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Abstract

The standard treatment of rectal cancer is surgery, and in locally advanced cases, neoadjuvant

chemoradiotherapy (CRT). By obtaining knowledge about the aggressiveness of tumours prior

to treatment, the treatment can be adapted individually, which may contribute to an improved

quality of life and survival for the patients. In this thesis, the potential of using parametric mod-

els in dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) for this purpose

has been explored.

DCE-MRI data of 91 rectal cancer patients were analysed in Matlab using two parametric anal-

ysis models: the Tofts and Kermode (TK) model and the Brix model. In order to explore the

potential of the models for assessing treatment response and aggressiveness, and determine

the significance of the arterial input function (AIF), both a population-based AIF and individual

AIFs were applied to the TK model, and compared to the (AIF-independent) Brix model. The

TK model parameters K tr ans (min−1), ve (%), vp (%), and kep (min−1), and the Brix model pa-

rameters ABr i x , kel (min−1) and kep (min−1) were estimated within the tumour volumes of the

patients. Pretreatment and post-CRT parameter medians and median parameter changes were

tested for associations with aggressiveness and treatment response using a Mann-Whitney U

test. For the statistically significant pretreatment associations, statistical analysis was addition-

ally performed on percentile parameter values and histogram quantities.

For the pretreatment medians, associations were found for ve in the individual AIF-based TK

model, for ABr i x and kep in the Brix model, and for the histogram analysis in the relative peak

height of kep in the Brix model. For the post-CRT medians, associations were found for K tr ans

and vp in both versions of the TK model, and for kep in the Brix model and individual AIF-based

TK model. For median parameter changes, associations were found for ∆ve in both versions of

the TK model, and for ∆kep in the Brix model.

This study showed that parametric modelling can be used to identify patients who require ei-

ther no surgery or less advanced surgery, which may improve the expected quality of life, and

patients in need of more advanced CRT regimes, which may improve the overall survival.
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Sammendrag

Standardbehandling for rektalkreft er kirurgisk fjerning av tumoren, og i lokalavanserte tilfeller,

neoadjuvant kjemo- og stråleterapi. Ved å tilegne seg mer kunnskap om tumoraggressivitet før

behandling, kan behandlingen tilpasses individuelt, hvilket kan bidra til bedre livskvalitet og

overlevelse for pasientene. I denne studien ble potensialet til parametriske modeller i dynamisk

kontrastbasert (DCE) magnetresonanstomografi (MRI) til denne typen arbeid undersøkt.

DCE-MRI data fra 91 pasienter med rektalkreft ble analysert i Matlab med to parametriske anal-

ysemodeller: Tofts og Kermode (TK)-modellen og Brix-modellen. For å utforske potensialet

til modellene til prediksjon av aggressivitet og behandlingsrespons, og betydningen av den ar-

terielle inputfunksjonen (AIF), ble både en populasjonsbasert AIF og individuelle AIF-er brukt i

TK-modellen, og sammenlignet med (den AIF-uavhengige) Brix-modellen. De følgende parame-

trene fra TK-modellen, K tr ans (min−1), ve (%), vp (%), og kep (min−1), og Brix-modellen ABr i x ,

kel (min−1) og kep (min−1) ble beregnet i tumorvolumene. Medianparametre før og etter be-

handling, og forskjeller mellom dem, ble testet for assosiasjoner med behandlingsrespons og

aggressivitet med en Mann-Whitney U-test. For de statistisk signifikante assosiasjonene funnet

før CRT, ble en statistisk analyse i tillegg utført på persentilverdier og histogramverdier.

For medianene før behandling ble det funnet assosiasjoner for ve i TK-modellen med indi-

viduelle AIF-er, for ABr i x og kep i Brix-modellen, og i histogramanalysen for relativ maksimum

søylehøyde av kep i Brix-modellen. For medianene etter behandling ble assosiasjoner funnet for

K tr ans og vp i begge varianter av TK-modellen, og for kep i Brix-modellen og TK-modellen med

individuelle AIF-er. Assosiasjoner med medianendringer ble funnet for∆ve i begge versjoner av

TK-modellen, og for ∆kep i Brix-modellen.

Denne studien indikerer at parametrisk modellering kan brukes til å identifisere pasienter som

enten ikke har behov for, eller kan få en mindre avansert kirurgisk fjerning av tumoren, som kan

forbedre livskvalitet, og pasienter som trenger mer aggressiv kjemo- og stråleterapi, som kan

forbedre overlevelse.
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Chapter 1

Introduction

The standard treatment for rectal cancer patients is a surgical resection of the primary tumour

and nearby lymph nodes [1]. If the tumour has grown through the rectal wall and invaded

adjacent organs it is considered locally advanced, and in these cases the patient also receives

chemoradiotherapy (CRT) in order to shrink the tumour prior to surgery. This treatment proto-

col gives a five-year survival of 68 % for rectal cancer [2].

Medical imaging at the time of diagnosis provides relevant information about how advanced the

disease is, but does not directly assess the aggressiveness of the tumour, which is an important

factor for treatment response and long term survival [3]. Tumour biopsies assess aggressiveness,

but only a small sample is extracted and tumour tissue can be highly heterogeneous, resulting

in a considerable margin of error. Patients in need of a more aggressive treatment may therefore

go unnoticed if their tumours have not yet reached an advanced stage. A procedure for bet-

ter evaluating the aggressiveness of tumours could thus increase the overall survival for rectal

cancer.

Functional MRI is able to obtain information about the tissue properties within the entire tu-

mour volume [4]. Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) is a

functional MRI technique that injects a contrast agent into the patient and maps its distribu-

tion. Extracted signal intensity curves describe the time-dependent variations of contrast agent

1
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concentration within each pixel, and the shapes of these curves depend on properties that are

known to be associated with tumour aggressiveness.

To effectively assess tumour aggressiveness from DCE-MRI it is necessary to determine how to

best analyse the signal intensity curves in order to extract reliable and useful information. Para-

metric analysis fits the curves to a model that describes the distribution of a contrast agent in

tissue, and thus extracts parameters that describe the tissue properties [5]. Two well-known

parametric models are the Tofts and Kermode (TK) model and the Brix model [6] [7]. Both mod-

els consider the interactions between the intravascular space and the extravascular extracellular

space (EES), but differ in that the TK model requires the arterial input function (AIF), defined

as the contrast agent concentration in the bloodstream, to be known, while the Brix model does

not. The AIF has a sharp peak that can be difficult and time consuming to measure accurately.

Consequently, to save time and acquire a stable AIF it is common to use a population-based AIF

calculated from a group of patients, rather than using individual AIFs for all patients. This does,

however, result in the loss of variations between the AIFs of different patients.

In rectal cancer, associations between TK model parameters and treatment response have been

found by Gollub et al. [8] and Intven et al. [9] using a population-based AIF, and by Tong et al.

[10] using individual AIFs. Lollert et al. [11] found associations between Brix model parameters

and nodal metastases. Due to the sensitivity of compartmental models to the variation of MRI

input parameters, a systematic comparison of the two approaches to AIF estimation is necessary

to determine which method has the most potential. Furthermore, a comparison of the potential

of the Brix model and the TK model could provide insight about the importance of the AIF.

The aims of this study were to:

1. Investigate the potential of DCE-MRI analysis for assessing tumour aggressiveness and

predicting treatment response in rectal cancer.

2. Investigate the potential of using an individual AIF compared to a population-based AIF

in the TK model.

3. Investigate the significance of an AIF by comparing the TK model and the Brix model.



Chapter 2

Theory

Some sections in the following chapter are either completely taken or adapted from a special-

isation project report written by the author during the fall of 2017: "Analysis of DCE-MRI for

Chemoradiotherapy Response Prediction in Rectal Cancer" [12]. These sections are marked with

an asterix (*).

2.1 Cancer*

Cancer is caused by a series of genetic mutations resulting in a malignant but durable cell popu-

lation [3]. Accelerated angiogenesis is a consequence of one such mutation, and is a well known

cancer trait [13]. Tumour cells are dependent on oxygen and energy to grow, and thus when the

tumour radius approaches the maximum diffusion length of blood in tissue, the tumour needs

a vascular system. This is achieved by emitting growth factors that will cause the nearby arter-

ies to build new vessels growing towards and into the tumour [14]. Tumour cells often have an

overexpression of these growth factors, and therefore do not follow the controlled routine used

by normal cells. Illustrated in figure 2.1, a consequence of this is that the vascular system of the

tumour is often disorganised, which in combination with the rapid tumour growth, can result

in areas deficient in oxygen, defined as hypoxic.

3
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Figure 2.1: Properties of cancer. Accelerated angiogenesis in tumour tissue cause a disorgan-
ised vascular system, resulting in hypoxic areas and necrosis. The accelerated angiogenesis ad-
ditionally results in leaky blood vessels. Combined with a lack of a lymphatic system in tumour
tissue, this leads to an accumulation of particles in the tumour tissue, defined as the enhanced
permeability and retention effect. Reproduced with permission from [15].
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Hypoxia can be divided into two categories: acute hypoxia and chronic hypoxia [14]. Acute hy-

poxia occurs when a blood vessel is temporarily blocked. Often, blood vessels alternate between

being blocked and being open, causing the connected tumour areas to periodically alternate be-

tween hypoxic and normoxic conditions. Chronic hypoxia occurs at a distance from the blood

vessel equal to the limit of the diffusion length of blood in the tissue.

Cancer cells often have an increased ability to survive in hypoxic conditions relative to normal

cells, among several factors caused by the upregulation of hypoxia-inducible factor-1α (HIF-

1α) [16]. HIF-1α is degenerated under normoxic conditions, but under hypoxic conditions it is

stabilised and in a chain of reactions induces the expression of genes related to angiogenesis,

glycolysis and metastasis. Thus, patients with hypoxic tumours may experience a more rapid

tumour growth and are more likely to develop metastasis, which is the main cause of death

from cancer.

Hypoxic tumour tissue is a problem in cancer treatment for two reasons. First, chemotherapeu-

tic drugs travel through the blood stream, and the amount of drug that is able to diffuse from

the closest blood vessel to the hypoxic area is therefore limited [14]. Second, the effect of radio-

therapy is reduced in hypoxic cells, explained by the oxygen effect. This makes it challenging

to provide a high enough dose to kill the hypoxic cancer cells while at the same time sparing

healthy tissue.

Another effect of the accelerated angiogenesis is that the disorganised vascular system results

in leaky blood vessels in cancer tissue [14] [17]. This leads to an increased amount of particles

leaking out into the extravascular space of a tumour. In addition, the abnormal growth of the

tumour results in a nonexistent or underdeveloped lymphatic system, which in turn leads to

a reduced wash-out of particles from the tumour. Together these two tumour characteristics

lead to an accumulation of particles in the tumour, a phenomenon known as the enhanced

permeability and retention effect, illustrated in figure 2.1.
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2.2 Rectal Cancer

Rectal cancer is a colorectal cancer of the lower bowel. The main treatment is a surgical removal

of the primary tumour and nearby lymph nodes [3]. At the time of diagnosis, approximately 30 %

of rectal cancer cases have evolved to locally advanced rectal cancer (LARC), which means that

the primary tumour has grown into or through the rectal wall and invades adjacent organs [1].

For this group, combined radiation therapy and chemotherapy is performed in order to shrink

and downstage the tumour prior to surgery: neoadjuvant CRT.

The surgery results in good local control when successful, but may reduce the patient’s qual-

ity of life [1]. The amount of unsuccessful surgeries has been found to increase for tumours

with low vascularity or high amounts of fibrotic tissue, because these tumours to a greater ex-

tent adhere to healthy tissue, making it challenging to achieve a clear surgical resection [8]. In

2005, Theodoropoulos et al. found that an overexpression of HIF-1α and vascular endothelial

growth factor (VEGF) occurred for about 44 % of LARC patients [18]. Studies have found strong

associations between these biological markers and nodal metastases, poor treatment response

and poor survival [19] [20]. This suggests that the poor treatment response in LARC is highly

associated with hypoxia and accelerated angiogenesis in the tumour.

2.2.1 Staging and Response Evaluation in Rectal Cancer*

Rectal cancer is commonly staged using the tumour node metastasis (TNM) system, presented

in table 2.1 [3]. It defines the stage of the primary tumour T from 0-4, the invasion of regional

lymph nodes N from 0-2, and the existence of distant metastases M from 0-1. In addition, pre-

fixes are used to indicate when and how the stage has been determined, where ’r’ and ’mr’ de-

note respectively radiological (MRI and/or CT) and MR-based assessment, ’p’ signifies patho-

logical assessment, and ’y’ signifies that the assessment occurred after CRT [21]. The TNM sys-

tem has been found useful for assessing treatment response, as the probability for survival has

been found to decrease for advanced tumours, tumours with nodal metastases, and tumours

with distant metastases.
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Primary tumour (T) Regional lymph nodes (N) Distant metastasis (M)

TX Primary tumour cannot
be assessed

NX Regional lymph nodes can-
not be assessed

MX Distant metastasis
cannot be assessed

T0 No evidence of primary
tumour

N0 No regional lymph node
metastasis

M0 No metastasis

Tis Carcinoma in situ: in-
traepithelial or invasion
of lamina propria

N1 Metastasis in 1-3 regional
lymph nodes

M1 Distant metastasis

T1 Tumour invades submu-
cosa

N1a Metastasis in one regional
lymph node

M1a Metastasis confined
to one organ or site

T2 Tumour invades muscu-
laris propria

N1b Metastasis in 2-3 regional
lymph nodes

M1b Metastasis in more
than one organ/site
or the peritonium

T3 Tumour invades through
the muscularis propria
into the pericolorectal
tissues

N1c Tumour deposit(s) in the
subserosa, mesentery, or
nonperitonealised pericolic
or perirectal tissues without
regional nodal metastasis

T4a Tumour penetrates to the
surface of the visceral
peritoneum

N2 Metastasis in 4 or more re-
gional lymph nodes

T4b Tumour directly invades
or is adherent to other or-
gans or structures

N2a Metastasis in 4-6 regional
lymph nodes

N2b Metastasis in 7 or more re-
gional lymph nodes

Table 2.1: Explanation of the different stages in rectal cancer according to the TNM system. The
table is reproduced from [21].

The tumour regression grade (TRG) has been found to be predictive of overall survival in rectal

cancer patients after neoadjuvant CRT, and is therefore often used to evaluate CRT response

[22]. It is determined histomorphologically according to the TRG scale of 0 to 3, explained in

table 2.2.
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Tumour regression grade
TRG 0 No viable cancer cells.

TRG 1 Single cells or small groups of cancer cells.

TRG 2 Residual cancer outgrown by fibrosis.

TRG 3 Minimal or no tumour regression. Extensive residual cancer.

Table 2.2: Explanation of the different levels of TRG. The table is reproduced from [23].

2.3 MRI*

MRI is a noninvasive imaging technique that exploits the magnetic properties of protons to ac-

quire images [4]. The signal detected from a proton is obtained by applying an external magnetic

field, B0, that the proton will precess around with a bulk frequency dependent on the molecule

the proton belongs to. A visual interpretation of the precession frequency of a proton is shown in

figure 2.2, where the axis of the proton oscillates around the net magnetic field with a precession

angular frequency

ω0 = γB0 (2.1)

where γ ≈ 2.68× 108 rads−1 T−1 is the gyromagnetic ratio for protons, also called the Larmor

frequency [24]. The spin, which is either spin-up or spin-down, can also be visualised in this

way, where the spins with spin-down will align themselves antiparallel to the external field axis

as opposed parallel, which is the orientation of the nuclei in state spin-up. The number of spins

in spin-up exceeding the number of spins in spin-down, is called the spin excess and is given by

SE ' N
ħω0

2kT
(2.2)

where N is the number of spins, ħ is the reduced Planck’s constant, T is the temperature and k is

Boltzmann’s constant. The ratio will be very small for body temperatures, because the thermal

energy is much higher than the spin energy. The sum of all spin axes, the net magnetisation

vector M, will thus be small and parallel to the applied magnetic field. By applying a second

magnetic field B1, one may excite and resonate the spins so that M gets a component in the
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Figure 2.2: Precession of the magnetic moment µ around a static magnetic field B0.

transverse plane. The decay from the transverse plane when B1 is switched off, produces a mea-

surable signal which lays the foundation for MRI.

2.3.1 The Bloch Equation*

The Bloch equation describes the motion of the magnetisation vector M as a function of time,

and in its general form is given by
dM

d t
= γM×B (2.3)

where B is the external magnetic field [4].

The concept of MRI is to observe the relaxation of the magnetisation vector M from the trans-

verse state back to equilibrium after excitation by B1 [25]. This makes it possible to measure

the relaxation times, longitudinal T1, and transverse T2 and T ∗
2 . The relaxation times will vary

for different molecules, thus providing contrast in the image, dependent on three factors. First,

the inherent energy of the tissue, where a low inherent energy will allow the tissue to absorb

energy from the proton. Second, on the density of the molecules, where a higher density allows

for a more efficient interaction between the magnetic fields. Last, on the molecular tumbling

rate, where those with rates close to the Larmor frequency will interact better with the proton,

leading to a fast relaxation. The longitudinal relaxation can be described by

dMz

d t
= 1

T1
(M0 −Mz) (2.4)
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and the transverse relaxation by
dMxy

d t
=− 1

T2
Mxy[4]. (2.5)

Thus, for relaxation from resonance equation 2.3 becomes

dM

d t
= γM×B+ 1

T1
(M0 −Mz)ẑ − 1

T2
Mxy. (2.6)

2.3.2 Image Acquisition*

MR images are acquired by applying a pulse which produces a signal by pulling some or all spins

away from equilibrium and into phase in the transverse plane [25]. Often a gradient or second

pulse is applied to rephase the dephasing signal, and the rephased signal is measured. Gradi-

ents are applied to determine spatial settings where a slice gradient decides the slice location

of the image. The measured signals are stored in K space, which is the Fourier transform of the

acquired image. One line in K space chosen by the phase gradient (y-direction) is measured per

acquisition, the content of which is controlled by the readout gradient (x-direction).

One achieves contrast in MRI by weighting a certain parameter and looking at how this varies

for different types of tissue. Commonly used weightings are T1 relaxation time, caused by spin

lattice energy transfer to the surrounding environment, T2 decay time, caused by spin-spin in-

teractions, and proton density, decided by the density of mobile hydrogen protons in the voxel

[25]. In a T1-weighted image the contrast in the image is based on the different degrees of lon-

gitudinal relaxation for different types of tissue. Molecules that relax quickly, for example water,

therefore appear to be bright, while molecules that take a long time to relax, for example fat,

appear dark. For T2-weighted images the opposite is true, because the contrast in the image is

based on the amount of transverse decay: molecules that decay quickly, like water, will cause

there to be little signal in the image, and thus appear dark, whilst molecules that take longer to

relax appear bright. An example of a T2-weighted MR image is shown in figure 2.3.
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Figure 2.3: A T2-weighted MR image of the axial plane of the pelvic area and rectum, acquired
using a fast spin echo sequence. The T2-weighting causes the fatty tissue to appear bright due
to its long relaxation time, and the tissue with high concentrations of water to appear dark.
Arrows indicate the tumour, mesorectum, mesorectal fascia, rectum, bladder and four artery
cross sections. The image shows a patient from the Oxytarget study.

2.3.3 The Spin Echo Sequence*

One example of an MRI pulse sequence is the spin echo sequence, illustrated in figure 2.4. An

initial radiofrequency (RF) pulse of 90° is used, followed by a second rephasing pulse of 180°

[25]. The rephased signal then appears at the echo time (TE) after the initial signal, and the

pulse sequence is repeated at the repetition time (TR). A spin echo sequence gives the following
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Figure 2.4: A spin echo sequence. An initial 90◦ RF pulse creates a dephasing signal, which is
then rephased by adding a 180◦ RF pulse at TE/2. This results in an echo signal at the TE. At the
TR the sequence is repeated.

equation for the transverse magnetisation vector,

M⊥(T E) = M0(1−e−T R/T1 )e−T E/T2 (2.7)

where M0 is the initial magnetisation [24]. For a T1-weighted image, the signal in a voxel is

decided by the amount of T1 relaxation at the TR. From equation 2.7 it is apparent that the TR

needs to be short to maximise the effects from the T1-dependent exponential. The differences

in relaxation time for different tissues thus create contrast in the image. In the same way, in a

T2-weighted image the TE needs to be long to maximise the effects of the transverse relaxation,

because it decides the amount of T2 decay that has occurred before the signal is measured. In

a proton density weighted image, one seeks to minimise these two effects, which is achieved by

using a long TR and a short TE. A spin echo sequence optimises the signal to noise ratio (SNR)

and consequently provides excellent soft tissue contrast.

2.3.4 The Gradient Echo Sequence

In a gradient echo sequence the initial pulse has a flip angle α, commonly between 0° and 90°

[4]. As illustrated in figure 2.5, after the α pulse has excited the spins, a gradient is applied in

order to dephase the decaying spins, followed by a readout gradient of the opposite polarity to



2.3. MRI* 13

Figure 2.5: An example of a spoiled gradient echo sequence. An initial RF pulse α excites the
spins, which are then dephased by a dephasing gradient. A readout gradient then causes the
spins to rephase, and the rephased signal is measured. The sequence repeats at the TR.

rephase them [24]. The gradient echo sequence does not compensate for magnetic field inho-

mogeneities [25]. This results in T ∗
2 -weighting in the images.

The application of the gradients results in a quicker dephasing and rephasing, which allows for

a faster image acquisition [25]. In addition, a small flip angle α can further reduce the time

of decay to equilibrium. However, these features come at the cost of the SNR, which is lower

in a gradient echo sequence than in a spin echo sequence. The SNR decreases further with a

decreasing flip angle, and can therefore in general be considered to decrease with an increasing

speed of image acquisition.

A short TR may prevent the transverse spins from dephasing properly before a new excitation

pulse, which may lead to artefacts in the image [4]. The spoiled gradient echo sequence solves

this by utilising additional RF-pulses and gradients to eliminate remaining transverse magneti-

sation. The signal intensity for a spoiled gradient echo sequence is given by

SSPGR = S0
sin(α)(1−e−T R/T1 )

1−cos(α) ·e−T R/T1
e−T E/T ∗

2 (2.8)
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Figure 2.6: An example of an EPI sequence. An initial pulse α excites the spins, that are then
dephased by a dephasing gradient. At the same time, the initial phase is encoded. A readout
gradient follows to rephase the spins and simultaneously read the signal. Several lines in K-
space are read during one TR by applying blips for phase encoding whenever the polarity of the
readout gradient is reversed. After a TR the sequence can be repeated.

where S0 is proportional to the proton density, and α is the flip angle [26].

Fast imaging techniques make it possible to avoid and reduce motion artefacts and study phys-

iological properties of tissue [25]. A variant of the spoiled gradient echo sequence that is par-

ticularly popular for fast imaging is the echo planar imaging (EPI) sequence. By alternating the

polarity of the readout gradients and using multiple so-called blips for phase encoding, acqui-

sitions of entire images during only one repetition (single-shot EPI) or during a few repetitions

(multi-shot EPI) become possible [27]. The workings of an EPI sequence are shown in figure 2.6.
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2.3.5 Functional MRI*

In morphological MRI, the goal is to acquire images that accurately describe the morphology

of the tissue. These have good tissue contrast and are therefore optimal to use for the T- and

N-staging of the tumour and to delineate a region of interest (ROI) [25]. In functional MRI this is

no longer the case, the aim is instead to learn about the processes that occur within the tissue.

For example, diffusion of water molecules and the distribution of a contrast agent over a period

time offer information about the cellular density and the vascularity within a ROI [28] [5].

