
The Grass is Always Greener: A
Procedurally Generated Game

Author(s)

Michael Bråten
Martin Bjerknes

Bachelor in Game Programming
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

16.05.2018

Supervisor Mariusz Nowostawski

The Grass is Always Greener

Sammendrag av Bacheloroppgaven

Tittel: The Grass is Always Greener: Et Prosedyrisk Generert
Spill

Dato: 16.05.2018

Deltakere: Michael Bråten
Martin Bjerknes

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Michael Bråten, braaten.michael@outlook.com

Nøkkelord: Prosedyrisk Generering, Programmering, C# , Støy, Spill,
Unity Engine, Spillmotor, Voxel, Utforskning

Antall sider: 137
Antall vedlegg: 5
Tilgjengelighet: Åpen

Sammendrag: Et utforskningsspill i en prosedyrisk generert verden som
blir mer ødelagt jo lengre ut du reiser. Målet for spilleren
er å nå verdens ende.

i

The Grass is Always Greener

Summary of Graduate Project

Title: The Grass is Always Greener: A Procedurally Gener-
ated Game

Date: 16.05.2018

Authors: Michael Bråten
Martin Bjerknes

Supervisor: Mariusz Nowostawski

Employer: Norwegian University of Science and Technology

Contact Person: Michael Bråten, braaten.michael@outlook.com

Keywords: Procedural Generation, Programming, C# , Noise, Game,
Unity Engine, Game Engine, Voxel, Exploration

Pages: 137
Attachments: 5
Availability: Open

Abstract: An exploration game with a procedurally generated
world, where the world gets more corrupt the further
you move. The goal for the player is to make their way
through the corruption and to the end of the world.

ii

The Grass is Always Greener

Preface

We would like to thank:

• Mariusz Nowostawski for being our supervisor and providing us with valuable feed-
back for both the project and the thesis.

• Simon McCallum for creating the LATEX template. This saved us a lot of time that we
could focus towards writing the thesis.

• Our testers Magnus W. Enggrav, Henrik Bergheim and Joakim Bjerknes for giving
feedback on the game.

• The Unity Team for creating the Unity Engine.
• Keijiro Takahashi for making KinoFog, the open source fog effect we used in our

game.

iii

The Grass is Always Greener

Contents

Preface . iii

Contents . iv

List of Figures . viii

Listings . x

1 Introduction . 1

1.1 Project Description . 1

1.1.1 Background . 1

1.1.2 Motivation . 1

1.1.3 Project Goal . 1

1.2 Project Organization . 1

1.2.1 Academic Background . 1

1.3 Document Structure . 2

1.4 Terminology . 2

2 Game Design . 3

2.1 Initial Design . 3

2.1.1 World . 3

2.1.2 Animals . 3

2.1.3 Goal . 4

2.1.4 User Interface . 4

2.1.5 Visual Design . 4

2.1.6 Audio Design . 4

2.2 Final Design . 4

2.2.1 World . 4

2.2.2 Animals . 4

3 Requirements . 6

3.1 Usability . 6

3.2 Reliability . 6

3.3 Performance . 6

4 Technical Design . 7

4.1 Unity . 7

4.1.1 Unity UI . 7

4.2 World Generation . 7

4.2.1 Handling Orders . 8

4.3 Animals . 8

4.3.1 Initial Animal Design . 9

iv

The Grass is Always Greener

4.3.2 Final Animal Design . 10

5 Development Process . 11

5.1 Working Hours . 11

5.2 Workflow . 11

5.2.1 Development Workflow . 11

5.2.2 Performance Testing and Optimization 11

5.2.3 Bug Testing and Debugging . 12

5.2.4 Usability Testing . 12

5.3 Coding Conventions . 12

5.3.1 Code Documentation . 13

5.4 Development Tools . 13

6 Implementation . 15

6.1 Generating Data . 16

6.1.1 Procedural Noise Functions . 16

6.1.2 Simplex Noise . 17

6.1.3 GPU Noise . 21

6.1.4 Poisson Disk Sampler . 22

6.2 Procedural Generation . 23

6.2.1 Mesh Generation . 23

6.2.2 Terrain Generation . 25

6.2.3 Biomes . 27

6.2.4 Corruption . 30

6.2.5 Non-Terrain Generation . 32

6.2.6 Tree Generation . 34

6.2.7 Animal Generation . 36

6.3 WorldGenManager . 41

6.3.1 Handling Chunks . 41

6.3.2 Handling Animals . 43

6.3.3 On-The-Fly Shifting of Coordinates 44

6.4 Multithreading . 44

6.4.1 Our Multithreading Implementation 45

6.4.2 Other Multithreading Implementations We Considered 46

6.5 Voxel Physics . 46

6.5.1 Voxel Physics Class . 47

6.5.2 Voxel Collider Class . 48

6.6 Animals . 48

6.6.1 Animal State . 49

6.6.2 Making Animals Functional . 50

6.6.3 Giving Animals Behaviour . 52

6.6.4 Animating Animals . 53

v

The Grass is Always Greener

6.7 User Interface . 56

6.7.1 Main Menu . 57

6.7.2 In-game Menu . 57

6.7.3 Settings UI . 58

6.7.4 Animal Collection Display . 59

6.8 Audio . 60

6.8.1 Music . 60

6.8.2 Environment . 60

6.8.3 Animal Sounds . 62

6.9 Shaders . 63

6.9.1 Terrain shader . 64

6.9.2 Tree shader . 66

6.9.3 Water shader . 66

6.9.4 Animal shader . 67

6.10 Gameplay . 68

6.10.1 Animal Switching . 69

6.10.2 Wind . 69

6.10.3 Animal Collecting . 70

6.10.4 Win Condition . 70

6.11 Implementation Statistics . 72

7 Optimization . 73

7.1 Methodology . 73

7.1.1 Benchmarks . 73

7.1.2 Performance Monitoring . 74

7.2 BlockDataMap Implementation . 75

7.2.1 Old solution . 75

7.2.2 New solution . 75

7.2.3 Performance Impact . 75

7.3 Terrain Sampling Optimization . 76

7.3.1 Performance Impact . 76

7.4 Shader Optimization . 77

7.4.1 Performance Impact . 77

7.5 Physics Optimization . 78

7.5.1 Mesh Colliders . 78

7.5.2 Local Box Colliders . 79

7.5.3 Voxel Colliders . 79

7.5.4 Performance Impact . 80

8 Usability Testing and User Feedback . 81

8.1 Game World . 81

8.2 Animals . 82

vi

The Grass is Always Greener

8.3 User Interface . 82

9 Deployment . 83

10 Discussion . 84

10.1 Results . 84

10.1.1 Completion of Initial Plan . 84

10.1.2 Final Performance of Game . 84

10.2 Evolution of Process . 85

10.2.1 The Introduction of Custom Development Tools 85

10.2.2 Moving from Google Docs to ShareLaTeX 85

10.3 C# and Unity . 86

10.4 Future Work . 86

10.4.1 Working with User Feedback . 86

10.4.2 More Procedural Generation . 86

10.4.3 Better Victory Event . 87

10.4.4 Code rewrite . 87

11 Conclusion . 88

Bibliography . 89

A Source Code and Other Links . 92

B Project Plan . 93

C Meeting Logs . 102

D Questionnaire Answers . 118

E Benchmark Output . 137

vii

The Grass is Always Greener

List of Figures

1 World Generation UML . 8

2 Early animal design class diagram . 9

3 Current animal design class diagram . 10

4 Debug tool . 12

5 Grouping of voxels . 15

6 High vs low frequency noise sampling . 16

7 Point inside square and square splitting . 18

8 The two grids of simplex noise . 18

9 Sampling point interpolation reduction . 21

10 Poisson Disk Sampling vs random sampling 22

11 Two validation tests in the Poisson Disk Sampler 23

12 Comparison between greedy and naive mesh generation 24

13 Terrain phases . 25

14 Biome showcase . 28

15 effects of corruption . 30

16 Effects of corruption noise frequency influence 32

17 Line voxel mesh example . 33

18 Tree example . 34

19 Animal showcase . 36

20 Land animal leg bone rotation . 40

21 Effects of not accounting for coordinate shift 44

22 Animal spine leveling . 52

23 IK Animation polish . 55

24 CCD . 55

25 In-game menu UI . 56

26 Main Menu UI . 57

27 "Play" sub-menu . 57

28 Settings UI . 58

29 UI for animal collection . 60

30 Finite vs infinite textures . 63

31 low vs high LOD . 65

32 Wood texture . 66

33 Water surface comparison . 67

34 Wind Particle . 70

viii

The Grass is Always Greener

35 Victory screen . 71

36 BlockDataMap Optimization Graph . 75

37 Terrain Sampling Optimization Graph . 76

38 Shader Optimization RealBench Graph . 77

39 Shader Optimization SynBench Graph . 78

40 Mesh collider initialization performance 79

41 Voxel Physics Optimization Graph . 80

ix

The Grass is Always Greener

Listings

6.1 GPU noise hash function . 21

6.2 posContainsVoxel() function. 27

6.3 BiomeBase.getBlockType() . 29

6.4 DesertBiome.getBlockType() . 30

6.5 LineSegment struct . 32

6.6 Alphabet definition and rules for tree generation 35

6.7 Turtle struct for tree drawing . 35

6.8 Early code for animal defining attributes 37

6.9 Current code for animal defining attributes 38

6.10 Skelton lines dictionary . 39

6.11 Creating neck line for land animal . 39

6.12 Creating neck bones for land animal . 40

6.13 WorldGenManager update . 41

6.14 Thread communication data-structures . 45

6.15 Voxel ray cast targets . 47

6.16 Voxel ray cast hit . 47

6.17 Voxel collider events . 48

6.18 Terrain shader arrays . 49

6.19 How a setting is added to the Settings UI 58

6.20 Terrain shader arrays . 64

6.21 Animal shader color generation . 68

x

The Grass is Always Greener

1 Introduction

1.1 Project Description

1.1.1 Background

The two of us have worked together on numerous projects previously, which is why we
decided to do the bachelors thesis together. Before settling on this project we had been
offered to join a bigger group for working on a mobile app. We ended up deciding on
making our own project from scratch, this way we would have full ownership and control
of the product we were developing. We decided to explore the field of procedural content
generation. Some of the interesting aspects of procedural generation that appealed to us
was the ability to create vast world at runtime in a 3D environment, and the technical
challenges that comes with it.

1.1.2 Motivation

We came up with the project ourselves because we have a personal interest in procedural
generation. We chose this subject matter because we believe that we have good skills
and ideas for getting some interesting results, and that we thought this might prove an
interesting project. The reason for why we thought developing this would be fun was be-
cause of the iterative process and the emergent characteristics of procedural generation.
Some similar projects/games that inspired us are: Fugl [1] and Superflight [2], which
are games about exploring a procedurally generated world.

1.1.3 Project Goal

The goal of the project was to create a game revolving around a procedurally generated
voxel world. And once we had created the game we wished to publish/release the game
in some capacity depending on how proud we were of the end result. If the game became
good with nice polish (stuff like graphics, audio, gameplay) we might release the game
as a paid download on steam for the price of a coffee or something. If the end result was
not as good we would release it as a free download. We also hoped to learn a lot about
procedural content generation, noise algorithms and inverse kinematics algorithms. The
motivation for choosing this project is to get experience from bigger projects. The subject
matter itself was another motivating factor as it let us create a lot of content with few
people.

1.2 Project Organization

1.2.1 Academic Background

Both of us are students doing a Bachelor in Game Programming at NTNU in Gjøvik,
so we largely have the same academic background. We have experience with Graphics
Programming, AI and Game Programming from courses we have had. We have used
Unity Engine for game development in some of our previous projects, which is what we
will use here as well. The language of choice when developing in Unity is C# , which we

1

The Grass is Always Greener

have used for some time now. We also have experience designing games from some of
the courses we have had.

1.3 Document Structure

1. Introduction: Introduction of the thesis.
2. Game Design: Describes the initial game design, and how it has changed for the

final version of the game.
3. Requirements: Non-Functional requirements.
4. Technical Design: High level technical design.
5. Development Process: Describes the tools and the workflow used during the de-

velopment.
6. Implementation: Explains how we have implemented the features of the game.
7. Optimization: Goes into detail on some optimizations we have done.
8. Usability Testing and User Feedback: Describes our usability testing with external

playtesters.
9. Deployment: Explains how we built and published the game.

10. Discussion: We discuss the results of the project, the tools and methods used and
future work.

11. Conclusion: We reflect on the project.

1.4 Terminology

• NPC: Non-player character
• AI: Artificial intelligence
• Shader: A program running on the GPU.
• Mesh: Defines geometry rendered by a shader.
• FPS: Frames per second (frame rate).
• GPU: Graphics processing unit
• CPU: Central processing unit

2

The Grass is Always Greener

2 Game Design

In this chapter we talk about the design of the game, both the initial design and how it
has changed throughout the project. Having a game design document early on during
development gives us an idea of what we want. Even if we don’t follow the game design
document to a T, we at least have an idea of where we want to end up. It also lets us
consider not yet implemented features from the design when creating systems for use in
the game.

2.1 Initial Design

In this section, we will go over the initial design we created for the game. The core of
the game is exploration of procedurally generated worlds, so all the features of the game
is centered around this in some way. We wanted the player to be able to have unique
experiences every time they play by letting them explore new worlds every time they
play, as well as giving them multiple ways of exploring the world they are in.

2.1.1 World

The world needed to be large, unique and filled with a variety of different terrain so that
the player had an incentive to explore the world. To make every playthrough unique,
everything in the world is procedurally generated. To make it so the terrain doesn’t seem
completely bare, we have procedural foliage in the world to cover it.

To evolve the terrain and give the player a sense of progress, we have world cor-
ruption. The corruption is an effect that causes the world to grow more unnatural the
further the player progresses, breaking the laws of physics by causing deformed terrain
and water floating in the sky.

2.1.2 Animals

To give life to the world, we populate it with animals. These animals are, like the terrain
of the world procedurally generated, and no two animals should be generated to look
exactly the same. There will be multiple types of animals, each having different ways of
moving through the world.

Animal Switching

The player is able to control any of the animals in the world. Each animal type plays
differently, so that the player will have to swap between the different types to be able to
travel through the world. The player has to eat other animals in the world and turn in to
them to progress.

To encourage the player to switch animals, we also needed a way to encourage the use
of each animal type. Different weather effects, strong winds and storms are used to slow
down or prevent travel by air, and heavy snow is used to slow down the travelling on
ground. Slowing or restricting water travel is something we didn’t think was necessary,
as we felt that traversing through water would likely be the least preferable method of

3

The Grass is Always Greener

travel. This could obviously be subject to change if we find that this is not the case.

Movement

As we have multiple types of animals, each type had to have its own way of moving
around. There will at least need to be three types of animals, some that travels on ground,
some in water and some in the air.

2.1.3 Goal

All games need some sort of a win-condition, so we created a goal for the player to reach
for. The goal for the player is to reach the end of the world. As it is an exploration game,
how they reach the end is up to them. If they want to collect as many animals as possible,
want to see as much of the world as they can, or just want to try get to the end of the
world as quickly as possible, they should be able to do it the way they want and at their
own pace.

2.1.4 User Interface

The user interface had to be simple and easy-to-use. As we want to keep the player’s
attention at the game, the UI needed to be non-intrusive so as to not take too much
attention from the actual game.

2.1.5 Visual Design

The visual design of a game is very important for forming an identity, and for setting
an atmosphere for the player. We decided to go for a fully voxel-based world. Terrain,
foliage and animals are all made out of voxels.

2.1.6 Audio Design

Audio is not the main focus of the project, but audio does have a part in setting the
atmosphere for a game. The environmental audio should feel real, meaning that the
player should be able to tell the difference between an ocean and a small lake, and
between a desert and a forest. The music should give a peaceful atmosphere, but with a
bit of adventure in it.

2.2 Final Design

In this section we will go over the things that changed between the initial game design
and the final design of the game, as well as new additions. If something from the original
design is not mentioned in this section, then we haven’t made any changes to the design.

2.2.1 World

Initially we generated all the terrain using the same parameters. As we said in Chap-
ter 2.1.1, we want the world to be filled with various types of terrain. We weren’t sat-
isfied with the variety given, so to allow for more variety in a world we use biomes [3]
that can differ in how they generate the terrain through some parameters. The biomes
allow for the player to get different experiences in different places in a world.

2.2.2 Animals

In the original design we had not settled on what type of animals we wanted in the game,
except for the requirement for three types that could travel by land, air and water. In the

4

The Grass is Always Greener

end we stuck to these three types:

• Water Animal: Swims fast, but is very slow to the point that it is near unusable on
land.

• Air Animal: Can fly fast, but is slow on the ground and in water. The bird is strongly
affected by windy weather, which makes it non-preferable in some areas.

• Land Animal: The best animal type for traversing the world on the ground. Just
like the bird it is fairly slow in water.

These three animal types match the three types we wanted per the initial design.

Animal Switching

For switching animals, the original idea was that the player would eat other animals to
take over them. In the final design we ended up with a system where the player "swaps
brains" with an NPC animal to take control over it, this way the player also leave their
old body behind when taking over another animal’s body.

For the incentives for switching animals, we ended up not adding heavy snow for
preventing ground travel in the end. We found that the player would almost always
prefer travelling in the air to travel by land if possible because the player could just
look at the terrain without actually having to navigate their way through it. Because the
player preferred air travel, we did keep the idea of using strong winds in some places to
discourage flying all the time. For incentivising use of water animals, we made the strong
winds always appear when over an ocean so that the player had to use a water animal
to traverse oceans efficiently.

Collecting Animals

The ability for the player to collect animals was not something we had planned from the
beginning, but was added on later. The idea is that we want the player to be able to look
at what animals they have used during a playthrough. The should be able to look at all
the animals, and see how many they have collected of each of the different animal types.

5

The Grass is Always Greener

3 Requirements

3.1 Usability

Game controls should be intuitive so that the user can play comfortably with little to
no explanation of how to control the characters. The user interface has to be easy to
navigate and the user should not have any problems finding their way.

3.2 Reliability

The game should be running without crashing for as long as the user want to use
it, as long as the users computer meets the minimum system requirements for Unity
2017.2 [4].

3.3 Performance

The two measurements of performance for this project is the frame rate and world gen-
eration speed. On modern computer hardware the game should perform at at least 60
fps, and as the user traverses the game world, they should not be seeing chunks being
generated. We would not expect this kind of result on older hardware, but the game
should still run, although likely at a low fps and with visible chunk generation on any
hardware that reaches the system requirements for Unity 2017.2 [4].

6

The Grass is Always Greener

4 Technical Design

In this chapter we will be talking about the technical design of our game. There are
3 major components of the game that we cover here, Unity, the WorldGenManager and
Animals. Unity is the game engine we used for making the game. The WorldGenManager
is the most central class for world generation. The animals populate the game world as
either AI or player controlled characters.

4.1 Unity

In Unity, all objects in a scene are GameObjects [5]. GameObjects are comprised of one
or more components, where at a minimum it must contain a Transform component. The
Transform contains the position, rotation and scale of an object in 3D space. Compo-
nents are scripts attached to the GameObject, which can contain data and behaviour. For
example: if we want a GameObject to play audio, we add a AudioSource component
that can be used to play audio. We can then let the AudioSource play the audio just once
or in a loop, or we can add a custom script AudioController to the same GameObject
to control the AudioSource. Using the gameObject.GetComponent<Component>() func-
tion, any MonoBehaviour script can have access to any component from any GameObject
in the scene.

For a script to be attachable to a GameObject, it must inherit from the MonoBehaviour
class [6]. The MonoBehaviour class contains several functions for managing the life cycle
of the script, such as:

• Awake(): Runs when a script is instantiated. Used to initialize local data.
• Start(): Runs the first time the script is enabled after instantiation. Used to ini-

tialize data that relies on other GameObjects or scripts.
• Update(): An update function that runs every frame.
• OnCollisionEnter(): Runs when the script’s GameObject enters a collision with

another GameObject.

4.1.1 Unity UI

UI elements in Unity are special, in the way that they don’t contain a normal Transform
component, but instead has a RectTransform. The RectTransform contains size and
position data for the UI element relative to its parent GameObject in 2D space, as well as
rotation and scale.

4.2 World Generation

The WorldGenManager is the core class in the world generation system. This class is re-
sponsible for all handling of chunks and animals. When new chunks come into range or a
new animal is to be generated, the WorldGenManager places an order for the new chunk
or animal for the ChunkVoxelDataThread to handle. When the ChunkVoxelDataThread
returns a result from the order, the WorldGenManager finishes the order by generating

7

The Grass is Always Greener

meshes and doing any other work that can not be done in the worker threads. Once the
orders are completed, the WorldGenManager launches the chunks/spawns the animals
into the game world. The WorldGenManager keeps references to all the chunks and an-
imals and removes them when they get to far away from the player, it will also remove
any unhandled orders it has made where the resulting chunk/animal would be placed to
far away from the player.

1..*

1

1

1

1..*

1

1

1

1

1

1

1

1..*

1

WorldGenManager

ChunkVoxelDataThread

List<Order>

gets order

puts order

Queue<Result>

puts result

gets result

�static�
MeshDataGenerator

uses to create mesh from mesh data

uses to generate mesh data

�static�
ChunkVoxelDataGenerator

uses to generate terrain

Figure 1: The relationship between the main components in the world generation.

4.2.1 Handling Orders

The ChunkVoxelDataThread is responsible for handling the more expensive part of gen-
erating chunks and animals. The orders placed by the WorldGenManager is handled by
multiple instances of the ChunkVoxelDataThread class. When ChunkVoxelDataThread is
to handle an order, it prioritizes which orders to handle based on the player’s position
and heading. If the ordered item was a chunk, the ChunkVoxelDataThread will use the
ChunkVoxelDataGenerator to generate the actual terrain data. It will also generate any
foliage that goes into the chunk. After generating voxel data for the terrain and generat-
ing the data for the trees, the MeshDataGenerator is used to generate the mesh data for
the terrain, water and foliage using the generated voxel data. If the ordered item was an
animal, it will generate an AnimalSkeleton, and use the AnimalSkeleton’s voxel data
to generate the mesh data for the animal using the MeshDataGenerator.

Once the ChunkVoxelDataThread has done the heavy load of the order handling, it
sends the result back to the WorldGenManager. The WorldGenManager will then generate
the actual meshes for the chunks/animals using the mesh data that has been generated.

4.3 Animals

The game features 3 different types of animals: LandAnimal, AirAnimal and WaterAnimal,
these can be seen in Figure 19. The body of an animal is defined by an AnimalSkeleton,
which is generated procedurally by the game at runtime (see Chapter 6.2.7). Animals
function in their environment, with the ability to run, walk, swim and/or fly depend-
ing on the animal type. Animals may also have special actions they can perform, such
as jumping or taking off for flight. Animals also have behaviour deciding how the func-
tionality is used. The behaviour of an animal is controlled either by AI or by the player.

8

The Grass is Always Greener

The fact that animals can be controlled by either the player or an AI gives us some re-
quirements for our design. We need to separate the functionality of an animal from its
behaviour. Functionality is for instance the ability for an animal to walk in a certain
direction, whereas the behaviour is the decision to walk in a certain direction.

4.3.1 Initial Animal Design

1..1
1..1

Animal

LandAnimal WaterAnimalAirAnimal

LandAnimalPlayer LandAnimalNPC

WaterAnimalPlayer WaterAnimalNPCAirAnimalPlayer AirAnimalNPC

AnimalSkeleton

LandAnimalSkeleton WaterAnimalSkeletonAirAnimalSkeleton

Figure 2: Early animal implementation class diagram

In Figure 2 you can see a class diagram of our first design for animals. Here we im-
plemented the functionality and behaviour of animals through inheritance. The Animal
class contains base functionality needed for all animals and the (X)Animal classes imple-
ment animal specific functionality. Behaviour of animals are in this case implemented in
the (X)Animal(NPC/Player) classes. The body of the animals is implemented through
composition. The reason for implementing the AnimalSkeleton through composition is
to separate the logic for generating an animal from the logic of making the animal func-
tional. The AnimalSkeleton class is also quite big in terms of lines of code (as is the
Animal class) which makes this separation useful for maintainability.

Issues with Initial Design

The biggest issue with the first design is how behaviour is implemented. Behaviour is not
sufficiently separated from the functionality of the animal in this case as it is implemented
through inheritance. The player can become any animal they find in game if they want
to (see Chapter 6.10.1). Becoming another animal requires swapping the behaviour of
two animals. With this implementation, swapping behaviour between two animals is not
elegant since behaviour and functionality is provided by the same object. This makes it
so that we have to destroy and recreate the animals using their previous animal skeletons
so that they will look the same afterwards.

Another issue is the lack of inheritance for the behaviour. The inheritance structure
in Figure 2 is mostly supportive of the functionality of animals. The animal behaviour
also needs an inheritance hierarchy. There is common functionality between the various
NPCs and player animal behaviours. With this design we either have to duplicate the
common functionality in the various derived classes, or we have to put it in the Animal
class where it does not logically belong. We could have solved the inheritance issue
using multiple inheritance, but C# does not support multiple inheritance [7]. Multiple
inheritance would also not fix the animal behaviour swapping issue.

9

The Grass is Always Greener

4.3.2 Final Animal Design

1..11..1

1..1

1..1

Animal

LandAnimal WaterAnimalAirAnimal

AnimalSkeleton

LandAnimalSkeleton

WaterAnimalSkeleton

AirAnimalSkeleton

AnimalBrain

AnimalBrainPlayerAnimalBrainNPC

LandAnimalBrainPlayer

WaterAnimalBrainPlayer

AirAnimalBrainPlayerLandAnimalBrainNPC

WaterAnimalBrainNPC

AirAnimalBrainNPC

Figure 3: Current animal implementation class diagram

The final design addresses the issues raised for the first design. Animal behaviour gets
properly separated from the functionality of the animal. This is achieved by implementing
the behaviour through composition instead of inheritance. The behaviour is now imple-
mented in the AnimalBrain class. Using composition simplifies the process of swapping
the behaviour of two animals, which can be done by swapping the AnimalBrain of the
two animals.

Since behaviour is implemented in a separate object in this case, we can give that
object its own inheritance tree as seen in Figure 3. AnimalBrainNPC contains functional-
ity common for all NPCs and AnimalBrainPlayer contains functionality common for all
player controlled animals. This solves the second issue raised for the first design.

10

The Grass is Always Greener

5 Development Process

5.1 Working Hours

For the project we decided that each member of the group should work 25 hours per
week. As both members preferred having a flexible schedule, we did not have set working
hours as long as both members worked at least the 25 hours we had agreed on every
week.

5.2 Workflow

When choosing a development model for this project, it was an easy decision to go for a
“Scrum Lite” model. As we are only two people, and we have worked together on mul-
tiple projects in the past, there was little need for having a lot of meetings. We decided
to go for weekly sprints with an end-of-sprint meeting where we would go over the pre-
vious week’s work. We would also look at what we would be doing the next week, and
supplementing with additional meetings during the week if we felt this was necessary.

5.2.1 Development Workflow

When implementing a new feature, the person taking it would put their name on the
related card in Trello and move it from the “Sprint Backlog” tab to the “In Progress”
tab, the feature itself would be implemented in a feature branch. Whenever a feature
was ready to be merged with master, a pull request would be opened and the related
card would be moved to “Review” in Trello. The other group member would then have
to review the code before it could be merged, and either move it to “Done (Sprint X)”
if it was accepted, or back to “In Progress” if it was not. To make sure everything went
through a review, we locked the master branch from accepting direct commits. Whenever
either of us found a bug in the codebase, we would submit an issue on GitHub, and
whoever it was more relevant to, or who had time to fix it would take the issue.

5.2.2 Performance Testing and Optimization

As we were beginning to tackle performance issues with the game we wanted a method
of measuring performance. We needed this to determine if our attempts to optimize the
game were successful. Without a way to measure the performance, we had no good ob-
jective way of telling if our changes to the code were actually improvements. This lead to
the creation of two benchmarks; SynBench and RealBench. SynBench measures the per-
formance of the world generation, specifically the time it takes to generate a certain area
of the game world, while RealBench measures the frame-rate performance of the game.
When optimizing the code we used the benchmarks to compare the game performance
before and after changes made to the code. This gave us a productive and data based
optimization workflow. To read more about the benchmarks and specific optimizations,
see Chapter 7.

The benchmarks were also used to document performance changes in the pull re-
quests. We did not enforce a policy of doing tests for every pull request, but it was

11

The Grass is Always Greener

expected that tests would be done and documented for any pull request that could have
an impact on the performance, either good or bad.

5.2.3 Bug Testing and Debugging

To find bugs in the game we would play the game while trying to break it. This means
that we would not play like a normal player, but do unusual things in order to trigger
bugs. This could be things such as flying into walls to see if anything breaks. We would
also test for bugs by playing the game for an unusually long period of time. This is good
for uncovering long term issues with the code, such as memory leaks.

As our game grew in complexity so did the bugs. The bugs could be hard to repro-
duce, making the process of fixing them hard. This prompted us to develop an in-game
debugging tool. The debugging tool exposes key parts of the internal game state when
enabled. This was an improvement over the old debugging process, where we would en-
counter a bug, put print statements in suspected areas of code and reproduce the bug.
With the debugging tool we could debug a bug the first time we encounter it, saving
us the trouble of writing print statements and reproducing the bug. See Figure 4 for an
image of the debugging tool.

Figure 4: Debugging tool revealing internal game state. The element labeled 1 shows data for the
world and world generation. The element labeled 2 shows data for a specific animal.

5.2.4 Usability Testing

Our usability testing differs from the other types of testing in that it is not carried out
by us. It is hard for us to gauge the usability of the game because we developed it, and
as a consequence understand how the game works. Because of this we had external play
tester play the game and fill in a questionnaire with some usability questions made by
us. To read more about the usability testing see Chapter 8.

5.3 Coding Conventions

Coding conventions are important for keeping a code base maintainable, so we put down
some rules for how the code should look.

12

The Grass is Always Greener

• Classes and enum types, and static functions should be CaptialCase.
• Non-static functions should be camelCase.
• Be explicit about accessibility levels of class members (private, public, etc).
• Enum members should be UPPERCASE, with underscores separating words.
• "this" and "base" should only be used if necessary because of context (eg. function

parameter has same name as member variable).

