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Abstract

In this report we study and compare two types of time-frequency localization operators,
the first is based on composition of projections in time and frequency, and the second is
Daubechies’ localization operator. We provide a review of several uncertainty principles
in time-frequency analysis and formulate these principles in terms of the operator norm
of the localization operators.

Proceeding, the main focus is a particular kind of the Daubechies’ localization
operator. These operators are characterized by a window and a weight function, and
with a Gaussian window and spherically symmetric weight we attain simple, explicit
formulas for the eigenvalues. For such operators we consider the case when the weight
takes the form of the characteristic function of some spherically symmetric subset of
the time-frequency plane.

Based on the measure of the subset in question, we determine simple upper and
lower bound estimates for the operator norm. For some specific examples of subsets
we provide more accurate estimates for the operator norm. Notably, we consider the
spherically symmetric Cantor set and derive precise asymptotics for the operator norm
of the associated localization operator.
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Sammendrag

I denne rapporten studerer vi og sammenlikner to typer tidsfrekvens-lokaliserings-
operatorer, den første er basert p̊a komposisjon av projeksjoner i tid og frekvens, og
den andre er Daubechies lokaliseringsoperator. Vi har en gjennomgang av flere av
uskarphetsprinsippene i tidsfrekvensanalyse og formulerer disse prinsippene ved hjelp
av operatornormen til lokaliseringsoperatorene.

Videre er hovedfokuset en bestemt type av Daubechies lokaliseringsoperator. Disse
operatorene er karakterisert av en vindu- og en vektfunksjon, og med et Gaussisk vindu
og sfærisk-symmetrisk vekt f̊ar vi enkle, eksplisitte formler for egenverdiene. For slike
operatorer betrakter vi tilfellet hvor vekten er p̊a formen til en karakterstisk funksjon
av en sfærisk-symmetrisk undermengde av tids-frekvensplanet.

Basert p̊a målet til den aktuelle undermengden bestemmer vi enkle øvre og nedre
estimater for operatornormen. Mer presise estimater av operatornormen er gitt for
enkelte spesifikke eksempler p̊a undermengder. Blant annet betrakter vi den sfærisk
symmetriske Cantor-mengden og utleder presise asymptoter for operatornormen til den
korresponderende lokaliseringsoperatoren.
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1 Introduction

An old and arguably one of the most important problems in signal analysis is
the problem of localization in time and frequency. In applications, we often
wish to analyze signals on different time-frequency domains, and we would
therefore attempt to concentrate signals on these domains. For this purpose,
we consider the aptly named time-frequency localization operators. Different
approaches for how to construct such operators have been suggested either
based on separate or joint time-frequency representations. In the 1960s a cer-
tain kind of localization operator was studied by Laundau, Pollack and Slepian
(see [1],[2],[3]), which in its generality can be summarized as compositions
of projections in frequency and time. In the 1980s Ingrid Daubechies pre-
sented an alternative family of operators, now based on a joint time-frequency
representation[4]. We will consider and compare both classes of operators.

This report is divided into three main sections (Chapter 2-4). The first
section, Chapter 2, contains what could be considered necessary background
theory. In particular, we introduce the standard terminology of Fourier and
Short-Time Fourier transform (STFT), which is our framework for performing
time-frequency analysis. Relevant concepts and results from functional analy-
sis are then covered before formally introducing the two classes of localization
operators.

Note, however, that regardless of which localization operators we choose
to work with, these operators will be subject to the fundamental barrier of
time-frequency analysis, namely the uncertainty principles. Many versions
of these principles exist, but all embody the notion that a signal cannot be
highly localized in both time and frequency simultaneously. Since the optimal
efficiency of any given localization operator is measured by its operator norm,
it stands to reason that the uncertainty principles will produce non-trivial
estimates of the operator norm. In Chapter 3 we review some of the classical
uncertainty principles and formulate them in terms of the operator norm of
the relevant localization operator.

At the end of the chapter we mention some more recent developments in
the research area of uncertainty principles. Here we start to take into account
some of the geometry of the time-frequency domains. Among the results dis-
cussed is Semyon Dyatlov’s findings regarding projections onto fractal sets in
time and frequency. From his 2017-notes[5] we obtain sequences of subsets
{Xn}n such that the measure |Xn| → ∞ as n → ∞. However, this sequence
is constructed such that the operator norm of the associated localization op-
erator, that projects onto Xn in frequency and then onto Xn in time, tends to
zero. As an illustrative example, Dyatlov considers a sequence of subsets based
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on the n-iterate mid-third Cantor set defined in an ever increasing interval.
Inspired by this model example, we investigate if similar behaviour can be

observed for Daubechies’ localization operator projecting onto a Cantor type
fractal set in the time-frequency plane. In this context we will restrict to a
certain subfamily of symmetric operators whose eigenfunctions are known and
where we have simple formulas for the associated eigenvalues. Daubechies’
localization operators are characterized by a window and weight function, and
in her 1988-article[4] she derives simple expressions for the eigenvalues when
we choose a Gaussian window and any spherically symmetric weight. For
this reason, we will primarily focus on operators with spherically symmetric
weights (in addition to the fixed Gaussian window), which in turn means we
will consider a spherically symmetric Cantor set in the plane.

The entire Chapter 4 is in fact dedicated to this subfamily of Daubechies’
localization operators. We start by restating Daubechies’ result, and in sec-
tion 4.1 we recapitulate the proof, which shows that the Hermite functions
{Hk}k constitute the eigenfunctions of the localization operator. The associ-
ated eigenvalues {λk}k are given on integral form. In the subsequent sections,
4.2 and 4.3, we further restrict to the case when the weight equals the charac-
teristic function of some spherically symmetric subset. These sections contain
what could be considered the original research work of the report. Here our
main objective is to determine or at least estimate the operator norm of the
corresponding Daubechies’ operator.

In section 4.2 we discuss some common properties of the eigenvalues {λk}k
associated with localization on a spherically symmetric subset. The eigenval-
ues are utilized to estimate the operator norm, and to illustrate we consider
two simple but important examples of subsets, namely a disk and a ring. More
generally, we derive an upper and lower bound estimate for the operator norm
based on the measure of the given subset. From the upper bound estimate it
follows that when keeping the measure of the subset fixed, the optimal localiza-
tion occurs when the subset takes the form of a disk in the plane. Afterwards,
we consider a non-trivial example where the subset has infinite measure, but
where we still have good control over the operator norm.

In section 4.3 we finally narrow in our focus on localization on the mid-
third Cantor set. In the spherically symmetric context we distinguish between
the distance regular and the measure regular Cantor set. Proceeding, we have
chosen to focus on the latter version, i.e. the measure regular Cantor set.
For the n-iterate Cantor set we derive precise asymptotic estimates for the
operator norm. From here we are, similarly to Dyatlov, able to construct a
sequence of iterates whose measure tends to infinity, but where the associated
operator norm tends to zero.
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2 Preliminaries

This chapter serves as a brief introduction to some of the fundamentals of
localization operators in time-frequency analysis: The chapter is organized in
three main sections. The first, section 2.1, provides the basic setup of Fourier
and Short-Time Fourier transform as our separate and joint time-frequency
representation, respectively. The second, section 2.2, covers some necessary
background theory from functional analysis. This theory will be applied to
the final section, section 2.3, where we introduce two approaches for how to
construct time-frequency localization operators.

2.1 Fourier and Short-Time Fourier Transform

In this section we formally introduce our working-defnition of the Fourier trans-
form and provide the standard analogy of time and frequency to accompany
this defnition. From here we turn to the Short-Time Fourier transform as the
the main focus and establish some key properties of this transform.

Throughout this report we will work with the following normalization for the
Fourier transform. For a function f : Rd → C the Fourier transform evaluated
at point ω ∈ Rd is given by

f̂(ω) =

∫
Rd

f(t)e−2πiω·tdt, (2.1)

where ω · t =
∑d

j=1 ωjtj denotes the standard Euclidean inner product in

Rd. Observe, in order to guarantee that the above transform is well-defined,
certain restrictions are necessary on f . E.g., in order to be pointwise defined
everywhere, it is sufficient to consider f ∈ L1(Rd). However, the resulting
function f̂ is not necessarily integrable. If we no longer require a pointwise
description, and are instead interested in control over the target space of the
transform, one natural choice is to a assume f belongs to L2(Rd). A standard
density argument (see Chapter 1.1. in Gröchenig’s book[6]) then shows that
the Fourier transform can be expressed as a unitary operator

F : L2(Rd)→ L2(Rd), f 7→ Ff = f̂ , (2.2)

whose inverse is

F−1f̂(t) =

∫
Rd

f̂(ω)e2πiω·tdω. (2.3)
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Although other function spaces may be considered, unless otherwise stated,
we will always assume f ∈ L2(Rd).

In dimension one (d = 1) if we interpret f as an amplitude signal depending
on time, then its Fourier transform f̂ corresponds to a frequency representation
of the signal. This analogy of frequency and time also extends to higher di-
mensions (d > 1), where f can be viewed as an amplitude signal from multiple
time sources.

Notice, however, that the pair (f, f̂) does not offer a joint description with
respect to both frequency and time. Ideally, such a description would consist
of precise knowledge of the frequencies present at any given time. One attempt
of attaining a simultaneous time-frequency representation of f is by the means
of the Short-Time Fourier transform (STFT).

The STFT is often referred to as the ”windowed Fourier transform” as this
transform relies on an additional fixed, non-zero function, φ : Rd → C, known
as a window function. From this function φ we generate a family of coher-
ent states {φω,t}ω,t. These are functions labeled by points (ω, t) ∈ Rd × Rd,
and they are obtained by performing a frequency modulation ω and a time
translation t on φ such that

φω,t(x) = e2πiω·xφ(x− t). (2.4)

The STFT of f with respect to the window function φ at point (ω, t) is then
defined as the inner product of f with φω,t, that is

〈f, φω,t〉 =

∫
Rd

f(x)φω,t(x)dx, (2.5)

which we will at convenience denote by Vφf(ω, t).
Similarly to the Fourier transform, certain restriction are necessary to im-

pose such that the above inner product is well-defined for all points (ω, t).
These are restrictions on the window and will depend on the function space
the signal belongs to. In particular, suppose that f ∈ Lp(Rd) for some fixed
p ∈ [1,∞[. Then by Hölder’s inequality, a natural restriction is to only con-
sider φ in the dual of Lp(Rd), namely Lq(Rd) where 1/p + 1/q = 1. Hence,
in our case when f ∈ L2(Rd), we will always presume φ ∈ L2(Rd). However,
before proceeding, notice what happens to the inner product when φ is chosen
to be the constant function equal to 1 (which is obviously not square inte-
grable). In this case the STFT reduces to the regular Fourier transform, that
is V1f(ω, t) = f̂(ω).
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For other, more non-trivial, choices for φ it is evident that the STFT maps
a function f of one d-dimensional variable, e.g. time, to a function of two
d-dimensional variables ω, t, e.g. frequency and time. The domain of the
transformed function is thus Rd × Rd which we refer to as the phase space or
with the current analogy of time and frequency, the time-frequency plane.

One advantage of restricting both signals and windows to L2(Rd) is what
Gröchenig[6] refers to as the orthogonality relation.

Theorem 2.1. (Theorem 3.2.1: Orthogonality relation for the STFT)
Suppose f1, f2, φ1, φ2 ∈ L2(Rd). Then Vφjfj ∈ L2(R2d) for j = 1, 2 and

〈Vφ1f1, Vφ2f2〉L2(R2d) =

∫∫
R2d

Vφ1f1(ω, t)Vφ2f2(ω, t)dωdt

= 〈f1, f2〉〈φ1, φ2〉. (2.6)

Thus, with the current assumptions, the target space of the STFT is in fact
a subspace of L2(R2d). Furthermore, when both domain and target space are
equipped with the standard L2-norms, the STFT becomes a bounded, linear
map such that

‖Vφf‖2 = ‖φ‖2‖f‖2 ∀ f ∈ L2(Rd).

In particular, if the window function φ is normalized, i.e. ‖φ‖2 = 1, then the
STFT becomes an isometry from L2(Rd) onto some subspace of L2(R2d), that
is

‖Vφf‖2 = ‖f‖2 ∀ f ∈ L2(Rd).

