hartenberg convention. Note that the table shows the non-normalized bivectors
Nθi .

,
(a) The UR5 robot. Image taken from

www.universal-robots.com
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θ2

θ3

θ4θ5

θ6
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a1

−a2

d6

−a3
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P4
P3

P2

P1

(b) The joint frames of the UR5 robot. The joint
position is q = [0,−π
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,−π

2
,−π

2
, π
2
, 0]T

Figure 6: Overview of the UR5 robot.
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(a) Overview of the UR5 robot, Qc and Πc (b) Closer view of the UR5 robot and Qc

Figure 7: The red spheres are Sc and K0, the green circle is C5k, Qc is the blue point pair, and Πc is the yellow
plane.

The plane Πc‖ is defined as the plane that is parallel
to Πc and that contains the points P4 and P5. This
plane is found in the dual form with a distance P5 ·Πc

from Πc according to

Π∗
c‖ = Π∗

c + (P5 ·Π∗
c)e∞ (47)

The next step is to calculate the line through P4 and
P5 from

Π56⊥ = (P5 ∧ P6)
∗ ∧ e∞

n̂56⊥ = − (Π56⊥ · e0) · e∞
‖(Π56⊥ · e0) · e∞‖

Πc⊥ = P5 ∧ n̂56⊥ ∧ e∞
L∗

45 = Π∗
c‖ ∧Π∗

c⊥

(48)

where Πc⊥ is a plane containing P4 and P5 and which
normal is perpendicular to the normal of Πc. It is
noted that n̂56⊥ = a+

e = se ∧ ne.
The solutions for P4 are then given by the point pair

Q4, which is the intersection of the line L45 and the
sphere S5 with center point in P5 and radius d5. This
is calculated from

S∗
5 = P5 − 1

2
d25e∞

Q4 = L45 · S∗
5

P4 =
Q4 + kfn

√
Q2

4

−e∞ ·Q4

(49)

Next, the solutions for P3 are given by the point pair
Q3, which is the intersection of the line L34 and the

sphere S4 with center point in P4 and radius d4. This
is calculated from

S∗
4 = P4 − 1

2
d24e∞

L34 = P5 ∧Π∗
c ∧ e∞

Q3 = S∗
4 ·L34

P3 =
Q3 − klr

√
Q2

3

−e∞ ·Q3

(50)

5.2 Finding P1 and P2

P1 is computed from

P1 = C(d1e3) (51)

The solutions for the point P2 are then given by the
point pair Q2, which is found as the intersection of
the two spheres S1 and S3 and the vertical plane Πc,
which is calculated from

S∗
1 = P1 − 1

2
a22e∞

S∗
3 = P3 − 1

2
a23e∞

C∗
2 = S∗

1 ∧ S∗
3

Q2 = C∗
2 ·Πc

(52)

The solution is selected depending on the the parame-
ter for elbow up or down according to

P2 =
Q2 − kud

√
Q2

2

−e∞ ·Q2
(53)

72



Kleppe et.al., Inverse Kinematics for Industrial Robots using CGA

(a) The blue line is L45, the red sphere is S5 and the green
point pair is Q4

(b) The blue line is L34, the red sphere is S4 and the green
point pair is Q3

Figure 9: Figures showing the process of finding P3 and P4

θi aθi bθi Nθi offset
1 e2 −klrΠ

∗
c e1 ∧ e2 0

2 (L01 · e0) · e∞ (L12 · e0) · e∞ −klr(Πc · e0) · e∞ −π
2

3 (L12 · e0) · e∞ (L23 · e0) · e∞ −klr(Πc · e0) · e∞ 0
4 (L23 · e0) · e∞ (L45 · e0) · e∞ −klr(Πc · e0) · e∞ −π

2
5 klrΠ

∗
c −ae (−L∗

45 ∧ e0) · e∞ 0
6 (L45 · e0) · e∞ −se −a+

e 0

Table 4: Joint angle parameters for the UR5 robot. It can be verified that the dual of N̂θi is the rotational axis
zi−1 of the Denavit-Hartenberg convention. Note that the table shows the non-normalized bivectors
Nθi .

(a) The UR5 robot with the elbow up configuration (b) The UR5 robot with the elbow down configuration

Figure 10: The two red spheres are S1 and S3, the blue circle is C2 and the green point pair is Q2
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5.3 Finding the joint angles

Expression for calculating the configuration have now
been established. The next step is to find expres-
sions for the calculation of the joint angles using Equa-
tion 17.
The following lines are defined

L01 = e0 ∧ e3 ∧ e∞
L12 = P1 ∧ P2 ∧ e∞
L23 = P2 ∧ P3 ∧ e∞

(54)

The rotation planes for θ1 and θ6 of the UR5 are the
same as for the Agilus: e1 ∧ e2 and −a+

e respectively.
The angles θ2, θ3 and θ4 have the same rotation

plane, which is parallel to Πc, while the angle θ5 ro-
tates around the lineL45. Then Equation 21 and Equa-
tion 20 can be used, and the rotation planes are found
as shown in Table 4.

Table 4 shows the parameters used in Equation 17
to calculate the joint angle for the UR5.

5.3.1 Singularities for the UR5

There are two singularity in this mathematical model,
which are the same as the singularities of the robot.
The shoulder singularity occurs when Pc =

αe3, ∀α, which means that Pc is on the rotational
axis of joint 1. Then Πc in Equation 46 becomes un-
defined as e0 ∧ e3 ∧ Pc ∧ e∞ = 0.
The wrist singularity occurs when Π∗

c‖ ∧ Π∗
c⊥ = 0,

which will be the case when θ5 = ±π
2 . Then the line

L45 in Equation 48 becomes undefined.

6 Results

Analytic inverse kinematic solutions for the KUKA
Agilus robot and the UR5 robot were implemented
in the CluCalc software for calculation and display
of geometric algebra. The files can be downloaded
from https://github.com/ipk-ntnu/inverse kinematics
using cga. The solutions were extensively tested in
simulations by interactively moving the robots over the
whole workspace for different solutions of the type el-
bow up and down, shoulder left and right, and wrist
flipped or not. The solutions were in particular tested
close to the manipulator singularities.
The accuracy of the inverse kinematic solution was

validated by calculating the homogeneous transforma-
tion matrix according to Equation 3 and comparing
the result with the input parameters ne, se, ae and
pe. The results were correct with accuracy close to
machine precision over the whole workspace.
The programming of the solutions is focused on

the intersection of geometric objects like lines, circles,

planes and spheres that are readily displayed during
programming, and this gave valuable intuitive support
in the development of the calculations. Moreover, ex-
tensive testing over the workspace was facilitated by
the 3D graphics.

7 Conclusion

Conformal geometric algebra has been used to develop
analytical inverse kinematic solutions for the KUKA
Agilus robot and the UR5 robot. The inverse kine-
matic solutions gave consistent signs for the angles for
the different solutions of the robots. Compared to ear-
lier work in conformal geometric algebra the proposed
method handles link offsets and gives correct joint an-
gles over the whole workspace for the different solutions
related to shoulder left and right, elbow up and down
and wrist flipped or not. The software solution can be
ported to standard software like C or C++ for imple-
mentation in robot controllers. The method is fairly
intuitive and easy to program once the machinery of
conformal geometric algebra is mastered, and it pro-
vides a powerful tool for developing solutions for new
robot geometries and other mechanisms like cranes and
automatic topside drilling equipment.
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9.2. Paper 2: Object Detection in Point Clouds using Conformal Geometric
Algebra

9.2 Paper 2: Object Detection in Point Clouds using
Conformal Geometric Algebra

By Aksel Sveier, Adam Leon Kleppe and Olav Egeland

This paper presents object detection using conformal geometric algebra. The paper
adapts the RANSAC method to conformal geometric algebra, and shows how it
performs in order to find geometric models using the RANSAC method.

The experiments show that it is possible to use this method to perform a sepa-
ration so that the objects on a table can be separated. This is one of the steps that
is performed in [32] and [33] in order to find a point cloud from a CAD model and
compare it to a point cloud taken with a 3D camera.
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9.3. Paper 3: Automated Assembly using 2D and 3D Cameras

9.3 Paper 3: Automated Assembly using 2D and 3D
Cameras

By Adam Leon Kleppe, Asgeir Bjørkedal, Kristoffer Larsen and Olav

Egeland

This paper presents some of the findings in the master thesis by Asgeir Bjørkedal
and Kristoffer Larsen.

The experiments show that performing a real industrial application where sub-
millimeter accuracy is required, the Kinect camera together with state-of-the-art
descriptor methods were not accurate enough. Some earlier research and experi-
ments also showed that the 2D camera was only suitable when given very specific
settings and environments.

Bjørkedal and Larsen then tried to combine the two methods in order to achieve
an accuracy that could not be achieved individually. The successful experiments
showed that industrial applications could be solved with this technology.
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Abstract: 2D and 3D computer vision systems are frequently being used in automated production to
detect and determine the position of objects. Accuracy is important in the production industry,
and computer vision systems require structured environments to function optimally. For 2D
vision systems, a change in surfaces, lighting and viewpoint angles can reduce the accuracy of
a method, maybe even to a degree that it will be erroneous, while for 3D vision systems, the accuracy
mainly depends on the 3D laser sensors. Commercially available 3D cameras lack the precision
found in high-grade 3D laser scanners, and are therefore not suited for accurate measurements
in industrial use. In this paper, we show that it is possible to identify and locate objects using
a combination of 2D and 3D cameras. A rough estimate of the object pose is first found using a
commercially available 3D camera. Then, a robotic arm with an eye-in-hand 2D camera is used
to determine the pose accurately. We show that this increases the accuracy to < 1 mm and < 1◦.
This was demonstrated in a real industrial assembly task where high accuracy is required.

Keywords: robotics; assembly; 3D vision; 2D vision

1. Introduction

Computer vision is frequently used in industry to increase the flexibility of automated production
lines without reducing the efficiency and high accuracy that automated production requires.

Assembly applications benefit from computer vision in many ways. Production lines with
frequent changeovers, which occurs in some industries, can benefit from computer vision to
determine position and orientation of the parts on the production line, without the need of additional
equipment [1]. Assembly production lines are mostly a very controlled and structured environment,
which is suitable for computer vision methods, to make them perform more predictably [2].

Shadows and reflections are frequent problems in 2D computer vision [3], since the methods
will yield different results if an object is viewed from different angles or if its orientation changes.
The key to gaining accurate and predictable results is to have a good initial position of the camera
relative to the object. 2D eye-in-hand cameras [4] can actively change the viewpoint of a camera to
a scene. This makes it possible to view an object from a particular angle, no matter which orientation
it has. By using an eye-in-hand camera in this way, more predictable results can be achieved than with
a stationary camera. However, in order to do this, the camera must be moved to suitable position
relative to the object, which has to be found first.

The rising use of 3D cameras gives the opportunity for different methods and approaches [5],
mostly due to the availability of depth information, which makes it easier to determine properties
such as shapes and occlusion, compared to a traditional 2D camera. However, commercially available
3D cameras lack precision, which can only be found in high-grade 3D laser scanners [6], leading to
inaccurate measurements that are not sufficiently accurate for automated production. By using the 3D
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camera to detect objects and determine a rough estimate of their position, the eye-in-hand camera can
use these estimates to move to a suited initial position.

Within computer vision, there are several approaches on how to detect, classify and estimate
poses of objects, both within 2D and 3D computer vision. Examples of these are voting-based
algorithms, such as [7], human robot collaboration, such as [8], and probabilistic methods, such
as [9]. However, these approaches focus more on successful recognition and computation time rather
than accuracy of the pose estimation. This makes them ideal for pick and place algorithms such as [10],
but not for accurate assembly tasks.