5.3.1 Code Documentation

Functions, classes, structs and enums should be commented using XML comments, fol-
lowing Microsoft’s recommendation [8]. If part of a function body is particularly tricky
or unclear, or if a function is very large, then this should be commented as well.

5.4 Development Tools

Version Control

For Version Control we decided on using Git, as this is the version control system we are
familiar with. We use GitHub for hosting our repository, as we are both familiar with
using it and we both think it works well.

Project Management and Issue Tracking

We decided to use Trello for project management and for organizing our work, as Trello
is an easy to use tool that we both have experience using. For issue tracking we used
GitHub’s built-in issue tracker, as this would let us easily link Pull Requests and commits
to any related issues using smart commits.

Documentation

For documentation of the project we had a shared Google Drive folder. This contains
design documents, meeting logs and any other project documentation. We used Google
Drive because it allows for real time collaboration on the documents online. We also
documented through our pull requests on GitHub, detailing changes made in the pull
request.

Communication Tools

As we worked primarily from our homes, we needed a good way of communicating
online. We ended up using Discord as our main communication channel. The reason for
using Discord was that it is simple to set up servers and organize both text and voice
channels. Discord’s text chat also offers the ability to upload images and other media to
share this with the other member. We had a private Discord server set up that we would
use to discuss anything related to the project. We also used the built in voice chat for our
weekly sprint meetings and any other meetings we had.

Game Engine

As we did not want to build an engine from scratch, we decided to go with an existing
Game Engine. Our choice of game engine was the Unity Engine. The other alternative
we considered was Unreal Engine. Our reason for choosing Unity over Unreal is that
we both have a good amount of experience using Unity, and near none using Unreal
Engine. Unity also has a much larger community around it, making it much easier to find
information on how to make the best use use of the engine.

13

The Grass is Always Greener

Coding Environment

For our IDE, we went with Visual Studio 2017. The Unity Plugin for Visual Studio allows
us to use Visual Studio’s debugging tools with Unity.

Time Tracking

For tracking time we used a tool called Toggl. Toggl allows us to easily categorize our
work, so that we could see what our working time was spent on. Their desktop and
mobile apps have real time synchronization with their servers, so that we could have
access to the logs anywhere. They also offer an overview of the work done over the
week, which would make it really easy to see where our time went.

Misc Tools

GIMP was used briefly early on in the project for creating terrain textures before we
implemented procedural texture generation.
Audacity was used for editing audio tracks we used in the game.

14

The Grass is Always Greener

6 Implementation

Our implementation focuses on the process of generating an entire 3D world populated
with terrain, trees and animals. The base building block for the game world is a unit
cube, known as a voxel [9], in our code and thesis we may use the words: "cube", "block"
and "voxel" interchangeably when referring to voxels. We group voxels together into
chunks, and then we group chunks together to get the game world. This grouping of
space into voxels, and voxels into chunks gives us a world in separate manageable pieces,
as opposed to having the entire world being in one piece. The practice of grouping voxels
into chunks like this is used in other games that procedurally generate the world such as
Minecraft [10].

Figure 5: From left to right: A single voxel, a chunk of voxels and a world of chunks with one
highlighted chunk.

We chose to generate a voxel terrain as opposed to a height map terrain [11] for
its ability to represent complex 3D structures. With height map terrain you sample the
height as a function of the horizontal position f(x, z) in our case (Unity uses Y as ver-
tical coordinate). Because functions are special cases of relations, where every input is
mapped to exactly one output [12], they fail to represent structures such as overhangs,
which we want in our world and can be seen on the right side of Figure 5.

There are some major classes in our implementation that handle the logic of generat-
ing and maintaining the world. The main class is the WorldGenManager, which keeps
track of every existing chunk and animal, and orders new chunks/animals from the
ChunkVoxelDataThread threads as needed. The ChunkVoxelDataThread threads receive
orders from the WorldGenManager to generate some content for the world, which it exe-
cutes using the ChunkVoxelDataGenerator to generate terrain, LSystemTreeGenerator
for trees or AnimalSkeleton to generate animals. The data generated by one of these
classes is then sent to the MeshDataGenerator inside the thread to get the data needed
for meshes. The mesh data is then sent back from the ChunkVoxelDataThread to the
WorldGenManager which then deploys the generated content into the world.

15

The Grass is Always Greener

6.1 Generating Data

As the basis of our world generation we need some method of generating data. We want
to generate a continuous 3D world with landscape that progresses naturally from one
point to another. We need the world to be consistent and deterministic, meaning that
a location in the world has to be generated the same way every time it is generated.
With these requirements we need a data generator that is deterministic and not entirely
random meaning that closely related inputs should have related outputs.

6.1.1 Procedural Noise Functions

The most obvious way to generate data when programming is by using random num-
ber generators. Random number generators fail to meet the requirements that we have,
the different numbers generated have a weak correlation which would prevent us from
having terrain that progresses naturally.

A more popular way of generating data for procedural generation is by using noise
functions [13]. Noise functions takes a coordinate as input and returns a noise value,
usually in the 0 to 1 range or -1 to 1 range. The noise value returned by the function
changes gradually as you change the input, meaning that the noise function will return
similar values for input coordinates that are close to each other. Noise functions can also
be deterministic, so calling the noise function with the same coordinate as input always
returns the same value. Noise functions can be thought of as sampling a noise plane(in
the case of 2D noise functions), these planes can be virtually infinite in size with every
point containing a noise value. See Figure 6 for an image of two noise planes produced
by simplex noise.

Noise functions can also be combined with two control variables, frequency and seed.
The frequency controls how quickly you traverse the noise plane as you sample and the
seed controls where in the noise plane you are sampling. Using a low frequency would
generate fewer large scale features and using a high frequency would generate a lot of
small scale features. Using noise functions with frequency and a seed would be done like
this: noise(coordinate * frequency + seed). See Figure 6 for a comparison of low
and high frequency noise sampling.

Figure 6: From left to right: low frequency noise sampling and high frequency noise sampling. The
noise function was called with the pixel coordinates as input. Noise values are used as gray-scale
color values to make the pictures.

16

The Grass is Always Greener

Various noise functions share some core functionality, the type we are interested in
is known as lattice gradient noise [13]. They partition space into a lattice using some
primitive. They take the input coordinate and find the primitive containing the input
coordinate. Then they find the corners of the primitive and use them in some calcula-
tions. Hash functions are usually used in these calculations to give them pseudo-random
characteristics. Once they have calculated a noise value for every corner of the primitive
containing the input they work out how much each corner should contribute to the final
noise value, usually based on the distance from the corner to the sampling point.

6.1.2 Simplex Noise

Simplex noise is the successor to Perlin noise, both of which were created by Ken Per-
lin [14] [15]. The main difference between simplex and Perlin noise is how they parti-
tion space. Perlin noise partitions space into N dimensional cubes, whereas simplex noise
partitions space into the simplest shape for the given dimension. For the first three di-
mensions these shapes would be: a line, a triangle and a tetrahedron. For Perlin noise the
shapes are: a line, a square and a cube. The benefit of using a simplex instead of a cube
is that you have to sample less points when calculating noise. The number of points in a
simplex grows by 1 + n where n is the number of dimensions, for N dimensional cubes
the number of points grows by 2n. This means that simplex noise has a lower time com-
plexity then Perlin noise. The use of simplexes was also found to decrease the prevalence
of directional artifacts in the generated noise [16]. For these reasons we decided to use
simplex noise instead of Perlin noise in our game.

Our implementation of simplex noise covers 1D, 2D and 3D versions of simplex noise
and is based on an article written by Jasper Flick [17]. We will be explaining the 2D
implementation of simplex noise here. The 2D simplex is a triangle, because of that we
will be partitioning space into equilateral triangles. We will break the noise sampling
down into 4 steps which are:

1. Finding the corners of the equilateral triangle containing our point.
2. Calculating the noise values for each corner.
3. Calculating the falloff for each corner.
4. Combining the corners into a final noise value.

Finding the corners of the equilateral triangle containing our point

The coordinate system already gives us a space partitioned into squares. For any given
point you can floor its position and add 1 to its components to find the 4 corners of the
square containing it as seen in Figure 7. If we split the square along its diagonal we get
two right isosceles triangles as also seen in Figure 7. When we sample noise we want to
find the corners of the equilateral triangle containing the point we are sampling. There
is no obvious way of finding the corners of the containing triangle as there is with the
containing square mentioned earlier. For this reason we want a method of transforming
our equilateral triangle into one of the triangles shown in Figure 7. Finding the corners
of the transformed triangle is easy and by transforming them back into an equilateral
triangle we get the corners we want.

We now need some method of doing the actual transformations between the equi-
lateral triangle grid and the right isosceles triangle grid. For an image of the two grids
see Figure 8. We will start by working out how to transform a right isosceles triangle

17

The Grass is Always Greener

P = floor(p)

p

P

P + (0, 1)

P + (1, 0)

P + (1, 1)
y > x

x > y

Figure 7: A point inside a square and the corners of the square. A square split in half.

into an equilateral triangle. We need to scale every point along the main diagonal. This
can be done by subtracting how far along the diagonal the point is multiplied by some
factor S. This scaling factor that we subtract by is: S(x + y) and it is used like this:
P = (x− S(x+ y), y− S(x+ y)).

Figure 8: The equilateral triangle grid was produced by transforming the right isosceles triangles
using S(x + y).

To work out the scaling factor S in S(x+ y) we can consider the case of transforming
the triangle ABC into its equilateral version A ′B ′C ′. ABC is defined by A = (0, 0),
B = (0, 1) and C = (1, 1). We can make a quadratic equation to find S since we know
that the resulting triangle has sides of equal length. We choose |A ′B ′| = |A ′C ′|, since A

is zero we can ignore it and simply do |B ′| = |C ′|. B ′ is given as B ′ = (−S, 1−S) and C ′ is
given as C ′ = (1− 2S, 1− 2S). C ′ and B ′ were obtained by subtracting the scaling factor
S(x + y). Calculating S for transforming into the equilateral triangle grid can be now be
done as follows:

We will be using the squared lengths to avoid square roots.
|B ′|2 = |C ′|2

S2 + (1− S)2 = 2(1− 2S)2

2S2 − 2S+ 1 = 8S2 − 8S+ 2

−6S2 + 6S− 1 = 0
Solving the quadratic equation gives the solutions:
S = (3−

√
3)/6 and S = (3+

√
3)/6.

We want the smaller of the two solutions as our S in S(x+y) because the other solution
would create negative triangles. We now have S = (3 −

√
3)/6 for transforming into the

18

The Grass is Always Greener

equilateral triangle grid. We now need a second S for transforming out of the equilateral
triangle grid. The second S can be found by reversing the the transformation we just did.
The point C ′ = (1−2S, 1−2S) was transformed to C ′ = (1−2(3−

√
3)/6, 1−2(3−

√
3)/6)

and it has to become C = (1, 1) to transform out of the equilateral triangle grid. By
solving it for C ′.x = C.x we can find the new S. C ′ now has to be transformed out of the
equilateral triangle grid so this time we add by the scaling factor S(x+ y):

Start by simplifying C ′.x

C ′.x = 1− 2(3−
√
3)/6 = 1/

√
3

Now we add the scaling factor to C ′.x.
x = y in this case so S(x+ y) becomes 2Sx giving
S(x+ y) = 2S/

√
3

C ′.x then becomes C ′.x = 1/
√
3+ 2S/

√
3

This give us the equation:
1/
√
3+ 2S/

√
3 = 1 for C ′.x = C.x

Isolating S gives:
S = (

√
3− 1)/2

We now have our two scaling factors (3 −
√
3)/6(x + y) for transforming into the

equilateral triangle grid and (
√
3 − 1)/2(x + y) for transforming out of the equilateral

triangle grid. We can now find the corners of the equilateral triangle containing our
point. We start by transforming our point P out of the equilateral triangle grid. We then
floor P giving us the two corners along the diagonal: floor(P) and floor(P) + (1, 1). To
find the last corner not on the diagonal, we need to work out which of the two triangles
making up the square we are in, as seen in Figure 7. We look at the fractions of x and
y, the fractions gives us our local coordinate for the square. The comparisons in Figure 7
is then used to determine if the last corner is floor(P) + (0, 1) or floor(P) + (1, 0). Now
that we have our corners we can transform all of them back to the equilateral triangle
grid and use them for calculating noise.

Calculating the noise values for each corner

Simplex noise is a type of noise function known as gradient noise. This means that for
every point we sample we map that point to a gradient which we use for calculating the
noise. Simplex noise uses a hash to map a point to a gradient, giving the noise pseudo-
random characteristics. The hashing uses a int[] hash array with the numbers 1-255 in
a random order combined with int hashMask = 255 and bit-wise logic on the point in
question. The hash value for a corner is calculated as: int hashValue = hash[hash[ix
& hashMask] + iy & hashMask] where ix and iy is the x and y of the corner. The gra-
dients are implemented in a similar manner to the hash with a Vector2[] gradients2D
array containing 8 evenly spread directional vectors and a mask int gradientsMask2D
= 7. By taking the calculated hash value for the corner we find the gradient for the corner
using Vector2 gradient = gradients2D[hashValue & gradientsMask2D];.

Once we have the gradient for the corner we calculate the noise value as: float
cornerNoise = dot(gradient, (point - corner)) where point is the point that the
noise function was called with.

19

The Grass is Always Greener

Calculating the falloff for each corner

We need to compute a falloff value for every corner as well that we multiply the corner
noise value by. This makes it so that corners close to the sampling point contributes more
then distant points for the final noise value. We want a falloff function that starts at
1 when the distance D = length(point − corner) is 0. This makes it so that a corner
would contribute fully to the noise value when it equals the sampling point. We also want
the falloff function to reach 0 when the distance D reaches the height of the equilateral
triangle and stay at 0 for distances longer then that. We can start with (1 −D2)3 as our
falloff function and adjust it for the height of the triangle. (1−D2)3 is 1 when D is 0, its
value is 0 when D = 1 and the derivative is zero for D = 1.

We now have to adjust 1 in (1−D2)3 for the height of the equilateral triangle and we
are almost done. The height of an equilateral triangle is calculated by taking the length of
an edge and multiplying it by

√
3/2. We can use the A ′B ′C ′ triangle from Chapter 6.1.2

to calculate the edge length of our equilateral triangles.

We can use |B ′| from A ′B ′C ′ as our edge.
With B ′ = (−S, 1− S) and S = (3−

√
3)/6) we get:

|B ′|2 = 2/3

|B ′| =
√
2/
√
3

The height then becomes:
H = (

√
2
√
3)/(2

√
3)

H =
√
2/2

The height of our triangle is
√
2/2, we are using the squared distance in our falloff

function, so we should square the height also. This gives us the falloff function: (1/2 −

D2)3. Our falloff now starts at (1/2)3 so we have to scale the result by the end to get
correct values.

Combining the corners into a final noise value

We compute the noise value for every corner multiplied by the falloff, then we add them
together an normalize the result. The maximum value occurs when the sample point is
at the center of the triangle, with all gradients pointing towards the center. The distance
from a corner to the center is calculated by taking the edge length multiplied by

√
1/3.

This gives us the distance D =
√
2/3 (using the edge length calculated earlier). The

noise value for a corner is calculated as float cornerNoise = dot(gradient, (point
- corner)), in this scenario the point is at the center and the gradients are pointing at
the center. This makes gradient and (point - corner) parallel and the dot product
can be computed as |gradient||point− corner|, since the gradient is a unit vector it can
be reduced to |point − corner|. The point being at the center gives: |point − corner| =√
2/3 = D. The noise value of one corner then becomes D(1/2−D2)3 which is the noise

value multiplied by the falloff, in this case the noise value equals the distance also. There
are three corners so the final maximum un-scaled noise value is:

3D(1/2−D2)3

Substituting D with
√
2/3 yields the maximum value:

125
√
2/5832

Inverting and simplifying yields the scaling factor:
2916
√
2/125

20

The Grass is Always Greener

We can now take the inverse of the maximum noise value 2916
√
2/125 and multiply

it by the sum of the noise from the corners to produce our final noise value for the point
inside the equilateral triangle.

Scaling up to 3D noise

There are a lot of similarities between 2D and 3D simplex noise. For 3D noise space
gets partitioned into tetrahedrons instead of equilateral triangles. And we transform the
points between the tetrahedron grid and cube grid for the same reasons as in 2D. The
logic obviously gets a lot more involved in 3D, tiling space into equilateral triangles is
easier then doing it with tetrahedrons. However the core principles still applies.

6.1.3 GPU Noise

We use noise on the GPU as well for generating textures for the terrain and animals,
see Chapter 6.9. It is important to us that the noise function used on the GPU is fast,
because it could be called once for every pixel on the monitor or more. Because of this
we have not used simplex noise, but a simpler implementation of a 3D lattice gradient
noise function. The noise function we use is based on HLSL port [18] of a noise function
made by Inigo Quilez [19]. It samples noise from the integer lattice grid, calculating a
noise value for each point using a hash function, then the points gets interpolated into a
final noise value. The function is almost like Perlin noise [14] without the gradients.

Listing 6.1: GPU noise hash function

f l o a t hash (f l o a t n){
re turn f r a c (abs (s i n (n) ∗ 43758.5453));

}

Since the noise function is sampling points from the integer lattice grid, the points of
the bounding integer cube for our sampling point can be found with the method from
Figure 7. The noise value for one of the corners of the integer cube is the hash value
calculated by the noise function in Listing 6.1, the abs term makes the final noise value
in the 0-1 range. Since the hash function takes a scalar input we convert the sampling
points to a scalar using: scalar = point.x+point.y∗57+point.z∗113 before calling the
hash function. Once we have a noise value for every corner we combine them into a final
noise value using interpolation. The interpolation factor used is t = frac(inputPoint),
we then calculate a falloff for t as such: t = t2(3 − 2t). We start by interpolating all of
the 8 noise values along the X axis, in pairs of 2 using t.x. This halves the initial 8 values
to 4, we repeat the process in the Y axis giving us 2 points, then finally do the process
one more time in the Z axis giving us the final noise value. See Figure 9 for an image of
the interpolation process applied to 4 points.

X

Y

Figure 9: The black dots are the initial points that noise values have been calculated for. The noise
values are interpolated along the X axis as shown by the blue lines and dots. Then interpolated
along the Y axis as shown by the red line and dot. The interpolation factor used is the fractions of
the input point.

21

The Grass is Always Greener

6.1.4 Poisson Disk Sampler

Poisson Disk Sampling is a non-uniform sampling pattern that will spread points in a
uniform way so that points will not cluster together and wont leave large empty spaces,
as opposed to random sampling where the points will cluster together and there will be
large empty spaces, which can be seen in Figure 10. Our approach to the Poisson Disk
Sampler is based on an article by Robert Bridson [20].

Figure 10: Comparison between Poisson Disk sampled points and randomly sampled points. Left:
Poisson Disk Sampling, Right: Sampled using uniform distribution.

Before we start sampling we create a list activePoints that contains all the points
that we can still sample for neighbours, and a 2 dimensional boolean grid doneGrid
of where points have been placed covering the sampling domain. We choose a random
location in the sampling domain, check it off in the grid and add it to activePoints. For
as long as there is at least one point in activePoints, we take a random point out of the
list for sampling. Once the list becomes empty, we are done sampling.

Sampling a point

When sampling a point, we generate up to 30 points in the annulus of the sampling
point. The annulus is between R and 2*R away from the sampling point, where R is
a set radius. For each of these points, we validate that they are not to close to any
existing point on our grid. When we find a point that is valid, we add it to doneGrid
and to activePoints, and consider ourselves done with this sampling point for now. If
we manage to generate all 30 points without finding one that is valid, we remove the
sample point from activePoints. When we’re done with the sampling point we choose
a new random point from activePoints to check next.

Point validation

To validate a point we check the points in doneGrid for any points within R of the point
we are checking, if we find any points within R of the point, then the point is not valid.
Figure 6.1.4 shows an example of a valid test and an invalid test against an existing point.
The figure obviously only shows one existing point, but the same test is run against all
existing points.

22

The Grass is Always Greener

a1 a2

b1

b2

Figure 11: Two points being checked against existing points. Left: Point a2 is tested against existing
point a1. Right: Point b2 is being tested against existing point b1, but is to close.

6.2 Procedural Generation

The core of our procedural generation is the BlockDataMap. Whenever we generate
something in the world, the data for that something is stored in a BlockDataMap. That
BlockDataMap is then sent to the MeshDataGenerator to generate a mesh to place in
the world. The BlockDataMap contains an array of BlockData objects, the array is one
dimensional but it represents 3 dimensions and we index it with x, y, z. BlockData con-
tains the block type information on a voxel, one for the base type of the block (Water,
Dirt, Sand, Wood, Leaf or Animal Skin) and a modifier type (Grass or Snow) which is
used for generating textures (Chapter 6.9) and for audio (Chapter 6.8).

6.2.1 Mesh Generation

We have two methods for generating mesh data, one is a NaiveMeshDataGenerator
which simply generates a face for every side of a block where it does not have a neigh-
bour, and the other is a GreedyMeshDataGenerator which optimizes the number of faces
it creates to minimize the vertex count. The reason for having two MeshData generators
is that we need the NaiveMeshDataGenerator for animals as they need more vertices for
animation, while the GreedyMeshDataGenerator is needed for the terrain as we want to
optimize the mesh as much as possible.

The MeshData generators don’t generate the actual mesh, only the data needed to
create the mesh. This is because the MeshData is generated in a worker thread, and
Unity does not allow for use of the Mesh class outside of the main thread. How this and
the rest of our multithreading system works is explained in detail in Chapter 6.4.1.

Naive Mesh Generation

To generate mesh data, the NaiveMeshDataGenerator goes through every block in the
BlockDataMap, and for all six sides it checks the neighbouring block on that side to see if
that block is solid or not. If the neighbouring block is not solid, a face will be generated,
but if the block is solid no face is generated, as the face would never be visible, and would
have no use for collision. The NaiveMeshDataGenerator takes in a MeshDataType, which
helps discern how the mesh should be generated. If the MeshDataType is water, then it
will only generate faces for water blocks and if it is terrain it will treat water blocks like
as if there was no block there. Whenever the generator is generating MeshData for water,
the neighbour check does not check if the neighbour is solid, but if it is also water. Faces

23

The Grass is Always Greener

are then generated whenever the neighbour is not water.

To generate a face (consisting of two triangles) for a block, the NaiveMeshDataGenerator
uses the direction and the center point for the block to calculate the vertex positions, nor-
mal values and texture coordinates. If the MeshDataType is MeshDataType.TERRAIN or
MeshDataType.TREE, it will embed the BlockType data in the vertex color so that tex-
tures can be generated on the GPU. If the MeshDataType is MeshDataType.ANIMAL, then
we embed a seed in the UV for generating the texture on the GPU. How the textures are
generated is explained in Chapter 6.9.

Greedy Mesh Generation

The NaiveMeshDataGenerator was fairly simple to implement, but it is not very opti-
mal. While it does cull faces that will never be displayed, if you had a mesh made from
10x10x1 blocks, there would be 240 faces, or 960 vertices needed for this mesh, while an
optimal solution would only need 6 faces, or 24 vertices. As the number of blocks increase
the difference between the naively generated mesh and the optimal mesh becomes even
larger, so we wanted to find a way to optimize the vertex count because it was affecting
the frame rate in the game. This is what lead to the implementation of the greedy mesh
generator. In the end, we were not actually able to use the GreedyMeshDataGenerator
for the terrain because it results in visual artifacting as a result of T-junctions causing
floating point imprecisions [21].

Figure 12: The effect of the optimized mesh can be seen very clearly, especially on the water. (Left:
Greedy, Right: Naive)

The GreedyMeshDataGenerator is based on an article and an implementation by
Mikola Lysenko [22], the difference between our implementation and his implemen-
tation is that ours support multiple block types, while his version is a binary voxel or no
voxel.

The way the GreedyMeshDataGenerator works is by looking at the problem as a
series of 2D grids instead of as a 3D grid. When going through the BlockDataMap we
take one layer at a time and create a mask that can be used for generating the MeshData
itself. The mask is made up of a 2D array of VoxelFaces, where each VoxelFace contains
BlockData and whether the face is flipped.

To create the layer mask we go though each point in the layer and look at what type
of block it is, we also look at the neighbouring same point in the next layer down. If both
points contain a block, or neither contains a block, nothing is added to the layer mask. If
only one of the points contain a block we add a new VoxelFace with the BlockData of
the block. If the point with a block was in the next over layer, we set the VoxelFace to be

24

The Grass is Always Greener

flipped. After creating a layer mask, we can generate the actual mesh data for this layer.

To generate MeshData from the layer mask we go through the mask starting at (i, j).
We then calculate the width by going through the x-direction until we reach the end of
the layer mask, or we find a different VoxelFace. The width is then stored in a variable
w. When we have the width, we can calculate the height. To calculate the height we
go through the y-direction and check every VoxelFace from x=i to x=i+w in until we
find a VoxelFace that does not match the original one. Once we find a non-matching
VoxelFace, we get the number of full rows and store that as the height in a variable h.
We now have a quad (i, j, i+w, j+h) which we can use together with the VoxelFace to
generate mesh data. The i is then incremented by w and we can start again at the new
(i, j) and keep going until we reach the end of the layer mask.

To generate the MeshData, we use the included quad to generate the vertices, and
the members of the VoxelFace to generate normals and texture coordinates. Just like in
the NaiveMeshDataGenerator we also embed the BlockType data for texture generation
on the GPU if the MeshDataType is MeshDataType.TERRAIN or MeshDataType.TREE. The
texture generation is explained in Chapter 6.9.

The process of going through the layers, creating a layer mask and generating the
mesh data from the mask is repeated for all 3 dimensions.

6.2.2 Terrain Generation

There are 3 phases to generating the terrain of a chunk. In the first phase we generate
three 2 dimensional maps covering the chunk, these are the biome map, the corruption
map and the heightmap. In the second phase we generate the 3D block map with 3D
noise through selective sampling. The final phase is going over the terrain and setting
the actual types for each block in the terrain and adding water where that goes.

Figure 13: The 3 phases of terrain generation. From left to right: 2D terrain only, 3D terrain without
block types and finished 3D terrain.

Phase 1: Generating the 2 dimensional maps

We start off by generating the biome map and the corruption map for the chunk. The
biome map is a 2D array containing lists of pairs of biomes and their weight on the
position. How we find the biomes and their weights for a position in the map is explained
in detail in Chapter 6.2.3. The corruption map contains the corruption factor for the
position. Corruption is explained in detail in Chapter 6.2.4. The final 2 dimensional map
we have to generate for the chunk is the heightmap, this contains the 2 dimensional
noise used to generate the terrain.

The heightmap is generated using multiple octaves, this is so that we can have differ-
ent levels of features, ranging from mountains to small mounds. We have an octaveStrength
which starts at 1, but halves with every octave. This octaveStrength is used to control

25

The Grass is Always Greener

the frequency and amplitude of the noise we are sampling. For each octave, we calculate
a weighted average of a 2D simplex noise sample from all biomes in biomemap[x,z]. The
noise sample we create for each biome uses the frequency from the biome divided by the
octaveStrength. Once we have calculated the weighted average we add the resulting
value multiplied by the octaveStrength to a variable finalNoise and add the current
octaveStrength to a variable noiseScaler. When we have gone through all the octaves,
we normalize the noise value by dividing the finalNoise by the noiseScaler.

Each biome can contain a minimum and a maximum ground height, so we calculate
the weighted average of both minimum and maximum ground levels for all biomes in
biomemap[x,z]. We can now set heightmap[x,z] = minGroundHeight + finalNoise
* (maxGroundHeight - minGroundHeight) so that the value in heightmap[x,z] is how
many voxels there are between the ground and the bottom of the world.

After we have generated the biome map, corruption map and heightmap we initialize
the BlockDataMap for the chunk with the data from the heightmap. The reason for this
is that we do not sample every block in the BlockDataMap in phase 2 for performance
reasons, so initializing everything here makes sure that all blocks have been initialized.

Generating the 3 dimensional block map

As sampling 3d noise for every block in the BlockDataMap would be to expensive (See
Chapter 7.3), we place any blocks we want to sample into a sampling queue. We also
have a 3D boolean array where we check off positions once they have been added to the
queue, so that we don’t end up sampling a block more than once. The queue is initialized
by adding (x, heightmap[x,z], z) for every x and z in the chunk, and all the positions
of at the sides of the chunk. When we pop a position off the queue, we sample this
position with a combination of 2D and 3D noise, the block at the sampled position in
the BlockDataMap is then updated with the result from the sampling. If the block ended
up changing from BlockType.NONE to BlockType.DIRT or vice versa, we queue up any
neighbouring positions that have not yet been queued, and is within the bounds of the
chunk. This process is repeated for as long as there are positions in the queue to sample.

To decide whether a position should contain a block or not, we generate three 3D
noise values that we combine with the already generated 2D noise. The first of the 3D
noise values is the structure noise, this is used to decide where in the world (in addition
to the terrain generated by the heightmap) we want to have blocks. To calculate the
structure noise, we use 3D simplex noise (see Chapter 6.1.2) which is interpolated
down towards 0 the closer the sampled position’s y-value is to the world height, so that
we don’t get any flat cutoffs at the top of the world. The second of the 3D noise values is
the unstructure noise, which is used to decide where we in the world we do not want
to have blocks. Unstructure noise, like the structure noise uses 3D simplex noise, but
interpolates up towards 1 the closer to 0 our sampled position’s y-value is instead, so that
we don’t get any holes in the ground. The final noise value we need is the corruption.
This value is, just like the previous two values using 3D simplex noise, the corruption
is explained further in Chapter 6.2.4. If the biome map generated earlier contains more
than one biome in biomemap[samplePos.x,samplePos.z], then these 3 noise values are
calculated for every biome and a weighted average is calculated based on the weight of
each biome in biomemap[samplePos.x,samplePos.z] (see Chapter 6.2.3).

In addition to the sample values we calculated for structure, unstructure and

26

The Grass is Always Greener

corruption there are also cutoff points for each of them stored in the biomes. Just
like with the noise values we use weighted averages if there is more than one biome in
biomemap[x,z]. There is also the corruptionFactor, which increases the further from
(0,0) the sample position is and is used for interpolating the corruption cutoff down to-
wards 0 the closer to (0,0) the sample position is. Together with the 2D height value
from heightmap[x,z] we send these value to a function posContainsVoxel() to check
if there should be a block at the sampled position.