The high temporal resolution of fast imaging techniques makes them ideal for observing func-

tional properties of the tissue. Due to the low SNR and poor spatial resolution of high speed-

imaging techniques, the tissue contrast is often poor in these images, but the functional in-

formation they provide is useful [4]. For example, diffusion weighted MRI provides contrast

between tissues of different cellular densities, because dense tissues will allow for less diffusion

than areas where water is allowed to flow freely [28]. In DCE-MRI a paramagnetic contrast agent

is injected into the blood stream, which leads to a significant reduction in T1 relaxation time for

the nearby protons. It thereby leads to a significant increase in signal intensity which can easily

be detected in the acquired images. Therefore, if one wishes to observe the flow and diffusion of

blood, DCE-MRI is a valuable tool. Functional and morphological MRI are often used in com-

bination in order to acquire both functional and morphological information on the tissue of

interest.

2.4 DCE-MRI*

In DCE-MRI a contrast agent is injected into the bloodstream to enhance contrast in the tumour,

as seen in the example in figure 2.7 [4]. The contrast agent contains paramagnetic ions (often

gadolineum), which are known to have large magnetic moments. Spins of water molecules that

interact with the local magnetic field of the contrast agent, result in magnetic field fluctuations

that reduce the precession frequency of the protons to one close to the Larmor frequency. Thus,

both the T1 relaxation and T2 decay of water will be reduced [25]. For DCE-MRI, which is T1-
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weighted, this results in a significant enhancement of the original signal. The relationship be-

tween the reduced T1 from the contrast agent and the original T1 is given by,

1

T1,c
= 1

T1,0
+ c

1

t1
(2.9)

where T1,c is the relaxation time for the tissue with contrast agent, T1,0 is the original relaxation

time of the tissue, c is the contrast agent concentration, and t1 is the ability of the contrast agent

to reduce the relaxation time of the surrounding tissue.

The contrast agent is administered during an acquisition of a series of T1-weighted images over

a period of time with fast imaging techniques [5]. This makes it possible to observe the dis-

tribution of a contrast agent as a function of time, where the amount of signal enhancement

represents the contrast agent concentration. From equation 2.9, the relaxation rate R1(t ) for a

contrast agent concentration that varies over a period of time is

R1(t ) = 1

T1(t )
= 1

T1,0
+ r1C (t ), (2.10)

where r1 = 1/t1 is the relaxivity of the contrast agent.

The contrast agent concentration in a particular area depends on the proximity of the tissue to

blood vessels and of blood vessel properties [5]. This is because the contrast agent first enters

the bloodstream, and must diffuse through the vessel walls to reach other parts of the tissue. Hy-

poxic areas will have a low signal enhancement because only small amounts of contrast agent is

able to diffuse far from the blood vessels [14]. The leakiness of blood vessels in tumours further

affects the signal enhancement: first the leaky vessels cause a high contrast agent concentra-

tion in the surrounding tissue, and secondly the increase to maximum signal enhancement in

tumours is often steeper than in normal tissue. Leaky vessel walls increase the contrast agent

wash-out rate in the same way, causing the signal enhancement curves to have a quick time to

peak (TTP) followed by a steady decrease. Thus, DCE-MRI makes it possible not only to dis-

tinguish tumour tissue from normal tissue, but also to detect a tumour’s hypoxic and vascular

properties.
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(a) (b)

Figure 2.7: An example of a DCE-MR image, before (a) and after (b) injection of contrast agent.
In the centre of the second image the tumour can be seen, enlightened due to an increased up-
take of contrast agent in the tumour compared to the normal tissue. The bright circular shapes
in the upper corners are arteries, which appear bright because there is a high concentration of
contrast agent in the blood. The images are from the Oxytarget study.

2.4.1 Estimation of Contrast Agent Concentration

Equation 2.8 represents the signal intensity of a spoiled gradient echo sequence. By assuming

that T E << T ∗
2 , making T ∗

2 -effects negligible, the expression can be reduced to

SSPGR = M0
sin(α)(1−e−T R/T1 )

1−cos(α) ·e−T R/T1
[4]. (2.11)

From this expression an estimate for the variation in the longitudinal relaxation time T1(t ) as

the contrast agent is injected can be derived

1

T1(t )
=− 1

T R
ln

(
1−K (t )

1−cos(α)K (t )

)
(2.12)

where

K (t ) = S(t )

S0
· 1−e−T R/T1,0

1−cos(α)e−T R/T1,0
(2.13)

and T1,0 is the initial relaxation time when no contrast agent is present, S(t ) is the signal inten-

sity at time t , and S0 is the average initial signal intensity before the contrast agent is injected.
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By applying this expression for T1 to equation 2.10, an expression for the contrast agent concen-

tration C (t ) is obtained.

Problems can occur during the calculation of T1(t ) if the SNR is low [4]. Therefore it can be

advantageous to further simplify the expression. If it is assumed that T R << T1 and that the flip

angle α is large, equation 2.11 can be reduced to

S ≈ M0T R

T1
(2.14)

which gives a relative signal intensity (RSI)

RSI (t ) = S(t )−S0

S0
≈ r1T1,0C (t ). (2.15)

which from equation 2.10 gives the contrast agent concentration given by

C (t ) = RSI (t )

r1T1,0
. (2.16)

This equation is generally true for soft tissue, but may cause errors for blood vessels, because

the contrast agent concentration can become too high for the assumption T R << T1 to be rea-

sonable.

2.4.2 Analysis of DCE-MRI*

DCE-MRI provides images that show the distribution of contrast agent in the tissue for a rele-

vant time period, usually starting when the contrast agent is injected. Illustrated in figure 2.8, it

is possible to plot signal intensity curves describing the varying signal intensity for a pixel dur-

ing the chosen period from these images. These curves have a characteristic shape depending

on the type of tissue the pixel represents, and constitute the basis for the different methods of

analysis for DCE-MRI [5].

Semi-quantitative DCE-MRI analysis is considered to be the simplest method of analysis [5].
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Figure 2.8: An example of how the signal intensity S(t) curve in solid tissue may look when a
contrast agent is injected. The type of tissue determines the parameters TTP, AUC, IAUC, wash-
in and wash-out. Cancerous tissue is known to have a short TTP and a wash-out as illustrated,
due to the EPR effect described in section 2.1 [28]. Normal tissue will have a slower TTP, and the
signal may plateau or continue to increase in the wash-out phase illustrated.

Figure 2.8 indicates the descriptive parameters TTP, area under curve (AUC), and initial area

under curve (IAUC). These parameters do not directly describe physiological properties in the

tissue, but are related to them. For example, a short TTP can indicate a high vascularity and

leakiness of the blood vessels. While some studies have found these relations to be strong, there

is often a significant uncertainty involved. Parameters that more accurately represent the physi-

ological properties in question, can be calculated with by using parametric analysis. Parametric

analysis relates the signal intensity curves, which are proportional to contrast agent concentra-

tion curves according to equations 2.10 and 2.15, to parameters describing the permeability of

the vascular wall and retention abilities of the tissue in question. These parameters will thus

give a more accurate image of the functional properties of the tissue in question.

Parametric modelling is divided into two categories: compartmental pharmacokinetic (PK) mod-

els and spatially distributed kinetic models [5]. In compartmental PK models, the system is di-

vided into different compartments according to tissue type, and the contrast agent flow between

these is described. The contrast agent concentration is assumed to be uniform within each
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compartment. In spatially distributed kinetic models the tissue is divided into a high number

of infinitesimal compartments that only interact with nearby compartments [5]. This is a more

accurate method, but it is also a lot more time-consuming.

For many compartmental PK models it is necessary to estimate the contrast agent concentra-

tion in the blood plasma, called the AIF, which will reach a peak shortly after contrast agent

injection, and then decrease [5]. Accounting for the AIF is believed to provide a more accurate

interpretation of the measured DCE-MRI signal.

2.4.3 The Arterial Input Function

The AIF describes the contrast agent concentration in the blood plasma for a period of time

that starts upon injection of the contrast agent, illustrated in figure 2.9a. Acquiring an accept-

able approximation is often a requirement in compartmental models and can be one of the

major obstacles it is necessary to overcome for a good estimation of the model parameters to be

achieved [5]. It can be difficult because the peak of the AIF is often sharp, particularly for bolus

(short time) injections, so that an insufficient spatial resolution may prevent accurate sampling

of this area.

The AIF is often described by an equation where constants are adjusted according to a given

patient. Tofts and Kermode suggest an equation of two exponentials to approximate the AIF,

Cp (t ) = D(a1e−m1t +a2e−m2t ) (2.17)

where D(mmolkg−1) is the contrast agent dose, a1 and a2 (kgl−1) are amplitudes of the expo-

nentials, and m1 and m2 (min−1) are rate constants [6]. This equation gives an approximation

of the AIF that relates to the true case as illustrated in figure 2.9 b), and is the best-established

function for AIF modelling [29]. It has the advantage of being simple, with only four unknown

parameters. Its main weakness is that it does not account for the second peak, which may make

the fitting process challenging in cases where it is evident, as its data points then may disturb

the fitting to the simplified function. However, the SNR is often too low for the second peak to be
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Figure 2.9: a) The contrast agent concentration during the first three to five minutes after the
contrast agent is injected. The concentration Cp (t ) will first increase rapidly to a sharp peak,
and then decrease quickly from the peak before increasing slightly for a second peak, caused
by recirculation of the contrast agent in the arterial system [5] [29]. The contrast agent further
decreases as the contrast agent is both absorbed by the tissue and cleared out through the renal
system, and stabilise at a slowly decaying plateau. b) The approximated AIF (orange) obtained
when equation 2.17 is fitted to the measured concentration curve Cp (t ). As seen the approxi-
mation starts at the time of the peak.

sufficiently evident for accurate estimation in the contrast agent concentrations curves, making

it advantageous to use a model that does not account for its presence.

It is common to estimate an average AIF from a few representative patients and apply this to a

larger group [5]. Increasing the number of patients the AIF is measured for will then increase the

stability of the population-based AIF. A potential weakness with using a population-based AIF

is that it does not account for individual differences between patients, for example blood flow

velocity, heart rate, and renal function, that affect the shape of the peak [29] [30]. A potential

solution can be to measure individual AIFs for and use them directly in the TK model, instead

of calculating a population-based AIF. Individual differences will then be accounted for, but less

stable AIFs may occur for some patients if the SNR is low or if image artefacts or errors affect the

individual measurement.

The AIF can be determined by measuring the contrast agent concentrations at different time

points by using an arterial catheter in the patient [5]. If the temporal resolution is adequate, an

accurate approximation will be achieved using this approach. The procedure can however be
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uncomfortable for the patient, and less invasive methods are therefore often sought out.

A promising alternative is to measure the AIF from the DCE-MRI data [5]. This approach has

the advantage that it requires no additional contribution from the patient, which facilitates the

measurement of large numbers of individual AIFs. The AIFs are instead calculated from the

measured signal intensity within an artery over a period of time, and the contrast agent concen-

tration in the blood, Cb(t ), is calculated using the procedure described in section 2.4.1. To find

the contrast agent concentration in the blood plasma, Cp (t ), it is necessary to correct for the

hematocrit value Hct using:

Cp (t ) = Cb(t )

1−Hct
[29]. (2.18)

The hematocrit value is defined as the fraction of red blood cell volume to total blood volume in

a centrifuged blood sample and is normally between 0.36 and 0.46 for women and 0.41 and 0.53

for men [31].

2.4.4 The Tofts and Kermode Model

Presented by Tofts and Kermode in 1989, the TK model is the best-established compartmen-

tal PK analysis model for DCE-MRI [6] [5]. It divides the system into two compartments: the

intravascular space and the EES, which are thought to represent a capillary and the extravas-

cular space the contrast agent is able to leak into, respectively [32]. Illustrated in figure 2.10,

the contrast agent concentrations in the intravascular space and the EES are given by Cp (t ) and

Ce (t ), and the contrast agent travels between the intravascular space to the EES with rates K tr ans

(min−1) and kep (min−1). The volume fraction of tissue that consists of intravascular space is

given by vp (%) and the volume fraction of tissue consisting of EES is given by ve (%).

The TK model can be described by

dCt

d t
= K tr ansCp (t )−kepCt (t ) (2.19)

where Ct (t ) = veCe (t ) is the contrast agent concentration in the tissue, and Cp (t ) is given by
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Extravascular

Ce (t )
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Ct (t ) = veCe (t )

Ktr ans

kep

space

extracellular
space

Figure 2.10: Illustration of the system described in the TK model. The contrast agent travels from
the intravascular space to the EES with a volume transfer rate, K tr ans , and back from the EES
to the intravascular space at a rate kep . The contrast agent concentration in the intravascular
space is given by Cp (t ) (the AIF), and the contrast agent concentration in the EES is given by
Ce (t ). The contrast agent concentration in the tissue is then given by Ct (t ) = veCe (t ) where ve is
the fraction of the tissue that consists of EES. The figure is based on [33].

an AIF, and kep = K tr ans/ve (min−1). Solving equation 2.19 gives an expression for the contrast

agent concentration in the tissue given by

Ct (t ) =
∫ t

0
Cp (t ′)e−(K tr ans /ve )(t−t ′)d t ′. (2.20)

The vascularity of the tissue is thought to be negligible. This is a reasonable assumption in

healthy tissue, but in tumour tissue the vascularity is often significantly higher due to acceler-

ated angiogenesis in tumour tissue [34]. In 1997, Tofts therefore introduced a second term to

the TK model to account for the vascularity: vpCp (t ) [34]. Equation 2.20 then becomes

Ct (t ) = vpCp (t )+
∫ t

0
Cp (t ′)e−(K tr ans /ve )(t−t ′)d t ′, (2.21)

giving a more realistic model often termed the extended TK model.

The relevant parameters from the extended TK model that are commonly interpreted for fur-

ther analysis are K tr ans , ve , vp , and kep . K tr ans has been found to be influenced by blood flow
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and vessel permeability [26]. In 1999, Tofts et al. determined that K tr ans describes the blood

plasma flow per unit volume of tissue under flow-limited conditions, while under permeability-

limited conditions it is equivalent to the permeability surface area product per unit volume of

tissue [32]. For rectal cancer it has been found by Gollub et al. that a high K tr ans was asso-

ciated with a clear resection margin, while Intven et al. found that a decrease in K tr ans after

CRT was associated with a good treatment response [8] [9]. Tong et al. similarly found a sig-

nificantly higher K tr ans for patients who achieved complete pathological response, and found

that for these patients there was a significant decrease in the parameter value after treatment

[10]. ve is the volume of EES per unit volume of tissue, and can therefore be associated with the

cellular density in the tissue. Tong et al. found that ve was significantly higher for patients who

achieved complete pathological response than for those who did not. vp is the volume fraction

of tissue consisting of capillaries. This is commonly very small in normal tissue: below 1 %, but

in tumours the vascularity is often increased. An association with progression free survival was

found for a low vp in renal cancer metastases. Finally, kep is the rate transfer constant from the

EES to the intravascular space, and is known to be associated with leakiness of blood vessels [4].

Gollub et al. found a high kep to be associated with a clear resection margin, and Tong et al.

found a high kep for patients with complete pathological response, as well as a decrease in the

parameter value for this group after treatment [8] [10].

2.4.5 The Brix Model*

Proposed by Brix et al. in 1991, the Brix model is a compartmental PK analysis model that is not

dependent on the AIF [7]. Instead, a particular AIF is assumed known from the infusion rate of

the contrast agent entering the body. This makes for a simpler implementation than that of the

TK model, with less required variables, but may also provide results with a higher uncertainty.

As in the TK model, two compartments are used in the Brix model: the intravascular space and

the EES, illustrated in figure 2.11 [5] [7]. The contrast agent enters the system through the in-

travascular space at a rate ki n during a time period τ, and leaves the system at a rate kel . In the

system the contrast agent travels between the intravascular space and EES at rates kpe and kep ,
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space
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Figure 2.11: Illustration of the compartments of the Brix model. The contrast agent enters the
system at a rate ki n during a time period, τ, and leaves the system at a rate kel . The contrast
agent travels between the intravascular space and EES at rates kpe and kep , where kpe =−kep .

where kpe =−kep .

The relationship between the intravascular space and the EES is given by the mass conservation

principle,
dCp

d t
= ki n

Vp
(u(t )−u(t −τ))−kelCp (t ) (2.22)

dCt

d t
= kpe

Vp

Ve
Cp −kepCp (t ) (2.23)

where u(t ) is the Heaviside step function, τ is the time span for which the contrast agent is

injected, Vp is the intravascular plasma volume, and Ve is the extravascular extracellular volume

[7]. The relationship between the signal intensity S(t ) and the concentration of contrast agent

in the image is given by

S(t )

S0
= 1+ ABr i x

kep −kel

[
ekel t

kel

(
ekel t ′ −1

)− e−kep t

kep

(
ekep t ′ −1

)]
(2.24)

where t ′ = t for 0 ≤ t ≤ τ and t ′ = τ for t ≥ τ [5]. Here, kep can be put into relation to the

leakiness of blood vessels, and kel to the vascularity of the system. The amplitude ABr i x is a

constant that depends on the tissue properties (two tissue and frequency dependent constants,

kep , relaxation times in absence of contrast agents, the volume of the EES compartment, and

the fraction of the extracellular volume), the infusion rate of the contrast agent ki n , and the MRI

sequence parameters (TR and TE) [7]. It can be associated with the amplitude parameter K tr ans
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in the TK model. Since a lot of variables affect ABr i x , looking at the parameter alone may not

always be enough to get a full idea of its physiological indications. It can instead be useful to

also take some of the image acquisition settings into account.

The Brix model was developed using a slow infusion rate leading to a τ of around four minutes

[7]. By assuming τ is one minute, equation 2.24 is simplified to

S(t )

S0
= 1+ ABr i x

kep −kel

(
e−kel t −e−kep t )[35]. (2.25)

This approximation was suggested by Hoffman et al. and is the most commonly used version

of the Brix model [35] [5]. It provides a fairly simple implementation, but does not account for

bolus contrast agent injections.

Even though many factors affect it, an association between ABr i x and treatment response has

been found in several studies. For breast cancer, a significant decrease from the initial ABr i x

value was found after treatment by Thukral et al. in 2007 [36]. In cervical cancer, Halle et

al. found that a low ABr i x was associated with an upregulation of HIF-1α expression, known

to negatively impact treatment response [37]. Lollert et al. found associations between high

ABr i x and nodal involvement in rectal cancer, which is associated with a decreased treatment

response [11]. Similarly, for kep Torheim et al. found an association for parameter heterogeneity

and treatment response in cervical cancer, and for rectal cancer Lollert et al. found significantly

higher kep for patients with distant metastases, which is usually associated with aggressive treat-

ment resistant disease [38]. Little focus has been put on the washout rate kel in previous studies,

but associations with treatment response was found for its heterogeneity by Torheim et al [38].
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Method

3.1 Clinical Data

The clinical data were obtained from the Oxytarget study. The Oxytarget study aims to learn how

to more effectively identify patients at risk of metastasis and poor treatment response in rectal

cancer through the use of functional MRI, and to utilise this to better adapt treatment [39].

3.2 Patients

169 patients diagnosed with rectal cancer in the period 2014-2017 were initially included in this

study. 60 of the patients were excluded because of insufficient data: 20 patients because all MR

data were absent, 23 patients because dynamic MR data were absent, and 17 patients because

any or suitable tumour delineations were absent. Additionally 18 patients were excluded due

to differing treatment regimes: 16 patients who did not receive surgery and two patients who

received palliative chemotherapy prior to surgery. Thus, the sample size was reduced to 91 pa-

tients. 43 of the patients received neoadjuvant CRT. Furthermore, for 18 out of these 43 patients,

images were acquired both before and after neoadjuvant CRT was given.

27
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Regime Number of patients Description
Chemotherapy

Xeloda 29 Radiosensitiser. Metabolises into 5-Fluorouracil, an an-
timetabolite which inhibits thymidylate synthase, giving a ra-
diosensitising effect [14].

FLOX 4 Multidrug consisting of 5-Fluorouracil, oxaliplatin, and folinic
acid [3] [40]. Works as a neurotoxic and radiosensitiser. Given
in combination with 5 fractions of 5 Gy radiation therapy.

FLV 5 Multidrug consisting of 5-Fluorouracil and folinic acid. Works
as a radiosensitiser [40].

None 5 For some elderly or sick patients, only radiotherapy was given.
Radiotherapy

2 Gy x 25 35 25 dose fractions of 2 Gy. Gives a total dose of 50 Gy, normally
over a period of five weeks.

5 Gy x 5 8 5 dose fractions of 5 Gy, over a period of 5 days, a total dose of
25 Gy. Normally used for elderly or sick patients deemed un-
likely to manage a more advanced treatment.

Table 3.1: Description of the different treatments received by the patients with LARC in the Oxy-
target study.

Diagnosis and pretreatment staging were determined using standard diagnostic tools for rec-

tal cancer, which include rigid rectoscopy with biopsy, CT imaging of the thorax and abdomen,

and MRI of the rectum [3]. All patients received pelvic surgery to remove the tumour and nearby

lymph nodes. The cancer of 43 patients was locally advanced, and these patients therefore re-

ceived neoadjuvant CRT prior to surgery, while the rest of the patients received surgery without

any prior treatment. The technique used for all the radiotherapy treatments was volumetric

modulated arc therapy. Further details about the CRT regimes are described in table 3.1.

After tumour resection, TRG and TNM stages were determined for each tumour by an experi-

enced pathologist. Tumour and patient characteristics are displayed in table 3.2.
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Patient Characteristics n (%) Median age (range)
Total number of patients 91 64 (41-88)
Male 61 (67 %) 66 (41-88)
Female 30 (33 %) 62 (47-80)
Patients that received CRT 43 (47 %) 63 (41-79)
Male 31 (72 %) 63 (41-78)
Female 12 (28 %) 62 (49-79)
Patients that did not receive CRT 48 (53 %) 66 (47-88)
Male 30 (63 %) 67 (47-88)
Female 18 (38 %) 62 (47-48)
CRT n (%) No CRT n (%)
rTNM stage rTNM stage
mrT2 3 (6 %) mrT2 19 (40 %)
mrT3 21 (49 %) mrT3 22 (46 %)
mrT4 19 (44 %) mrT4 7 (15 %)
mrN0 13 (30 %) mrN0 33 (69 %)
mrN1 16 (37 %) mrN1 12 (25 %)
mrN2 14 (33 %) mrN2 3 (6 %)
rM0 36 (84 %) rM0 44 (92 %)
rM1 7 (16 %) rM1 4 (9 %)
ypTN stage pTN stage
ypT0 6 (14 %) pT1 4 (8 %)
ypT1 5 (12 %) pT2 20 (42 %)
ypT2 4 (9 %) pT3 21 (44 %)
ypT3 25 (58 %) pT4 3 (6 %)
ypT4 3 (7 %) pN0 29 (60 %)
ypN0 25 (58 %) pN1 15 (31 %)
ypN1 12 (28 %) pN2 4 (8 %)
ypN2 6 (14 %)
TRG stage
TRG0 5 (12 %)
TRG1 11 (26 %)
TRG2 17 (40 %)
TRG3 10 (23 %)

Table 3.2: Patient and tumour characteristics. The left column displays the tumour characteris-
tics of the patients that received CRT, and the right column displays the tumour characteristics
of the patients that did not receive CRT. The prefixes ’r’ and ’mr’ denote respectively radiologi-
cally (MR and/or CT) and MRI-assessed staging, the prefix ’p’ denotes assessment by patholo-
gist, and ’y’ denotes that the assessment took place after CRT [26].
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3.3 MRI Acquisition

MR images were obtained using a Philips Achieva 1.5 Tesla system (Philips Healthcare, The

Netherlands) with NOVA Dual HP gradients (maximum gradient amplitude 33 mTm−1 and slew

rate 180 Tm−1 s−1), and a five-channel cardiac coil with parallel imaging capabilities [26]. Prior

to imaging, the patients received glucagon and buscopan in order to reduce bowel peristalsis.

High quality morphological images were acquired by performing a T2-weighted spin-echo se-

quence (figure 3.1) [26]. Additionally a diffusion weighted sequence was performed, using a fat-

saturated single-shot spin-echo EPI sequence. Using the T2-weighted and diffusion weighted

images, ROIs delineating the tumours were drawn by two radiologists with respectively 7 and 14

years of experience.