Another consequence of the orthogonality relation is that the original signal
f can be recovered from the STFT. Take any γ ∈ L2(Rd) such that 〈γ, φ〉 6= 0,
then the orthogonal projection of f onto any g ∈ L2(Rd) is given by

〈f, g〉 =
1

〈γ, φ〉

∫∫
R2d

Vφf(ω, t)Vγg(ω, t)dωdt. (2.7)

A canonical choice for γ is to set it equal to φ. Furthermore, if we assume that
φ is normalized, then these projections read

〈f, g〉 =

∫∫
R2d

Vφf(ω, t)Vφg(ω, t)dωdt

=

∫∫
R2d

〈f, φω,t〉〈g, φω,t〉dωdt. (2.8)

Since any signal f ∈ L2(Rd) is completely determined by such inner products
〈f, g〉, the right-hand side of both formula (2.7) and (2.8) provide a complete
recovery from the STFT.
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2.2 Elements of Functional Analysis

This section is meant as a brief exposition to some fundamental concepts and
results from functional analysis. In particular, we cover the definitions of
operator norm and spectrum of linear operators, with primary focus on the
spectrum of self-adjoint, compact operators on separable Hilbert spaces (main
results Theorem 2.3 and Corollary 2.1). Proceeding, we consider the Hilbert-
Schmidt integral operators as a family of compact operators, and we provide
a simple criterion (in Proposition 2.2) for self-adjointness. Needless to say,
these notions will prove relevant once we finally introduce the time-frequency
localization operators.

To begin with, we recall the definition of the operator norm: Let X and Y be
two Banach spaces endowed with the norms ‖ · ‖X and ‖ · ‖Y , respectively. For
a linear operator T : X → Y the operator norm is given by

‖T ‖op = sup
‖f‖X≤1

‖T f‖Y . (2.9)

For the most part, we will consider the case when X = Y = L2(Rd) equipped
with the standard L2-norm, for which the operator norm becomes

‖T ‖op = sup
‖f‖2≤1

‖T f‖2, where ‖T f‖2 = sup
‖g‖2≤1

|〈T f, g〉|. (2.10)

It is well-known that the operator T is continuous with respect to the two
norms ‖ · ‖X , ‖ · ‖Y if and only if T is a bounded operator, that is the operator
norm is bounded.

Proceeding, we make a formal definition of the spectrum: Let X be a Ba-
nach space over C and T : X → X a bounded, linear operator. The spectrum
of T consists precisely of all scalars λ ∈ C such that

T − λI (2.11)

is non-invertible, where I denotes the identity operator on B. Notice that if
the kernel of T − λI is nontrivial, then λ is an eigenvalue of T . We refer to
the set of eigenvalues as the point spectrum of T .

With the possible exception of λ = 0, the next theorem establishes that if
T is assumed to be a compact operator, the spectrum coincides with the point
spectrum.
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Theorem 2.2. (Theorem 8.25: Fredholm’s alternative[7])
Suppose T : X → X is a compact, linear operator on Banach space X over C.
Then for any non-zero scalar λ ∈ C either

(i) T − λI is invertible, or

(ii) λ is an eigenvalue of T .

Thus, whenever referring to the spectrum of a compact operator, we will
in principle be dealing with its eigenvalues. In the context of L2(Rd), observe
that this Banach space is a well-known separable Hilbert space. In the next
theorem we present a central and useful result regarding the eigenvalues and
eigenfunctions of self-adjoint, compact operators on such spaces.

Theorem 2.3. (Theorem 7.30[7]) Let T : H→ H be a self-adjoint, compact
operator on the separable Hilbert space H. Then there exists a countable
orthonormal basis {ej}j for H such that ej is an eigenvector of T for each j,
i.e. T ej = λjej for some sequence of real-valued scalars {λj}j.1

From this theorem we make a simple conclusion on the operator norm:

Corollary 2.1. Let T : H→ H be as in Theorem 2.3. Let the eigenvalues of
T , say {λj}j, be ordered such that |λ0| ≥ |λj| ∀ j. Then the operator norm
of T is given by

‖T ‖op = |λ0|. (2.12)

Proof. Let {ej}j denote the orthonormal basis of H such that T ej = λjej.
Note that any elements f, g in H can then be expressed

f =
∑
j

〈f, ej〉ej and g =
∑
j

〈g, ej〉ej,

where ∑
j

|〈f, ej〉|2 = ‖f‖2
H and

∑
j

|〈g, ej〉|2 = ‖g‖2
H.

1In the infinite dimensional case, the proof relies on Zorn’s Lemma.
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Thus, we attain

|〈T f, g〉| ≤
∑
m,n

|〈f, em〉||〈g, en〉||〈T em, en〉|

=
∑
m

|λm||〈f, em〉||〈g, em〉|

≤ |λ0|
∑
m

|〈f, em〉||〈g, em〉|

≤ |λ0|‖f‖H‖g‖H (by Cauchy-Schwarz’ inequality).

By identity (2.10), we conclude that ‖T ‖op ≤ |λ0|. Since |〈T e0, e0〉| = |λ0|,
the inequality is indeed sharp.

In what follows, we will focus on a particular family of self-adjoint, compact
operators, namely the self-adjoint Hilbert-Schmidt integral operators. We be-
gin by introducing the notion of an integral transform.

For a function f ∈ L2(Rd) we define an integral transform T on f by

T f(x) =

∫
Rd

K(x, y)f(y)dy, (2.13)

where T f is a new function of variable x ∈ Rn (here n is possibly different from
d). We refer to the function K(x, y) as the integral kernel of the transform.
Notice that the idea of an integral transform should be somewhat familiar as
we have already been exposed to them in section 2.1:

Example 2.1. Both the Fourier transform and the STFT represent a type of
integral transform. In particular,

(i) The Fourier transform is an integral transform to a function in x ∈ Rd,
with integral kernel

K(x, y) = e−2πix·y.

(ii) The STFT is an integral transform to a function in x = (ω, t) ∈ R2d,
with integral kernel

K(ω, t, y) = e−2πiω·yφ(y − t).

8



Recall that in the discussion of the STFT, certain restrictions were made
on the integral kernel to guarantee a well-defined transform. This illustrates
that for an arbitrary integral kernel transform (2.13) is not necessarily well-
defined. As we shall see, the aforementioned Hilbert-Schmidt operators all
represent well-defined integral transforms.

A Hilbert-Schmidt integral operator (or simply Hilbert-Schmidt operator)
is a linear map T : L2(Rd) → L2(Rd) which can be expressed as a integral
transform according to (2.13), with the integral kernel K ∈ L2(Rd × Rd).

Firstly, we verify that any integral transform with such a kernel is a
bounded operator that maps to L2(Rd). By Hölder’s inequality,

|T f(x)| ≤
∫
Rd

|K(x, y)f(y)|dy ≤
(∫

Rd

|K(x, y)|2dy

)1/2

‖f‖2,

which is well-defined for almost all x. From here,

‖T f‖2 =

(∫
Rd

|T f(x)|2dx

)1/2

≤
(∫

Rd

(∫
Rd

|K(x, y)|2dy

)
dx

)1/2

‖f‖2 = ‖K‖2‖f‖2.

Hence, the map T is a bounded operator with target L2(Rd) and operator
norm

‖T ‖op ≤ ‖K‖2. (2.14)

The next proposition reveals these operators to be compact.

Proposition 2.1. Any Hilbert-Schmidt operator T : L2(Rd) → L2(Rd) is
compact.

Proof. In Bowers and Kalton’s Proposition 7.38[7] this is shown for the 1-
dimensional case (d = 1) when the integral kernels have compact support on
[a, b]×[a, b]. By the exact same procedure, we may extend to the d-dimensional
case, to integral kernels with compact support on [a, b]d×[a, b]d. This can again
be generalized to arbitrary integral kernels K ∈ L2(Rd × Rd).

We have that K can be written as a limit of compactly supported integral
kernels {Kn}n that converges in the L2-norm. Let {Tn}n denote the corre-
sponding Hilbert-Schmidt operators. Observe that if ‖Kn − K‖2 → 0, then
‖Tn−T ‖2 → 0. Since limits of compact operators are indeed compact, we are
done.
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In the next proposition we characterize self-adjointness of Hilbert-Schmidt
operators in terms of the integral kernel.

Proposition 2.2. Let T : L2(Rd) → L2(Rd) be a Hilbert-Schmidt operator.
Then T is self-adjoint if and only if the integral kernel K satisfies

K(x, y) = K(y, x) for almost all x, y ∈ Rd. (2.15)

Proof. By Cauchy-Schwarz’ inequality, it is clear that for any f, g ∈ L2(Rd)∫
Rd

(∫
Rd

|K(x, y)||f(y)|dy
)
|g(x)|dx ≤ ‖K‖2‖f‖2‖g‖2 <∞.

Thus, the Fubini-Tonelli theorem applies such that the integration order in
〈T f, g〉 can be exchanged to the effect

〈T f, g〉 =

∫
Rd

f(y)

(∫
Rd

K(x, y)g(x)dx

)
dy = 〈f, T ∗g〉.

By inspection, the adjoint T ∗ is a Hilbert-Schmidt operator of the form

T ∗f(x) =

∫
Rd

K(y, x)f(y)dx, (2.16)

which coincides with T if and only if the integral kernels coincide.
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2.3 Introduction to Localization Operators

In this section we finally introduce the time-frequency localization operators.
We will distinguish between two kinds of localization operators depending on
whether they are based on a separate or joint time-frequency representation.
Section 2.3.1 focuses on the first kind, i.e. localization operators based on a
separate time-frequency description, while section 2.3.2 focuses on the second
kind.

2.3.1 Projections in Time and Frequency

When attempting to localize a signal f and its Fourier transform f̂ , there are
two natural orthogonal projections to consider. The first projection, say πT
for some measurable set T ⊆ Rd, is given by

πTf(t) = χT (t)f(t), (2.17)

where χT (·) denotes the characteristic function which is one for arguments in
T and zero otherwise. Hence, this projection aims at and indeed does localize
f in time on the set T . The other projection, say QΩ, localizes the signal on
the (measurable) frequency band Ω ⊆ Rd and is given by

QΩf(t) = F−1{χΩf̂}(t) =

∫
Ω

f̂(ω)e2πiω·tdω. (2.18)

Combining these two projections by composition into a single operator,

QΩπT or πTQΩ : L2(Rd)→ L2(Rd), (2.19)

is the first attempt to construct an operator which aims at localizing a signal
in both time and frequency. Note that, since orthogonal projections are self-
adjoint, the two operators in (2.19) must be adjoints of each other, that is

(QΩπT )∗ = πTQΩ. (2.20)

By the construction, it is clear that these two operators are both continuous
with operator norm bounded by 1, regardless of T and Ω. If we further assume
both T,Ω have finite measure, then the above localization operators are in fact
Hilbert-Schmidt integral operators.
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Proposition 2.3. Let T,Ω ⊆ Rd such that |T |, |Ω| <∞. Then the operators
QΩπT and πTQΩ are Hilbert-Schmidt integral operators of the form

QΩπTf(x) =

∫
Rd

K(x, t)f(t)dt (2.21)

and

πTQΩf(x) =

∫
Rd

K(t, x)f(t)dt, (2.22)

where the integral kernel

K(x, t) = χT (t)

∫
Ω

e2πi(x−t)·ωdω (2.23)

for which

‖K‖2 =

(∫∫
R2d

|K(x, t)|2dxdt

)1/2

=
√
|T ||Ω|. (2.24)

Proof. By definitions (2.17), (2.18), we have for any f ∈ L2(Rd)

QΩπTf(x) =

∫
Ω

(∫
Rd

χT (t)f(t)e−2πiω·tdt

)
e2πiω·xdω

=

∫∫
R2d

χΩ(ω)χT (t)f(t)e2πi(x−t)·ωdtdω.

Since both |T |, |Ω| < ∞ by assumption, the integrand is easily verified to be
in L1(R2d). Hence, by the Fubini-Tonelli theorem, the integration order can
be exchanged. The desired results (2.21), (2.23) follow after rearrangement.
Result (2.22) is then evident by formula (2.16) for the adjoint of Hilbert-
Schmidt operators combined with identity (2.20).

Finally, observe that∫
Ω

e2πi(x−t)·ωdω = F{χΩ}(t− x),

and since F is unitary, we obtain

‖K‖2
2 =

∫
Rd

χT (t)

∫
Rd

|F{χΩ}(t− x)|2dxdt

= ‖F{χΩ}‖2
2

∫
Rd

χT (t)dt = ‖χΩ‖2
2‖χT‖2

2 = |Ω||T |.
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Recall that by (2.1), any Hilbert-Schmidt operator is bounded by the norm
of its integral kernel. Hence, by (2.24), we always have

‖QΩπT‖op(= ‖πTQΩ‖op) ≤ min{
√
|T ||Ω|, 1}. (2.25)

The above estimate will prove particularly useful once we discuss the Donoho-
Stark uncertainty principle in section 3.2.

