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Abstract
The field of additive manufacturing (AM) has in the last decades become more
and more relevant. Rapid prototyping is a cheap and quick way of creating phys-
ical 3D-models of complex geometries. In this thesis, failure of polyactide (PLA)
specimens created using fused deposition modelling (FDM) has been studied using
an energy-based approach. PLA is a polymer created from biomass. It is there-
fore biodegradable and popular in the field of medical equipment. Failure loads
of 12 different notched specimens has been predicted using the averaged strain en-
ergy density (ASED) obtained from numerical analyses over a control radius in the
vicinity of the notch. The results indicate a good correlation between the experi-
mental and analytical results, providing results which for the most part stay within
a scatter band of ±20%.
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Sammendrag

I denne oppgaven har et energi-basert brudd-kriterie blitt brukt til å vurdere
prøvestykker med forskjellige kjerver laget ved hjelp av additiv tilvirkning. Mate-
rialet som blir brukt er polyaktid (PLA) som er en biologisk nedbrytbar polymer
som kan lages av flere forskjellige typer biologisk masse.

Den gjennomsnittlige tøyningsenergi-tettheten fra numeriske analyser over en
kontroll-radius i umiddelbar nærhet av kjervene har blitt sammenlignet med en
kritisk verdi basert på materialegenskaper for å forutsi brudd-styrken. I tillegg,
har bruddstyrken blitt anslått ved bruk av stressintensitets-faktorer beregnet ved
hjelp av numeriske analyser. Disse verdiene har blitt sammenlignet med resultater
fra eksperimenter som har blitt gjennomført tidligere.

Resultatene fra disse analysene viser en god korrelasjon mellom de analytiske
og eksperimentelle verdiene. Tallene ligger for det meste innenfor for et avvik på
±20%. Dette regnes som innenfor hva som kan forventes av lineær-elastisk brud-
dmekanikk. Spesielt ved bruk av anisotropiske materialer, som additivt tilvirket
PLA.
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1 | Introduction

1.1 Background and Motivation

A study into the use of the theory of critical distance to predict the fracture load
of notched additively manufactured PLA specimens has been conducted by Ahmed
and Susmel (2018). The method proved to work quite well, despite the anisotropy
and other influential factors creating uncertainties in the calculations.

For the last 20 years, an energy-based criterion has been developed as a tool for
failure assessment of notched geometries. It started as a criterion for static loads
in sharp notches or cracks but has developed into a criterion which can be applied
to many different types of notches. Blunt and sharp notches, and static as well as
cyclic loading are all compatible with the criterion.

The previous semester the thesis author worked on getting to know the failure
criterion based on averaging the strain energy density over a control radius, which
was developed by Lazzarin and Zambardi (2001). However, this was conducted on
sharp notches and cracks, which is not the case in the specimens tested by Ahmed
and Susmel (2018).

1.2 Problem Description

The ASED approach has its limitations, for instance when it comes to ductile ma-
terials. Several accurate material properties are also needed, which can be difficult
to obtain in some cases. The general understanding of energy approaches applied
to AM specimens is low. Therefore, studying the applicability of the approach to
geometries created through AM techniques is wanted.

1.3 Project Scope

1.3.1 Objectives

The objective of this thesis is to provide a better understanding and study the
feasibility of the ASED approach to predicting failure in notched AM PLA speci-
mens. This is to be done by using the test results from Ahmed and Susmel (2018),

1



Chapter 1. Introduction

where 12 different notched specimens have been tested under both uniaxial tensile
loading as well as 3 point bending.

The testing setups of the specimens are to be simulated in the CAE software
Abaqus. All the simulations are conducted in 2D, due to the plane conditions.
The results obtained from Abaqus are then to be compared to the experimental
results. As well as the ASED approach, the notch stress intensity factors are to be
obtained from the the specimens using Abaqus. These are to be compared to the
experimental results, and the feasibility of the approach is to be assessed based on
these results.

1.3.2 Limitations
Reproducing the samples, or creating new test samples in the same material and
with the same method, is difficult when the goal is similar material properties.
The samples have been printed using fused deposition modelling. The material
properties obtained in the specimens, are dependent on several factors. Mainly
the material properties of pure PLA, but also printing speed, nozzle diameter and
nozzle temperature are all factors which affect the material properties of the speci-
mens. This means that if one was to either reproduce the experiments, or conduct
further testing of similar samples, this could prove difficult.

1.4 Thesis Structure

Chapter 2 presents most of the theory which is deemed necessary to understand
the calculations conducted in the thesis.

Chapter 3 goes through three articles which are all important to this thesis. The
article which lays the groundwork for the work conducted in this thesis is presented,
as well as two other which presents the energy-based approach applied to different
cases.

Chapter 4 presents the analyses. It goes through the setup, including model and
mesh details, boundary conditions, and the outputs, as well as the results. The
results obtained from the ASED and NSIF analyses, as well as the results from
both criterions are compared to the experimental results. Both graphs and tables
are used to make it easier for the reader to understand.

Chapter 5 contains the discussion of the results obtained from the previous chapter.
The influential factors and abnormalities are presented and discussed.

Chapter 6 is the conclusion of the thesis. Here, the major points are gone through,
and further work is suggested.

2



2 | Theory

2.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics is the name for a collection of methods to asses
geometries subjected to stresses in the elastic regime. In the following sections,
some of the most important terms, and methods which are important to the work
conducted in this thesis are explained.

2.1.1 The Basics

Stress
Stress is defined as force per unit area: σ = F

A . In most of linear elastic fracture
mechanics, the stress in a specimen is the deciding factor of the mechanisms that
the specimen will experience. The behaviour of a material subjected to stresses is
described as either elastic or plastic. The elastic area is where a given geometry will
go back to its original shape after loading, plastic is where permanent deformations
occur. In figure 2.1 a typical stress strain curve for a ductile metal is presented.
The stress strain curve is the basis for most of LEFM. The curve can directly give
the factors yield strength, ultimate tensile strength, and fracture point, along with
several other material properties. These three however, are the most used. The
yield strength is the stress at which plastic deformation will occur if loaded above
this point. The UTS is the highest amount of stress a material can experience
before necking occurs for elastic materials, and fracture for predominantly brittle
materials. The fracture point is the stress at which fracture will occur.

The stress strain curve presented here is a curve showing the engineering stresses
and strains. These values do not take into consideration the test subject changing
shape during the tensile testing. A true stress true strain curve will often have a
shape which continues upward around the UTS point. This fact is important when
considering plasticity in the material, but in the elastic regime, engineering and
true stresses and strains are very close to each other. In this paper, only loading
in the elastic regime is considered, so this fact will not make a difference.

Strain
Strain is a unitless description of the amount of deformation a specimen is sub-
jected to. For a beam with constant cross-section subjected to tensile load in the

3



Chapter 2. Theory

Figure 2.1: Stress strain curve of a high strength steel. (From Otani et al. (2015))

longitudinal direction, the engineering strain is given as the change in length di-
vided by the the original length (∆L/L) (Anderson (2005)).

Young’s modulus
Young’s modulus, together with the Poisson’s ratio are factors describing the elastic
behaviour of a material. Young’s modulus is often denoted as the elastic modulus
(E modulus). The Young’s modulus describes the relation between the stress and
the strain according to Hooke’s law (σ = Ee), and is a measure of the stiffness of
a material within the elastic region (Otani et al. (2015)). As can be seen by re-
arranging Hooke’s law, the E-modulus is given by the slope of the stress strain curve
in the elastic region (E = σ/e). This formulation of Hooke’s law is a simplification
of the general statement for uniaxial load cases. The full statement can be seen in
equation 2.1, which includes multiaxial loading.

ex = (1/E)[σx − ν(σy + σz)] (2.1)

Poisson’s ratio
The Poisson’s ratio is a measure of how deformation in one direction will affect the
deformation in a perpendicular direction. Deformations, as explained earlier, is
quantified as strain in material sciences. For a sample subjected to uniaxial tensile
load along the x-direction, equation 2.2 gives the relation of strains in y- and z-
direction as a function of Poisson’s ratio and strain in x-direction. By re-arranging
this equation, a simple definition of the Poisson’s ratio can be obtained as shown.
However, a simple uniaxial load case is not always the case. In those cases, the full
statement from equation 2.1 is necessary (Hosford (2005)).

ey = ez = −νex −→ ν = −ey
ex

= − ez
ex

(2.2)

2.1.2 Notch Stress Intensity Factors

When a crack is subjected to tensile loads, it will experience either mode I, II or
III or a combination of the three. The three modes describe the different driv-

4



2.1 Linear Elastic Fracture Mechanics

ing mechanisms behind crack growth. Each of the modes will result in different
fractures, and therefore different forces to achieve crack growth.

Figure 2.2: Modes I, II, and III. (From Anderson (2005))

The NSIF is a factor which describes the conditions at the near vicinity of
the crack tip for linear elastic materials. Equation 2.3 introduces the parameters
included in the NSIF in its simplest form for a crack subjected to solely mode I
loading. The factors in question are applied stress and crack length. This equation
is relevant for semi-infinite bodies, where W >> a, where W is the width of the
plate. For specimens that don’t fulfill this demand, a factor f is used. The factor
f is a function of a and W , as well the position of the crack.

KI = σ
√
πa (2.3)

If KI is known and only mode I loading is applied, the stress situation at
positions around the crack-tip can be decided using equations 2.4, 2.5 and 2.6. In
cases that combine other modes, several other factors have to be taken into account.
In this thesis, only mode I loading is used. Figure 2.3 shows the parameters used
in the stress equations.