Figure 3.1: A high quality (526 x 526) T2-weighted axial MR image of one of the patients in the
Oxytarget study. Drawn by an experienced radiologist, the delineated area indicates the tumour.
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The T1-weighted DCE-MR images (figure 3.2) were acquired by performing a multi-echo three-

dimensional T1-weighted EPI sequence with three echoes [26]. The sequence had TR = 39 ms

with the first echo at TE = 4.6 ms, time between echoes of 9.3 ms, a flip angle of 28° and an EPI

factor of 9. To enhance contrast in the images, the gadolineum-based contrast agent Dotarem

(279 mgml−1) was used [4]. A dose of 0.2 mlkg−1 (0.1 mmolkg−1) was administered at a rate of

3 mls−1, followed by 20 ml of saline solution. Images were acquired in 60 time steps, with an

average of 15 images taken prior to contrast agent administration, followed by an average of 45

images after contrast agent administration. The temporal resolution was around 2.6 seconds.

The sequence was interleaved with a 3D T1 weighted turbo field echo sequence (THRIVE) in

order to obtain images of high spatial resolution during the same acquisition, starting after 1-

2 minutes. After this, the dynamic images were acquired in bulks of four, with pauses of 67

seconds each, where the THRIVE images were acquired. Only the DCE-MR images were used in

this study.

t = 10 s t = 36 s

t = 48 s t = 74 s

Figure 3.2: DCE-MR images of one of the patients in the Oxytarget study, showing the distribu-
tion of contrast agent after 10 s, 36 s, 48 s, and 74 s. The axes indicate the pixel locations. There is
little contrast in the first image, which is before any contrast agent has entered the blood stream.
In the second image, the signal in the tumour (in the centre of the image) and the two arteries
in the upper corners is enhanced. In the last image the signal enhancement in the arteries has
decreased, but the signal enhancement in the tumour is still present.
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3.4 Image Analysis

The images were first sorted into four-dimensional matrices, using the script found in appendix

A.1, with three spatial dimensions (sagittal, coronal, and axial) and one temporal. Thus signal

intensity curves for each pixel in the images were available from the matrix, from which RSI

curves could be calculated using

RSI (t ) = S(t )−S0

S0
. (3.1)

An example of an RSI curve compared to a signal intensity curve can be seen in figure 3.3.

Curve fitting was performed to estimate the model parameters described in table 3.3, scripts for

which are attached in appendix A.2.3 for the Brix model and appendix A.2.2 for the two versions

of the TK model. The Matlab function fit was used, and in all cases, the maximum number

of evaluations of model allowed (MaxFunEvals) was set to 2000 and the maximum number of

iterations allowed for fit (MaxIter) was set to 800, with method set to NonLinearLeastSquares

[41]. Further details about the different curve fits are presented in table 3.4.

0 5 10 15
Time (min)

1000

2000

3000

4000

5000

S(
t)

Signal Intensity

0 5 10 15
Time (min)

-0.5

0

0.5

1

1.5

2

R
SI

(t
)

Relative Signal Intensity

Figure 3.3: Example of the measured signal intensity in one pixel, and the RSI calculated from
equation 3.1. The curves are disjointed due to the alternation between acquisition of dynamic
and morphological images, described in section 3.3 [42].
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Parameter Description Unit
The AIF

a1 Amplitude of the fast exponential decay, which describes leak-
age into the interstitium [43].

kgl−1

m1 Rate constant of fast exponential decay. min−1

a2 Amplitude of slow exponential decay, which describes excre-
tion through the kidneys [43].

kgl−1

m2 Rate constant of slow exponential decay. min−1

The TK model
K tr ans Contrast agent volume transfer constant from intravascular

space to EES.
min−1

ve EES volume per unit volume of tissue %
vp Intravascular space volume per unit volume of tissue %
kep Contrast agent rate constant from EES to intravascular space. min−1

The Brix model
ABr i x Decides magnitude of enhancement in curve. Dependent on

perfusion, EES volume, intravascular volume permeability and
contrast agent dose [44].

None

kep Contrast agent rate constant from EES to intravascular space. min−1

kel Contrast agent clearance rate constant from intravascular
space.

min−1

Table 3.3: The following parameters were estimated for the AIF, TK model, and the Brix model.
The parameters for the TK model were estimated in two different ways: from a population-based
AIF and from individual AIFs.

Model Algorithm Robust Limits
AIF Levenberg-Marquadt None None
TK Trust-Region Bisquare K tr ans : (0 , 10)

ve : (0 , 1)
vp : (0 , 1)

Brix Trust-Region Bisquare ABr i x : (0 , 500)
kel : (0 , 500)
kep : (0 , 500)

Table 3.4: Algorithms and limits used for the different curve fits. The settings for the TK model
analysis with the population-based AIF and individual AIFs were identical. During the curve
fitting ve and vp were fractions with no units. After estimation both fractions were multiplied
with 100 % so that both parameters had unit %.
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The AIF

The AIF was estimated for all patients using the scripts in appendix A.2.1. Arteries were located

by inspecting the images at the time of peak and chosen based on the amount of noise in the

image and size of the vessel. An ROI was drawn around the chosen artery for each patient,

and signal intensity curves were measured within the ROI. An estimation of the contrast agent

concentration in the blood Cp (t ) was calculated from the signal intensity curves by applying

equations 2.16 and 2.18, and fitted to equation 2.17, with D = 0.1 mmolkg−1, and the hematocrit

value set to 0.41 for women and 0.47 for men. The median of the fitted AIF parameters within

the ROIs were calculated for each patient.

All fitted AIFs were examined, and those that did not obviously deviate from the measured

data, and had a visible peak, were deemed suitable. An example can be seen in figure 3.4.

A population-based AIF was calculated from the suitable AIFs, and the deviations from the

population-based AIF parameters were examined for each patient. The unsuccessful individ-

ual AIFs were replaced with the population-based AIF prior to further analyses.

Figure 3.4: a) An example of a successful AIF approximation. The red dots indicate the measured
data, and the blue line the fitted function. In the time prior to contrast agent injection, the
contrast agent concentration was considered to be 0 mM.
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The TK model

The TK model parameters K tr ans , ve , vp , and kep were estimated using the scripts found in

appendix A.2.2. Based on the maximum thresholds used by Grøvik in 2017, pixels where either

K tr ans > 3, ve > 80 or vp > 20, were considered to be nonphysiological and were thus omitted

from further analysis [4]. kep was calculated from kep = K tr ans/ve . Because sometimes ve = 0,

a significant amount of NaN-values occurred in the kep matrices. These were removed prior to

calculation of the kep medians.

The equation used for fitting the measured data to the TK model, was derived by inserting equa-

tion 2.17 into equation 2.21:

Ct (t ) = vpCp (t )+K tr ansDe−kep t
[

a1
1−e(kep−m1)t

m1 −kep
+a2

1−e(kep−m2)t

m2 −kep

]
(3.2)

where kep = K tr ans/ve and Cp (t ) is the AIF. Estimated tissue contrast agent concentration curves

were calculated by applying equation 2.15 to the signal intensity curves. The TK model param-

eters were estimated by fitting the tissue contrast agent concentration curves to equation 3.2.

The TK model was applied for all image data using the population-based AIF, and additionally

using individual AIFs whenever successful individual AIFs were available.

The Brix Model

The Brix model parameters ABr i x , kel , and kep were estimated using the script found in ap-

pendix A.2.3. For each patient, the RSI curves within the tumour ROI were fitted to equation

2.25. Values for the parameters were thus found for all pixels within the tumours. Pixels where

either ABr i x > 7, kel > 2 or kep > 40 were considered as nonphysiological values resulting from

poor curve fits, and were therefore removed prior to further analysis.
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3.5 Data Analysis

All statistical analyses of associations between the parameter values described in table 3.3 and

treatment response or tumour aggressiveness were performed using the Mann-Whitney U test

[45]. Presented by Mann and Whitney in 1947, the test is nonparametric and compares two

groups, returning a p-value that indicates how likely it is that the groups originate from the same

distribution. It does not require the test parameters to be from a normal distribution, and thus

works well for the median and percentile values estimated in this study. Analyses on median

parameter values and heterogeneity were performed using the scripts in appendix A.3.

3.5.1 Pretreatment Data

The different pretreatment median parameters of the patients were divided into groups based

on TRG and TNM-stages that were considered positive or negative with regard to treatment re-

sponse or aggressiveness. For example, separating patients with TRG 0 and TRG 1-3 into dif-

ferent groups to separate a good and poor histomorphological tumour response to CRT. The

endpoints and the number of patients in the endpoint based groups are presented in table 3.5.

When testing for decrease in N-stage, patients with mrN 0 were excluded, as a decrease for these

patients would not be possible. Box plots were created for statistically significant results to il-

lustrate the differences between the groups.

Heterogeneity analysis was performed for the parameters and endpoints where analysis on the

median parameters gave statistically significant (p < 0.05) results. This included p-values plot-

ted for the different parameter percentiles, in order to examine the stability of the statistical

significance found for the parameter medians, and histogram analysis.

The histogram analysis was performed by creating parameter histograms for each patient using

Matlab. From the histograms, values of the following quantities were calculated:

• Standard deviation (SD): Indicator of variation in bin heights. Increases for a high varia-

tion, which occurs if most parameter values are closely centered around a value [46].
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Endpoint CRT Endpoint No CRT
Group 1 Group 2 Group 1 Group 2

ypT 0-2 versus 3-4 15 28 pT 0-2 versus 3-4 24 24
ypN 0 versus 1-2 25 18 pN 0 versus 1-2 29 19
TRG 0 versus 1-3 5 38
∆T 0-2 versus 3-4 37 6
∆N 0 versus 1-2 10 20

Table 3.5: The endpoints used in the Mann-Whitney U test and the number of patients in the
endpoint based groups for the pretreatment data. Respectively Group 1 and Group 2 contain the
first and second class mentioned in the endpoint. ∆T 0-2 versus 3-4 represents the magnitude
of decrease in T-stage between mrT- and ypT-stage. ∆N 0 versus 1-2 describes the decrease in
N-stage from mrN to ypN, where ∆N 0 represents no decrease, and patients with mrN 0, who
would be unable to achieve a decrease, were not included.

• Kurtosis: Indicates the amount of extreme outliers. The value of kurtosis increases with

the number of outliers [47].

• Relative peak height (RPH): Peak height divided by the mean bin height.

• Skewness: Asymmetry around the peak of a histogram. Positive skewness indicates that

there are more bins on the right side of the peak than on the left [48].

The quantities were then divided into groups based on the endpoints in table 3.5, and box plots

were created for the statistically significant results.

3.5.2 Post-CRT Data

For the 18 patients where both pretreatment and post-CRT data were available, the medians of

the post-CRT model parameters, and the change in the median model parameters during CRT

were calculated. Using the Mann-Whitney U test, they were compared to treatment response

using the endpoints presented in table 3.6. Box plots were created for statistically significant

results.
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Endpoint Group 1 Group 2
ypT 0-2 versus 3-4 8 10
ypN 0 versus 1-2 11 7
TRG 0 versus 1-3 3 15
∆T 0-2 versus 3-4 15 3
∆N 0 versus 1-2 10 8

Table 3.6: The endpoints used in the Mann-Whitney U test and the number of patients in the
endpoint based groups for the post-CRT data. Respectively Group 1 and Group 2 contain the
first and second class mentioned in the endpoint. ∆T 0-2 versus 3-4 represents the decrease in
T-stage from mrT- to ypT-stage, and ∆N 0 versus 1-2 describes the decrease between mrN and
ypN, where ∆N 0 represents no decrease, and patients with mrN 0 were not included.
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Results

4.1 The AIF

In total, 90 individual AIFs were estimated successfully: 41 for the group that did not receive CRT,

and in the group that received CRT: 36 pretreatment images (15 of which were for the patients

where post-CRT images were also available) and 13 for the image data acquired post-CRT. The

value and range of the population-based AIF parameters are displayed in table 4.1. Deviations

from the population-based parameters for the different individual AIFs are shown in figure 4.1.

Mean (range)
a1 (kgl−1) 10.54 (1.95 , 42.07)
a2 (kgl−1) 6.84 (1.14 , 26.30)
m1 (min−1) 8.87 (0.06 , 40.42)
m2 (min−1) 0.50 (0.00 , 8.33)

Table 4.1: The population-based AIF parameters, calculated by taking the mean of the medi-
ans for the different patients. The minimum and maximum values of the parameter medians
indicate the range.

39
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Figure 4.1: Deviations from the population-based AIF parameters for the different patients. The
blue line indicates the mean value of the parameter. The y-axis indicates the parameter and the
x-axis indicates the patient identification number from the Oxytarget study.

4.2 Analysis of Pretreatment Data

The results from the Mann-Whitney U test from the TK model with the population-based AIF,

along with parameter medians and ranges in the different endpoints, are presented in table 4.2.

No statistically significant associations with treatment response were found.

The results from the Mann-Whitney U test from the TK model with individual AIFs, along with

parameter medians and ranges in the different endpoints, are presented in table 4.3. ve signif-
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Parameter Median (range) p-value
Group 1 Group 2

Patients that received CRT
K tr ans (min−1) ypT 0-2 versus 3-4 0.49 (0.00 , 2.20) 0.20 (0.00 , 1.29) 0.150

ypN 0 versus 1-2 0.28 (0.00 , 2.20) 0.16 (0.00 , 0.89) 0.059
TRG 0 versus 1-3 0.40 (0.00 , 2.20) 0.23 (0.00 , 1.32) 0.415
∆T 0-2 versus 3-4 0.23 (0.00 , 1.32) 0.30 (0.00 , 2.20) 0.739
∆N 0 versus 1-2 0.14 (0.00 , 0.50) 0.29 (0.00 , 2.20) 0.113

ve (%) ypT 0-2 versus 3-4 33.68 (0.05 , 50.37) 27.34 (0.00 , 64.90) 0.549
ypN 0 versus 1-2 31.56 (0.00 , 64.90) 21.57 (0.00 , 58.54) 0.273
TRG 0 versus 1-3 15.05 (0.05 , 48.13) 30.64 (0.00 , 64.90) 0.636
∆T 0-2 versus 3-4 31.56 (0.00 , 64.90) 14.82 (0.05 , 48.13) 0.371
∆N 0 versus 1-2 26.69 (0.00 , 54.57) 24.06 (0.00 , 64.90) 0.965

vp (%) ypT 0-2 versus 3-4 1.14 (0.00 , 4.10) 0.58 (0.00 , 10.09) 0.929
ypN 0 versus 1-2 1.16 (0.00 , 10.09) 0.23 (0.00 , 8.69) 0.563
TRG 0 versus 1-3 1.16 (0.00 , 2.43) 0.89 (0.00 , 10.09) 0.747
∆T 0-2 versus 3-4 0.72 (0.00 , 10.09) 1.11 (0.00 , 2.43) 0.766
∆N 0 versus 1-2 0.22 (0.00 , 8.69) 1.58 (0.00 , 10.09) 0.509

kep (min−1 ) ypT 0-2 versus 3-4 1.98 (0.21 , 15.17) 1.83 (0.62 , 4.29) 0.566
ypN 0 versus 1-2 1.98 (0.21 , 15.17) 1.80 (0.62 , 4.29) 0.777
TRG 0 versus 1-3 1.98 (1.53 , 15.17) 1.82 (0.21 , 4.29) 0.179
∆T 0-2 versus 3-4 1.83 (0.21 , 4.29) 1.98 (0.24 , 15.17) 0.587
∆N 0 versus 1-2 1.48 (0.62 , 4.29) 1.87 (0.24 , 15.17) 0.391

Patients that did not receive CRT
K tr ans (min−1) pT 0-2 versus 3-4 0.59 (0.00 , 1.33) 0.17 (0.00 , 1.32) 0.190

pN 0 versus 1-2 0.29 (0.00 , 1.33) 0.26 (0.00 , 1.32) 0.983
ve (%) pT 0-2 versus 3-4 36.42 (0.00 , 65.69) 27.04 (0.00 , 57.42) 0.197

pN 0 versus 1-2 32.63 (0.00 , 65.69) 35.39 (0.00 , 57.45) 0.966
vp (%) pT 0-2 versus 3-4 0.01 (0.00 , 4.05) 0.18 (0.00 , 2.37) 0.556

pN 0 versus 1-2 0.00 (0.00 , 2.60) 0.35 (0.00 , 4.05) 0.598
kep (min−1) pT 0-2 versus 3-4 1.94 (0.28 , 4.77) 1.63 (0.19 , 3.79) 0.703

pN 0 versus 1-2 1.80 (0.28 , 3.65) 1.59 (0.19 , 4.77) 0.850

Table 4.2: Results of the Mann-Whitney U test for different endpoints on the median pretreat-
ment parameters from the TK model with the population-based AIF. The group of patients that
received neoadjuvant CRT is presented first, followed by the group that did not receive CRT. p-
values < 0.05 were considered statistically significant. The groups are presented with median
values and ranges of the median parameters for the different patients.
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icantly differentiated patients with good treatment response (ypT 0-2, TRG 0, and ∆T 3-4) from

patients with poor treatment response (ypT 3-4, TRG 1-3, and ∆T 0-2) in the group of patients

that received CRT. Box plots illustrating the median values of ve for the patients in the different

Parameter Median (range) p-value
Group 1 Group 2

Patients that received CRT
K tr ans (min−1) ypT 0-2 versus 3-4 0.44 (0.00 , 1.96) 0.38 (0.00 , 2.00) 0.656

ypN 0 versus 1-2 0.33 (0.00 , 2.00) 0.53 (0.00 , 1.64) 0.721
TRG 0 versus 1-3 0.33 (0.00 , 1.96) 0.47 (0.00 , 2.00) 0.507
∆T 0-2 versus 3-4 0.49 (0.00 , 2.00) 0.27 (0.00 , 1.96) 0.301
∆N 0 versus 1-2 0.49 (0.02 , 1.64) 0.50 (0.00 , 2.00) 0.741

ve (%) ypT 0-2 versus 3-4 28.18 (0.00 , 51.44) 44.46 (0.00 , 66.26) 0.045
ypN 0 versus 1-2 34.39 (0.00 , 65.98) 42.87 (0.00 , 66.26) 0.438
TRG 0 versus 1-3 14.34 (0.00 , 34.39) 42.44 (0.00 , 66.26) 0.022
∆T 0-2 versus 3-4 42.96 (0.00 , 66.26) 14.52 (0.00 , 34.39) 0.009
∆N 0 versus 1-2 46.97 (1.71 , 66.26) 34.30 (0.00 , 65.98) 0.153

vp (%) ypT 0-2 versus 3-4 0.54 (0.00 , 5.18) 1.75 (0.00 , 14.82) 0.221
ypN 0 versus 1-2 0.54 (0.00 , 14.82) 2.52 (0.00 , 9.00) 0.614
TRG 0 versus 1-3 0.00 (0.00 , 2.55) 1.75 (0.00 , 14.82) 0.069
∆T 0-2 versus 3-4 1.17 (0.00 , 14.82) 0.27 (0.00 , 5.12) 0.220
∆N 0 versus 1-2 1.38 (0.00 , 9.00) 0.58 (0.00 , 14.82) 0.895

kep (min−1) ypT 0-2 versus 3-4 2.42 (0.82 , 16.10) 1.89 (0.33 , 5.01) 0.136
ypN 0 versus 1-2 1.87 (0.33 , 16.10) 2.16 (0.37 , 5.01) 0.530
TRG 0 versus 1-3 1.75 (0.99 , 16.10) 2.16 (0.33 , 5.01) 0.691
∆T 0-2 versus 3-4 2.10 (0.33 , 5.01) 2.24 (0.99 , 16.10) 0.540
∆N 0 versus 1-2 1.81 (0.37 , 3.15) 2.56 (0.33 , 16.10) 0.194

Patients that did not receive CRT
K tr ans (min−1) pT 0-2 versus 3-4 0.75 (0.00 , 1.76) 0.75 (0.00 , 1.97) 0.934

pN 0 versus 1-2 0.72 (0.00 , 1.97) 0.78 (0.00 , 1.41) 0.584
ve (%) pT 0-2 versus 3-4 35.01 (0.00 , 64.03) 31.46 (0.00 , 60.82) 0.711

pN 0 versus 1-2 32.40 (0.00 , 64.03) 33.41 (0.00 , 60.82) 0.736
vp (%) pT 0-2 versus 3-4 0.10 (0.00 , 2.37) 0.00 (0.00 , 4.92) 0.757

pN 0 versus 1-2 0.05 (0.00 , 2.72) 0.00 (0.00 , 4.92) 0.673
kep (min−1) pT 0-2 versus 3-4 2.29 (0.28 , 4.77) 2.78 (0.73 , 4.22) 0.703

pN 0 versus 1-2 2.70 (0.28 , 4.22) 2.33 (0.73 , 4.77) 0.866

Table 4.3: Results of the Mann-Whitney U test for different endpoints on the pretreatment me-
dian parameters from the TK model with individual AIFs. The group of patients that received
neoadjuvant CRT is presented first, followed by the group that did not receive CRT. Emphasised
in bold, p-values < 0.05 were considered statistically significant. The groups are presented with
median values and ranges of the median parameters for the different patients.
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Figure 4.2: Box plots for the median pretreatment ve from the TK model with individual AIFs, for
patients with ypT 0-2, TRG 0, and ∆T 3-4 (good treatment response) compared to patients with
ypT 3-4, TRG 1-3, and ∆T 0-2 (poor treatment response). The central mark, bottom and top of
the boxes respectively indicate the median, 25th and 75th percentile, and the whiskers indicate
the most extreme values not considered outliers. Outliers are plotted individually using the ’+’
symbol. Patients with good treatment response generally had the lowest median ve .

groups are shown in figure 4.2, and it can be seen that ve was generally higher for patients with

poor treatment response than for patients with good treatment response.

The results of the Mann-Whitney U test on the Brix model parameters, along with parameter

medians and ranges in the different endpoints, are presented in table 4.4. The medians of ABr i x

significantly differentiated patients with ypT 0-2 (good treatment response) from patients with

ypT 3-4 (poor treatment response), and kep significantly differentiated patients with ∆T 3-4

(good treatment response) from ∆T 0-2 (poor treatment response). Box plots illustrating the

values of the parameter medians in the different groups are presented in figure 4.3. It can be

seen that both the median ABr i x and kep were higher for the poor treatment response groups

than for the good treatment response groups.
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Parameter Endpoint Median (range) p-value
Group 1 Group 2

Patients that received CRT
ABr i x ypT 0-2 versus 3-4 1.40 (0.89 , 2.90) 1.57 (1.03 , 2.09) 0.018

ypN 0 versus 1-2 1.44 (1.03 , 2.90) 1.55 (0.89 , 2.09) 0.468
TRG 0 versus 1-3 1.49 (1.32 , 2.90) 1.51 (0.89 , 2.09) 0.865
∆T 0-2 versus 3-4 1.52 (0.89 , 2.09) 1.46 (1.32 , 2.90) 0.986
∆N 0 versus 1-2 1.62 (0.89 , 2.09) 1.43 (1.03 , 2.90) 0.210

kel (min−1) ypT 0-2 versus 3-4 0.04 (0.00 , 1.57) 0.02 (0.00 , 0.08) 0.085
ypN 0 versus 1-2 0.03 (0.00 , 1.57) 0.02 (0.00 , 0.08) 0.514
TRG 0 versus 1-3 0.04 (0.01 , 1.57) 0.03 (0.00 , 0.08) 0.233
∆T 0-2 versus 3-4 0.03 (0.00 , 0.08) 0.03 (0.00 , 1.57) 0.661
∆N 0 versus 1-2 0.01 (0.00 , 0.05) 0.04 (0.00 , 1.57) 0.090

kep (min−1) ypT 0-2 versus 3-4 5.69 (1.79 , 13.42) 5.04 (1.54 , 21.49) 0.750
ypN 0 versus 1-2 4.97 (1.54 , 21.49) 5.68 (2.15 , 13.42) 0.597
TRG 0 versus 1-3 4.06 (1.81 , 5.69) 5.68 (1.54 , 21.49) 0.155
∆T 0-2 versus 3-4 5.69 (1.54 , 21.49) 3.71 (1.79 , 5.69) 0.044
∆N 0 versus 1-2 4.37 (2.15 , 10.91) 5.94 (1.54 , 21.49) 0.226

Patients that did not receive CRT
ABr i x pT 0-2 versus 3-4 1.37 (0.55 , 2.40) 1.37 (0.48 , 1.82) 0.658

pN 0 versus 1-2 1.39 (0.99 , 2.40) 1.31 (0.48 , 1.72) 0.061
kel (min−1) pT 0-2 versus 3-4 0.03 (0.01 , 0.09) 0.03 (0.00 , 0.05) 0.197

pN 0 versus 1-2 0.03 (0.01 , 0.09) 0.03 (0.00 , 0.05) 0.146
kep (min−1) pT 0-2 versus 3-4 6.44 (1.70 , 9.91) 6.69 (0.88 , 12.75) 0.439

pN 0 versus 1-2 6.87 (2.46 , 12.75) 6.06 (0.88 , 9.91) 0.264

Table 4.4: Results of the Mann-Whitney U test for different endpoints on the median pretreat-
ment Brix model parameters. The group of patients that received neoadjuvant CRT is presented
first, followed by the group that did not receive CRT. Emphasised in bold, p-values < 0.05 were
considered statistically significant. The groups are presented with median values and ranges of
the median parameters for the different patients.
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Figure 4.3: Box plots showing the Brix model pretreatment medians of (a) ABr i x for the patients
with ypT 0-2 (good treatment response) and ypT 3-4 (poor treatment response), and of (b) kep

for the patients with ∆T 3-4 (good treatment response), and ∆T 0-2 (poor treatment response).
The central mark, bottom and top of the boxes respectively indicate the median, 25th and 75th
percentile, and the whiskers indicate the most extreme values not considered outliers. Outliers
are plotted individually using the ’+’ symbol. Patients with good treatment response generally
had a low median ABr i x and kep .