In this paper, we combine existing solutions from both 2D eye-in-hand and 3D computer
vision in order to detect objects more predictably and with higher accuracy than either 3D or 2D
methods separately. This system uses the Computer Aided Design (CAD) model of each object to
render 3D views [11] and use these to determine the position and orientation of each object with
sufficient accuracy to be able to assemble the objects using a robotic arm.

This paper is organized as follows. First, a brief presentation is given of some common computer
vision methods that are used in the paper, followed by a description of the system that uses both 2D
and 3D computer vision methods. Finally, the paper provides experimental results of an assembly task
using one 3D camera, one eye-in-hand 2D camera and two robotic arms.

2. Preliminaries

In the paper, a point cloud P is a set of points pi ∈ R3, represented by Euclidean vectors, so that

P = {p1, p2, . . . , pn}. (1)

RANSAC [12] is short for Random Sample Consensus and is an iterative method for estimating
model parameters from a data set containing several outliers. Figure 1a shows a scene consisting
of three objects placed on a table. The table is detected in Figure 1b using RANSAC with a
plane estimation. The inliers are marked in light gray. Figure 1c shows the scene when the inliers have
been removed.

(a) (b)

(c)

Figure 1. The RANSAC method performed on a table with objects. (a) A scene with multiple objects
placed on a table; (b) the table surface is detected using RANSAC. The cyan points are inliers of the
plane estimate; (c) The scene after removing the inliers, resulting in only the points representing the
three objects.
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The Iterative Closest Point (ICP) algorithm [13,14] is an iterative method for aligning two sets of
point clouds. This is done by minimizing the distance between corresponding points.

One method that is suitable for calculating the rotation and translation is by using Singular Value
Decomposition (SVD) to minimize the least squares error [15].

The scale invariant feature transform (SIFT) [16] is a method for matching image features. The
method searches through images for interest points, which are points in an image surrounded by areas
with sufficient information that makes it possible to distinguish them. The algorithm computes a SIFT
descriptor for the image interest points, which is a histogram that can be used for matching.

3. Approach

The approach in this paper takes in a set of 3D CAD models and searches for these models within
a scene. The system is divided into a 3D object detection system and a 2D object alignment system,
as seen in Figure 2. The 3D detection system takes a 3D image and compares it to the given CAD models.
The system identifies each object and calculates a rough estimate of the position and orientation of them.
The estimates are then used as input to a 2D alignment system, where a 2D camera is mounted on
a robotic arm, and uses 2D computer vision approaches to get a fine estimate of the positions and
orientations of each object.

Figure 2. Overview of the flow of the system. It can be seen that the 3D Detection System calculates
a rough position estimate given a set of CAD models, and this is fed into the 2D Alignment System,
resulting in a fine position and orientation estimate.

3.1. 3D Object Detection

3.1.1. Viewpoint Sampling

A point cloud of a CAD model includes points on all sides of the 3D object, while a point cloud that
forms a 3D camera will only have points on the part of the object, which is seen from the 3D camera.

To compare a point cloud captured by a 3D camera and a CAD model, it is important to make
a comparison to the CAD model when viewed from the view point of the 3D camera. To do this,
virtual 3D images of the object is generated from a CAD model from a selection of different viewpoints.
Figure 3 shows a sample of the generated point clouds for an automotive part seen from seven
different viewpoints.

Figure 3. Point clouds of the same object seen from different viewpoints generated from a CAD model
of the object.
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Viewpoints are calculated using a tessellated sphere that is fit around the CAD model. Then, one
viewpoint is rendered for each vertex of the tessellated sphere, and a point cloud is generated from
each viewpoint.

For each generated point cloud, the local and global descriptors were calculated
using the Fast Point Feature Histogram (FSFH) [17] approach and the Viewpoint Feature
Histogram (VFH) [11] approach, respectively. The point clouds and their descriptors are then stored
and labelled.

3.1.2. Removing Unqualified Points

The 3D camera will capture the whole scene. The resulting 3D image will include the objects,
and in addition, points representing the foreground, background and the table where the objects
are placed. In order to minimize the search area for the algorithms, the points that do not represent the
object should be removed. The first step of removing unqualified points is to remove points outside a
specified range. Since the objects are placed on a table, all points that are outside of the bounds of the
table can safely be removed, see Figure 4.

(a) (b)

Figure 4. Before and after pictures of removing foreground and background points. (a) Raw point
cloud captured by the 3D camera; (b) Image after removing unwanted points, which are the points
outside the bounds of the table.

When these points are removed, the majority of the points in the point cloud will represent
the table. The points representing the objects are on top of the table. This means that, by estimating
the table plane, all points above this plane will represent the objects, while the points on the plane
or under will be unqualified points. Since most of the point cloud has points representing the table,
RANSAC can be used for estimating this plane.

A plane is determined by three points pA, pB and pC in the plane. Then, the normal of the plane,
v is

(pB − pA)× (pC − pA) = v (2)

and the distance from the origin is
d = vT pA. (3)

A point p will have the distance δ = vT p
|v| to the plane, where δ > 0 when the point is in the

direction of the normal of the plane.
To generate the model candidate for a plane in each iteration of RANSAC, three random points

from the point cloud are picked: pA, pB and pC. The candidate is then compared to the point cloud
data to determine which points in the point cloud are inliers and which are outliers.

A point can be considered an inlier to the estimated plane if
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|vT p|
|v| ≤ Δ, (4)

where p is the given point, and Δ is a user-specified distance threshold. This threshold is the maximum
distance away from the plane, where a point can be considered an inlier. All points outside of this
threshold are considered outliers.

When the RANSAC algorithm is finished, the optimal plane estimate is found, and the inlier
points of the plane are determined. With this information, the inlier points of the plane can be removed
from the 3D image, as these represent the table and not the objects on top. In addition, the points
below the table, which are characterized by pTv ≤ Δ, can also be removed.

3.1.3. Object Detection

The remaining points in the point cloud will be part of an object or noisy outliers. In order to
detect the objects, a region growing algorithm is used.

The region growing method finds points that are in close proximity and group them together.
This is possible because the distance between two points on different objects are large relative to the
distance between two points on the same object.

This algorithm results in one large group for each object in addition to several smaller groups
containing noisy points. These smaller groups can be eliminated, based on their small size.

One new point cloud is then created for each of the remaining large groups. Each of these point
clouds are the representation of an object on the table.

3.1.4. Object Alignment

From the previous step, there will be a number of point clouds, each representing an object on
the table. It is not known which point cloud corresponds to each object, nor their position or orientation.

The next step is to find the viewpoint of the CAD models that best matches the point cloud for a
particular object, which will give a rough estimate of position and orientation as well as the most likely
identity of the object.

This is done by generating Fast Point Feature Histogram (FPFH) and Viewpoint Feature
Histograms (VFH) descriptors for the point clouds of each object, and comparing these to viewpoint
point clouds generated from the CAD models using the Sample Consensus-Initial Alignment
(SAC-IA) [17] method.

SAC-IA uses the FPFH and VPF of each point cloud and their corresponding viewpoint point
cloud to get the initial alignment of the object. SAC-IA is short for Sample Consensus Initial Alignment
and is a variant of ICP that searches on a global scale rather than on a local scale as ICP does. This results
in finding the viewpoint point cloud that best matches each object as well as the alignment between
the viewpoint point cloud and the object point cloud.

The alignment from the SAC-IA method is a rough estimate, so the final step is to use ICP on the
point clouds, resulting in an estimate of the alignment of each object in respect to the camera.

3.2. 2D Object Alignment

Due to the hardware limitations of the 3D-camera, the alignment estimates does not satisfy the
requirements for assembly, so further estimations are required.

By placing a 2D-camera at the end-effector of a robotic arm (see Figure 5), the camera can be
moved over each object and fine-tune their position and orientation. The robotic arm is positioned to a
point right over the estimate calculated from the 3D computer vision system. This makes the camera
be located approximately above the center of the object, and the camera can view the top of the object.
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Figure 5. Overview of the 2D camera setup. It can be seen that the camera is placed at the end-effector
of the robot, and it is pointing downward.

A 2D reference image is provided for each object, showing the top of the object, see Figure 6.
When the 2D camera captures an image, it can be compared to the reference image using the
SIFT method. The homography between the matched points is found, which makes it possible
to find the transform between the reference image and the captured image. The reference image
depicts the object in the center and at 0◦, which means that the rotation of the homography is the
orientation of the object, while the translation is the fine estimate of the position. This calculation can
be run several times to converge to a better result, or to verify the current estimate:

v = p1 − p0, (5)

θ = atan2(vy, vx). (6)

A sample from one of the experiments can be seen in Figure 7.

Figure 6. Reference images for each object. From left to right: The top of object A, the bottom of object
A, the top of object B, the bottom of object B.

Figure 7. The green rectangle is the position of the reference image found in the captured image.
The green circle is the current rough estimate from the 3D object detection system, while the red circle
is the fine estimate of the position. The blue circles are the descriptors found with the SIFT method.
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4. Experiments and Results

4.1. Setup

Tests of the assembly operation using the presented object detection procedures were performed
in a robotic laboratory. The robotic cell was equipped with the following hardware:

• Two KUKA KR 6 R900 sixx (KR AGILUS) six-axis robotic manipulators (Augsburg, Germany).
• Microsoft KinectTM One 3D depth sensor (Redmond, WA, USA).
• Logitech C930e web camera (Lausanne, Switzerland).
• Schunck PSH 22-1 linear pneumatic gripper (Lauffen, Germany).

Software used:

• Ubuntu 14.04 (Canonical, London, United Kindom).
• Point Cloud Library 1.7 (Willow Garage, Menlo Park, CA, USA).
• OpenCV 3.1 (Intel Corpiration, Santa Clara, CA, USA).
• Robot Operating System (ROS) Indigo (Willow Garage, Menlo Park, CA, USA).

The setup is shown in Figure 8. The pneumatic gripper was mounted at one of the
robotic manipulators, while the web camera was mounted at the second manipulator. The Kinect One
3D camera was mounted behind the table and tilted towards the table top so that it could view the
parts placed on the table. The position of the camera was calibrated in reference to the world frame of
the robotic cell.

(a)Rendered representation of robotic cell used in
the experiment.

(b)Physical cell used in the experiment.

Figure 8. Overview of the robotic cell, where the experiments were conducted. Here, there are two
KUKA Agilus robots next to a table. The gripper can be viewed on the robot on the left, while the
camera is on the right. Behind the table is the Microsoft Kinect One camera. (a) shows the rendered
representation of the cell, while (b) shows the physical cell.

The assembly of two automotive parts was investigated in the experiment. These parts are shown
in Figure 9.

A total of three different experiments were conducted to study the performance of a two-step
alignment with initial 3D alignment and final 2D alignment. The first experiment was performed
to determine the accuracy of the Kinect One 3D camera for the initial alignment, and the second
experiment was to determine the accuracy of the 2D camera that was used in the final alignment. The
last experiment was a full assembly of the two test objects using both 3D and 2D vision.
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(a) (b)

Figure 9. The two parts used in all of the experiments. (a) Part A used in the experiment, rendered
representation; (b) Part B used in the experiment, rendered representation.

4.2. Experiment 1: 3D Accuracy

The first experiment was designed to determine the accuracy of the 3D object detection system.
The two objects of interest were positioned on the table in known locations. A grid of 5 cm × 5 cm
squares was used to manually determine position the objects, as shown in Figure 10. The experiment
was conducted 10 times on 16 different positions, and the resulting position from the 3D detection
system was compared to the actual position. This was done with both of the objects.

Figure 10. Top view of the grid and the positioning of the object. Here, nine arbitrary positions of
the object is seen. For each of these positions, the rough estimate of the 3D object detection system
is calculated.

4.2.1. Results

The experiment described above allowed the accuracy of the 3D detection procedure to
be evaluated.

The test results show that the following positional deviations from the actual objects are shown in
Tables 1–4.