Furthermore, by comparing the integral kernels of QΩπT and πTQΩ, it
follows, by Proposition 2.2, that neither of these operators can be self-adjoint
for sets T,Ω ⊆ Rd of finite measure.2 Nevertheless, by a simple T ∗T -trick, we
are able to construct self-adjoint, compact localization operators:

Consider the two compositions

(QΩπT )∗(QΩπT ) = πTQΩπT (2.26)

and

(πTQΩ)∗(πTQΩ) = QΩπTQΩ, (2.27)

which are always self-adjoint. Since compositions of compact operators re-
main compact, we have that (2.26), (2.27) are self-adjoint, compact whenever
|T |, |Ω| < ∞. In this case, by Theorem 2.3, there exist an orthonormal basis
{ej}j for L2(Rd) such that each ej is an eigenfunction of πTQΩπT .3

Consider the subset of eigenfunctions {Ej}j ⊆ {ej}j whose associated
eigenvalues are non-zero. It is easy to verify that any such eigenfunction must
also be an eigenfunction of πTQΩ and that these form an orthonormal basis
for L2(T ). Hence, the properties of πTQΩ on L2(T ) are essentially encoded in
{Ej}j along with the associated eigenvalues.

Among the most natural choices for the time and frequency sets is when
they take the form T = [−M,M ] and Ω = [−N,N ] for some M,N > 0.
For these particular choices of T and Ω, the eigenfunctions {Ej}j are more
commonly referred to as the prolate spheroidal wave functions. In the 1960’s
these eigenfunctions were explicitly determined and extensively studied in a
series of articles [1],[2],[3] by Landau, Pollak and Slepian.

2This could also be argued from the later presented Benedicks’ Theorem (see section 3.4,
Theorem 3.6).

3Similarly, we have such a set of eigenfunctions for the operator QΩπTQΩ.
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2.3.2 Daubechies’ Localization Operator

In this section we consider a different class of time-frequency localization op-
erator, based on the joint representation produced by the STFT. This con-
struction is motivated by the inner product (2.7), which shows how a time-
dependent signal can be recovered from its phase space representation. In
what follows, we will focus on the version stated in (2.8), where the window
function φ is normalized.

When attempting to localize our time-dependent function f in both time
and frequency, a natural approach is to modify the STFT of f before recovery
by projections. Such a modification comes in the form of a multiplication by
a weight function, say F (ω, t), with the intention of enhancing certain features
of the phase space while diminishing others.

This process can be summarized as a sesquilinear functional PF,φ on the
product L2(Rd)× L2(Rd), defined by

PF,φ(f, g) =

∫∫
R2d

F (ω, t)〈f, φω,t〉〈g, φω,t〉dωdt. (2.28)

Assuming PF,φ is a bounded functional, a duality argument4 ensures the ex-
istence of a bounded, linear operator PF,φ : L2(Rd)→ L2(Rd) such that

PF,φ(f, g) = 〈PF,φf, g〉. (2.29)

The operator PF,φ is our sought after time-frequency localization operator,
which we will refer to as Daubechies’ localization operator due to the fact that
it was first introduced in her 1988-publication[4]. From the above definition
we conclude that PF,φ is characterized by the choice of weight F and window
function φ. However, when the choice for window is either evident from the
context or redundant in the discussion, we will usually drop the indexing φ
and simply denote the operator by PF .

In what follows, we will establish a few well-known but relevant properties
of the localization operator under some reasonable restrictions on the weight
function. To begin with, we consider two separate conditions on the weight
function F such that the sesquilinear functional PF is a bounded functional,
for which the localization operator PF is defined and continuous in the L2-
norm. Note that we always presume F to be a measurable function in the
standard Lebesgue measure.

4This result follows from Riesz representation theorem for Hilbert spaces, see Theorem
7.16 (Riesz-Fréchet Theorem) in Bowers and Kalton[7].
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Proposition 2.4. Let PF denote Daubechies’ localization operator with weight
function F . Distinguish between the two cases:

(A) Suppose F is bounded, that is ‖F‖∞ <∞, then ‖PF‖op ≤ ‖F‖∞.

(B) Suppose F is integrable, that is ‖F‖1 <∞, then ‖PF‖op ≤ ‖F‖1.

Proof. (A) By definition of PF , we have for any f, g ∈ L2(Rd)

|〈PFf, g〉| =
∣∣∣ ∫∫

R2d

F (ω, t)〈f, φω,t〉〈g, φω,t〉dωdt
∣∣∣

≤ ‖F‖∞
∫∫

R2d

∣∣〈f, φω,t〉〈g, φω,t〉∣∣dωdt

≤ ‖F‖∞‖Vφf‖2‖Vφg‖2 (by Cauchy-Schwarz).

From the orthogonality relation in Theorem 2.1,

|〈PFf, g〉| ≤ ‖F‖∞‖f‖2‖g‖2.

Taking the supremum of all ‖f‖2, ‖g‖2 ≤ 1 produces the desired result.

(B) Once again by the definition of PF ,

|〈PFf, g〉| ≤
∫∫

R2d

∣∣F (ω, t)〈f, φω,t〉〈g, φω,t〉
∣∣dωdt

≤ ‖f‖2‖g‖2‖φ‖2
2

∫∫
R2d

∣∣F (ω, t)
∣∣dωdt (by Cauchy-Schwarz).

The integral on the right-hand side is recognized as the L1-norm of F ,
and since φ is assumed to be normalized, this concludes the proof.

Although both Proposition 2.4 (A) and (B) deal with continuity, observe
that the assumptions on F in each case are fundamentally different. We can
with ease construct unbounded integrable functions and conversely bounded
functions which are not integrable. However, if both properties are present, the
localization operator is evidently bounded by the minimum of the L∞-norm
and L1-norm of F , that is

‖PF‖op ≤ min{‖F‖∞, ‖F‖1}. (2.30)

Assuming the weight is integrable, we show, similarly to the previous sec-
tion, that the current localization operator becomes a Hilbert-Schmidt integral
operator.
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Proposition 2.5. Suppose F ∈ L1(R2d). Then the associated Daubechies’
localization operator PF is a Hilbert-Schmidt operator with integral kernel

KF (x, y) =

∫∫
R2d

F (ω, t)φω,t(x)φω,t(y)dωdt. (2.31)

Proof. Since F is integrable, it is evident by Cauchy-Schwarz’ inequality that∫∫
R2d

∣∣F (ω, t)
∣∣ (∫

Rd

|f(y)φω,t(y)|dy
∫
Rd

|φω,t(x)g(x)|dx
)

dωdt <∞.

Hence, the Fubini-Tonelli theorem applies such that the integration order in
〈PFf, g〉 can be exchanged to obtain

〈PFf, g〉 =

∫
Rd

(∫
Rd

KF (x, y)f(y)dy

)
g(x)dx

= 〈
∫
Rd

KF (·, y)f(y)dy, g〉,

where KF (x, y) coincides with (2.31). Since the above identity holds for all
g ∈ L2(Rd), we conclude that

PFf(x) =

∫
Rd

KF (x, y)f(y)dy for almost all x ∈ Rd.

It remains to show that KF ∈ L2(Rd×Rd). By Cauchy-Schwarz’ inequality,∫∫
R2d

∣∣F (ω, t)
∣∣[ ∫∫

R2d

∣∣F (ω′, t′)
∣∣

·
(∫

Rd

|φω,t(x)φω′,t′(x)|dx
∫
Rd

|φω′,t′(y)φω,t(y)|dy
)

dω′dt′

]
dωdt

≤ ‖F‖2
1‖φ‖4

2 = ‖F‖2
1.

Therefore, we may apply the Fubini-Tonelli theorem once more, now in the
expression for KF (x, y), to yield ‖KF‖2 ≤ ‖F‖1.

A simple additional condition on F makes PF self-adjoint.

Proposition 2.6. If F is a real-valued function in L1(R2d), then PF is a
self-adjoint, compact operator.
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Proof. By the previous proposition, we have that PF is a compact operator, in
particular, a Hilbert-Schmidt integral operator with integral kernel KF (x, y)
according to (2.31). By criterion (2.15), we only require

KF (x, y) = KF (y, x) for almost all x ∈ Rd

in order for PF to be self-adjoint. Since F is real-valued, the latest identity
follows readily.

Observe that whenever the weight F is integrable, PF becomes a trace class
operator. More precisely, the localization operator PF is a compact operator
whose trace ∑

j

〈PF ej, ej〉

is always well-defined and independent of the choice of orthonormal basis {ej}j
for L2(Rd).

Proposition 2.7. Suppose F ∈ L1(R2d). Then the associated Daubechies’
localization operator PF is a trace class operator such that∑

j

|〈PF ej, ej〉| ≤ ‖F‖1 (2.32)

and ∑
j

〈PF ej, ej〉 =

∫∫
R2d

F (ω, t)dωdt, (2.33)

for any orthonormal basis {ej}j for L2(Rd).

Proof. Let {ej}j be any orthonormal basis for L2(Rd). Then by the Monotone
Convergence theorem,∑

j

|〈PF ej, ej〉| ≤
∑
j

∫∫
R2d

|F (ω, t)||〈φω,t, ej〉|2dωdt

=

∫∫
R2d

|F (ω, t)|
∑
j

|〈φω,t, ej〉|2dωdt

=

∫∫
R2d

|F (ω, t)|‖φ‖2
2dωdt (by Parseval’s identity)

=

∫∫
R2d

|F (ω, t)|dωdt = ‖F‖1.
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Since any partial sum F (ω, t)
∑

j |〈φω,t, ej〉|2 is uniformly bounded in abso-
lute value by |F (ω, t)|, the summation and integration can be exchanged by
Lebesque’s Dominated Convergence theorem such that∑

j

〈PF ej, ej〉 =
∑
j

∫∫
R2d

F (ω, t)|〈φω,t, ej〉|2dωdt

=

∫∫
R2d

F (ω, t)
∑
j

|〈φω,t, ej〉|2dωdt,

which once again by Parseval’s identity produces the desired result.

From these two latest propositions, we summarize the consequences on the
spectrum in the subsequent corollary.

Corollary 2.2. Suppose F is a real-valued function in L1(R2d), and let PF
denote the corresponding Daubechies’ localization operator. Then there exists
an orthonormal basis {ej}j for L2(Rd) such that for each j we have PF ej = λjej
for some sequence of real-valued scalars {λj}j. This sequence of eigenvalues
coincides with the point spectrum of PF , which again coincides with the entire
spectrum of PF .

Furthermore, the sum of the eigenvalues of PF is finite such that∑
j

|λj| ≤ ‖F‖1 (2.34)

and ∑
j

λj =

∫∫
R2d

F (ω, t)dωdt. (2.35)

Proof. The first part of the corollary is a direct restatement of Theorem 2.2
and Theorem 2.3 with respect to Proposition 2.6. The second part regarding
the sum is a special case of identities (2.32), (2.33) since 〈PF ej, ej〉 = λj for
each j.
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3 Uncertainty Principles

The purpose of this chapter is to provide a brief survey of different aspects
of the uncertainty principles in Fourier analysis. Further, we will formulate
these principles in terms of the two types of localization operators introduced
in section 2.3.1 and 2.3.2. In regular Fourier analysis the uncertainty prin-
ciples all convey the idea that a signal and its Fourier transform cannot be
well-localized simultaneously. With the time-frequency analogy presented in
Chapter 2.1, a signal may not be concentrated in both time and frequency. Ex-
tending to simultaneous time-frequency representations, these principles find
their analog. Hence, the uncertainty principles pose a fundamental obstacle
when attempting to localize signal and its Fourier transform, whether it be for
separate representations or simultaneous ones.

We will start by motivating in section 3.1 with perhaps the most recognized
version of the uncertainty principles, namely Heisenberg’s uncertainty princi-
ple. Much of this recognition can be argued from its frequent appearance in
quantum mechanics and its direct implications for measurements of physical
observables. Afterwards, we consider the classical Donoho-Stark uncertainty
principle for the regular Fourier transform in section 3.2, before establishing
the analog Lieb’s uncertainty principle in section 3.3 for the STFT. In sec-
tion 3.4 we present Benedicks’ Theorem for the regular Fourier transform and
Janssen’s extension for the STFT. In the final section we briefly discuss some
more recent results as a motivation for further research.

3.1 Heisenberg’s Uncertainty Principle

Although Heisenberg’s uncertainty principle can be generalized to a statement
about self-adjoint operators on the Hilbert space, we will only consider the
principle for a signal f and its Fourier transform f̂ (both in the space L2(Rd)).