4.2.1 Tumour Heterogeneity

Results of the Mann-Whitney U test on the histogram quantities from the significant pretreat-

ment associations are presented in table 4.5. The RPH of kep from the Brix model significantly

Parameter Endpoint p-value
Kurtosis RPH Skewness SD

Patients that received CRT
The TK model: Individual AIFs
ve (%) ypT 0-2 versus 3-4 0.868 0.789 0.731 0.601

TRG 0 versus 1-3 0.532 0.437 0.394 0.353
∆T 0-2 versus 3-4 0.318 0.285 0.227 0.494

The Brix model
ABr i x ypT 0-2 versus 3-4 0. 889 0.619 0.809 0.090
kep (min−1) ∆T 0-2 versus 3-4 0.056 0.016 0.056 0.820

Table 4.5: Results of the Mann-Whitney U test for different endpoints on the histogram quan-
tities kurtosis, RPH, skewness, and SD of the pretreatment model parameters. Emphasised in
bold, p-values < 0.05 were considered statistically significant.
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Figure 4.4: Box plots of the RPH of kep from the Brix model, for patients with ∆T 0-2 (poor
treatment response) compared to patients with ∆T 3-4 (good treatment response). The central
mark, bottom and top of the boxes respectively indicate the median, 25th and 75th percentile,
and the whiskers indicate the most extreme values not considered outliers. Outliers are plotted
individually using the ’+’ symbol. Patients that responded well to treatment generally had a high
RPH of kep .

differentiated ∆T 3-4 (good treatment response) and ∆T 0-2 (poor treatment response). In fig-

ure 4.4, box plots illustrate the RPH values in the two groups, and show that the good responders

generally had a higher RPH of kep than the poor responders.

In figure 4.5 the percentile p-values of ve , from the TK model with individual AIFs, for ypT 0-2

versus ypT 3-4, TRG 0 versus TRG 1-3, and ∆T 0-2 versus ∆T 3-4 are shown. It can be seen that

ve seems to have the highest accuracy (lowest p-values) between the 80th and 95th percentile.

Figure 4.5: Individual AIF-based TK model p-values from the Mann-Whitney U test on the pre-
treatment ve percentiles for ypT 0-2 versus 3-4, TRG 0 versus TRG 1-3, and ∆T 0-2 versus ∆T
3-4.
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The percentile plots for the Brix model p-values in figure 4.6, show that the p-value is fairly stable

in the range from the 15th to the 50th percentile for ABr i x in ypT 0-2 versus 3-4. For kep in ∆T

0-2 versus 3-4, the lowest p-value is found in the 20th percentile.

(a)

(b)

Figure 4.6: Brix model p-values from the Mann-Whitney U test on the pretreatment parameter
percentiles for a) ABr i x in ypT 0-2 versus ypT 3-4, and b) kep in ∆T 0-2 versus ∆T 3-4.
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4.3 Analysis of Post-CRT Data

For the 18 patients from which both pretreatment and post-CRT image data were available, the

pretreatment, post-CRT, and change in parameter medians and ranges are displayed in table

4.6. The median parameters generally decreased in response to CRT, with exceptions for kep in

both versions of the TK model, and ABr i x in the Brix model.

Parameter Median (range) ∆

Pretreatment Post-CRT
The TK model: population based AIF

K tr ans (min−1) 0.49 (0.00 , 2.20) 0.01 (0.00 , 1.61) -0.49
ve (%) 44.10 (0.00 , 64.90) 0.42 (0.00 , 51.00) -43.68
vp (%) 0.40 (0.00 , 8.69) 0.01 (0.00 , 1.61) -0.40
kep (min−1) 1.94 (0.82 , 15.17) 1.99 (0.61 , 11.78) 0.04

The TK Model: individual AIFs
K tr ans (min−1) 0.49 (0.11 , 2.00) 0.27 (0.00 , 1.61) -0.22
ve (%) 40.41 (12.97 , 65.98) 35.50 (0.00 , 59.51) -4.91
vp (%) 0.49 (0.00 , 5.79) 0.00 (0.00 , 8.35) -0.49
kep (min−1) 1.78 (0.33 , 16.10) 1.97 (0.16 , 3.53) 0.19

The Brix Model
ABr i x 1.51 (0.91 , 2.90) 1.60 (0.98 , 2.71) 0.09
kel (min−1) 0.03 (0.00 , 1.57) 0.00 (0.00 , 0.04) -0.03
kep (min−1) 5.05 (1.54 , 10.91) 3.48 (1.65 , 8.23) -1.58

Table 4.6: The median and range of the estimated model parameters pre- and post-CRT treat-
ment. The last column displays the difference in model median parameters from before to after
the CRT regime. Negative values indicate a decrease in parameter value after CRT.
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4.3.1 Post-CRT Medians

The results from the Mann-Whitney U test on the post-CRT median parameters from the TK

model with the population-based AIF, along with parameter medians and ranges in the different

endpoints, are presented in table 4.7. K tr ans and vp significantly differentiated good treatment

response (TRG 0 and∆T 3-4) from poor treatment response (TRG 1-3 and∆T 0-2). The box plots

in figure 4.7 show that K tr ans and vp were generally highest for the good responders.

Parameter Endpoint Median (range) p-value
Group 1 Group 2

K tr ans ypT 0-2 versus 3-4 0.22 (0.00 , 1.61) 0.00 (0.00 , 0.29) 0.142
ypN 0 versus 1-2 0.00 (0.00 , 1.61) 0.01 (0.00 , 0.29) 0.784
TRG 0 versus TRG 1-3 0.96 (0.16 , 1.61) 0.00 (0.00 , 1.23) 0.039
∆T 0-2 versus 3-4 0.11 (-1.21 , 2.05) 0.96 (0.16 , 1.61) 0.039
∆N 0 versus 1-2 0.01 (0.00 , 0.25) 0.08 (0.00 , 1.23) 0.685

ve (%) ypT 0-2 versus 3-4 16.69 (0.00 , 51.00) 0.00 (0.00 , 37.59) 0.327
ypN 0 versus 1-2 0.00 (0.00 , 51.00) 0.84 (0.00 , 26.57) 0.784
TRG 0 versus TRG 1-3 20.04 (18.23 , 51.00) 0.00 (0.00 , 37.59) 0.056
∆T 0-2 versus 3-4 0.00 (0.00 , 37.59) 20.04 (18.23 , 51.00) 0.056
∆N 0 versus 1-2 0.84 (0.00 , 26.57) 7.58 (0.00 , 37.59) 0.926

vp (%) ypT 0-2 versus 3-4 0.00 (0.00 , 3.08) 0.00 (0.00 , 0.00) 0.173
ypN 0 versus 1-2 0.00 (0.00 , 3.08) 0.00 (0.00 , 0.00) 0.710
TRG 0 versus TRG 1-3 0.00 (0.00 , 3.08) 0.00 (0.00 , 2.22) 0.027
∆T 0-2 versus 3-4 0.00 (0.00 , 2.22) 0.00 (0.00 , 3.08) 0.027
∆N 0 versus 1-2 0.00 (0.00 , 0.00) 0.00 (0.00, 2.22) 0.685

kep (min−1) ypT 0-2 versus 3-4 1.99 (0.75 , 4.90) 2.00 (0.61 , 11.78) 1.000
ypN 0 versus 1-2 2.30 (0.92 , 4.90) 1.40 (0.61 , 11.78) 0.211
TRG 0 versus TRG 1-3 3.28 (1.27 , 4.90) 1.96 (0.61 , 11.78) 0.426
∆T 0-2 versus 3-4 1.96 (0.61 , 11.78) 3.28 (1.27 , 4.90) 0.426
∆N 0 versus 1-2 1.32 (0.61 , 11.78) 1.93 (0.92 , 3.30) 0.435

Table 4.7: Results of the Mann-Whitney U test for different endpoints on the post-CRT me-
dian parameters of the TK model with a population-based AIF. Emphasised in bold, p-values
< 0.05 were considered statistically significant. The groups are presented with median values
and ranges of the median parameters for the different patients.
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Figure 4.7: Box plots showing the post-CRT medians from the TK model with the population-
based AIF, of (a) K tr ans and (b) vp for patients with good treatment response (TRG 0 and ∆T
3-4) and poor treatment response (TRG 1-3 and ∆T 0-2). The central mark, bottom and top of
the boxes respectively indicate the median, 25th and 75th percentile, and the whiskers indicate
the most extreme values not considered outliers. Outliers are plotted individually using the ’+’
symbol. Patients with good treatment response generally had a high K tr ans and vp .

The results from the Mann-Whitney U test on the post-CRT median parameters from the TK

model with individual AIFs, along with parameter medians and ranges in the different end-

points, are presented in table 4.8. Significant associations were found for K tr ans between good
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Parameter Endpoint Median (range) p-value
Group 1 Group 2

K tr ans ypT 0-2 versus 3-4 0.37 (0.00 , 1.61) 0.26 (0.00 , 0.73) 0.554
ypN 0 versus 1-2 0.08 (0.00 , 1.61) 0.27 (0.11 , 0.87) 0.405
TRG 0 versus TRG 1-3 1.13 (0.48 , 1.61) 0.25 (0.00 , 0.87) 0.017
∆T 0-2 versus 3-4 0.25 (0.00 , 0.87) 1.13 (0.48 , 1.61) 0.017
∆N 0 versus 1-2 0.27 (0.11 , 0.47) 0.28 (0.00 , 0.87) 1.000

ve (%) ypT 0-2 versus 3-4 35.50 (0.00 , 59.51) 33.68 (0.00 , 59.20) 0.881
ypN 0 versus 1-2 26.62 (0.00 , 59.51) 46.49 (20.06 , 59.20) 0.199
TRG 0 versus TRG 1-3 51.00 (35.68 , 59.51) 26.62 (0.00 , 59.20) 0.076
∆T 0-2 versus 3-4 26.62 (0.00 , 59.20) 51.00 (35.68 , 59.51) 0.076
∆N 0 versus 1-2 46.49 (26.57 , 59.20) 23.34 (0.00 , 49.89) 0.124

vp (%) ypT 0-2 versus 3-4 0.00 (0.00 , 3.08) 1.30 (0.00 , 8.35) 0.302
ypN 0 versus 1-2 0.00 (0.00 , 6.24) 2.52 (0.00 , 8.35) 0.033
TRG 0 versus TRG 1-3 0.00 (0.00 , 3.08) 0.00 (0.00 , 8.35) 0.716
∆T 0-2 versus 3-4 0.00 (0.00 , 8.35) 0.00 (0.00 , 3.08) 0.716
∆N 0 versus 1-2 2.52 (0.00 , 8.35) 0.00 (0.00 , 6.24) 0.124

kep (min−1) ypT 0-2 versus 3-4 1.99 (0.98 , 3.53) 1.20 (0.16 , 3.26) 0.146
ypN 0 versus 1-2 2.30 (0.16 , 3.53) 1.05 (0.25 , 2.28) 0.044
TRG 0 versus TRG 1-3 1.99 (1.93 , 3.28) 1.96 (0.16 , 3.53) 0.574
∆T 0-2 versus 3-4 1.96 (0.16 , 3.53) 1.99 (1.93 , 3.28) 0.426
∆N 0 versus 1-2 0.98 (0.25 , 1.32) 2.39 (0.16 , 3.53) 0.030

Table 4.8: Results of the Mann-Whitney U test for different endpoints on the post-CRT median
parameters from the TK model with individual AIFs. Emphasised in bold, p-values < 0.05 were
considered statistically significant. The groups are presented with median values and ranges of
the median parameters for the different patients.

responders (TRG 0 and ∆T 3-4) and poor responders (TRG 1-3 and ∆T 0-2), for vp between ypN

0 (good treatment response) and ypN 1-2 (poor treatment response), and for kep between good

responders (ypN 0 and ∆N 1-2) and poor responders (ypN 1-2 and ∆N 0). In figure 4.8 box plots

present the distribution of parameter medians in the different groups. The median K tr ans and

kep were highest for the good responders, while vp was generally lowest for the good responders.

Finally, the results from the Mann-Whitney U test on the post-CRT median parameters from the

Brix model, along with parameter medians and ranges in the different endpoints, are presented

in table 4.9. The post-CRT median kep was found to significantly differentiate good (∆N 1-2)

and poor (∆N 0) responders. Illustrated in figure 4.9, a high kep was associated with a good

treatment response.
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Figure 4.8: Box plots showing the post-CRT individual AIF-based TK model medians of (a)
K tr ans for patients with good treatment response (TRG 0 and ∆T 3-4) and poor treatment re-
sponse (TRG 1-3 and ∆T 0-2), of (b) vp for patients with good treatment response (ypN 0) and
poor treatment response (ypN 1-2), and in (c) and (d) for kep for patients with good treatment
response (ypN 0 and ∆N 1-2) and poor treatment response (ypN 1-2 and ∆N 0). The central
mark, bottom and top of the boxes respectively indicate the median, 25th and 75th percentile,
and the whiskers indicate the most extreme values not considered outliers. Outliers are plotted
individually using the ’+’ symbol. Patients with good treatment response generally had a high
K tr ans and kep and a low vp compared to the poor responders.
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Parameter Endpoint Median (range) p-value
Group 1 Group 2

ABr i x ypT 0-2 versus 3-4 1.50 (0.98 , 2.71) 1.65 (1.29 , 2.26) 0.360
ypN 0 versus 1-2 1.52 (0.98 , 2.71) 1.65 (1.25 , 2.10) 1.000
TRG 0 versus TRG 1-3 1.48 (1.27 , 2.71) 1.65 (0.98 , 2.26) 0.912
∆T 0-2 versus 3-4 1.65 (0.98 , 2.26) 1.48 (1.27 , 2.71) 0.912
∆N 0 versus 1-2 1.65 (1.25 , 1.83) 1.72 (1.27 , 2.18) 0.354

kel (min−1) ypT 0-2 versus 3-4 0.00 (0.00 , 0.04) 0.01 (0.00 , 0.02) 0.829
ypN 0 versus 1-2 0.00 (0.00 , 0.04) 0.00 (0.00 , 0.04) 0.659
TRG 0 versus TRG 1-3 0.00 (0.00 , 0.01) 0.00 (0.00 , 0.04) 0.912
∆T 0-2 versus 3-4 0.00 (0.00 , 0.04) 0.00 (0.00 , 0.01) 0.912
∆N 0 versus 1-2 0.00 (0.00 , 0.01) 0.01 (0.00 , 0.04) 0.354

kep (min−1) ypT 0-2 versus 3-4 3.57 (2.94 , 8.23) 3.48 (1.65 , 6.89) 0.573
ypN 0 versus 1-2 3.76 (2.94 , 8.23) 2.79 (1.65 , 6.89) 0.069
TRG 0 versus TRG 1-3 2.96 (2.94 , 3.79) 3.56 (1.65 , 8.23) 0.654
∆T 0-2 versus 3-4 3.56 (1.65 , 8.23) 2.96 (2.94 , 3.79) 0.654
∆N 0 versus 1-2 2.39 (1.65 , 3.20) 3.83 (2.94 , 8.23) 0.003

Table 4.9: Results of the Mann-Whitney U test for different endpoints on the post-CRT median
Brix model parameters. Emphasised in bold, p-values < 0.05 were considered statistically sig-
nificant. The groups are presented with median values and ranges of the median parameters for
the different patients.

∆N 0 ∆N 1-2

2

3

4

5

6

7

8

k
ep

(m
in

−1
)

Figure 4.9: Box plots showing the post-CRT Brix model medians of kep for the groups of patients
with ∆N 1-2 (good treatment response) and ∆N 0 (poor treatment response). The central mark,
bottom and top of the boxes respectively indicate the median, 25th and 75th percentile, and the
whiskers indicate the most extreme values not considered outliers. In general kep was higher for
the patients with good treatment response than for the poor responders.
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4.3.2 Change in Median Parameters from CRT

The results for the Mann-Whitney U test on the change in median parameter of the TK model

with a population-based AIF, along with medians and ranges of parameter changes in the dif-

ferent endpoints, are shown in table 4.10. ∆ve significantly differentiated patients with good

treatment response (TRG 0 and ∆T 3-4) and patients with poor treatment response (TRG 1-3

and ∆T 0-2). Illustrated in the box plots in figure 4.10, there was a significant decrease in ve for

poor responders.

Parameter Endpoint Median (range) p-value
Group 1 Group 2

∆K tr ans ypT 0-2 versus 3-4 0.35 (-1.21 , 2.05) 0.24 (0.00 , 1.29) 0.762
ypN 0 versus 1-2 -0.23 (-2.05 , 1.21) -0.37 (-0.89 , -0.01) 1.000
TRG 0 versus TRG 1-3 -0.11 (-2.05 , 1.21) -0.32 (-1.29, 0.00) 0.738
∆T 0-2 versus 3-4 -0.32 (-1.29 , 0.00) -0.11 (-2.05 , 1.21) 0.738
∆N 0 versus 1-2 -0.25 (-0.49 , -0.01) -0.35 (-2.05 , 0.00) 0.524

∆ve (%) ypT 0-2 versus 3-4 -22.17 (-50.37 , 3.64) -23.79 (-62.96 , 0.00) 0.633
ypN 0 versus 1-2 -20.27 (-62.96 , 3.64) -28.89 ( - 58.54 , -1.79) 0.536
TRG 0 versus TRG 1-3 2.87 (-15.46 , 3.64) -28.89 (-62.96 , 0.00) 0.039
∆T 0-2 versus 3-4 -28.89 (-62.96 , 0.00) 2.87 (-15.46 , 3.64) 0.039
∆N 0 versus 1-2 -12.99 (-53.72 , -1.79) -28.10 (-58.54 , 3.64) 1.000

∆vp (%) ypT 0-2 versus 3-4 -0.18 (-3.81 , 3.08) -0.22 (-8.69 , 0.00) 0.897
ypN 0 versus 1-2 0.00 (-2.43 , 3.08) -0.44 (8.69 , 0.00) 0.246
TRG 0 versus TRG 1-3 -2.41 (-2.43 , 3.08) -0.01 (-8.69 , 0.88) 0.912
∆T 0-2 versus 3-4 -0.01 (-8.69 , 0.88) -2.41 (-2.43 , 3.08) 0.912
∆N 0 versus 1-2 -0.44 (-8.69 , 0.00) -0.01 (-7.29 , 0.88) 0.622

∆kep (min−1) ypT 0-2 versus 3-4 0.18 (-13.90 , 1.50) -0.30 (-0.98 , 7.48 ) 0.515
ypN 0 versus 1-2 0.33 (-13.90 , 1.50) 0.23 (-1.04 , 7.48) 0.724
TRG 0 versus TRG 1-3 1.30 (-13.90 , 1.50) 0.23 (-1.04 , 7.48) 0.654
∆T 0-2 versus 3-4 0.23 (-1.04 , 7.48) 1.30 (-13.90 , 1.50) 0.654
∆N 0 versus 1-2 -0.44 (-1.04 , 7.48) 0.30 (-13.90 , 0.95) 0.622

Table 4.10: Results of the Mann-Whitney U test for different endpoints on the difference be-
tween pretreatment and post-CRT median parameters for the TK model with the population-
based AIF. Emphasised in bold, p-values < 0.05 were considered statistically significant. The
groups are presented with median values and ranges of the median parameter changes for the
different patients.
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Figure 4.10: Box plots showing the median values of∆ve from the TK model with the population
based AIF, for patients with TRG 0 and ∆ T 3-4 (good treatment response) and TRG 1-3 and ∆ T
0-2 (poor treatment response). The central mark, bottom and top of the boxes respectively in-
dicate the median, 25th and 75th percentile, and the whiskers indicate the most extreme values
not considered outliers. In general there was a bigger reduction in ve for the poor responders.

The results for the Mann-Whitney U test on the change in median parameter of the TK model

with individual AIFs, along with the medians and ranges of parameter changes in the different

endpoints, are shown in table 4.11. In figure 4.11 box plots present the distribution of param-

eter change in the different response groups. For ve a net increase occurred for patients with

good treatment response (TRG 0 and∆T 3-4) and a net decrease occurred for patients with poor

treatment response (TRG 1-3 and ∆T 0-2).

The results for the Mann-Whitney U tests on the change in median parameters of the Brix

model, along with the medians and ranges of the parameter changes, are shown in table 4.12.