Listing 6.2: posContainsVoxel() function.

bool posContainsVoxel (Vector3 pos , int height ,
float structure3DRate , float unstructure3DRate , float corrupt ionRate ,
float s t ruc tu re , float unst ruc ture , float corrupt ion , float co r rup t ionFac to r) {

bool inHeight = pos . y < height ;
bool i n S t r u c t u r e = structure3DRate > s t r u c t u r e ;
bool inUns t ruc ture = unstructure3DRate < uns t ruc tu re ;
bool inCorrupt ion = corrupt ionRate ∗ co r rup t ionFac to r > cor rupt ion ;
return (inHeight || i n S t r u c t u r e || inCorrupt ion) && (inUns t ruc ture) ;

}

Finalizing the block map

Now that we have generated the block map, we can go through all the blocks and fi-
nalize their block types. If the blocks type is BlockType.DIRT then the block types are
decided by the biome(s) in which a block is. If there is only one biome, then that biome
simply decides the block type, but if there are multiple biomes the biome used is selected
randomly, with the biomes having a non-equal chance of being chosen based on a cal-
culated weight. This weight is calculated as weight=Mathf.Pow(oldWeight*0.25f,2),
where oldWeight is the weight already stored with the biome in biomemap[x,z]. The
reason we’re not using the weight in the biome manager directly is that the transition
wouldn’t look good, so we tweak it to make the transition look better. After setting the
block type for all the blocks, we have to add the snowline. For this we find the weighted
average of the snow lines from the biomes the block is on, and if the block is above the
snow line we set the blocks modifier to BlockType.SNOW. See Chapter 6.2.3 for how the
biome does its part in deciding the block types.

While going through and setting the block types for all the blocks, we also place out
water. Whenever we are at an block whose block type is BlockType.NONE we check if it is
below the water level. If the block is below water level we add in a water block at (x, y
+ corruptionWaterHeight, z), where corruptionWaterHeight is calculated using the
corruption map from phase 1, how this is calculated and why we have this is explained
in Chapter 6.2.4.

6.2.3 Biomes

The biome system was created to give more variety to the terrain, with areas that can
vary wildly in how they look. Before we implemented the biomes, the terrain wouldn’t
be very different at different places in the world, but now that we have biomes, we
can find everything from snowy mountains, to large oceans, to dry empty deserts. The
biomes contain the values necessary for generating the terrain; noise frequencies and
cutoff points for both 2D and 3D noise that is used to generate the terrain (see Chap-
ter 6.2.2), as well as a snow line and tree density. The biomes also contain a function

27

The Grass is Always Greener

getBlockType() used for deciding the block type of a block. All biomes inherit from a
BaseBiome class, which contains the default getBlockType() function.

Biomes are managed by the BiomeManager. The BiomeManger stores the biomes
placed in the world in a list List<Pair<BiomeBase, Vector2>> biomePoints, contain-
ing the biomes and their positions in the world. It is easily extensible, so new biomes can
be added very easily.

We have implemented 5 biomes:

1. Basic Biome: This was the first biome we added, the values it uses for generating
terrain and foliage are the same as the ones we used before adding the biomes. It
is a generally hilly biome, with some snow covered tops and water filled valleys.

2. Mountain Biome: The mountain biome is mostly covered in snow, due to having a
lower snow line than other biomes, as well having a much higher minimum ground
level than the other biomes.

3. Forest Biome: This biome is a relatively flat biome, and is for the most part covered
by a thick forest.

4. Desert Biome: Entirely covered in sand, this biome is the only implemented biome
to use a custom function for getting the type of a block.

5. Ocean Biome: This biome is almost entirely covered in water, except for small
islands that can be encountered every once in a while.

Figure 14: Biomes. From top left: Basic Biome, Mountain Biome, Forest Biome, Desert Biome,
Ocean Biome.

Adding biomes to the world

The biomes are placed in the world using Poisson Disk Sampling (see Chapter 6.1.4). The
reason for using Poisson Disk Sampling is that we wanted the biomes to be of comparable
size, instead of having some biomes spanning very large areas, and some being very
small. Poisson Disk Sampling allows for this, and generates large amounts of points in
a very short time. For using the Poisson disk sampler, we generated it with a sample
domain of 500x500, and a radius of 5. The points returned from the Poisson disk sampler
are scaled up by a factor of 100, so that the points span a 50000x50000 block area. The
world only goes out about 20000 meters from spawn before it ends, so 50000x50000
meters of biome coverage is enough. For every point from the Poisson disk sampler,
we choose a random biome and add the biome and point to the biomePoints list. The

28

The Grass is Always Greener

randomly chosen biome is also placed in a 2 dimensional array biomeGrid covering the
sample domain, at the position given by the Poisson disk sampler.

Finding biomes in range of a point

Whenever a point (x,z) in the world is checked for in-range biomes, the first thing we do
is figure out how far away the point is to its closest biome and store it in closestBiomeDist.
Knowing the distance from the closest biome, we can find all biomes within range. The
range is set to be closestBiomeDist + biomeBorderWidth, where the biome border
width is the size of the transition area between biomes. While going through the biomes
to find the ones that are in range, we also save the distance from our point to the biome
in a pair with the biome itself in a list List<Pair<BiomeBase, float>> inRangeBiomes.
The float part of the pairs will later be replaced with the weight of the biomes. If
there is only one biome within range of our point, then we set the weight of it as 1
and return the list. However, if there is more than one in-range biome, we need to
calculate the weights of each of these biomes. We calculate the weight of one biome
using a falloff function p.second = Mathf.Pow(1 - (p.second - closestBiomeDist)
/ biomeBorderWidth, 2); where p.second is the float part of the biomes pair in the
inRangeBiomes list. The reason for calculating the weight like this instead of using a
linear falloff function is that the linear falloff looks bad, and through experimentation
we found that this falloff function looked good. After calculating the weights for all the
biomes, we normalize the weights so the sum of all the weights are 1.

Deciding the type of a block

Most biomes stick to the standard getBlockType() function that can be seen in List-
ing 6.3, with the exception of the desert biome. The function takes the BlockDataMap
we want to alter, and the position of the block, the reason why the BlockDataMap is
included is because the type of the block might depend on the blocks around it.

The BiomeBase.getBlockType() function is fairly straight forward. As the blocks are
always BlockType.DIRT when first generated (see Chapter 6.2.2), we can assume that
any block sent to this function will be BlockType.DIRT. The first thing we do is set the
base blocktype. If the position is below the water level, it is set to BlockType.SAND. When
the base block type has been set, we set the modifier of any dirt block with no block above
it to BlockType.GRASS.

Listing 6.3: BiomeBase.getBlockType()
public virtual void getBlockType (BlockDataMap data , Vec to r3 In t pos) {

int pos1d = data . index1D (pos . x , pos . y , pos . z) ;
int above1d = data . index1D (pos . x , pos . y + 1 , pos . z) ;
// Add block type:
if (WorldGenConfig . pos i t ion InWater (pos))

data . mapdata [pos1d] . blockType = BlockType .SAND;

// Add modifier:
if (pos . y == WorldGenConfig . chunkHeight − 1 ||

data . mapdata [above1d] . blockType == BlockType .NONE) {
if (data . mapdata [pos1d] . blockType == BlockType . DIRT) {

data . mapdata [pos1d] . modi f i e r = BlockType . GRASS;

}
}

}

DesertBiome.getBlockType() is even simpler than BiomeBase.getBlockType(), as

29

The Grass is Always Greener

it sets all the dirt blocks to BlockType.SAND.

Listing 6.4: DesertBiome.getBlockType()
public override void getBlockType (BlockDataMap data , Vec to r3 In t pos) {

int pos1d = data . index1D (pos . x , pos . y , pos . z) ;
// Add block type:
data . mapdata [pos1d)] . blockType = BlockType .SAND;

}

6.2.4 Corruption

One of the features that we wanted for the game from the beginning was corruption
of the world as you progress through it. What we mean by corruption is that the world
should look increasingly surreal as you move away from the origin. This includes having
the world generate terrain that breaks intuition and the laws of physics. We made the
corruption of the world express itself in 4 ways. These are: water elevation, 3D structures
in the terrain, sky color change and sun manipulation. The degree of corruption is given
by calculating a corruptionFactor in the 0 to 1 range, 0 being no corruption and 1 be-
ing full corruption. The corruptionFactor increases linearly with distance from origin,
making the corruption of the world gradual. For an image of the effects of corruption see
Figure 15.

Figure 15: This image shows the same area of the world with no and full corruption applied. The
left image has no corruption while the right image has full corruption.

Corruption factor

The corruptionFactor is a value that is calculated for every horizontal voxel coordinate.
It is only influenced by horizontal position (x and z coordinates). The value is calculated
as the input coordinate’s distance from origin divided by the maximum distance for the
world, the value is then clamped to the 0 to 1 range. This creates a linear corruption
of the world from start to finish. However this prevents the player from ever experi-
encing the non-corrupted world, so we add a grace period of a certain distance to the
calculation. The grace distance is subtracted from both distances in the division, so that
the corruptionFactor does not increase before after the grace distance. The world also
ends when the corruptionFactor becomes 1, which is expressed as the absence of any
terrain. See Figure 35 for an image of the end of the world.

Water elevation

The water elevation is implemented in such a way that it looks like the water bodies
have floated out of the water bed. This means that the floating water bodies maintain

30

The Grass is Always Greener

the shape they would have had if they were placed correctly in the water bed. To elevate
the water we take the corruptionFactor of any given water block and use it to calculate
a height offset for the block. The offset is calculated as maxOffset * corruptionFactor
which is then added to the water blocks original height.

3D structures

The 3D structures works the same way as the 3D Structure noise(see Chapter 6.2.2). It
is used to generate 3D structures in the world by sampling 3D noise and comparing the
noise values to some cutoff. If the noise value at a coordinate is less then the cutoff value
that coordinate should contain a voxel. To make the generation of the corruption 3D
structures gradual we multiply the corruptionFactor by the cutoff so that it gradually
increases in value. The corruption 3D noise is generally used with a higher frequency
and a more permissive cutoff then the normal terrain noise. This is because we want it
to create more pronounced features in the terrain, such as a floating ball of voxels. The
normal 3D noise used for terrain used with a low frequency creates larger scale structures
such as overhangs.

Sky color

The sky color change is done by interpolating between two cubemap textures used for
the skybox. The interpolation factor used is the corruptionFactor of the player position.
This makes it so that the sky slowly goes from the bright sky seen in Figure 15 to the dark
sky seen in the same figure.

Sun manipulation

Since our sun is a directional light we can simulate sunsets and sunrises by rotating
the light. When the corruptionFactor of the player goes above 0 the sun will start
rotating towards randomly selected rotations between a sun set and mid day. The time
of a rotation is constant, not depending on the number of degrees required to complete.
This makes the various sun rotations erratic without apparent patterns, building up the
theme of chaotic corruption that we want. As the corruptionFactor increases the speed
of the sun rotations also increase.

Other implementations we considered

The above implementation of corruption was one of 4 implementations we proposed
before we begun implementing.

One of the other approaches involved making a corrupt version of every biome(see
Chapter 6.2.3), then we would use the corruptionFactor to interpolate between the
two versions. This approach had the benefit of giving us a lot of control regarding how
the corruption would look, since we could design the corruption for every biome. The big
drawback of this approach is the fact that it would double the amount of noise sampling
we would have to do, which is why it was not chosen.

Another approach was a modification of the above approach, where we would make
biomes with various stages of corruption. We would then use the corruption factor to
decide which version of the biome to use. This fixes the problem with the above im-
plementation but creates two new problems. We would have to design a lot of biomes
and the corruption would be introduced in various steps, reducing the granularity of its
progression.

31

The Grass is Always Greener

The last corruption implementation we considered but did not choose is based on
using the corruptionFactor to influence the normal noise sampling. This could mean
having the corruption influence the frequency of the noise sampling used by the normal
terrain generation. The benefit of this approach is that it would be influenced by corrup-
tion gradually without requiring any extra noise sampling. The drawback was the fact
that it caused severe directional artifacts in the terrain. See Figure 16 for an image of
these artifacts.

Figure 16: Directional artifacts caused by having corruption influence noise frequency.

The implementation we chose became a middle ground between the other approaches.
It requires one extra noise sample per block and it makes the corruption progress gradu-
ally. We can also do some biome specific design by giving each biome their own frequency
and cutoff point for the corruption noise.

6.2.5 Non-Terrain Generation

Non-terrain generation covers the generation of meshes for trees and animals. Directly
representing animals or trees as a BlockDataMap is not as easy as it is with terrain,
because we need to represent more specific shapes, such as a branch or the head of
an animal. We chose to represent trees and animals as a set of line segments instead,
because representing a branch as a line makes intuitive sense as opposed to representing
it as a 3 dimensional grid, which also makes the code easier to write and maintain. To
read about how we generate the line representation of trees read Chapter 6.2.6 and for
animals read Chapter 6.2.7.

Listing 6.5: LineSegment struct

public class LineSegment {
public Vector3 a ; //Start
public Vector3 b ; //End
public bool endLine ; //Last line in chain?
public float rad ius ; //Radius of line

//...
//methods
//...

}

32

The Grass is Always Greener

When we already have a list of LineSegments, we have to convert it into a BlockDataMap
so that the MeshDataGenerator can create the mesh data. The core idea for the conver-
sion is to iterate through every block in the BlockDataMap and check if the block is within
distance of one of the lines. The distance between a block and a LineSegment is calcu-
lated by using the index of the block as its position, so the block at index (5, 4, 8) is
also at position (5, 4, 8), this works because each block is a unit cube. If a block is within
distance of a line (distance < line.radius), then the block type will be set to either animal
skin, wood or leaf depending on what the line represents. To read about LineSegment
distance calculations see Chapter 6.2.5.

In order for the above algorithm to work we have to dimension the BlockDataMap
for the list of line segments, so that it is big enough to contain all of the lines. To do
this job we made the LineSegmentBounds class, which takes a list of lines and calculates
the lower/upper(X, Y, Z) bounds as well as total size of the line list(the total span in
coordinate space). We then make a BlockDataMap with the total calculated size of the
list of lines, and offset every point in the BlockDataMap by the lower bounds before doing
line distance calculations. The offsetting of lower bounds is necessary because an array
can not have negative indexes, but the lines can extend into negative coordinate space.

Figure 17: The line (0, 0, 0), (5, 5, 0), radius = 1 converted to a mesh (Line is interpreted as part
of an animal)

Tree generation needs some additional functionality, it also has to generate blocks for
the leaves, see Figure 18 for an image of trees. This is where the endLine attribute of
LineSegment comes into play, an endLine is a line that should generate leaves. The dis-
tance check used for leaves generation is: distance < (line.radius * some multiplier),
this makes it so that the leaves extend further then the branch. There is an additional
check when doing generation of leaves, we also check if every component of the block
position vector (converted from float to int) is either odd or even and only generate
blocks for strictly even or odd positions. This gives us the alternating block pattern for
leaves that can be seen in Figure 18.

We said in the introduction to this chapter that the base building block for our world is
a unit cube(see introduction to Chapter 6), which is true for terrain and trees. However,
animals use half unit cubes for their meshes, the reasoning for this is to increase the
level of detail on animals because we felt like using a full unit cube made them look
"blocky". As a consequence of halving the unit cubes, we have to double the size of the
BlockDataMap in each dimension when we dimension it for the lines representing an
animal. We also need to scale the block positions down, so the block from the earlier

33

The Grass is Always Greener

example: (5, 4, 8) would be in position (2.5, 2, 4) when interpreting the BlockDataMap
as a map of half unit cubes. Our code supports generating with any size for the blocks,
and the animals themselves can be scaled, so if an animal has a base scale of 1.2, then
the final size of the blocks in BlockDataMap would be 0.5 * 1.2 = 0.6.

Point LineSegment Distance

The algorithm for calculating the distance between a point and a LineSegment is based
on an implementation by Dan Sunday [23]. To calculate the distance between a point P
and a line segment S there are 3 cases to consider, P is either between S.a and S.b, or its
outside beyond S.a or S.b. To test if P is outside beyond S.a we check the dot product of
W = P - S.a and V = S.b - S.a, if the dot product is smaller or equal to 0◦ then the angle
between W and V is greater then 90, placing P outside beyond S.a. Once we know that
P is beyond S.a we compute the distance as dist(P, S.a). The process is similar for the
case where P is beyond S.b, we define W = P - S.b, V = S.b - S.a, if the dot product of
W and V is greater or equal to 0 then the angle between W and V is less or equal to 90◦

placing P outside beyond S.b. The distance for the second case is dist(P, S.b). If none of
the past two cases occurred P is between S.a and S.b, the distance can then be calculated
by calculating the length of the normal from P to the line given by S.

6.2.6 Tree Generation

Figure 18: An example of trees

We generate trees using an L-System (Lindenmayer system) which is a type of rewrit-
ing system [24]. In our implementation we use a stochastic L-System in order to generate
variety in our trees. L-Systems consists of an alphabet and production rules. The produc-
tion rules is a set of rules for how to grow a word as you encounter characters from the
alphabet. The production rules are applied to an initial string of characters(axiom) re-
cursively N times. An example of this would be; Alphabet: { A, B }, Rules: { (A=>AAB)
}, this means that the alphabet contains the characters A and B, and when growing the
string, all A’s that the string grower encounters gets replaced by AAB. So if we start
with the string A and treat i recursively 2 times it would grow like this: A => AAB =>
AABAABB.

34

The Grass is Always Greener

Our Implementation

Listing 6.6 shows our stochastic L-System implementation. Since our L-System is stochas-
tic, we have multiple rules for one character, that we choose at random using a random
number generator. The character ‘|’ in our production rules delimits the different possi-
ble rules that can be chosen for a character. Our stochastic L-System is inspired by the
examples from Figure 1.24 in The Algorithmic Beauty of Plants [24].

Listing 6.6: Alphabet definition and rules for tree generation

private static char [] a lphabet = new char [] {
’N’ , //Variable
’M’ , //Second Variable
’D ’ , //Draw
’ X ’ , //X axis
’ Y ’ , //Y axis
’ Z ’ , //Z axis
’+ ’ , //Postive rotation
’ − ’ , //Negative rotation
’ [’ , //Push to stack
’] ’ //Pop from stack

} ;
private const string s t a r t = "DDN" ; //Start condition of string (Axiom)
private const float angle = 25 f ; //Absolute angle to rotate turtle
private static Dic t ionary<char , string> r u l e s = new Dic t ionary<char , string>() {

// ’|’ delimits the different rules that can apply to one variable
{ ’N’ , "[-ZND]+M+XD[-D+XD]N" + "|-YDN-Y" } ,
{ ’M’ , "D[+N]-X" }

} ;

We recursively apply the production rules defined in the rules dictionary up to a depth
that we pass the recursive string grower function, to create a string representing a tree
from the start string(axiom). We control what the trees look like with the production
rules that we make, and the recursive depth we use for growing the string. Adding more
production rules per character will increase the variety of our trees, and increasing the
recursion depth will increase the size, complexity and variety of the trees. There is some
trial and error involved in getting good production rules, not all production rules produce
nice looking trees. We found some rule of thumb rules for making good production rules,
such as keeping the rotations balanced. This means having a somewhat even mix of
‘+’, ‘-’, ‘X’, ‘Y’ and ‘Z’ characters, which are responsible for rotating the lines in the tree.
With unbalanced production rules the branches can end up looking like spirals and other
unnatural looking shapes, by continuously applying rotations in the same direction. Trees
should generally progress vertically, which is why a certain balance is needed to maintain
the initial vertical course.

There are two major steps involved in turning the fully grown string into a tree,
drawing a tree consisting of line segments using turtle graphics, and turning the list of
generated line segments into a voxel mesh.

Drawing the Tree Using Turtle Graphics

We use a struct representing a turtle which maintains a state that is changed by the
characters it reads in the string produced by our L-System.

Listing 6.7: Turtle struct for tree drawing
private struct Tur t l e {

public Vector3 heading ; //The direction to draw in
public Vector3 pos ; //Current position of turtle

35

The Grass is Always Greener

public Axis a x i s ; //Axis to rotate turtle in
public float l ineLen ; //Length of the lines the turtle

// draws
}

The turtle starts at position (0, 0, 0) with a heading of (0, 1, 0), which means that
the turtle is at the tree root looking up. When the turtle encounters a ‘D’ in the string its
processing, it draws a line given by the current state of the turtle, the line drawn starts
from the turtles position, and extends lineLen units along the turtle heading. The ‘X’, ‘Z’,
‘Y’ characters sets the axis of rotation for the turtle, whereas ‘+’ and ‘-’ applies an actual
rotation of 25◦ on the turtle heading in a negative or positive direction about the current
axis. ‘[‘ and ‘]’ pushes and pops the current turtle state to a stack, this is what causes
branching of our trees. Pushing the turtle to the stack and then having the turtle draw
some lines before returning to the previously pushed state by popping gives us multiple
subtrees or branches. The last branch that the turtle draws before popping and old state
from the stack is set to be a leaf branch, which is a branch that is surrounded by leaves.

Every line drawn by the turtle is added to a list of lines that serves as a representation
of a full tree. The list is later fed to a function responsible for turning a set of lines into a
voxel mesh, and that mesh is then deployed into the world. To read more about turning
lines into a mesh see Chapter 6.2.5.

Making the Tree Generation Deterministic

We want the game world to be persistent, this means that every time the player walks
to a certain location, the game world should generate the same way twice. The terrain
generation is naturally deterministic as a consequence of being based on noise functions,
this is not the case for trees however. We use a random number generator for choosing
which rule to apply in our stochastic L-System, and the way we seed this generator
is how we make the generation deterministic. We made a function for turning a Vector3
(position) into a seed (any integer), using this we turn the position of the tree into a seed
that is used for the generator. The tree position is also calculated in a similar manner,
using the position of its parent chunk to seed a generator that is used to generate the
position for the tree.

6.2.7 Animal Generation

Figure 19: From left to right: A generated water animal, air animal and land animal

36

The Grass is Always Greener

Animals are represented as a set of lines, as mentioned in Chapter 6.2.5, this chapter
will cover the generation of the lines representing an animal. The main class responsi-
ble for generating the line representation of an animal is the AnimalSkeleton class, an
abstract super class that the different animal types inherit from. There are tree types of
AnimalSkeletons; LandAnimalSkeleton, AirAnimalSkeleton and WaterAnimalSkeleton,
the animal skeletons are used after generation as well, to read more about animals see
Chapter 6.6.

The core idea for generating an animal, is to define a set of attributes for the animal
such as number of legs, length of tail, size of head and so on, we refer to these attributes
as body parameters. After defining the kinds of body parameters we generate the values
for these parameters using a random number generator, this process is known as para-
metric generation [25]. Once we have the values that define the animal, we interpret
those values to draw lines.

Handling Animal Body Parameters

There are 3 main operations that take place regarding the body parameters defining an
animal:

1. Define the types of body parameters.
2. Define the ranges for the body parameters.
3. Generate the values for the body parameters.

When we first started implementing animals we had a member variable in AnimalSkeleton
for each of the body parameters defining an animal, this would result in a solution similar
to the below code:

Listing 6.8: Early code for animal defining attributes
public class AnimalSkeleton {

float legLength ;
float l egJo in tLeng th ;
int l e g J o i n t s ;
int l egPai rCount ;

//...

private void generateBodyParams (){
legLength = rng . randomFloat (minLegLength , maxLegLength) ;
l e g J o i n t s = rng . randomInt (minLegJoints , maxLegJoints) ;
legPai rCount = rng . randomInt (minLegPairCount , maxLegPairCount) ;
l egJo in tLeng th = legLength / l e g J o i n t s ;
//...

}

//...
}

There are some problems with the above solution, the first being that it requires a
large amount of member variables to define an animal. The Air animal for instance is de-
fined by 19 body parameters, which would yield 19*3 = 57 individual member variables
for the AirAnimalSkeleton class. Handling the body parameters in this manner becomes
hard to maintain, when you add a new body parameter you have to remember to define
the ranges for it, and put code for generating the value in the generateBodyParams
function. Finding a body parameter you want is also hard because you would have to
remember its name, the above implementation gives no logical grouping of the body

37

The Grass is Always Greener

parameters.

We refactored the above implementation before we started to implement more then
one type of animal. The new implementation logically groups the body parameters into
a dictionary and groups the allowed ranges for each body parameter in a second dictio-
nary. Each body parameter has its own enum, which is the key for the dictionary. Since
the body parameters is a mix of floats and integers the dictionaries are a custom dictio-
nary type we wrote called MixedDictionary, which uses template getters allowing us
to specify the type for the parameter we are getting. The ranges are also represented
using a Range<T> class, with a minimum and maximum value for the range. The above
implementation after the refactor looks like this:

Listing 6.9: Current code for animal defining attributes
public enum BodyParameter {

//...
SPINE_LENGTH , SPINE_JOINTS , SPINE_JOINT_LENGTH , SPINE_RADIUS ,
//...

}
public abstract class AnimalSkeleton { //Abstract super class

//...
protected MixedDict ionary<BodyParameter> bodyParametersRange ;
protected MixedDict ionary<BodyParameter> bodyParameters ;
//...

}
public class WaterAnimalSkeleton : AnimalSkeleton { //Body parameters are defined in derived classes

public WaterAnimalSkeleton (Transform root , int seed = −1) {
bodyParametersRange

= new MixedDict ionary<BodyParameter>(new Dic t ionary<BodyParameter , object>() {
//...
{ BodyParameter . SPINE_LENGTH , new Range<float>(7, 17) } ,
{ BodyParameter . SPINE_JOINTS , new Range<int>(3, 7) } ,
{ BodyParameter . SPINE_RADIUS , new Range<float>(1f , 2.0 f) } ,
//...

}
) ;

//...
}
//...
override protected void generateBodyParams () {

base . generateBodyParams () ; //Iterates through bodyParametersRange and generates bodyParams
bodyParameters . Add(

BodyParameter . SPINE_JOINT_LENGTH ,
bodyParameters . Get<float>(BodyParameter . SPINE_LENGTH)
/ bodyParameters . Get<int>(BodyParameter . SPINE_JOINTS)

) ;
}
//...

}

With the new system we can define a new animal such as the WaterAnimalSkeleton
by populating the bodyParametersRange dictionary, the generateBodyParams function
will then iterate through the bodyParametersRange dictionary and generate all of the
body parameters automatically. The automatic generation of the body parameters gives
us less code to maintain, however we still have to write code for the body parameters
that are calculated instead of generated. The main drawback of the refactor is that it
makes accessing a body parameter more verbose, but this is outweighed by having the
attributes logically grouped and automatically generated.

38

The Grass is Always Greener

Drawing Lines from Body Parameters

After the body parameters have been defined and generated they get used for generating
the lines that represent the AnimalSkeleton. The AnimalSkelton superclass defines an
abstract method makeSkeletonLines() which the derived classes override. We found no
clever method to automatically generate a skeleton from a set of body parameters so we
pretty much just spell it out in code. We start by drawing the line segment for the spine of
the animal, the center point of the spine is at (0, 0, 0), then we draw the other lines from
the spine so that the entire skeleton is connected. We do use loops for generating the legs
for instance, since the only difference between the up to 3 right legs of a LandAnimal is
where they start in the spine line.

The lines are organized into a dictionary in a similar fashion to the body parameters.
The key for the dictionary of skeleton lines is the BodyPart enum (see Listing 6.10 for
definition), this allows us to address specific lines in the skeleton which comes in handy
when doing mesh skinning and animation.

Listing 6.10: Skelton lines dictionary
public enum BodyPart {

ALL = 0 ,
HEAD,
NECK,
SPINE ,
RIGHT_LEGS , LEFT_LEGS ,
TAIL ,
RIGHT_WING, LEFT_WING

}
public abstract class AnimalSkeleton {

//...
protected Dic t ionary<BodyPart , L i s t <LineSegment>> ske l e tonL ine s ;
//...

}

Listing 6.11: Creating neck line for land animal
override protected void makeSkeletonLines () {

//...
//NECK
LineSegment neckLine = new LineSegment (

sp ineL ine . a , //Start of line
sp ineL ine . a + new Vector3 (0 , 0.5 f , 0.5 f) . normalized ∗ //End of line
bodyParameters . Get<float>(BodyParameter .NECK_LENGTH) ,
bodyParameters . Get<float>(BodyParameter . NECK_RADIUS) //Radius of line

) ;
addSkeletonLine (neckLine , BodyPart .NECK) ;
//...

}

In Listing 6.11 you can see how the land animal neck line is generated, it starts at the
begging of the spine, and extends in the (0, 0.5, 0.5) direction for the length of the neck
line. The addSkeletonLine function adds the line to the skeletonLines dictionary, the
line gets added to the BodyPart.ALL key and the specified BodyPart.NECK key.

The next step after all of the lines have been defined is turning it into a mesh, which
is explained in Chapter 6.2.5.

Bones and Mesh Skinning

The generation of animals is not done after the mesh has been created as with terrain
and trees. The last step in animal generation is creating the animation bones of the mesh

39

The Grass is Always Greener

and binding them to the mesh. The motivation behind doing this is that unlike trees
and terrain we want the animals to move. This last steps enables us to bring the animal
meshes to life, if we create a bone for one of the legs of the animal, and we bind it
correctly to the mesh, then we will be able to rotate the bone and the mesh will deform
appropriately, see Figure 20 for an image of bone rotations.

Figure 20: the animal to the right has no rotations applied to animation bones, the animal to the
left has a 45 degree rotation about the z axis applied to all of its legs.

In Unity an animation bone is a GameObject with only one component, the transform
component [26]. The animation bones are put into a hierarchy of bones making up
an animation skeleton, when you apply a rotation to a certain bone that rotation is in
turn applied to all of the children of that bone. The property of propagating a rotation
downwards in the hierarchy is important for creating logical animations. Consider the
case where you rotate the neck, you would expect the head to also follow the rotation of
the neck since its connected to the neck.