σxx =
KI√
2πr

cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
(2.4)

σyy =
KI√
2πr

cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]
(2.5)

τxy =
KI√
2πr

cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
(2.6)

For calculations of the NSIF’s caused by a notch with a notch radius ρ, a method
was presented by Lazzarin and Filippi (2006). This method is also useful for mixed
mode problems. The method is based on the general equation for KI shown in
equation 2.3. This equation is only valid for cracks, so to be able to numerically
calculate the NSIF’s equation 2.7 is used. r0 is the distance from the notch tip
to the coordinate systems origin, as shown in figure 2.4. This is dependent on the
notch opening angle 2α and notch radius ρ. For notch opening angles equal to zero,
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Chapter 2. Theory

Figure 2.3: Stress distribution in the near vicinity of a crack tip as a function of K1

given in polar coordinates. (From Anderson (2005))

the r0 is equal to half the notch radius. It is also worth to mention the factor r is
the distance from the coordinate system origin, and not the notch tip.

KV
ρ,I =

√
2πr1−λ1

(σθ)θ=0

1 + ω̃1

(
r
r0

)µ1−λ1
(2.7)

The values for σθ are plotted along the notch bisector line from FEA software.
the factors λ1, µ1 and ω̃1 are all dependent on the notch opening angle.

Figure 2.4: local coordinate system for blunt notches. (From Lazzarin and Filippi
(2006))

2.1.3 Strain Energy Density
Any specimen or geometry experiencing strain has an equivalent energy state which
is a direct function of the amount of strain the specimen is under. For FEA software
to calculate the strain energy, it takes into consideration the nodal displacement
which directly correlates to the amount of strain the specimen is under.

Because strain energy is in direct correlation with the loading conditions, it can
be used to give an understanding of the stress state around a crack or notch. This
information can in turn be used to calculate fracture load or fatigue behaviour of
different geometries.

6



2.1 Linear Elastic Fracture Mechanics

Equation 2.8 shows how the strain energy density can be calculated in materials
under a linear elastic regime (Lazzarin and Zambardi (2001)). For sharp V-notches,
the stress distribution with respect to the bisector line is presented in equation 2.9.
The factor λ1 is the Williams eigenvalues (Williams (1952)) for mode I cases, while
the factor χ1 is a notch opening angle dependent factor.

W (r, θ) =
1

2E
{σ2

11 +σ2
22 +σ2

33−2ν(σ11σ22 +σ11σ33 +σ22σ33)+2(1+ν)σ2
12} (2.8)

σθθσrr
σrθ

 =
1√
2π

rλ1−1K1

(1 + λ1) + χ1(1− λ1)

·

(1 + λ1) cos(1− λ1)θ
(3− λ1) cos(1− λ1)θ
(1− λ1) sin(1− λ1)θ

+ χ1(1− λ1)

 cos(1 + λ1)θ
− cos(1 + λ1)θ
sin(1 + λ1)θ


 (2.9)

The method of using a local energy based criterion for the prediction of static
and fatigue problems in notches with varying opening angles was proposed by
Lazzarin and Zambardi (2001). It is based on the assumption that a material
will fail when the averaged strain energy density inside a certain volume reaches a
critical value Wc. Calculations of the critical strain energy density and the control
radius depend both on material properties. According to Aliha et al. (2017), the
method was first applied to sharp V-notches under in-plane mixed mode loading
conditions. However, the method was soon developed, and is now applicable for
several notch types and materials.

(a) Sharp V-notch (b) Crack (c) Blunt V-notch

Figure 2.5: The control radius for different notches and cracks. (From Berto and Laz-
zarin (2009))

The control radius is applied in one of the three ways shown in figure 2.5. For
sharp notches and and cracks, the R0 is centered at the tip of the crack or notch
(figure 2.5 (a) and (b)). For blunt notches, the center of the control radius is placed
at a distance r0 from the notch tip (figure 2.5 (c)). Calculation of the distance r0
is shown in the previous section.

7



Chapter 2. Theory

Calculation of the the control radius R0 for a crack under plane strain conditions
equation 2.11 is used (Aliha et al. (2017)). For a notch with an opening angle
2α 6= 0, other methods have been proposed to calculate the control radius (Lazzarin
and Zambardi (2001)). However, according to Berto and Lazzarin (2009) it can
be considered an acceptable engineering approximation to use the crack radius for
different opening angles.

Wc =
σ2
UTS

2E
(2.10)

R0 =
(1 + ν)(5− 8ν)

4π

( KIC

σUTS

)2
(2.11)

The radius R2 shown in figure 2.5 (c) is obtained by adding R0 and r0. This is
the distance from the center of the control radius to the edge of the crescent shape
it forms around the notch tip. For blunt notches, this is the total control radius.

2.1.4 Connecting NSIF and SED

To be able to use ASED in the same way as NSIF’s are used, some factors need to
be in place. An area around the crack-tip needs to be defined to decide the density
of the strain energy. Within a certain area of the crack-tip, the stress distribution
is given by the NSIFS. By obtaining the ASED in this area, this value can in turn
be used to calculate the NSIF’s.

An expression to link the energy approach of ASED with NSIF’s to create
an energy-based failure criterion was proposed by Lazzarin and Zambardi (2001).
The relation is presented in equation 2.12. By using this relation, the NSIF’s of a
notch or crack can be calculated indirectly through the ASED approach with the
benefits that brings. For instance, mixed mode problems are made easier and a
coarser mesh can be used which can drastically reduce the simulation time. Also,
problems in regards to the different units on NSIF’s from different notch opening
angles are removed. It also takes into consideration higher order terms such as
T-stress (Berto and Lazzarin (2014)). This will not be gone into detail in this
thesis.

W 1 =
I1

4Eλ1(π − α)

(
K1

R1−λ1
0

)2

(2.12)

2.2 Finite Element Analysis

When calculating stresses in simple structures such as beams with constant cross-
section, equilibrium laws can be used. In this case, the whole structure is looked
at as one part. This method restricts the use to very simple geometries. FEA
is useful when the geometry in question is of a more complicated nature. This
is a numerical method for approximately solving a structure or other types of
mathematical problems. The method divides geometries into several smaller parts
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2.2 Finite Element Analysis

called finite elements. This can be done in either one, two or three dimensions. For
each of the three dimensions, there are several different types of elements which
can be used. However, in this case, only 2D analyses will be conducted, so only
these types will be covered.

Figure 2.6: 2D element types. (From Dassault Systèmes Simulia (2014)).

For 2D analyses, there are two main types of elements, triangles and quadri-
lateral (squares). These can be either linear or quadratic. Linear elements have
nodes only at the corners of the elements, while quadratic elements have nodes at
the corners as well as on each midside. The main difference between the two being
that linear elements use linear or first order interpolation of the degrees of freedom
(DOF) between the nodes, while quadratic elements use second order interpolation
between each node. In figure 2.6 both triangle (top) and quadrilateral (bottom)
elements can be seen. On the left, linear elements are shown, while on the right,
quadratic elements can be seen.

Generally in FEA, the use of finer mesh will give more accurate results. How-
ever, using fine mesh takes longer time to compute given the large number of nodes.
It is therefore useful to know when it is necessary to use fine mesh, and when it
is not. For instance, a large structure containing a stress riser such a hole can
be meshed quite coarsely along most of the structure, but around the hole, it can
be wise to decrease the size of the elements. This can decrease computation time
considerably while maintaining the accuracy.

For some types of analyses, the accuracy of the results does not depend much
on the element size. An example of this is when calculating the strain energy in
a structure. The strain energy is a function of the nodal displacements within the
structure, and does not require the displacements between nodes to be accurate.
This is a fact which can be taken advantage of to decrease computational time and
power.

9



Chapter 2. Theory

2.3 Additive Manufacturing of PLA

AM has in the last decade become more and more popular. Its uses are many, such
as rapid prototyping and creation of complex geometries. The use of AM will in the
next couple of years only become more popular, as it becomes cheaper and better.
There are more materials available for AM every day, and the material properties
of the printed geometries keep getting better. In this section, some of today’s AM
methods used for printing polymer geometries are presented.

2.3.1 Additive Manufacturing
There are several ways of creating physical geometries through AM. However, each
method restricts what materials can be used. the most used AM methods today
according to Wang et al. (2017) are presented in the list below. In figure 2.7 the
five different methods are shown.

1. Fused deposition modelling (FDM)

2. Selective laser sintering(SLS)

3. Powder bed and inkjet head 3D printing(3DP)

4. Stereolithography(SLA)

5. 3D plotting/direct-write

Fused Deposition Modelling
This method is the most common for polymers. It uses one or more filaments
of thermoplastics. The filament is fed through a heated nozzle which softens the
polymer. The nozzle then deposits the soft polymer onto a surface where one layer
at a time is created for the geometry being printed.

Selective Laser Sintering
Selective laser sintering uses a powder bed. A roller then distributes the powder
evenly onto a build surface. When the powder is distributed, a laser sinters the
desirable shape of each layer by heating the substance. This whole process is re-
peated for each layer, until every layer has been created, one on top of the other
to create a 3D geometry.

Powder Bed and Inkjet Head 3D Printing
This method is similar to the selective laser sintering. The main difference between
these two methods is the binding method. Here, a liquid binder is distributed on
top of each layer of powder, instead of laser sintering. The procedure of rolling new
powder and binding is repeated for each layer.

Stereolithography
Stereolithography deviates from other methods by using a tank of photocurable
resin. The print surface starts just beneath the surface of the resin. A laser then
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2.3 Additive Manufacturing of PLA

cures the resin in the desired shape. The printing surface with the first layer of the
3D geometry then moves down a step so that the surface of the resin bath covers
the previous cured layer. The laser then repeats the process for the next layer.
This whole process is repeated until the geometry is finished.