In figure 4.12, box plots illustrate the variations in ∆kep for the patients with good treatment

response (ypN 0) and poor treatment response (ypN 1-2), and show that there was a larger de-

crease in kep for the poor responders than for the good responders.
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Parameter Endpoint Median (range) p-value
Group 1 Group 2

∆K tr ans ypT 0-2 versus 3-4 -0.27 (-1.48 , 1.19) -0.20 (-1.26 , 0.27) 1.000
ypN 0 versus 1-2 -0.32 (-1.48 , 1.19) -0.16 (-0.36 , 0.30) 0.246
TRG 0 versus TRG 1-3 0.80 (-1.48 , 1.19) -0.25 (-1.26 , 0.30) 0.426
∆T 0-2 versus 3-4 -0.25 (-1.26 , 0.30) 0.80 (-1.48 , 1.19) 0.426
∆N 0 versus 1-2 -0.16 (-0.25 , 0.06) -0.58 (-1.48 , 0.30) 0.065

∆ve (%) ypT 0-2 versus 3-4 5.39 (-51.44 , 25.12) -5.83 (-48.12 , 27.11) 0.762
ypN 0 versus 1-2 -33.79 (-51.44 , 25.12) 1.32 (-29.99 , 27.11) 0.285
TRG 0 versus TRG 1-3 22.82 (22.71 , 25.12) -12.99 (-51.44 , 27.11) 0.039
∆T 0-2 versus 3-4 -12.99 (-51.44 , 27.11) 22.82 (22.71 , 25.12) 0.039
∆N 0 versus 1-2 1.32 (-12.99 , 27.11) -34.67 (-51.44 , 24.02) 0.284

∆vp (%) ypT 0-2 versus 3-4 0.00 (-4.40 , 2.54) -0.22 (-2.95 , 8.35) 0.633
ypN 0 versus 1-2 0.00 (-4.40 , 6.24) 0.00 (-2.69 , 8.35) 0.479
TRG 0 versus TRG 1-3 0.00 (-2.55 , 2.54) 0.00 (-4.40 , 8.35) 0.654
∆T 0-2 versus 3-4 0.00 (-4.40 , 8.35) 0.00 (-2.55 , 2.54) 0.654
∆N 0 versus 1-2 1.82 (-2.05 , 8.35) 0.00 (-4.40 , 6.24) 0.354

∆kep (min−1) ypT 0-2 versus 3-4 0.36 (-14.11 , 2.53) -0.06 (- 2.77 , 2.17) 0.829
ypN 0 versus 1-2 0.94 (-14.11 , 2.53) -0.52 (-1.98 , 0.49) 0.126
TRG 0 versus TRG 1-3 0.94 (-14.11 , 1.75) -0.14 (-2.77 , 2.53) 0.912
∆T 0-2 versus 3-4 -0.14 (-2.77 , 2.53) 0.94 (-14.11 , 1.75) 0.912
∆N 0 versus 1-2 -0.79 (-1.98 , -0.14) 0.26 (-14.11 , 2.53) 0.222

Table 4.11: Results of the Mann-Whitney U test for different endpoints on the difference be-
tween pretreatment and post-CRT median parameters for the TK model with individual AIFs.
Emphasised in bold, p-values < 0.05 were considered statistically significant. The groups are
presented with median values and ranges of the median parameter changes for the different
patients.
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Figure 4.11: Box plots showing the individual AIF-based TK model median values of ∆ve for
patients with good treatment response (TRG 0 and∆T 3-4) and poor treatment response (TRG 1-
3 and ∆T 0-2). The central mark, bottom and top of the boxes respectively indicate the median,
25th and 75th percentile, and the whiskers indicate the most extreme values not considered
outliers. Outliers are plotted individually using the ’+’ symbol. ve tended to increase for good
responders and decrease for poor responders.

Parameter Endpoint Median (range) p-value
Group 1 Group 2

∆ABr i x ypT 0-2 versus 3-4 0.23 (-1.63 , 1.22) 0.19 (-0.80 , 0.71) 1.000
ypN 0 versus 1-2 0.12 (-1.63 , 1.22) 0.30 (-0.80 , 0.69) 0.860
TRG 0 versus TRG 1-3 -0.13 (-1.63 , 1.22) 0.30 (-0.80 , 0.71) 0.654
∆T 0-2 versus 3-4 0.30 (-0.80 , 0.71) -0.13 (-1.63 , 1.22) 0.654
∆N 0 versus 1-2 0.08 (-0.80 , 0.33) 0.45 (-1.63 , 0.69) 0.127

∆kel (min−1) ypT 0-2 versus 3-4 -0.03 (-1.57 , -0.01) -0.01 (-0.03 , 0.00) 0.083
ypN 0 versus 1-2 -0.01 (-1.57 , 0.00) -0.01 (-0.05 , 0.00) 0.860
TRG 0 versus TRG 1-3 -0.02 (-1.57 , -0.01 ) -0.01 (-0.05 , 0.00) 0.301
∆T 0-2 versus 3-4 -0.01 (-0.05 , 0.00) -0.02 (-1.57 , -0.01) 0.301
∆N 0 versus 1-2 -0.01 (-0.05 , 0.00) -0.02 (-1.57 , 0.00) 0.833

∆kep (min−1) ypT 0-2 versus 3-4 -1.22 (-7.71 , 1.13) -1.20 (-4.52 , 2.23) 0.965
ypN 0 versus 1-2 -0.17 (-3.65 , 2.23) -3.36 (-7.71 , -0.62) 0.006
TRG 0 versus TRG 1-3 -1.10 (-1.35 , 1.13) -1.78 (-7.71 , 2.23) 0.426
∆T 0-2 versus 3-4 -1.78 (-7.71 , 2.23) -1.10 (-1.35 , 1.13) 0.426
∆N 0 versus 1-2 -3.36 (-7.71 , -0.62) -0.32 (-4.00 , 2.23) 0.065

Table 4.12: Results of the Mann-Whitney U test for different endpoints on the change in the
median Brix model parameters from the image data acquired before and after CRT. Emphasised
in bold, p-values < 0.05 were considered statistically significant. The groups are presented with
median values and ranges of the median parameter changes for the different patients.
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Figure 4.12: Box plots showing the median values of ∆kep from the Brix model for the patients
with ypN 0 (good treatment response) and ypN 1-2 (poor treatment response). The central mark,
bottom and top of the boxes respectively indicate the median, 25th and 75th percentile, and the
whiskers indicate the most extreme values not considered outliers. In general there was a bigger
reduction in kep for the patients with poor treatment response.
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Discussion

5.1 Sources of Error

Milder CRT regimes were given to some of the patients, who were either too old or too sick to

handle the standard treatment regime. This may have interfered with the results, if the patients

responded differently to the received treatment than they would have to the standard regime.

This was however only the case for a few patients, and the effect on the overall results when

using groups to analyse them was therefore thought to be small.

5.1.1 AIF Estimation

The ROIs used for AIF measurements were generally drawn as large as possible. This may have

resulted in some error, because the edge pixels close to the artery wall may partially or solely rep-

resent extravascular tissue, which will decrease the height of the AIF peak [29]. In some cases

the cross sections were small or unclear, increasing the likelihood of this error. Attempting to

draw the ROIs closer to the centre of the arteries could counter these effects. Doing this could

lead to a higher mean contrast agent concentration, and thereby, as explained in section 2.4.1,

increase the amount of potential errors in equation 2.14 if the T1-relaxation time in the centre

59
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pixels is short enough that the assumption T R << T1 is no longer valid. Another option could

be to have stricter requirements for determining which cross sections are eligible for AIF esti-

mation. Having a requirement for goodness of fit for the fitted AIF could also have increased the

accuracy, as in this study, all AIFs with visible peaks where the fitted curves did not obviously

deviate from the data, were included.

5.1.2 Model Parameter Estimation

To avoid errors in the median parameters caused by poor curve fits, all parameters above a

threshold determined for each parameter were removed prior to the analysis. This loss of pixels

could be a potential source of error in the study. Another option could have been to restrict the

limits for the different parameter values to the desired level during the curve fitting process as

opposed to after. This would provide a larger amount of parameters from which to estimate the

parameter medians for the different patients, but could potentially create additional uncertainty

because the poorly estimated parameters may then become more difficult to detect.

5.2 Results

5.2.1 AIF Estimation

In figure 5.1 a series of AIFs are shown to illustrate how the measured data and fitted individual

AIFs varied for different patients. Examples of measured AIFs where the second peak was and

was not easily distinguishable can be seen in figures 5.1a and 5.1c. In figure 5.1a the fitted func-

tion is close to the data points, but the second peak seems to have lifted the estimated plateau

slightly higher than the actual data points. In this case, it could have been advantageous to ac-

count for the second peak during the AIF estimation. In figure 5.1c the second peak is visible,

but has been slightly mixed with the rest of the data points. This results in a more accurate fit

to the plateau and the data points in general, supporting the findings of McGrath et al. which
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(a) (b)

(c) (d)

Figure 5.1: Examples of different variations for the measured and estimated AIFs that were in-
cluded in the calculation of the population-based TK model and in the individual AIF-based TK
model analysis. a) An AIF with a tall and sharp peak. The second peak is clearly visible from the
measured data. (b) An AIF with a low peak height. The measured second peak can be seen, but
is very small. (c) An AIF where the initial peak is high, but the second peak is not easily visible.
Here the function has fitted to the outer data points of the second peak, so that the initial peak
appears wider than it actually is. (d) A measured AIF where the initial and plateau contrast agent
concentrations were below zero due to a low SNR, causing the fitted plateau to stabilise at zero.
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indicated that for data with a certain amount of noise, using a bi-exponential function for the

AIF was ideal [29]. However, the function seems to have fitted to the outer points of the second

peak so that the estimated initial peak appears wider than that of figure 5.1a.

As seen in figure 5.1, there were significant variations in the height of both the peak and the

plateau. This can among other things be caused by differences in blood flow velocity, which

when high will result in a tall peak in the AIF [29] [30]. The differences were likely also caused

by noise in the images in some cases, as abnormally low peak and even negative plateau heights

occurred for some of the patients (figure 5.1d). As explained in section 2.4.1, a low SNR can lead

to reduced and even negative values for the contrast agent concentration.

McGrath et al. explored the differences between different AIF models, and found that using a

bi-exponential model, for example equation 2.17, for the TK model gave close fits to K tr ans and

ve , but poorer fits for vp , than models that account for the second peak (for example the model

proposed by Parker et al. in [49]) [29]. They additionally found that the bi-exponential approach

would give the most accurate fits for data with low SNR. Thus the choice of a bi-exponential

model will contribute to closer fits for the noisy images, but the general increased accuracy may

come at the cost of the validity of vp .

The estimated individual AIF parameters deviated a lot from the mean parameters used for

the population-based AIF. That the most significant outliers were not removed, could therefore

make the population-based AIF prone to error. In 1997 Tofts et al. found a1 = 3.99 kgl−1, a2 =

4.78 kgl−1, m1 = 0.144 min−1 and m2 = 0.011 min−1 [34], significantly lower than what was found

in this study. This inconsistency could potentially be caused by the high deviations for the indi-

vidual AIFs. It is likely that either removing the more extreme outliers, or using the median AIF

parameters for the population-based AIF, could have resulted in more accurate estimations.

5.2.2 Median Parameters of Pretreatment Images

From figure 4.2 it can be seen that the patients with poor treatment response generally had a

higher ve than the patients with good treatment response. Physiologically, this may be explained
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by a decreased ability of cell-cell adhesion in the poor responders, which will increase the frac-

tion of EES, and has been shown to be an important factor for both local tumour growth and

distant metastases [13] [50]. Other possible physiological indications are high vascularities for

good responders, if blood vessels occupy the tissue space in place of the EES, or possibly fibrous

EES which the contrast agent is unable to leak into [32]. A high vascularity in a tumour is known

to be associated with a lack of, or only small amounts of hypoxic tissue, which is associated with

a good treatment response. Good oxygenation could thus be a contributor to good treatment

response for these patients. It should be noted that there was no statistical significance for vp

that could indicate contributions from high vascularity, but considering the possible errors in

estimation of vp discussed in section 5.2.1, it should not be ruled out.

No associations with treatment response were found when using the population-based AIF in

the TK model, indicating that the individual-AIF based TK model more accurately estimates

model parameters. This suggests that the measured AIF-variations are caused by individual

variations between the patients to a higher extent than from poor measurements or fits, noise

and image artefacts. It should however be noted, that as discussed in section 5.2.1, the calcu-

lated population-based AIF deviated strongly from the previously estimated AIF. This is pos-

sibly why, contradicting previous studies, no associations were found between pretreatment

K tr ans and treatment response for the population-based AIF [26] [8] [10]. Large errors in the

population-based AIF could contribute to the lack of statistical significance, and it is possible

that performing some of the changes suggested, could improve the results of the TK model for

the population-based AIF.

For the Brix model, figures 4.3a and 4.3b show that patients with good treatment response gener-

ally had a lower ABr i x and kep than patients with poor treatment response. This is in agreement

with the results of Lollert et al. [11], who found that for rectal cancer a low ABr i x was associated

with pN 0, and that patients with a low kep had better survival than patients with a high kep . It

should however be noted that these results were found for patients that did not receive CRT.

Halle et al. [37] contrarily found that a low ABr i x indicated a poor treatment response and an

upregulation of HIF-1α in cervix cancer. It is possible that the type of cancer examined is of
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importance for the physiological meaning of Brix model parameters. Another cause could be

differences in the settings of the MR experiment, as ABr i x in addition to tissue properties is

sensitive to MRI input parameters. Lollert et al. suggested that, as ABr i x is dependent on the

size of the EES, where an increase in ABr i x would indicate a bigger fraction of EES in the tissue,

the results could imply that a large EES fraction relates to a poor treatment response [11]. This

would be in agreement with the results for ve found in the TK model, and the physiological

reasoning behind them.

5.2.3 Heterogeneity

The percentile plots in figures 4.5 and 4.6 indicate that in general, the significant pretreatment

results are credible, because there was not a lot of instability in the parameters causing the p-

value to vary drastically. It can also be seen that for prediction of certain endpoints, the median

may not be the optimal choice, instead other percentiles could be more accurate.

Seen in table 4.5 and figure 4.4, the RPH of kep in the Brix model was significantly larger for the

patients with good treatment response (∆T 3-4) than for the patients with poor treatment re-

sponse (∆T 0-2). This indicates that for patients with good treatment response, a larger amount

of the estimated parameters gathered around a specific value of kep than for the patients with

poor treatment response. This can be explained physiologically by the biology of a tumour.

A high kep represents tumour angiogenesis and tissue permeability [38]. Aggressive tumours

have larger fractions of hypoxic tissue, and higher extents of accelerated angiogenesis, leading

to more leaky blood vessels [3]. It is likely that this will be well represented by kep , with a low kep

in hypoxic tissue, and a high kep in highly vascularised tissue, leading to a high heterogeneity for

kep in the tumour. On the other hand, less aggressive tumours will likely have a smaller fraction

of hypoxic tissue, leading to a more stable and higher kep .

In 2014, Torheim et al. found that heterogeneity for the Brix model parameters was larger in

patients with poor treatment response, and that kep was the most robust parameter for het-

erogeneity, coinciding with the findings in this study [38]. The results of Torheim et al. were
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acquired using grey level co-occurrence analysis, which checks for repetition of pixel grey-level

pairs, rather than histogram analysis, and thus better analyse spatial relations in the tumour.

Possibly, this method is more effective, which could explain why of the parameters for which

heterogeneity was tested in this study, the only statistically significant association was found for

kep .

5.2.4 Post-CRT Parameter Medians

The post-CRT parameter medians were generally more effective for separating good and poor

treatment responses than the pretreatment median parameters. A possible explanation for this

is that for tumours of good treatment response, there will be an increase in fibrotic tissue due to

tumour cell death, and a decrease in hypoxic tissue, which will affect the distribution of contrast

agent [28].

In both versions of the TK model, a significantly higher K tr ans was found for patients with good

treatment response than for patients with poor treatment response. This is in agreement with

several studies in pretreatment parameters [26] [8] [10]. For post-CRT parameters however, as-

sociations between K tr ans and treatment response are uncommon [10] [9].

Further, a high vp when using a population-based AIF in the TK model, and a high kep in the

individual AIF-based TK model and Brix model identified good responders, which could be con-

nected to the high K tr ans of good responders. As discussed in section 2.4.2, physiologically,

K tr ans reflects tissue permeability and vascular leakiness, kep reflects vascular leakiness and vp

reflects vascularity. Low permeability and vascularity in tumour tissue is linked to hypoxia, and

will thus, as described in section 2.1, lead to a poorer response to treatment. It is important to

consider figure 4.7, as it can be seen that in the poor response groups the median vp is equal to

zero for all except one of the patients. Possibly, some instability for the population-based AIF in

TK model cause problems with fitting vp for certain types of tissue.

Contrarily, the individual AIF-based TK model indicated that a high vp lead to a poor treatment

response (ypN 1-2). A possible explanation is that the low vp for the good treatment response
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group in this case is caused by high amounts of fibrotic or healthy tissue in the tumour volume

that the model struggled to fit. Figure 4.8 b) seems to support this, as in the good treatment

response group the majority of median values of vp seem to be equal to zero. It is possible that

the previously discussed weakness for vp when using a bi-exponential AIF model is the cause

of the problems, and that the problems occur for different types of tissue depending on which

type of AIF is used. This also appears to be a problem in other studies, as associations between

vp and treatment response are often not found [51] [52]. A low baseline vp in metastatic sites

was however found to predict progression free survival by Hahn et al. in renal cancer patients

[53], indicating that some reliability is obtainable for the parameter. The vp of a metastatic site

is however unlikely to be physiologically comparable to the parameters of the primary tumour

volumes examined in this study.

5.2.5 Difference in Pretreatment and Post-CRT Parameter Medians

For the TK model with individual AIFs in this study, an increase in ve for patients with good

treatment response was found, and a net decrease in ve was associated with a poor treatment

response in both versions of the TK model. Contrarily, Pickles et al. [54] found that ve increased

for patients with poor treatment response, and Tong et al. [10] found a significant decrease

for patients with good treatment response. The results were however in agreement with the

results of Chikui et al. on oral cancer, who found that an increase in ve was associated with a

good treatment response [55]. They concluded that an increase in EES volume due to tumour

cell death caused the increase in ve , which fits the results of this study. The different types of

cancer and choices of models possibly cause the different results. For example, the model used

by Pickles et al. was described as a modified version of the Brix model [54]. The results found

for kep in the Brix model are however not in agreement with their results either, as they found

a decrease in kep for good responders, while this study found the decrease in kep to be largest

for the poor responders. A possible physiological explanation may be an increase in fraction of

hypoxic tissue, which is known to be of low vascularity, for the poor responders.

The increase in ve for patients with good treatment response in this study could thus possibly
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be explained by an increased amount of permeable fibrotic tissue caused by cell death. That a

larger decrease in ve was found for the patients with poor treatment response could similarly

indicate that the cellular density increased due to tumour growth.

5.3 Potential of Parametric Modelling

Based on the physiological meanings of the model parameters, tumours that are highly vascu-

lar (high vp ) and permeable (high kep and K tr ans) seem to respond well to treatment, while

tumours that are hypoxic, expressed through low vascularities (low vp ) and low permeabilities

(low kep and K tr ans) seem to respond poorly to treatment. Additionally, tumours of larger leak-

age spaces (high ABr i x and ve ) seem to respond poorly to treatment.

Generally, the individual AIF-based TK model seemed to most frequently differentiate good and

poor treatment responses. For the pretreatment medians, both the individual AIF-based TK

model and the Brix model separated good and poor treatment responses, whereas using the

population-based AIF in the TK model gave no significant results. The lowest p-value was found

for ve in ∆T 0-2 versus 3-4 (p = 0.009), indicating an effective prediction of downstaging of T-

stage. The pretreatment results thus indicate that in the TK model, individual AIFs should be

used. This is in accordance with the findings of McGrath et al [29]. The Brix model gave the

only statistically significant results for heterogeneity. Further testing on heterogeneity should

be performed to assess if this could indicate that this model has a better potential in histogram

analysis. Based on the pretreatment p-values found, the TK model seems to most effectively

predict tumour regression, while the Brix model seems to most effectively identify the patients

with poor treatment response.

When considering results from the post-CRT parameters and the differences between pretreat-

ment and post-CRT parameters, the individual AIF and population-based AIF seem more simi-

lar in promise. There were still more statistically significant values when using individual AIFs,

but the differences were not large. K tr ans seems to be a robust parameter, as it was statistically

significant in the same endpoints for both versions of the TK model for the post-CRT parame-
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ters. The same can be said for ve for the difference in median parameters before and after CRT.

kep was a particularly good assessor of nodal involvement, with significant associations both for

the post-CRT kep and ∆kep in the Brix model, and for the post-CRT kep in the individual AIF-

based TK model. The Brix model quantity wise provided fewer significant results, but also had

the lowest p-value, for kep in∆N 0 versus∆N 1-2 (p = 0.003). The post-CRT results thus indicate

that the TK model gives more accurate results for treatment response in terms of tumour regres-

sion, and based on the number of significant results, that individual AIFs worked better than a

population-based AIF in the TK model. The Brix model on the other hand seems to be the most

accurate with regard to N-stage.

Finally, no associations were found between tumour aggressiveness and model parameters for

the patients that did not receive CRT. This indicates that while associations were found for the

ypT-stage for patients that received CRT, these associations are related to the downstaging of

the tumour in response to treatment, rather than to the T-stage of the tumour alone. This is fur-

ther confirmed in the TK model by the fact that the associations with TRG and ∆T (p = 0.022

and p = 0.009) are stronger than the association with ypT (p = 0.045). This effect could be

explained by the fact that while there is some association between tumour stage and aggres-

siveness, aggressiveness can also vary independently on the size of the tumour [3]. Thus, it

strengthens the basis for using the TK model for prognostic endeavours, as it is able to predict

treatment response in cases where TN-staging alone would provide less accurate results. The

Brix model implies the opposite, with a stronger association with ypT-stage (p = 0.018) than

with ∆T (p = 0.044), indicating a stronger influence from the initial size of the tumour.

For all of the results, it should be taken into consideration that, as previously discussed in section

5.2.1, the unusually high population-based AIF parameter values may be erroneous, and that

thus, improvements in the population-based AIF estimation could lead to improved results for

application of this AIF to the TK model. A second important consideration is that the settings

for the experiment, the type of model used, and the type of cancer, all seem to have some effect

on the estimated parameters and associations.
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5.3.1 Clinical Potential

Parametric modelling in general improves the information acquired pretreatment and prior

to surgery about the response to CRT. In comparison, the traditional morphological imaging

mainly provides information on the size and TN-staging of the tumour. The advantage of the TK

and Brix model is that they are quantitative: rather than only offering a visual evaluation, they

provide measurable quantities of tumour characteristics important for treatment response and

survival, that can be compared for different patients. The TK model predicts TRG 0 accurately,

and for these patients, surgery could perhaps be avoided, providing a better quality of life for

the patients. Similarly, the Brix model’s ability to identify patients which will have ypN 0 prior

to surgery might contribute to them receiving a less advanced surgery where less of the nearby

lymph nodes are removed, thus providing a better quality of life. For patients where the Brix

model predicts a ypT-stage of 3 or 4, it could potentially be useful to apply a more aggressive

CRT regime prior to surgery. This might increase survival for this group of patients.

5.4 Further Work

It is likely that a more accurate population-based AIF will lead to more accurate curve fits and

parameter estimations for the TK model. Adjustments should therefore be done to the population-

based AIF so that it is less affected by outliers, as discussed in section 5.2.1. The TK model pa-

rameter estimations for the population-based AIF should then be performed again using the

new population-based AIF.

Receiver operating characteristic analysis should be performed in order to determine the sen-

sitivity and specificity of the parameters, and an optimal threshold for separating the good and

poor responders. An analysis on progression free survival should also be performed, in order to

uncover the long-term prognostic potential of the image parameters.

For the heterogeneity analysis, it would be interesting to test for all parameters and endpoints,

rather than limiting this analysis to the cases where significant associations were found for the
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pretreatment medians. Additionally it would be useful to perform a grey-level co-occurrence

analysis, as this type of analysis gives information about spatial variations of the parameter val-

ues in the tumour, in addition to the general parameter variations investigated in this study [38].

Finally, while parametric modelling offers parameters that are physiologically significant, semi-

quantitative analysis is simpler and less time consuming to perform. The models investigated

in this study should therefore be compared to the potential of a semi-quantitative analysis, de-

scribed in section 2.4.2, of the DCE-MRI data.
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Conclusion

Two compartmental models, the TK model and the Brix model, were investigated for their po-

tential to predict aggressiveness and CRT response in rectal cancer. The significance of the AIF

was investigated by applying both a population-based AIF and individual AIFs to the TK model,

and the results were compared to those of the Brix model, which does not use an AIF.

Parametric modelling of DCE-MRI was found to effectively predict CRT response, but did not

assess aggressiveness in patients that did not receive CRT. Using individual AIFs in the TK model

was found to be a stronger predictor of treatment response than a population-based AIF, and

they thus seem to have a lot of potential. The population-based AIF should however not be

dismissed, as the calculated mean parameters in this study were likely affected by outliers. More

accurate results may thus be achieved if this potential error is corrected. The significance of

using a suitable AIF in the TK model has thus been shown to be large, and it could therefore be

considered an advantage of the Brix model that it does not depend on an AIF.

As the Brix model and the TK model both provide significant results, the choice of model seems

to be important with regard to what is to be examined, rather than to achieve accurate results.