Theorem 3.1. (Heisenberg’s Uncertainty Principle) Let f ∈ L2(Rd), and let
a, b ∈ Rd be arbitrary. Then∫

Rd

|t− a|2|f(t)|2dr ·
∫
Rd

|ω − b|2|f̂(ω)|2dr ≥ d2‖f‖4
2

16π2
, (3.1)

where |t− a|2 =
∑d

j=1(tj − aj)2.

Since the function norm is invariant under any translation of the argument,
the above theorem holds if and only if∫

Rd

|t|2|f(t)|2dr ·
∫
Rd

|ω|2|f̂(ω)|2dr ≥ d2‖f‖4
2

16π2
∀ f ∈ L2(Rd), (3.2)
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i.e. we may, without loss of generality, set a, b equal to zero.
In what follows, we provide a simple proof of Theorem 3.1 in the 1-

dimensional case, which can easily be generalized to d dimensions. The proof,
that we will consider, originates with Nicolaas G. de Bruijn in his 1967-
publication[8] and involves the Hermite functions

Hk(t) =
21/4

√
k!

(
− 1

2
√
π

)k
eπt

2 dk

dtk
(e−2πt2), k = 0, 1, 2, . . . , (3.3)

which is a well-known orthonormal basis for L2(R) (see Folland’s Chapter 1.7
point (vii)[9]). As an interesting side-note, the Hermite functions will also be
essential in Chapter 4 when we discuss Daubechies’ localization operators with
a spherically symmetric weight.

In the current context, from Folland’s Chapter 1.7[9], we obtain the fol-
lowing facts:

(i) If we set H−1 ≡ 0, we have the recursive relation

2
√
πt ·Hk(t) =

√
k + 1Hk+1(t) +

√
kHk−1 for k = 0, 1, 2, . . . , (3.4)

(ii) Every Hk is an eigenfunction of the Fourier transform such that

FHk = (−i)kHk for k = 0, 1, 2, . . . (3.5)

Based on these two properties, we formulate the subsequent theorem.

Theorem 3.2. Let f ∈ L2(R). Then∫
R
t2|f(t)|2dt+

∫
R
ω2|f̂(ω)|2dω =

1

2π

∞∑
k=0

(2k + 1)|〈f,Hk〉|2. (3.6)

In particular, ∫
R
t2|f(t)|2dt+

∫
R
ω2|f̂(ω)|2dω ≥ ‖f‖

2
2

2π
, (3.7)

where equality is realized precisely when f is a multiple of H0.
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Proof. Firstly, by the recursive relation (3.4),

2
√
π〈tf(t), Hk(t)〉 =

√
k + 1〈f,Hk+1〉+

√
k〈f,Hk−1〉.

Similarly, by the eigenvalue-equation (3.5) and the fact that F is unitary, we
have

2
√
π〈ωf̂(ω), Hk(ω)〉 = i−(k+1)

√
k + 1〈f,Hk+1〉+ i−k+1

√
k〈f,Hk−1〉.

Now, apply Parseval’s identity to these two latest formulas such that∫
R
t2|f(t)|2dt+

∫
R
ω2|f̂(ω)|2dω =

∞∑
k=0

[
|〈tf(t), Hk(t)〉|2 + |〈ω2f̂(ω), Hk(ω)〉|2

]
=

1

4π

∞∑
k=0

[
2(k + 1)|〈f,Hk+1〉|2 + 2k|〈f,Hk−1〉|2

]
=

1

2π

∞∑
k=0

(2k + 1)|〈f,Hk〉|2.

As 2k + 1 ≥ 1 for any positive k, the final inequality (3.7) is immediate.
Equality holds if and only if the terms (2k+ 1)|〈f,Hk〉|2 are all zero for k > 0,
which means f must be a multiple of H0.

From here the 1-dimensional version of Theorem 3.1 follows by a simple
dilation argument. Consider the dilation

g(t) = p−1/2f(t/p) for any p > 0. (3.8)

Since ‖g‖2 = ‖f‖2, by Theorem 3.2, we must have

‖f‖2
2

2π
≤
∫
R
t2|g(t)|2dt+

∫
R
ω2|ĝ(ω)|2dω

= p2

∫
R
t2|f(t)|2dt+ p−2

∫
R
ω2|f̂(ω)|2dω. (3.9)

Minimizing the right-hand side of (3.9) with respect to p > 0 produces the
desired 1-dimensional Heisenberg’s uncertainty principle∫

R
t2|f(t)|2dt ·

∫
R
ω2|f̂(ω)|2dω ≥ ‖f‖

4
2

16π2
. (3.10)
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From Theorem 3.2, it is clear that equality of (3.10) is realized whenever f is
a multiple of H0, i.e. a multiple of the normalized Gaussian. Furthermore, a
simple calculation reveals that equality holds for any dilation of the form

f(x) = cH0(x/p), where c ∈ C and p > 0. (3.11)

Since any other dilation would keep inequality (3.9) strict for all p > 0, the
functions in (3.11) are in fact the only solutions that minimize (3.10).

For the d-dimensional version of the uncertainty principle, we consider the
d-dimensional Hermite functions, say

ηk(t) =
d∏
j=1

Hkj(tj), for k = (k1, . . . , kd) ∈ (N ∪ 0)d, (3.12)

which serves as an orthonormal basis for L2(Rd). Then by Theorem 3.2 and
Parseval’s identity, it follows that for each j = 1, . . . , d∫

Rd

t2j |f(t)|2dt+

∫
Rd

ω2
j |f̂(ω)|2dω =

1

2π

∑
k∈(N∪{0})d

(2kj + 1)|〈f, ηk〉|2.

Since the above identity is bounded from below by ‖f‖2
2/(2π) for each j, we

may apply a similar dilation argument as in the 1-dimensional case to conclude∫
Rd

t2j |f(t)|2dt ·
∫
Rd

ω2
j |f̂(ω)|2dω ≥ ‖f‖

4
2

16π2
for j = 1, . . . , d.

Based on this result and by Cauchy-Schwarz’ inequality for Euclidean vectors
in Rd, we finally obtain the d-dimensional Heisenberg’s uncertainty principle(∫

Rd

|t|2|f(t)|2dt

)1/2

·
(∫

Rd

|ω|2|f̂(ω)|2dω

)1/2

=

(
d∑
j=1

∫
Rd

t2j |f(t)|2dt

)1/2

·

(
d∑
j=1

∫
Rd

ω2
j |f̂(ω)|2dω

)1/2

≥
d∑
j=1

(∫
Rd

t2j |f(t)|2dt

)1/2

·
(∫

Rd

ω2
j |f̂(ω)|2dω

)1/2

≥d‖f‖
2
2

4π
.
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A careful analysis of the above calculation reveals that the two inequalities are
both reduced to equalities precisely when the signal f can be written as

f(t) = c

d∏
j=1

H0(tj/p) ∀ c ∈ C and p > 0.

Proceeding, we will express inequality (3.1) on its more recognized form. Based
on said inequality, it is natural to introduce the following concept: The dis-
persion of a signal f ∈ L2(Rd) about point a ∈ Rd is defined as

(∆af)2 =
1

‖f‖2
2

∫
Rd

|t− a|2|f(t)|2dt. (3.13)

Note that the dispersion does not have to be finite. Nevertheless, this quantity
measures to what extent the graph of the signal deviates from the point t = a.
If (∆af)2 is small, then f is concentrated near a. While for a larger dispersion,
the signal is more spread out. In the case when the dispersion is finite, it is
straightforward to verify that the minimal dispersion occurs at t = ā, where

ā =
1

‖f‖2
2

∫
Rd

t|f(t)|2dt. (3.14)

In terms of probability distributions, observe that for any normalized sig-
nal, i.e. ‖f‖2 = 1, the function |f |2 can be regarded as a probability density
function over Rd. Then ā represents the expectation value of |f |2, and the as-
sociated dispersion (∆āf)2 corresponds to the variance (or equivalently, ∆āf
corresponds to the standard deviation).

With these notions, for any non-trivial signal f ∈ L2(Rd), Heisenberg’s
uncertainty principle in Theorem 3.1 reads

∆af ·∆bf̂ ≥
d

4π
. (3.15)

In particular, if f is normalized, the above inequality conveys that the product
of the standard deviation of f and that of f̂ is greater than the threshold
d/(4π). Since the standard deviation is the (most) common metric by which
we quantify the uncertainty or spread in our measurements, the appeal of
Heisenberg’s principle in applications is not unfounded.
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We conclude this section with a motivational example of one of the most
infamous consequences of the uncertainty principle:

Example 3.1. (Position and Momentum in Quantum Mechanics) Note that
this example is not meant as a comprehensive introduction to the fundamentals
of quantum mechanics (see instead Chapter 1 in Griffiths’s book [10]).

Nevertheless, in quantum mechanics the position q ∈ Rd of a particle is
encoded in a wave function, say Ψ. For a bound state, Ψ is a normalized
element of L2(Rd), where |Ψ|2 represents the probability density function of the
position of said particle. Similarly, the there exists a wave function Φ ∈ L2(Rd)
for the momentum coordinates p ∈ Rd, where |Φ|2 is the probability density
function of the momentum.

Let ∆q,∆p denote the standard deviations of q, p, respectively. By the
interpretation of the wave functions in terms of probability distributions, it
is evident that ∆q,∆p must coincide with the corresponding standard devia-
tions of Ψ,Φ. As it turns out, the momentum representation Φ is the Fourier
transform of the position representation Ψ. Observe, however, that the Fourier
transform between Ψ and Φ is normalized somewhat differently than in (2.1).
In particular, this Fourier transform includes a non-zero physical constant h,
also known as Planck’s constant, that determines the physical scale of the
position and momentum. In terms of (2.1), we obtain

Φ(p) = h−d/2 · Ψ̂(p/h), (3.16)

such that ∆p = h ·∆Ψ̂. By Heisenberg’s uncertainty principle (3.15),

∆q ·∆p ≥ h
d

4π
. (3.17)

Hence, we have the remarkable result that the position and momentum cannot
be determined precisely simultaneously. This example shows that the uncer-
tainty principle is not merely of mathematical or theoretical interest, but also
that the principle manifests itself directly in nature.
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3.2 Donoho-Stark’s Uncertainty Principle

In the previous section we introduced the notion of dispersion (and in return
the standard deviation) as a measurement of the spread of the signal graph.
Donoho-Stark’s uncertainty principle, however, is formulated in terms of the
measure of specific time set T and frequency band Ω. In order to evaluate to
what extent a signal is concentrated on a specific set, we invoke the following
definition:

For a fixed ε ∈ [0, 1] we say that a signal f ∈ L2(Rd) is at most ε-supported
outside a subset E ⊆ Rd if

‖f − χEf‖2 ≤ ε‖f‖2. (3.18)

Alternatively, the function f is said to be at least (1− ε)-supported on E.
In terms of the two projections πT , QΩ from (2.17), (2.18), f is at least

(1 − εT )-supported on T and f̂ is at least (1 − εΩ)-supported on Ω precisely
when

‖f − πTf‖2 ≤ εT‖f‖2,

and

‖f −QΩf‖2 ≤ εΩ‖f‖2,

respectively5. With this new terminology, we are ready to present Donoho-
Stark’s uncertainty principle, attributed to David L. Donoho and Philip B.
Stark for their findings in the 1989-paper[11].

Theorem 3.3. (Donoho-Stark’s Uncertainty Principle)
Suppose 0 6= f ∈ L2(Rd) is at least (1−εT )-supported on T ⊆ Rd, and suppose
f̂ is at least (1− εΩ)-supported on Ω ⊆ Rd. Then

|T ||Ω| ≥ (1− εT − εΩ)2. (3.19)

Proof. Recall that by inequality (2.25), we already have a lower bound esti-
mate for |T ||Ω|, namely the operator norm (squared) ‖QΩπT‖2

op. Hence, it is
sufficient to show that ‖QΩπTf‖2 is bounded from below by (1− εT − εΩ)‖f‖2.
Observe, by the reverse triangle inequality,

‖QΩπTf‖2 ≥ ‖f‖2 − ‖f −QΩπTf‖2. (3.20)

5The latest inequality follows from F being a unitary operator.
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Furthermore, by the triangle inequality and the fact that ‖QΩ‖op ≤ 1,

‖f −QΩπTf‖2 = ‖f −QΩf +QΩ(f − πTf)‖2

≤ ‖f −QΩf‖2 + ‖QΩ‖op‖f − πTf‖2

≤ (εΩ + εT )‖f‖2,

which combined with observation (3.20) yields the desired result.