3D Plotting/direct-write
3D plotting uses viscous material stored in a syringe. This material is extruded
onto the print surface in a similar manner to FDM. The difference here, is that
the material requires curing. This can be done by either using heat, UV light or
mixing nozzles, depending on what material is being used.

2.3.2 PLA

Polyactide is a polymer created from biomass, and is therefore biodegradable. Sev-
eral types of plant matter can be used, such as sugarcane, potatoes, tapioca roots,
chips and cornstarch. PLA is relevant to use as a material in medical equipment
where biodegradability is wanted (Ahmed and Susmel (2018)). As a material it
is very close to plastics such as ABS. PLA is described as an aliphatic polyester
which can withstand temperatures up to 110◦C (Kariduraganavar et al. (2014)). It
is soluble in most organic solvents, such as chlorinated solvents, benzene and ace-
tonitrile. PLA is suitable for packaging of food items and goods for not too long
periods. If left in nature, it will degrade to harmless natural compounds within a
year. It is also used for medical equipment because of its biodegradability. If left
inside the body, it can gradually degrade to give the body time to adapt to it not
being there over a long time (Garlotta (2001)).

2.3.3 Anisotropy

Most of linear elastic fracture mechanics requires an isotropic nature of the material
in question. Isotropy means that a material has the same strength in all directions.
If a sphere is assumed, pulling the sphere in one direction with the force F should
give the same result as pulling it in an arbitrary direction with the same force F .
Examples of this are untreated cast metals and plastics.

Anisotropy describes a material which does not fulfill these criteria. Laminates
and wood are typical examples of anisotropic materials. Most of today’s AM meth-
ods involve building one layer at a time. To be able to create an isotropic material
by this method, the adhesion between each layer has to be in such a manner that it
does not affect the overall strength of the structure. Achieving this is very difficult.

When using FDM, the anisotropy is not just between the layers of each section.
The adhesion between each single filament and the surrounding filaments as well
as the angle in which they are printed come into play. In figure 2.8 two different
samples can be seen. The sample in figure 2.8 (a) shows a sample where all filaments
are printed longitudinal to the loading direction. This gives a fracture surface which
is close to perpendicular to the loading direction. The specimen in figure 2.8 (b)
has been printed with every other layer at a 45◦ and −45◦ angle to the loading
direction. This gives a fracture surface which creates a sawtooth pattern across the
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(a) Fused deposition modelling (b) Selective laser sintering

(c) Powder bed and inkjet head 3D
printing

(d) Stereolithography

(e) 3D plotting/direct write

Figure 2.7: 5 different AM methods for polymers. (From Wang et al. (2017))

cross-section. From the SEM picture it is possible to see that almost every filament
fails perpendicular to the longitudinal direction of the filament.
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2.3 Additive Manufacturing of PLA

(a) Specimen printed with filaments lon-
gitudinal to loading direction.

(b) Specimen printed with every other
layer 45◦ and −45◦ to loading direction.

Figure 2.8: Scanning electron microscope pictures of the fracture surface of two different
FDM produced ABS samples. (From Ahn et al. (2002))
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3 | Literature

This chapter covers some articles which were considered to be important in relation
to the topic at hand. Each section summarizes one article. All the figures, tables
and equations used in this chapter, are taken from the respective articles. The
article in section 3.1 looks into using LEFM to asses the fracture load of AM PLA
specimens. It covers everything from obtaining material properties, to testing, and
comparing analytical results to actual test data. The testing work conducted in
this paper lays the groundwork for the work being done in this thesis.

The articles in sections 3.2 and 3.3 cover ASED. They look at how it can be
applied to both static and cyclic loading, as well as different types of notches
and cracks. Mixed mode conditions are also covered, as well as different types of
materials.
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3.1 Application of LEFM to Additively Manufac-
tured Specimens

The use of AM has in the later years become more and more popular. Thus,
being able to understand and analyze structures made by such methods becomes
increasingly important. In this paper, several different specimens have been printed
using fused deposition modeling (FDM).

Due to the nature of AM, which can create very intricate and complex ge-
ometries, it is important to be able to understand the effect of notches in such
specimens. A study into this was conducted by Ahmed and Susmel (2018). This
was done by creating and testing a large variation of notched specimens printed
in PLA. Both V and U notches, subjected to both tensile and 3-point bending
regimes. The test results were then compared to analytical calculations using the
theory of critical distance (TCD). The following section is a collection of the parts
considered the most important from Ahmed and Susmel (2018).

3.1.1 The Theory of Critical Distance

The TCD is a collection of three different methods of determining the effective
stress (σeff ) in the vicinity of a crack or notch. The value is then compared to the
ultimate tensile strength of the material. In short, the relation in equation 3.1 has
to be fulfilled to avoid fracture according to the TCD. The three methods are all a
function of the distance L which can be determined using equation 3.2, assuming
brittle material properties (σ0 = σUTS).

σeff < σ0 (3.1)

L =
1

π

(
KIC

σUTS

)2

(3.2)

(a) Area method (b) Line method (c) Point method

Figure 3.1: The local coordinate systems for the three methods of TCD. (From Ahmed
and Susmel (2018))

Area method
The area method uses a semi-circle with its center at the crack-tip and a radius
equal to L as shown in figure 3.1(a). The σeff in this case, is decided by integrating
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3.1 Application of LEFM to Additively Manufactured Specimens

across this area as a function of the principal stress in accordance with equation
3.3.

σeff =
4

πL2

∫ π/2

0

∫ L

0

σ1(θ, r) · r · dr · dθ (3.3)

Line method
The line method calculates the σeff by averaging the stress across the distance 2L
along the notch bisector line as shown in figure 3.1(b). The integration formula is
shown in equation 3.4, where σy is the stress perpendicular to the notch bisector
line at any given point.

σeff =
1

2L

∫ 2L

0

σy(θ = 0, r) · dr (3.4)

Point method
The point method states that the effective stress due to a crack is equal to the
stress perpendicular to the crack bisector line at a distance L/2 from the crack
tip. This is shown in figure 3.1(c). Calculating the effective stress is done using
equation 3.5.

σeff = σy

(
θ = 0, r =

L

2

)
(3.5)

3.1.2 Fabrication and Testing of the Specimens
To decide different material properties, several specimens were made for this pur-
pose. These included a dog bone, a notched tensile specimen, as well as two CT
specimens. However, only the dog bone and most relevant CT specimen will be
included. The other two specimens can be seen in the reference article. The two
specimens included in this report can be seen in figure 3.2.

(a) Dog bone specimen (b) CT specimen

Figure 3.2: The two main specimens used for determining material properties. (From
Ahmed and Susmel (2018))

The material properties to be decided by these two specimens are the Young’s
modulus (E) from the dog bone in figure 3.2(a), and the fracture toughness (KIC)
from the CT in figure 3.2(b).
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However, FDM printing can give a lot of different material properties of samples
by using different printing angles, shell thickness, nozzle diameter, print speed,
material, and several other variables. To give some idea of how two of these factors,
printing angle and shell thickness, affects this, several different variations of the two
were tested in the dog bone samples. All variations are tested with three different
samples to be able to identify irregularities in the test results.

The printing angle (θp) is the angle at which the specimens are laid onto the
build plate (figure 3.3). The printer used in this case, builds every other layer
perpendicular to the former. This means that for instance using θp = 45◦ means
that every other layer is longitudinal and perpendicular to the loading direction
of the specimen, [0◦, 90◦]. Five different printing angles were tested using the dog
bones: 0◦, 30◦, 45◦, 60◦ and 90◦.

Figure 3.3: Definition of the printing angle θp. (From Ahmed and Susmel (2018))

When acquiring the fracture toughness from the CT samples, some lesson
learned from the dog bone samples were taken into account. The samples printed
using angles 0◦ and 90◦, as well as 30◦ and 60◦, gave very similar results. This
resulted in that for all the next tests, only the angles 0◦, 30◦ and 90◦ were used.
Also, the shell thickness was set to 0.4mm, which is equivalent to the nozzle di-
ameter, for all samples. This was due to several factors. First, it is considered
good practice to use only one filament width as the shell thickness when conduct-
ing material testing. Second, the resulting E, σ0.2% and σUTS showed very little
variation when changing the shell thickness. Third, when not including any shell
thickness, a significant amount of stress risers, in the form of small indents, will be
present. These stress risers are a large source of errors in testing, and are therefore
unwanted. The shape factor used when calculating the fracture toughness was the
one reported by Tada et al. (1973).

The notched samples from figure 3.4 were tested in the conditions mentioned
above. The three printing angles were all tested three times for each specimen.
This means that nine tests were run for each specimen type. The results from
these tests were then compared to the predicted failure loads from TCD.

When using TCD to predict failure load of the specimens, the failure stress, σ0
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Figure 3.4: The 12 notched specimens being tested. (From Ahmed and Susmel (2018))
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Figure 3.5: Stress vs distance curves for sample A. (From Ahmed and Susmel (2018))

was needed. A brittle material property is assumed for these situations, and this
is the case with most of the additively manufactured PLA specimens. The stress
strain curves from the testing gave a material strength very close to the UTS, as
well as a typical brittle curve shape. It is therefore deemed safe to assume that
σ0 = σUTS . For the calculations conducted, a value for L from equation 3.2 was
needed. Calculating L from this equation requires a fracture toughness for the
material. The authors of the article did not deem the results from testing the CT
specimens or a tensile specimens with crack-like notches accurate enough to use for
the calculations.

Instead, an alternative method was used. The test results from specimen A
from figure 3.4 were used to create three stress v distance curves (figure 3.5). One
for each printing angle. This linear elastic stress field was then used to determine
a value for L, using the point method definition (the stress at a distance L/2 from
the notch tip is equal to the UTS). The point used, was an average of all three
curves. This resulted in a value of L = 4.6mm. This method is also presented in
Susmel and Taylor (2008).