There are two main operations in making the animal mesh animation ready:

1. Creating a hierarchy of bones making up an animation skeleton.
2. Binding the animation skeleton to the mesh.

The animation bones are created and stored in a similar fashion to the skeleton lines
described in the above sub section, in a dictionary with BodyPart as the key. To cre-
ate all of the animation bones the makeAnimBones() function is called, similar to the
makeSkeletonLines() function for making skeleton lines. In Listing 6.11 we showed
how the neck line for the skeleton was created, Listing 6.12 shows how the animation
bones for the neck is created.

Listing 6.12: Creating neck bones for land animal
override protected void makeAnimBones () {

//...
//NECK

Bone neckBoneBase = createAndBindBone (
ske l e tonL ine s [BodyPart .NECK] [0] . a , //Position of bone
spineBone . bone , //Parent bone of bone
ske l e tonL ine s [BodyPart .NECK][0] , //Line used for skinning the bone

40

The Grass is Always Greener

"Neck" , //Name of bone
BodyPart .NECK //Body part of bone

) ;
neckBoneBase . minAngles = new Vector3 (−90, −90, −90);
neckBoneBase . maxAngles = new Vector3 (90 , 90 , 90);
createAndBindBone (

ske l e tonL ine s [BodyPart .NECK] [0] . b ,
neckBoneBase . bone ,
ske l e tonL ine s [BodyPart .HEAD] ,
"Neck" ,
BodyPart .NECK

) ;
//...

}

Even though the bones themselves are singular points, we need to provide the skele-
ton line that the bone is associated with when creating and binding the bone because we
want the vertices to be tied to the line of the bone and not the position of the bone. The
process of binding vertices in the animal mesh with bones is done by iterating through
every vertex in the mesh and calculating which skinning line the vertex is closest to.
When we find the closest skinning line we assign the vertex to the bone that owns that
skinning line. Once a vertex has been assigned to a bone all rotations applied to the bone
will also be applied to the vertex, giving us the ability to animate and move the mesh of
the animal.

6.3 WorldGenManager

The WorldGenManager is the class responsible for handling the chunks and the animals
in the world. It decides where in the world a chunk or animal should be generated or
removed. The WorldGenManager considers the player as the center of the world and gen-
erates chunks around the player. Chunks and animals are pooled, so when something is
removed it is placed back into a pool instead of being destroyed. It does not handle the
actual generation of chunks and animals, that is handled by the ChunkVoxelDataThread
threads. When the WorldGenManager decides that a chunk should be generated at a po-
sition it sends an order to the ChunkVoxelDataThread threads, when the threads are
done generating they send the result back to the WorldGenManager which then deploys
the generated content into the world. To read more about the ChunkVoxelDataThread
threads see Chapter 6.4. To read more about the technical design of the WorldGenManager
see Chapter 4.2.

The WorldGenManager handles these task in an update loop seen in Listing 6.13.

Listing 6.13: WorldGenManager update
void Update () {

o f f se tWor ld () ;
clearChunkGrid () ;
updateChunkGrid () ;
orderNewChunks () ;
consumeThreadResults () ;
handleAnimals () ;

}

6.3.1 Handling Chunks

There are 3 main variables controlling the logic of placing chunks into the world: chunkSize,
chunkCount and playerPosition. chunkSize is the length of one side of a chunk,

41

The Grass is Always Greener

chunkCount is the amount of chunks in a given dimension (x or z), so the total amount of
chunks is chunkCount2. playerPosition is the position of the player. This means that
the game manages a chunkCount2 ∗ chunkSize2 area of the world at any given point.
The player is at the center of the managed area. The valid positions of chunks is given as
(chunkSize ∗n, chunkSize ∗m), where n and m can be any integer value. This makes it
so that chunks align with each other perfectly without creating gaps or overlaps.

In order to manage the chunkCount2 ∗ chunkSize2 area centered on the player
we use a multidimensional array of chunks chunkGrid. To manage all active chunks in
general we use a activeChunks list. We need a separate list of chunks because chunks
change their position in the chunkGrid as the player moves and at some point chunks
also fall out of the bounds of the chunkGrid.

The chunkGrid is maintained by mapping every chunk in the activeChunks list to in-
dexes in the chunkGrid. To do the job of mapping between positions of chunks and their
index in the chunkGrid we made two helper functions: Vector3Int world2ChunkIndex(Vector3
worldPos) and Vector3 chunkIndex2world(Vector3 chunkPos). The two functions
are the inverse of each other, only the x and z components are used for indexing. The
chunk index is calculated from the chunk world position as follows:

Start by chunkSize normalizing the player position ,
so that the player position becomes a
valid chunk position in world space.
playerPos = floor(playerPos/chunkSize) ∗ chunkSize
Subtract the playerPos from the chunk world position.
chunkIndex = chunkWorldPos− playerPos
If chunkWorldPos == playerPos in this case then the index
would be (0, 0, 0), we need to subtract an offset
to center the chunkGrid on the player.
offset = (chunkCount/2 ∗ chunkSize, 0, chunkCount/2 ∗ chunkSize)
chunkIndex = chunkIndex− offset
The last step is dividing by chunkSize and converting to int.
chunkIndex = floorToInt(chunkIndex/chunkSize)

Using the above methods we can maintain the chunkGrid. For every update we clear
the chunkGrid first, meaning that we set every element to null. Clearing is needed be-
cause player movement will invalidate the chunkGrid, as it is meant to map chunks rel-
ative to the player position. After clearing we update the chunk grid by iterating through
the activeChunks list mapping the chunks to an index in chunkGrid. If a chunk produces
an index that is out of bounds for chunkGrid it is removed from activeChunks and put
back into a pool.

After mapping existing chunks to the chunkGrid we iterate through the chunkGrid
looking for null elements. An element being null is what triggers the WorldGenManager
to order new chunks from the worker threads. The data required by the threads for
a chunk order is the world position of the chunk (used to determine seed for noise
sampling, see Chapter 6.1.1). We use Vector3 chunkIndex2world(Vector3 chunkPos)
mentioned earlier for mapping the index of the null chunk to a world position, the
calculated position is then used in the order sent to the threads. We also keep track of
what chunks we have ordered in a pendingChunks hash set to prevent us from ordering
the same chunk multiple times while the threads work.

42

The Grass is Always Greener

Orders completed by the worker threads appear in a thread safe queue. When chunks
are completed and dequeued from the thread results queue one of two things happen.
The chunk either gets deployed into the world immediately or it gets placed into a wait-
ing list. Chunks that are far away from the player end up in the waiting list, this is
because the chunkGrid covers an area larger then the player can see. There is no point
in using CPU time deploying and maintaining a chunk that wont be seen by the player.
The reason for even generating these chunks to begin with is that world generation is
time consuming and the waiting list acts as a buffer reducing the chance that the player
could run out of chunks. Once in a waiting list one of two things happen to the chunk,
it either gets within range of the player at which point it is deployed, or it gets outside
the range of chunkGrid in which case it is discarded. Whenever a chunk is deployed or
discarded it is removed from the pendingChunks hash set so that it can be generated
again if the player returns to the same area.

6.3.2 Handling Animals

Our first approach to handling logic for where and when to generate animals was based
on maintaining a set of 20 animals. We would generate a new animal whenever one of the
animals ended up outside the range of the managed world. The generation was done by
reusing the out of range animal for a newly generated animal. The position of the newly
generated animal was calculated by generating in range positions that were also inside
the bounds of an existing chunk. This approach produced unfavourable distributions of
animals, the managed area of the world is not usually completely filled with chunks. This
makes it so that the animals gets focused on the area of the world that is generated when
they are generated.

To address the animal distribution issue we made animals generate on a per chunk
basis instead. Whenever a chunk is deployed into the world there is an 8% chance that an
animal will be generated for that chunk. The value 8% was found through testing what
worked well. Tying animal spawning to chunk spawning makes it so that the number of
animals in the world scales with the number of generated chunks, whereas it was con-
stant in the previous approach. This makes it so that the distribution of animals remains
the same regardless of how many active chunks there are.

When a chunk triggers the generation of an animal the center of the chunk is used
as the animal position. There are 3 animals types, water, land and air animals (see
Chapter 6.6), so we have to decide which one to generate. This is done by using the
VoxelPhysics class (see Chapter 6.5), we ray cast down from the animal spawn posi-
tion. If we find water by ray casting we spawn a water animal, if not we spawn a land or
air animal both having equal chance of being spawned.

Animals are generated by the same threads that generate chunks of the world. The
thread orders for animals need the animal position and an animal skeleton. The threads
will then generate the provided animal skeleton and return it in the same thread safe
queue as used for chunks. When the manager receives the animal skeleton from the
threads it is applied to an animal which is then deployed into the world. To read more
about animal skeletons see Chapter 6.2.7.

Animals are removed from the world by being placed back into a pool for future use
when they end up outside the range of the managed world.

43

The Grass is Always Greener

6.3.3 On-The-Fly Shifting of Coordinates

The WorldGenManager also does what is known as On-the-fly shifting of coordinates [27],
which is the first function call in Listing 6.13. The shifting of coordinates is done in
order to prevent issues caused by limited floating point precision in large or infinite
game worlds. These issues could be physics bugs or rendering bugs. On-the-fly shifting
of coordinates works by translating the entire world back to the world origin whenever
some distance is beyond some threshold. We use the distance between the player and
the origin to work out when to do the coordinate shift. World generation is controlled by
sampling noise from coordinates in world space, so we when ordering chunks we need
to provide the positions the chunks would have had if no coordinate shifting took place.
To achieve this we store the total world shift applied to the world in a variable which
we factor in when setting chunk positions in thread orders. This effectively hides the fact
that coordinate shifting is happening from the chunk and animal generation systems.
See Figure 21 for an image of the effects of not accounting for the coordinate shift when
generating the world.

Figure 21: The image shows what happens to the world when not accounting for the coordinate
shifting when generating the world. The gap in the world is produced by neighbour chunks gen-
erated before and after the coordinate shift. This makes it so that they sample noise from vastly
different coordinates, when they should be sampling from the same area.

6.4 Multithreading

Due to the high computational cost of generating the terrain in real time, we had to
multithread the world generation system. Procedural content generation of terrain based
on noise functions is a workload that can be threaded with little consideration. This is
because every chunk(see Figure 5) of the world is logically independent of each other.
The result of generating one chunk has no impact on any other chunk. This means that
we can make N threads all of which generate their own separate piece of the world at the
same time without conflict. However, making the threaded generation scale well across
large thread counts is not as easy as just making a lot of threads, it requires good memory
management. See Chapter 7 for more information about multithreaded performance.

44

The Grass is Always Greener

6.4.1 Our Multithreading Implementation

Our multithreading implementation revolves around the WorldGenManager(see Chap-
ter 6.3) class, which is the class responsible for handling our world generation. The
WorldGenManager creates a set of N threads(based on system thread count) that it uses
for world generation at the start of the game. The threads themselves are instances of a
class ChunkVoxelDataThread, with the functionality needed for carrying out orders and
generating content for the world. The generation work carried out by the threads can be
read about in chapter 6.2.

Thread Communication

There are 2 key classes and 2 key data-structures involved in the thread communication.
The classes are Order and Result, they contain the data needed for handling chunk or
animal generation and an enum denoting which one to generate. The two data-structures
are seen in Listing 6.14, every thread as well as the WorldGenManager contains references
to these two data-structures. The WorldGenManager adds orders to the BlockingList of
orders, then the threads pick an order from the list to execute. The reason for using
a list instead of a queue is that different orders have different priorities as we will ex-
plain later. Once a thread has completed an order they make a result object that is then
enqueued to the LockingQueue. The reason for using a non blocking queue for the re-
sults is that we do not want the WorldGenManager to block when getting results. The
WorldGenManager runs on the main thread that our game runs on, blocking the manager
would cause the entire game to freeze. We instead check if the count of objects in the
queue is greater then 0 before dequeuing. Doing this is safe from race conditions because
the WorldGenManager is the only object dequeuing from the queue. If the number does
change between the check and dequeuing then it can only go up from a worker thread
enqueuing a new result.

Listing 6.14: Thread communication data-structures
p r i v a t e B lock ingL i s t <Order> orders ;
p r i v a t e LockingQueue<Result> r e s u l t s ;

Thread Order Processing

Order processing by threads starts by selecting which order to carry out. Every order
comes with the position of the chunk or animal that is going to be generated. The threads
prioritize generation of orders that are likely to be seen by the player. To achieve the
prioritization the threads iterate through every order and calculate a score for the order.
An order is scored based on its distance from the player and the angle between the (order
position - player position) vector and player movement direction + looking direction
vector. A low distance and a low angle gives a favourable score, the thread executes
the order with the best score. There is a special case where an order will be selected
regardless of score, which is when an order is out of bounds, meaning that its position
is outside the current relevant area of the world. These orders are cancelled and never
completed.

The WorldGenManager usually produces orders at a rate that is faster then what the
ChunkVoxelDataThreads can keep up with. Prioritizing orders in this way makes it so
that the player is less likely to outrun the world generation. Before we implemented the
order prioritization system the threads would execute orders in a FIFO order. This lead

45

The Grass is Always Greener

to issues with the world generation not keeping up with the movement of the player. It
also caused issues when the game started because the player would not have any terrain
to stand on in the beginning.

Once an order has been selected the thread carries out the generation as described in
Chapter 6.2 and sends the result back to the WorldGenManager.

Unity Challenges with Threading

The Unity API is not thread safe [28], and Unity does not officially support the use of
multiple threads, which leads to us having to do some of the workload we would like to
do in the thread in the main thread instead. An example of such a workload is: Creating
a new instance of the Mesh class (Built-in Unity class for meshes) in a thread. The Mesh
class is part of the Unity API and as such we are not allowed to instantiate it in threads.
We can however do everything but instantiating in the thread, all the data that the Mesh
class needs such as vertices, uvs, normals can be created in the thread, so we generate
all of the data needed for a Mesh and send that back to the main thread, which uses it to
create the final Mesh.

Unity prevents the inclusion of C# concurrent data-structures, so we had to make our
own thread safe data-structures which can be seen in Listing 6.14.

6.4.2 Other Multithreading Implementations We Considered

We did at some point in the development process feel like the above threading imple-
mentation made our code less elegant than it could be, because we had to go through
the WorldGenManager class whenever we wanted to get some threaded workload done.
We considered using a thread pool instead, in an effort to decentralize our threading im-
plementation. With the thread pool we could simply send C# function delegates to the
thread pool if we wanted to use it, instead of having the WorldGenManager send a work
order to its threads, which felt like “jumping through hoops” at the time.

However, when we did implement thread pooling, we actually found it much harder
to write readable and maintainable code, with the decentralized threading model it be-
came much harder for the WorldGenManager to keep track of the world generation state.
When chunks of the world were responsible for generating themselves instead of hav-
ing to go through the WorldGenManager, the manager had no insight into the genera-
tion progress. With the above implementation the WorldGenManager would always know
what aspects of the world that were done generating and not, because they would appear
in the LockingQueue as they finished generating. This system is really convenient for us
because we want the WorldGenManager to have all the authority in a world generation
context, because it is the WorldGenManager’s job to delegate and deploy all aspects of the
world.

6.5 Voxel Physics

The voxel physics system allows the animals to interact with the terrain. It consists of
two classes: VoxelPhysics and VoxelCollider. There are two key features provided by
the system, collision detection and ray casting. It was introduced as an optimization which
you can read more about in Chapter 7.5.

46

The Grass is Always Greener

6.5.1 Voxel Physics Class

The VoxelPhysics class is a static class providing functionality for querying the ter-
rain. It is inspired by Unity’s own Physics class. The main functionality we want from
VoxelPhysics is ray casting as provided by Unity’s Physics.Raycast(...) [29]. The
most important function provided by VoxelPhysics is voxelAtPos(Vector3 worldPos),
it takes a world coordinate as input and returns the block type at that position. This ef-
fectively allows us to index space, which is the functionality that the VoxelCollider and
VoxelPhysics.Raycast(...) is based on.

Voxel at Position

The VoxelPhysics class maintains a reference to the WorldGenManager (see Chapter 6.3)
to make VoxelPhysics.voxelAtPos(Vector3 worldPos) work. The chunks managed
by the WorldGenManager keep a reference to the BlockDataMap(see Chapter 6.2) that
they are based on. voxelAtPos(Vector3 worldPos) works by indexing the BlockDataMap
of the chunk that the world position falls inside. The WorldGenManager has a function
that can map a world position to a chunk, using that function with the provided position
from calling voxelAtPos(Vector3 worldPos) gives us the chunk to index. To find the
index of the block inside the given chunk we subtract the position of the chunk from
the provided position. We then index the chunk’s BlockDataMap and return the block
type for the indexed block. In the event that the function fails to find any chunks at the
provided position BlockType.NONE is returned. This can be caused by an out of bounds
position, or the lack of a chunk at a position.

Ray casting

The Unity ray cast is a method of finding colliders in world space. You define a ray with
an origin and a direction, then the ray cast function returns information about the cast
and the RaycastHit if the ray cast hit anything. The RaycastHit contains information
about what was hit, the position of the hit and more.

Our VoxelPhysics.Raycast(...) function casts rays against the voxel terrain us-
ing the VoxelPhysics.voxelAtPos(Vector3 worldPos) function. There are 3 types of
targets to cast against as seen in Listing 6.15.

Listing 6.15: Voxel ray cast targets
public enum VoxelRayCastTarget {

SOLID , //Block such as dirt and sand
NON_SOLID , //Water, wind, none
WATER //Only water

}

When the ray cast hits something it returns a hit object VoxelRayCastHit as seen in
Listing 6.16.

Listing 6.16: Voxel ray cast hit
public class VoxelRayCastHit {

public BlockData . BlockType type ; //block type of hit block
public Vector3 blockPos ; //Position of hit block
public Vector3 point ; //Position of hit
public float d i s t ance ; //Distance of hit to ray origin

}

The VoxelPhysics.voxelAtPos(Vector3 worldPos) function makes the implemen-
tation of VoxelPhysics.Raycast(...) simple. We sample voxels along the provided ray

47

The Grass is Always Greener

using a for loop going from 0 to the max length of the ray. We then calculate the cur-
rent position along the ray as Vector3 sample = ray.origin + ray.direction * t;
where t is the for loop variable. t is incremented by 1 because we use unit cubes for the
terrain. In the event that the ray is diagonal to the coordinate system we should incre-
ment by

√
2 instead since that is the diagonal length of a unit cube. However, sampling

a block more then once has no bearing on the result of the ray cast, so we use a delta
of 1 for t regardless of direction for the sake of simplicity. If the ray cast finds a block
matching the target it uses its current sample position and the current block to make a
VoxelRayCastHit. If no matching blocks are found it returns a VoxelRayCastHit with
the type set to BlockType.NONE to indicate not hitting anything.

6.5.2 Voxel Collider Class

The VoxelCollider class is made for use with animals. It causes the animals to col-
lide with the terrain and calls 3 event based functions in the Animal class. The 3 event
functions are seen in Listing 6.17. They are similar to 3 collision event messages pro-
vided by Unity, which are OnCollisionEnter, OnCollisionStay and OnCollisionExit.
The animals need this information for their own logic, to read more about animals see
Chapter 6.6.

Listing 6.17: Voxel collider events
animal . OnVoxelStay (l a s t V o x e l) ;
animal . OnVoxelEnter (voxelAtPos) ;
animal . OnVoxelExit (l a s t V o x e l) ;

To handle collisions the VoxelCollider relies on VoxelPhysics.voxelAtPos(Vector3
worldPos). An animal is considered to have collided with the terrain if the voxel at the
animal position is a solid block. The collisions are handled in a preventative manner,
the collider checks if the animal will collide in the next update with its current velocity.
To prevent a collision we need to change the velocity such that the collision in the next
update does not occur. We could set the velocity to zero, but this would immobilize the
animal giving the animals a very poor usability for the player. Instead we do the collision
prevention on a per axis basis for the velocity vector. We build the new velocity one axis
at a time with data from the current velocity vector. Each time we add a value to an axis
of the new velocity vector we run the collision check to see if the new velocity would
cause a collision. If the axis added to the new velocity vector will cause a collision it is
removed. This way we only stop the velocity for the components of the velocity vector
causing a collision instead of completely immobilizing the animal.

6.6 Animals

The game features 3 different types of animals: LandAnimal, AirAnimal and WaterAnimal,
these can be seen in Figure 19. The design of an animal is separated into 3 separate
classes as described in the technical design (see Chapter 4.3). The classes are Animal,
AnimalBrain and AnimalSkeleton. The Animal class implements the functionality of an
animal. The functionality is the animals ability to function in the environment, such as
the ability to walk in the terrain. The behaviour is implemented by the AnimalBrain, be-
haviour controls how the functionality i used, by for instance deciding which direction to
walk. The AnimalSkeleton implements the body of the animal, and allows the animals to
access the body for other functionality, such as animations. AnimalSkeleton is described

48

The Grass is Always Greener

in detail in Chapter 6.2.7.

6.6.1 Animal State

Animals have a state that influence their behaviour and functionality. This makes the data
describing the state of an animal relevant for both the animal functionality (Animal) and
the animal behaviour (AnimalBrain). For this reason we made a class AnimalState to
contain the state of the animal. Both the Animal and AnimalBrain class keep a reference
to the AnimalState of the animal. See Listing 6.18 for the implementation of the animal
state class. The desiredSpeed and desiredHeading are set by the AnimalBrain, then
the Animal class responsible for functionality, tries to execute the behaviour. The various
boolean flags describe various states of the animal. The states are not exclusive, it is for
instance possible to be in water while being able to stand.

A criticism of the AnimalState implementation is the lack of protection for the mem-
ber variables. The AnimalBrain class is the only class that modifies the desiredSpeed
and desiredHeading members, and the Animal class is the only class that modifies all of
the other members. With the current implementation any class can modify any member
of AnimalState, which is something we wanted to refactor but did not get to.

Listing 6.18: Terrain shader arrays
public class AnimalState {

public bool onWaterSurface = false ;
public bool inWater = false ;
public bool grounded = false ;
public bool inWindArea = false ;
public bool canStand = false ;

public float desiredSpeed = 0;
public float speed = 0;

public Vector3 desiredHeading = Vector3 . zero ;
public Vector3 heading = Vector3 . zero ;
public Vector3 spineHeading = Vector3 . forward ;

public Transform transform ;
}

Determining State

The voxel physics system described in Chapter 6.5 is used to determine the state of an ani-
mal. The OnVoxelStay(BlockType type) function called by the animals VoxelCollider
is used to determine the values of inWater and inWindArea. Since water and wind blocks
do not cause collisions the animals can stay inside these blocks. If the animal is inside a
water block inWater is set to true and the same goes for wind blocks and inWindArea.
onWaterSurface is true if the animal is not in water while the block directly below the
animal is water.

We use the ray casting provided by VoxelPhysics to determine canStand and grounded.
We cast a ray starting at the animal position in the local down direction for the animal.
If the ray hits nothing then the animal is not grounded and cant stand, if the ray hit a
solid block the animal may be grounded. We check the distance from the ray origin to the
point where the ray hit something to work out if the animal can stand and or is grounded.
Land and Air Animals have a stanceHeight based on the length of their legs, which is
the distance between the animal spine and ground when standing. If the distance to the

49

The Grass is Always Greener

ground is less then or equal to the stanceHeight then the animal can stand. The animal
is considered grounded if its distance from the ideal stanceHeight is less then or equal
to the stanceHeight, the reasoning for this is explained in the next section.

6.6.2 Making Animals Functional

The animal functionality is implemented in the update method of the derived classes:
LandAnimal, WaterAnimal and AirAnimal, using methods from the base class or custom
methods for the specific animal. There are 4 activities which are done by every animal
type and one last that is done only by land and air animals:

1. Calculating speed and heading.
2. Calculating velocity.
3. Gravity calculations.
4. Handling of animations.
5. Leveling the animal with the terrain.

Calculating Speed and Heading

speed and heading is calculated based on the desiredSpeed and desiredHeading.
The speed will accelerate towards the desiredSpeed at a certain rate depending on
the current state of the animal. Acceleration is slower when in water than when on
land for instance. The heading of the animal will rotate at a certain rate towards the
desiredHeading. When the speed or heading are within set thresholds of their goal val-
ues they stop changing.

Calculating speed and heading in a gradual manner gives the animals more natural
behaviour. If the player decides to turn around, the animal should not instantly reverse
its heading but gradually turn into its new heading instead in a fluid motion.

Calculating Velocity

The velocity calculation uses the speed and heading or spineHeading with the gravity
acting on the animal to calculate the final velocity. The calculation is as follows: finalVel
= speed * heading + gravity. The difference between heading and spineHeading is
that heading is a horizontal direction whereas spineHeading includes the vertical axis
as well. The spineHeading is used for following the terrain when walking on the ground,
otherwise heading is used.

Gravity Calculations

The gravity of animals are not true to real world physics. It is used more like a tool to
control their vertical position. Depending on the state of the animal one of 4 gravity
calculations is used:

1. Grounded gravity: Calculates gravity in such a way that the animals height above
the ground matches the animals stanceHeight mentioned in Chapter 6.6.1. It
uses less force then normal gravity because it needs finer control to move the an-
imal into position. It is used when the animal can stand or when the animal is
grounded. It will apply an upwards force on the animal when the animal is below
the stanceHeight and a downwards force when the animal is above. This is why
the animal can be considered grounded even if not being able to stand, because we
need the grounded gravity to bring the animal into the stanceHeight even if the

50

The Grass is Always Greener

animal is above the stance height.
2. Not grounded gravity: This works like normal gravity and is used when the animal

is not in water, not on the water surface, not grounded and can not stand. For air
animals the force of gravity approaches zero as they approach their max speed, this
helps them stay airborne.

3. Water gravity: Applies an upwards force to the animal to push them to the water
surface, it is used when in water while not being able to stand. If the animal can
stand the grounded gravity calculation is used, this enables the animal to walk
out of the water and onto land. For Water animals it works differently, zero force
is applied in their case. This allows the water animals to move around inside the
water.

4. Water surface gravity: Applies zero gravity to the animal, so that they float on the
water surface. It is used when the animal is on the water surface while not being
able to stand for the same reasoning as with water gravity. It is not used for water
animals, as they can swim inside the water.

The reason for using gravity to control the animal height above the terrain is to make
the physics and animations easier to implement. If the animals height above the ground
were to be the result of collisions between the animal feet and the terrain then that would
make the animations impact functionality. Walking animations move the feet, and we do
not want this to cause actual motion of the animal as a whole. We want to separate the
representation of the animal from the functionality of an animal. This means that our
animations are purely visual with no function beyond that. The animations makes it look
like the animals are walking on the ground, but they are actually just hovering above the
ground as far as our physics is concerned. To read more about animations for animals
see Chapter 6.6.4.

Handling of Animations

The animation handling decides which animation to play for the animal depending
on state. For Air animals for instance this means playing a flying animation when not
grounded, or a walking animation when grounded. The animation system supports tran-
sitioning from one animation to another which is used when switching animations.

Leveling the Animal with the Terrain

Leveling the animal with the terrain means that we set the rotation of the animal spine in
such a way that the animal aligns with the inclination of the terrain it is standing on. This
process is responsible for calculating the spineHeading from Listing 6.18 and rotating
the animal so that they also look like they are following the terrain. This enables animals
to move up or down mountains or any other inclination. See Figure 22 for the effects of
spine leveling.

We rotate the spine in two steps by matching it with the terrain inclination in two
axes to do the leveling. The first axis is the horizontal heading of the animal, the second
is the horizontal normal vector of the heading, these axes are the animals local x and z
axis. This makes it so that the animal spine will both pitch and roll to match the terrain.
To match the spine in one axis we need a direction for the terrain to compare against.
To find the direction of the terrain we use the provided axis and ray casting. We cast
one ray to find the ground at both sides of the animal along the line given by the animal

51

The Grass is Always Greener

Figure 22: The effects of leveling an animal with the terrain. The animal spine is parallel with the
steep incline.

position and the provided axis. The distance between these points is given by the length
of the spine when pitching and the length of the legs when rolling. When we have our
two origin points for ray casting we cast a ray down or up to find the surface level of the
ground. This gives us two surface points on the ground that we can use to make a vector
representing the direction of the terrain under the animal along the provided axis.

When we have the direction of the terrain we have to rotate the spine to match
the terrain vector. To find the angle of the rotation we calculate the angle between the
terrain direction and the direction of the spine in the provided axis. To find what axis to
rotate the spine around we calculate the cross product of the two directions to get their
normal vector. The rotation is then applied to the animal spine about the normal vector.
We multiply the angle of rotation by some constant to prevent the animal from doing
sudden unnatural movements when leveling with the terrain.

6.6.3 Giving Animals Behaviour

The AnimalBrain is the class responsible for the behaviour of animals. As can be seen
in Figure 3 there are two main categories of AnimalBrain, AnimalBrainPlayer and
AnimalBrainNPC. AnimalBrainPlayer implements it by listening to player input whereas
AnimalBrainNPC implements behaviour through AI.

The AnimalBrain is responsible for 3 things: Setting the desiredHeading and the
desiredSpeed, and invoking special actions. The special actions for water and land an-
imals is jumping and for air animals it is taking off for flight. The AnimalBrain has a
dictionary of function delegates actions which contains all actions that the animal can
do. The implementation of these actions are handled by the Animal class or its derived
classes. The AnimalBrain is only responsible for deciding when to invoke them.

52

The Grass is Always Greener

NPC Brains

The AI is implemented by AnimalBrainNPC and its various sub classes. We only need the
AI to make the animals move around so that they look alive. The AI controlled animals
roam bound to an origin point. Whenever they are too far away from the origin point
the desiredHeading is recalculated to bring the animal back inside its roaming area.
desiredHeading is first set to point directly at the origin point. Then a random rotation
is applied to the desiredHeading to prevent the animals from moving back and forth
along the same line which would make them too predictable. The desiredSpeed of NPC
animals is set to an initial value and is never modified because the NPCs should never
stop roaming.

The animal AI also features simple obstacle avoidance. If the animal collides with
anything the desiredHeading is multiplied by -1 to turn them around. This prevents the
player from seeing animals endlessly walking into obstacles.

Land animal AI never invoke any special actions because it is not needed for travers-
ing the terrain. The water animal AI have to invoke their special action when they are
stranded on land. The only way for a water animal to move on land is by jumping,
so the WaterAnimalBrainNPC invokes the special action whenever the water animal is
grounded.