Table 1. Minimum and maximum deviation between the true position and the estimated position of
Object A. The results are based on 25 different estimates.

Min/Max Recorded Values

Max �X [cm] 1.46
Max �Y [cm] 1.56
Min �X [cm] 0.43
Min �Y [cm] 0.08
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Table 2. Accuracy of detecting Object A (measured in cm). The table shows the true position of Object A,
the resulting estimate from the 3D object detection system, and the difference between the two.

Actual Measured Absolute

X Y X Y |�X| |�Y|
−5 5 −6.18 5.4 1.18 0.4
−5 10 −6.25 10.55 1.25 0.55
−5 15 −6.28 16.11 1.28 1.11
−5 20 −5.17 21.56 1.28 1.56
−10 5 −11.12 5.08 1.12 0.08
−10 10 −10.83 10.43 0.83 0.43
−10 15 −10.98 15.92 0.98 0.92
−10 20 −11.46 20.85 1.46 0.85
−15 5 −15.89 5.2 0.89 0.2
−15 10 −15.81 10.56 0.81 0.56
−15 15 −15.97 15.77 0.97 0.77
−15 20 −16.18 21.01 1.18 1.01
−20 5 −20.43 5.4 0.43 0.4
−20 10 −20.68 10.72 0.68 0.72
−20 15 −20.72 16.27 0.72 1.27
−20 20 −21.18 21.38 1.18 1.38

Table 3. Minimum and maximum deviation between the true position and the estimated position of
Object B. The results are based on 25 different estimates.

Min/Max Recorded Values

Max �X [cm] 1.43
Max �Y [cm] 1.96
Min �X [cm] 0.1
Min �Y [cm] 0.06

Table 4. Accuracy of detecting Object B (measured in cm). The table shows the true position of Object B,
the resulting estimate from the 3D object detection system, and the difference between the two.

Actual Measured Absolute

X Y X Y |�X| |�Y|
−5 5 −5.76 5.16 0.76 0.16
−5 10 −6.12 10.8 1.12 0.8
−5 15 −5.98 15.94 0.98 0.94
−5 20 −6.17 20.88 1.17 0.88
−10 5 −10.65 5.47 0.65 0.47
−10 10 −10.62 10.21 0.62 0.21
−10 15 −10.73 15.81 0.73 0.81
−10 20 −10.91 20.79 0.91 0.79
−15 5 −15.22 5.46 0.22 0.46
−15 10 −15.46 10.62 0.46 0.62
−15 15 −15.71 16.2 0.71 1.2
−15 20 −15.85 21.14 0.85 1.14
−20 5 −20.1 5.43 0.1 0.43
−20 10 −20.73 10.06 0.73 0.06
−20 15 −20.26 16.35 0.26 1.35
−20 20 −21.43 21.96 1.43 1.96

The test results for the initial alignment show that the maximum positional error from the 3D
measurements for both the x- and y-axis is below 2 cm. This is acceptable as a first step to make it
possible to perform a final 2D alignment to achieve the required industrial accuracy.
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4.3. Experiment 2: 2D Stability

The accuracy of a 2D computer vision method is related to the stability of the object detection,
and this is directly related to the amount of good and repeatable keypoints detected in the reference and
captured 2D image. If the detected keypoints differ every time an image is captured, the homography
matrix computed from the feature correspondences will influence the computation of the object
orientation significantly.

In order to ensure that this will not be a restricting factor in the assembly operation, an experiment
was performed. The experiment was performed by positioning the object of interest at the table
with two given orientations, 0◦ and 90◦. The manipulator with the 2D camera in an eye-in-hand
arrangement was moved to a distance from the object along the z-axis empirically chosen based on
the rate of successful matching using SIFT. The detected object center is then aligned with the camera
optical center. For every object, the angle of orientation was calculated based on the results of the 2D
vision methods. This was done every time the camera captured an image. The mean was calculated
for 10 measurements until the data set consists of 25 data points. The difference in degrees between
minimum and maximum orientation estimates were used to determine the accuracy of the system.

The stability was first tested using SIFT, and it was then compared to using a hybrid algorithm,
where SIFT keypoints were used with the Speeded Up Robust Feature (SURF) descriptor [18].

4.3.1. Results

The experiment described above yields the results shown in Tables 5 and 6.

Table 5. The difference between the maximum and minimum measured orientations for Object A.
The first table is the deviation between the maximum and minimum angle when the object is positioned
at 0◦, both with using SIFT and with a SIFT/SURF hybrid. The second table is when the object is
positioned at 90◦. The measurements are given in degrees.

0 Degrees −90 Degrees

SIFT SIFT/SURF SIFT SIFT/SURF
1.7469 5.4994 1.1102 7.9095

Table 6. The difference between the maximum and minimum measured orientations for Object B.
The first table is the deviation between the maximum and minimum angle when the object is positioned
at 0◦, both with using SIFT, and with a SIFT/SURF hybrid. The second table is when the object is
positioned at 90◦. The measurements are given in degrees.

0 Ddegree −90 Degrees

SIFT SURF SIFT SURF
0.07888 0.2041 0.1721 0.1379

It is evident from these results that the orientation of object A is the hardest to detect with certainty.
Detection of object B is much more stable. This also shows that, using the SIFT method, one can acquire
an accuracy of < 2◦. The mean error was < 1◦, which is acceptable for assembly.

4.4. Experiment 3: Full Assembly

Based on the results from the previous experiments, a full assembly operation was be performed
in an experiment. The procedure if the experiment was as follows:

1. Place the two objects to be assembled at random positions and orientations on the table.
2. Run the initial 3D alignment described in described in Section 3.
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3. Perform the final 2D alignment by moving the robot in position above the part found in the
initial alignment.

4. Move the robotic manipulator with the gripper to the estimated position of the first part, and pick
it up. The manipulator then moved the part to the estimated pose of the second part to assemble
the two parts.

These three steps were repeated for 10 unique assembly operations. The assembly operations are
only considered as a success if the parts could be assembled without the use of force. An overview is
shown in Figure 11.

(a) (b)

Figure 11. Overview of the assembly operation. (a) A rendered image of the initial position of the
objects; (b) A rendered image of the final position of the objects. It can be seen that the orange object
should be assembled inside the blue object.

4.4.1. Results

The assembly experiment is performed for 10 unique positions and orientations of object A and
object B as described in Section 4.4. One of the 3D object detection results are visualized in Figure 12,
while one of the results from the 2D object alignment is shown in Figure 13.

Figure 12. Results from the 3D object detection method. The method successfully classifies each object,
and determines a rough estimate of their position.

Correction of the object position is performed using the 2D object detection and aligns the object
center with the camera optical center as illustrated in Figure 14. The robotic end-effector pose is
retrieved in world coordinates and the orientation is calculated.
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Figure 13. The small, green circle is the position determined by the 3D object detection.
Using this estimate, the method can successfully detect a fine-tuned position using the 2D
camera (red circle). The error here is 5.2 mm.

Figure 14. SIFT used on both objects to determine their position and orientation.

(a) (b)

Figure 15. Depiction of the fail and success conditions. (a) A slight deviation in the angle and position
is considered a failure; (b) The position and angle are considered to be correct.

With the acquired position and orientation of both objects, a pick and place operation can
be performed. In seven out of 10 assembly operations, the objects were successfully assembled,
with an accuracy lower than 1 mm in position and 1◦ in orientation. In the remaining three attempts,
the orientation of object A was the limiting factor. Typically, the failure was caused by situations
as illustrated in Figure 15a, where a marginal error in orientation acquisition would prevent further
execution of the assembly operation. This error was both due to the lack of accuracy in the 2D computer
vision system and the gripping action, which displaced the orientation of the object.

A video of the method and conducted experiment can be downloaded at [19].
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5. Discussion

Experiment 1 describes the accuracy of the 3D Detection system, while Experiment 2 describes
the accuracy of the 2D Alignment system.

Experiment 1 concludes that the accuracy does not meet the requirements of the assembly task,
since it shows that the maximum error was 1.96 cm, while the requirement was less than 1 mm.
This, however, does meet the requirements for performing 2D alignment.

Experiment 2 concluded that the 2D alignment meets the requirements of the assembly, which is
below 1◦. These results are assuming that the camera is watching the object from the top, which is
possible given the rough position estimate from the 3D Detection system.

Experiment 3 concludes that combining a 2D and 3D vision system, where both systems lack
sufficient accuracy, can achieve said accuracy if combined.

In the experiment, it is assumed that the objects that are to be detected are not occluded and
that they are standing so that the top of the object is always facing upwards. The given case assumes
that the objects are properly aligned on the table, and that any irregularities, such as a fallen over or
missing object, does not occur.

An extension of the system where the 2D camera can move more freely and view the object from
different sides will be able to handle the special cases, where an object has an irregular alignment.

6. Conclusions

The 3D detection method resulted in an estimate with roughly 2 cm accuracy. By combining this
with the 2D eye-in-hand camera to fine-tune the estimates, the accuracy was corrected to 1 mm in
position and 1◦ in orientation. The results obtained from testing the full solution shows that such a
detection system is viable in an automated assembly application.
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9.4 Paper 4: Initial Alignment of point clouds using Motors
By Adam Leon Kleppe, Lars Tingelstad and Olav Egeland

This paper presents a global initial alignment method using conformal geometric
algebra. It performs similar to principal component analysis based methods, and
shows that it is possible to describe point clouds using conformal geometric algebra,
in ways that is more challenging with linear algebra.

The experiments show that sub-millimetre accuracy is possible, but that some
considerations have to be made in order for this to be possible.
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ABSTRACT

This paper presents an approach for initial alignment or coarse reg-

istration of a partial 3D point cloud of objects. The method is based

on computing the centroid of the points in the point cloud, and a

line derived from the surface normals. This approach uses confor-

mal geometric algebra and non-linear least squares optimization to

achieve the results. The method performs well in experiments, and

it is shown that it performs more accurately the more points are

sampled.
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1 INTRODUCTION

The 3D-3D registration problem [13] is a well-known problem in

computer vision, and it is still a challenging problem. The problem

is formulated as such: Assume that there are two sets of points, or

point clouds

A = {ai }, ai ∈ R3,1, i = 1, . . . ,m

B = {bj }, bj ∈ R3,1, j = 1, . . . ,n

Find the rotation R ∈ SO (3) and the translation t ∈ R3 that gives
the most optimal alignment between the two sets.

min
∑
i

‖ bj∗ − Rai − t ‖2
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where bj∗ is the optimal corresponding point to ai , based on dis-

tance given the optimal R and t .
This problem can be divided into two sub-problems. The first is

to find the pose that aligns the two point clouds, and the second is

to find point-wise correspondences between the sets, or in other

words, which point in A corresponds to the points in B, or even if

there is a correspondence.

A large number of methods have been proposed to solve the

registration problem [14, 19]. The most popular approach is ICP [2,

5, 15]. These methods can be classified as either coarse or fine

registration methods, and usually both have to be applied in order

to get globally optimal solution to the registration problem. Here

the coarse registration aims to find a rough initial alignment which

improves the initial conditions for the fine registration.

Most of the fine registration methods, including ICP, are so called

Expectation-Maximization algorithms[13], because they alternate

between solving the two sub-problems until both reaches a local

minima. A known restriction with EM-algorithms is that they only

find local optimal solutions. This means that in order for them to

converge to the global optimum, the algorithm either has to be

expanded to include global optimization techniques, such as Go-

ICP [23] or Sparse ICP [3], or it has to have good initial conditions,

i.e. the point clouds have to have a good initial alignment relative

to each other, in order to converge to the correct solution. This is

achieved with coarse registration methods, such as [7, 16–18].

The coarse registration methods usually only solves one of the

sub-problems: Finding the pose that aligns the two point clouds.