Next, the three TCD criteria were applied to all the specimens, and compared
to the experimental test results. The line method turned out to not be applicable in
this case due to (2L = 9.2mm) was larger than half the width of the test samples.
However, both the point and the area method gave good results. The error in the
graphs were calculated according to equation 3.6.

Error =
σeff − σUTS

σUTS
(3.6)

The results, which can be seen in figure 3.6, give a fairly low percentage error.
The peak errors for each criterion is at about 40%. However, most of the results
are within an error of 20% which is considered well within the errors which one
normally accepts for all LEFM.
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(a) Errors from using the point method.

(b) Errors from using the area method.

Figure 3.6: The accuracy of the point and area method in determining the fracture load.
(From Ahmed and Susmel (2018))
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3.2 Application of the ASED Approach to Sharp
and Blunt Notches

The use of averaged strain energy density over a control volume to indirectly calcu-
late stress intensity factors in cracks and notches are explored in this section. The
section is based on the work conducted by Lazzarin et al. (2010). When a control
radius is small enough around a v-notch with (ρ = 0), the strain energy density can
be written as a function of the first order terms of the asymptotic stress distribu-
tions. It is also shown that it is not dependent on sharp notches to be applicable.
These values only depend on the notch stress intensity factors. This allows the
practice of converting ASED values to NSIF values a posteriori. The advantage
being that calculation of ASED is only to a small degree dependent on the mesh
size. The first part of the article explores the effect of mesh size on ASED values,
and the second looks more at using ASED to calculate NSIF’s from different types
of notches.

Using an ASED Approach to Welded Geometries Subjected to Tensile
Loads

At first, two different geometries are studied. These have previously been analysed
by Radaj et al. (2009). The Geometries can be seen in figure 3.7. The load was
applied as a displacement u0, to achieve a nominal stress of σ0 = 100MPa. As
control radius around the weld toe, a circle with a radius of R0 = 0.28 is used. The
ASED was calculated for both specimens from very fine meshes as well as coarse
meshes. In figure 3.8 (a) and (b), two examples of the meshes used in the analyses
can be seen. The results from geometry 1 can be seen in figure 3.9 and 3.10, while
results from geometry 2 can be seen in figure 3.11. The reason for using different
mesh sizes for the analyses was to be able to study the effect of the size. The
hypothesis being that for energy based approaches using nodal displacements, the
analyses are only dependent on mesh size to a small degree. All of these results are
in agreement with the fact that using coarse meshes for conducting ASED analyses
are well within the realms of what is acceptable. The largest deviations are at
around 11%, which is only the case for two of the meshes tried for the notch. Both
these meshes also have a very large size ratio between adjacent elements, which is
a known factor which can give faulty results.
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Figure 3.7: The two welded geometries analyzed. (From Lazzarin et al. (2010))

(a) Geometry 1 (b) Geometry 2

Figure 3.8: Examples of the meshes used on geometry 1 and 2. (From Lazzarin et al.
(2010))

Figure 3.9: Results of ASED analysis for the weld root in geometry 1. (From Lazzarin
et al. (2010))
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Figure 3.10: Results of ASED analysis for the weld toe in geometry 1. (From Lazzarin
et al. (2010))

Figure 3.11: Results of ASED analysis from geometry 2. (From Lazzarin et al. (2010))

ASED From Sharp V-notches

According to William’s solution, the stress intensity factors for sharp V-notches
in plane problems can be calculated with accuracy using equations 3.7 and 3.8
(Williams (1952)). For mode I and II cases, the local stress is proportional to
1/r1−λ1 for mode I, and 1/r1−λ2 for mode II. This fact is taken advantage of when
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applying this to an energy-based approach.

K1 =
√

2π lim
r→0+

r1−λ1σθθ(r, θ = 0) (3.7)

K2 =
√

2π lim
r→0+

r1−λ2σrθ(r, θ = 0) (3.8)

A simple relation between the ASED and NSIF is given in equation 3.9, where
e1 and e2 are dependent on the notch opening angle, Poisson’s ratio and plane
stress or plane strain conditions. This equation can be simplified for problems
concerning only mode I or only mode II stress distribution. In these cases, one of
the terms from the equation is equal to zero which removes the term, leaving an
equation containing NSIF for one mode as well as the resultant ASED.

W =
e1
E

[
K1

R1−λ1
0

]2
+
e2
E

[
K2

R1−λ2
0

]2
(3.9)

When loading the sample in figure 3.12 as shown in the figure both mode I
and II NSIF’s appear in both the 2α = 135◦ and 2α = 45◦ corners. To be able
to calculate the NSIF’s when both mode I and II are present, the ASED over two
control radii are necessary. Both have their center at the notch-tip, but different
radius. Both the 2α = 45◦ corners have stress distributions due to both mode I
and II singular. This gives stresses proportional to 1/r0.495 for mode I and 1/r0.376

for mode II. Only the mode I stress field is singular for the 2α = 135◦ corners,
giving stresses proportional to 1/r0.326 for mode I, and r0.302 for mode II.

In table 3.1 the results from the mixed mode analysis on a diamond notch can
be seen. The difference gotten from using fine and coarse meshes are shown as
deviation in percentage. For the corners with 2α = 45◦, 16 and 8 elements have
been used, with a difference of approximately 3% for both mode I and II. for the
2α = 135◦ corners, 8 and 4 elements are used, with a difference of approximately
1% and 4% for mode I and II respectively.

Figure 3.12: Diamond shaped notch giving mixed mode I and II. (From Lazzarin et al.
(2010))
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Table 3.1: Results from analyses on figure 3.12. K1 in MPa(mm)1−λ1 and K2 in
MPa(mm)1−λ2 . (From Lazzarin et al. (2010))

Mixed mode Fine mesh Coarse Mesh
2α λ1 λ2 K1 K2 Number (rad. 1) Number (rad. 1) K1 K2 ∆K1[%] ∆K2[%]
45 0.505 0.624 355 325 8 16 366 315 -3.09 3.1
135 0.674 1.302 127 -97 4 8 128 -101 -0.78 4.1

ASED From Blunt U- and V-shaped Notches

The use of averaged SED over a control radius can also be used for blunt notches
(ρ > 0). Equations 3.10 through 3.12 are valid for an infinite plate under remote
uniaxial tensile stress, S (Kirsch (1896)). The equations use a polar coordinate
system (r, θ), where θ = 0 is the load direction. See figure 3.13.

σrr =
S

2

[
1 + 3

(
a

r

)4

− 4

(
a

r

)2]
cos2θ +

S

2

[
1−

(
a

r

)2]
(3.10)

σθθ = −S
2

[
1 + 3

(
a

r

)4]
cos2θ +

S

2

[
1 +

(
a

r

)2]
(3.11)

τrθ = −S
2

[
1− 3

(
a

r

)4

+ 2

(
a

r

)2]
sin2θ (3.12)

Maximum elastic stress is σθθ = 3S for θ = 90◦ and r = R1. By creating a
circle section with a center at a/2 from the edge of the hole, a crescent shape is
formed on the outside of the hole. This gives two radii: R1 and R2. R1 is constant,
but R2 varies according to equation 3.13. It is important not to mix this R2 with
the one from figure 2.5 (c), which is the distance from P to the outermost point of
the crescent shape.

Figure 3.13: Plate with a radius of a, under tension. (From Lazzarin et al. (2010))

R2(θ) =
1

2

(
asinθ +

√
4R2

0 + 4aR0 + a2sin2θ

)
(3.13)
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In equation 3.14 the formula for the angle θ can be seen. This is the angle to
the peak of the crescent control radius, which is used in equation 3.15.

θ = Arccos

(
1− R0

a
− R2

0

a2

)
+
π

2
(3.14)

The equation for calculating the strain energy density for an isotropic material
under a linear elastic regime is shown in chapter 2 in equation 2.8. For plane strain
conditions σzz = ν(σrr + σ00), and for for plane stress σzz = 0.

The values obtained from the previous equations, can be plotted into equation
3.15. This gives a new equation for the averaged strain energy density which can
be seen in equation 3.16.

W 1 = 2

[ ∫ +θ

+π/2

dθ

∫ R2

R1

W (r, θ)rdr

]
/A (3.15)

σmax substitutes the peak stress at the edge of the hole, which is 3S. This
correlation is only valid in infinite plates. However, values beneath 0.2 for R0/a,
give errors beneath 2%, given that σmax substitutes 3S.

W 1 =
σ2
max

2E
·H(R0/a) (3.16)

The two models in figure 3.14 have been tested. First a stress analysis using fine
mesh was conducted to identify σmax. This was done to have a reference value for
the peak stresses obtained from the ASED analysis. The ASED was then calculated
using coarse mesh around the location of predicted peak stress. Equation 3.17 was
then used to convert the ASED to stress. These values were then compared with
the values obtained from the stress analysis conducted earlier. The results from
these analyses can be seen in table 3.2. Also here, the max difference is around
5.5%.

σmax =

√
4E

π
· W
H

(3.17)
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(a) Pure mode I. (b) Pure mode II.