The AI for the air animals is slightly more advanced because it features a life cycle.
We want them to alternate between flying and walking on the ground. The current life
cycle state of the air animals is given by a boolean flag flying. When flying is false
the air animal NPCs function the same way as the other animals. When it is true the air
animals will try to stay airborne, this is done by invoking the ascend action whenever
the animal is not in the air. ascend will launch the animal for flight followed by a vertical
climb to gain altitude. The flying flag is toggled at random intervals to make the air
animals alternate between the two states.

Player Brains

The behaviour produced by player brains comes from input given by the player. The
desiredSpeed is set by pressing the WASD keys, and increased if also holding L-SHIFT.
If none of the WASD keys are held then the desiredSpeed is 0, stopping animal move-
ment. The desiredHeading gets rotated by mouse motion and the ASD keys, so that the
player can turn the animals using the mouse. The ASD keys apply a set rotation to the
desiredHeading acting as an offset to the rotation applied by the mouse. Water and air
animals are also affected by the C and space keys, which applies a vertical offset. This
allows the player to move in a direction not directly parallel to the camera, because the
camera rotation is also set by mouse motion. The AnimalBrainPlayer invoke the special
actions when the player presses the space key.

6.6.4 Animating Animals

The animal animation system consist of two parts; forward kinematics and inverse kine-
matics. It works by rotating the bones(see Chapter 6.2.7) in the animal skeleton to move
the limbs of the animals. Forward kinematics is the act of setting the rotations of the
bones in a limb. Inverse kinematics is the act of calculating the rotations of the bones
such that the end point of the limb reaches a specific target. We use a combination of
these techniques to animate the animals, which is an idea based on a GDC talk given by

53

The Grass is Always Greener

David Rosen [30].

Forward Kinematics

Animal animations are primarily defined by forwards kinematics. We use it to move the
limbs of the animals, such as a leg or the neck. We have a class AnimalAnimation that
contains a list of BoneKeyFrames. An instance of AnimalAnimation is a complete forward
kinematics animation for an animal. We define animations on a per bone basis, which
is what BoneKeyFrames is for. An animation is a collection of key frames, a key frame
is the state of a bone at a certain point in time. The state of a bone is described by 3
Vector3; rotation, position and scale. Rotation is the part of the bone that we primarily
manipulate for animations.

By adding key frames to a BoneKeyFrames, and adding BoneKeyFrames to an
AnimalAnimation we can build a full animation for an animal. To create motion from
a set of key frames we use interpolation over time. Assume we have a BoneKeyFrames
with an array of 3 rotation key frames: rotations. To animate those key frames we
interpolate between them using time as the interpolation factor. The BoneKeyFrames
keeps track of what the current active key frame index is, and does the interpolation by
interpolating between current and (current + 1) % rotations.Length. The modulus
in the second term makes it so that the animations loop seamlessly, by interpolating from
the last key frame to the first.

BoneKeyFrames also has a feature we call KeyFrameTriggers. You can pass an array
of function delegates to the BoneKeyFrames, the functions will then be called whenever
the BoneKeyFrames gets a new current key frame. This makes it so that we can sync logic
with the animation without knowing anything about how much time the animation needs
to loop. We used it to sync movement sounds with the animations (see Chapter 6.8.3 to
read more about audio for animals).

Interpolation is also used to transition between two complete animations. This could
for instance be when an air animal transitions from flying to walking on the ground.
To interpolate between two AnimalAnimations, we play both animations and interpo-
late between the bone states using time as the interpolation factor. This gives a gradual
transition between two animations.

AnimalAnimation can take the speed of the animal as input. The speed is used to
influence how quickly the animation plays. This makes it so that a walking animation
becomes a running animation automatically and fluently as the animal speeds up.

Inverse Kinematics

Inverse kinematics is used to polish the animations produced by the forwards kinematics.
The issue with the forward kinematic animations is that they are entirely static and
without interaction with the environment. A forward kinematic walking animation for
instance is not guaranteed to actually place the feet of the animal at the ground. Since
inverse kinematics calculate the rotations of the bones so that the limb reaches a specific
target we can use it to ground the legs of the animal. See Figure 23 for a comparison of
animations with and without the inverse kinematics polish.

The inverse kinematics algorithm we use is called cyclic coordinate descent(CCD) [31].
There are alternatives to CCD such as using an analytical solution. With analytical solu-
tions you solve the problem of finding the bone rotations using trigonometry. With CCD

54

The Grass is Always Greener

Figure 23: From left to right: Animation without inverse kinematics polish and animation with the
polish. The limbs are grounded in the latter image and not in the first.

you iteratively find the angles by rotating the bones towards the target. The benefit of
the analytical solution is that it finds the solution in one iteration, whereas CCD could
need multiple iterations to complete. The downside of the analytical approach is that it
quickly becomes hard to implement as you increase the amount of bones in a limb. CCD
can solve for any number of bones, and is easy to implement. The versatility of CCD is
what made us favour it over the alternative, because we want the freedom to generate
animals with any number of bones in a limb.

B1

B2 B3

Effector

Target

Figure 24: Shows the vectors used for an iteration of CCD on B2. Rotating B2 with the angle
between the vectors moves the effector closer to the target.

Figure 24 show an image of the CCD algorithm. CCD tries to move the effector of the
limb to a given target. The effector is the end point of the limb. One iteration of CCD
applies rotations to the bones of the limb in reverse order, for Figure 24 this would be
B3− > B2− > B1. The angle to rotate by is calculated from the angle between the red
and blue vectors in Figure 24. To get the direction of rotation we use the cross product
of the red and blue vectors. Rotating the bone about the cross product using the angle
between the vectors will move the effector closer to the target. This process is repeated
on every bone until the effector is considered close enough to the target.

We use CCD to ground the legs of animals as they walk. We set the ground under the
feet of the legs as the target, and the feet as the effector. To find the target point on the
ground we use the ray cast provided by VoxelPhysics(see Chapter 6.5). By casting a ray
from the feet and down we find the surface point below the feet.

We also use CCD to make the animals less rigid, we want the tail of animals for
instance to be affected by motion. If the animal turns around the tail should look as if it
has some inertia. To simulate this we make the tail lag behind the rest of the animal. We
use one iteration of CCD with the tail as the limb and the previous position of the tail as
the target. This makes the tail lag behind when the animal is rotating or moving in any
fashion. The reason for only using one iteration of CCD when simulating limb inertia is

55

The Grass is Always Greener

that we do not need to reach the targets, moving in their direction is sufficient.

6.7 User Interface

Because we want the world to be in focus at all times, even when in the menu, we try
to keep the UI out of the center of the screen. This is why we decided to keep button
placement at the bottom of the screen, as can be seen in Figure 25. This is also the case
in the main menu, where we show off a preview of a generated world.

Figure 25: In-game menu UI

The button bar is consistent across all screens, with only the buttons on the bar chang-
ing based on the context. This is done by having the different button-sets as children of
the button-bar and only enabling them when the context is correct, as can be seen in
Figures 25, 28 and 29. This can also be seen in Figure 26, where the button-bar has been
marked with the number 3. Just like the button bar, the title bar, labeled 1 in Figure 26
is context based. The item labeled 2 in the figure is the preview window, this is different
between the Main Menu and In-game Menu. In the Main Menu this just shows a preview
of some world, while in-game, this shows a the world as it was when you paused it.
As the title and button-bars are semi-transparent, the preview window is visible behind
them as well.

There are 4 button-sets, one for each UI context, where two of the sets are used both
in the main menu and in game. The menu contexts are as follows:

• Base Menu: This contains the "main" menu context for both the main menu and
in-game menu.

• Settings Menu: The settings are available in both in-game and in main menu.
• Animal Collection: A menu available only in-game, where the player can browse

the animals they have collected during the playthrough.
• Play menu: A main menu sub-menu where the player can select a custom seed

before starting a playthrough.

56

The Grass is Always Greener

6.7.1 Main Menu

The Main Menu contains 3 buttons, all in the button-bar, "Play", "Options" and "Exit".
These buttons do what you expect, "exit" exits the game, "options" opens the settings
and "play" opens up the play sub-menu. The play sub-menu (see Figure 27) changes the
context of the button-bar.

Figure 26: Main Menu UI

The play sub-menu contains two buttons, "Start" and "Back" which both do what is
expected, either starting the game or going back to the main menu. The sub-menu also
has a input field that shows up just above the button bar, where the player can enter in a
custom seed if they want, otherwise they will be given a randomly generated seed when
pressing "Start".

Figure 27: "Play" sub-menu. The input field for custom seed can be seen above the button-bar.

6.7.2 In-game Menu

The in-game menu(see Figure 25) is accessible by pressing the escape-key when in-game,
while it is active, the game freezes, this frozen image is what is shown in the preview
window. To leave the menu the player can click "Resume" or just press the escape-key
again. In the in-game menu, the player has 5 buttons available, including the "Resume"
button. The "Options", "Exit to Main" and "Exit Game" do as expected, while the "Collec-
tion" button opens up the Animal Collection UI, where they can look at all the animals
they have collected (see Chapter 6.7.4).

57

The Grass is Always Greener

6.7.3 Settings UI

Figure 28: Settings UI

The UI for the settings is generated when the player launches the game. This was done
so that it would be very easy for anyone to add new settings to the menu without having
to fiddle with Unity’s UI tools. The Settings are composed of sections each containing
their own settings (eg. video settings, audio settings).

Generating a Section

A settings-section is a container holding one or more settings that the user can interact
with. All UI elements in the settings UI are based on what we call a baseUIObject. The
baseUIObject is a Unity GameObject containing a RectTransform and a CanvasRenderer,
the two components necessary for any UI element. The CanvasRenderer is used by the
engine to render the element, and the RectTransform is used to control the location and
size of a UI element on the canvas. Sections contain two of these baseUIObjects, a title
and a panel. The title contains a piece of custom text that should describe what the
section contains, for example "Video Settings" and has the panel set as it’s parent. The
panel is where the different settings in the section will go. The height and y-position of
the panel is set during the building phase.

Generating a Setting

We have 3 different types of settings implemented, these are sliders, dropdowns and in-
put field. They all share a common base called a basicOption. The basicOption contains
3 parts. Two of the parts are shared among all setting types, the optionWrapper which
contains the two other, and the optionText which contains the name of the setting, eg.
"Resolution". The last part is what we call the interactiveElement, this is custom for
each of the setting types. What the interactiveElement is can be discerned from their
names. For example, slider settings has a slider as its interactive element. Listing 6.19
shows an example of how we add a new dropdown setting to the settings UI.

58

The Grass is Always Greener

Listing 6.19: How a setting is added to the Settings UI

GameObject v ideoSe t t i ng s = addSect ion ("Video" , panel) ;

string [] r e s o l u t i o n s = new string [] { "2560x1440" , "1920x1080" ,
"1280x720" , "1024x768" } ;

GameObject r e s o l u t i o n = addDropdownOption (
optionName : "Resolution" ,
parent : v ideoSe t t ings ,
elements : r e s o lu t i o n s ,
saveFunc : delegate { // Update screen resolution

string dimStr ing = P l a y e r P r e f s . Get In t ("Resolution") ;
string [] dimensions = r e s o l u t i o n s [dimStr ing] . S p l i t (’ x ’) ;
Screen . Se tReso lu t ion (Int32 . Parse (dimensions [0]) ,

Int32 . Parse (dimensions [1]) ,
Screen . f u l l S c r e e n) ;

return null ;
}

) ;

// ...

As Listing 6.19 show, the dropdown takes in 4 parameters. The first parameter, optionName
is a string used as a key when saving the setting to PlayerPrefs. PlayerPrefs is a fea-
ture built into Unity which allows for saving user settings in between sessions. The second
is the parent object, which in this case was the "videoSettings" panel. The third parameter
is the elements to fill the dropdown with. For sliders this is replaced by the three param-
eters minval, maxval and isInt. minval and maxval is used to limit set the minimum
and maximum value, while isInt is used to set whether to only allow integer values.
With input fields we replace the elements parameter with a placeholder-text parameter.
The final parameter saveFunc, allows us to add a custom function to run whenever this
setting is saved. In our example, the function is used to set the resolution of the game
window.

Building the Settings UI

Because there are no rules as to what order sections and settings are added, we cannot
predict the positioning or height of a panel when it is created. So once all the sections
and their settings have been created, we go through and update their y-positions and
heights so that they stack nicely underneath each other.

6.7.4 Animal Collection Display

The Animal Collection Display (seen in Figure 29) is a way for the player to look at the
animals they have collected while playing. The UI for the animal collection contains 2
main parts, the animal preview and the animal count. The animal count in the top left
shows how many animals you have of each animal type, as well as the total amount of
animals. The player can click on any of the types to filter what animal types appear when
they browse the animal preview. The animal preview allows for the player to browse
through the animals they have collected by clicking the arrows on the sides. In the center
of the preview the animals get displayed. The display works by showing the animals
from a list displayCollection which at all times contain the animals that match the
types that the filter allows to show. The display works by putting an animal to display in
front of a camera that renders to a texture. This texture is then displayed as an image in

59

The Grass is Always Greener

Figure 29: UI for animal collection

the UI. The animal to display is generated using the data stored in a CollectedAnimal
object. See Chapter 6.10.3 for more on how the animal collection system works, and for
an explanation of what a CollectedAnimal is.

6.8 Audio

The audio in the game can be separated into three categories: music, environment, and
animals. The animals are for the most part controlled by their own scripts (see Chap-
ter 6.8.3), while music and environment are controlled by the AudioManager.

6.8.1 Music

The music is controlled by the musicPlayer() co-routine. The music player starts playing
a track, and then sleeps for the duration of the track, before it plays the next one.

6.8.2 Environment

The 3 environment sounds (wind, ocean, water) are played by the environmentPlayer()
co-routine, and the tracks for these sounds are all playing on a loop. The environment
sounds requires custom checks against the world to update the volume levels, because
you can’t place the audio source at one single location in the world as they come from
multiple places. These checks are ran every frame to keep the environment volume cor-
rect.

Wind Audio

Updating the volume of the wind is fairly straight forward, as opposed to updating the
volume of the water. We start by finding out how far away from the global wind ceiling
we are, and set that as the basis of our search. We can then look for wind-chunks that
are closer than the global wind ceiling. We then use the distance from the closest wind-
chunk, or the distance from the wind ceiling if no wind-chunks were found to be closer.
Wind-chunks and the global wind ceiling is explained in detail in Chapter 6.10.2.

60

The Grass is Always Greener

Water Audio

Doing the audio for the water right, was a bit of a challenge. As we had to calculate
how far the player was from a point of water every frame, we needed an efficient search
method. Originally we tried looking up the BlockTypes of all the blocks in the range
waterSoundRange of the player, where the range was how far away the water could be
heard. This method proved very expensive as it lead to checking the distances from 1
million blocks just with a radius of 50. We tried limiting the search so that it would only
check blocks whose y-position could actually be water. This lowered the amount of blocks
checked significantly, but was still far from where we wanted.

We eventually came up with a solution where we used the vertices in the water meshes
for the chunks. We did this by finding the chunks within a range of waterSoundRange +
Mathf.Sqrt(chunkWidth * chunkWidth * 2) and sorted them based on how far they
were from the player. The reason for the extended range, is because while the chunk’s
position might have been out of bounds, it might still have contained vertices that were
inside in range. Once we have the chunks we want to check, we search through the
vertices of the water-meshes of these chunks. By doing this we could find what vertex
was closest to the player and use this for controlling the volume of the water.

While the vertex search method was a lot better than searching through the blocks,
it was still causing a bit of lag. To increase the efficiency even more, we made a few
adjustments. The first one was that we used the distance to closest ocean if our distance
from the ocean was less than waterSoundRange. This is because the method we use for
finding the ocean is a lot cheaper than the vertex search, but also less accurate. The
second adjustment we did was that before we started searching the vertices of a chunk,
we checked that they were no further away from the player than closesetVertDist +
Mathf.Sqrt(chunkWidth * chunkWidth * 2) * 0.5f, where closesetVertDist was
the the distance from the closest vertex we had found. This is because if they are further
away, then it is not possible that they contain any vertices closer than the currently closest
vertex. If a chunks was to far away, we skipped it and went on to check the next chunk.
When going through the vertices of a water mesh, we only check every 4th vertex as a
face/quad contains 4 vertices and we only need to check one vertex in each face.

Ocean Audio

Because of the size of the ocean, we found that we could use a less accurate method
to find ocean water, than we could to find smaller lakes that weren’t part of the ocean.
Having the ocean checking separate also allowed us to have extra audio in the ocean
water. The distance from the ocean is used to control the volume of ocean water.

Finding the ocean water depends on the fact that we only add wind areas in the
ocean biomes. We start off by finding the closest wind-chunk (see Chapter 6.10.2) and
calculating our (x,z) distance from it. If we find a wind-chunk that is in range, we
add the distance in the y-direction into the calculation. Calculating the player’s dis-
tance from the water is done in two ways, depending on whether the player is above
or below the corruption water offset (see Chapter 6.2.4). If above, we find the dis-
tance between the player’s y-position and waterLevel + corruptionOffset, while if
the player is below, then it is calculated as the distance between the player’s y-position
and corruptionOffset. While calculating the distance from the ocean like this is not

61

The Grass is Always Greener

very accurate, it is accurate enough for this use and very efficient.

6.8.3 Animal Sounds

All animals make sound, they "speak", they make sounds when moving, and they make
sound when interacting with certain parts of the environment. The animals’ audio is
controlled by the AnimalAudio script, this script manages the AudioSource attached to
the animal, controlling volume, pitch and what is being played.

Speech

Their "speech" is controlled by a co-routine, this co-routine sleeps for 10 to 20 seconds
at a time, and plays the "speaking" sound when awake. The pitch of the sound varies
slightly each time it is played, to create some variety in the sounds the animals make.

Movement Sound

The playing of movement is not entirely in the control of the AnimalAudio script. The
timing for playing these sounds is determined by the animation. When we set up the
animations’ key frames, we can add in what we call KeyFrameTriggers, functions that
are run when a key frame in the animation is completed. More on animations and on
how the KeyFrameTriggers work can be found in Chapter 6.6.1. We add in callbacks
to functions in the AnimalAudio script that deal with playing the different movement
sounds.

All animals have a walking sound that they make when traversing on ground, the
sound made can vary depending on what surface the player is walking on. What surface
the player is walking on, is found by checking the type of the block below the player
using our custom VoxelPhysics class (see Chapter 6.5). The movement sound is put
into a KeyFrameTrigger for the walking-animation of one leg on the land animals and
air animals. The flying animals also have the sound of wing flapping when they are in
the air, this is put into a KeyFrameTrigger for the flying-animation of one of the wings.
The reasoning for only putting the sound triggers into one limb, instead of into all the
relevant limbs, is that when these sounds are all played (almost) simultaneously from
the same AudioSource, it creates artifacts in the audio that we do not want.

Water Splashing

The animals also have audio for some interactions with the environment. When an ani-
mal hits the water-surface a splashing sound is made. Due to the fact that water animals
interact with water differently than air and land animals, there are two ways for the
splashing sound to be made. The first way, used by water animals plays a sound when
the animal enters the water. As we use a custom collision-detection system, how entry is
detected is explained in Chapter 6.5. The second way, used by land and air animals, is
necessary because they cannot enter into the water in the same way as water animals,
but instead stay floating on top of it. This method works by checking the animal’s state
(see Chapter 6.6.1) to see if it is sitting on the water surface. If it is sitting on the water
surface, but was not doing so last frame, then we know that they just entered the water
and can play the sound.

62

The Grass is Always Greener

6.9 Shaders

The textures on the terrain, trees and animals are generated at run time on the GPU
using shaders that we wrote. By using the GPU for this we leverage the massive parallel
computing power that GPUs have leaving the CPU free to do other things, which is good
for performance. The game world uses 4 main shaders; Terrain.shader, Tree.shader, Wa-
ter.shader and Animal.shader. All of the shaders share the same core logic for generating
the textures on the mesh they render, they take some input data from the actual mesh
and combine it with noise to output a color value for the surface of the mesh.

The normal method of doing textures is to create the textures in advance then loading
them as resources for the GPU. The GPU then samples color values from the texture and
uses it to color the mesh it is rendering. Our method of coloring the meshes differs from
the traditional method in that we generate the color at run time using noise as mentioned
above. Doing this gives us a more varied look on the things that we render, as well as
making the textures seamless since our noise function has an infinite domain as opposed
to textures which are finite in size. See Figure 30 for comparison of finite and infinite
textures. The border tiling issues seen in the finite textures can be solved by making the
edges of the textures equal each other.

Figure 30: Comparison of finite(left) and infinite(right) textures

Before explaining how our shaders work we will briefly discuss how shaders work in
general. A shader is a program that runs on the GPU, the purpose of a shader is rendering
a mesh to the monitor. A mesh is a collection of vertices (points in space), these vertices
are the first thing that the shader program processes. The shader program runs in a
pipeline, with multiple steps that work to convert a mesh into pixels on the monitor. The
shaders we write implement the vertex and fragment shader steps.

The vertex shader step of the shader pipeline takes the vertices from the mesh and
does calculations for each vertex in isolation and in parallel. So in any given execution
of the vertex shader you will only have the information of a single vertex, and all of
the data belonging to that vertex. The data belonging to a vertex could be its position,
the normal, color, uvs and more. The calculations that are done in the vertex shader
is usually something like transforming the vertex, but you can do a lot more. Once the
vertex shader has completed, it passes on its results to the next step in the pipeline which
in our case is the fragment shader.

A fragment is a single pixel sized piece of the mesh and the output of the fragment
shader will contribute either nothing, partially or fully to the final pixel value on the
monitor. The input to the fragment shader is a composite value of potentially multiple
vertices that have gone through the vertex shader. This composite value is calculated by a

63

The Grass is Always Greener

rasterization step in the shader which happens before the fragment shader. Rasterization
interpolates the values of multiple vertices to produce a single fragment, this is needed
because a fragment could be in the middle of a face defined by multiple vertices. The
fragment produced by the rasterization is then input to the fragment shader. The job of
the fragment shader is primarily taking the input fragment and calculating its final color.

We will mostly be explaining the parts of our shader implementations that relate to
generation of textures and use of noise functions. Some key things we do not mention
here is: the spatial transformations applied to vertices and fragments using the MVP
matrix, lighting (ambient, diffuse and specular) and shadow calculations.

6.9.1 Terrain shader

The terrain shader is tasked with rendering the mesh for a chunk of terrain to the screen,
see Figure 5 for an image of a chunk. There is one main challenge associated with ren-
dering a chunk, which is the fact that different blocks should have different textures and
one chunk mesh can contain any number of different blocks. This means that the shader
needs a way to tell what kind of block it is currently rendering. Once the shader has
obtained the block type of the vertex it then needs to know what color that block type
should be.

The normal data associated with a vertex is not fit for directly representing a block
type so we had to get creative when choosing how we would do it. We chose to encode
the block type represented as an int into the vertex color data when we create the mesh
for the chunk. We put the int representation of the block type into one of the color
components. When we retrieve the block type from within the shader we have to add a
small number to the block type before casting it to an int due to floating point precision
limitations.

Now that we can get the block type of the vertex/fragment by decoding it from the
vertex/fragment color data we need to figure out what color that block type should be.
To solve this problem we declared 3 static arrays in the terrain shader containing data
used for generating the final color of the fragment, the block type int is used to index
these arrays. See Listing 6.20 for the declaration of the arrays.

Listing 6.20: Terrain shader arrays
s t a t i c const i n t COLOR_COUNT = 5;
s t a t i c f l o a t f r equenc i e s [COLOR_COUNT] = {

7.74 , // D i r t
/ / . . .

} ;
s t a t i c f i xed3 co lo r s1 [COLOR_COUNT] = {

f ixed3 (0.729 , 0.505 , 0.070) , // D i r t
/ / . . .

} ;
s t a t i c f i xed3 co lo r s2 [COLOR_COUNT] = {

co lo r s1 [0] / 1 .5 , // D i r t
/ / . . .

} ;

The frequencies array is used to get the noise sampling frequency for the block type,
and the two color arrays gives the two colors of the block type. To calculate the color
of the fragment we sample the noise value using the fragment world position and the
frequency of the block type. Once we have the noise value for the fragment which is
in the 0 to 1 range we use it to interpolate between the two block type colors. The

64

The Grass is Always Greener

interpolated color is the final color value for that block type. To read more about the
noise function see Chapter 6.1

However, blocks can have modifiers giving them two block types, the block seen in
Figure 5 is a dirt block with grass as a modifier. We can get the modifier block type
and color the same way we get the normal block type and color, the issue now becomes
determining which of the two block types to use for the final color. We can solve this
issue by using the uv of the fragment, a uv is a texture coordinate which ranges from 0
to 1 in the x and y axis. The uv for our blocks start at uv.y = 0 at the base of the block
and increases to uv.y = 1 at the top of the block. Because of this we can look at the y
value of our uv to determine if we should use the block modifier color or the block base
color for coloring the fragment. When the y value of the uv is greater then 0.8 we use the
block modifier, when its lower we use the block base for coloring the fragment. We also
add some noise to the 0.8 threshold to prevent the base/modifier transition from being
a straight line.

Block modifiers do cause some rendering artifacts when rendering them at a distance.
The artifacts can not be captured by a still image, they appear as waves of aliasing which
looks like an interference pattern in the terrain when the camera is moved in game. It
is caused by the fact that distant blocks with modifiers get few pixels to represent them,
this combined with limited precision causes the fragments to switch between the block
base and modifier color quickly when moving the camera.

The problem we encountered is usually solved by using a mipmap [32] when using
normal textures. A mipmap is a set of the same texture at decreasing resolution, when
rendering distant objects you would use a low resolution texture to decrease the de-
tail level. The process of decreasing detail level as a function of distance is known as
LOD(level of detail) [33].

Since we are not using textures but generating them using noise we can not use
mipmaps to solve our problem. We decrease the detail level from the shader code in-
stead. To decrease the detail level of block modifiers we gradually move the 0.8 modifier
threshold mentioned earlier to 0 as the distance from the fragment to the camera in-
creases. This makes distant blocks turn into their modifier entirely, decreasing the com-
plexity of distant blocks by reducing them to a single color. We also reduce the noise
sampling frequency of distant fragments which gives the textures fewer large scale fea-
tures. The reduction in frequency at a distance also helps alleviate graphical artifacts and
is analogous to mipmapping. See Figure 31 for an up close comparison of the two levels
of detail.

Figure 31: The image shows from left to right: A chunk with a low LOD (low noise frequency) and
the same chunk with a high LOD (high noise frequency)

65

The Grass is Always Greener

6.9.2 Tree shader

Just like it is the terrain shaders job to render chunks of the terrain the tree shader
renders trees, see Figure 18 for an image of trees. The tree shader has to solve the same
problems that the chunk shader does, which is determening block type and color and it
implements the solutions in the same manner. The blocks for the trees are wood and leaf,
so the arrays in the tree shader are only 2 items long. Trees does not have modifiers for
their blocks so the terrain and tree shaders differ in this way, this also means that trees
do not need the level of detail system used by terrain either.

There is one difference in how trees generate color, when the block type is wood the
color is not always an interpolation between the two colors of wood. Instead it is either
fully one of the colors when the noise value for the fragment is below or above certain
thresholds or it is interpolated as usual when the noise value is between these thresholds.
This gives the texture of wood more sudden transitions between the two colors of wood,
giving the wood a bark-like look as seen in Figure 32. You can compare the sudden tran-
sitions to the normal interpolation by looking at the leaves which are always calculated
as the interpolated value of the two colors using the noise as the interpolation factor.

Figure 32: Image of wood texture

6.9.3 Water shader

There are two main effects that we want to accomplish with the water shader, we want
the water to be semi transparent and reflective. Achieving transparency is easy, we just
have to set the alpha value of the color for the water fragments to some value less then
1. The reflective property is also easy in unity, we can use macros provided by the engine
to reflect the sky. The sky in our game as in most games is implemented as a skybox, the
skybox is textured by a cubemap image. The reflection of the sky in water is implemented
by sampling the cubemap for the skybox and using the color values of the cubemap as
the color values for the water fragments. We use a unity macro for doing the cubemap
sampling, the macro needs the normal of the water surface to work out where to sample
the cubemap. When we provide the macro with the normal we get color value for the

66

The Grass is Always Greener

reflection, setting the sampled color as the water fragment color gives us water that
reflects the sky.

However, only reflecting the sky in this way creates a very strange mirror like water,
the water looks like a perfectly flat big mirror which is unnatural. Real water has an
uneven surface with constant motion which is the look we want for our water as well.
The first thing we tried was manipulating the vertices of the water using noise, so that
the water surface would become uneven. Changing the actual geometry of our water
in this way caused issues with other things such as lighting and shadow calculations.
We instead used a slightly less obvious approach where we used noise to slightly alter
the water normals. This simulates an uneven surface without the surface actually being
uneven, because we now have normals that point in slightly different directions as they
would if the surface truly was uneven. We also use the amount of passed time as a factor
when we sample noise to simulate motion on the water surface. See Figure 33 for a
comparison between the flat and uneven water surface.

Figure 33: the left image shows water with unaltered normals, the image on the right is water with
noise applied to the normals.

6.9.4 Animal shader

We have been very liberal with how we texture the animals as you can see in Figure 19
and Figure 20. They can have a virtually infinite combination of two colors in all sorts of
patterns. The animal shaders differ from the terrain and tree shaders in one fundamental
way, instead of storing and looking up colors in arrays the animals use noise to generate
the colors themselves.

We still use two colors as with terrain and trees, and we still transition between them
using noise. The transition itself is not done through using the noise to interpolate, for
animals the transition is instant once the noise value crosses a threshold. The threshold
for when to use color1 or color2 has a gap in it, the gap is filled with nothing producing
a black color in what would have been the transition between the two generated colors.
The black gap was initially introduced to fix a graphical glitch caused by the transition
but we kept it even after working out how to solve the glitch because we liked it.

The implementation of the animal shader had 2 main problems for us to solve. The
first problem is consistent noise sampling, we use the fragment world position to sample
noise which causes the texture of the animal to move when the animals moves. The
second problem is consistent generation of colors for the animal, every fragment has to
be computed independently and we want all of them to generate the same two colors for
the animal.