This means that the methods does not take the point correspon-

dences into account. The most common approach is to create a

set of features or signatures in each point cloud, and search for

correspondences between the features. Examples of this are Point

Signatures [6], Spin Images [12], Point Feature Histograms [16, 17],

and Principal Component Analysis [7].

Both Point Signatures, Spin Images and Point Feature Histograms

use techniques that originated from 2D computer vision. They use

some measurement using relative distances and angles to generate

features. These measurements are calculated from the points and

surface normals of the point cloud. The methods uses different

schemes to categorize the features, be it sets, tables or histograms

to group them into cells. The main drawback with these methods

is that the accuracy of the them depend on the resolution of these

cells.

In this paper we propose a new method for initial alignment of

two point clouds, i.e. coarse registration. The method constructs

a feature using the centroid and a line computed from the surface

normals of a point cloud. This feature is calculated using Conformal
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Geometric Algebra. The motor which aligns the features of two

point clouds is found using Non-Linear Least Square Optimization,

and results in an initial alignment pose between the two point

clouds. The benefit of optimization techniques to find the pose

is that the accuracy does not depend on a given resolution. This

method also has the benefit of requiring less computation than the

methods mentioned above.

This paper is is organised as follows: Section 2 is the preliminar-

ies, which introduces the parts of Conformal Geometric Algebra

used in the paper. Section 3 describes the proposed method. Sec-

tion 4 show the conducted experiment and the results, and lastly

the conclusion is found in Section 5.

2 PRELIMINARIES

2.1 Conformal Geometric Algebra

The geometric algebra of the Euclidean space R3 is denoted R3,

while the conformal model of geometric algebra is denoted R4,1
resulting in the null basis {e0, e1, e2, e3, e∞} [9, 10]. The basis vector

e∞ represents the point at infinity, while e0 represents an arbitrary

origin. These basis vectors have the properties e2∞ = e20 = 0 and

e∞ · e0 = −1. The notation Rk3 refers to the k-grade elements of

R3. The highest grade element of R3, is the Euclidean pseudoscalar,

which is denoted I3. The conformal pseudoscalar is denoted I . The

conformal dual of a multivector X is denoted X ∗ = XI−1.
Euclidean vectors p ∈ R3 maps to points P ∈ R4,1 using

P = p +
1

2
p2e∞ + e0

A line � ∈ R34,1 is constructed as the outer product of two conformal

points and the point at infinity:

� = PA ∧ PB ∧ e∞.
This can be expressed as

� = (p + e0) ∧ n̂ ∧ e∞
where p is the Euclidean point and n̂ is the Euclidean directional

vector of the line. This is called the direct representation in [9], and

the OPNS representation in [10].

The dual representation of a line in conformal space is

�∗ = A + be∞
where A = n̂∗ is the directional bivector, and b is the momentum

of the line. It is noted that A ∧ b = 0.

A screw S , is a line with a pitch, meaning that

S∗ = A + be∞
where A ∧ b can be an arbitrary number.

A screw can be further described as

S∗ = A + (b ‖ + b⊥)e∞
where A ∧ b ‖ = 0, meaning that A + b ‖e∞ is a dual line and b⊥e∞
is the pitch.

A screw is generated by adding two lines together. This is shown

when

S∗ = �∗1 + �∗2 = A1 +A2 + (b1 + b2)e∞
where A1 ∧ b1 = A2 ∧ b2 = 0, but A1 ∧ b2 and A2 ∧ b1 cannot be
guaranteed zero. This also holds for the addition of multiple lines.

Figure 1: 2D Representation of the points in a point cloud

and their respective surface normal

A flag [20] can be written as the sum of a line and a conformal

point

f = � + P

3 METHOD

This method uses two point clouds, which represents the surface of

a given object, and finds the motorM which is an optimal alignment

between the two point clouds. This is achieved by finding the motor

which minimizes the error between the centroids of each point

cloud, which results in an optimal translation, and at the same time

minimizes the deviation of the average line.

Assume that two point clouds X and Y are given by a set of

points and their respective surface normals.

X = {xi , n̂xi }, xi , n̂xi ∈ R3,1, | |n̂xi | |2 = 1, i = 1, . . . ,m

Y = {yj , n̂yj }, yj , n̂yj ∈ R3,1, | |n̂yj | |2 = 1, j = 1, . . . ,n

Note that the number of points in X and Y are not the same, and

that xi and yj do not necessarily correspond if i = j. It is assumed

that the surface normals are either calculated from the CAD model,

or by estimating it using the points in the point cloud data.

3.1 Centroid

The conformal centroid of each point cloud is found by

P̄X = C �
�

1

m

m∑
i=1

xi�
�

P̄Y = C
��
�

1

n

n∑
j=1

yj
��
�

where C (p) is the conformal point based on the Euclidean vector p.

3.2 Average of lines

The average of a set of lines is constructed as a screw which is the

sum of all lines, where each line is generated from a point and its

surface normal.

LX and LY are the sets containing all lines generated from the

point cloud.

LX = {�xi = (xi + n0) ∧ n̂xi ∧ n∞}
LY = {�yj = (yj + n0) ∧ n̂yi ∧ n∞}

The sum of these lines become a screw, where the screw axis is

computed as the average of the lines. The point cloud, generated

lines, average line and centroid can be viewed in Figure 2. It can be
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Figure 2: Lines generated from each point in the point cloud.

The red line represents the average line, while the red point

is the centroid

seen here that the screw axis does not necessarily pass through the

centroid.

The screws of the two point clouds, X and Y , are defined as

SX =
1

n

n∑
i=1

�∗xi

SY =
1

m

m∑
j=1

�∗yj

It can be seen that these screws are the average of all lines since

S =
1

n

n∑
i=1

�∗i

=
1

n

n∑
i=1

Ai + bie∞

=
1

n
�
�

n∑
i=1

Ai +

n∑
i=1

bie∞�
�

= Ā + b̄e∞

where Ā is the average directional bivector, and b̄ is the average

momentum. This can be written as

S = Ā + (b̄ ‖ + b̄⊥)e∞

where Ā ∧ b̄ ‖ = 0.

This can be rewritten using the average line �̄, which is the

average of the combined lines.

S = Ā + (b̄ ‖ + b̄⊥)e∞
= Ā + b̄ ‖e∞ + b̄⊥e∞
= �̄∗ + b̄⊥e∞

3.3 Restrictions

There are in total 7 degrees of freedom in a motion, 3 to translation,

3 to rotation and 1 to scale [11]. This method uses only one line

and one point is known in both point clouds and therefore in both

coordinate systems. This forces seven constraints upon the system,

4 from the line and 3 from the point. This means the method is able

to perform any rigid-body motion.

Since each line is generated by a point p and its corresponding

surface normal n̂, these lines can be described as a force F = n̂ at

p, where |F | = 1. To sum all these forces is the same as evaluating

the force applied over the whole surface area, which by definition

is the same as pressure.

This forces a restriction upon the method: This method cannot be

used on the whole surface of an object. This is because the pressure

over an enclosed surface area is zero. This means that if the whole

surface is sampled by points and these points generate lines, then

the sum of these lines will be zero.

As mentioned, this method is used on point clouds generated

from the viewable surfaces of an object. In practice, this means

that this restriction will never occur, since the whole surface of an

object cannot be viewed at the same time.

3.4 Motor Estimation

Each point cloud, X and Y , have one centroid, P̄X and P̄Y , and one

screw axis, �̄X and �̄Y .
From these, their respective flags are defined as

fX = �̄X + P̄X

fY = �̄Y + P̄Y

In order to minimize the error between these two flags, we can

find the optimal motor between them.

fX −M† fY M̃†
�̄X −M†�̄Y M̃† + P̄X −M†P̄Y M̃† = 0

whereM† is the optimal motor between the two point clouds. The

result of zero is only possible if both point clouds are identical.

When comparing two point clouds which are not identical, either

because of added noise or different points are used, an optimization

scheme could be used. The motor which is the optimal transform

between the two flags, will have one unique solution, since two

lines and two points are used in the minimization function [4, 8].

3.5 Error Functions

The optimization of the motor between the two centroids in the

flag only require an error measurement in the form of distance. The

distance measure between the two centroids is easily found with

ϵP = d
2 = P̄X ·MP̄Y M̃

where ϵP is the error function for the two centroids.

For the average lines in the flag, both the distance and the angle

has to be optimized [1]. These parameters can be extracted from

the motorMwhich transforms one to the other.

M =
�̄X

�̄Y
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where

M = cosθ − sinθAn − sinθbne∞ − d cosθane∞ + d sinθe1e2e3e∞
whereAn = a∗n and bn are components of the common normal line

�n .
According to [22], a good error function for angles is sin θ

2 . This

is because the error function is at most sin π
2 = 1, which means

that outliers do not have a large error, but are bound by 1. This can

be calculated using

1

2
(1 − cosθ ) = sin2

θ

2

The distance between the two lines can be calculated by decom-

posing the motor in a different manner:

M = TR

where

T = 1 − 1

2
te∞

R = −e0 · (Me∞)

whereT is the translation and R is the rotation.

The distance between the lines can then be calculated using

δ =‖ δ ‖
δ =

t ∧ B
B

where

t = −2e0 ·M
R

B =
〈R〉2
‖ 〈R〉2 ‖

where 〈R〉2 is the 2-blade component of R.
With these parameters, the error function ϵ�̄ can be formulated

as

ϵ�̄ = δ2 + sin2
θ

2
= δ2 +

1

2
(1 − cosθ )

3.6 Non-linear Least Square Optimization

Thenon-linear least square optimization solver was used to estimate

the motor. By using the given error functions, the equation to be

minimized is given by

min
1

2

(
ϵ�̄ + ϵp

)2
= min

1

2

(
δ2 + sin2

θ

2
+ d2
)2

such that

MM̃ = 1

which is solved using Levenberg-Marquardt algorithm which is

has been developed to work for conformal points and lines. The

algorithm is presented in [21].

Figure 3: Seven viewpoint samples generated from one of

the objects.

4 EXPERIMENTS

Several point clouds were generated from a set of CAD models.

Since the method only works when having partial surfaces, the

point clouds were generated using viewpoint sampling.

Viewpoint sampling was done by placing a virtual camera facing

the 3D model. The points are generated based on the surfaces that

are visible by the virtual camera. In order to get the whole view

of the CAD model, several samples were generated from different

viewpoints. The position of the viewpoints were calculated using a

tessellated sphere which surrounded the 3D model. Each vertex of

the tessellated sphere was set as a viewpoint.

Two models each generated 3 point clouds per viewpoint, one

with 100 points, one with 1000 points and one with 10000 points.

There were a total of 42 viewpoints per object, resulting in a total

of 252 point clouds. A sample of these point clouds is shown in

Figure 3. Each point cloud was given an arbitrary transformation

and noise was applied to the point cloud. The initial alignment

method together with the GAME framework was used to calculate

the transformation between the two point clouds. The error was

calculated by applying the Root Mean Square between the points

in each point cloud, and is measured in meters.

ϵ =

√
1

n
PX1
·MPY2M̃ + PX2

·MPY2M̃ . . . PXn
·MPYn M̃

The result of these tests are shown in Table 1. It can be seen

from the table that the error decreased as the number of samples

increased. This is expected since the more samples are used, the

more the average will cancel out the added noise. The average error

was 6.8325 × 10−4 m for a 100 samples, 3.323 × 10−4 m for a 1000

samples and 3.7214 × 10−5 m for a 10000 samples.

5 CONCLUSION

This paper shows a method for initial alignment for point clouds.