Figure 3.14: Double symmetry applied to U-notch, under pure mode I (a) and pure
mode II (b). (From Lazzarin et al. (2010))

Table 3.2: Results from pure mode I and II on U-shaped notches. (Data from Lazzarin
et al. (2010))

Fine mesh Parabolic FE (coarse mesh)
σmax[MPa] No. of elements (total) No. of elements (radius) W [MJ/m3] σmax[MPa)] ∆[%]

Mode I, 2α = 0◦ 816 33 3 0.740 796 2.5
Mode II, 2α = 0◦ 880 34 4 1.186 830 5.6
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3.3 Application of ASED to Predict Mixed Mode
Problems

There are several ways of predicting the failure load of cracked specimens under
mixed mode loading. Razavi et al. (2017) explores the feasibility of using the ASED
criterion to accurately predict the failure load of cracked granite specimens under
mixed mode I/II loading. The mixed loading was obtained from using a four point
bending setup as shown in figure 3.15. Controlling the mixity of the modes is done
by changing the relation between L1, L2, L3, and L4 as well as the relation a/W .
This has earlier been shown by Ayatollahi and Aliha (2011).

Figure 3.15: A schematic of the four point bending setup (AFPB). (From Razavi et al.
(2017))

For any mixed mode conditions for the AFPB, equations 3.18 and 3.19 can be
used to calculate KI and KII . YI and YII are geometry factors for mode I and II.
They depend on L1, L2, L3 and L4 and the relation a/W , and are computed using
finite element analyses. The exact values can be found in the article in question.

KI =
P
√
πaYI

BWL1
(L1 − L3) (3.18)

KII =
P
√
πaYII

BWL1
(L1 − L3) (3.19)

A factor Me is used to describe the load mixity in a crack. This is calculated
using equation 3.20. This factor ranges from 1 (pure mode I) to 0 (pure mode II).

Me =
2

π
arctan

(
KI

KII

)
(3.20)

The calculation of ASED has been covered extensively in previous sections in
this thesis, and will therefore not be covered again. The formula for calculating R0

can be seen in equation 2.11 in section 2.1.3.
The method used in this article to decide the fracture load of each case has its

basis on using a critical SED (Wc). The square root of the relation between the
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critical SED and the averaged SED equals the relation between the fracture load
and applied load as shown in equation 3.21. Calculating the critical SED is done
as shown in equation 2.10 from section 2.1.3.

Pth/P =

√
Wc/W (3.21)

The method described above was used to run FE analysis using the ASED
approach to determine the failure load of several granite specimens subjected to
different mixed mode load cases. Cases of pure mode I and II were also tested.
The mixity of the loads was varied from pure mode I to pure mode II, including
several values of Me in between. The results can be seen in figure 3.16. This figure
clearly shows a good correlation between the ASED approach and the experimental
values.

Figure 3.16: Results of ASED analysis compared to experimental results. (From Razavi
et al. (2017))
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4.1 Setup

The goal of these analyses is to check if it is possible to accurately predict the
failure load of AM specimens of PLA using FEA in a linear elastic regime. There
are several issues, such as anisotropy and material uncertainty which makes the
analyses difficult. However, the goal is not to model the anisotropy as accurately
as possible. It is to see if it is possible to simplify the structures, and assume
isotropy and still get satisfactory results.

The work conducted in this thesis is based on the work done by Ahmed and
Susmel (2018) in testing a large variety of notched AM PLA specimens under
uniaxial loading and 3 point bending regimes. This work has been summarized in
section 3.1.

There were mainly two different types of analyses conducted. The calculation
of ASED withing a control radius and calculation of NSIF’s around the different
notches. The main thing separating the setup of these analyses is the mesh. Calcu-
lating the ASED using FEA does not require fine mesh which is shown by Lazzarin
et al. (2010) for sharp notches, and also tested later in this thesis for blunt notches.
For this reason, a coarser mesh is used for the ASED analyses than for the NSIF
analyses. Apart from this fact, both analyses have the same setup.

The ASED analyses were run averaging the results from each printing angle
respectively (3 samples for each printing angle), and running analyses simulating
the material properties for each printing angle.

The analyses conducted:

1. Mesh sensitivity for ASED analyses

2. Required mesh for accurate NSIF’s

3. Failure load using ASED approach

4. Failure load using NSIF approach
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4.1.1 Material Properties

Given the anisotropic nature of the 3D printed specimens, some simplifications
were conducted. The test results obtained from Ahmed and Susmel (2018) give
the basis for calculating the modified material properties. The results from the
tensile tests conducted on the dog bone sample shown in figure 3.2(a), are used to
average a value for the Young’s modulus as well as the UTS.

Three different shell thicknesses were used. However, the article chose to only
use a shell thickness of 0.4mm for the notched samples, and therefore only the
values obtained for the dog bone with the same shell thickness is used. Also, the
dog bone samples were printed with five different printing angles (0◦, 30◦, 45◦, 60◦

and 90◦), but the notched samples were only printed using the three first angles.
This was due the fact that printing angles 0◦ and 90◦ as well as 30◦ and 60◦ gave
very similar results.

The difference in these values meant that it would be natural to calculate dif-
ferent material properties for each printing angle. This was done by averaging all
three specimens for each case. The fracture toughness was calculated from the test
results on the CT specimens, and the same procedure of averaging the three test
results for each case was done. The Poisson’s ratio was obtained from literature
(Torres et al. (2015)). This Poisson’s ratio is for molded PLA which is the closest
it was possible to get without conducting experiments. The values obtained for
each printing angle can be seen in table 4.1.

Table 4.1: The material properties used for each printing angle.

Printing angle [◦] Youngs modulus [MPa] Ultimate tensile strength [MPa] Fracture toughness [MPa
√
m] Poissons ratio [-]

0 3235.0 42.7 4.6 0.36
30 3314.3 40.9 4.0 0.36
45 3372.0 42.5 4.2 0.36

4.1.2 Model

Preparing the models for analyses required several steps. All analyses were con-
ducted in 2D to simplify the analysis. This meant that the geometries from figure
3.4 were modeled as specimen A, which can be seen in figure 4.1. A thickness was
then added to the surface geometry. This thickness was averaged from the previ-
ously conducted tests. Next, the surface was partitioned to be able to extract the
ASED from within the control radius. This is explained in more detail in section
4.1.5. This can be seen in the same figure.

Calculating the control radii for the analyses was done in the same way as
described by Razavi et al. (2017). Equation 2.11 from section 2.1.3 was used. This
equation requires the Poisson’s ratio, fracture toughness, and UTS. This means
that there are different control radii for each printing angle. The same goes for
the critical SED. The equation used to calculate is dependent on UTS and Young’s
modulus as shown in 2.10. These values can be seen in table 4.2.

Since all the specimens being tested are of a blunt nature, the center of the
control radius also has to be calculated. This is done according to the equation
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Figure 4.1: The partitioned geometry of specimen 3B.

Table 4.2: The values used for control radius and critical SED.

Printing angle [◦] R0 [mm] Wc [mJ/mm3]
0 2.67 0.28
30 2.16 0.25
45 2.24 0.27

presented in figure 2.4. For the notches with opening angles 2α = 0◦, this simply
gives r0 = ρ/2. For the specimens with other opening angles, however, the value
has to be calculated specifically for each case. In table 4.3 the obtained values are
presented.

The opening angle 2α is given in radians. There are only two opening angles
in this case which are not equal to zero, which are 2α = 30◦ −→ 0.524rad and
2α = 135◦ −→ 2.356rad.

Table 4.3: The values calculated for r0 for every case.

2α [rad] ρ[mm] r0[mm]
0.524 0.05 0.023
2.356 0.4 0.080
2.356 0.5 0.100
2.356 1 0.200
2.356 3 0.600

The values obtained for R0 and r0 are added together to give the radius R2

which is the distance from the center of the control radius to the outermost point
of the crescent point of the control radius. A depiction of R2 is given in figure 2.5
(c).

4.1.3 Mesh

As previously shown by Lazzarin et al. (2010), calculating the ASED from within
a control radius is not dependent on fine mesh. However, the mesh dependency
conducted in these analyses were done for cracks and sharp V-notches. In the
cases being considered here, all specimens are either blunt U- or V-notches. For
that reason, it was considered reasonable to conduct a comparison with the models
in question. This was done by using three different versions of specimen A, with

33



Chapter 4. Analysis

the same printing angle. For each version, the number of FE within the control
radius was increased. The results from all three were then compared to the result
from the analyses conducted using coarse mesh.

(a) Coarse mesh for ASED analysis. (b) Control radius, coarse
mesh.

(c) Fine mesh for NSIF analysis. (d) Control radius, fine
mesh

Figure 4.2: Specimen 3B with coarse mesh, whole model in figure (a) and control radius
in (b). Fine mesh, whole model in figure (c) mesh and control radius in figure (b).

An analysis to obtain the NSIF’s for all of the notches in question was also
conducted. To be confident that the values were to be trusted, a mesh dependency
analysis was also conducted here. In this case, it was done by finding NSIF’s using
a very coarse mesh. Then, the mesh size was decreased stage by stage to see how
it affected the resultant NSIFS’s.

For all analyses, quadratic mesh, under plane strain conditions was used.

4.1.4 Constraints and Loads

The specimens being tested were applied loads and boundary conditions to simulate
the real conditions under experimental testing as best as possible. This is important
because the results from the simulations are to be compared to the test results. All
specimens were applied a unit load, which means a load that is equal to one. In
this case 1N . The reason for applying a unit load is so that when the formulation
from equation 3.21 is used, the fracture load equals the root of the critical SED
divided by resulting ASED.
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There are two main types of specimens being tested: uniaxial tension (figure
4.3 (a)) and 3 point bending (figure 4.3 (b)) specimens. Both are to be applied a
unit load. For the 3PB specimens, this is easily done by applying a concentrated
force at the midpoint of the top of the specimen equal to one.

The BC’s for the 3PB specimens are of a displacement/rotation type. The
constraints are placed 5mm from the corner on each side. On the left-hand side,
displacement in both x- and y-direction is constrained, while on the right, only
displacement in the y-direction is constrained.

(a) Axial specimens.

(b) 3 point bending specimens.