As noted by Donoho and Stark, the key ingredient in the proof is the
operator norm of QΩπT (or similarly πTQΩ). Inequality (3.19) thus poses a
limitation for how efficiently the aforementioned operator can concentrate a
signal on the set T in time and Ω in frequency.

3.3 Lieb’s Uncertainty Principle

In this section we return focus to the STFT as our joint time-frequency rep-
resentation, and consider the analog of Donoho-Stark’s uncertainty principle
for the STFT, namely Lieb’s uncertainty principle. For this signal represen-
tation, the natural localization operators will be Daubechies’ time-frequency
localization operators. In particular, we will study the localization operators
when the weight equals the characteristic function of some subset of the time-
frequency plane. More precisely, let U ⊆ R2d be measurable and φ ∈ L2(Rd)
be a window function, then the localization operator PU,φ is defined by

〈PU,φf, g〉 =

∫∫
U

〈f, φω,t〉〈φω,t, g〉dωdt ∀ f, g ∈ L2(Rd). (3.21)

However, as opposed to Donoho-Stark, the proof of Lieb’s uncertainty principle
does not rely directly on the localization operators to be introduced. Never-
theless, these operators will indeed be impacted by the uncertainty principle,
similar to that of the previous section.

Initially, consider a weaker version of the uncertainty principle:

Proposition 3.1. Suppose f, φ ∈ L2(Rd) are non-zero. If U ⊆ R2d is measur-
able and ε ∈ [0, 1] is such that∫∫

U

|Vφf(ω, t)|2dtdω ≥ (1− ε)‖Vφf‖2
2,

then

|U | ≥ 1− ε. (3.22)
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Proof. By Cauchy-Schwarz’ inequality,

|Vφf(ω, t)| = |〈f, φω,t〉| ≤ ‖f‖2‖φ‖2 = ‖Vφf‖2 ∀ (ω, t) ∈ R2d.

Thus, by monotonicity of the integral,

(1− ε)‖Vφf‖2
2 ≤

∫∫
U

|Vφf(ω, t)|2dtdω ≤ |U |‖Vφf‖2
∞ ≤ |U |‖Vφf‖2

2.

A sharper estimate of the above inequality is attributed to Elliot H. Lieb
for the discoveries in his 1989-paper[12]. Before presenting this, we require the
following estimate:

Lemma 3.4. (Lieb’s Inequality) Suppose f, φ ∈ L2(Rd) and p ∈ [2,∞[, then∫∫
R2d

|Vφf(ω, t)|pdtdω ≤
(

2

p

)d
(‖f‖2‖φ‖2)p. (3.23)

Proof. See proof of Theorem 1 (a) in Lieb’s paper[12]. Alternatively, see proof
of Theorem 3.3.2 in Gröchenig[6].

From here it becomes easy to prove Lieb’s uncertainty principle.

Theorem 3.5. (Lieb’s Uncertainty Principle) Suppose f, φ ∈ L2(Rd) are non-
zero. If U ⊆ R2d is measurable and ε ∈ [0, 1] is such that∫∫

U

|Vφf(ω, t)|2dtdω ≥ (1− ε)‖Vφf‖2
2,

then

|U | ≥ (1− ε)
p

p−2

(p
2

) 2d
p−2 ∀ p > 2. (3.24)

Proof. By Hölder’s inequality with exponents p/2 and p/(p− 2) for p > 2,

(1− ε)‖Vφf‖2
2 ≤

∫∫
R2d

χU(ω, t)|Vφf(ω, t)|2dtdω

≤
(∫∫

R2d

|Vφf(ω, t)|2·
p
2 dtdω

) p
2
(∫∫

R2d

χU(ω, t)
p

p−2 dtdω

) p−2
p

=

(∫∫
R2d

|Vφf(ω, t)|pdtdω
) 2

p

|U |
p−2
p

≤
(

2

p

) 2d
p

‖Vφf‖2
2|U |

p−2
p (by Lemma 3.4).

The final inequality is obtained by rearrangement.
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From the uncertainty principle presented in Proposition 3.1 and improved
in Theorem 3.5, it is evident that no signal can be mostly concentrated in
an arbitrarily small part of the phase space. As the measure of the region in
question tends to zero, so must the support of the signal in that region. Note
that the localization operator PU,φ defined by (3.21) attempts to concentrate
signals on the set U in phase space. Hence, the effective localization of PU,φ
on U will indeed be limited by the uncertainty principle.

We also make a few remarks of how the operator norm of PU,φ is affected
by the measure of U . By the continuity conditions on PU,φ we always require
the norm to be bounded from above by

‖PU,φ‖op ≤ min{|U |, 1}. (3.25)

In addition, recall that the operator norm satisfies

‖PU,φ‖op ≥ 〈PU,φf, f〉 =

∫∫
U

|Vφf(ω, t)|2dtdω ∀ ‖f‖2 = 1. (3.26)

Hence, if for some non-zero f ∈ L2(R) the conditions of Lieb’s principle are
satisfied for a fixed ε ∈ [0, 1] on subset U , then we attain a lower bound for
the norm

‖PU,φ‖op ≥ (1− ε). (3.27)

3.4 Benedicks’ Theorem

So far we have considered uncertainty principles for sets of small measure in
either the separate or joint time-frequency representation. From these princi-
ples we can deduce lower bounds for the measure of the support of the signal
f 6= 0 in either representation. In particular, set ε = 0 in Theorem 3.3 and
3.5. Then for the regular Fourier transform let suppf = T and suppf̂ = Ω,
from which we must have

|T ||Ω| ≥ 1. (3.28)

Similarly, for the STFT with window φ 6= 0 and U = suppVφf , we must have

|U | ≥ lim
p→2+

(p
2

) 2d
p−2

= ed. (3.29)
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A natural question to ask is whether these inequalities are sharp. And if
not, a followup question would be if a signal can be entirely concentrated on
some finite time and frequency sets or concentrated on a finite part of the
phase space. As it turns out, neither of these propositions are true.

Already in a preprint from 1974 Michael Benedicks had shown that no non-
trivial function may be concentrated on a finite time and frequency band (see
[13]). In 1997 it was conjectured by G.B. Folland and A. Sitaram in [14] that a
similar proposition should hold for joint time-frequency representations (more
precisely the Wigner distribution6). The conjecture was proven the following
year by A.J.E.M. Janssen in [15].

Proceeding, we will present and prove both of these uncertainty princi-
ples. Initially, we consider Benedicks’ classical theorem for the separate time-
frequency representation.

Theorem 3.6. (Benedicks’ Theorem) Consider a function f ∈ L2(Rd) with
Fourier transform f̂ . Let T = suppf and Ω = suppf̂ . If |T ||Ω| < ∞, then
f(t) = 0 almost everywhere (i.e. f = 0).

Proof. Without loss of generality, assume |T | < 1 since we may replace f by
the dilation fa(x) = f(ax) for some a > 0.

Now, consider the 1-periodization∫
Rd

χΩ(ω)dω =
∑
n∈Zd

∫
[0,1]d

χΩ(ω + n)dω

=

∫
[0,1]d

∑
n∈Zd

χΩ(ω + n)dω = |Ω| <∞. (3.30)

Hence, for almost all ω0 ∈ Rd we have χΩ(ω0 + n) 6= 0 only for a finite
number of n ∈ Z. Since f̂ = f̂ · χΩ, it follows that

(A) for almost all ω0 ∈ Rd, f̂(ω0 +n) 6= 0 only for a finite number of n ∈ Zd.

By a similar argument for T , we obtain that

(B) for almost all x ∈ Rd, f(x+ n) 6= 0 only for a finite number n ∈ Zd.

6The Wigner distribution is an alternative simultaneous time-frequency representation
to the STFT and can easily we expressed in terms of the STFT.
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Define the function
∼
fω0

(x) :=
∑
n∈Zd

e−2πiω0·(x−n)f(x− n), (3.31)

which by (B) is absolutely convergent for almost all x ∈ Rd. We claim that
∼
fω0

satisfies the following properties for almost all ω0 ∈ Rd

(i)
∼
fω0
∈ L1(Td), where Td = Rd/Zd denotes the d-torus,

(ii)
∼
fω0

has Fourier coefficients f̂ω0(n) = f̂(ω0 + n) for n ∈ Zd, and

(iii) the support of
∼
fω0

in Td has measure strictly less than 1, i.e.

C = supp
∼
fω0

, where |C| < 1.

Begin by considering the L1-norm of
∼
fω0

over Td, that is∫
Td

|
∼
fω0

(x)|dx =

∫
[0,1]d

∣∣∣ ∑
n∈Zd

e−2πiω0·(x−n)f(x− n)
∣∣∣dx

≤
∫

[0,1]d

∑
n∈Zd

|f(x− n)|dx =
∑
n∈Zd

∫
[0,1]d
|f(x− n)|dx

=

∫
Rd

|f(x)|dx = ‖f‖1.

Since |T | < ∞ and f ∈ L2(Rd) implies f ∈ L1(Rd), claim (i) follows. The
second claim (ii) is verified by explicit computation of the Fourier coefficients
on the d-cube [0, 1]d

f̂ω0(m) =

∫
[0,1]d

∼
fω0

(x)e−2πim·xdx

=

∫
[0,1]d

∑
n∈Zd

e−2πiω0·(x−n)f(x− n)e−2πim·xdx

=
∑
n∈Zd

∫
[0,1]d

e−2πiω0·(x−n)f(x− n)e−2πim·xdx

=
∑
n∈Zd

e2πim·n
∫
n+[0,1]d

f(x)e−2πi(ω0+m)·xdx

=

∫
Rd

f(x)e−2πi(ω0+m)·xdx = f̂(ω0 +m) for m ∈ Zd.
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Note that the exchange of summation and integration in line three is valid
by the computations for claim (i) and subsequently Lebesque’s Dominated
Convergence Theorem. As a curiosity, observe that by expressing function
(3.31) in terms its Fourier coefficients, we arrive at Poisson summation formula
(see Chapter 1.4 in [6])∑

n∈Zd

e−2πiω0·(x−n)f(x− n) =
∑
n∈Zd

e−2πin·xf̂(ω0 + n). (3.32)

For the final claim, it is sufficient to recognize that |C| ≤ |T | < 1.
Combine observations (A) and (iii) to conclude that for almost all ω0 ∈ Rd

the function
∼
fω0

is a trigonometric polynomial which is zero on a set of positive
measure. Since the zero function is the only trigonometric polynomial which

is zero on set a positive measure, it follows that
∼
fω0

= 0. From (ii), this means

f̂(ω0 + n) = 0 for almost all ω0 ∈ Rd, i.e. f̂ = 0.

As mentioned earlier, a similar property holds for the STFT and can be
summarized as follows:

Theorem 3.7. Let Vφf be the STFT of a signal f with window φ 6= 0 both
in L2(Rd). If |suppVφf | <∞, then f = 0.

The proof will be based on Janssen’s proof in [15]. Note that in contrast to
Janssen, we will prove this property directly for the STFT, instead of trans-
formation via the Wigner distribution.

The idea of the proof is inspired by the following observation: If Vφf has
finite support, and if it can be shown that so does its Fourier transform,
then we are in a position to apply Benedicks’ theorem to obtain Vφf = 0.
However, instead of considering Vφf directly, we consider a family of functions
in L1(R2d), say {χν,s}ν,s∈Rd , all containing the factor Vφf . This family is chosen
such that it is easy to determine the support of the Fourier transforms and
such that χν,s = 0 for all ν, s only if Vφf = 0. The challenge then becomes
how to construct such a family.

We start with an alternative to formula (2.1) in [15]:

Lemma 3.8. Let a, b, ν, s ∈ Rd and let f1, f2, g1, g2 ∈ L2(Rd). Then∫∫
R2d

Vf1f2(ω, t)Vg1g2(ω + ν, t+ s)e−2πi(a·t−b·ω)dtdω

= e2πib·νVg2f2(a− ν, b)Vg1f1(a, b+ s). (3.33)
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Proof. Define

h1(x) := (g1)a,b+s(x) = g1(x− (b+ s))e2πia·x

and

h2(x) := (g2)a−ν,b(x) = g2(x− b)e2πi(a−ν)·x,

which are both in L2(Rd). Explicit computation then yields

Vh1h2(ω, t) = e−2πi(b·ν−a·t+b·ω)Vg1g2(ω + ν, t+ s),

from which

e2πib·ν
∫∫

R2d

Vf1f2(ω, t)Vg1g2(ω + ν, t+ s)e2πi(a·t−b·ω)dtdω

=

∫∫
R2d

Vf1f2(ω, t)Vh1h2(ω, t)dtdω

=〈f2, h2〉〈f1, h1〉.