The method finds the optimal motor between the centroid and
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100 Samples 1000 Samples 10000 Samples

Point Cloud # Iteration Error [m] # Iteration Error [m] # Iteration Error [m]

1 6 1.840 × 10−3 6 9.4128 × 10−3 17 6.6647 × 10−7
6 7 4.8510 × 10−4 16 1.3453 × 10−6 12 3.5899 × 10−7
7 7 3.1998 × 10−4 14 2.5855 × 10−6 12 2.5160 × 10−6
14 7 1.8475 × 10−4 7 5.7251 × 10−3 12 1.0650 × 10−8
22 7 1.1063 × 10−3 6 1.2058 × 10−2 11 3.9998 × 10−8
31 6 1.7973 × 10−3 7 5.5537 × 10−3 7 1.0105 × 10−2
45 7 1.0676 × 10−3 13 4.3508 × 10−9 11 8.0189 × 10−8
65 7 1.1544 × 10−4 13 2.5538 × 10−9 13 8.5678 × 10−9
73 12 8.7525 × 10−9 11 7.6853 × 10−9 10 4.7666 × 10−9
78 11 1.0848 × 10−8 11 3.4762 × 10−8 12 6.9853 × 10−9

Average 6.8325 × 10−4 3.323 × 10−4 3.7214 × 10−5
Table 1: Sample of the result of the initial alignment method. The number of iterations before the method terminated and the

resulting error from the true transform is shown. The average of all results is also shown.

average of lines of two point clouds, which is the initial align-

ment. The average error was 6.8325 × 10−4 m for a 100 samples,

3.323 × 10−4 m for a 1000 samples and 3.7214 × 10−5 m for a 10000

samples.
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9.5 Paper 5: Coarse Alignment for Model Fitting of Point
Clouds using a Curvature-Based Descriptor

By Adam Leon Kleppe, Lars Tingelstad and Olav Egeland

This paper presents the curvature-based descriptor, which uses conformal geometric
algebra. Through the experiments it shows that it can achieve a sub-millimeter
accuracy, which is not achieved with the other descriptors in the experiments.

Note that in the paper, the conformal geometric algebra does not mention
the dual terms, from Section 4.1.6. This was intentional, since adding these terms
and calculations would make the paper unnecessary complex. This means that the
planes and spheres presented in the paper are actually the duals of those represented
in the thesis.

125





1

Coarse Alignment for Model Fitting of Point Clouds
using a Curvature-Based Descriptor

Adam Leon Kleppe, Member, IEEE, Lars Tingelstad, Member, IEEE, and Olav Egeland, Member, IEEE

Abstract—This paper presents a method for coarse alignment
of point clouds by introducing a new descriptor based on the
local curvature. The method is developed for model fitting a
CAD model for use in robotic assembly. The method is based
on selecting keypoints depending on shape factors calculated
from the local covariance matrix of the surface. A descriptor
is then calculated for each keypoint by fitting two spheres that
describe the curvature of the surface. The spheres are calculated
using conformal geometric algebra, which gives a convenient and
efficient description of the geometry. The keypoint descriptors for
the model and the observed point cloud are then compared to
estimate the corresponding keypoints, which are used to calculate
the displacement. The method is tested in several experiments.
One experiment is for robotic assembly, where objects are placed
on a table and their position and orientation is estimated using
a 3D CAD model.

Note to Practitioners:
Abstract—3D cameras can be used in robotic assembly for

recognizing objects, and for determining position and orientating
of parts to be assembled. In such applications 3D CAD models
will be available for the objects, and point clouds representing
each object can be generated for comparison with the observed
point clouds from the 3D camera. It is not straightforward to use
existing descriptors in this work, as the point cloud from the CAD
model and the observed point cloud may differ due to different
view points and potential occlusions. The method proposed in
this paper is intended to be easy to apply to industrial assembly
problems where there is a need for a robust estimation of the
displacement of an object, either as a coarse estimate for use
in grasping, or as an initial guess to use in fine registration
for demanding assembly operations with close tolerances. The
method exploits the curvature of the point clouds to accurately
describe the surrounding surface of each point. This method
serves as a basis for future industrial implementations.

Keywords—keypoint descriptor, conformal geometric algebra,
initial alignment, point clouds

I. INTRODUCTION

The 3D-3D registration problem [20] is well-established
in computer vision, and is still an active field of research.
The problem involves two sub-problems: Calculation of the
displacement between two point clouds, and estimation of
the point correspondences between the point clouds [5]. A
large number of methods have been proposed to solve the
registration problem in 3D [30], [5], where Iterative Closest

A. L. Kleppe, L. Tingelstad and O. Egeland are with the Department of
Mechanical and Industrial Engineering, Norwegian University of Science and
Technology (NTNU), NO-7491 Trondheim, Norway

This work was partially funded by the Norwegian Research Council, SFI
Offshore Mechatronics, project number 237896

Point (ICP) [3], [6], [25] is widely used. These methods can
be classified as either coarse or fine registration methods, and
usually both have to be applied in order to get globally optimal
solution to the registration problem. Coarse registration is
typically used to find an initial alignment, which provides the
initial conditions for the fine registration using, e.g., ICP.

Most of the fine registration methods, including ICP, can
be described as Expectation-Maximization algorithms [20],
because they alternate between solving the two sub-problems
until both reach a local minimum. A known restriction with
Expectation-Maximization algorithms is that they converge to
locally optimal solutions. To ensure convergence to the global
optimum, the algorithm either has to be expanded to include
global optimization techniques, such as Go-ICP [37] or Sparse
ICP [4], or it has to have good initial conditions in order to
converge to the correct solution. This is achieved with coarse
registration methods, such as [8], [26], [27], [29].

The coarse registration methods usually only solves one of
the sub-problems: Finding the pose that aligns the two point
clouds. This means that these methods do not take the point
correspondences into account. Coarse registration methods
can be further divided into two categories; global and local
approaches [5], where the global approach tries to estimate the
displacement between two point clouds using global properties
such as centroid to find the translation, and global principal
component analysis to find the orientation. A local approach
creates a set of features or signatures in each point cloud, and
search for correspondences between the features. Examples
of this are Point Signatures [7], Spin Images [18] and Point
Feature Histograms [26], [27].

When using local coarse registration, the focus is on creating
descriptors which accurately describe a point and its surround-
ing surface, in such a way that a region of an object should
have the same descriptor regardless of what methods were used
to generate the point cloud, be it with a camera or sampled
from a CAD model. This means that the descriptor has to
be robust in regards to noise and to the density of the point
cloud. Descriptors such as [12], [18], [27], [29] achieves this
robustness by discretizing the descriptor into bins. This makes
it possible to filter out noise and set a known density of the
point cloud and also shrink the size of the descriptor to a
known size, which is important for fast computation.

As shown in [22], [17], the curvature of an object can be
used to calculate different properties of the object. In [22], it
is used for 2D alignment, while in [17] it is used for feature
extraction.

In this paper we propose a descriptor that can be used in
continuous analytic expressions, which makes it possible to
formulate the correspondence problem as a continuous opti-
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mization problem. The motivation is that this approach may
use geometric information to a larger extent, and that this may
improve the estimation of the point correspondences between
the point clouds, which again provides a more accurate pose
estimation.

We propose to use this type of descriptor in a new method
for initial alignment of two point clouds. The method first
samples the point clouds using principal component analysis
at each point, then the points that are considered unique in
each point cloud are labelled as keypoints, and for each of
these keypoints a descriptor is generated. This descriptor is
based on the fitting of two spheres, representing the curvature
in two orthogonal directions of the surface. The keypoint
descriptor is calculated using conformal geometric algebra.
The descriptors of both point clouds are then compared to
estimate the point correspondence between the keypoints using
least-squares optimization. The displacement that aligns the
descriptors of two point clouds is then found, resulting in an
initial alignment between the two point clouds.

This paper is organized as follows: Section II is the pre-
liminaries, which introduces the parts of conformal geometric
algebra used in the paper. Section III describes the proposed
method. Section IV shows the conducted experiment, where a
3D camera captures a point cloud of a table, extracts the point
cloud of the desired object and uses the proposed method to
find the initial alignment between the captured point cloud and
a 3D model, as well as performing a fine estimation algorithm
on it. The proposed method is also compared with other state-
of-the-art descriptors. The result from these experiments are
then presented and discussed, and lastly the conclusion is
found in Section VI.

II. PRELIMINARIES

A. 3D-3D Registration Problem

Consider the point cloud X = {xi}, i = 1, . . . , nx of
observations xi ∈ R

3, and the point cloud Y = {yj},
j = 1, . . . , ny of model point positions yi ∈ R

3, where
the model points are assumed to be calculated from a CAD
model of an object. The 3D-3D registration problem is then
to minimize the error function

E(R, t) =

nx∑
i=1

‖yj∗ −Rxi − t‖2 (1)

with respect to R and t, and yj∗ is the model point corre-
sponding to the data point xi. In the ICP method, the model
point yj∗ corresponding to the data point xi is found from

j∗ = argmin
j

‖yj −Rxi − t‖ (2)

The solution is then found by iteration where at each step the
correspondence is found from the minimization of (2) for the
current estimate of the pose, and then the estimate of the pose
R, t is found by minimizing (1) for the current estimate of the
correspondence. This minimization will require that the initial
guess for the pose and the correspondence is sufficiently close
to the optimal solutions.

Initial alignment can be performed with a local approach
using descriptors for points in the model and observation point
clouds, and then to find the initial pose by matching the two
point clouds based on these descriptors. Such descriptors can
be calculated for all points in the point cloud, as in [26], or
for keypoints that are selected based on some criterion.

B. Conformal Geometric Algebra
We will use methods based on Conformal Geometric Alge-

bra [11], [16] in this paper as this is a formulation that is well
suited to do calculations on points, planes and spheres, which
will be used to describe descriptors for the point clouds, and
to do optimization based on these descriptors. The Conformal
Geometric Algebra extends the Euclidean space R

3 with basis
vectors given by the orthogonal unit vectors e1, e2, e3 to the
5 dimensional space R

4,1 = span{e1, e2, e3, e0, e∞} where
ei · ej = δij for i, j ∈ {1, 2, 3} where δij is the Kronecker
delta, e0 · e0 = e∞ · e∞ = 0 and e0 · e∞ = −1.

Consider a Euclidean point p = p1e1 + p2e2 + p3e3 ∈ R
3,

which can be given by the column vector [p] = [p1, p2, p3]
T.

This point can be represented by the conformal point P ∈ R
4,1

defined by

P = p+
1

2
p2e∞ + e0 (3)

where P has the property that P1 · P2 = − 1
2 ||p1 − p2||. The

conformal point P can also be written as the column vector

[P ] =

⎡⎣ [p]
1
2p

2

1

⎤⎦ (4)

A plane can be given by

Π = n+ δe∞ (5)

where n is the unit normal of the plane, while δ is the distance
from the origin to the plane. This is referred to as a dual plane
in [11]. The vector representation of Π is

[Π ] =

[
[n]
δ
0

]
(6)

A sphere S is denoted as

S = PC − 1

2
r2e∞ (7)

where PC is the center point of the sphere and r is the radius
of the sphere. The vector representation of S is

[S] =

⎡⎣ [p]
1
2 (p

2 − r2)
1

⎤⎦ (8)

The radius r of a given sphere S could be found using

S · S = (PC − 1

2
r2e∞) · (PC − 1

2
r2e∞) (9)

= PC · PC − r2e∞ · PC +
1

4
r4e∞ · e∞

= r2
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and the distance d from the center of the sphere S to a point
P can be found by

d2 = S · S − 2S · P (10)

= r2 − 2(pC +
1

2
(p2

C − r2)e∞ + e0) · (p+
1

2
p2e∞ + e0)

= r2 − 2p · pC + (p2
C − r2) + p2

= p2 − 2p · pC + p2
C

= (p− pC)
2

III. METHOD

A. Introduction
The method, which can be described as a coarse registration

method, is based on the following steps: First keypoints are
selected in the model point cloud Y and observation point
cloud X based on the geometry of the neighbourhood of each
point. Then a descriptor is calculated for each keypoint in Y
and X . Then a point correspondence is established between
the keypoints in Y and X using the descriptors. Finally, the
pose is estimated using the point correspondence from the
keypoint matching.