We solved both of these issues with an approach similar to what we did for terrain

67

The Grass is Always Greener

and trees, by encoding some data into the mesh of the animal. The noise sampling issue
was solved by storing the default vertex positions of the animal mesh into the vertex
color data. As mentioned in Chapter 6.9.1 the vertex color data is a collection of 4 floats,
so to store the original vertex positions we use the first 3 floats for the vertex x, y and
z coordinates. This gives us static positions for every vertex that does not change as the
vertex is transformed, solving the sampling problem.

In order to make the color generation consistent across all fragments we put data used
for noise sampling in the uv(texture coordinate) of the vertex. We put a seed into the y
component and a frequency into the x component. We use the uv seed and frequency
for more then just noise sampling, we also use various compositions of them to generate
the colors for each fragment. The uv data is a good candidate for this task because it
is consistent across all fragments in an animal(it is not generally the case that the uv
is the same for every vertex, they are the same for animals because we made them all
the same). The colors that the uv is used to generate is a collection of 3 floats in the 0
to 1 range and we want to generate a large range of colors. We want a small change
in the uv to result in a large change in color, to give the animals as much variety in
texture as possible. These requirements resulted in the code for generating colors seen
in Listing 6.21, the animalData object is the uv.

Listing 6.21: Animal shader color generation
ha l f3 co lor1 = {

cos ((i . animalData . x ∗ i . animalData . y) ∗ 517.72) , //R
cos ((i . animalData . x + i . animalData . y) ∗ 444.54) , //G
s in ((i . animalData . x / i . animalData . y) ∗ 314.22) } ;//B

// co lor2 i s s im i l a r , but not numer ica l ly the same

Some of the things that the color generation in the Listing 6.21 accomplishes is that it
ensures a different value for the R, G and B components even though they are calculated
from the same inputs by using different operations. It ensures a good spread of colors
by multiplying them by a large number. The use of trigonometric functions sets the final
value in the -1 to 1 range, the reason for wanting negative values is the ability to com-
pletely disregard a component. The final color values gets clamped to the 0 to 1 range, so
negative values become 0. The motivation for dropping one or multiple components of
the RGB color is that we do not want every animal to have a composite color which would
be the case if we generated RGB values in the 0 to 1 range. Blue and yellow animals such
as the one in Figure 20 would not be possible without dropping RGB components, blue
is composed of only one value, and yellow is a composite of green and red. It is numer-
ically possible for a color generated with components in the 0 to 1 range to also have 0
or near 0 components but it is far rarer compared to our solution, which is a conclusion
we arrived at through empirical data after we tested both solutions. There is one pitfall
to generating colors in the -1 to 1 range as we do which is when all components of the
color gets dropped producing all back animals. To combat pitch black animals we check
if both colors are black and make one of them white, this event is rare so you will rarely
see a black/white animal while playing.

6.10 Gameplay

In this section we will talk about different gameplay elements that we have in the game.
To keep the game’s focus on the world around the player, we decided to focus the game-

68

The Grass is Always Greener

play around using the different animal types so that the player can see and explore the
world in multiple ways.

6.10.1 Animal Switching

The animal switching allows for the player to switch body with the animals they find in
the world. To take over another animal, the player has to face the animal and press down
the left mouse button. When the player clicks down the mouse button, we have to try
figuring out what animal they wanted to take control over.

To find what animal the player wants to swap brains with, we have to find the
best match in a list containing all animals. As animals are stored in pools, we have to
go through every animal pool and all the animals in them. For every animal we are
checking, we calculate the angle between the camera’s forward vector and the vector of
animalTransform - camaraTransform. If the animal we are checking is close enough,
and the angle is small enough we store the index of the pool the animal is stored in,
and the animal’s index in the pool. If an animal was found, then the player will be given
control of the other animal.

When the player takes control of another animal, the brain of both the new and old
animal will have to be swapped out. The old animal will be given an NPC brain, and the
new animal will be given a Player brain. How the brains work, and how NPC and Player
brains differ can be found in Chapter 6.6.

6.10.2 Wind

Wind is something we decided to implement in order to give the player more incentives
to try out the different animal types. Without the wind, the player could just find and
become an air animal, and then just fly in a straight line to the end of the world. Now
they instead have to switch around if they want to traverse the terrain efficiently. If the
player enters into a windy area, the force of the wind will push against them when they
are in the air, making it near impossible to fly through.

Wind can be found anywhere if the player’s y-position is higher than the global wind
ceiling of 140, it can also be found in designated wind zones placed around in the world
where the wind will affect the player as long as they are not grounded. These wind
zones that go all the way down to the ground exist in ocean biomes, but only outside
the radius of 100 around (0,0). The reason for not having wind within 100 of (0,0)
is that we do not want the player to get stuck in the wind, and also that the visual
effect of the wind end doesn’t look very good when all the wind is converging into a
single point. There are three ways in which the wind is used. The first is as said above,
it acts as a force on the player. This is done by changing the player’s velocity to add
windDirection * globalWindSpeed, where windDirection is calculated to be in the
direction of (0,0), and globalWindSpeed is how strong the wind is. The second way the
wind is used is audio, how we use the wind for audio is explained in detail in chapter
6.8.2.

The final way in which we use the wind is as a visual effect. The visual effect is
created using particle systems. These particle systems are instanced on a per-chunk basis,
all chunks outside of the 100 range around (0,0) contain their own particle system. If
the chunks closest biome is an ocean biome(see Chapter 6.2.3), the particle system goes
from y=0 to y=300. If the biome is not an ocean biome, then the particle system goes

69

The Grass is Always Greener

Figure 34: Close up of a wind particle.

from y=140, which is the "global wind ceiling" up to y=300. The reasoning for having
the y go as far up as 300, is that we have the world height set at 200 and we wanted to
have the wind go above the world height, so that even if the terrain got that high, the
player wouldn’t see where the wind particles stopped. Unity’s particle systems allow for
us to add trails to the particles. To get the effect on the particles as seen in Figure 34,
we disabled the material on the particle itself, and only used the particle trails. We also
use the built in noise functionality in Unity’s particle system to add some noise to the
movement of the particles, so that the trails don’t end up being straight lines. This visual
effect also serves as an indicator for which direction the player needs to go in order to
get to the end of the world.

6.10.3 Animal Collecting

As the player traverses the world they are likely going to switch animals many times. We
wanted the player to be to look back at what they have collected, this is what led to the
animal collection system. In this section we will be explaining how the animal collection
works behind the scenes. The UI is explained in Chapter 6.7.4.

The animal collection is controlled by the AnimalCollection class. The class contains
two lists containing objects of type CollectedAnimal, one containing all the collected
animals called collectedAnimals, and one containing only the animals that are to be
displayed in the UI called displayCollection. A CollectedAnimal consists of the Type
of the animal, and the seed needed to replicate the skeleton and texture.

Whenever the player switches to a new animal, it is automatically added to the animal
collection, so that the player can look at it from the collection display at a later time.
When we want to add a new animal to the collection, the first thing we do is check that
there are no animals in the collectedAnimals list that matches the type and seed of the
animal we are trying to add before we allow the animal to be added.

6.10.4 Win Condition

To win the game the player has to reach the end of the world. The above game mechanics
are tools that the player can use to get to the end. By selecting the best animal for the
current environment. When the player reaches the end of the world the UI shows the
player that they have won. The UI also gives some statistics about the play-through which

70

The Grass is Always Greener

are; time spent reaching the end and distance traveled. See Figure 35 for an image of the
win condition being triggered.

Figure 35: Image of victory screen shown when player reaches the end of the world.

71

The Grass is Always Greener

6.11 Implementation Statistics

We figured it could be interesting to add some statistics for the implementation.

Lines of Code

• Lines of C# code: 9748
• Lines of shader code(.hlsl and .shader files): 1053
• Total line count: 10793

With a total of 93 C# and shader files, this gives us an average of 116 lines in every file.

Breakdown of source code:

• World Generation: 31%
• Animals: 29%
• Shaders: 10%
• Utils: 10%
• UI: 7%
• Other: 13%

The above data was obtained by counting lines of code inside individual folders of the
project.

Hours spent

As very little programming was done after sprint 14, and we did not log time the first
week, this is data from sprint 2 through 14. We spent about 500 hours programming the
game, with an average of about 39 hours collectively each week.

Breakdown of time usage:

• World Generation: 23%
• Animals: 21%
• Shaders: 8%
• Physics: 6%
• Audio: 5%
• UI: 3%
• Other: 34%

The above data is a rough estimate of how the time was spent. We obtained the data
by searching for key words in our time logs. When we log our work we write a description
of what we worked on along with the time, such as "Worked on making AirAnimals fly".
The other category encompasses anything not directly relating to the other categories.
This could be things such as making the benchmarks, fixing bugs and more.

72

The Grass is Always Greener

7 Optimization

In this chapter we will cover some of the more interesting and impactful performance
optimizations we made during the development of this project.

7.1 Methodology

7.1.1 Benchmarks

To be able to get some solid data on how the game was performing, we made two bench-
marks that we used to measure the game’s performance. The two benchmarks are called
RealBench and SynBench. Both of these benchmarks allow for us to set what thread-counts
we want to test for. See Appendix E for concrete examples of the output data from both
benchmarks.

All benchmark results shown in this chapter were obtained by running the bench-
marks from a build of the game, as opposed to from within the Unity editor. The bench-
marks were also run on the same system, with the following specifications:

• CPU: AMD Ryzen Threadripper 1950X 16/32 cores/threads
• GPU: Nvidia GeForce GTX 1080 Ti
• RAM: 32GB DDR4

RealBench

RealBench is used for measuring the frame rate over a set amount of time while moving
in a straight line and generating terrain and animals. It also tracks how many chunks are
generated, how many chunks are canceled after having been queued for generation and
the number of animals generated. This benchmark allows us to set how many seconds
we want to run it for.

RealBench works by creating a dummy player, and feeding it into the WorldGenManager
(see Chapter 6.3). This dummy player flies through the air above the terrain at the max
speed an animal can move so as to represent a somewhat realistic movement speed.
While the WorldGenManager generates the terrain, we run a timer in the RealWorldBenchmarkManager
and count the frames until the timer is done. After the benchmark has run the set time
we calculate the average FPS, get the data on generated chunks, cancelled chunks and
generated animals and write this to a file together with the raw FPS output over time.
We can then create a graph using the raw FPS data we recorded. For generating the data
for the graphs used in this chapter, we ran RealBench at 8 threads for 4 minutes.

RealBench has been changed somewhat over the course of development. When going
back to old commits to get benchmark data for this chapter we manually applied the
most recent changes to make the different results comparable. The difference between
the old version and the new version is how the dummy player and the camera moves.
In the old version of RealBench the player would move in random directions whereas in
the current version the player moves in a straight line. We changed it to a straight line
to remove the movement pattern as a variable making different benchmark results more

73

The Grass is Always Greener

comparable. The camera would rotate around the player in the old version, we removed
this in the new version because the rotation caused cycles in the RealBench FPS graph
which made the results harder to interpret.

SynBench

SynBench is used to measure the speed of the terrain generation and animal generation
by measuring the time used to generate a 20x20 chunks and 20 animals.

Unlike RealBench, SynBench does not make use of WorldGenManager to generate the
terrain. Instead, it handles chunk and animal generation by itself. The way it differs from
WorldGenManager(see Chapter 6.3) is that it does not pool objects, as we generate only
around (0,0) so no chunks or animals will be unloaded. The SyntheticBenchmarkManger
also orders all the animals and chunks at the same time just after starting. The process
from a chunk is ordered until it is returned to the main thread is the same as with the
WorldGenManager. While the worker threads are generating the terrain and animals the
SyntheticBenchmarkManger keeps counting the frames in the same way as RealBench.
Before the animals and chunks were ordered a timer was started. This timer keeps going
until all the chunks and animals have been generated and launched into the world.
We now calculate the average FPS and write this to file together with the time used
to generate everything. To generate data for graphs from this, we run it over multiple
iterations with different thread-counts. For generating the data for the graphs used in
this chapter, we ran SynBench at 1 to 25 threads at a 2 thread interval.

SynBench has one issue in terms of precision. The animals generated by SynBench
are generated with random parameters, this becomes an unnecessary variable for the
benchmark results. Luckily animals account for a small percentage of the total work so
the error caused by this is small. We would have changed SynBench to generate animals
with fixed parameters, however this would make the results less comparable with older
versions of SynBench which uses random parameters.

7.1.2 Performance Monitoring

While our benchmark systems were nice for testing the overall performance of the game,
they don’t give much indication as to where eventual performance issues stem from. For
this we had some performance monitoring tools that we could use.

Unity has a built in tool for performance profiling called the Unity Profiler. With this
tool we are able to monitor CPU usage, GPU usage and memory usage so that we can
easily see what parts of our code is causing performance issues. The profiler also lets us
get an overview of active physics objects and an overview of playing audio sources and
how much CPU and memory is used for the audio.

Though the profiler is a very handy tool and it helped us a when optimizing code that
runs in the main thread, it does not support multi-threading, so we could not use it to
monitor resources used by the worker threads. For this we had to manually do timings
using the StopWatch class from the C# System.Diagnostics library, which allows for
easy time-measurements of sections of code.

74

The Grass is Always Greener

7.2 BlockDataMap Implementation

7.2.1 Old solution

Before we implemented the BlockDataMap as a way of storing the BlockData for the
blocks in a chunk, we stored the BlockData in a multi-dimensional array that we were
passing around between functions. At this point in time, the BlockData was a class, so
the data was pass-by-reference, meaning we weren’t making new copies of the BlockData
every time it was passed around.

While this solution was very simple, it was more resource intensive then what we
wanted. With the BlockData class containing 2 BlockTypes, which is an enum with un-
derlying type int, we were using as much memory for the references to the BlockData, as
we were using for the BlockData itself. This is important because each chunk at this point
contained 20x20x100=40000 blocks, meaning that we were using 40k*16B=640KB of
data in each chunk (8B reference + 2*4B int) with only half of this being stored sequen-
tially in memory. This also means that the BlockData itself is stored in random locations
in memory, which could potentially mean that to go through all the blocks we would
have to read in 40000 cache lines to read in the BlockData from memory.

7.2.2 New solution

The solution we came up with to replace the multi-dimensional array of BlockData was
the BlockDataMap, a 1 dimensional array inside a wrapper class. With the BlockDataMap
we turned the BlockData class into a struct. That way all the BlockData would be stored
sequentially in memory, leading to a lot less cache lines having to be read to load the
data from memory. Because the BlockData was now a struct, we also halved the memory
it used due to data contained within being the same size as a reference of a 64bit system.

Figure 36: BlockDataMap SynBench Comparison. (Red=Before, Blue=After)

1 3 5 7 9 11 13 15 17 19 21 23 25

10

20

30

40

50

60

70

80

Threads

Ti
m

e

#33

#31

7.2.3 Performance Impact

From the graph in Figure 36 we can see a performance increase across all thread-counts,
with the result on high thread-counts being almost 4 times as fast with the new solution.
We believe this is due to the improvement in memory layout, going from storing the

75

The Grass is Always Greener

BlockData randomly in memory with sequential references, to removing the references
and storing the BlockData itself sequentially.

7.3 Terrain Sampling Optimization

Before the terrain sampling optimization, we had been sampling every block in a chunk
with 3D noise. With the chunks being 20x20 and 200 blocks tall, this meant that we were
sampling 80 thousand blocks for every chunk we generated. Before this optimization, we
had come to the conclusion that there was little more we could do to lower the time
needed to sample a single block. Because of this we decided to try look for a way to
sample less blocks.

The goal of the terrain sampling optimization was to speed up chunk generation by
sampling blocks selectively. Because not all blocks would be sampled with 3D noise,
we now also had to pre-initialize the BlockDataMap using data from the heightmap
only. Once the map was initialized we added the blocks at (x, heightmap[x,z], z) for
every x and z, as well as the blocks at the sides of x and z to a queue for sampling
(samplingQueue) and to a boolean 3d array to make sure no block was queued more
than once (doneArray). For each block, we checked whether the sampling with 3D noise
gave the same result as the result from heightmap only. If the result differed, we changed
the value in the BlockDataMap and tried to add the 6 neighbours to the queue as well,
unless they had already been queued or sampled. See Chapter 6.2.2 for a more thorough
explanation of the selective sampling.

Figure 37: Terrain Sampling Optimization SynBench Comparison. (Red=Before, Blue=After)

1 3 5 7 9 11 13 15 17 19 21 23 25

10

20

30

40

50

60

70

80

90

100

110

Threads

Ti
m

e

#53

#52

7.3.1 Performance Impact

For low thread-counts the selective sampling show the expected result, less time was
needed because less blocks were sampled. For higher thread-counts can see in Figure 7.3
that the selective sampling actually ends up taking more time.

We believe this could be because we no longer read the BlockData sequentially. With
the old solution we would just iterate over the BlockDataMap, but with the selective
sampling the access is more random which causes worse cache utilization due to random

76

The Grass is Always Greener

access instead of sequential access. This shows very well with high thread-counts as the
threads will be competing for the cache memory.

7.4 Shader Optimization

We generate the textures of everything procedurally at runtime on the GPU using custom
shaders. The mesh of a terrain chunk can contain multiple block types, each with their
own texture. This means that we need to texture them differently. We encode the block
type into the mesh color data, so that we can tell from the shader what block type the
current vertex belongs to. In our first approach for procedural textures, we would input
the block type to a switch statement with logic for each block type. This worked and pro-
duced correct looking results, the performance however had potential for improvement.
The issue is that GPUs are bad at branching [34], which a switch case for every block
type causes to a large extent.

To solve the branching issue we made new shaders without any branching. The new
shaders use the block types to index arrays of data, which is then used to generate the
textures. So instead of having separate logic for each block type, we now have the same
logic but separate data. To read more about the current shader implementation see Chap-
ter 6.9. In addition to changing the shaders we also changed the chunks themselves. We
quadrupled the area of each chunk, the reason for this is that GPUs render one chunk at
a time, so having fewer bigger chunks gives us better batching of vertices. This helps us
leverage the massive parallel computing power offered by GPUs. The change in chunk
size also had a surprising effect on terrain generation performance as seen in Figure 39.
We also reduced the amount of chunks in the WorldGenManager and SynBench after the
change, so that the size of the generated world remained unchanged.

Figure 38: Shader Optimization RealBench Comparison. (Red=Before, Blue=After)

20 40 60 80 100120140160180200220240

40

80

120

160

200

240

280

320

360

Time

FP
S

#79

#78

7.4.1 Performance Impact

As seen in Figure 38 the rendering performance increased by a large factor. The lack of
branching in the shader and the increased batching of vertices had the desired effect.
Average FPS for the two RealBench runs were 72 and 168, which is an increase of 133%.

77

The Grass is Always Greener

Figure 39: Shader Optimization SynBench Comparison. (Red=Before, Blue=After)

1 3 5 7 9 11 13 15 17 19 21 23 25

5

10

15

20

25

30

35

40

Threads

Ti
m

e

#79

#78

What we did not expect from these changes was an improved terrain generation speed.
We suspected that it was caused by the terrain sampling optimization from Chapter 7.3,
with bigger chunks it manages to avoid even more sampling. We confirmed this by check-
ing out a commit from before the terrain sampling optimization, then we made the chunk
size change again and ran SynBench. SynBench showed no improvement in score in that
case.

Note About Results

In the original pull request for shader optimization we forgot to adjust the spawn rate of
animals for the chunk size increase. Before running the benchmark we manually adjusted
the animal spawn rate, so that it was at its intended level, which is 4 times higher then
it was in the pull request. The animal spawn rate issue was not fixed before pull request
#84, and the manual adjustment has been applied to every pull request from this one
(#79) to #84 before running benchmarks.

7.5 Physics Optimization

Doing collision detection for the chunks in our game gave us performance issues for a
long time. It was not the detection of collisions itself that caused frame-rate issues, rather
it was the initialization of the colliders used for the terrain. The frame-rate issues we had
was also in a displeasing form, with irregular spiking giving the sensation of stuttering
when playing the game.

7.5.1 Mesh Colliders

We used to use mesh colliders for every chunk to enable collision with the terrain. The
issue with using mesh colliders was the large overhead of initializing them. The fact that
our chunks have a relatively high vertex count makes mesh colliders computationally
expensive to initialize as seen in Figure 40.

We tried to remedy the cost of the mesh colliders on the terrain by introducing what
we called lazy collisions. Lazy collisions is based on only enabling mesh colliders for

78

The Grass is Always Greener

Figure 40: Unity profiler. The orange peaks shows the CPU time used to initialize mesh collid-
ers. The highlighted blue line shows that the game spent 126ms initializing mesh colliders in the
selected frame. The target time per update is 16ms for 60 frames per second.

the chunks that are close to animals. We found that this cut the amount of active mesh
colliders for the terrain in half. Halving the number of mesh colliders did not sufficiently
fix the problem though, so we had to find a way to eliminate them all together.

7.5.2 Local Box Colliders

Our first attempt at not using mesh colliders was based on an approach given by a user
from the Unity forums called camander321 [35]. It was based on the idea of placing
box colliders into the world on top of voxels. We would only do this for the local space
around an animal. The idea is that box colliders are a lot cheaper then mesh colliders,
so doing this should improve performance. One issue we had with this approach was
the high cost of scanning the local space around an animal for placing box colliders into
the area surrounding the animal. If we want to place boxes into a 10x10x10 voxel area
surrounding an animal it would become 1000 operations. Scaling with a time complexity
of O(n3) where n is the scan area size in one dimension. We could try to remedy this
by only scanning the difference between the current update and the last update. Doing
difference scanning of the area would increase the code complexity and still not fix one
last problem we have with this approach. The last issue we have is the need for long
distance ray casting, the game uses this for various things such as spawning an animal
by ray casting at the ground to figure out where the animal should spawn.

7.5.3 Voxel Colliders

What ended up being our solution to the problem was abandoning Unity’s collision sys-
tem altogether. We would instead rely on the large amount of data we have about the
terrain to do our own custom physics. This resulted in the voxel physics system that you
can read more about in Chapter 6.5. It is based on using the chunks BlockDataMap to do
world position to block resolution. This means that for a given world position we can find
the block occupying that world position. With the ability to index space we can determine
if an animal is colliding by checking the block at the animal position. If the block at the
animal position is solid the animal is colliding with the terrain. This is an improvement
over the old systems in two ways, it requires no additional initialization work and it does
constant time complexity collision detection between an animal and the terrain, regard-

79

The Grass is Always Greener

less of of many blocks/chunks there are in the world. The world indexing capability is
also used to do ray casting against the terrain.

One weakness of our voxel physics system is that it can not do collision detection
for trees. This is because trees have their own BlockDataMap separate from the chunks.
We still use mesh colliders for the trees, this is not an issue for frame-rate however as
trees have far fewer vertices then chunks of terrain. We could try to solve this by having
the custom physics also check the BlockDataMaps of trees. Another fix would be making
the trees share a BlockDataMap with the chunk it is placed on. The latter solution is not
favourable because it would cause issues for trees that span across more then one chunk
which can happen for trees placed close to a chunk border.

Figure 41: Voxel Physics RealBench Comparison. (Red=Before, Blue=After)

20 40 60 80 100120140160180200220240

40

80

120

160

200

240

280

320

360

Time

FP
S

#84

#80

7.5.4 Performance Impact

The voxel physics system fixed all stuttering issues caused by the initialization of mesh
colliders for terrain. The red line in Figure 41 shows the frame-rate before this optimiza-
tion. As you can see there is a lot of spiking which is heavily reduced in the blue line
showing performance for the voxel physics update. It also improved the overall frame
rate by doing constant time complexity collision detection for animal/terrain collisions
as also seen in the figure. The average frame-rate went from 135 to 233 which is an
increase of 72%.

80

The Grass is Always Greener

8 Usability Testing and User Feedback

We had done a lot of testing ourselves for the project, such as bug testing (see Chap-
ter 5.2.3) and performance testing (see Chapter 5.2.2). What we can not test on our own
however is usability. This is because we know how the game works as a consequence of
having developed it, we need someone without a connection to the project to get un-
biased feedback on the usability. For this reason we decided to create a playtest build
along with a questionnaire at the end of the project. This happened at a stage in the
project where development was already finished, the feedback is used as material for
future work for the game. We address only the criticism from the questionnaire here. To
read the complete feedback from the playtesters see Appendix D.

Some of the usability concerns we wanted insight for was:

• Usability of the game world.
• Usability of playable animals.
• Usability of user interface.

8.1 Game World

With the game world we wanted to find out if the players managed to beat the game.
We asked in the questionnaire if they managed to beat the game and what they thought
about the length of the game. We also asked about their opinions on the terrain in gen-
eral.

Reaching the End

Only one of our 3 testers managed to beat the game, and he spent 49 minutes doing
so. These results surprised us, because we can beat the game in 15-20 minutes, which
shows the need for external playtesters. They provided feedback saying that they had
trouble walking in the right direction, and one playtester thought our wind mechanic
was an invisible wall. This shows that we have not sufficiently communicated our game
mechanics to the player. The game has some clues to guide the player in the right direc-
tion, the wind for instance always blows towards the center. Moving against the wind
direction will lead you the correct way. The playtesting showed us that this alone is not
enough. The game should also more clearly communicate when wind is stopping your
motion, maybe with a special animation for when you are caught in the wind.

Time Spent Reaching the End

They also thought that the game was too long, which we understand from the results
of the first question. We intended one play through to last for roughly 15-20 minutes.
Adjusting the length of the game can be done through changing one variable, which
makes this concern easy to address.

81

The Grass is Always Greener

The Terrain

The one criticism we received for the terrain is that the shallow water bodies could be
difficult to swim in. To address this we could either make the water bodies deeper, or
better equip the water animals to navigate shallow water bodies.

8.2 Animals

With animals we wanted the players opinion on every animal type, and the animal
switching mechanic. Below is the criticism we received for each animal:

Animals Types

1. Land Animals: A little slow.
2. Water Animals: Slow on land. Hard to stay inside floating water bodies.
3. Air Animals: A bit slow when flying against wind direction.

As for the fish being slow on land, this is intentional. Maybe we could adjust the
speed of the land animal, and the penalty for flying against the wind. There was a con-
sensus among the playtesters that the air animal is the best animal to play as. A view
we understand as they can fly, making them the most powerful animal when it comes
to achieving the goal of the game. The wind mechanic (see Chapter 6.10.2) is in place
to prevent the player from flying all the time for this reason. A general comment about
the animals was the desire for an auto run button. Right now you have to hold L-Shift to
run, implementing a toggle functionality for running should be easy.

Animal Switching

A criticisms of the animal switching mechanic (see Chapter 6.10.1) is the lack of feed-
back. To switch animals you have to look at another animal and be within a certain
range, then left click. If it fails the game provides no feedback, we should at least give
some indication that the player input was registered but the action failed. We could also
give some indication about the degree of failure, meaning some indication about how far
away you were when trying to switch, and how close you should be.

8.3 User Interface

We asked the playtesters about the UI in general and the settings UI and animal collection
UI specifically.

Settings UI

One playtester wanted options for changing the graphics quality from the in game set-
tings menu. We think he was referring to the graphics settings provided by Unity in the
game launcher. We could look into adding support for this in the future.

Animal Collection UI

The animal collection UI got 2 request from the playtesters; ability to navigate menu with
the arrow keys and a slideshow-slider at the bottom to give more overview of the collec-
tion. Implementing arrow key navigation should be simple, the last request however is
more involved. We understand the need for more overview, if you collect 30 animals for
instance, finding a specific animal can take some time.

82

The Grass is Always Greener

9 Deployment

Building a game in Unity is straight forward, we only have to select a platform and
architecture to build for, as well as whether it is a development build. A development
build allows for us to get warnings and errors that would usually show in the Unity
console, shown in a box in an overlay in the game.

We created a build for Windows x86_64. We only created a build for Windows because
we did not want to release for a platform which we had not tested the game on, and we
could not test on Linux or macOS as neither of us had a machine with these operating
systems that also met the requirements for Unity 2017.2.

The game was made available as a release in the GitHub repository for the project
(see Appendix A for repository link) as a zip file containing the game files and a readme
file. We were originally considering releasing the game on Steam through Steam Direct,
but decided against it due to the cost and waiting time before release required by Steam
Direct [36].

83

The Grass is Always Greener

10 Discussion

10.1 Results

10.1.1 Completion of Initial Plan

The resulting game ended up meeting our expectations to a large degree. We imple-
mented every feature we had planned in the project plan and more (see Appendix B). Our
implementation differ from the plan in some ways, animals for instance were planned to
only be animated through inverse kinematics. During development we found this to be
insufficient because controlling the posture of the limbs with inverse kinematics alone is
hard. This prompted us to also implement forward kinematics for the animations, where
controlling posture is easy. The wind feature was also not planned initially, we ended
up implementing it because we saw the need for it. Audio was originally a stretch goal
for the game, we ended up implemented it because the game felt incomplete without
it. The game has a complete world rendered with custom shaders, not having audio to
complement that gives the game a lacking atmosphere.

The fact that we implemented all of the initial features shows that we could have been
a bit more ambitious with the initial plan. Our reasoning for not planning more at the
time was that we felt insecure about how much time corruption and animals would take.
The corruption feature was meant to be the feature that set our game apart from other
games in the genre, by having the world generation change over time. The fact that the
feature is uncommon meant that we did not have a lot of resources to draw from. As for
the animals, the fact that they had to be generated, animated and functional in the game
world is what caused insecurity. We had little experience with animation from before,
and the process of bringing a mesh to life in general.

10.1.2 Final Performance of Game

We ended up spending much effort on the performance of the game. This was something
we suspected might be the case when planning the game, due to generating the world
at runtime. We were concerned with the speed of terrain generation, specifically that it
would not be quick enough to keep up with the player. We feel like we managed to bring
the performance to an level we are happy with in the end. The game can be played on
a modern laptop with a quad-core CPU without the player outrunning the terrain. One
of our play testers even played the game with integrated graphics (Intel HD Graphics
630) and reported playing the game with a frame rate of 40, which we feel is good for
the hardware. Although the performance is good, the system resource usage is also high.
Playing the game on a AMD Ryzen Threadripper 1950X will give a CPU usage in the 30-
50% range depending on biome. Desert biomes are cheaper resource wise than mountain
biomes for instance, due to difference in amount of voxels.