The Brix model gave somewhat fewer significant results than the TK model, but predicted lymph

node involvement and poor treatment response more accurately than the TK model. The TK

model on the other hand predicted complete histomorphological tumour response (TRG 0)

71



72 CHAPTER 6. CONCLUSION

more accurately. Both models thus show potential for clinical use, where the TK model might

distinguish patients who are not in need of surgery, while the Brix model might identify patients

in need of less aggressive surgeries, based on the predicted nodal involvement, and patients in

need of more aggressive CRT regimes, based on the predicted ypT-stage.

Now that the images of the Oxytarget study have been analysed, it is necessary to examine

whether the results are reproducible. Studies should therefore be performed on different data,

in order to determine if the results are clinically relevant.



Bibliography

[1] G. F. Weber, R. Rosenberg, J. E. Murphy, C. M. z. Büschenfelde, and H. Friess, “Multimodal

treatment strategies for locally advanced rectal cancer,” Expert Review of Anticancer Ther-

apy, vol. 12, no. 4, pp. 481–494, 2012.

[2] Cancer Registry of Norway, “Cancer in Norway 2016 - Cancer incidence, mortality, survival

and prevalence in Norway,” Oslo: Cancer Registry of Norway, 2012.

[3] S. Meltzer, “Circulating markers of immunogenicity and metastasis in combined-modality

treatment of rectal cancer,” 2017. ISBN: 978-82-8377-144-2.

[4] E. Grøvik, “Multimodal dynamic MRI for structural and functional assessment of cancer,”

2017. ISBN: 1501-7710.

[5] F. Khalifa, A. Soliman, A. El-Baz, M. Abou El-Ghar, T. El-Diasty, G. Gimel’farb, R. Ouseph,

and A. C. Dwyer, “Models and methods for analyzing DCE-MRI: A review,” Medical Physics,

vol. 41, no. 12, 2014.

[6] P. S. Tofts and A. G. Kermode, “Measurement of the blood-brain barrier permeability and

leakage space using dynamic MR imaging. 1. fundamental concepts,” Magnetic Resonance

in Medicine, vol. 17, no. 2, pp. 357–367, 1991.

[7] G. Brix, W. Semmler, R. Port, L. R. Schad, G. Layer, and W. J. Lorenz, “Pharmacokinetic pa-

rameters in CNS Gd-DTPA enhanced MR imaging.,” Journal of Computer Assisted Tomog-

raphy, vol. 15, no. 4, pp. 621–628, 1991.

73



74 BIBLIOGRAPHY

[8] M. Gollub, K. Cao, D. Gultekin, D. Kuk, M. Gonen, M. Sohn, L. Schwartz, M. Weiser, L. Tem-

ple, G. Nash, et al., “Prognostic aspects of DCE-MRI in recurrent rectal cancer,” European

Radiology, vol. 23, no. 12, pp. 3336–3344, 2013.

[9] M. Intven, O. Reerink, and M. E. Philippens, “Dynamic contrast enhanced MR imaging for

rectal cancer response assessment after neo-adjuvant chemoradiation,” Journal of Mag-

netic Resonance Imaging, vol. 41, no. 6, pp. 1646–1653, 2015.

[10] T. Tong, Y. Sun, M. J. Gollub, W. Peng, S. Cai, Z. Zhang, and Y. Gu, “Dynamic

contrast-enhanced MRI: Use in predicting pathological complete response to neoadjuvant

chemoradiation in locally advanced rectal cancer,” Journal of Magnetic Resonance Imaging,

vol. 42, no. 3, pp. 673–680, 2015.

[11] A. Lollert, T. Junginger, C. C. Schimanski, S. Biesterfeld, I. Gockel, C. Düber, and K. Ober-

holzer, “Rectal cancer: Dynamic contrast-enhanced mri correlates with lymph node status

and epidermal growth factor receptor expression,” Journal of Magnetic Resonance Imaging,

vol. 39, no. 6, pp. 1436–1442, 2014.

[12] T. S. Evensen, “Analysis of DCE-MRI for chemoradiotherapy response prediction in rectal

cancer,” Department of Physics, vol. 254, no. 5028, pp. 43–50, 2017.

[13] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144,

no. 5, pp. 646–674, 2011.

[14] E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist. Lippincott Williams & Wilkins,

7th ed., 2012.

[15] H. Kobayashi, R. Watanabe, and P. L. Choyke, “Improving conventional enhanced perme-

ability and retention (EPR) effects; what is the appropriate target?,” Theranostics, vol. 4,

no. 1, p. 81, 2014.

[16] H. Harada, “How can we overcome tumor hypoxia in radiation therapy?,” Journal of Radi-

ation Research, vol. 52, no. 5, pp. 545–556, 2011.



BIBLIOGRAPHY 75

[17] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor vascular permeability and

the EPR effect in macromolecular therapeutics: a review,” Journal of Controlled Release,

vol. 65, no. 1, pp. 271–284, 2000.

[18] G. E. Theodoropoulos, A. C. Lazaris, V. E. Theodoropoulos, K. Papatheodosiou, M. Gazouli,

J. Bramis, E. Patsouris, and D. Panoussopoulos, “Hypoxia, angiogenesis and apoptosis

markers in locally advanced rectal cancer,” International Journal of Colorectal Disease,

vol. 21, no. 3, pp. 248–257, 2006.

[19] Y. Toiyama, Y. Inoue, S. Saigusa, Y. Okugawa, T. Yokoe, K. Tanaka, C. Miki, and M. Kusunoki,

“Gene expression profiles of epidermal growth factor receptor, vascular endothelial growth

factor and hypoxia-inducible factor-1 with special reference to local responsiveness to

neoadjuvant chemoradiotherapy and disease recurrence after rectal cancer surgery,” Clin-

ical Oncology, vol. 22, no. 4, pp. 272–280, 2010.

[20] X.-g. Lu, C.-g. Xing, Y.-z. Feng, J. Chen, and C. Deng, “Clinical significance of immuno-

histochemical expression of hypoxia-inducible factor–1α as a prognostic marker in rectal

adenocarcinoma,” Clinical Colorectal Cancer, vol. 5, no. 5, pp. 350–353, 2006.

[21] S. Edge, D. Byrd, C. Compton, A. Fritz, F. Greene, and A. Trotti, “American joint committee

on cancer staging manual. 7,” 2009.

[22] H. Bouzourene, F. T. Bosman, W. Seelentag, M. Matter, and P. Coucke, “Importance of tumor

regression assessment in predicting the outcome in patients with locally advanced rectal

carcinoma who are treated with preoperative radiotherapy,” Cancer, vol. 94, no. 4, pp. 1121–

1130, 2002.

[23] L. H. Tang, J. Berlin, P. Branton, L. J. Burgart, D. K. Carter, C. C. Compton,

P. Fitzgibbons, W. L. Frankel, J. Jessup, S. Kakar, B. Minsky, R. Nakhleh, and

K. Washington, “Protocol for the examination of specimens from patients with car-

cinoma of the stomach..” http://www.cap.org/ShowProperty?nodePath=/UCMCon/

Contribution%20Folders/WebContent/pdf/cp-stomach14-protocol.pdf., 2014. Ac-

cessed: 2018-05-16.

http://www.cap.org/ShowProperty?nodePath=/UCMCon/Contribution%20Folders/WebContent/pdf/cp-stomach14-protocol.pdf
http://www.cap.org/ShowProperty?nodePath=/UCMCon/Contribution%20Folders/WebContent/pdf/cp-stomach14-protocol.pdf


76 BIBLIOGRAPHY

[24] R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic

Resonance Imaging: Physical Principles and Sequence Design. Wiley-Blackwell, 2nd ed.,

2014.

[25] C. Westbrook, C. K. Roth, and J. Talbot, MRI in Practice. Wiley-Blackwell, 4th ed., 2011.

[26] E. Grøvik, K. R. Redalen, T. H. Storås, A. Negård, S. H. Holmedal, A. H. Ree, S. Meltzer,

A. Bjørnerud, and K.-I. Gjesdal, “Dynamic multi-echo DCE-and DSC-MRI in rectal can-

cer: Low primary tumor Ktrans and δr2* peak are significantly associated with lymph node

metastasis,” Journal of Magnetic Resonance Imaging, vol. 46, no. 1, pp. 194–206, 2017.

[27] M. K. Stehling, R. Turner, and P. Mansfield, “Echo-planar imaging: magnetic resonance

imaging in a fraction of a second,” Science, vol. 254, no. 5028, pp. 43–50, 1991.

[28] R. G. Beets-Tan and G. L. Beets, “MRI for assessing and predicting response to neoadjuvant

treatment in rectal cancer,” Nature Reviews Gastroenterology & Hepatology, vol. 11, no. 8,

pp. 480–488, 2014.

[29] D. M. McGrath, D. P. Bradley, J. L. Tessier, T. Lacey, C. J. Taylor, and G. J. Parker, “Compari-

son of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor

bearing rats,” Magnetic Resonance in Medicine, vol. 61, no. 5, pp. 1173–1184, 2009.

[30] M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-

tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors

with dynamic Gd-DTPA enhanced MRI,” Magnetic Resonance in Medicine, vol. 32, no. 6,

pp. 714–724, 1994.

[31] S. I. Fox, Human Physiology. McGraw-Hill, 13th ed., 2013.

[32] P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. V. Knopp, H. B. Larsson, T.-

Y. Lee, N. A. Mayr, G. J. Parker, et al., “Estimating kinetic parameters from dynamic contrast-

enhanced T 1-weighted MRI of a diffusable tracer: standardized quantities and symbols,”

Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223–232, 1999.

[33] I. Q. Løkken, “Classification of breast cancer based on DCE MRI,” Master’s thesis, NTNU,

2017.



BIBLIOGRAPHY 77

[34] P. S. Tofts, “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,” Journal of Mag-

netic Resonance Imaging, vol. 7, no. 1, pp. 91–101, 1997.

[35] U. Hoffmann, G. Brix, M. V. Knopp, T. Heβ, and W. J. Lorenz, “Pharmacokinetic mapping

of the breast: a new method for dynamic MR mammography,” Magnetic Resonance in

Medicine, vol. 33, no. 4, pp. 506–514, 1995.

[36] A. Thukral, D. M. Thomasson, C. K. Chow, R. Eulate, S. B. Wedam, S. N. Gupta, B. J. Wise,

S. M. Steinberg, D. J. Liewehr, P. L. Choyke, et al., “Inflammatory breast cancer: dynamic

contrast-enhanced MR in patients receiving bevacizumab—initial experience,” Radiology,

vol. 244, no. 3, pp. 727–735, 2007.

[37] C. Halle, E. Andersen, M. Lando, E.-K. Aarnes, G. Hasvold, M. Holden, R. G. Syljuåsen,

K. Sundfør, G. B. Kristensen, R. Holm, et al., “Hypoxia-induced gene expression in

chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI,” Cancer

Research, vol. 72, no. 20, pp. 5285–5295, 2012.

[38] T. Torheim, E. Malinen, K. Kvaal, H. Lyng, U. G. Indahl, E. K. Andersen, and C. M. Fut-

saether, “Classification of dynamic contrast enhanced MR images of cervical cancers us-

ing texture analysis and support vector machines,” IEEE Transactions on Medical Imaging,

vol. 33, no. 8, pp. 1648–1656, 2014.

[39] “The Oxytarget Study.” http://www.acredit.no/the-oxytarget-study/. Accessed:

2018-04-05.

[40] “Norsk legemiddelhåndbok.” http://legemiddelhandboka.no/. Accessed: 2018-06-05.

[41] “fit.” https://www.mathworks.com/help/curvefit/fit.html. Accessed: 2018-04-06.

[42] E. Grøvik, A. Bjørnerud, T. H. Storås, and K.-I. Gjesdal, “Split dynamic MRI: Single bolus

high spatial–temporal resolution and multi contrast evaluation of breast lesions,” Journal

of Magnetic Resonance Imaging, vol. 39, no. 3, pp. 673–682, 2014.

[43] J. U. Harrer, G. J. Parker, H. A. Haroon, D. L. Buckley, K. Embelton, C. Roberts, D. Balériaux,

and A. Jackson, “Comparative study of methods for determining vascular permeability and

http://www.acredit.no/the-oxytarget-study/
http://legemiddelhandboka.no/
https://www.mathworks.com/help/curvefit/fit.html


78 BIBLIOGRAPHY

blood volume in human gliomas,” Journal of Magnetic Resonance Imaging, vol. 20, no. 5,

pp. 748–757, 2004.

[44] P. L. Choyke, A. J. Dwyer, and M. V. Knopp, “Functional tumor imaging with dynamic

contrast-enhanced magnetic resonance imaging,” Journal of Magnetic Resonance Imaging,

vol. 17, no. 5, pp. 509–520, 2003.

[45] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochas-

tically larger than the other,” The Annals of Mathematical Statistics, pp. 50–60, 1947.

[46] “std.” https://www.mathworks.com/help/matlab/ref/std.html. Accessed: 2018-06-

08.

[47] “kurtosis.” https://www.mathworks.com/help/stats/kurtosis.html. Accessed: 2018-

06-08.

[48] “skewness.” https://www.mathworks.com/help/stats/skewness.html. Accessed:

2018-06-08.

[49] G. J. Parker, C. Roberts, A. Macdonald, G. A. Buonaccorsi, S. Cheung, D. L. Buckley, A. Jack-

son, Y. Watson, K. Davies, and G. C. Jayson, “Experimentally-derived functional form

for a population-averaged high-temporal-resolution arterial input function for dynamic

contrast-enhanced MRI,” Magnetic Resonance in Medicine, vol. 56, no. 5, pp. 993–1000,

2006.

[50] M. Herzig, F. Savarese, M. Novatchkova, H. Semb, and G. Christofori, “Tumor progression

induced by the loss of E-cadherin independent of β-catenin/Tcf-mediated Wnt signaling,”

Oncogene, vol. 26, no. 16, p. 2290, 2007.

[51] A. Oto, C. Yang, A. Kayhan, M. Tretiakova, T. Antic, C. Schmid-Tannwald, S. Eggener, G. S.

Karczmar, and W. M. Stadler, “Diffusion-weighted and dynamic contrast-enhanced MRI of

prostate cancer: correlation of quantitative MR parameters with gleason score and tumor

angiogenesis,” American Journal of Roentgenology, vol. 197, no. 6, pp. 1382–1390, 2011.

https://www.mathworks.com/help/matlab/ref/std.html
https://www.mathworks.com/help/stats/kurtosis.html
https://www.mathworks.com/help/stats/skewness.html


BIBLIOGRAPHY 79

[52] M. Bergamino, L. Saitta, L. Barletta, L. Bonzano, G. L. Mancardi, L. Castellan, J. L. Ravetti,

and L. Roccatagliata, “Measurement of blood-brain barrier permeability with T 1-weighted

dynamic contrast-enhanced MRI in brain tumors: A comparative study with two different

algorithms,” ISRN Neuroscience, vol. 2013, 2013.

[53] O. M. Hahn, C. Yang, M. Medved, G. Karczmar, E. Kistner, T. Karrison, E. Manchen,

M. Mitchell, M. J. Ratain, and W. M. Stadler, “Dynamic contrast-enhanced magnetic res-

onance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal car-

cinoma,” Journal of Clinical Oncology, vol. 26, no. 28, p. 4572, 2008.

[54] M. D. Pickles, M. Lowry, D. J. Manton, P. Gibbs, and L. W. Turnbull, “Role of dynamic

contrast enhanced MRI in monitoring early response of locally advanced breast cancer to

neoadjuvant chemotherapy,” Breast Cancer Research and Treatment, vol. 91, no. 1, pp. 1–10,

2005.

[55] T. Chikui, E. Kitamoto, S. Kawano, T. Sugiura, M. Obara, A. W. Simonetti, M. Hatakenaka,

Y. Matsuo, S. Koga, M. Ohga, et al., “Pharmacokinetic analysis based on dynamic contrast-

enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer,” Jour-

nal of Magnetic Resonance Imaging, vol. 36, no. 3, pp. 589–597, 2012.

[56] “Tools for NIfTI and ANALYZE image.” https://www.mathworks.com/matlabcentral/

fileexchange/8797-tools-for-nifti-and-analyze-image. Accessed: 2017-12-11.

https://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image
https://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image


80 BIBLIOGRAPHY



Appendix A

Matlab Scripts

A.1 Image Sorting

The following script sorts the dicom-images into a four-dimensional matrix, so that they are in

the correct order according to slice location and time.

1 %This program sorts the dicom images into a 4D−matrix where the third

2 %dimension is slice and the fourth dimension is time.

3

4 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

5

6 pList = [24 27 28 29 31 32 41 43 44 45 46 47 48 49 50 51 52 55 56 57 58 61 64

65 67 72 73 74 75 77 78 79 80 83 85 87 88 89 90 92 94 96 98 103 105 106 108

110 112 115 116 118 119 120 121 122 124 125 126 127 130 131 132 133 134

138 143 144 146 147 149 150 151 152 153 154 156 157 160 162 164 165 166 169

170 171 172 174 175 176 181];

7

8 n = length(pList);

9

10 for i = 1:n

11 patient = pList(i);

12
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13 imList = dir([filePath ’Oxytarget_’ int2str(patient) ’ PRE\M0\Im*’]); %

Lists all the images that will be sorted

14 nIm = length(imList);

15

16 info = dicominfo([filePath ’Oxytarget_’ int2str(patient) ’ PRE\M0\’ imList

(1).name]);

17 x= info.Rows; %Extract info from one image to obtain the dimensions of the

images in the folder

18

19 aValue = zeros(nIm,1); %Initialise time vector

20 zValue = ones(nIm,1); %Initialise slice vector

21

22 im = zeros(x,x,nIm); %Initialise matrix containing all images

23

24 for iNo = 1:nIm

25 info = dicominfo([filePath ’Oxytarget_’ int2str(patient) ’ PRE\M0\’

imList(iNo).name]);

26 im(:,:,iNo) = dicomread([filePath ’Oxytarget_’ int2str(patient) ’ PRE\

M0\’ imList(iNo).name]); %Read images into matrix

27

28 SeriesTime = info.SeriesTime; %Obtain the time at which the image

sequence started.

29 AT = info.AcquisitionTime; %Obtain time where the image was acquired.

30

31 %Use these to calulate the acquisition time for the images:

32 hours = (str2double(AT(1:2))−str2double(SeriesTime(1:2)))*3600;
33 minutes = (str2double(AT(3:4))−str2double(SeriesTime(3:4)))*60;
34 seconds = str2double( AT(5:length(AT)))−str2double(SeriesTime(5:length

(SeriesTime)));

35

36 aValue(iNo) = hours + minutes + seconds; %Calculated acquisition time

37

38 zValuetemp = info.ImagePositionPatient; %extract coordinates for image

39 zValue(iNo) = zValuetemp(3,1); %Extract slice coordinate

40 end

41
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42 %Sorts the slices so that they are in the correct order

43 [zValue, indzSort] = sort(zValue);

44 im = im(:,:,indzSort);

45 aValue = aValue(indzSort);

46

47 %Sorts so that the images are also chronological order

48 [aValue, indaSort] = sort(aValue);

49 im = im(:,:,indaSort);

50

51 na = length(unique(aValue)); %Counts the amount of time points.

52 nSlices = nIm/na; %Finds number of slices

53

54 %Reshape the matrix so that it has one dimension for slice and one

55 %dimension for time in addition to the x and y dimensions.

56 im = reshape(im, [x, x, nSlices, na]);

57 aValue = reshape(aValue, [nSlices,na]);

58 aValue = aValue’;

59 zValue = reshape(zValue, [na, nSlices]);

60 nz= length(zValue);

61 signal = zeros(1,na);

62

63 filename = [filePath ’PRE’ num2str(patient) ’_M0.mat’];

64 save(filename,’im’,’aValue’,’zValue’,’nSlices’,’na’); %The matrix for each

patient is saved

65

66 end

A.2 Image Analysis

A.2.1 AIF

The following script is used to draw an ROI around a blood vessel cross section, and then mea-

sures the signal intensity curves within this ROI.
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1 clear all

2 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

3

4 pList = [24 32 56 58 74 79 121]; %patient identification numbers for a

selection of patients.

5 N_s0 = [11 10 14 14 21 14 8]; %time of CA injection

6 n = length(pList);

7 i = 1; %chooses which patient in the pList vector to measure the AIF for.

8 snitt = [9 10 11 5 2 10 4];% selects which image slice to attempt to extract

an AIF from for the different patients.

9

10 peak = N_s0(i) + 5; %used to choose a slice where the contrast enhancement in

the blood is large, to make the delineation of the ROI easier

11 j = snitt(i);

12 patient = pList(i);

13 current = load([filePath ’P’ num2str(patient) ’_M0.mat’]); %uploads dicom

images

14 im = current.im;

15 aValue = current.aValue;

16 zValue = current.zValue;

17 nSlices = current.nSlices;

18 na = current.na;

19

20 AIF = zeros(256,256,na); %initialises signal intensity matrix for the measured

CA concentrations.

21 ROI = roipoly(current.im(:,:,j,peak)); %function used to draw the ROI

22 for x_i = 1:length(im)

23 for y_i = 1: length(im)

24 if ROI(x_i,y_i) == 1

25 for t = 1:na

26 AIF(x_i,y_i,t) = im(x_i,y_i,j,t); %saved signal intensities

from the image into the AIF matrix

27 end

28 end

29 end

30 end
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31

32 filename = [filePath ’P’ num2str(patient) ’_M0.mat’];

33 save(filename,’im’,’aValue’,’zValue’,’nSlices’,’na’, ’ROI’, ’AIF’); %The

matrix for each patient is saved)

The following script calculates the blood plasma contrast agent concentrations from the signal

intensity curves within the AIF ROI.

1 %calculateAIF

2 clear all;

3 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

4 pList = [24 32 56 58 74 79 121 130 131 138 146 150 153 162 166 169 175 181]; %

patient identification numbers for a selection

5 N_s0 = [11 10 14 14 21 14 8 15 17 19 16 18 13 17 21 15 20 19]; %the time step

where the contrast agent is injected

6 n = length(pList);

7 Gender = ’MKMKMKMKMMKMMMMMMK’;%gender for the selection of patients

8 TR = 39; %(ms) Repetition time for the image sequence

9 T_10 = 1528; %ms. Initial T1−time. Measured by Groevik et al.

10 cosalpha = cosd(28); %flip angle of the image sequence

11 r1 = 3.6; %relaxivity of contrast agent

12 for i = 1:n

13 if Gender(i) == ’K’

14 Hct = 0.41; %decides the hematocrit value, dependant on the gender of

the patient.

15 else

16 Hct = 0.47;

17 end

18 patient = pList(i);

19 %loads images with measured AIF signal intensity matrix, time vectors

20 %and slice locations

21 current = load([filePath ’P’ num2str(patient) ’_M0.mat’]);

22 im = current.im;

23 aValue = current.aValue;

24 zValue = current.zValue;

25 nSlices = current.nSlices;

26 x = length(im);
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27 na = current.na;

28 ROI = current.ROI;

29 AIF = current.AIF;

30 Cb = zeros(1,na); %initalises vector contrast agent concentration in the

blood

31 Cp = zeros(x,x,na); %initialises blood plasma contrast agent concentration

matrix

32 for x_i = 1:x

33 for y_i = 1:x

34 if ROI(x_i,y_i) == 1

35 signal = squeeze(AIF(x_i,y_i,:));

36 signal_0 = sum(signal(1:N_s0(i)))/N_s0(i);

37 Cb = (signal − signal_0)./(signal_0 *0.001*r1 * T_10); %

calcucate contrast agent concentration in the blood.

38 for t = 1:na

39 Cp(x_i,y_i,t) = (Cb(t)/(1−Hct)); %calculates contrast

agent concentrations in the blood plasma

40 end

41 end

42 end

43 end

44 filename = [filePath ’P’ num2str(patient) ’_M0.mat’];

45 save(filename,’im’,’aValue’,’zValue’,’nSlices’,’na’, ’ROI’, ’AIF’,’Cp’, ’

time’,’Cp_median’); %The matrix for each patient is saved)

46 end

This script fits the blood plasma concentrations (Cp (t )) to the AIF (equation 2.17), and calculates

the median parameters.