Since it is straightforward to show

〈f2, h2〉 = Vg2f2(a− ν, b)

and

〈f1, h1〉 = Vg1f1(a, b+ s),

we are done.

From this formula it becomes easy to construct a sufficient family {χν,s}ν,s.

Proof. (Theorem 3.7) For ν, s ∈ Rd define the function

χν,s(ω, t) := Vφf(ω, t)Vfφ(ω + ν, t+ s),

which is evidently in L1(R2d). From formula (3.33), the Fourier transform of
χν,s can be written

χ̂ν,s(−b, a) = e−2πib·νVφf(a− ν, b)Vfφ(a, b+ s).

Since both χν,s and χ̂ν,s contain to some shift of the factor Vφf , it follows that

|suppχν,s|, |suppχ̂ν,s| ≤ |suppVφf | <∞.

Thus, by Benedicks’ theorem, we conclude that χν,s = 0. Since ν, s were
arbitrary, we must have Vφf = 0 or Vfφ = 0, which only occurs if φ = 0 or
f = 0.
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Observe that Donoho-Stark and Lieb’s uncertainty principle represent local
and indeed quantitative uncertainty principles in the sense that they provide
estimates for the concentration of a signal on sets of small measure. In contrast,
Benedicks’ theorem with its extensions can be regarded as more global and
qualitative uncertainty principles where no estimates are produced and instead
describe the behaviour of a signal as a whole. Nevertheless, we are able to draw
a simple conclusion on the operator norm of the localization operators πTQΩ

and PU,φ, which we list as two corollaries.

Corollary 3.1. Let T,Ω ⊆ Rd be the time set and frequency set, respectively.
Assume that |T ||Ω| <∞. Then the operator norm of πTQΩ is strictly smaller
than 1, i.e.

‖πTQΩ‖op < 1. (3.34)

Proof. Note that for any linear operator T : L2(Rd)→ L2(Rd), we have that

‖T T ∗‖op = ‖T ‖2
op,

where T ∗ denotes the adjoint of T . Since πTQΩπT = (πTQΩ)(πTQΩ)∗, it is
sufficient to show that ‖πTQΩπT‖op < 1 in order to prove the statement.

In the final remarks of section 2.3.1 we concluded that there exists an
orthonormal eigenbasis {Ej}j for L2(T ) such that

πTQΩEj = πTQΩπTEj = λjEj

for some sequence of real scalars {λj}j. Then ‖πTQΩπT‖op equals the modulus
of the largest eigenvalue, say |λ0|. Assume therefore, by contradiction, that
|λ0| = 1. However, ‖πTQΩE0‖2 = 1 only if suppÊ0 ⊆ Ω and since we already
have suppE0 ⊆ T , we arrive at a contradiction to Benedicks’ theorem.

Similarly, we have for Daubechies’ localization operator:

Corollary 3.2. Suppose U ⊆ R2d has finite measure. Then the operator norm
of the localization operator PU,φ is strictly smaller than 1, i.e.

‖PU,φ‖op < 1. (3.35)

Proof. The proof is analogous to proof of ‖πTQΩπT‖op < 1 in Corollary 3.1.
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3.5 Further Results

In this section we briefly mention some more recent results regarding the un-
certainty principles, which shows that this is a research area in constant de-
velopment. In contrast to the previous versions presented, these results take
into account some of the geometry of the time-frequency domains and not only
their measure. Note, however, that for the most part the proofs will be omit-
ted and only referenced. Nevertheless, this section serves as reminder that the
geometry of the time-frequency domains is not irrelevant when it comes to
localization.

Theorem 3.9. (The Paneyah-Logvinenko-Sereda Theorem)
Let E be a measurable subset of Rd such that for some constants r, γ > 0

|E ∩B| ≥ γ|B| ∀ balls B ⊆ Rd of radius r. (3.36)

Let Bδ(0) ⊆ Rd denote the closed ball of radius δ > 0 centered at the origin.
Then for any signal f ∈ L2(Rd) with suppf̂ ⊆ Bδ(0),

‖f‖2
2 ≤ C‖χEf‖2

2, (3.37)

for some constant C = C(r, γ, δ, d) ≥ 1. In particular, if suppf ⊆ Rd\E, then
f is the zero function, i.e. f = 0.

Proof. See the proof of Theorem 10.7 in Muscalu and Schlag’s book[16]. Al-
though they impose the symmetry condition r = δ−1, this is not a strict
requirement as it only reduces the number of parameters in C.

Note that it is easy to construct examples where both E and Rd\E has
infinite measure. Therefore, a time set with infinite measure cannot in and of
itself guarantee complete localization. Proceeding, we present a simple upper
bound estimate for the operator norm of the relevant localization operator
πRd\EQΩ for Ω ⊆ Bδ(0).

Corollary 3.3. Let E be as in Theorem 3.9 with the same constants γ, r > 0,
in addition to the constants δ > 0 and C = C(r, γ, δ, d) ≥ 1. Suppose Ω is a
measurable subset of Bδ(0). Then the localization operator πRd\EQΩ satisfies

‖πRd\EQΩ‖op ≤
√

1− 1

C
< 1. (3.38)
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Proof. By Theorem 3.9, for any f ∈ L2(Rd), we must have

‖QΩf‖2
2 ≤ C‖χEQΩf‖2

2 = C
(
‖QΩf‖2

2 − ‖πRd\EQΩf‖2
2

)
.

Result (3.38) then follows after rearrangement combined with the fact that
‖QΩf‖2 ≤ ‖f‖2.

So far we have not provided any estimates of the constant C = C(r, γ, δ, d)
in Theorem 3.9. As it turns out, the proof presented in [16] does not contain
a sharp estimate. However, this proof is based on the 2001-paper[17] by Oleg
Kovrijkine, where some effort is made to estimate C. In the 1-dimensional
case Kovrijkine shows that up to some absolute and unknown constant β > 0,
the optimal estimate is given by

C(r, γ, δ, d = 1) =

(
γ

β

)β(4rδ+1)

. (3.39)

More recently, Alexander Reznikov has in his 2010-publication[18] determined
sharp constants for specific subsets E in the 1-dimensional case. We illustrate
by one of the simpler examples in the article:

Example 3.2. (Union of Equidistant Intervals) Suppose E ⊆ R is of the form

E(R) =
⋃
n∈Z

[n−R, n+R] for R ∈]0, 1/2[. (3.40)

We will now outline a short argument for how to derive the constant C in
Theorem 3.9 for any signal f with suppf̂ ⊆ [−1

2
, 1

2
]:

Firstly, by a similar 1-periodization as in Benedicks’ theorem,∫
E

|f(x)|2dx =

∫ 1/2

−1/2

χ[−R,R](x)
∑
n∈Z

|f(x+ n)|2dx.

Secondly, express the two factors χ[−R,R](x) and
∑

n∈Z |f(x+ n)|2 in terms of
their Fourier series on [−1

2
, 1

2
] with the standard orthonormal basis {e−2πikx}k∈Z,

from which we obtain

‖χEf‖2
2 =

∑
k∈Z

|̂f |2(k)

∫ R

−R
e−2πikxdx. (3.41)
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By the Convolution Theorem, |̂f |2 = f̂ ∗ f̂ , where

f ∗ g(t) =

∫
R
f(x)g(t− x)dx

denotes the standard 1-dimensional convolution. Since suppf̂ ⊆ [−1
2
, 1

2
], it

follows that supp|̂f |2 ⊆ [−1, 1] with |̂f |2(±1) = 0. Hence, the sum (3.41)
reduces to

‖χEf‖2
2 = 2R|̂f |2(0) = 2R‖f‖2

2.

From here we conclude that the constant in Theorem 3.9 is given by C =
C(R) = (2R)−1. Since this constant is obviously sharp, Corollary 3.3 yields

‖πR\E(R)Q[− 1
2
, 1
2

]‖op =
√

1− 2R. (3.42)

Observe that even though the measure of R\E is infinite for any R ∈]0, 1/2[,
the operator norm ‖πR\E(R)Q[− 1

2
, 1
2

]‖op → 0 as R → 1/2. In addition, notice

that the quantity 1− 2R coincides with the length of each interval in R\E.

For the STFT there exists a somewhat similar result to Theorem 3.9, which
prohibits complete localization on a certain family of subsets (possibly of in-
finite measure) but now in the time-frequency plane. This was discovered by
Carmen Fernández and Antonio Galbis in their 2010-paper[19]. In said paper
they focus on the following subsets:

A measurable set U ⊆ R2d is said to be thin at infinity if

lim
|x|→∞

|U ∩BR(x)| = 0 for some (for all) R > 0, (3.43)

where BR(x) denotes the closed ball of radius R centered at x ∈ R2d.
With this definition in mind, we formulate the next theorem.

Theorem 3.10. Suppose U ⊆ R2d is a thin set at infinity, and let φ ∈ L2(Rd)
be a fixed, non-zero window function. Then there exists a constant C ≥ 1
such that

‖f‖2
2 ≤ C

∫∫
R2d\U

|Vφf(ω, t)|2dωdt ∀ f ∈ L2(Rd). (3.44)

In particular, if suppVφf ⊆ U , then f = 0.

Proof. See proof of Theorem 4.1 in [19].
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Similarly to Corollary 3.3, we may rephrase the above theorem as a state-
ment about the relevant localization operator, namely Daubechies’ localization
operator PU,φ.

Corollary 3.4. Let U ⊆ R2d and φ ∈ L2(Rd) be as in Theorem 3.10 with the
same constant C ≥ 1. Presume φ is normalized, then Daubechies’ localization
operator PU,φ satisfies

‖PU,φ‖op ≤ 1− 1

C
< 1. (3.45)

Proof. By an analogous argument as in Corollary 3.3, we rearrange (3.44) such
that

〈PU,φf, f〉 =

∫∫
U

|Vφf(ω, t)|2dωdt ≤
(

1− 1

C

)
‖f‖2

2 ∀ f ∈ L2(Rd).

By Cauchy-Schwarz’ inequality on L2(U),

|〈PU,φf, g〉| ≤ max{〈PU,φf, f〉, 〈PU,φg, g〉} ∀ f, g ∈ L2(Rd),

from which the statement follows.

Note that Fernández and Galbis proof does not offer any sharp estimates
of the constant involved. Nevertheless, for specific subsets it is possible to esti-
mate the operator norm of PU,φ more accurately. In section 4.2.3 we consider an
example when the subset in question U has infinite measure. This example is,
to some extent, meant to mirror Example 3.2 for the separate time-frequency
representation, but now for the joint representation. Note, however, that in
the example U is not thin at infinity. This goes to show that the notion of thin
at infinity is a sufficient condition for inequality (3.44) and not a necessary one.

Returning to the separate time-frequency representation, in notes from 2017
recent contributions have been made by Semyon Dyatlov[5] on the topic of
uncertainty principles in 1 dimension. The primary focus in these notes is
what Dyaltov refers to a the fractal uncertainty principle. In particular, this
means that the time and frequency sets take the form of fractal sets or exhibit
a prescribed regularity close to it. One specific fractal set that is studied in
detail is the Cantor set. We conclude this section by outlining in what sense
Dyatlov measures localization on the Cantor set in time and frequency.
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Example 3.3. (Dyatlov’s Localization on the Cantor Set) A formal definition
of the Cantor set can be found in section 4.3. For the purpose of this example,
recall that the Cantor set is a compact subset of R which is obtained by a
nested iterative scheme C0 ⊇ C1 ⊇ C2 ⊇ . . . While the Cantor set itself has
zero measure, each iterate does not. In particular, if the Cantor set C(M) is
based in the interval [0,M ], then the n-iterate Cn(M) consists of 2n disjoint
intervals in [0,M ] each with measure 3−nM . Therefore, instead of projecting
onto the Cantor set directly, we project onto one of the iterates.

Although projecting onto Cn(M) is essentially a two-parameter problem (in
terms of n and M), Dyatlov reduces this to a one-parameter problem. This
in the sense that the iterate n is not chosen independently from M . More
precisely, if Ij denotes a single interval in Cn(M), we consider n such that
|Ij| ∼ 1/M . Since |Ij| = 3−nM , this means

3n ∼M2. (3.46)

Hence, for any iterate Cn(M) that satisfies condition (3.46), we must have

|Cn(M)| ∼
(

2√
3

)n
∼M2 ln 2/ ln 3−1. (3.47)

Let {Xn := Cn(M(n))}n denote such family of n-iterates based in an ever in-
creasing interval, and consider the corresponding localization operator πXnQXn .
Then by Theorem 2.1.1 in [5],7 there exists constants α, β > 0 such that the
operator norm is bounded by

‖πXnQXn‖op ≤ αe−βn ∀ n = 0, 1, 2, . . . (3.48)

Since Xn satisfies the measure scale (3.47), it follows that the operator norm
‖πXnQXn‖op → 0 as |Xn| → ∞.