B. Selection of keypoints
1) Covariance matrix: To solve the correspondence prob-

lem, a few points, called keypoints, are selected to represent
each point cloud, which are used to find the same or equivalent
points in the second point cloud. This has two effects: One
is that it reduces the number of points in the computations,
which increases the execution speed. The second is that it
is more likely to find the correct correspondences when the
search space is reduced in this way.

For each point pi a neighbourhood Ni is defined as the set
of all points in a ball of radius r about pi. A covariance matrix
Cpi is calculated for all the points in this neighbourhood
according to

Cpi =
∑

pk∈Ni

([pk]− p̄i)([pk]− p̄i)
T (11)

where p̄i =
1
n

∑
pk∈Ni

[pk], and n is the number of points in
Ni. The eigenvalues of Cpi are denoted λi, and eigenvectors
are vi for i = 1, 2, 3.

2) Shape factors: Keypoints are the points where the neigh-
bouring points represents a unique shape of the point cloud. To
determine which points to choose, we first have to analyze the
shape around each point. This is done using the eigenvalues
and eigenvectors calculated earlier.

An ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1 (12)

can be formed around the center p̄i with the eigenvectors vpi

as the principal axes and the eigenvalues λpi and a = λ1, b =

λ2, c = λ3, where λ1 ≥ λ2 ≥ λ3 ≥ 0 and λpi
= [λ1 λ2 λ3]

T

With this ellipsoid, we can evaluate the shape of the sur-
rounding points. If λ1 > 0, λ2 = λ3 = 0, then the surrounding

points are on a line in the direction of the eigenvector v1, while
if λ1 = λ2 > 0, λ3 = 0, then all the points lie on the plane
spanned from the eigenvectors v1 and v2. If λ1 = λ2 = λ3,
then the surrounding points form a sphere or an otherwise
voluminous form.

Knowing this, we can classify the surface of the point cloud
at the specific point, by using three shape factors [1], [24]

Cl =
λ1 − λ2

λ1 + λ2 + λ3
(13)

Cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(14)

Cs =
3λ3

λ1 + λ2 + λ3
(15)

where Cl + Cp + Cs = 1, which means that the three shape
factors are less than or equal to unity.

The neighbourhood of a point can then be classified as
follows: If Cl = 1, the neighbourhood forms a linear shape; if
Cp = 1, the neighbourhood has a planar form; and if Cs = 1
the neighbourhood has a spherical form.

3) Selecting keypoints: We define a point pi to be a keypoint
if the neighbourhood Ni of the point has at least nmin points,
and the shape factors satisfy the conditions

Cl ≥ δl or Cp ≥ δp or Cs ≥ δs (16)

where nmin, δl, δp and δs are user-specified keypoint param-
eters. The parameter ni defines the minimum of neighbouring
points that is required. This parameter is used to ensure that
the calculated shape factors for pi are reliable. With too few
neighbouring points, which happens with outliers, each point
will have a big impact on the eigenvalues, and therefore the
shape factors, which means that measurement noise has a large
impact on the shape factors. By having a large ni, we can
effectively filter out these outliers.

When considering the values of these parameters, one has to
take into account the shape of the point cloud and the density
of points. The goal is to use these parameters to select as
few points from both point clouds, but also that the points
are chosen from the same regions on the point clouds. For
instance, a point cloud with many large flat surfaces benefits
from having δp > 1, effectively disregarding the Cp shape
factor, and choosing a high δl and δs, in a range from 0.3−0.5,
which will select the points that are not in the flat surface
regions, but rather the edged surfaces. An example of point
selection is shown in Fig 1.

4) Automatic generation of keypoint parameters: When
comparing large sets of point clouds it is tedious to manually
select keypoint parameters nmin, δl, δp and δs. It would then
be beneficial to analyze each point cloud and automatically
determine which points seem more unique than others, and
generate keypoint parameters based on this.

We define following function to rank the points in a point
cloud

F (pi) =

{
ClCp + CpCs + CsCl, |Ni| ≥ nmin
1
3 , |Ni| < nmin

(17)
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(a) A CAD model view of
object A, with the approx-
imately same view angle
as in Fig 1b.

(b) A 3D camera mea-
surement of object A

(c) A 3D camera mea-
surement of object B

Fig. 1. A sample of the keypoint selection process using (16) with the
parameters n = 200, δl = 0.3, δp = 1 and δs = 0.3. It is seen that the
keypoints in Fig 1a and Fig 1b are similar, while that of Fig 1c is different.
This is a wanted behaviour as the match between the point cloud in Fig 1a
and Fig 1b will be better than that of Fig 1a and Fig 1c.

where |Ni| is the number of points in the neighbourhood Ni,
and Cl, Cp and Cs are calculated for the point p using (13),
(14) and (15) respectively. Since Cl + Cp + Cs = 1, F = 0
if either Cl = 1, Cp = 1 or Cs = 1, which represents a very
unique point. F = 1

3 means that Cl = Cp = Cs = 1
3 , which

is not a unique point, which is the maximum value of F .

By arranging each point pi in a point cloud from the lowest
to the highest value of F (pi), we can select k points with the
lowest score which, will be the keypoints selected from the
point cloud. In other words,

Xkeypoints = {pi : i = 1, . . . , k, k < |X|} (18)

where k is a user-defined parameter. In order to sample the
same type of points from Y we need to estimate the parameters
that would yield the same results as in Xkeypoints.

To do this we perform an algorithm

δl = δp = δs = 1
for all p ∈ Xkeypoints do

if Cl = max(Cl, Cp, Cs) and Cl < δl then
δl = Cl

else if Cp = max(Cl, Cp, Cs) and Cp < δp then
δp = Cp

else if Cs = max(Cl, Cp, Cs) and Cs < δs then
δs = Cs

end if
end for

where Xkeypoints are the k points in X with the lowest S. The
algorithm effectively groups the keypoints into three groups,
one where Cl is the maximum, one where Cp is the maximum
and one where Cs is the maximum. The algorithm then checks
each group and selects the corresponding δ to be the lowest
value of C within each group.

This gives an estimate of δl, δp and δs which can be used
to pick the keypoints Ykeypoints in Y using (16). The nmin

parameter is still dependent on the point density of Y , and
cannot be estimated from the keypoints in Xkeypoints, however,
unless there is a significant difference in the point density
between X and Y then nmin can be chosen to be the same
for both X and Y .

C. Generation of keypoint descriptors
In order to compare keypoints from Xkeypoints and Ykeypoints,

we need to find a measurable comparison between them. This
is done by generating a descriptor for each keypoint which
describes the shape of the keypoint and can be used to compare
with other descriptors.

To do this, we define the curvature along the surface where
each keypoint lie. This is done by generating two spheres,
one which describes the curvature along the least curving
direction of the surface as given by the eigenvector v1 of the
covariance matrix Cpi

, and the orthogonal direction as given
by the eigenvector v2.

Note that the covariance matrix was computed from (11)
at an earlier step of the method, and that this covariance
matrix defines an ellipsoid which is fitted to the points of the
neighbourhood in the sense that the point of the neighbourhood
forms the volume of the ellipsoid. In contrast to this, the
neighbourhood is regarded as the surface of the spheres that
are fitted in this step, which means that these spheres have a
different geometry from the ellipsoid defined by the covariance
matrix.

To estimate these spheres, we use the method for n-sphere
fitting to a set of points using Conformal Geometric Alge-
bra [10]. The motivation for this is that conformal geometric
algebra provides a convenient and very efficient description of
spheres, and the distance between points and spheres. Note
that the algorithms of the implementation can be formulated
efficiently in terms of linear algebra. The method reduces to a
to a Pratt fit [23] in the case that the sphere fit is reduced to
a circle fit, as pointed out in [10].

The method generates a 5 × 5 covariance matrix for a set
of points Pi

C =
n∑

i=0

([Pi][Pi]
T)G (19)

where Pi ∈ Xkeypoints are conformal points and

G =

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎤⎥⎥⎥⎦ (20)

In order to find the sphere S we can find the eigenvector
corresponding to the smallest eigenvalue, v5, and define it as
the dual of the optimal sphere estimate

[S] = v5 (21)

In order to generate the sphere that represents the least
curvature, a weight is added to each point when calculating C.
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First we define the plane Π kp1
which is spanned from v1 and

v3 and also intersects Pkp ∈ Xkeypoints, where v1 and v3 are
the eigenvectors found using the covariance matrix describing
the neighbourhood of Pkp, N [kp].

Since v1 is the eigenvector that corresponds to the eigen-
value λ1, it also represents the direction of most variance in
regards to the neighbourhood Nkp. The direction with the most
variance, when considering surfaces, is also the direction with
the least curvature. The plane Π 1 is therefore the plane which
cuts the surface along the least curved direction.

By extending the n-sphere method to a weighted sum
equation

CPkp1
=

n∑
i=0

([Pi][Pi]
Te−w|Pi·Π kp1

|)G (22)

where Pi ∈ Xkeypoints, w is a weight parameter, and |Pi ·
Π kp1

| is the distance from the point pi to the plane Π kp1
.

The weight is calculated so that all points that lie on the plane
Π kp1

are given the weight of 1, and the weight will decrease
the further the point is from the plane. This makes the points
close to Π kp1

, i.e. the points that represents the curvature along
the least curving direction are weighted higher than the ones
further away.

The weight element can be viewed as a Gaussian distribution

f(x, μ, σ) = exp(− (x− μ)2

2σ2
) (23)

where Pi ·Π kp1
= −(x− μ)2 and w = 1

2σ2 .
We can then use the covariance matrix Ckp to find the

sphere Skp1
by finding the eigenvector which corresponds to

the smallest eigenvalue, i.e. v5.

[Skp1
] = v5 (24)

To find the curvature along the direction orthogonal to that
of v1, we calculate yet another plane, Π kp2

, which is spanned
from v2 and v3 and intersects the same point Pkp ∈ Xkeypoints,
where v2 and v3 are the eigenvectors are found using the
covariance matrix describing the neighbourhood of Pkp, N [kp].

This is again used to calculate the covariance matrix

CPkp2
=

n∑
i=0

([Pi][Pi]
Te−w|Pi·Π kp2

|)G (25)

which describes the curvature along the direction orthogonal
to that of v1. We can then generate the sphere Skp2

by using
the eigenvector corresponding to the smallest eigenvalue of C.

[Skp2
] = v5 (26)

With these two spheres we can define the descriptor for the
keypoint pkp

Fkp = {Skp1
,Skp2

} (27)

An example of such one descriptor can be seen in Fig 2. In
the figure, sphere fitting cases of Fig 3 are used in the two or-
thogonal planes v1-v3 and v2-v3. This generates a descriptor
which is unique for each keypoint and can accurately describe
the surrounding surface. It can be seen that the blue sphere has

Fig. 2. An example of a descriptor. The spheres are shown as circles in the
figure to make it easier to view. The blue circle of S1 lies on the blue v1-v3

plane, while the green circle of S2 lies on the green v2-v3 plane. Note that
the green sphere does not intersect with the keypoint pkp.

an almost infinite radius, which is because in that direction the
point cloud is flat as a plane. If the point cloud was a corner,
then both the green and blue spheres would be equal and with
a small radius.

This process is then repeated on all keypoints in Xkeypoints

and Ykeypoints.