1 clear all;

2 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

3 pList = [24 32 56 58 74 79 121 130 131 138 146 150 153 162 166 169 175 181]; %

patient identification numbers for a selection

4 N_s0 = [11 10 14 14 21 14 8 15 17 19 16 18 13 17 21 15 20 19]; %the time step

where the contrast agent is injected

5

6 n = length(pList);
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7 D_e = 0.1; %the contrast agent injection dose.

8 fo = fitoptions(’Method’,’NonlinearLeastSquares’,’StartPoint’,[ 3.99 0.144

4.78 0.0111] ,’Algorithm’,’Levenberg−Marquardt’,’MaxFunEvals’, 1000 ,’

MaxIter’,600);

9 f = fittype(’0.1*(a1*exp(− m1 * x) + a2*exp(−m2*x))’, ’options’, fo);

10

11 for i = 1:n

12 patient = pList(i);

13 current = load([filePath ’POST’ num2str(patient) ’_M0.mat’]); %loads AIF

data

14 im = current.im;

15 zValue = current.zValue;

16 nSlices = current.nSlices;

17 na = current.na;

18 ROI = current.ROI;

19 Cp = current.Cp;

20 time = current.time;

21 savedir = [filePath ’slices\’ num2str(patient)];

22 x= length(im);

23 %initalisation of marameter matrices

24 D = zeros(x,x);

25 a1 = zeros(x,x);

26 a2 = zeros(x,x);

27 m1 = zeros(x,x);

28 m2 = zeros(x,x);

29 t_c = time(N_s0(i)+1);

30 time(1:(N_s0(i)))=[];

31 time = time − t_c; %starts AIF fitting at the top of the measured peak

32

33 for x_i = 1:x

34 for y_i = 1:x

35 if ROI(x_i, y_i) == 1

36 total = total+1; %keeps track of the number of pixels within

the ROI

37 try

38 [simpleAIF, gof , fitinfo] = fit(time, squeeze(Cp(x_i,y_i,N_s0
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(i)+1:na)), f, ’Robust’, ’LAR’); % fits the AIF to the measured contrast

agent concentration data

39 %saves the fitted parameters

40 a1(x_i,y_i) = simpleAIF.a1;

41 m1(x_i,y_i) = simpleAIF.m1;

42 a2(x_i,y_i) = simpleAIF.a2;

43 m2(x_i,y_i) = simpleAIF.m2;

44

45 catch

46 ROI(x_i,y_i)=0; % if fit is unsuccessful, the ROI for the

pixel is set to 0.

47 end

48 end

49

50 end

51 end

52 a1s = zeros(1,total);

53 m1s = zeros(1,total);

54 a2s = zeros(1,total);

55 m2s = zeros(1,total);

56 it= 0;

57 %save the parameters in vectors

58 for x_i = 1:x

59 for y_i = 1:x

60 if ROI(x_i,y_i) == 1

61 it = it+1;

62 a1s(it) = a1(x_i,y_i);

63 m1s(it) = m1(x_i,y_i);

64 a2s(it) = a2(x_i,y_i);

65 m2s(it) = m2(x_i,y_i);

66 end

67 end

68 end

69 %calculates medians of the different parameters

70 a1_e = median(a1s);

71 a2_e = median(a2s);
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72 m1_e = median(m1s);

73 m2_e = median(m2s);

74

75 AIF_e = D_e.* (a1_e .* exp( − m1_e .* time) + a2_e .* exp (− m2_e .*time )

);

76 filename = [filePath ’Resultater\AIFS\POST’ num2str(patient) ’_AIF_e.mat’

];

77 %saves the images and median AIF parameters for each patient.

78 save(filename,’im’,’zValue’,’nSlices’,’na’,’Cp’, ’time’,’AIF_e’,’D_e’,’

m1_e’, ’m2_e’,’a1_e’,’a2_e’);

79 end

Finally, the following script calculates the mean parameters from the suitable AIFs, thus obtain-

ing the population-based AIF.

1 %This script calculates the population−based AIF

2 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

3 PREList = [131 73 44 92 77 122 24 27 28 29 31 32 41 43 45 47 48 49 50 51 52 55

56 57 58 61 64 65 67 74 75 78 80 83 85 87 88 90 94 96 98 103 108 112 116

118 124 126 127 130 132 133 134 138 143 144 146 147 150 151 152 153 154 156

157 160 162 164 165 166 169 170 171 172 174 175 176]; %the patients where

suitable AIFs were available from the pretreatment data

4 nPRE = length(pList); %amount of pretreatment AIFs available

5

6 D = 0.1; %contrast agent injection dose

7 %initialise median parameter vectors for the pretreatment data

8 a1PREs = zeros(1,nPRE);

9 a2PREs = zeros(1,nPRE);

10 m1PREs = zeros(1,nPRE);

11 m2PREs = zeros(1,nPRE);

12 for i = 1:nPRE

13 %extracts median AIF parameter for each patient

14 patient = PREList(i);

15 current = load([filePath ’Resultater\AIFS\P’ num2str(patient) ’_AIF_e.mat’

]);%loads individual AIFs

16 m1PREs(i) = current.m1_e;

17 m2PREs(i) = current.m2_e;
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18 a1PREs(i) = current.a1_e;

19 a2PREs(i) = current.a2_e;

20 end

21

22 pList = [121 24 32 56 58 74 131 138 146 162 166 175 181]; %Patients for which

suitable AIFs were available for post−CRT data

23 nPOST = length(pList);

24 %initialise post−CRT AIF parameters

25 a1POSTs = zeros(1,nPOST);

26 a2POSTs = zeros(1,nPOST);

27 m1POSTs = zeros(1,nPOST);

28 m2POSTs = zeros(1,nPOST);

29

30 for i = 1:nPOST

31 %extracts median AIF parameter for each patient

32 patient = pList(i);

33 current = load([filePath ’Resultater\AIFS\POST’ num2str(patient) ’_AIF_e.

mat’]);

34 m1POSTs(i) = current.m1_e;

35 m2POSTs(i) = current.m2_e;

36 a1POSTs(i) = current.a1_e;

37 a2POSTs(i) = current.a2_e;

38 end

39 n = nPRE + nPOST; %total number of AIFs

40 % gathers AIF parameters from the pretreatment and post−CRT data

41 a1s = [a1PREs a1POSTs];

42 a2s = [a2PREs a2POSTs];

43 m1s = [m1PREs m1POSTs];

44 m2s = [m2PREs m2POSTs];

45 %calculates mean, minimum and maximum median AIF parameters

46 m1st = [mean(m1s) min(m1s) max(m1s)];

47 m2st = [mean(m2s) min(m2s) max(m2s)];

48 a1st = [mean(a1s) min(a1s) max(a1s)];

49 a2st = [mean(a2s) min(a2s) max(a2s)];

50 %calculates the mean of the median AIF parameters

51 m1 = mean(m1s);
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52 m2 = mean(m2s);

53 a1 = mean(a1s);

54 a2 = mean(a2s);

55 filename = [filePath ’Resultater\AIFS\AIFmain’];

56 save(filename,’D’,’m1’,’m2’,’a1’,’a2’); %saves the population−based AIF

A.2.2 The TK Model

The following script was used for data analysis using the TK model with individual AIFs. Because

the only difference between the TK model analysis from population-based and individual AIFs

was which AIF was included, only the script for analysis using the TK model with individual AIFs

is included here.

1 % TK model

2 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

3 pList = [56 58 74 131 138 146 162 166 175 181] %a selection of patients

4 N_s0 = [5 13 12 14 18 16 16 21 13 13]; %the measured time step where injection

took place for a selection of patients.

5 n = length(pList);

6 T_10 = 1354; %(ms) initial T1−relaxation time, estimated by Groevik et al.

7 r1 = 3.6; %(1/(mM*s)) relaxivity of the contrast agent

8

9 for i = 1:n

10 patient = pList(i);

11 current = load([filePath ’Resultater\AIFS\POST’ num2str(patient) ’_AIF_e.

mat’]);%loads individual AIFs, in this analysis for the POST−data
12 im = current.im;

13 x= length(im);

14 zValue = current.zValue;

15 nSlices = current.nSlices;

16 na = current.na;

17 time = current.time;

18 Cp_median = current.Cp_median;

19 AIF_e = current.AIF_e;

20 D_e = current.D_e;
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21 m1_e = current.m1_e;

22 m2_e = current.m2_e;

23 a1_e = current.a1_e;

24 a2_e = current.a2_e;

25 AIF = [num2str(D_e) ’*(’ num2str(a1_e) ’* exp (− ’ num2str(m1_e) ’*x) + ’

num2str(a2_e) ’*exp(−’ num2str(m2_e) ’*x )) ’]; %creates the AIF function

26 %stepwise incorporation of the AIF into the equation for the TK model

27 A = [’K_trans * ’ num2str(D_e) ’* exp(−(K_trans/ve)*x)’];
28 b = [num2str(a1_e) ’*(1−exp(−(’ num2str(m1_e) ’− K_trans/ve)*x))/ (’

num2str(m1_e) ’−K_trans/ve)’];
29 c = [num2str(a2_e) ’*(1−exp(−(’ num2str(m2_e) ’− K_trans/ve)*x))/ (’

num2str(m2_e) ’−K_trans/ve)’];
30 Ctfit = [’vp *(’ AIF ’) + ’ A ’*(’ b ’+’ c ’)’]; %the equation used for

analysis with the TK model

31 problem = zeros(x,x,nSlices); %initialises a matrix used to save locations

where fit problems occur

32 Brix = load([filePath ’Resultater\Brix\POST’ num2str(patient) ’_Brix.mat’

]);%loads the ROI where analysis will be performed

33 ROI = Brix.ROI;

34 fo = fitoptions(’Method’,’NonlinearLeastSquares’,’StartPoint’,[1.67

0.3 37], ’Algorithm’,’Trust−Region’,’Lower’,[0,0,0], ’Upper’ , [10 1 1], ’

MaxFunEvals’, 1000 ,’MaxIter’,600);

35 f = fittype(Ctfit,’options’, fo); %initialises fit settings

36 %initialises parameter matrices. In addition to the parameters, maximum

37 %and minimum values, and information about the goodness of fit was

38 %saved

39 K_trans = zeros(x,x,nSlices);

40 K_trans_low = zeros(x,x,nSlices);

41 K_trans_high = zeros(x,x,nSlices);

42 ve = zeros(x,x,nSlices);

43 ve_low = zeros(x,x,nSlices);

44 ve_high = zeros(x,x,nSlices);

45 vp = zeros(x,x,nSlices);

46 vp_low = zeros(x,x,nSlices);

47 vp_high = zeros(x,x,nSlices);

48 rmse = zeros(x,x,nSlices);
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49 rsquare = zeros(x,x,nSlices);

50 total = 0; %used to count number of pixels within the ROI

51 badfit = 0; %used to count the number of unsuccessful fits for the patient

.

52 Ct = zeros(x,x,nSlices,na); %initalises contrast agent concentration

matrix

53 t_c = time(N_s0(i)+1);

54 time(1:(N_s0(i)))=[]; %the fitting will be performed for the measured

curve starting after the contrast agent is injected

55 time = time − t_c;

56 for j = 1:nSlices

57 fileID = fopen(’C:\Users\Tina\Documents\Skole\Masteroppgave\Programmer

\ongoings.txt’,’a’); %used to keep track of the progress of the analysis

58 fprintf(fileID,’ Begin calculations on patient %1.0f, slice %1.0f ’,

patient, j);

59 fprintf(fileID, ’\r\n’);

60 fclose(fileID);

61 fprintf(’\n Begin calculations on patient %1.0f, slice %1.0f \n’,

patient, j);

62 for x_i = 1:x

63 for y_i = 1:x

64 if ROI(x_i,y_i,j) ~= 0

65 signal = squeeze(im(x_i,y_i,j,:));

66 signal_0 = sum(signal(1:N_s0(i)))/N_s0(i); %calculates the

average signal intensity prior to CA injection

67 total = total+1;

68 Ct(x_i,y_i,j,:) = (signal − signal_0)./(signal_0 *0.001*r1

* T_10);%calculates the contrast agent concentration from the signal

intensity

69 try

70 Ctshort = squeeze(Ct(x_i,y_i,j,N_s0(i)+1:na));

71 [Tofts_e, gof , fitinfo] = fit(time, Ctshort , f, ’Robust’

, ’LAR’); %fits the contrast agent concentration curves to the TK model

72 %saves the parameters

73 K_trans(x_i,y_i,j) = Tofts_e.K_trans;
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74 ve(x_i,y_i,j) = 100*Tofts_e.ve; %multiplies with 100 to

get the unit %

75 vp(x_i,y_i,j) = 100*Tofts_e.vp; %Multiplies with 100 to

get the unit %

76 rmse(x_i,y_i,j) = gof.rmse;

77 rsquare(x_i,y_i,j) = gof.rsquare;

78 inter = confint(Tofts_e);

79 K_trans_low(x_i,y_i,j) = inter(1,1);

80 K_trans_high (x_i,y_i,j) = inter(2,1);

81 ve_low(x_i,y_i,j) = inter(1,2);

82 ve_high(x_i,y_i,j) = inter(2,2);

83 vp_low(x_i,y_i,j) = inter(1,3);

84 vp_high(x_i,y_i,j) = inter(2,3);

85 if rem(x_i,2) == 0

86 figure, plot(Tofts_e,time,Ctshort);

87 end

88 catch %prevents the program from stopping if an error

occurs in a fit, and saves the location of the error

89 badfit = badfit+1;

90 problem(x_i,y_i,j) = 1000;

91 end

92 end

93 end

94

95 end

96 end

97 total = total−badfit; %finds number length of the vectors used for the

parameters

98 %intialises vectors where all parameters are gathered

99 K_transes = zeros(1,total);

100 ves = zeros(1,total);

101 vps = zeros(1,total);

102 rmses = zeros(1,total);

103 rsquares = zeros(1,total);

104 it = 0;

105 for j = 1:nSlices
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106 for x_i = 1:x

107 for y_i = 1:x

108 if ROI(x_i,y_i,j) ~= 0 %here the parameters are gatered into

one vector each

109 it = it+1;

110 K_transes(it) = K_trans(x_i,y_i,j);

111 ves(it) = ve(x_i,y_i,j);

112 vps(it) = vp(x_i,y_i,j);

113 rmses(it) = rmse(x_i,y_i,j);

114 rsquares(it) = rsquare(x_i,y_i,j);

115 end

116

117 end

118 end

119 end

120 Ct_median = zeros(1,60);

121 for k = 1:60

122 pixels = zeros(1,total);

123 totn =0;

124 for x_i = 1: x

125 for y_i =1:x

126 if ROI(x_i,y_i) == 1

127 totn = totn+1;

128 pixels(totn) = Ct(x_i,y_i,k);

129 end

130 end

131 end

132 Ct_median(k) = median(pixels); %saves the median values of the

contrast agent concentrations within the tumour at the different time

points.

133 end

134 time_whole = current.time;

135 beforecontrast = zeros(1,N_s0(i));

136 %saves the TK model parameters

137 filename = [filePath ’Resultater\Tofts\POST’ num2str(patient) ’_Tofts_e.mat’];
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138 parsaveTofts(filename,K_trans_low,K_trans,K_trans_high,K_transes,ve,ve_low,

ve_high,ves,vp,vp_low,vp_high,vps,rsquare,rsquares,rmse,rmses,time,

time_whole,Ct_median);

139 end

A.2.3 The Brix Model

The following script was used for data analysis using the Brix model.

1 clear all

2 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\’;

3 addpath(’C:\Users\Tina\Documents\Skole\Prosjekt\NIFTI’); %Include functions

for opening niftifiles.

4 addpath(’C:\Users\Tina\Documents\Skole\Prosjekt’);

5

6 pList = [56 58 74 131 138 146 162 166 175 181] %a selection of patients

7 N_s0 = [5 13 12 14 18 16 16 21 13 13]; %the measured time step where injection

took place for a selection of patients.

8 n = length(pList);

9

10 for i = 1:n

11 S_ligning = [’A * k_ep /(k_ep−k_el) * (exp(−k_el*x) − exp(−k_ep*x))’]; %

the model equation the data is to be fitted to

12 %intialise curve fit settings

13 fo = fitoptions(’Method’,’NonlinearLeastSquares’,’StartPoint’,[0.21 0.17

15], ’Algorithm’,’Trust−Region’, ’MaxFunEvals’, 1000, ’MaxIter’,600);

14 f = fittype(S_ligning,’options’,fo);

15

16 filename = [’P’ num2str(pList(i)) ’_M0.mat’];

17 S = load([filePath ’Data\’ filename]); %Loads information from

SortPatients.m

18 aValue = S.aValue; %time values

19 im = S.im; %image matrix

20 nSlices = S.nSlices; %number of slices for patient

21 na = S.na; %number of elements in time vector
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22 zValue = S.zValue; %slice location vector

23

24 x=length(im); %determine size dimension of image

25 patient = pList(i);

26

27 radiologist = ’shh’;

28 if patient == 58

29 radiologist = ’an’; %for some patients, the tumour ROIs created by SHH

were not available, and the ROIs by AN was used instead

30 end

31 [ROI,T2Values,roiz] = niftiresize(x,nSlices,zValue,patient,radiologist); %

obtains resized ROI from nifti−file. T2values are the original slice

locations for the ROI, and roiz gives the selected slices closest to those

of the DCE−MR images.

32 %initialise matrices

33 A_brix = zeros(x,x,nSlices);

34 A_brix_low = zeros(x,x,nSlices);

35 A_brix_high = zeros(x,x,nSlices);

36 k_el_brix = zeros(x,x,nSlices);

37 k_el_brix_low = zeros(x,x,nSlices);

38 k_el_brix_high = zeros(x,x,nSlices);

39 k_ep_brix = zeros(x,x,nSlices);

40 k_ep_brix_low = zeros(x,x,nSlices);

41 k_ep_brix_high = zeros(x,x,nSlices);

42 rmse = zeros(x,x,nSlices);

43 s0juster = zeros(x,x,nSlices);

44 signal = zeros(1,na);

45

46 for j = 1:nSlices

47 %below, the progress in the analysis is exported to a text file in

48 %order for it to be easier to keep track of.

49 fileID = fopen(’C:\Users\Tina\Documents\Skole\Masteroppgave\Programmer

\ongoings.txt’,’a’);

50 fprintf(fileID,’ Begin calculations on patient %1.0f, slice %1.0f ’,

patient, j);

51 fprintf(fileID, ’\r\n’);
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52 fclose(fileID);

53 fprintf(’\n Begin calculations on patient %1.0f, slice %1.0f \n’,

patient, j);

54 feil = 0;

55 for x_i = 1:x

56 for y_i = 1:x

57 if ROI(x_i,y_i,j) ~= 0

58 for k = 1:na

59 signal(k) = im(x_i,y_i,j,k); %signal intensity

variation in one pixel is extracted

60 end

61 time = aValue(:,j);

62 signal_0 = sum(signal(1:N_s0(i)))/N_s0(i); %the average signal

intensity prior to CA injection is calculated

63 RSI = zeros(1,na);

64 if signal_0 == 0

65 nullvar =N_s0(i);

66 while signal_0 == 0 && nullvar < length(signal)

67 nullvar = nullvar+1;

68 signal_0 = sum(signal(1:nullvar))/nullvar;

69 end

70 s0juster(x_i,y_i,j) = nullvar; %in some cases signal_0 was

0. Then a few more time steps were included to avoid an error. But the

pixels this happened for were deleted prior to further analysis.

71 end

72 for it = 1:length(signal)

73 RSI(it) = (signal(it)−signal_0)/signal_0; %the

relative signal intensity is calculated

74 end

75 RSI = RSI(N_s0(i)+1:length(RSI));

76 t0 = time(N_s0(i));

77 time = time(N_s0(i)+1:length(time)); %fitting to the Brix

model starts at time of contrast agent injection

78 for tidsi = 1:length(time)

79 time(tidsi) = (time(tidsi)−t0)/60;
80 end
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81 try %here the relative signal intensity curves are fitted

to the Brix model.

82 [fit1,gof,fitinfo] = fit(time,RSI’,f,’Robust’,’LAR’, ’

Lower’, [0 0 0],’Upper’,[500 500 500]);

83 A_brix(x_i,y_i,j) = fit1.A;

84 inter = confint(fit1);

85 A_brix_low(x_i,y_i,j) = inter(1,1);

86 A_brix_high(x_i,y_i,j) = inter(2,1);

87 k_el_brix(x_i,y_i,j) = fit1.k_el;

88 k_el_brix_low(x_i,y_i,j) = inter(1,2);

89 k_el_brix_high(x_i,y_i,j)=inter(2,2);

90 k_ep_brix(x_i,y_i,j) = fit1.k_ep;

91 k_ep_brix_low(x_i,y_i,j) = inter(1,3);

92 k_ep_brix_high(x_i,y_i,j)=inter(2,3);

93 rmse(x_i,y_i,j) = gof.rmse;

94 catch %in cases where errors occured for the fitting, the

locations were saved by setting the parameter pixels = −1, and were not

included in further analysis.

95 feil =feil+1; %counts number of failed curve fits for

each patient.

96 A_brix(x_i,y_i,j) = −1;
97 k_el_brix(x_i,y_i,j) = −1;
98 k_ep_brix(x_i,y_i,j) = −1;
99 end

100 end

101 end

102 end

103 end

104 resultater = [filePath ’Data\Resultater\Brix\PRE’ num2str(pList(i)) ’

_Brix.mat’]; %the fitted parameters are saved

105 parsave(resultater,A_brix,A_brix_high,A_brix_low,ROI,feil,k_el_brix,

k_el_brix_high,k_el_brix_low,k_ep_brix,k_ep_brix_high,k_ep_brix_low,rmse,

s0juster);

106 end
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A.3 Statistical Analysis

The scripts analysing the Brix and TK model parameters were almost identical. Therefore only

the script used for the Brix model parameters is included. Below, the script from the pretreat-

ment analysis is found.

1 %This script test analyses the pretreatment parameters from the Brix

2 %model. Medians are calculated from the parameter percentiles, and

3 %additionally analysis on heterogeneity is performed.

4 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

5 %patients were loaded in groups based on what was tested for. Now the

6 %patients who received CRT are active

7 %patients who did not receive CRT:

8 %pList = [28 29 31 45 46 48 57 61 64 65 72 73 75 77 78 83 85 88 92 94 98 103

105 106 108 110 112 115 118 122 124 127 133 134 143 144 147 149 151 152 157

160 164 165 171 172 174 176];

9 %patients that received CRT

10 pList = [24 27 32 41 43 44 47 49 50 51 52 55 56 58 67 74 79 80 87 89 90 96 116

119 120 121 125 126 130 131 132 138 146 150 153 154 156 162 166 169 170

175 181];

11 %pList = [27 32 44 51 89 96 116 119 121 131 132 146 162 170 175 181 24 43 49

50 55 58 67 74 79 120 156 166 169 90];% patients with mrN 1 or 2

12 n = length(pList);

13 N = 101; %length of percentile matrix: percentiles 0−100
14 M = 100; %number of histogram slots

15 %initalises percentile matrices and heterogeneity matrices

16 A_perc = zeros(n,N);

17 el_perc = zeros(n,N);

18 ep_perc = zeros(n,N);

19 skew = zeros(3,n);

20 rel = zeros(3,n);

21 kurt = zeros(3,n);

22 stds = zeros(3,n);

23

24 for i = 1:n

25 hists = zeros(3,M);%initialise histogram matrix for all parameters
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26 patient = pList(i);

27 S = load([filePath ’Resultater\Brix\PRE’ num2str(patient) ’_Brix.mat’]); %

loads Brix model parameters for a patient

28 lengde = 0;

29 dims = size(S.A_brix); %finds dimension of the images

30 nSlices = dims(3);

31 x= dims(1);

32 ROI = S.ROI; %loads the region of interest

33 for j = 1:nSlices

34 for x_i = 1:x

35 for y_i = 1:x

36 if S.A_brix(x_i,y_i,j) < 0 || S.A_brix(x_i,y_i,j) > 7 || S.

k_el_brix(x_i,y_i,j) > 2 || S.k_ep_brix(x_i,y_i,j) > 40%|| Here, pixels of

unsuccessful fits are removed (A_brix = −1). In addition nonphysiological

values are removed. Upper limits for the TK model parameters were set to 3

for Ktrans, 80 for ve, and 20 for vp.