7Observe that by reading Dyatlov’s notes (see Chapter 2.1 [5]), it may appear that the
problem is framed somewhat differently than what is presented above. In particular, Dyatlov
only considers Cantor sets based in [0, 1], where the approximation sets are characterized
by the single parameter h ∈ [0, 1], e.g., representing the length of the intervals included in
the iterate. However, this parameter is also encoded in the Fourier transform (not unlike
the normalization in quantum mechanics) such that

Fh : L2(R)→ L2(R), where Fhf(ω) =
1√
h
f̂(ω/h).

Since for any h-dependent sets X(h), Y (h) ⊆ [0, 1] we have

‖χX(h)FhχY (h)‖op = ‖χX(h)/
√
hFχY (h)/

√
h‖op = ‖πX(h)/

√
hQY (h)/

√
h‖op,

we can easily translate to the approach of n-iterate Cantor sets in [0,M ] with restrictions
(3.46), (3.47).
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4 Spherically Symmetric Weight

In this chapter we will focus on a particular class of Daubechies’ time-frequency
localization operators. As the title suggests, we will consider operators with
a spherically symmetric weight function F . More precisely, let r2

j = ω2
j + t2j

denote the radius squared for each time-frequency dimension j = 1, 2, . . . , d.
Collect these coordinates into a single vector r2 = (r2

1, r
2
2, . . . , r

2
d). In this

notation, we consider

F (ω, t) = F (r2). (4.1)

Note that the weight F ∈ L1(R2d) precisely when F ∈ L1(Rd
+), where ‖F‖1 =

πd‖F‖1. Although such weights can be analyzed in a multidimensional phase
space, we will consider the two dimensional time-frequency plane, i.e. when
d = 1. Furthermore, unless otherwise stated, we always presume the weight
to be real-valued, non-negative and integrable.

In general, it is difficult to determine expressions for either the eigenvalues
or the eigenfunctions of a localization operator, given an arbitrary window φ
and weight F . This prospect remains true even when the weight is chosen
to be spherically symmetric. Nevertheless, for certain windows the symmetry
of the weight can be exploited to produce explicit expressions for both the
eigenvalues and eigenfunctions of the associated localization operator.

One such window is the normalized Gaussian, i.e.

φ(x) = 21/4e−πx
2

, (4.2)

which was investigated by Daubechies in her pioneering 1988-paper[4]. For
this canonical choice for φ, explicit expressions for the eigenvalues are derived
in section IV of the article, where the Hermite functions Hk for k = 0, 1, 2, . . .
(see definition (3.3)) are shown to constitute eigenfunctions of the operator.8

Since the Hermite functions form an orthonormal basis for L2(R), they provide
a complete description of the eigenfunctions and subsequently the spectrum
of said operator.

8Due to the choice of normalization for the Fourier transform, both the Gaussian and
the Hermite functions are normalized differently than in [4]. The normalization is chosen in
accordance with Folland[9]. If hk denotes the k-th Hermite function in [4], this relates to

Hk in (3.3) by Hk(x) = 21/4
√

2kk!
hk(
√

2πx).
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By recognizing that the normalized Gaussian coincides with H0, it is nat-
ural to ask if an arbitrary Hj as window can produce similar results. The
2017-project report[20] attempted to answer that question, and after correct-
ing for a misprint in one of the formulas the project work was based on,9 it
was shown that the Hermite functions still constitute the eigenbasis. In addi-
tion, general formulas for the eigenvalues with Hj as window were derived and
expressed in terms of the Laguerre polynomials.

As remarked in the project report, the complexity of these expressions is
positively correlated with the order of the Hermite function chosen as window.
This follows from the fact that the effective order of the Laguerre polynomials
increases for increasing j with Hj as window. Thus, the simplest expressions
are obtained with H0 as window, i.e. the Gaussian window.

Throughout the remainder of this chapter we will only consider the case
when the window φ equals the normalized Gaussian. It is well-known that the
Gaussian minimizes Heisenberg’s uncertainty principle for the regular Fourier
transform (see Theorem 3.2). In addition, certain Gaussians (including the
normalized Gaussian) are shown in [12] to minimize Lieb’s inequality in Lemma
3.4. Since the Gaussian window indeed provides optimal resolution for the
STFT, it is among the most popular choices for windows, which is further
substantiated by the aforementioned result on the eigenvalues.

4.1 Formulas for Eigenvalues with Gaussian Window

For completeness, we derive the formulas for the eigenvalues of the time-
frequency localization operator with a spherically symmetric weight and the
Gaussian window.

Theorem 4.1. Let PF,φ denote the localization operator with weight F (ω, t) =
F (r2) and window φ equals the normalized Gaussian in (4.2). Then the
eigenvalues of PF,φ are given by

λk =

∫ ∞
0

F
( r
π

) rk
k!
e−rdr, for k = 0, 1, 2, . . . , (4.3)

such that

PF,φHk = λkHk, (4.4)

where Hk denotes the k-th Hermite function.

9In January of 2018 a misprint in Folland’s book[9] was discovered and corrected for in
an additional note[21]. This correction proved to simplify the subsequent calculations.
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In order to prove the above statement, we require the following lemma:

Lemma 4.2. Let Hk denote the k-th Hermite function and φ = H0. Then

VφHk(ω, t) =

√
πk

k!
(t− iω)ke−πiω·t · e−π(ω2+t2)/2. (4.5)

Proof. By definition (3.3),

VφHk(ω, t) =

∫
R
Hk(x)H0(x− t)e−2πiωxdx

=
21/2

√
k!

(
− 1

2
√
π

)k
e−πt

2

∫
R
e2π(t−iω)x

(
dk

dxk
e−2πx2

)
dx.

After integration by parts k times, we obtain

VφHk(ω, t) =
21/2

√
k!

(
1

2
√
π

)k
e−πt

2

∫
R

(
dk

dxk
e−2π(t−iω)x

)
e−2πx2dx

= 21/2

√
πk

k!
(t− iω)ke−πt

2

∫
R
e−2π(x2+(t−iω)x)dx. (4.6)

It is well-known that the integral∫
R
e−2π(x2+ax)dx =

1

21/2
e−a

2/2 ∀ a ∈ C.

Apply the above identity to (4.6) for a = t− iω to complete the proof.

With this estimate, we are able to derive the formulas for the eigenvalues.

Proof. (Theorem 4.1) It is sufficient to verify

〈PF,φHk, Hl〉 = λkδk,l, (4.7)

where δk,l denotes the Kronecker-delta which is one for k = l and zero other-
wise. By Lemma 4.2, we have

〈PF,φHk, Hl〉 =

∫∫
R2

F (ω, t)VφHk(ω, t)VφHl(ω, t)dtdω

=

√
πk+l

k!l!

∫∫
R2

F (ω, t)(t− iω)k(t+ iω)le−π(ω2+t2)dtdω.
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Now, rewrite the integral over phase space in terms of radius r > 0 and angle
θ, such that t+ iω = reiθ. Since F is spherically symmetric, the above integral
factorizes into an angular and radial integral. The angular integral is of the
form

∫ 2π

0
eiθ(l−k)dθ which is non-zero precisely when k = l. Thus for the non-

zero case, we obtain

〈PF,φHk, Hk〉 = 2π

∫ ∞
0

F (r2)
(πr2)k

k!
e−πr

2

rdr.

The final formula (4.3) follows by the substitution s = πr2.

4.2 Localization on Spherically Symmetric Set

In this section we consider the case when the weight F equals the characteristic
function of some subset E ⊆ R+, i.e.

F (r) = χE(r). (4.8)

To avoid confusion, notice that due to the definition of F in (4.1), any point
r ∈ E corresponds precisely to all points in the plane whose radius squared
equals r. In total, the set E is identified with the following subset of the plane

E = {(ω, t) ∈ R2 | ω2 + t2 ∈ E}. (4.9)

Although the induced localization operator aims at concentrating signals on
the set E , we will denote the operator in question by PE as a matter of conve-
nience in the spherically symmetric context. For this family of operators, we
will attempt to derive upper and lower bound estimates for the operator norm
based on the measure of E in Proposition 4.2 and 4.3, respectively.

From Theorem 4.1, the eigenvalue corresponding to the k-th Hermite func-
tion is given by

λk =

∫
π·E

rk

k!
e−rdr, for k = 0, 1, 2, . . . , (4.10)

where π · E := {x ∈ R+ | x/π ∈ E}. Since the above integrands will appear
frequently, we define, for simplicity, the functions

fk(r) :=
rk

k!
e−r, r ≥ 0, for k = 0, 1, 2, . . . (4.11)
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Figure 1: Plot of the first three gamma distributed integrands f0, f1, f2, where
fk(r) = rk

k!
e−r for r ≥ 0 and k = 0, 1, 2, . . .

As an interesting sidenote, by inspection, we recognize fk to be the probability
density of a gamma distributed variable with expectation value and variance
equal to k+ 1. Hence, the study of these eigenvalues {λk}k could alternatively
be presented as a study of the probability distributions {fk}k (without the ter-
minology of time-frequency localization operators attached). For this reason,
we begin by making a few remarks on these integrands.

From the perspective of probability distributions or even from the perspec-
tive of localization operators, it should come as no surprise that every function
fk is normalized, i.e. ‖fk‖1 = 1 for k = 0, 1, 2, . . . Differentiating fk(r) reveals
a single local (and global) maximum at point r = k such that

fk(r) ≤ fk(k) =
kk

k!
e−k ∀ r ≥ 0. (4.12)

Therefore, we must have that fk(r) is monotonically increasing for r ≤ k.
Conversely, fk(r) is monotonically decreasing for r > k. This behaviour is
illustrated in Figure 1 for the first three integrands f0, f1, f2. In the next
lemma we consider symmetric points about this maximum.
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Lemma 4.3.

fk(k − r) ≤ fk(k + r) ∀ r ∈ [0, k] for k = 1, 2, 3, . . . (4.13)

Proof. Consider the fraction

δk(r) =
fk(k − r)
fk(k + r)

=

(
k − r
k + r

)k
e2r,

which is a well-defined function for all r ∈ [0, k]. Further, observe that inequal-
ity (4.13) holds if and only if δk(r) ≤ 1 for all r ∈ [0, k]. Consider therefore its
derivative,

δ′k(r) = − 2r2e2r

(k + r)2

(
k − r
k + r

)k−1

≤ 0 ∀ r ∈ [0, k].

Since δk(0) = 1, we conclude from latest result that δk(r) ≤ 1 whenever
r ∈ [0, k].

This latest lemma will prove especially relevant when we discuss the op-
erator norm for localizing on the spherically symmetric Cantor set in section
4.3.3. More generally, Lemma 4.3 reveals a simple feature regarding the dis-
tribution of the L1-norm of fk. In particular, a larger portion of the norm is
located right of the maximum rather than left of the maximum, that is

‖χ[0,k[fk‖1 ≤ ‖χ[k,2k[fk‖1 < ‖χ[k,∞[fk‖1 for k = 0, 1, 2, . . .

Now, consider the difference between two subsequent integrands

fk(r)− fk+1(r) =
rk

k!
e−r − rk+1

(k + 1)!
e−r =

rke−r

(k + 1)!
(k + 1− r). (4.14)

It is clear that fk, fk+1 intersect only at the point r = k + 1, which, as it
happens, is the maximum of fk+1(r). The above difference is therefore negative
precisely when r > k + 1. Thus, depending on the choice of subset E ⊆ R+,
the integral of fk over π ·E can be made larger or smaller than the integral of
fk+1.
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4.2.1 Two Examples: Disk and Ring

In this section we consider two natural examples of spherically symmetric
subsets, namely a disk and a ring.10 Both of these subsets are examples of
connected subsets, and as we shall see, it becomes easy to compute the eigen-
values of the associated localization operator in each case.