Our system resource usage seems high compared to other games such as Minecraft.
Minecraft is known to run on most hardware, and also features a procedurally generated
world. Some of the difference in performance is probably due to the difference in devel-

84

The Grass is Always Greener

opment time and resources. Minecraft is owned by Microsoft, has been in development
since 2009 [37] and is still being updated. Whereas we had 4 months of development
and a team of two developers.

10.2 Evolution of Process

10.2.1 The Introduction of Custom Development Tools

We initially had no plan of creating benchmarks or a debug tool. The benchmarks is
something that ended up feeling necessary, we needed a way to make sure that our at-
tempts to optimize actually were improvements. The benchmarks gave us good objective
measurements for the impact of code changes we made. They also ended up gamifying
the development process, the benchmarks scores (time to generate and FPS) became our
high scores when optimizing. This made optimizing the code fun, because we would try
to see how much performance we could get out of our code and in turn how high of a
score we could achieve.

When it comes to the benchmarks we wish we had some better foresight. We ended up
making some changes to them over time, this is problematic when it comes to comparing
results with older versions of the game. In some cases when the changes were minor in
terms of lines of code, we would manually apply them to older versions for comparisons.
We should have spent more time thinking about the requirements for the benchmarks
when we first implemented them, so that the amount of changes made would be minimal.

The debug tool was introduced as a result of being fed up with writing print state-
ments in the code whenever we encountered a bug. Before the tool we would put print
statements in the code we suspected of causing issues. The first approach had the issue
of needing to reproduce bugs, because we would not have the print statements ready
in advance of encountering a bug. The debug tool can be enabled/disabled at will, and
is always implemented making the debug process more convenient. The debug tool is
inspired by similar tools found in other games such as Factorio [38], Factorio also has
features in-game for exposing the internal game state for the purpose of debugging.

The introduction and use of these tools have given us an appreciation for developing
tools used in the development, as opposed to only developing the actual product.

10.2.2 Moving from Google Docs to ShareLaTeX

When we first started writing, we were working in Google Docs. This was fine when the
document was fairly small, but as the document grew larger we found that it did not scale
very well. While Google Docs is very simple to use, it is not a very powerful tool. It does
not support automatic referencing, so we would have to keep tabs on all the references in
the document, and change them manually if we added a chapter or a section somewhere
in the middle of the document. We had been recommended to use LATEX to write the
thesis. We ended up using ShareLaTeX as our editor as it allowed for real time online
cooperation when writing, which was one of the main reasons for us using Google Docs
in the first place. Using LATEX meant that we could have automatic referencing of figures,
listings and other chapters so that we didn’t have to do this ourselves. There was also an
existing template we could use, which made the process of moving to LATEX quite simple.
At the time when we decided to switch over, we had not yet written to much in the thesis,
but had already gotten to the point where using Google Docs was becoming difficult.

85

The Grass is Always Greener

10.3 C# and Unity

When we were originally deciding what engine we were going to use for the project, one
of the reasons for using Unity over Unreal Engine was the fact that Unity uses C# , which
handles memory management for us, as opposed to C++ where we would have had to do
all memory management ourselves. In the end, we still ended up doing a lot of manual
work around managing the memory of the game because of the large amounts of data we
were processing and storing. An example of this would be the BlockDataMap, which we
explain in Chapter 7.2, where we changed the BlockData objects from classes to structs,
so that they would be stored sequentially in memory, leading to fewer cache-lines being
needed to store all the BlockData for a chunk.

In Unity we also have to manage memory for the Unity GameObjects manually. Unity
will maintain a reference to every GameObject even if our scripts do not. This prevents
the C# garbage collector from collecting them, which can cause memory leaks. Unity
does provide an explicit Destroy(...) function for this issue. This makes it so that we
manually create and destroy Unity specific objects, just as with normal C++ objects. Nor-
mal non-Unity objects in our code however gets garbage collected.

Unity 2017 and earlier versions does not have threading support [28], this means
that we could not interact with the Unity API in the worker threads where we were
generating our chunks and animals. To work around this, we ended up creating interme-
diary objects to transfer data from the worker threads to the main thread. For meshes,
we had the MeshData class, which contained all the data necessary for creating the ac-
tual mesh. This data was generated on the worker threads, then sent back to the main
thread so that it could generate the actual mesh. Unity also blocks us from using the
System.Collections.Concurrency library, so we had to create our own thread-safe
containers to get around this. While having to do these things to make use of multi-
threading was a bit annoying, it wasn’t that big of an issue and it didn’t take us to much
time to work around it.

10.4 Future Work

10.4.1 Working with User Feedback

For us, the most major usability concern after doing the usability testing with external
testers is the communication of game mechanics. We should make it more apparent from
inside the game which direction you should move to progress. The wind should also be
communicated to the player more clearly, so that it is obvious when flying against the
wind that the wind is stopping you. One way to more clearly communicate the wind,
could be to have additional particle effects around the player when they are in the wind.

10.4.2 More Procedural Generation

We originally considered having the game be 100% procedurally generated. The music,
as well as the skybox were never procedurally generated, meaning that we didn’t quite
reach the 100% goal. We knew that procedurally generated music and audio was unlikely
to happen, because we felt like that could be enough for an entire thesis by itself. We also
ended up using assets for the skybox, this was mostly because we didn’t have enough time
to generate it procedurally. Making the audio and the skybox procedurally is definitely a
thing that could be done in the future.

86

The Grass is Always Greener

10.4.3 Better Victory Event

When reaching the end of the world the game displays the UI with a message saying
you have won. This is not particularly exciting. As future work we would like to make
a bigger deal out of winning instead of just telling the player that they have won. Some
special effects should be used to make winning feel like a more special event.

10.4.4 Code rewrite

Unity 2018: Job System and Entity Component System

On May 2nd 2018, Unity 2018 was released, introducing the Job System, a multithread-
ing system for Unity. This system should be very well performing, and potentially better
than the multithreading system we implemented ourselves. Unity 2018 also introduces
the ECS (Entity Component System), a data-driven design which according the Unity
Team is much more efficient than the current object oriented design. We believe that this
system could lead to significant performance improvements to our game, so exploring
this further, and potentially implementing it would definitively be something we would
do. Moving to ECS and Jobs would be a fairly hefty change, which would require rewrit-
ing most of the codebase.

Refactoring

There is some code refactoring work left to be done in the project. This became apparent
to us as we were writing the thesis and going back to older code. The code surrounding
AnimalState for instance is the most pressing in this regard. The animal state class was
introduced as a temporary solution while working on the separation of the AnimalBrain
and the Animal class. We forgot to fix the temporary solution before moving on, and
after some time we had built additional functionality on top of it. This made it so that we
could not focus on fixing the AnimalState implementation within the time frame of this
project. We would like to fix it in the future however, if the project is developed further.

87

The Grass is Always Greener

11 Conclusion

We had a goal of creating a game with a procedurally generated world and animals. We
feel like we have achieved this goal, our game features a terrain with multiple biomes and
animals. We wanted to learn more about noise functions, which we have done through
studying and implementing them. The fact that we use more then one noise function also
helped us gain insight into the field of generating noise in general.

The process of doing this project has also made us grow as developers. We have
never approached a project with a similar degree of professionalism before. We started
documenting our meetings and development from day one. We also started logging our
time after the first meeting with Mariusz. This resulted in us having a large amount of
data that we could base this thesis on, and allowed us to write about the evolution of the
implementation.

We had a goal of releasing the game in some capacity at the end of the project.
The game would be released as a cheap paid download or for free depending on the
outcome. In the end we did not want to charge money for the game, because we feel like
the gameplay does not justify it in its current state. The game was released for free on
GitHub instead, and we also open sourced the project.

Making The Grass is Always Greener has provided us with a lot of experience with
larger projects and procedural generation, and it has taught us a lot about writing more
efficient C# code.

88

The Grass is Always Greener

Bibliography

[1] Fugl. https://store.steampowered.com/app/643810/Fugl/. (Visited 2018-05-
11).

[2] Superflight. https://store.steampowered.com/app/732430/Superflight/.
(Visited 2018-05-11).

[3] Definitition of "biome". https://www.merriam-webster.com/dictionary/biome.
(Visited 2018-05-06).

[4] 2017. System requirements for unity 2017.2. https://web.archive.org/web/
20171017210246/https://unity3d.com/unity/system-requirements. (Visited
2018-04-30).

[5] Gameobject. https://docs.unity3d.com/2017.2/Documentation/
ScriptReference/GameObject.html. (Visited 2018-05-09).

[6] Monobehaviour. https://docs.unity3d.com/2017.2/Documentation/
ScriptReference/MonoBehaviour.html. (Visited 2018-05-09).

[7] Knight, N. 2016. Does c# support multiple inheritance? https://stackoverflow.
com/questions/2456154/does-c-sharp-support-multiple-inheritance. (Vis-
ited 2018-05-08).

[8] Documenting your code with xml comments. https://docs.microsoft.com/
en-us/dotnet/csharp/codedoc. (Visited 2018-05-13).

[9] 2018. voxel. https://www.merriam-webster.com/dictionary/voxel. (Visited
2018-04-15).

[10] Bergensten, J. 2011. Minecraft from a developers perspective. https://www.
youtube.com/watch?v=dTFkmfnkCfk&t=20m50s. (Visited 2018-04-15).

[11] 2009. Height map definition. http://pcg.wikidot.com/pcg-algorithm:
heightmap. (Visited 2018-04-15).

[12] 2018. Relations, functions, and function notation. http://www.ltcconline.net/
greenl/courses/152a/functgraph/relfun.htm. (Visited 2018-04-15).

[13] Ares Lagae, Sylvain Lefebvre, R. C. T. D. G. D. D. S. E. J. L. K. P. M. Z. 2010. A
survey of procedural noise functions. Computer Graphics Forum, 29(8), 2579–2600.
doi:10.1111/j.1467-8659.2010.01827.x.

[14] Perlin, K. 1985. An image synthesizer. ACM SIGGRAPH Computer Graphics, 19(3),
287–296. doi:10.1145/325165.325247.

89

https://store.steampowered.com/app/643810/Fugl/
https://store.steampowered.com/app/732430/Superflight/
https://www.merriam-webster.com/dictionary/biome
https://web.archive.org/web/20171017210246/https://unity3d.com/unity/system-requirements
https://web.archive.org/web/20171017210246/https://unity3d.com/unity/system-requirements
https://docs.unity3d.com/2017.2/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2017.2/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2017.2/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2017.2/Documentation/ScriptReference/MonoBehaviour.html
https://stackoverflow.com/questions/2456154/does-c-sharp-support-multiple-inheritance
https://stackoverflow.com/questions/2456154/does-c-sharp-support-multiple-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/codedoc
https://docs.microsoft.com/en-us/dotnet/csharp/codedoc
https://www.merriam-webster.com/dictionary/voxel
https://www.youtube.com/watch?v=dTFkmfnkCfk&t=20m50s
https://www.youtube.com/watch?v=dTFkmfnkCfk&t=20m50s
http://pcg.wikidot.com/pcg-algorithm:heightmap
http://pcg.wikidot.com/pcg-algorithm:heightmap
http://www.ltcconline.net/greenl/courses/152a/functgraph/relfun.htm
http://www.ltcconline.net/greenl/courses/152a/functgraph/relfun.htm
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://dx.doi.org/10.1145/325165.325247

The Grass is Always Greener

[15] Perlin, K. 2002. Noise hardware (siggraph 2002 course 36 notes, real-time shading
languages). https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf. (Visited
2018-04-24).

[16] Gustavson, S. 2005. Simplex noise demystified. http://staffwww.itn.liu.se/
~stegu/simplexnoise/simplexnoise.pdf. (Visited 2018-04-25).

[17] Flick, J. Simplex noise, keeping it simple. http://catlikecoding.com/unity/
tutorials/simplex-noise/. (Visited 2018-01-12).

[18] 2014. Perlin noise - procedural shader. https://forum.unity.com/threads/
perlin-noise-procedural-shader.33725/#post-1510642. (Visited 2018-05-
10).

[19] Quilez, I. 2013. Clouds. https://www.shadertoy.com/view/XslGRr. (Visited
2018-05-10).

[20] Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. ACM SIG-
GRAPH’07 sketches, 1. doi:10.1145/1278780.1278807.

[21] 2015. Why do t-junctions in meshes result in cracks. https://computergraphics.
stackexchange.com/a/1464. (Visited 2018-04-24).

[22] Lysenko, M. 2012. Meshing in a minecraft game. https://0fps.net/2012/06/
30/meshing-in-a-minecraft-game/. (Visited 2018-04-03).

[23] Sunday, D. 2012. Lines and distance of a point to a line. http://geomalgorithms.
com/a02-_lines.html. (Visited 2018-01-29).

[24] Prusinkiewicz, P. & Lindenmayer, A. 1990. The Algorithmic Beauty of Plants.
Springer-Verlag.

[25] Compton, K. 2017. Practical procedural generation for everyone. https://www.
youtube.com/watch?v=WumyfLEa6bU. (Visited 2018-01-20).

[26] 2018. Transform. https://docs.unity3d.com/ScriptReference/Transform.
html. (Visited 2018-04-21).

[27] Thorne, C. Nov 2005. Using a floating origin to improve fidelity and performance
of large, distributed virtual worlds. In 2005 International Conference on Cyberworlds
(CW’05), 8 pp.–270. doi:10.1109/CW.2005.94.

[28] Multi-threaded usage of unity api. https://forum.unity.com/threads/
multi-threaded-usage-of-unity-api.348072/#post-2253580. (Visited 2018-
05-14).

[29] Physics.raycast. https://docs.unity3d.com/ScriptReference/Physics.
Raycast.html. (Visited 2018-05-06).

[30] Rosen, D. 2014. Animation bootcamp: An indie approach to procedural animation.
https://www.youtube.com/watch?v=LNidsMesxSE. (Visited 2018-01-22).

[31] Juckett, R. 2009. Cyclic coordinate descent in 2d. http://www.ryanjuckett.com/
programming/cyclic-coordinate-descent-in-2d/. (Visited 2018-05-10).

90

https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://catlikecoding.com/unity/tutorials/simplex-noise/
http://catlikecoding.com/unity/tutorials/simplex-noise/
https://forum.unity.com/threads/perlin-noise-procedural-shader.33725/#post-1510642
https://forum.unity.com/threads/perlin-noise-procedural-shader.33725/#post-1510642
https://www.shadertoy.com/view/XslGRr
http://dx.doi.org/10.1145/1278780.1278807
https://computergraphics.stackexchange.com/a/1464
https://computergraphics.stackexchange.com/a/1464
https://0fps.net/2012/06/30/meshing-in-a-minecraft-game/
https://0fps.net/2012/06/30/meshing-in-a-minecraft-game/
http://geomalgorithms.com/a02-_lines.html
http://geomalgorithms.com/a02-_lines.html
https://www.youtube.com/watch?v=WumyfLEa6bU
https://www.youtube.com/watch?v=WumyfLEa6bU
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html
http://dx.doi.org/10.1109/CW.2005.94
https://forum.unity.com/threads/multi-threaded-usage-of-unity-api.348072/#post-2253580
https://forum.unity.com/threads/multi-threaded-usage-of-unity-api.348072/#post-2253580
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://www.youtube.com/watch?v=LNidsMesxSE
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/

The Grass is Always Greener

[32] Microsoft. 2018. Texture filtering with mipmaps. https://msdn.microsoft.com/
en-us/library/aa921432.aspx. (Visited 2018-04-23).

[33] Strugar, F. 2009. Continuous distance-dependent level of detail for rendering
heightmaps. Journal of Graphics, GPU, and Game Tools, 14(4), 57–74. doi:
10.1080/2151237X.2009.10129287.

[34] 2013. Avoiding shader conditionals. http://theorangeduck.com/page/
avoiding-shader-conditionals. (Visited 2018-05-11).

[35] 2016. 2d procedural voxel collision, how? http://answers.unity.com/answers/
1218047/view.html. (Visited 2018-04-10).

[36] Steam direct - joining the steamworks distribution program. https://partner.
steamgames.com/steamdirect. (Visited 2018-05-12).

[37] Version history. https://minecraft.gamepedia.com/Version_history. (Visited
2018-05-14).

[38] Debug mode. https://wiki.factorio.com/Debug_mode. (Visited 2018-05-14).

91

https://msdn.microsoft.com/en-us/library/aa921432.aspx
https://msdn.microsoft.com/en-us/library/aa921432.aspx
http://dx.doi.org/10.1080/2151237X.2009.10129287
http://dx.doi.org/10.1080/2151237X.2009.10129287
http://theorangeduck.com/page/avoiding-shader-conditionals
http://theorangeduck.com/page/avoiding-shader-conditionals
http://answers.unity.com/answers/1218047/view.html
http://answers.unity.com/answers/1218047/view.html
https://partner.steamgames.com/steamdirect
https://partner.steamgames.com/steamdirect
https://minecraft.gamepedia.com/Version_history
https://wiki.factorio.com/Debug_mode

The Grass is Always Greener

A Source Code and Other Links

Link to GitHub page with game download and source code:
https://github.com/Hifoz/TGAG/wiki

Link to GitHub repository containing benchmark data visualization code:
https://github.com/Muff1nz/TGAG_PythonScripts

Link to Trello Board used during development:
https://trello.com/b/ggek1i3b/bachelor-procgen

Link to demonstration/showcase video of game:
https://youtu.be/jQ98rQoNjHA

92

https://github.com/Hifoz/TGAG/wiki
https://github.com/Muff1nz/TGAG_PythonScripts
https://trello.com/b/ggek1i3b/bachelor-procgen
https://youtu.be/jQ98rQoNjHA

The Grass is Always Greener

B Project Plan

93

Project Plan
Group: ProcGen

Game: The Grass is Always Greener
Abstract

Our idea is an exploration game with a procedurally generated world, where the world
gradually gets more corrupt/weird as you move further out (Stuff like oceans in the sky, so
when you look up you’ll see a whale swimming by). The goal of the game is reaching the
end of the world.

Figure: Picture from an early version of the project.

1

The Grass is Always Greener

94

1. Goals and restrictions

1.1. Background
We came up with the project ourselves because we have a personal interest in procedural
generation. We chose this subject matter because we believe that we have a good shot at
getting some interesting results, and that we think this might prove an interesting project.
The reason for why we think developing this will be fun is because of the iterative process
and the emergent characteristics of procedural generation.

Some similar projects/games that inspired us are: Fugl and Superflight, which are games
about exploring a procedurally generated world.

1.2. Project goal
The goal of the project is to create a game that revolves around a procedurally generated
voxel world. And once we have created the game we wish to publish/release the game in
some capacity depending on how proud we are of the end result. If the game becomes good
with nice polish (stuff like graphics, audio, gameplay) we might release the game as a paid
download on steam for the price of a coffee or something. If the end result is not as good we
will release it as a free download.

We also hope to learn a lot about procedural content generation, noise algorithms and
inverse kinematics algorithms. The motivation for choosing this project is to get experience
from bigger projects. The subject matter it self is another motivating factor as it lets us create
a lot of content with few people.

1.3. Restrictions
Our main restriction is time, because we only have 4 months to develop the game
and our thesis, which seems really short for normal game development. Most games
we hear about take at least 2 years to develop, and with larger teams then what we
have.

We are also restricted on our access to assets such as 3D models and audio/sound
effects for our game. Neither of us have much experience creating such assets, so
we will have to either get them online or try generating them ourselves
programmatically.

2

The Grass is Always Greener

95

2. Scope

2.1. Subject area
Here are the main areas that our project will focus on: procedural generation, animation,
multithreading, graphics.

For procedural generation there are 2 main activities/algorithms as we see it, runtime mesh
generation and noise functions which we will use to do 3 types of procedural generation,
parametric, interpretive and L-system generation.

Interpretive generation is what we will use for our world generation, when you interpret some
simple dataset, and create something from it, that is known as interpretive generation. We
will generate the data from our noise functions and interpret it as environmental data to
create meshes.

Parametric generation is when you define some parameters for some entity that is then used
create that entity. We want to use this for the generation of animals, so the parameters could
be things such as number of legs/eyes or some other feature.

L-Systems is a way to generate strings of symbols that can be used to generate plants using
a set of rules for how to grow the string based on its content. We will use this to generate
trees and other types of foliage.

Because we intend to generate animals, we need some way of animating them. We will be
using inverse kinematic algorithms (IK) to solve this problem, specifically coordinate cyclical
descent (CCD).

Due to the computational cost of generating the terrain at runtime, we will be needing to
multithread the process to give the user a smooth gameplay experience. This will be a
simple producer consumer relationship, where the main thread consumes chunks of the
world produced by the world generation threads.

We will be needing some nice shaders so that the world we generate actually ends up
looking nice. This is not a core focus for us but something we think would be a nice addition
for the overall impression of our game.

2.2. Delimitations
We will mainly be focusing on the procedural generation aspects of the game, so other
aspects will not get much attention, such as AI, audio or physics. The reason for these
delimitations is that game development is a very time consuming endeavor, so we have to
focus our efforts when our time frame is as short as it is.

3

The Grass is Always Greener

96

2.3. Task description
Our task is to create an exploration game based in a procedurally generated voxel world.
The player will be playing as an animal that can move around in our procedural world. The
animals themselves are also procedurally generated. The goal of the player is to reach the
end of the world. As you move further away the world will get more corrupt, and you’ll have
to eat other animals to become them and progress.

3. Technology

3.1 Engine
We chose to use an engine because engines can handle a lot of the aspects of a game that
we will not be focusing on ourselves, such as physics and rendering. We primarily want to
focus on procedural generation.

There are two main engines on the market today, Unreal Engine and Unity. We chose to
work with Unity because we have more experience with Unity and Unity has a bigger
community which makes finding information much easier then with Unreal Engine.

3.2 Languages
C# is the scripting language in Unity, so the majority of our code will be written in C#. For
shader programming in Unity ShaderLab, CG and maybe HLSL will be used. ShaderLab is
Unitys own shader programming language, CG is also used for shader programming in
Unity.

3.3 Additional tools.
- Paint/Gimp for texture and other asset creation.
- Audacity might be used for creating audio assets.
- Git and GitHub will be used for source control.

3.4 Target Platform
We will only be targeting Windows, Linux and MacOS for our game, so there will be no
console or mobile support. We chose to support these platforms because they are the
easiest platforms to develop for.

4

The Grass is Always Greener

97

4. Project organisation

4.1. Responsibility and roles
Since we are only two people on this project, we will both have the same responsibility and
roles.

Our role is as follows:

● Write and develop the game.
● Document our work and meetings.
● Log time use.
● Review the other developers code through pull requests.
● Show up for meetings (on discord).
● Write and develop the thesis.

4.2. Routines and rules in the group
- We will have a sprint review every wednesday.
- Code reviews are required to add code to the master branch of our code repository.
- Always create a feature branch when developing (don’t commit to master).
- Follow coding conventions (see 6.1.3).

5. Planning, Follow-up and reporting

5.1. Main divisions of project

We will be using an agile development model, with weekly sprints. We use a sprint board
with a sprint backlog, in progress, review and done columns. Each sprint ends with a sprint
review. Before any code can be merged into the master branch, the other team member has
to review the code.

The reason for why we are only calling our development model agile, is because it lacks
features of other models such as scrum, it is unnatural for us (a team of 2 developers) to
have a project owner and scrum master. We can get by with a more lightweight version of
agile development.

5.2. Plan for status meetings decision points for the period.
We will have a status meeting every wednesday (sprint review). We will also meet with our
supervisor Mariusz Nowostawski every other thursday for a meeting about our thesis. As far
as specific decision points go, regarding whether we have to drop implementing certain
features and such we have no set dates.

5

The Grass is Always Greener

98

6. Organising of Quality Assurance

6.1. Documentation, standards use and source code

6.1.1 Code documentation
We will comment every function, so that it is clear from the comment what the functions
does. If something in the function body is particularly tricky or unclear comment that as well.
Our commenting standard is based on:
C# xml comments.
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-ta
gs-for-documentation-comments

6.1.2 Documentation of work
We will document our discussions from sprint reviews, and designs discussions/decisions.
Documenting our thought/decision process this way is really important as it will be a basis for
our thesis. We also document our thought process and decisions in our pull requests on
github.

6.1.3 Coding Conventions
● Only use “this.” in reference of members if it is necessary (eg. function parameter

with same name as a member variable).
● Use CapitalCase for class and enum names.
● Use camelCase for function names, unless they are static, then use CapitalCase.
● Do not use any prefixes or postfixes on names.
● Always write public and private on member variables, even if one is implicit.
● Enum members are to be all uppercase with underscores between words.

6.2. Risk Analysis (identify, analyze, measures, follow-up)
Identified Risks:

● High computational cost of world generation. (Probability: M)
● Having a hard time multithreading in Unity. (Probability: L)
● Github crashing (Probability: L)
● Not successfully implementing procedurally generated animals. (Probability: M)

6

The Grass is Always Greener

99

Consequences:

● High computational cost of world generation. (Impact: M)
○ We may have to scale back the world.
○ We have to work on reducing the time complexity of our world generation

algorithms.
○ We may need to increase the system requirements of the game, requiring that

our users have high core count CPUs.
● Having a hard time multithreading in Unity (Impact: H)

○ Without multithreading, creating an interesting world of any scale in real time
would seem un-feasible.

● Github crashing (Impact: M)
○ Slowing down ability to cooperate.

● Not successfully implementing procedurally generated animals. (Impact: M)
○ This would make our game less interesting.
○ We would have to use existing assets for our animals instead of generating

our own.

Risk by Rank:
Risk is a combination for probability and impact.

● High computational cost of world generation. (Risk: M)
○ This issue is our main concern, because it affects the core feature of our

game. If the world takes a lot of time to generate, or it causes an unpleasant
gameplay experience (Low frame rate, freezing etc) then that would really
diminish our game. The scalability of our world generation will help us with
this risk, as it is easy to scale across any number of threads, because the
world is subdivided into separate independent chunks that can be handled on
its own.

● Not successfully implementing procedurally generated animals. (Risk: M)
○ The reason for why this might happen is because neither of us have much

experience generating animals procedurally from before, and we lack
experience doing animations with inverse kinematics.

● Having a hard time multithreading in Unity. (Risk: M)
○ The reason why this could be a risk, is that Unity does not officially support

multithreading from its scripting interface. The Unity API calls are not thread
safe, so we have to work around that when doing threading. We have
successfully worked around it in previous projects, so we are not too worried.

● Github crashing (Risk: L)
○ This is not a very big concern, as GitHub is very unlikely to go down, and if it

does go down, it won’t stay down for so long that it will cause huge issues for
us.

7

The Grass is Always Greener

100

7. Plan for Implementation
We will be doing/implementing these activities/systems/algorithms in roughly this order. We
feel like it is hard to estimate how much time a given activity will take so we do not have
precise time frames or anything like that here. We instead work with the attitude that we will
get as much as possible done, and if we manage to implement everything in the below list
we will work out new features/systems to implement with our remaining time.

- R&D Prototyping basic procedural generation technology.
- 3D/2D Noise function(s).
- A system for generating chunks of the world in multiple threads.
- An algorithm that can turn a series of cubes into a single optimized mesh.
- A playable character.
- A main menu with an options menu and a play button.
- A system for procedurally generating foliage.
- An algorithm for creating procedural animals (Based on some core features like is it a

bird? how many legs? tail?)
- An algorithm for inverse kinematics for procedural animations.
- Some way of getting our desired corruption effect on the world (could be

implemented directly in the noise function, or outside).
- Some way of dealing with large worlds and floating point precision.
- Some custom shaders to make the world look somewhat presentable (But this is not

a core focus).
- (Stretch goal) Implement audio.

8

The Grass is Always Greener

101

The Grass is Always Greener

C Meeting Logs

102

16.01, project plan, core tech for TGAG.
How we deal with chunks and positions: two coordinate systems, the regular worldspace
system and a chunk coordinate system. We decide on a size of chunks, let’s say
chunkSize=10. So we can transform points between these systems by multiplying or dividing
by chunksize and flooring. We chose this system because it makes answering questions
such as “Is this point inside a certain chunk” easy to answer.

This is an image of our informal UML diagram showing how the core mechanic of generating
chunks in threads and launching them into the game world works.

We made a private repository on github for our project, because we might want to release
the game at some point.

We decided that we’ll start development of TGAG tomorrow (17.01), based on the above
informal UML. We will first implement the chunk launcher, using placeholder cubes so that
we get the core logic down without the other 2 system in place.

17.01, implementing core tech for TGAG.

We decided not to implement multithreading today, because we want to keep complexity
down initially. We decided to make a public static ChunkConfig class, because we want to
do real time adjustments for parameters for easy iteration of our world gen algorithm.

The Grass is Always Greener

103

We agreed on some coding guidelines: We will be using camelCase. We will explicitly
declare private and public even when not required by the compiler. We will not use “this”,
unless required. We will not use “_” for private variables.

We agreed on an interface for the core tech (Creation and deployment of chunks). Michael is
making the chunk voxel mesh class, which takes a 3 dimensional integer array from chunk
voxel data that Martin is making. We decided to use a int[,,] to represent the voxel data
because we want to support multiple voxel types.

17.01, Sprint review of sprint 1.
We decided to take our interpretation of scrum more seriously at the end of this sprint, we
have made some cards for what we intend to do next sprint instead of just winging it.

We we were happy with our use of tools such as discord and screen sharing for
collaboration compared to how we have worked at other projects.

We felt like we have made some progress and are happy with what we implemented today
(First draft of the core procgen technology.)

The above terrain will generate around the player.

The Grass is Always Greener

104

18.01, meeting with Mariusz.

(We should set up toggl or something like it)
We asked about time tracking, he told us that we should track time, and gave us a general
impression that professionalism is very important for our thesis. He also talked about the
importance of documenting anything, like the meeting logs in this document. Examples of
things to document were if a certain problem did not meet our expectations, for instance if
implementing something was harder/easier than anticipated. We could also document/talk
about what features we spent the most time implementing, how much total time we spent on
the project.

We asked about the project plan, it would not be graded and is only there to guide/help
ourselves.

Mariusz was positive about the problem area we chose (Procedural generation) because its
not only a game, but a technology on its own that we can describe and discuss in our thesis.
Talking about stuff like runtime mesh generation and noise algorithms in our thesis gives our
thesis more technical depth then just talking about game design for instance (if the game
itself was the core focus).