37 ROI(x_i,y_i,j)=0;

38 end

39 if S.s0juster(x_i,y_i,j)~=0 %remove poor signal curves found

in the Brix script

40 ROI(x_i,y_i,j) = 0;

41 end

42 if ROI(x_i,y_i,j) ~= 0

43 lengde = lengde +1; %find length of vectors containing the

fitted parameters.

44 end

45 end

46 end

47 end

48 %initalise vectors where all parameters are gathered.

49 A_verdier = zeros(1,lengde);

50 k_el_verdier = zeros(1,lengde);

51 k_ep_verdier = zeros(1,lengde);

52 nr = 0;

53 for j = 1:nSlices

54 for x_i = 1:x
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55 for y_i = 1:x

56 if ROI(x_i,y_i,j) ~= 0

57 %Here the parameters from within the ROI are saved in

different vectors

58 nr=nr+1;

59 A_verdier(nr)= S.A_brix(x_i,y_i,j);

60 k_el_verdier(nr) = S.k_el_brix(x_i,y_i,j);

61 k_ep_verdier(nr) = S.k_ep_brix(x_i,y_i,j);

62 end

63 end

64 end

65 end

66 %the first slots in the percentile matrices are set to the minimum value

of

67 %the parameters

68 A_perc(i,1) = min(A_verdier);

69 el_perc(i,1) = min(k_el_verdier);

70 ep_perc(i,1) = min(k_ep_verdier);

71 %the remaining percentiles are calulated

72 for k = 2:N

73 A_perc(i,k) = prctile(A_verdier,k−1);
74 el_perc(i,k) = prctile(k_el_verdier,k−1);
75 ep_perc(i,k) = prctile(k_ep_verdier,k−1);
76 end

77 %histogram vectors are calculated.

78 hists(1,:) = histcounts(A_verdier,100);

79 hists(2,:) = histcounts(k_el_verdier,100);

80 hists(3,:) = histcounts(k_ep_verdier,100);

81 %histogram quantities are saved for each patient.

82 for m = 1:3

83 skew(m,i) = skewness(hists(m,:));

84 rel(m,i) = max(hists(m,:))/mean(hists(m,:));

85 kurt(m,i) = kurtosis(hists(m,:));

86 stds(m,i) = std(hists(m,:));

87 end

88 end
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89 %%

90 p_A = ones(N,1); %percentile p−values are initialised

91 p_el = ones(N,1);

92 p_ep = ones(N,1);

93 %Here the noCRT patients are assigned a group number based on the endpoints

94 T02vs34 = [1 1 2 2 2 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 2 2 2 2

1 1 1 1 2 1 1 2 2 1 1 1 2 2]; %ypT 0−2 vs 3−4
95 N0vs12 = [2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 1 2 1 2 1 1 1

1 1 1 2 2 2 1 2 1 2 1 1 2 2] %ypN 0 vs 1−2
96

97 %Here the CRT patients are assigned a group number based on the endpoints

98 CT0234 = [2 2 2 1 1 2 2 2 2 1 2 1 1 2 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 1 1 2 1 1

1 2 2 2 1 2 2 2 1]; %ypT 0−2 vs 3−4
99 CN012 = [2 2 2 1 2 2 1 2 1 1 1 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1

2 2 1 2 1 1 1 2]; %ypN 0 vs 1−2
100 TRG013= [2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2

2 2 2 2 2 2 2 2]; %TRG 0 vs 1−3
101 dT0234 = [1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2

1 1 1 1 1 1 1 1 1]; %deltaT 0−2 vs 3−4
102 %group numbers for the patients with mrN 1−2 who received CRT

103 dN = [1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 1 2 2 2 1 1 1 2 2 2 2 2]; %deltaN 0

vs 1−2
104 threshold = zeros(1,N); %used to intialise a 0.05 vector used in the

percentile plots.

105 G = CT0234 %endpoint is selected

106 %matrices that will contain the median, minimum and maximum median values

107 %of the different groups is created

108 G1_median = zeros(3,3);

109 G2_median = zeros(3,3);

110 for j = 1:N %calculates p−values for the different percentiles

111 A_brix = A_perc(:,j);

112 k_el = el_perc(:,j);

113 k_ep = ep_perc(:,j);

114

115 [G1A,G2A] = makegroups(A_brix,G); %the function divides the parameters into

groups. It is displayed later in the appendix.
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116 p_A(j) = ranksum(G1A,G2A);

117 if j == 51 %this is the median

118 G1_median(1,1) = median(G1A);

119 G1_median(1,2) = min(G1A);

120 G1_median(1,3) = max(G1A);

121 G2_median(1,1) = median(G2A);

122 G2_median(1,2) = min(G2A);

123 G2_median(1,3) = max(G2A);

124 end

125

126 [G1el,G2el] = makegroups(k_el,G);

127 p_el(j) = ranksum(G1el,G2el);

128 if j == 51

129 G1_median(2,1) = median(G1el);

130 G1_median(2,2) = min(G1el);

131 G1_median(2,3) = max(G1el);

132 G2_median(2,1) = median(G2el);

133 G2_median(2,2) = min(G2el);

134 G2_median(2,3) = max(G2el);

135 end

136

137 [G1ep,G2ep] = makegroups(k_ep,G);

138 p_ep(j) = ranksum(G1ep,G2ep);

139 if j == 51

140 G1_median(3,1) = median(G1ep);

141 G1_median(3,2) = min(G1ep);

142 G1_median(3,3) = max(G1ep);

143 G2_median(3,1) = median(G2ep);

144 G2_median(3,2) = min(G2ep);

145 G2_median(3,3) = max(G2ep);

146 end

147 threshold(j)=0.05; %threshold used in percentile plot set to 0.05

148 end

149 p = [0:1:100];

150 %percentile plot is created
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151 figure; plot(p,p_ep,p,threshold,’k−−’), legend(’k_{ep}’, ’p = 0.05’), ylim([0

0.2]), ylabel(’p−value’), xlabel(’Percentile’) ,title(’Percentile p−value
plot for \DeltaT 0−2 versus 3−4’)

152

153 Amedians = A_perc(:,51); %saves the parameter medians for the different

patients. These are used to make the box plots.

154 k_elmedians = el_perc(:,51);

155 k_epmedians = ep_perc(:,51);

156 p_median = [ p_A(51) ; p_el(51) ; p_ep(51) ]’; %the median p−values
157

158 p_skew= zeros(3,1)’; %histogram p−value matrices are intialised.

159 p_rel =zeros(3,1)’;

160 p_kurt = zeros(3,1)’;

161 p_std = zeros(3,1)’;

162 for i =1:3 %for the different parameters, histogram quantity p−values are

calculated saved to one matrix each.

163 [G1A,G2A] = makegroups(skew(i,:),G);

164 p_skew(i) = ranksum(G1A,G2A);

165 [G1A,G2A] = makegroups(rel(i,:),G);

166 p_rel(i) = ranksum(G1A,G2A);

167 [G1A,G2A] = makegroups(kurt(i,:),G);

168 p_kurt(i) = ranksum(G1A,G2A);

169 [G1A,G2A] = makegroups(stds(i,:),G);

170 p_std(i) = ranksum(G1A,G2A);

171 end

172 figure, boxplot(Amedians,G,’Labels’,{’ypT 0−2’, ’ypT 3−4’}), ylabel(’$A_{Brix}

$’); %A box plot is made for the A_brixmedians in ypT 0−2 vs 3−4

The script used for analysis of post-CRT medians and changes from pretreatment to post-CRT

medians is showed below.

1 % In this script the post−CRT parameter medians and change in medians from

2 % pretreatment to post−CRT are tested againtst different endpoints.

3 clear all

4 pList = [24 32 56 58 74 79 121 130 131 138 146 150 153 162 166 169 175 181]; %

all 18 post−CRT patients

5 %pList = [32 121 131 146 162 175 181 24 58 74 79 166 169] %the post−CRT
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6 %patients that had mrN 1−2. Used for det delta N 0 vs 1−2 endpoint.

7 filePath = ’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’;

8 n = length(pList);

9 PAR_PRE = zeros(3,n); %initialise matrix: medians for pretreatment parameters

of the different patients

10 PAR_POST = zeros(3,n);%initialise matrix: medians for post−CRT parameters of

the different patients

11 deltaPAR = zeros(3,n);%initialise matrix: change in median parameters of the

different patients

12 for i = 1:n

13 patient = pList(i);

14 SPRE = load([filePath ’Resultater\Brix\PRE’ num2str(patient) ’_Brix.mat’])

; %load pretreatment parameters

15 SPOST = load([filePath ’Resultater\Brix\POST’ num2str(patient) ’_Brix.mat’

]); %load post−CRT parameters

16 lengdePRE = 0; %later set to the amount of pixels within the pretreatment

ROI

17 lengdePOST = 0; %later set to the amount of pixels within the post−CRT ROI

18 dimsPRE = size(SPRE.A_brix); %dimensions of the images

19 dimsPOST = size(SPOST.A_brix);

20 nSlicesPRE = dimsPRE(3); %slices of the images

21 nSlicesPOST = dimsPOST(3);

22 xPRE= dimsPRE(1); %dimensions of the images

23 xPOST = dimsPOST(1);

24 ROIPRE = SPRE.ROI; %pretreatment ROI

25 ROIPOST = SPOST.ROI; %post−CRT ROI

26 for j = 1:nSlicesPRE

27 for x_i = 1:xPRE

28 for y_i = 1:xPRE

29 if SPRE.A_brix(x_i,y_i,j) < 0 || SPRE.A_brix(x_i,y_i,j) > 7 ||

SPRE.k_el_brix(x_i,y_i,j) > 2 || SPRE.k_ep_brix(x_i,y_i,j) > 40 %

unsuccessful fits are removed (A = −1). Nonphysiological parameters are

removed. For the TK model the upper limits for the parameters were 3 for

Ktrans, 80 for ve, and 20 for vp.

30 ROIPRE(x_i,y_i,j)=0;

31 end
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32 if SPRE.s0juster(x_i,y_i,j)~=0 %remove poor signal curves

found in Brixfit.m

33 ROIPRE(x_i,y_i,j) = 0;

34 end

35 if ROIPRE(x_i,y_i,j) ~= 0

36 lengdePRE = lengdePRE +1; %find length of vectors

containing the fitted parameters.

37 end

38 end

39 end

40 end

41 for j = 1:nSlicesPOST

42 for x_i = 1:xPOST

43 for y_i = 1:xPOST

44 if SPOST.A_brix(x_i,y_i,j) < 0 || SPOST.A_brix(x_i,y_i,j) > 7

|| SPOST.k_el_brix(x_i,y_i,j) > 2 || SPOST.k_ep_brix(x_i,y_i,j) > 40%

removal of nonphysiological parameters and unsuccessful fits repeated for

the post−CRT data

45 ROIPOST(x_i,y_i,j)=0;

46 end

47 if SPOST.s0juster(x_i,y_i,j)~=0 %remove poor signal curves

found in Brixfit.m

48 ROIPOST(x_i,y_i,j) = 0;

49 end

50 if ROIPOST(x_i,y_i,j) ~= 0

51 lengdePOST = lengdePOST +1; %find length of vectors

containing the fitted parameters.

52 end

53 end

54 end

55 end

56 A_verdier_PRE = zeros(1,lengdePRE); %intialise parameter vectors

57 k_el_verdier_PRE = zeros(1,lengdePRE);

58 k_ep_verdier_PRE = zeros(1,lengdePRE);

59 A_verdier_POST = zeros(1,lengdePOST);

60 k_el_verdier_POST = zeros(1,lengdePOST);
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61 k_ep_verdier_POST = zeros(1,lengdePOST);

62 nrPRE = 0;

63 nrPOST = 0;

64 for j = 1:nSlicesPRE %here the pretreatment parameters are saved to

vectors

65 for x_i = 1:xPRE

66 for y_i = 1:xPRE

67 if ROIPRE(x_i,y_i,j) ~= 0

68 nrPRE=nrPRE+1;

69 A_verdier_PRE(nrPRE)= SPRE.A_brix(x_i,y_i,j);

70 k_el_verdier_PRE(nrPRE) = SPRE.k_el_brix(x_i,y_i,j);

71 k_ep_verdier_PRE(nrPRE) = SPRE.k_ep_brix(x_i,y_i,j);

72 end

73 end

74 end

75 end

76 %medians for the pretreatment parameters are saved for each patient

77 PAR_PRE(1,i) = median(A_verdier_PRE);

78 PAR_PRE(2,i) = median(k_el_verdier_PRE);

79 PAR_PRE(3,i) = median(k_ep_verdier_PRE);

80

81 for j = 1:nSlicesPOST %here the post−CRT parameters are saved to vectors

82 for x_i = 1:xPOST

83 for y_i = 1:xPOST

84 if ROIPOST(x_i,y_i,j) ~= 0

85 nrPOST=nrPOST+1;

86 A_verdier_POST(nrPOST)= SPOST.A_brix(x_i,y_i,j);

87 k_el_verdier_POST(nrPOST) = SPOST.k_el_brix(x_i,y_i,j);

88 k_ep_verdier_POST(nrPOST) = SPOST.k_ep_brix(x_i,y_i,j);

89 end

90 end

91 end

92 end

93 %medians for the post−CRT parameters are saved for each patient

94 PAR_POST(1,i) = median(A_verdier_POST);

95 PAR_POST(2,i) = median(k_el_verdier_POST);
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96 PAR_POST(3,i) = median(k_ep_verdier_POST);

97 %difference between the parameters pretreatment and post−CRT is

98 %calculated

99 for j = 1:3

100 deltaPAR(j,i) = PAR_POST(j,i)−PAR_PRE(j,i);
101 end

102

103 end

104

105 %%

106 %Here the patients are assigned a group number based on the endpoint

107 T0234 = [2 2 1 2 2 2 1 2 1 2 1 1 1 2 1 2 2 1]; %ypT 0−2 vs 3−4
108 N012 = [2 2 1 2 2 2 1 1 1 1 1 1 1 1 2 1 1 2]; %ypN 0 vs 1−2
109 TRG013 = [2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2]; % TRG 0 vs 1−3
110 dT0234 = [1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1]; %deltaT 0−2 vs 3−4
111 dN = [1 2 2 2 2 2 1 1 2 1 1 2 2]; % deltaN 0 vs 1−2. Only patients with mrN

1−2 included.

112 G = T0234 %chooses the endpoint to analyse

113 pPOST = zeros(1,3); %initialise postCRT−pvalues
114 G1_POST = zeros(3,3); % initialise matrix for parameter medians, minimums and

maximums for the two groups

115 G2_POST = zeros(3,3);%

116 %Abrix:

117 [G1A,G2A] = makegroups(PAR_POST(1,:),G); %divides the parameters into two

vectors prior to the ranksum test

118 pPOST(1) = ranksum(G1A,G2A); %ranksum test on post parameters, then saves

medians, maximum and minimum for the two groups.

119 G1_POST(1,1) = median(G1A);

120 G1_POST(1,2) = min(G1A);

121 G1_POST(1,3) = max(G1A);

122 G2_POST(1,1) = median(G2A);

123 G2_POST(1,2) = min(G2A);

124 G2_POST(1,3) = max(G2A);

125 %k_el;

126 [G1el,G2el] = makegroups(PAR_POST(2,:),G);

127 pPOST(2) = ranksum(G1el,G2el);



110 APPENDIX A. MATLAB SCRIPTS

128 G1_POST(2,1) = median(G1el);

129 G1_POST(2,2) = min(G1el);

130 G1_POST(2,3) = max(G1el);

131 G2_POST(2,1) = median(G2el);

132 G2_POST(2,2) = min(G2el);

133 G2_POST(2,3) = max(G2el);

134 %k_ep:

135 [G1ep,G2ep] = makegroups(PAR_POST(3,:),G);

136 pPOST(3) = ranksum(G1ep,G2ep);

137 G1_POST(3,1) = median(G1ep);

138 G1_POST(3,2) = min(G1ep);

139 G1_POST(3,3) = max(G1ep);

140 G2_POST(3,1) = median(G2ep);

141 G2_POST(3,2) = min(G2ep);

142 G2_POST(3,3) = max(G2ep);

143

144 pdelta = zeros(1,3);

145 G1_d = zeros(3,3);

146 G2_d = zeros(3,3);

147 %A_brix:

148 [G1Ad,G2Ad] = makegroups(deltaPAR(1,:),G); %divides the parameters into two

vectors prior to the ranksum test

149 pdelta(1) = ranksum(G1Ad,G2Ad); %ranksum test on post parameters, then saves

medians, maximum and minimum for the two groups.

150 G1_d(1,1) = median(G1Ad);

151 G1_d(1,2) = min(G1Ad);

152 G1_d(1,3) = max(G1Ad);

153 G2_d(1,1) = median(G2Ad);

154 G2_d(1,2) = min(G2Ad);

155 G2_d(1,3) = max(G2Ad);

156 %k_el:

157 [G1eld,G2eld] = makegroups(deltaPAR(2,:),G);

158 pdelta(2) = ranksum(G1eld,G2eld);

159 G1_d(2,1) = median(G1eld);

160 G1_d(2,2) = min(G1eld);

161 G1_d(2,3) = max(G1eld);
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162 G2_d(2,1) = median(G2eld);

163 G2_d(2,2) = min(G2eld);

164 G2_d(2,3) = max(G2eld);

165 %k_ep:

166 [G1epd,G2epd] = makegroups(deltaPAR(3,:),G);

167 pdelta(3) = ranksum(G1epd,G2epd);

168 G1_d(3,1) = median(G1epd);

169 G1_d(3,2) = min(G1epd);

170 G1_d(3,3) = max(G1epd);

171 G2_d(3,1) = median(G2epd);

172 G2_d(3,2) = min(G2epd);

173 G2_d(3,3) = max(G2epd);

174 %Creates a boxplot:

175 figure, boxplot(deltaPAR(3,:),N012,’Labels’,{’ypN 0’, ’ypN 1−2’});

A.4 Additional Scripts

The function used to load and resize ROIs is shown below. A function from the MathWorks

package Tools for NIfTI and ANALYZE image was used to load the nifti-files and transform them

into Matlab matrices [56].

1 %This function calculates a ROI,

2 function [roi,T2Values,roiz] = niftiresize(imSize,slice_number,zValue,patient,

radiologist)

3 %roi: resised region of interest

4 %T2Values: slice locations for the ROI and the high resolution T2−weigthed
5 %images

6 %roiz: the slices from T2Values closest to the slices in the dynamic images

7 %radiologist: determines which ROI to load, the one drawn by SHH or the one

8 %drawn by AN

9 filePath = [’C:\Users\Tina\Documents\Skole\Masteroppgave\Data\’];

10 imList = dir([filePath ’Oxytarget_’ int2str(patient) ’ PRE\T2\Im*’]);

11 tempSlices = length(imList); %number of slices in ROI, found from the high

resolution T2−weighted images
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12 T2Values = zeros(1,tempSlices);

13

14 for i = 1:tempSlices

15 info = dicominfo([filePath ’Oxytarget_’ int2str(patient) ’ PRE\T2\’ imList

(i).name]);

16 T2Slice = info.ImagePositionPatient;

17 T2Values(i) = T2Slice(3,1); %Find the slice locations of the ROI

18 end

19 %load the ROI struct

20 nifti = load_untouch_nii([filePath ’Oxytarget_’ int2str(patient) ’ PRE\binary\

’ radiologist ’\tumour.nii’]);

21 temproi = nifti.img; %Extract the ROI matrix

22

23 temproi = permute(temproi, [2 1 3]); %Adjust the geometry og the axes so that

they match the images.

24 if patient == 115

25 temproi = flip(temproi,3);

26 end

27 roi = zeros(imSize,imSize,slice_number) ; %initialise ROI matrix with desired

dimensions.

28 tempLength= length(temproi); %Find the dimension of the ROI

29 scale = tempLength/imSize %How much smaller I want the xy−
dimensions of the ROI to be

30

31 temproi2 = zeros(tempLength,tempLength,slice_number); %initialise matrix where

only the slice dimensions has been reduced.

32

33 zValue = zValue(1,:); %Dynamic image slice locations

34 T2lengde = length(T2Values); %Number of slices in original roi.

35 roiz = zeros(1,slice_number); %Initialize vetor that will contain the slice

locations from the original ROI closest to the slice locations of the

dynamic images.

36

37 for j = 1:slice_number %In this loop the number of slices is reduces to the

desired number.

38 temproi2(:,:,j) = temproi(:,:,1);
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39 temp = abs(zValue(j)−T2Values(1));
40 roiz(j) = T2Values(1);

41 for k = 1:T2lengde

42 diff =abs(zValue(j) − T2Values(k));

43 if diff <= temp

44 temp = diff;

45 temproi2(:,:,j) = temproi(:,:,k);

46 roiz(j)=T2Values(k); %The slices of the ROI closest to those of

the dynamic image are chosen for the new ROI.

47 end

48 end

49 end

50

51 for j = 1:slice_number %Here the dimensions in the image is reduced to the

desired dimensions.

52 for i = 2:2:tempLength

53 for k = 2:2:tempLength

54 if temproi2(i−1,k−1,j) ~= 0 || temproi2(i,k−1,j) ~=0 ||

temproi2(i−1,k,j) ~= 0 || temproi2(i,k,j) ~= 0

55 is = round(i/scale);

56 ks = round(k/scale);

57 roi(is,ks,j) = 1; %A pixel is of the ROI is set to

true if at least one of the neigbours of the original ROI are true.

58 else

59 is = round(i/scale);

60 ks = round(k/scale);

61 roi(is,ks,j) = 0;

62 end

63

64 end

65

66 end

67 end

68 end

The following script divided a vector into two groups based on a group vector where two num-
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bers determined which group the index belonged to.

1 %This function sorts values in a vector into two new vectors according to

2 %groups defined by the group. The lowest value in group, defines group x.

3 function [x,y] = makegroups(vector,group)

4 n = length(vector);

5 var = min(group);

6 n1=0; %define the lengths of the vectors.

7 n2=0;

8 for i = 1:n

9 if group(i) == var

10 n1 = n1+1; %count number to be sorted into x

11 else

12 n2 = n2+1; %number of values to be sorted into y

13 end

14 end

15 x= zeros(1,n1); %initialise new vectors

16 y=zeros(1,n2);

17 x_i=0;

18 y_i=0;

19 for i = 1:n %sort values into the correct vectors.

20 if group(i) == var

21 x_i = x_i+1;

22 x(x_i) = vector(i);

23 else

24 y_i = y_i+1;

25 y(y_i) = vector(i);

26 end

27 end

Finally, variations of the following script were used to save parameters within a parfor loop, as

the parfor loop initially does not allow for this.

1 function parsaveTofts(fname,K_trans_low,K_trans,K_trans_high,K_transes,ve,

ve_low,ve_high,ves,vp,vp_low,vp_high,vps,rsquare,rsquares,rmse,rmses,time,

time_whole,Ct_median)

2



A.4. ADDITIONAL SCRIPTS 115

3 save(fname,’K_trans_low’,’K_trans’,’K_trans_high’,’K_transes’,’ve’,’ve_low’,’

ve_high’,’ves’,’vp’,’vp_low’,’vp_high’,’vps’,’rsquare’,’rsquares’,’rmse’,’

rmses’,’time’,’time_whole’,’Ct_median’);

4 end
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