Figure 4.3: The loads and BC’s as they are applied to both axial and 3PB specimens.

From the listed measurements of all the specimens tested from Ahmed and
Susmel (2018), the thickness of the specimens are not all equal. They vary from
4.1mm to 4.3mm. This means that to be able to apply a load equal to one across
the cross-section, the thickness of the sample needs to be taken into consideration.
To apply a unit load to the different cross sections depending on the thickness, the
formulation of pressure is used (P = F/A). In the list below, the applied pressure
to the end surface for each case can be seen. The pressure is applied with a negative
unit to achieve a tensile and not compressive regime.

1. t = 4.1mm −→ P = 0.0098N/mm2

2. t = 4.2mm −→ P = 0.0095N/mm2

3. t = 4.3mm −→ P = 0.0093N/mm2
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The axial specimens were constrained on the left-hand side from displacement
in both x- and y-direction along the whole end surface. On the right-hand side,
only displacement in the y-direction is constrained. This method turned out to
give the best equal distribution on both sides of the bisector line.

4.1.5 Outputs and Calculations
To calculate the ASED inside the control radius of the specimens in question, two
outputs are needed from the FEA software. The ASED is simply the strain energy
per volume unit. To be able to request outputs from within a certain area, the
partitioned control radius is selected as a ”set”. This set can in turn be selected as
a ”display group” in the analysis results. The outputs ”ELSE” for element strain
energy and ”EVOL”, which is the element volume, is requested. Using equation 4.1,
the ASED within the control radius can be calculated. This process is in principle
the same if done in 2D or 3D models.

ASED =
ELSE

EV OL
(4.1)

Once the ASED values are obtained, the relation between loads and resultant
ASED values, presented in equation 3.21 in section 3.1, are used to calculate a
predicted fracture load.

The calculation of NSIF’s are a little more complicated. The same models are
used as for ASED analyses, except the mesh size is decreased considerably. The
NSIF’s are not affected by the printing angle, which means that only one NSIF is
needed for each specimen type. The K-values, in this case, only KI values because
of only mode I problems, are plotted using equation 2.7, presented in section 2.1.2.
It is plotted using KI values as a function of the distance from the center of R2 on
a logarithmic scale.

The values obtained for the NSIF’s are converted to ASED a posteriori using
two different formulations, both presented earlier in this thesis. The first NSIF’s are
converted to ASED using equation 3.9. This is the simplest of the formulations and
is mainly for sharp notches with 2α = 0. The second NSIF’s are converted using
equation 2.12. These values are expected to be a little more accurate considering
the fact that more factors are taken into consideration in the calculations. The
ASED values obtained from these two calculations are then used to calculate a
fracture load for each NSIF for each specimen and printing angle, using the same
method as for the direct ASED calculations. These values are then compared to
the averaged fracture load obtained from experiments. The fracture loads for the
two NSIF’s are named PNSIF1 and PNSIF2 respectively in the results section.
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4.2 Results

The results from all the analyses and comparisons of the analytical and experi-
mental results are presented in this section. The specimens being tested are all
presented in figure 3.4 with labels A through L. In the graphs and tables they
are also referred to by their geometrical properties as well as how they are tested.
These factors are notch type, test type, and notch radius. The abbreviations are
as follows:

• U = U-notch

• V = V-notch

• Ax = uniaxial/tensile load

• 3PB = 3 point bending

• r = notch radius

4.2.1 Mesh Sensitivity for SED Analyses
The first analyses that were conducted were to verify the mesh independence of
the ASED analyses. The results from these tests can be seen in table 4.4. Three
tests were run with decreasing mesh size for each step. The predicted fracture load
from the different meshes are all compared to the result from the coarse mesh.
The results give a practically non-existent difference. All three mesh sizes deviate
from the coarse mesh with about 0.04%. These results give clear indications that a
coarse mesh can be used for all ASED analyses without any risk of giving inaccurate
results.

Table 4.4: Results from mesh sensitivity analysis for ASED calculations for specimen A
with 0◦ printing angle.

Fine mesh Coarse mesh
Specimen No. FE in rc Pred. fracture load [N] No. FE in rc Pred. fracture load [N] Deviation [%]
1 1151 3168.3 64 3169.7 0.04
2 2936 3168.3 - - 0.04
3 11259 3168.3 - - 0.04
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4.2.2 Mesh Sensitivity for NSIF Analyses
A mesh sensitivity analysis was conducted for the NSIF analyses as well. The size
of the mesh is measured along the shortest edge of the element, perpendicular to
the notch depth. Seven different mesh sizes were tested, ranging from 0.016mm
to 0.174mm. The results from each analysis is plotted in the graph in figure 4.4,
with KI as a function of the mesh size. The last point, with the coarsest mesh,
give unsatisfactory results, but all the other points have very small percentage
deviations. However, it was chosen to use a mesh size of approximately 0.05mm
for all models to be certain the results were correct.
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Figure 4.4: Result from mesh sensitivity analysis for NSIF.
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4.2.3 Results from ASED analyses
The results from the ASED analyses are presented in this section. Each numerical
result is individually compared to all three experimental result for each printing
angle. They are presented in both table and graph form. It is presented in this
manner separated for specimen type and printing angle to best be able to compare
the results and show how much the results deviate from the experimental results.
The ”ELSE” and ”EVOL” and resulting ASED values are presnted in table 6.1,
located in the appendix.

ASED presented in table 4.5

In table 4.5 the results from the ASED analyses are presented in whole. Here, the
three experimental results are presented and compared to the analytical results
obtained from the ASED analyses. The experimental results are presented in the
columns Pexp1, Pexp2, and Pexp3. The results from the ASED analyses are presented
in the column PASED. In the columns ∆1, ∆2, and ∆3 the deviations from the
experimental results are presented respectively compared to the ASED result. The
ASED results are compared to the experimental results using equation 4.2. This
means that a positive deviation value, indicates an ASED result higher than the
experimental result, being a non-conservative estimate. A negative value however,
indicates the opposite, thus giving a conservative result.

∆ =
Pexp − PASED

Pexp
· 100 (4.2)

From the results presented in the table, it is clear the U-notched specimens sub-
jected to axial loading give the smallest deviations from the experimental results.
A noticeable trend is also that the specimens with the smaller notch radius tend
to have a better accuracy in terms of the experimental results compared to the an-
alytical result. However, the V-notched 3 point bending specimens generally gave
a bad accuracy. The worst accuracies are the ones for specimen J, with printing
angle of 0◦. All the experimental results are consistently around 40 % larger than
the analytical results. It is also noticeable that the case of extra large deviations
for 0◦ printing angles is a case for all of the different 3PB specimens. Both V- and
U-notched.
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Table 4.5: Details of the experimental data from Ahmed and Susmel (2018) compared
to the results from using ASED criterion.

Specimen Print angle
[%]

Pexp1[N ] Pexp2[N ] Pexp3[N ] PASED[N ] ∆1[%] ∆2[%] ∆3[%]

A - U, Ax, r=0.5mm 0 3234 3212 3218 3168 - 2 - 1 - 2
30 2861 2815 2824 2774 - 3 - 1 - 2
45 2777 2861 2713 2951 6 3 9

B - U, Ax, r=1mm 0 3355 3311 3327 3151 - 6 - 5 - 5
30 3274 3262 3260 2757 - 16 - 15 - 15
45 3206 3182 3174 2932 - 9 - 8 - 8

C - U, Ax, r=3mm 0 3330 3307 3294 3015 - 9 - 9 - 8
30 2986 2706 3099 2610 - 13 - 4 - 16
45 3179 3230 3763 2785 - 12 - 14 - 26

D - V, Ax, r=0.5mm 0 3302 3329 3325 2520 - 24 - 24 - 24
30 3057 3108 3068 2291 - 25 - 26 - 25
45 2858 3015 2960 2426 - 15 - 20 - 18

E - V, Ax, r=1mm 0 2670 3031 2669 2686 1 - 11 1
30 2543 2889 2472 2334 - 8 - 19 - 6
45 2939 2893 2825 2474 - 16 - 14 - 12

F - V, Ax, r=3mm 0 3195 3297 3216 2517 - 21 - 24 - 22
30 3142 3195 3069 2263 - 28 - 29 - 26
45 2826 2872 2997 2397 - 15 - 17 - 20

G - V, 3PB, r=0.05mm 0 1009 1049 1063 878 - 13 - 16 - 17
30 810 - 847 747 - 8 - 12
45 879 884 862 799 - 9 - 10 - 7

H - U, 3PB, r=1mm 0 1096 1050 1054 916 - 16 - 13 - 13
30 813 865 803 779 - 4 - 10 - 3
45 895 926 850 833 - 7 - 10 - 2

I - U, 3PB, r=3mm 0 1144 1131 1134 854 - 25 - 24 - 25
30 875 873 874 717 - 18 - 18 - 18
45 923 930 - 769 - 17 - 17

J - V, 3PB, r=0.4mm 0 990 1015 996 597 - 40 - 41 - 40
30 701 786 776 521 - 26 - 34 - 33
45 660 640 647 555 - 16 - 13 - 14

K - V, 3PB, r=1mm 0 919 939 924 596 - 35 - 37 - 35
30 696 690 693 520 - 25 - 25 - 25
45 649 636 641 554 - 15 - 13 - 14

L - V, 3PB, r=3mm 0 887 902 907 578 - 35 - 36 - 36
30 773 692 701 506 - 35 - 27 - 28
45 753 744 734 538 - 29 - 28 - 27
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ASED presented in graphs

The results from the ASED analyses are also presented in graphs shown figures 4.5
through 4.8, as well as figure 4.9. The results are presented as (W/Wc)

0.5, where
W is the obtained ASED from analyses, andWc is the critical ASED from equation
2.10. The relation is presented in section 3.3, equation 3.21. By using this relation
to present the results, the plots give a percentage deviation. For instance, a value
of 1.2 for (W/Wc)

0.5 means that the numerical result was 20% higher than the
experimental result. Which in turn can be described as a non-conservative result,
whilst a number below 1, is considered a conservative result. The results in figures
4.5 through 4.8 the analytical results are compared to each of the individual test
results from all three of the experimental tests conducted on each sample. In figure
4.9 the analytical results are compared to the average from the three experimental
result to be able to fit all results in one graph.