He suggested that we could read Pyroeis which focused on 2D cave generation. They had
implemented persistent terrain destruction by recording the changes made during
destruction and the seed. He also talked about “moderating” our noise algorithm, which
means not just accepting the raw input, but adjusting it based on some rules (for instance if
the algorithm creates too high mountains, we could manually shave some height off, or
discarding caves that leads nowhere and such).

We asked about the project contract thing, and he thought we would own the rights to the
game, so that we could release the game on steam for free/money depending on what we
feel like (How good the game is in the end). We could sign the contract and drop by his
office to give it to him (he isn’t present on monday/tuesday)

Mariusz asked if we had access to the Unity build tools, and suggested doing weekly builds
to show that we can handle a professional workflow.

Note to future self, take notes during the meeting next time maybe.

The Grass is Always Greener

105

21.01, Mid sprint meeting.
We decided to remove the chunk caching we used before we implemented multithreading,
because the memory footprint would be too big.

We have finished our programming goals for this sprint at this time, and we decided we
would spend the rest on the sprint on documenting and writing documents (Project plan,
design document).

Math for memory footprint:
Vector3 = 4 floats (x,y,z and kEpsilon(this variable is undocumented?)).
1 float is 4B.
With chunks at 10 in depth and width, and 50 in height there are in a worst case scenario
about 40’000 vertices (4*6*25’000cubes).
That gives 40’000*4B=160KB per chunk. After loading 10’000 chunks, there will be 1.6GB
for vertices alone, and that is with a chunk height of 50, which we are likely to increase in the
future. And this is just for vertices, Adding in texture coordinates and triangles will also
increase the footprint.

24.01, Sprint review of sprint 2.
We see that we planned to little work for this week sprint, so we want to plan more work for
next week.

We started toggling this week, which showed us how little we work, Martin only worked 9
hours and Michael did better with 16 hours. We hope that planning more work for the next
sprint will help us get more hours “toggled”.

Even though we see that we worked to little last week, we did finish all of our planned tasks
which is nice.

We discussed the design of water, we will implement it as “blocks” of water, instead of the
traditional plane. We need it this way to get our desired corruption effect, with water that
does not obey the laws of physics or reason.

We discussed how to deal with foliage, “baking” them into the chunks vs populating the
world with foliage in a second pass. We decided to use the second pass because it makes it
easier to deal with problems such as “A tree that is in between 2 chunks”.

The Grass is Always Greener

106

31.01, Sprint review of sprint 3.
Our planned work amount was better this week, we did not finish our backlog halfway
through the sprint like last time. Martin had to “invent” one new card to complete the sprint,
and Michael was a bit too ambitious with his planned backlog, on account of procedural
textures being more work than anticipated.

We both did better with recorded working hours this week, Michael had logged 21 hours this
week, and Martin logged 19 hours, but we still have more room for growth in this area. Next
week we will both target working 25 hours each.

We have discussed that we need a better way of handling when to generate what parts of
the world. Right now the world is always generating such that the player is at the center, this
means that small player movements can trigger a lot of generation. We want to work on
implementing a “smart” generation system instead, that has some leeway and the ability to
predict and pregenerate sections of the world.

We discussed giving the threads access to the player position, so that they can evaluate if
an ordered chunk is still needed by the time they get to the order.

We discussed looking into a custom way of doing collisions, because the runtime generation
of colliders for our world is a bit taxing as is.

The Grass is Always Greener

107

(Screenshot from sprint 3 version of the game)

01.02, meeting with Mariusz.
Mariusz was not at his office 12:15 :(

07.02, Sprint review of sprint 4.
Last week we set a goal of working 25 hours for this week, we did not reach this goal,
Michael worked 18 hours, and Martin worked 14 hours. This was less than we hoped for,
and less then we did last week. We will try to reach the goal again for next week.

In terms for planned work amount, Martin did not finish all of his cards in time, but this is
more because of not working 25 hours, then planning to much. Michael continued his work
on last weeks cards. The done column for this week's sprint is rather unpopulated, but that is
not entirely weird, because the features we were working on this week are some of the
harder features (procedurally generated animals), which we listed as a risk in our project
plan.

In the next sprint we’ll work out how many sprints we have in total.

12.02, Mid sprint meeting.
We talked about how we should use our time developing, concerning implementation of new
features vs improving existing features. We decided to focus on new features over improving
old features, for the sake of risk reduction, we think it’s better to find out early if a new
feature is hard/time consuming, which we will if we start working on them earlier.

The Grass is Always Greener

108

We also decided to get a benchmark scene running, so that we can test if our code changes
result in any performance gain. We talked about implementing a different solution to deal
with multi threading, ThreadPooling instead of our current purpose built threads. Having a
thread pool would make our code more maintainable we think, because then we won’t have
to “jump” through as many hoops to get a piece of code to run in another thread. Now we
have to pass objects back and forth to our threads using queues, which is hard to scale
compared to a simple thread pool.

We also talked about starting to write on our thesis, we decided that it’s better to write bad
material now, then writing no material now, because we can just remove bad stuff in the
future.

We talked about our use of static classes such as “public static class ChunkConfig”, we
know that global variables can be controversial, so we might want to look into an alternative
if we feel like it.

13.02, Bachelor Thesis meeting.
We started writing the bachelor thesis, and made a plan to allocate 5 hours to writing the
thesis each every week. 4 of these hours would be spent writing independently, and 1 of
them would be spent reviewing what we had written together. We will be using trello cards to
allocate thesis writing work, like we do for programming.

14.02, Sprint review of sprint 5.
We worked out that we have about 10-11 more sprints of game development time for our
thesis, since we want to spend the last couple of weeks working more on the thesis.

We failed to meet the 25 hours of work goal again, Michael worked 19.5 hours and Martin
worked 20 hours this week. Although we didn’t meet our goal we improved over last weeks
result. And when we start using the 5 hours of thesis work we discussed yesterday we will
be meeting our goal, if we keep programming as much as we did this week.

What we have planned to do for next week is: BenchmarkScene, Water/River generation,
Smart generation, ThreadPooling/Threading refactor and continued work on procgen
animals.

The Grass is Always Greener

109

(Screenshot from sprint 5 version of the game)

21.02, Sprint review of sprint 6.
We worked on what we said in the last sprint, ThreadPooling was discovered to be a solution
inferior to our current implementation.

We are getting closer to our 25 hour goal, Michael worked 21 hours last week and Martin
worked 23 hours. We also both wrote in the bachelor thesis this week which is something we
said we would last week.

Martin decided to discard support for more then 2 joints in the legs of the animals, to keep
the code simpler.

Next week Martin will continue work on the animals, and some misc things like looking into
thread scaling. Michael will work more on water generation and general optimizations.

We discussed having labels on our pull request to make the history easier to go through in
the future.

27.02, random sprint 6 meeting.
We discussed how we could do biomes, we would need chunkConfig to be a normal class
and not static like it is now, and we could have files for the chunkconfig to parse. We could
interpolate between the noise values of two chunks to do a transition.

The Grass is Always Greener

110

28.02, Sprint review of sprint 7.
This week we managed to make the game scale across 32 threads, by optimizing cache
utilization by using structs for blockdata instead of a class, which will place the blockdata
sequentially in memory when used in an array. We did some other smaller optimizations as
well.

We made the world generate more interesting water structures this week, by playing with the
parameters for our world gen algorithm, and the noise calcululating functions themselves.

We also worked more on land animals, giving them better animations, shaders and variety in
meshes.

We have had a goal of working 25 hours each week, this week Michael worked 15 hours,
and Martin worked 25 hours. We finished all of the work we had planned to do last week,
and we added some extra cards during the sprint to keep busy, this means that we
underestimated the workload for this sprint, and we have been more ambitious for the next
sprint.

We did not do the 5 hours of work each we decided we would for writing the thesis, Martin
did 30 minutes of writing, <insert>

Next week Michael will work on biomes, and triangle face merging optimization for chunks.
Martin will mainly work on creating bird and fish animals, and some bug fixing.

Sprint 16 should be our last dev sprint, counted 9 more sprints on calendar (until 02.05).

01.03, Second meeting with Mariusz.
Thesis: it’s fine to write mostly about the technical stuff and the programming stuff that we’ve
done. also write about process, how we worked, scrum pull request issues. Seeing our game
in context to the world and existing work, references (use references in general also i
guess).

He liked the fact that we measure things, like performance through the benchmark, which we
can graph and talk about, its a professional and objective thing to do, which improves the
thesis.

Performance: look into level of detail, generate things at a distance at lower resolution
(LOD).

We could write about things in our thesis that we have not implemented, but just discuss the
ideas and how they are used in existing games and how we might implement them.

The Grass is Always Greener

111

We could playtest to get user data that we can use to backup game design decisions in our
thesis.

Animal lifecycle, sleeping, moving around, saves CPU cycles.

07.03, Sprint review of sprint 8.
We have worked on Biomes, Fish/Birds this week as we said last week, none of these
features are completed yet however, but we did not expect to finish these features in one
week anyways. Some of the things that we did do and merge into Master was bug fixing
(Normals for water, mesh related memory leak). We also made a new benchmark,
realbench, made to get us numbers closer to what we’d get in actual gameplay. We also
made a new repo for Python scripts which we use to visualise our benchmark data.

This has been our best week in terms of hours worked, Michael worked 24 hours and Martin
worked 25 hours, so we are practically at our goal. What was not optimal was how much
time we spent writing the actual thesis, Martin did not write anything, and Michael did some
smaller edits of the document.

Next week we will just continue working on our current tasks, which is biomes and fish/bird
animals.

14.03, Sprint review of sprint 9.
This week we finished the first iteration of biomes and AirAnimals, we also did the “lazy
chunk” optimization and “greedy mesh” optimization, which waits until the last minute with
enabling colliders.

We worked less this sprint the last sprint, Michael worked 17 hours and Martin worked 20
hours, and we spent no hours working on the thesis. The reduced work amount is somewhat
tied to increased workload in mobile.

For next week Michael will work on further optimizing the terrain generation, and Martin will
implement water animals, and fix tree spawning issues.

We want to start working on the world corruption effect in sprint 11, because that is the last
major piece of tech that the game is missing, so we don’t want it to be done in the last
minute, this would give us an easier time in April, which will be affected by the mobile project
and the need for writing the thesis.

The Grass is Always Greener

112

21.03, Sprint review of sprint 10.
This week we implemented Water animals and debug tools, and polished/improved the
biomes implementation, and improved terrain generation performance.

We worked even less this week then last week, maybe we are getting burned out after
working “full time” for two weeks. Martin worked 18 hours and Michael worked 11 hours, so
we have some room for improvement again. Martin worked 1 hour on the thesis, which we
haven't worked on in some time.

We have brainstormed some ideas in this sprint review, audio, weather, animal mechanics.

Next week we will work on improving the UI, squashing some bugs, giving some classes
names that are more appropriate for their current function, implementing a solution for large
worlds and floating point numbers and starting work on the world corruption effect.

The Grass is Always Greener

113

28.03, Sprint review of sprint 11.
This week we have worked on some random stuff (Bugfixing, refactoring) and UI.

We didn't work much this sprint either, partially due to easter, Michael worked 13 hours and
Martin worked 20. We also worked some more on the actual thesis, and sent an email to
Mariusz for feedback.

We feel like we need to focus more on the thesis in the coming month, April will be the last
full month before we need to finish.

Next week Martin will work on the world corruption effect, and the thesis. Michael will work
on game mechanics revolving the animals, such as mechanics to incentivize the players to
change animals, and animal collecting, he will also work on the thesis.

04.04, Sprint review of sprint 12.
We worked on gathering a collection of all the animals you’ve changed into in a playthrough,
so that the player can browse and look at all of the animals during gameplay. We worked on
game mechanics incentivizing the player to switch animals as well. We also worked on the
world corruption effect, lazy chunk launching and water graphics.

This week we both worked 18 hours, which is not too bad considering the high workload in
mobile, Michael wrote about the core procedural generation technology in the thesis, Martin
did not write in the Thesis this week. We will have to step up our thesis writing game going
forward, and we want to look into LaTeX.

We decided to cut some features from our Trello Todo list this meeting, such as the ability for
animals to pick eachother up, weather effects. We cut these things because we need time
for writing the thesis, and we consider them to be not important.

Next week we will be writing more in our thesis, and we’ll optimize shaders, and do more
effects for water. We’ll work on audio for our game and we’ll finish game mechanics that
make the player switch animals. We’ll also add a win condition, which is triggered when the
player reaches the end of the world.

05.04, Third meeting with Mariusz.
We talked about the thesis in general, here’s the feedback (Please add more if i forgot some
of it):

In general he told us to bother him about reading our thesis again, after we’ve added more
stuff, then he’d give us more feedback. We could message him on discord or send an email.

The Grass is Always Greener

114

Start the implementation chapter with some high level descriptions of our implementation,
stuff like our components, classes (Could be WorldGenManager, ChunkVoxelDataThreads,
the main high level stuff that defines our implementation.) Libraries, technology we use in
general. (Kinofog, we use shaders, utils folder probably contains some stuff that we can
mention here).

We could write an entire chapter or subchapter about the WorldGenManager alone, this
probably applies to other central classes.

We could write a stand alone chapter about optimizations (Greedy mesh gen would go here
in that case i guess. (edit michael: don’t think so, as it is its own “feature”/implementation. I
think hemeant for us to write about the final implementation main part, and the process of
optimization in the optimization chapter, ofc the greedy mesh generation could potentially be
mentioned in there as well, but i think it should also be in the main part)).

We could write about our debug tool as a professional tool that we made and use.

We could write something at the end of our implementation, metadata stuff about our
implementation (Lines of codes, hours worked and more).

Change the chapters in our code to be more chronological, split Requirments into techincal
requirements and game design, put game design first. Because our project would start with
specifying how the game should be, then we work out the technical requirements for the
game. (Technical requirements to me is stuff like, the game should not crash, system
requirements, but i feel like it covers more than that, i just can't think of what).

REFERENCES, we should find more, and reference them, 20+ references is a number he
mentioned, 10 references is bad, should also not go too overboard on the references.

Formatting, add labes/tags to figures and code snippets, keep the font of the code snippets
the same or smaller than the general text. Our image/code snippet to text ratio was alright i
think. LaTeX supports referencing figure tags in a nice way.

This isn’t something he mentioned, but maybe we should have a definitions/acronym list in
the appendices or something like that, where we define terms we use (like hlsl = high level
shader language). (edit michael: could this potentially be placed at the end of the
introduction chapter?)

The Grass is Always Greener

115

11.04, Sprint review of sprint 13.
This week we worked on implementing incentives for the player to change animals, like wind
and big oceans. We optimized the game graphics and physics. We wrote about the core
generation technology in our thesis. We also moved the thesis from google docs to
sharelatex.

This week Michael worked 23 hours and Martin worked 31, so we are doing pretty good in
this regard for once.

Next week we will make the game feature complete, the missing features are Audio and a
win condition, going forward after that the only coding we will do will be bug fixing and polish.
We will also be developing the implementation section of our thesis further.

18.04, Sprint review of sprint 14.
This week we implemented audio for the game, made a win condition and other bug fixes
and polishing. We also wrote in the thesis, about generation.

Michael worked 26 hours this week, and Martin worked 22, which is pretty good. We are
pretty much done coding the game at this point and will only be writing in the thesis from
now on.

Next week we have a target of completing chapter 6 in our thesis (at least a first draft), which
is the biggest chapter. We made cards for every sub chapter of chapter 6 in our trello board.

25.04, Sprint review of sprint 15.
This is the first week where we have almost not done any programming at all. We’ve almost
exclusively written in the thesis. We made a lot of progress writing chapter 6
(implementation) and our thesis is now at 54 pages.

Michael worked 27 hours this week and Martin worked 32 so this is the first week we’ve both
exceeded the planned working hours. Our previous goal of shifting focus over to the thesis
has been successful.

Next week we will finish chapter 6 and start writing the optimization chapter.

02.05, Sprint review of sprint 16.
We only wrote in the thesis this week like the previous week. We ran benchmarks and
started writing the optimization chapter, requirements chapter and some more work on the

The Grass is Always Greener

116

implementation chapter. We made some small polish changes to the game. We made a
playtest build of the game with a questionnaire for playtesting. We also made some
changes to the thesis based on feedback from Mariusz.

This week Michael worked 12 hours and Martin 26. The difference is mainly because Martin
still has chapters to write in implementation. We feel like we are making good progress with
the thesis.

Next week we will try to finish chapter 6(implementation) and 7(optimization), we will also
start working on the remaining chapters that have not been started yet.

09.05, Sprint review of sprint 17.
Another week of thesis writing. We got less writing done this week then the last week
because of the mobile project which was due this week. We worked more on chapter 6 and
the game design chapter.

Michael worked 10 hours this week and Martin 16. This is less than usual and caused by the
mobile project.

Next week we will finish everything.

The Grass is Always Greener

117

The Grass is Always Greener

D Questionnaire Answers

118

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 1/18

TGAG Questionnaire

World

I didn't reach it

Andre:

To short

Good Length

Too long

Andre:
Was never able to reach the end, and i did not spot a lot of corruption, i tried to follow if i
saw something unnatural, but i was stopped by "invisible walls" a lot. this was when i
was �ying. Was able to pas them somtimes, so i never knew if i hit the world end or if i
was just hitting something invisible

Desert

Ocean

Mountains

Forest

Hills

Did you reach the end of the world? If yes, how long did it take? *

What did you think about the length of the game? *

What biomes did you encounter? *

The Grass is Always Greener

119

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 2/18

A lot of cool shapes=)

Looks good=)

Animals

Land Animal

Air Animal

Water Animal

Cool but not mobile as the Air animals.

Slow on land, but nice in water

Played most as Air animals. nice controls

Is there anything you wish to share in regards to the biomes?

Please share your thoughts on the terrain you encountered *

Which animal types did you try? *

What did you think about the Land Animals?

What did you think about the Water Animals?

What did you think about the Air Animals?

The Grass is Always Greener

120

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 3/18

Yes

No

Animal Switching (a)

Yes

No

Never switched

Had a tendency to switch to air animal rightaway and stick with it, but it is cool that you can
choose. worked well when i wanted to switch.

Animal Switching (b)

Did you ever switch animals? *

Anything else you would like to add about the animals?

Did you enjoy the switching mechanic? *

Do you have anything to add regarding animal switching?

The Grass is Always Greener

121

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 4/18

Yes

No

Yes, but I did not know how to use it

User Interface

Yes

No

Andre:

Worked nicely

Yes

No

Worked nicely

Did you know about the switching mechanic?

Did you �nd the UI intuitive to navigate? *

Do you have anything to share regarding the Settings UI?

Did you ever look at the Animal Collection while playing? *

Do you have anything to share regarding the Animal Collection UI?

The Grass is Always Greener

122

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 5/18

Worked nicely

Computer specs

Because of the resources needed for procedurally generating most things in the game, we know that TGAG
is very resource expensive. So in case there is a correlation between performance and enjoyability, we
would like to know the computer speci�cations used when testing.

Windows 10 Pro

Intel Core i7 - 4790K

NVIDIA GeForce GTX 970

16gb

Do you have anything else to share in regards to the UI?

What operating system you test the game on?

What processor did your testing machine have?

What graphics card did your testing machine have?

How much RAM did your testing machine have?

The Grass is Always Greener

123

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 6/18

The last page

Chill music

Thank you for testing our game and �lling in the questionnaire :)

Dette innholdet er ikke laget eller godkjent av Google.

Is there anything else you would like to add?

 Skjemaer

The Grass is Always Greener

124

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 7/18

TGAG Questionnaire

World

I didn't reach it

Andre: 49,62 minutes.

To short

Good Length

Too long

Andre:

Desert

Ocean

Mountains

Forest

Hills

Did you reach the end of the world? If yes, how long did it take? *

What did you think about the length of the game? *

What biomes did you encounter? *

The Grass is Always Greener

125

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 8/18

Sometimes i found it easy to get stuck in the bottom of the ocean. On the other hand i liked
the climbing skills of the land animal

Animals

Land Animal

Air Animal

Water Animal

Good climbing skills, and fast.

They were very fast

A bit slow going towards the wind direction.

Is there anything you wish to share in regards to the biomes?

Please share your thoughts on the terrain you encountered *

Which animal types did you try? *

What did you think about the Land Animals?

What did you think about the Water Animals?

What did you think about the Air Animals?

The Grass is Always Greener

126

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 9/18

Yes

No

Animal Switching (a)

Yes

No

Never switched

Animal Switching (b)

Did you ever switch animals? *

Anything else you would like to add about the animals?

Did you enjoy the switching mechanic? *

Do you have anything to add regarding animal switching?

The Grass is Always Greener

127

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 10/18

Yes

No

Yes, but I did not know how to use it

User Interface

Yes

No

Andre:

Yes

No

Maybe it would be easier being able to navigate using arrow keys aswell? I would also like
names for the different animals.

Did you know about the switching mechanic?

Did you �nd the UI intuitive to navigate? *

Do you have anything to share regarding the Settings UI?

Did you ever look at the Animal Collection while playing? *

Do you have anything to share regarding the Animal Collection UI?

The Grass is Always Greener

128

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 11/18

Computer specs

Because of the resources needed for procedurally generating most things in the game, we know that TGAG
is very resource expensive. So in case there is a correlation between performance and enjoyability, we
would like to know the computer speci�cations used when testing.

Windows 10 Home

Intel I7-7700HQ 2,8 GHz

NVIDIA GEFORCE GTX 1060

16 GB

Do you have anything else to share in regards to the UI?

What operating system you test the game on?

What processor did your testing machine have?

What graphics card did your testing machine have?

How much RAM did your testing machine have?

The Grass is Always Greener

129

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 12/18

The last page

Thank you for testing our game and �lling in the questionnaire :)

Dette innholdet er ikke laget eller godkjent av Google.

Is there anything else you would like to add?

 Skjemaer

The Grass is Always Greener

130

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 13/18

TGAG Questionnaire

World

I didn't reach it

Andre:

To short

Good Length

Too long

Andre: I little to long, but that's because I went the wront direction several times.

Desert

Ocean

Mountains

Forest

Hills

Did you reach the end of the world? If yes, how long did it take? *

What did you think about the length of the game? *

What biomes did you encounter? *

The Grass is Always Greener

131

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 14/18

I liked the design/colours. Bright and cheery. Would be cool to experience in VR.

I like the corrupt/glitchy aspects of them. It's like you landed on an uncharted alien planet.

Animals

Land Animal

Air Animal

Water Animal

A litte to slow, but they traversed the mountains great enough.

Rarely used them. Kind of di�cult to get around when the oceans started to �oat. There
was a danger og falling through the water, and getting caught in slow movements on the
dry land below.

Is there anything you wish to share in regards to the biomes?

Please share your thoughts on the terrain you encountered *

Which animal types did you try? *

What did you think about the Land Animals?

What did you think about the Water Animals?

The Grass is Always Greener

132

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 15/18

My preferred animal, nice to traverse large areas of land.

Yes

No

Would like to have an auto-sprint button, or an option to toggle auto-sprint on. My �ngers
started to hurt from holding down the shift button for too long.

Animal Switching (a)

Yes

No

Never switched

Maybe som sort of range indicator and crosshair, to help the player know from witch
distance they can perform a switch. Would make switching to �ying animals easier.

What did you think about the Air Animals?

Did you ever switch animals? *

Anything else you would like to add about the animals?

Did you enjoy the switching mechanic? *

Do you have anything to add regarding animal switching?

The Grass is Always Greener

133

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 16/18

Animal Switching (b)

Yes

No

Yes, but I did not know how to use it

User Interface

Yes

No

Andre:

Would preferr to be able to change the graphic quality from the ingame menu. But I have no
idea how diffcult that would be to implement in unity.

Yes

No

Did you know about the switching mechanic?

Did you �nd the UI intuitive to navigate? *

Do you have anything to share regarding the Settings UI?

Did you ever look at the Animal Collection while playing? *

The Grass is Always Greener

134

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 17/18

Maybe an slideshow-slider at the bottom, so the player could easily click on the animal they
wanted to view, instead of having to cycle through the whole slider. Would also give an
indicator of how many animals there are in the collection. Also an counter that showed how
many animals the player have collected.

No

Computer specs

Because of the resources needed for procedurally generating most things in the game, we know that TGAG
is very resource expensive. So in case there is a correlation between performance and enjoyability, we
would like to know the computer speci�cations used when testing.

Windows 10

Intel Core i7-7820HQ - 2.90GHz, 4 cores

Intel HD Graphics 630

Do you have anything to share regarding the Animal Collection UI?

Do you have anything else to share in regards to the UI?

What operating system you test the game on?

What processor did your testing machine have?

What graphics card did your testing machine have?

The Grass is Always Greener

135

5/12/2018 TGAG Questionnaire

https://docs.google.com/forms/d/19D9gRglzUh8Odj31mQFFJLV872dwgmbtbsvsDxukDok/edit#responses 18/18

32gb

The last page

Maybe something that noti�es the player when they are heading the wrong direction. In-
game alert, or maybe something in the game environment.

Thank you for testing our game and �lling in the questionnaire :)

Dette innholdet er ikke laget eller godkjent av Google.

How much RAM did your testing machine have?

Is there anything else you would like to add?

 Skjemaer

The Grass is Always Greener

136

The Grass is Always Greener

E Benchmark Output

Content of a text file output by SynBench:

Tes t ing from 1 to 25 threads with a s tep of 2 . (4/26/2018 9:44:59 PM) :
Ter ra in : Enabled
Animals : Enabled
[
Time : 30.19 Seconds | Average fp s : 378.22 | Threads : 1
Time : 11.04 Seconds | Average fp s : 373.62 | Threads : 3
Time : 6.77 Seconds | Average fp s : 383.96 | Threads : 5
Time : 5.31 Seconds | Average fp s : 363.45 | Threads : 7
Time : 4.42 Seconds | Average fp s : 343.75 | Threads : 9
Time : 3.84 Seconds | Average fp s : 338.91 | Threads : 11
Time : 3.40 Seconds | Average fp s : 311.94 | Threads : 13
Time : 3.21 Seconds | Average fp s : 289.44 | Threads : 15
Time : 3.84 Seconds | Average fp s : 165.78 | Threads : 17
Time : 5.30 Seconds | Average fp s : 74.30 | Threads : 19
Time : 6.29 Seconds | Average fp s : 42.92 | Threads : 21
Time : 6.37 Seconds | Average fp s : 35.32 | Threads : 23
Time : 6.63 Seconds | Average fp s : 27.00 | Threads : 25
]

Content of a text file output by RealBench:

Tes t ing from 8 to 8 threads with a s tep of 1 . (5/13/2018 7:21:08 AM) :
Durat ion of each run : 30 seconds
Average fp s : 281.80 | Generated chunks : 292 | Generated animals : 25

| Cancel led chunks : 92 | Threads : 8
[
x :1 .00| y :596
x :2 .00| y :434
x :3 .01| y :328
x :4 .01| y :313
x :5 .01| y :288
x :6 .01| y :268
x :7 .01| y :241
x :8 .02| y :234
x :9 .02| y :241
x :10.02| y :244
x :11.02| y :230
x :12.03| y :237
x :13.03| y :229
x :14.03| y :237
x :15.03| y :227
x :16.03| y :292
x :17.03| y :259
x :18.04| y :295
x :19.04| y :272
x :20.04| y :296
x :21.04| y :255
x :22.04| y :302
x :23.04| y :267
x :24.04| y :302
x :25.04| y :269
x :26.05| y :293
x :27.05| y :250
x :28.05| y :269
x :29.05| y :232
]

137

	Preface
	Contents
	List of Figures
	Listings
	Introduction
	Project Description
	Background
	Motivation
	Project Goal

	Project Organization
	Academic Background

	Document Structure
	Terminology

	Game Design
	Initial Design
	World
	Animals
	Goal
	User Interface
	Visual Design
	Audio Design

	Final Design
	World
	Animals

	Requirements
	Usability
	Reliability
	Performance

	Technical Design
	Unity
	Unity UI

	World Generation
	Handling Orders

	Animals
	Initial Animal Design
	Final Animal Design

	Development Process
	Working Hours
	Workflow
	Development Workflow
	Performance Testing and Optimization
	Bug Testing and Debugging
	Usability Testing

	Coding Conventions
	Code Documentation

	Development Tools

	Implementation
	Generating Data
	Procedural Noise Functions
	Simplex Noise
	GPU Noise
	Poisson Disk Sampler

	Procedural Generation
	Mesh Generation
	Terrain Generation
	Biomes
	Corruption
	Non-Terrain Generation
	Tree Generation
	Animal Generation

	WorldGenManager
	Handling Chunks
	Handling Animals
	On-The-Fly Shifting of Coordinates

	Multithreading
	Our Multithreading Implementation
	Other Multithreading Implementations We Considered

	Voxel Physics
	Voxel Physics Class
	Voxel Collider Class

	Animals
	Animal State
	Making Animals Functional
	Giving Animals Behaviour
	Animating Animals

	User Interface
	Main Menu
	In-game Menu
	Settings UI
	Animal Collection Display

	Audio
	Music
	Environment
	Animal Sounds

	Shaders
	Terrain shader
	Tree shader
	Water shader
	Animal shader

	Gameplay
	Animal Switching
	Wind
	Animal Collecting
	Win Condition

	Implementation Statistics

	Optimization
	Methodology
	Benchmarks
	Performance Monitoring

	BlockDataMap Implementation
	Old solution
	New solution
	Performance Impact

	Terrain Sampling Optimization
	Performance Impact

	Shader Optimization
	Performance Impact

	Physics Optimization
	Mesh Colliders
	Local Box Colliders
	Voxel Colliders
	Performance Impact

	Usability Testing and User Feedback
	Game World
	Animals
	User Interface

	Deployment
	Discussion
	Results
	Completion of Initial Plan
	Final Performance of Game

	Evolution of Process
	The Introduction of Custom Development Tools
	Moving from Google Docs to ShareLaTeX

	C# and Unity
	Future Work
	Working with User Feedback
	More Procedural Generation
	Better Victory Event
	Code rewrite

	Conclusion
	Bibliography
	Source Code and Other Links
	Project Plan
	Meeting Logs
	Questionnaire Answers
	Benchmark Output