D. Estimating point correspondences
When all the descriptors are generated, it is possible to

estimate the correspondences between Xkeypoints and Ykeypoints.
To find the corresponding point to pk ∈ Xkeypoints we solve

the equation

min ε(pk,pl), ∀ pl ∈ Ykeypoints (28)

where

ε(pk,pl) = (rk1 − rl1)
2 + (dk1 − dl1)

2 (29)

+ (rk2 − rl2)
2 + (dk2 − dl2)

2 (30)

and

r2k1 = Sk1 · Sk1

d2k1 = Sk1 · Sk1 − 2Sk1 · Pk

r2k2 = Sk2 · Sk2

d2k2 = Sk2 · Sk2 − 2Sk2 · Pk

(31)

r2l1 = Sl1 · Sl1

d2l1 = Sl1 · Sl1 − 2Sl1 · Pl

r2l2 = Sl2 · Sl2

d2l2 = Sl2 · Sl2 − 2Sl2 · Pl

(32)

where rk1, rk2, rl1 and rl2 are the radii of Sk1, Sk2, Sl1 and
Sl2 respectively, and dk1, dk2, dl1 and dl2 are the distances
between the center of Sk1 and pk, Sk2 and pk, Sl1 and pl
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and Sl2 and pl respectively. The results from different sphere
estimates and the relationship between r and d can be seen in
Fig 3.

E. Pose estimation
At this stage, all the points xi in Xkeypoints has an estimated

correspondence to a point yj in Ykeypoints. With this correspon-
dence, the pose can be found by minimizing (1) for the point
clouds Xkeypoints and Ykeypoints defined by the keypoints. This
is straightforward, and can be done in the usual way using
Singular Value Decomposition (SVD) as described in, e.g.,
[2], [35].

In this work, the pose estimation was done in terms of
Conformal Geometric Algebra using the method of [36]. The
reason for this was that the estimation of the spheres of the
descriptors was based on geometric algebra, and it was decided
to use this also for the pose estimation. It turned out the pose
estimation gave as good as identical accuracy with the methods
of [36] and the SVD method of [2], [35], and that the SVD
method had 10 % less computation time.

To proceed, it is necessary to introduce the outer prod-
uct [11], [16]. The outer product of two basis vectors in R

4,1

satisfies ei∧ej = −ej∧ei, i, j ∈ {1, 2, 3,∞, 0}, and it follows
that ei ∧ ei = 0. The outer product of basis vectors is written
ei∧ej = eij , which is of grade 2, ei∧ej∧ek = eijk which is of
grade 3, and so on. Note that a repeated index means that the
outer product is zero, which follows from eii = 0. The highest
grade nonzero outer product of basis vectors is e0123∞, which
is of grade 5, and is called the pseudoscalar. The geometric
product of two basis vectors is written eiej = ei · ej + ei ∧ ej .
Calculation rules for geometric products of more than two
basis elements are found in [11].

The conformal geometric algebra over the space R
4,1 is

G4,1 = span{1, e1, e2, e3, e0, e∞, e23, e31, e12, . . . , e0123∞},
which is closed under the geometric product UV of two
elements U, V ∈ G4,1. It is noted that the basis elements of
G4,1 are of grade 0, 1, 2, 3, 4, and 5. An element of G4,1

is called a multivector, and is given by U =
∑

I uIeI where
uI ∈ R are scalar coordinates, and I denotes the indices of the
basis elements of G4,1. The reverse of a multivector is given

by Ũ =
∑

I uI ẽI ∈ G4,1, where ẽI means that the ordering
of the factors in each basis element has been reversed, e.g.,
ẽij = eji and ẽijk = ekji. Then the geometric product of two
multivectors U =

∑
I uIeI and V =

∑
J vJeJ is given by

UV =
∑

I

∑
J uIvJeIeJ . The scalar part of the geometric

product UV is denoted by 〈UV 〉.
The pose can described in terms of a screw displacement

defined by a rotation θ about a line, and a translation d along
the same line. Let the line be given in Plücker coordinates by
the direction vector a = a1e1 + a2e2 + a3e3 and the moment
b = b1e1 + b2e2 + b3e3, where a · b = 0. Then in conformal
geometric algebra the pose can be described by the motor [33]

M =cos
θ

2
+ sin

θ

2
A

+ ε

(
d

2
cos

θ

2
A+ sin

θ

2
B − d

2
sin

θ

2

)
(33)

where A = a1e23+a2e31+a3e12, B = b1e23+ b2e31+ b3e12
and ε = e321∞ is the dual unit. From this it can be seen that
a motor M is in the 8 dimensional linear space

M = span{1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞} (34)

Let ci, i = 1, . . . , 8 denote the basis elements of M, that is,
c1 = 1, c2 = e23, c3 = e31, . . .. Then the motor can be written
M =

∑8
i=1 mici. It is seen that the motor M can be described

in terms of the coordinate vector m = [m1, . . . ,m8]
T, which

is partitioned as m = [rT, tT]T. Here r and t are four-
dimensional coordinate vectors, where r describes the rotation
and t describes the translation of the displacement described
by M . It can be shown that the motor M given by (33) satisfies

M̃M = 1. Therefore M is a motor if and only if

M ∈ M and M̃M = 1 (35)

The error function εk for between the point xk ∈ Xkeypoints

and the corresponding point yk ∈ Ykeypoints, is defined as

εk = −1

2
d2k = (M̃ykM) · xk = 〈M̃ykMxk〉 (36)

The pose estimation problem can then be formulated as

max
M

n∑
k=1

〈M̃ykMxk〉, M̃M = 1 (37)

where n is the number of points in Xkeypoints. To solve this
optimization problem, we use the method in [36]. The operator
L is defined by LM =

∑n
k=1 ykMxk, so that the optimization

problem can be written

max
M

〈M̃LM〉, M̃M = 1 (38)

It is noted that

〈M̃LM〉 =
8∑

i=1

8∑
j=1

mimj〈ẽiLej〉 = mTQm (39)

where Q = {Qij}, and Qij = 〈ẽiLej〉.
Let the subspace M be given by

M = span{1, ẽ23, ẽ31, ẽ12, e10, e20, e30, e3210} (40)

Let the basis elements of M be denoted ci, i = 1, . . . , 8. Then
the basis elements ci of M will be reciprocal to the basis
elements ci of M, which means that cj · ci = 〈cjci〉 = δij
and δij is the Kronecker delta. The projection of a multivector

Y ∈ G4,1 onto M is given by PM (Y ) =
∑8

i=1 c
i〈ciY 〉.

Define the matrix L = {Lij} by

Lij =

k∑
i=1

〈ẽiPM (Lej)〉 (41)

and let L be partitioned into 4× 4 submatrices, such that

L =

[
Lrr Lrt

Ltr Ltt

]
(42)
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r

d

pkp

(a) Sphere estimate of a spherical sur-
face. r ≈ d.

r
d

pkp

(b) Sphere estimate of a planar surface.
r ≈ d ≈ ∞.

r

d

pkp

(c) Sphere estimate of an edge. r < d.

r

d

pkp

(d) Sphere estimate of a point. r � d.

Fig. 3. A sample of resulting sphere estimates on different surfaces. The different values of r and d indicate what the different shapes are.

Then the 4× 4 matrix L′ is defined by

L′ = Lrr − Lrt(L
+
ttLtr) (43)

where L+
tt denotes the Moore-Penrose pseudoinverse. The

coefficient vector r of the rotation can then be found as the
eigenvector of L′ associated with the largest eigenvalue. This
gives the rotation with the smallest rotation angle. The coeffi-
cient vector t of the translation can be found by computing

t = −(L+
ttLtr)r (44)

Then the motor M is given by the coordinate vector m =
[rT, tT]T.

IV. EXPERIMENTS

The proposed method was compared with a selection of
state-of-the-art methods for initial alignment. These methods
were Fast Point Feature Histograms (FPFH) [26], Point-Pair
Features (PPF) [12], Signature of Histogram of OrienTation
(SHOT) [34], 3D Shape Context (3DSC) [13] and Globally
Aligned Spatial Distribution (GADS) [21].

There were a total of three experiments conducted. The first
was where two instances of the same point cloud had a known
displacement between each other, and the proposed method
was run several times with different parameters, in order to
analyze what impact each parameter had. In the second ex-
periment, two instances of the same point clouds had a known
displacement between them and one was subjected to different
Gaussian noise. Both the proposed method, FPFH, PPF, SHOT,
3DSC amd GASD were used, and their performance was
evaluated. In the last experiment, the position of a 3D model
in a scene was estimated. Here, each method tried to find the
alignment between two different point clouds, one generated
from a 3D model and the other captured by a 3D camera,
where the displacement was not known. This demonstrates a
real world application where one tries to estimate the position
of an object in a scene with only the use of a 3D model.

Fig. 4. Multiple point clouds of the same 3D CAD model, from multiple
views

A. Setup
1) Hardware: The hardware that was used for the exper-

iments, was the same for all three. The computer that was
used was a desktop computer with an Intel Core i7 7700k
Sky Lake at 4.2GHz with 32GB 2666MHz DDR4 and a
EVGA GeForce GTX 1080 Founders Edition graphics card.
The computer was running Ubuntu 16.04 LTS.

The point clouds that were taken with a 3D camera, were
taken using the Zivid 3D camera provided by ZividLabs [31].
The Zivid 3D camera outputs 2.3 Mpixel RGBD image, with
a field of view of 425×267mm at a distance of 0.6m with a
depth resolution of 0.1mm at the same distance.

2) Point Cloud Data: There were a total of 129 point clouds
used in the experiments.

84 of these were generated from two 3D CAD models,
where a simulated 3D camera generated point clouds from 42
different angles around each CAD model. A sample of which
is shown in Fig 4.

10 of the point clouds were taken with the Zivid camera.
The camera captured a total of 4 scenes where a set of objects
were placed on a table. Each object was detected using the
object detection method described in [32], where RANSAC
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(a) 2D image taken with the Zivid
Camera

(b) Point cloud acquired by the
Zivid Camera

Fig. 5. The objects on the table, where the orange and blue objects are
detected and their pose are estimated. The image is taken with the Zivid
Camera.

(a) 3D point cloud of the Stanford
Bunny.

(b) 3D point cloud
of the Stanford
Happy Buddha

(c) 3D point cloud of the Stanford
Dragon

Fig. 6. A sample of the database point clouds used.

was used to find the table, and the region growing algorithm
was used to separate the objects. Each object was saved as an
individual point cloud, resulting in 10 point clouds. A sample
is shown in Fig 5.

35 point clouds were from the Stanford database [19], where
5 of them were of the Stanford Bunny, 15 of the Stanford
Happy Buddha and 15 of the Stanford Dragon. Fig 6 shows
an example of these point clouds.

3) Implementation: The proposed method was implemented
using the versor library [9] together with the Eigen library [15].
The parameters that were used in the method were selected

using the results from the first experiments. The r parameter
in (11) was 6.3mm and w in (22) was 0.2. The algorithm per-
formed by estimating Cl(13), Cp(14), and Cs(15) as described
in Section III-B4, where n in (16) was 200 and the number
of selected keypoints were 2000 which was approximately
between 5% and 10% of the total point cloud for the whole
data set.

FPFH, PPF, SHOT and 3DSC were implemented using the
PCL library [28], and was implemented using the sample
codes that were provided on their websites, or other supporting
websites. The parameters were chosen to be similar to the
proposed method to the extent it was possible. The point
clouds were first down-sampled using a voxel grid of 1mm,
followed by the normal estimation algorithm in Section II
with a radius of 30mm. FPFH, PPF and SHOT had a search
radius of 30mm when using the KD-tree, and SHOT had in
addition the radius of a plane defined as 1000mm. 3DSC had
a slight variation in the parameter selection, because if they
were chosen in the same manner as the rest, it failed. It had
a normal estimation radius and search radius of the KD-tree
set to 40mm and a minimum radius for the search sphere
set to 4mm and a point per radius density parameter set to
8. After each method had generated a descriptor, a RANSAC
algorithm was performed with 1000 iterations and an inlier
threshold of 5mm. GADS was partly implemented using the
PCL library, while the rest was implemented in C++. The
original implementation in [21] uses color data to generate
the global descriptor. Since the CAD models do not have
color data, it was not possible to perform this step of the
descriptor generation. The GASD descriptor used in this paper
only generates a descriptor based on the shape of the point
clouds.