Figure 4.5 contains the results for samples A through C. They show a clear
trend of increasing the uncertainty as the printing angle is increased up to 45◦. For
a printing angle of 0◦, all three specimens have results which indicate a very good
correlation between the analytical and experimental results. This is also the case
for the samples printed at 30◦, to some extent, although some of the results are
around a value of 0.85. These values are well within what is considered acceptable,
but they do show some deviation. The samples printed at 45◦ are spread over a
larger area. All the samples with the smallest notch radius (r = 0.5mm), give
non-conservative results. This can be confirmed as well by table 4.5. Although the
results are spread out over a larger area, the mean value of these results are about
the same as for the other two printing angles.
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Figure 4.5: Results specimens A, B, and C.
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Figure 4.6 contains the results from the ASED analyses conducted on specimens
D, E and F. The specimens printed at an angle of 0◦ with a notch radius of r = 1mm
give the best results. Two of the test results have the same value, which is just
above 1, while one is a bit lower at about 0.9. The rest of the tested specimens
with the same printing angle are consistently at around 0.8.

When it comes to the specimens printed at an angle of 30◦, much of the same
as for 0◦ printing angle specimens can be said. The plots look very much alike,
and the same specimen geometries have more or less the same values in the graph.
The specimens printed at 45◦ angle, have remarkably consistent results. All of
the plots have values which differ from around 0.8 to 0.9 in values. This can also
be confirmed by looking at the values from table 4.5. From this table, it can be
seen that the percentage deviation between the analytical and experimental results
differ from about −12% to −20%.
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Figure 4.6: Results specimens D, E, and F.

The results presented in figure 4.7 are those obtained from the ASED analy-
ses conducted on specimens H and I. It was decided to present the results from
specimen G along with the other V notched 3PB specimens, instead of with the U-
notched 3PB specimens, because of the geometry similarities. The two specimens
H and I give results which are very consistent. For all printing angles, the smallest
notch radius gave results closest to 1. The larger notch radius specimens though,
were the most consistent specimens of all, although all had a (W/Wc)

0.5-value of
around 0.8. From table 4.5 there was only one specimen tested which did not have
the same percentage deviation as the others, and this was a deviation of only 1
percentage point.
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Figure 4.7: Results specimens H and I.

In figure 4.8 the results from specimens G, J, K, and L are presented. These
are all V-notched specimens subjected to 3PB testing. These results are those
which give the largest consistent deviations. When looking at printing angles 0◦

and 30◦ for all specimens, not one of the results are above 0.8. It can also be
noted that for 45◦ printing angle, the mean value of the data points seems to be
around 0.8. It is also noticeable that the values for the r = 0.05mm specimens are
the most consistent, and also the values which give the best results regardless of
printing angle. The r = 3mm specimens are at the opposite side of the scale with
values ranging from about 0.65 to a maximum of about 0.75 for all printing angles.
Another point to note about this graph, is the fact that the two specimens which
seemingly are the most consistent throughout the different printing angles, are
those with the smallest and largest notch radius, r = 0.05mm and r = 3mm. The
other two specimens have a much more significant change of mean value ranging
from about 0.7 to 0.9 in (W/Wc)

0.5-value.
In figure 4.9, the analysis result from every specimen is compared to the mean

value of the experimental result from the respective sample. This graph shows
a general move towards better accuracy as the printing angle moves from 0◦ to
45◦. The values which stand out are those for V-notched 3PB, r = 0.4mm. For
0◦ printing angle, the analytical result is about 40% lower than the mean of the
experimental result. This fact is also evident in the other two specimens which
resemble this one. Both V-notched and 3PB, but r = 0.4mm and r = 1mm. Both
these values give an almost as high deviation for 0◦ printing angle, but give a lot
better results for printing angles of 30◦ and 45◦.
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Figure 4.9: Results, all specimens averaged.
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4.2.4 Calculating NSIF’s and Comparison with Experimen-
tal Results

In figure 4.10 (a) through (d), the plotted K-values are shown. It is plotted as a
function of the distance from the center of R2, which is why the values do not start
at r = 0mm. r is also plotted on a logarithmic scale to give a better presentation of
the data, and make it easier to extract data from it. From figures 4.10 (a) and (b)
which are for all the tensile specimens, the K-values are almost constant along the
bisector line. This fact makes it easier to trust the values as accurate. Figures 4.10
(c) and (d) which show the 3PB specimens, on the other hand were a lot harder
to extract K-values from. Especially the specimens containing the largest notch
radius were difficult to determine. When looking at the figures, it is important to
note the scale of the plotted K-values, which further implies less accurate results
for the 3PB specimens.
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Figure 4.10: The plots from NSIFs for all specimens.

In table 4.6 the K-values for each specimen has been used to estimate a fracture
load using equations shown in section 4.1.5. The results from these calculations
clearly follow the same trend as the ASED analyses, which is not too surprising,
considering the fact that the same FEM models with the same loads and BC’s were
used, only changing the mesh. The results obtained indirectly from the K-values
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however, do have a slightly worse accuracy than the ASED results. The largest
deviation between the results obtained from the K-values and those from ASED
analyses, are from specimen C, with a 0◦ printing angle, and specimen H with
printing angle 30◦ and 45◦. The difference between these values are at about 10
percent points for both of them.

One important fact to note from the results presented in the table, is that the
fracture loads calculated using the second method, which included more factors,
generally provided better results. The percent deviation for the second method
gives a better percent-wise result by about 2−5 percent points for every specimen.

Table 4.6: Result from calculating fracture load from NSIF with two different equations
and comparison to real fracture load.

Specimen Print angle
[◦]

PNSIF1 [N ] PNSIF2 [N ] Pexp [N ] ∆1[%] ∆2[%]

A - U, Ax, r=0.5mm 0 2917 3094 3221 -9 - 4
30 2509 2662 2833 -11 - 6
45 2679 2842 2784 -4 2

B - U, Ax, r=1mm 0 2765 2933 3331 -17 - 12
30 2379 2523 3265 -27 - 23
45 2539 2694 3187 -20 - 15

C - U, Ax, r=3mm 0 2516 2669 3310 -24 - 19
30 2164 2296 2930 -26 - 22
45 2310 2451 3391 -32 - 28

D - V, Ax, r=0.5mm 0 2423 2514 3319 -27 - 24
30 2194 2277 3078 -29 - 26
45 2327 2415 2944 -21 - 18

E - V, Ax, r=1mm 0 2468 2561 2790 -12 - 8
30 2203 2286 2635 -16 - 13
45 2336 2424 2886 -19 - 16

F - V, Ax, r=3mm 0 2321 2408 3236 -28 - 26
30 2071 2149 3135 -34 - 31
45 2197 2280 2898 -24 - 21

G - V, 3PB, r=0.05mm 0 789 845 1040 -24 - 19
30 679 727 829 -18 - 12
45 724 776 875 -17 - 11

H - U, 3PB, r=1mm 0 779 826 1067 -27 - 23
30 670 711 827 -19 - 14
45 715 759 890 -20 - 15

I - U, 3PB, r=3mm 0 713 757 1136 -37 - 33
30 614 651 874 -30 - 25
45 655 695 927 -29 - 25

J - V, 3PB, r=0.4mm 0 542 562 1000 -46 - 44
30 484 502 754 -36 - 33
45 513 532 649 -21 - 18

K - V, 3PB, r=1mm 0 551 572 927 -41 - 38
30 492 511 693 -29 - 26
45 522 542 642 -19 - 16

L - V, 3PB, r=3mm 0 538 558 899 -40 - 38
30 480 498 722 -34 - 31
45 509 528 744 -32 - 29
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5 | Discussion

The analyses conducted using the ASED approach consistently gave low results.
The scatter of the results were not deemed to be the most significant problem,
because only a few results fell outside the 0.8 − 1.2 scatter band. This can imply
that some modifications to the analyses possibly can increase the mean value of
the results, thus increasing the accuracy of the results.

One hypothesis to explain the low values of the results is an inaccurate fracture
toughness value (KIC). As mentioned by Berto and Lazzarin (2014), the fracture
toughness is very sensitive to variations in the notch radii. Notch root radius of too
high values are known to give artificially high KIC values as well (Damani et al.
(1996)). The AM method, FDM, has limitations when it comes to fine details and
printing very sharp notches. Ahmed and Susmel (2018) chose not to create sharper
notch root radii to the test specimens than the direct print would give. Part of the
reason for doing this, was to study how accurate KIC-values one can obtain from
as-printed specimens.

Also, the article authors pointed out the fact that the crack initiation point
was not at the exact notch tip for every CT specimen. Especially the specimens
printed at angles other than 45◦, which leaves the filaments laying perpendicular
and longitudinal to the loading direction. This is a natural result of not creating a
sharper crack.

The fact that the KIC values were inaccurate was also pointed out by Ahmed
and Susmel (2018). In fact, it was chosen not to use the values obtained from their
own analyses, which is explained in section 3.1.2. An alternative method, which
calculated L for the TCD calculations using the point method was used. This was
done through post-processing the local stress fields of a U-notched specimen.