All code was implemented using C++11, and was compiled
using O3 optimization. There was no parallelism involved in
the implementation.

B. Experiment 1
1) Description: The first experiment took two instances of

the same point cloud with a known displacement between
them. The proposed method then performed a pose estimation
between the two point clouds with various parameters. Each
test was performed with changing the radius r in (11), the
weight w in (22) and the number of keypoints as described
in (16). When one parameter was changed, the others stayed
constant. This was performed on all 129 point clouds.

Since the two point clouds were the same, and no noise
was involved, both the exact displacement and the point
correspondences were known. This made it possible to know
the error in displacement and the error in the estimated point
correspondence.

The radius r was tested at 0.5mm, 0.8mm, 1mm, 2mm,
5mm, 10mm and 20mm. The weight w was tested at 10, 5,
2, 1, 0.8, 0.5, 0.2, 0.1, 0.05, 0.01 and 0.001. The sample size
was tested at 20000, 10000, 5000, 2000, 1000, 800, 500 and
100. The nmin was 200.

2) Results: The results from the three tests that were per-
formed are shown in Fig 7, Fig 8 and Fig 9. It is seen in the
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figures that there is a correlation between the accuracy of the
method and the r and w parameters.

The best fit for the radius r is between 5mm and 10mm
when it comes to correspondence depending on the point
cloud, while the pose estimate stays approximately the same.
As expected, the execution time grows exponentially depend-
ing on the radius, which is due to the fact that the amount
of points used in the Principal Components Analysis (PCA)
method increases exponentially with the radius.

The weight w had little to no impact on the pose estimation,
but with the point correspondence the optimal solution ranges
between 0.05 and 0.2 depending on the point cloud. The weight
had little impact on the execution time.

The number of keypoints had little to no impact on the
method’s performance. The pose estimation stayed approxi-
mately the same, while the number of corresponding points
were linear, which is expected. This meant that about 99% of
the points were accurately estimated. The point clouds where
the graph caps off at a maximum value, is where the point
cloud uses all the points in the point cloud, and can therefore
not select more keypoints. The execution time escalates, which
is expected given that there are more keypoints to work
through.

This experiment indicates that a careful selection of the
r and w parameters is needed to ensure optimal results and
performance, while the number of keypoints has little impact
on the method’s accuracy. The experiment also indicates that
the method performs equally well in regards to pose estimation.

C. Experiment 2

1) Description: In the second experiment, the pose between
two of the same point cloud was estimated, where one point
cloud was displaced with a known displacement, and each
point within that point cloud had added a Gaussian noise.
The added noise had a μ of 3mm and σ at 0.1, 0.3, 0.5,
1.0, 2.0. This was tested on all 129 point clouds with both
the proposed method, FPFH, PPF, SHOT, 3DSC and GADS.
The accuracy of the point correspondences were not evaluated,
since the indexing of the points in the point clouds are mixed
up when using the PCL library. Only the pose estimation error
was evaluated.

2) Results: The results from the experiment are shown in
Table I and Table II The results shows that the fastest method is
by far FPFH, and also that it is the least accurate, which is not
a desired result for industrial applications. Both SHOT and the
proposed method perform equally fast, however, the proposed
method performs with better accuracy. The only method that
performs as accurate as the proposed method is PPF, but it
is the slowest of all the methods. It is worth noting that
though the mean error is slightly high on the overall results,
the methods had some cases with very accurate results. The
PPF method for instance got accurate results on point clouds
that had little features, such as the Stanford Bunny, where the
other methods had significantly larger errors. In this case the
proposed method got a angle error of 0.847 radiance.

D. Experiment 3

1) Descriptions: The last experiment was a real world demo,
where a Zivid camera captured a 3D image of a table with a
set of objects on it, see Section IV-A2. Each of the 10 point
clouds of the real world objects were compared to a selection
of the 84 generated point clouds of the CAD models, and the
best fit was estimated as well as the pose between the CAD
model and the scene. This effectively estimated the position
of the object relative to the camera.

Since there are no known point correspondence nor known
displacements, an ICP algorithm was performed after every
estimation. This was done using the CloudCompare soft-
ware [14], which provided the final transformation as well
as an root mean square calculation of the estimated point
correspondences. This together with a visual inspection was
sufficient to evaluate the performance of each method.

The RMS shown in Table III is calculated between the
orange object shown in Fig 5b with the point cloud generated
from the CAD that gave the smallest RMS. The same point
cloud gave the lowest RMS in all cases except for SHOT,
where one point cloud gave a lower RMS. Using RMS is not
an accurate measurement for classification, but it was sufficient
for this experiment. As shown in the table, FPFH is the fastest
of the methods. However, it failed to give an accurate estimate,
since the estimate was flipped upside down. A note on the PPF
estimate is that the resulting pose estimate from the method
had the two point clouds very far from each other, about 10 cm
on average, and only by using the ICP method, did it achieve
a more accurate pose. The resulting pose estimation can be
seen in Fig 10

V. DISCUSSION

It is not fair to compare the execution time of the proposed
method to the ones provided by the PCL library. The code used
for the proposed method is not yet designed for optimization,
and can in most cases be improved.

For instance, in the preprocessing step Section III-B1, each
point in the point cloud checks which points are within a given
radius. In the code, the method goes through every point for
each point, making it an algorithm with a complexity of O(n2).
This could be greatly improved by using smarter methods such
as k-d tree structures or similar methods, which could lower
the complexity to O(kN1− 1

k ) where k is the dimension of the
tree.

Though the proposed method presents many equations
which uses Conformal Geometric Algebra, the implementation
could benefit from using linear algebra and matrix manip-
ulation, as this is more computationally efficient. The least
square optimization in Section III-D for instance, is a gen-
eral optimization algorithm that encompasses all Conformal
Geometric Algebra objects. Since the proposed method only
uses points, it would be beneficial to use a linear algebra least
square optimization algorithm such as [2], [35]

It is also worth noting that the results from the GADS
method, could probably be improved, if the point clouds
would have color information. This was not possible in the
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(a) Angle error [rad], measured using an angle-axis
calculation of the error transformation

(b) Distance error [mm], measured using the distance
of the error transformation

(c) Execution time [μs]

(d) Number of times where the estimated corre-
spondence was within 5mm away from the correct
corresponding point

(e) Number of times where the estimated correspon-
dence was within 10mm away from the correct
corresponding point

(f) Number of times where the estimated correspon-
dence was within 20mm away from the correct
corresponding point

Fig. 7. Results when adjusting the weight parameter. Each coloured graph represents the results from a sample point cloud, where 8 are selected from the
total of 129 point clouds. The red, green and orange graphs are of different viewpoint point clouds of part A, the blue, purple and pink graphs are of different
viewpoint point clouds of part B, and the brown and gray graphs are two point clouds of the Stanford Bunny.

TABLE I. RESULTS FROM EXPERIMENT 2. THE RESULTS SHOW THE AVERAGE DISTANCE AND ANGLE ERROR OVER ALL 129 POINT CLOUDS FOR EACH

NOISE INTERVAL.

Noise σ = 0.1 Noise σ = 0.3 Noise σ = 0.5 Noise σ = 1.0 Noise σ = 2.0
Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm]

Proposed 0.122 0.645 0.132 0.833 0.151 0.944 0.262 1.267 0.643 3.562
FPFH 0.231 101.436 0.271 112.312 0.431 163.647 0.642 287.961 0.851 1663.624
PPF 0.095 1.451 0.114 1.729 0.272 2.534 0.296 3.833 0.577 6.996
SHOT 0.340 6.282 0.349 6.544 0.537 8.964 0.699 10.070 0.798 11.947
3DSC 0.242 16.125 0.365 17.938 0.777 22.153 0.825 23.775 0.846 31.858
GADS 0.542 5.341 0.601 7.625 0.677 10.511 0.751 11.753 0.910 11.884

TABLE II. RESULTS FROM EXPERIMENT 2. THE RESULTS SHOW THE AVERAGE EXECUTION TIME OVER ALL 129 POINT CLOUDS FOR EACH NOISE

INTERVAL.

Noise σ = 0.1 Noise σ = 0.3 Noise σ = 0.5 Noise σ = 1.0 Noise σ = 2.0
Execution Time [ms] Execution Time [ms] Execution Time [ms] Execution Time [ms] Execution Time [ms]

Proposed 2329.517 2328.523 2330.665 2430.101 2354.512
FPFH 829.594 843.941 901.421 830.512 854.442
PPF 17721.757 17883.121 17519.337 17329.881 19901.731
SHOT 2026.415 2139.533 2101.112 2323.121 1997.454
3DSC 16507.965 16433.103 17031.315 16831.610 17124.155
GADS 1402.442 1421.531 1411.595 1399.931 1420.40
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(a) Angle error [rad], measured using an angle-axis
calculation of the error transformation

(b) Distance error [mm], measured using the distance
of the error transformation

(c) Execution time [μs]

(d) Number of times where the estimated corre-
spondence was within 5mm away from the correct
corresponding point

(e) Number of times where the estimated correspon-
dence was within 10mm away from the correct
corresponding point

(f) Number of times where the estimated correspon-
dence was within 20mm away from the correct
corresponding point

Fig. 8. Results when adjusting the radius parameter. Each coloured graph represents the results from a sample point cloud, where 8 are selected from the
total of 129 point clouds. The red, green and orange graphs are of different viewpoint point clouds of part A, the blue, purple and pink graphs are of different
viewpoint point clouds of part B, and the brown and gray graphs are two point clouds of the Stanford Bunny.

TABLE III. RESULTS FROM EXPERIMENT 3. THE RMS SHOWS THE

RMS BETWEEN THE ICP CORRESPONDING POINTS AFTER APPLYING ICP
BETWEEN THE TWO COMPARED POINT CLOUDS. THE COMMENT

DESCRIBES SOME OF THE REMARKS THAT WERE DONE WITH THE VISUAL

INSPECTION OF THE RESULTS.

Method RMS [mm] Execution time [ms] Comment

Proposed 2.56153 21487.476
FPFH 2.56155 2390.431 Point cloud was flipped upside

down
PPF 2.56153 56926.563 Estimate before ICP was far away

from the actual point cloud
SHOT 2.74457 30411.992 Got a better RMS with a different

point cloud
3DSC 2.56153 163224.032
GADS 3.11244 1224.032 The orientation was not correct

experiments because of the CAD models, which did not have
any color.

The proposed method does not handle scaling. This is be-
cause the spheres in the descriptor are specified with a radius.
In order to make the method scale-invariant, the descriptors
requires a reference scale, which could be developed.

VI. CONCLUSION

The proposed method uses an analytic approach to gener-
ating descriptors, using Conformal Geometric Algebra. The
descriptor consists of two spheres which represents the cur-
vature surrounding a point. This method was compared with

a selection of some state-of-the-art methods, and the results
were presented. In the experiment where the point cloud was
compared to itself, the proposed method and PPF generated the
most accurate results, while in the experiment where a CAD
model point cloud was compared to an object captured with
a 3D camera, the proposed method showed that the accuracy
and robustness was sufficient for it to be used in industrial
applications.
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9.6 Paper 6: A Curvature-Based Descriptor for Point
Cloud Alignment using Conformal Geometric Algebra

By Adam Leon Kleppe, Lars Tingelstad and Olav Egeland

This paper presents an improvement on the descriptor presented in Paper 5. This
takes a deeper look into the point correspondence method, and improves it by using
a geometric interpretation of the descriptor.

The experiments show that the descriptor performs better than many of the
other descriptors presented in this thesis.
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