By post-processing the value for KIC using equation 3.2, the equation for cal-
culating the L-value, a higher KIC was obtained. Through increasing this value,
the control radius is increased, due to the nature of equation 2.11. A higher control
radius will naturally decrease the density of the strain energy since areas further
away from the notch are included. This will in turn lead to a higher predicted
failure load. This can indicate that finding an alternate way of calculating KIC

can be one way of improving the results from the ASED analyses.
It is also worth noting that by creating a sharper crack for the C(T) specimens, it

is highly likely that a lower value KIC will be obtained, which in turn works against
improving the immediate results from the ASED analysis. This however, would
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Chapter 5. Discussion

have to be tested, and is one of the next natural steps in learning to understand
the failure mechanisms of AM PLA.

The Poisson’s ratio which was used for all the specimens was obtained from
literature on bulk PLA. The different printing angles will likely have an effect on
the ratio, because of the anisotropy. It is also likely that the different printing
angles will cause different Poisson’s ratios for the different directions. For plane
problems like the case in this thesis, values for Poisson’s ratio for the two unit
directions could be beneficial. The Poisson’s ratio is the only material property
along with the elastic modulus which gives the elastic behaviour of the material.
One can therefore assume that it can have an effect on results obtained.

The fracture mechanisms for specimens created using FDM will have an internal
structure which is quite different from specimens created from moulding. Figure
2.8 shows the internal structure of typical FDM parts. The images of fracture
surfaces from tested specimens in Ahmed and Susmel (2018), show that the path
of the fracture is highly dependent on the printing angle. This can indicate local
mixed modes caused by the filament directions not being aligned with the loading
direction. Through the different material properties obtained from the different
angles as well, it is safe to assume that the printing angle has a large effect on the
strength of the geometry.

For the specimens tested in uniaxial tension, the overall trend for the exper-
imental results, are highest strength for the 0◦ printing angle, lower for 30◦ and
lowest for 45◦. For the 3 point bending test, highest strength is also observed in the
0◦ specimens, but 30◦ and 45◦ seem rather arbitrary as to which has the highest
strength.

Another point to note is that in all the graphs in figures 4.5 through 4.8, it is
evident that the specimens printed at 45◦ generally give better results than the
other printing angles. This is visible because the 45◦ specimens have a mean value
which is closer to 1 than the other specimens of the same geometry, but different
printing angles. This is also visible in figure 4.9, which is an overview of all the
specimens.

The fact that 45◦ printed specimens give better overall results, can possibly be
explained by the elasticity, or rather, the lack of ductility in the material. The
ASED approach is predominantly an approach for brittle or quasi-brittle materi-
als, as it is based on the theory that a critical value of decohesive stress within a
damaged area will cause failure (Seweryn (1994), Lazzarin and Zambardi (2001)).
However, recently, an energy based approach has been successfully applied in prob-
lems concerning plasticity (Torabi et al. (2017a), Torabi et al. (2017b)), but will
not be included in this thesis. The stress strain curves of the different printing
angles from Ahmed and Susmel (2018) can give some indications as to what type
response the different angles have. The specimens printed at 0◦ clearly have a more
ductile response to uniaxial tensile loading. The specimens printed at 30◦ and 45◦

both have a more brittle behaviour.
Explaining this difference in response, might be done by the fact that the fil-

aments in the 0◦ specimens can straighten or align somewhat with the loading
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direction before failure. The 45◦ specimens already have every other layer of fila-
ments aligned with the loading direction. Another factor is the fact that PLA is
considered a brittle material. Thus, when these specimens fail, it is solely due to a
critical state in the material, causing a sudden rupture. Keeping in mind the areas
of use for the ASED criterion, it can be argued that this is a contributing factor to
the more accurate results obtained from the specimens printed at 45◦.

The results from the 3 point bending specimens generally gave a worse correlation
with experimental results obtained for the same samples than the uniaxial speci-
mens. The 3PB specimens printed at 0◦ however, were by far the specimens which
gave the worst results. From the tables presenting the results from both the ASED
and NSIF analyses (tables 4.5 and 4.6), the higher strength of the experimental
tests of these specimens are evident. For the axial specimens, the percentage de-
viation between printing angle 0◦ and the other two, varies from 1% to 15%. The
3PB specimens however, deviate consistently with around 20%.

The results from the analyses do not follow this trend. This is quite visible in
both the tables and graphs presenting the results of the analyses compared to the
experimental results. In figures 4.7 and 4.8 which look at the 3PB specimens, a
large portion of the plots are not inside the 0.8 − 1.2 scatter. This is especially
valid for the V-notched specimens (figure 4.8).

There can be several reasons for this. One hypothesis is that the 0◦ printing
angle, which leaves filaments at 45◦ angles to the loading direction, gives an ad-
vantage when subjected to 3PB loading. The 3PB samples G, H, and I, all have
a length of 60mm. Symmetry conditions give that the filaments at an angle of
45◦ from the point of the applied load will end up at the exact point where the
two supports are located. This is illustrated in figure 5.1. For samples J, K and
L which all have lengths of 70mm, they will end up 5mm inside both supports.
This fact allows stresses to be distributed through the length of filaments, which
is beneficial to stresses flowing across the length of the filaments. This can be a
contributing factor to the abnormal high strength of these samples.

Accounting for the effects of the direction of the filaments when solely applying
material properties obtained from tensile testing is difficult. The results from
the analyses conducted, can imply that the the specimens react different under
compression than tension as well, which further complicates the case.
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Figure 5.1: Principle drawing of filament direction and loading of 3PB specimens with
0◦ printing angle.
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6 | Conclusion

The objectives states in chapter 1, gave the basis and framework for this thesis.
An energy-based approach to analytically predict failure loads of 3D-printed PLA
specimens was conducted. The analyses results, which for the most part are within
a scatter band of −20% to 20% deviation from the experimental results, indicate
that the method is sound. However, the mean value of the results are consistently
low, providing non-conservative predictions.

Results showed that the energy-based analyses are relatively mesh size inde-
pendent. It has also been showed that an approach where the stress intensity
factors are plotted, give results which correlate quite well with the results from the
energy-based approach.

In short, the use of ASED on additively manufactured PLA specimens is shown
to be functional, however, not entirely accurate. The advantages of the energy
approach, considering time consumption and computational capacity, possibly out-
weighs the disadvantages when it comes to accuracy and detail. Therefore, it can
be considered a reasonable investment in the future of fracture mechanics to study
this field more.
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Further Work

There are several points which need improving or researching before the ASED ap-
proach can be considered trustworthy for geometries printed using FDM in PLA.
First, a better understanding of how the printing angle affects the material proper-
ties is needed. This includes determining the Poisson’s ratio for different directions
through experimental testing, as well as the elastic modulus. Also, using recent
developments into the use of energy-based approaches to predicting fracture, where
plasticity in the material is included, requires further research.

Second, the fracture toughness of the 3D-printed specimens are not understood
well enough. Several experiments using different pre-cracked specimens should be
conducted to provide empirical data. Using the different fracture toughness in
ASED analyses to see which gives the best correlation with the experiments could
be one way of determining the accuracy.

Lastly, studying the reason behind the problem of the analytical results being
consistently lower than the experiments could give better insight into the contribut-
ing factors. It has been suggested in this thesis that the fracture toughness could be
one of the main contributors to this. However, those claims require more research.
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Appendix

Table 6.1: ELSE, EVOL, and resulting ASED values obtained from analyses.

Specimen Print angle
[◦]

ELSE [mJ ] EVOL [mm3] ASED [mJ/mm3]

A - U, Ax, r=0.5mm 0 5,56E-06 199,39 2,79E-08
30 4,29E-06 131,96 3,25E-08
45 4,39E-06 141,63 3,10E-08

B - U, Ax, r=1mm 0 5,86E-06 207,66 2,82E-08
30 4,55E-06 138,08 3,29E-08
45 4,65E-06 148,08 3,14E-08

C - U, Ax, r=3mm 0 6,94E-06 225,45 3,08E-08
30 5,48E-06 149,38 3,67E-08
45 5,58E-06 160,30 3,48E-08

D - V, Ax, r=0.5mm 0 4,97E-06 120,45 4,12E-08
30 3,63E-06 79,22 4,58E-08
45 3,75E-06 85,13 4,41E-08

E - V, Ax, r=1mm 0 5,88E-06 151,80 3,88E-08
30 3,74E-06 81,47 4,59E-08
45 3,86E-06 87,45 4,41E-08

F - V, Ax, r=3mm 0 5,75E-06 130,10 4,42E-08
30 4,26E-06 87,21 4,88E-08
45 4,39E-06 93,38 4,70E-08

G - V, 3PB, r=0.05mm 0 3,23E-05 88,92 3,63E-07
30 2,61E-05 58,30 4,48E-07
45 2,65E-05 62,68 4,23E-07

H - U, 3PB, r=1mm 0 3,56E-05 106,47 3,34E-07
30 2,92E-05 70,79 4,12E-07
45 2,95E-05 75,92 3,89E-07

I - U, 3PB, r=3mm 0 4,32E-05 112,75 3,84E-07
30 3,63E-05 74,64 4,86E-07
45 3,66E-05 80,08 4,57E-07

J - V, 3PB, r=0.4mm 0 4,70E-05 59,95 7,85E-07
30 3,63E-05 39,41 9,20E-07
45 3,71E-05 42,35 8,77E-07

K - V, 3PB, r=1mm 0 4,86E-05 61,62 7,88E-07
30 3,76E-05 40,74 9,23E-07
45 3,85E-05 43,73 8,80E-07

L - V, 3PB, r=3mm 0 5,45E-05 65,05 8,38E-07
30 4,26E-05 43,60 9,78E-07
45 4,35E-05 46,69 9,33E-07
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