Example 4.1. (Localization on a Disk) Suppose the weight equals the char-
acteristic function of a disk of radius R > 0 centered at the origin, that is

F (r) = χ[0,R2[(r). (4.15)

Besides the non-zero constant function, which is definitely not integrable, this
is perhaps the simplest choice for the weight. From formula (4.10) and defini-
tion (4.11), the eigenvalues of P[0,R2[ read

λk(R) =

∫ α(R)

0

fk(r)dr, for k = 0, 1, 2, . . . , (4.16)

where α(R) = πR2, and we have written λk = λk(R) to emphasize the de-
pendency on the radius R of the disk. By integration by parts on the above
integral and inductive reasoning, it follows that

λk(R) = 1− e−α(R)

k∑
n=0

(α(R))n

n!
, for k = 0, 1, 2, . . . (4.17)

It is straightforward to verify that

λk(R)− λk+1(R) = e−α(R) (α(R))k+1

(k + 1)!
> 0,

from which we obtain the ordering

λ0(R) > λ1(R) > · · · > λk(R) > λk+1(R) > . . . (4.18)

Consequently, the operator norm of P[0,R2[ is given by

‖P[0,R2[‖op = λ0(R) = 1− e−α(R) = 1− e−πR2

. (4.19)

10Here, the word ”ring” is not used in the algebraic sense, rather it refers to the geometrical
object also known as an annulus.
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As an initial inspection, observe that ‖P[0,R2[‖op < 1 for all R > 0, which
is in accordance with Corollary 3.2 to Benedicks’ theorem. Furthermore, by
condition (3.27), we have

‖P[0,R2[‖op = 1− εmin (4.20)

Recall from section 3.3, for a any signal f ∈ L2(R), the quantity (1 − εmin)
represents the maximum portion of ‖Vφf‖2

2(= ‖f‖2
2) that can be concentrated

on the subset in question. In the current context the subset is a disk in phase
space of radius R > 0. By comparing equation (4.19) and (4.20), it becomes
clear that at most (1− e−πR2

) of ‖Vφf‖2
2 can be concentrated on the disk, and

this is realized precisely for the normalized Gaussian f = φ (= H0). For a
numerical example, suppose πR2 = 1, then at most (1− e−1) ≈ 0.632 = 63.2%
of ‖Vφf‖2

2 can be concentrated here.

The above example is an important one, not only because it is illustrative
with regard to the eigenvalues and the uncertainty principle but because of
formula (4.17). With this result, we can easily deduce that∫ b

a

fk(r)dr = e−a
k∑

n=0

an

n!
− e−b

k∑
n=0

bn

n!
∀ a, b ∈ R+. (4.21)

The latest identity is relevant as any open subset E ⊆ R+ can be written as
a countable union of disjoint intervals, i.e. E = ∪n]an, bn[. Thus, in principle,
every eigenvalue can be computed such that we exchange the integral (4.10)
for a linear combination of sums of the form (4.21). However, evaluating or
estimating the sum representation is not necessarily easier than considering
the integrals themselves directly. This is especially true when the number
of intervals becomes large or when we want to compare the eigenvalues to
determine their ordering.

In the next example we still let E ⊆ R+ consist only of a single interval,
i.e. we consider a ring in phase space. Here we show that under the right
conditions any λk can be made the largest eigenvalue.
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Example 4.2. (Localization on a Ring: Asymptotic Estimate) Suppose the
weight function equals the characteristic function of a ring with inner radius
R ≥ 0 and measure 1, that is

F (r) = χ[R2,R2+π−1[(r). (4.22)

By formula (4.10), the eigenvalues then read

λk(R) =

∫ α(R)+1

α(R)

fk(r)dr for k = 0, 1, 2, . . . , (4.23)

where we once again have written λk = λk(R), now to indicate the dependency
on the inner radius R ≥ 0. Note that for R = 0, the ring reduces to a disk of
area 1, which, by Example 4.1, means λ0 is the largest eigenvalue. However,
for R > 0, this is not always the case.

Assume α(R) ∈ [k, k + 1] for some k ∈ N ∪ {0}. By the difference (4.14)
and subsequently the monotonicity of the integrals in (4.23), we must have the
ordering

λ0(R) ≤ λ1(R) ≤ λ2(R) ≤ · · · ≤ λk(R),

in addition to

λk+1(R) ≥ λk+2(R) ≥ λk+3(R) ≥ . . .

Thus, by process of elimination, the largest eigenvalue under these conditions
is either λk(R) or λk+1(R). In particular, if α(R) = k, then λk(R) is the
largest eigenvalue. In any case, the operator norm of P[R2,R2+π−1/2[ for the ring
of measure 1 can be written as

‖P[R2,R2+π−1[‖op = max{λk(R) | k ∈ [α(R)− 1, α(R) + 1]}. (4.24)

Proceeding, we will not derive an exact formula for the operator norm,
rather we present a simple upper and lower bound estimate. These estimates
will be based on a zero order approximation of the integrands fk.

Note that since the eigenvalues are obtained by integrating over an interval
[α(R), α(R)+1] of measure 1, the eigenvalue λk(R) will be bounded from above
by the maximum value of fk on said interval. Similarly, λk will be bounded
from below by the minimum value of fk on the interval in question. For small
k, this is a rather crude estimate, while for larger k these approximations
become increasingly more accurate. This can be argued from the fact that the
for any fixed r > 0, we have that limk→∞ |f ′k(r)| = 0.
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Let b·c denote the floor function which rounds down any number to the
nearest integer. Now, define n(R) := bα(R)c. Then by result (4.24) and the
difference (4.14), the operator norm is always bounded by

‖P[R2,R2+π−1[‖op ≤ max
r≥0

fn(R)(r)

= fn(R)(n(R)) =
n(R)n(R)

n(R)!
e−n(R) (by (4.12)). (4.25)

For the lower bound estimate, note that the interval [α(R), α(R) + 1] is con-
tained in [n(R), n(R)+ 2] =: In(R). Hence, the operator norm is bounded from
below by the minimal value of any fk on In(R). In particular, the operator
norm must be greater than the minimal value of fn(R)+1 on In(R), which, by
Lemma (4.13), means

‖P[R2,R2+π−1[‖op ≥ fn(R)+1(n(R)) =
n(R)n(R)+1

(n(R) + 1)!
e−n(R). (4.26)

By Stirling’s asymptotic formula (see Example 7.4.10 p.301 in [22])

√
2π · nn+1/2e−n ≤ n! ≤ e

1
12n

√
2π · nn+1/2e−n for n = 1, 2, 3, . . . , 11 (4.27)

the two bounds (4.25), (4.26) can be expressed more conveniently.

Proposition 4.1. The operator norm of P[R2,R2+π−1/2[ satisfies the bounds

1√
2π
n(R)−1/2

(
1 +

1

n(R)

)−1

e−
1

12n(R) ≤ ‖P[R2,R2+π−1[‖op

≤ 1√
2π
n(R)−1/2 ∀ R ≥ 0. (4.28)

Proof. For n(R) = 0, inequality (4.28) reads 0 ≤ ‖P[R2,R2+π−1[‖op ≤ ∞, which
is a trivial statement for all bounded (and unbounded) linear operators. For
n(R) > 0, simply apply the lower and upper bound version of Stirling’s formula
on n(R)! in (4.25) and (4.26), respectively.

In terms of α(R), note that

n(R) = α(R)
(

1− σ(R)
)

11The lower bound also holds for n = 0.
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for some positive function σ(R) ≤ 1, where σ(R) = O(α(R)−1) = O(R−2)
as R → ∞. Combine this observation with Proposition 4.1, from which we
deduce that

‖P[R2,R2+π−1[‖op =
1√
2π
α(R)−1/2 +O(R−3)

=
1

π
√

2
R−1 +O(R−3) as R→∞. (4.29)

Observe that the estimates for the operator norm in Example 4.2 can easily
be generalized to rings with measure less than 1, where we only adjust by
multiplying by the measure of the ring. In particular, consider the operator
P[R2,R2+aπ−1[ with a ∈]0, 1[. Then

1√
2π
n(R)−1/2

(
1 +

1

n(R)

)−1

e−
1

12na ≤ ‖P[R2,R2+aπ−1[‖op

≤ 1√
2π
n(R)−1/2a ∀ R ≥ 0. (4.30)

Similarly to what was done at the end of Example 4.1, for any f ∈ L2(R)
we may compute the largest portion of ‖Vφf‖2

2 that can be concentrated on a
ring in phase space of measure 1. By the latest results, for a large inner radius
R > 0, this portion corresponds to ≈ π−1R−1/

√
2.

To give a numerical example, suppose the inner radius is R = 10, then at
most ≈ 0.0225 = 2.25% of ‖Vφf‖2

2 can be concentrated here. Compare this
number to the disk of the same measure, where at most ≈ 63.2% of ‖Vφf‖2

2

could be concentrated there. Thus, replacing the disk of measure 1 with a ring
with inner radius R = 10 and measure 1 reduces the best possible localization
on the subset to a fraction (≈ 1/28). As the inner radius R increases, this
reduction will become more extreme.

4.2.2 Bounds for the Operator Norm

Before presenting the upper and lower bound estimate for the operator norm
PE, we make a few (necessary) remarks on the integrand fk. Recall that in
the introductory remarks we observed that fk(r) contains a single maximum
at r = k, from which the integrand is monotonically increasing and decreasing
for r ≤ k and r ≥ k, respectively. Thus, we obtain the following statement:

Lemma 4.4. Let E be a measurable subset of R+. Then there exists an
interval Ik ⊆ R+ with measure |Ik| = |E| such that∫

E

fk(r)dr ≤
∫
Ik

fk(r)dr, for k = 0, 1, 2, . . . (4.31)
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Proof. For a more thorough discussion on integral bounds on monotonic func-
tions, see Appendix A. Without loss of generality, we may assume |E| < ∞.
Based on the preceding remarks, if E is bounded, the above inequality is
a special case of Corollary A.2. Assume therefore E is unbounded. Let
Ik(s) = [s, s+ |E|[. By continuity, there exists an s0 ∈ [0, k] such that∫

Ik(s)

fk(r)dr ≤
∫
Ik(s0)

fk(r)dr ∀ s ≥ 0. (4.32)

Further, since ‖fk‖1 = 1, for every ε > 0 there exists N > 0 such that
‖χ[N,∞[fk‖1 ≤ ε. Thus, we may apply Corollary A.2 to the set E ∩ [0, N [ to
produce an interval of measure |E ∩ [0, N [| contained in Ik(s0), for which we
conclude ∫

E

fk(r)dr ≤
∫
Ik(s0)

fk(r)dr + ε.

It is evident that in order to maximize the integral of fk over some interval
Ik(s) = [s, s+ |E|[, the interval must contain the maximum point k. However,
any such interval will never be centered at k. Instead, for an interval Ik(s0)
that satisfies (4.32), we always have

|Ik(s0) ∩ [0, k]| < |Ik(s0) ∩ [k,∞[|.

This qualitative observation can be traced back to Lemma 4.3. Nevertheless,
as it turns out, the next upper bound estimate for the operator norm only
requires Lemma 4.4.

Proposition 4.2. Let E be a measurable subset of R+. Then∫ |E|
0

f0(r)dr = 1− e−|E| ≥
∫
E

fk(r)dr for k = 0, 1, 2, . . . (4.33)

Proof. Since fk is normalized and positive, we may assume |E| = L <∞. By
Lemma 4.4, we may further assume E is an interval of finite length L > 0, i.e.
E = [s, s+ L[ for some s ≥ 0. From here we consider the following quantity

gk(L, s) =

∫ L

0

f0(r)dr −
∫ s+L

s

fk(r)dr.
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Note that the proposition holds if and only if gk(L, s) ≥ 0 for all L, s ≥ 0.
Since this holds trivially for k = 0, we will presume k > 0 in the subsequent
calculations. Consider the derivative of gk with respect to L, which, by the
Fundamental Theorem of Calculus, becomes

∂gk
∂L

(L, s) = f0(L)− fk(s+ L) = e−L
(

1− e−s (s+ L)k

k!

)
.

It is evident that the derivative equals zero only when L = L0, where L0 solves
the equation

e−s
(s+ L0)k

k!
= 1. (4.34)

The second derivative is given by

∂2gk
∂L2

(L, s) = −e−L
(

1− e−s (s+ L)k

k!
+ e−s

(s+ L)k−1

(k − 1)!

)
,

which evaluated at the solution of (4.34) yields

∂2gk
∂L2

(L = L0, s) = −e−(L0+s) (s+ L0)k−1

(k − 1)!
< 0 ∀ s ≥ 0.

Thus, by the second derivative test, the point L = L0 represents a maximum
for gk(L, s) for any fixed s ≥ 0. The other possible extrema (minima) occur
at L = 0 and when L → ∞. Since both of these instances can be shown to
be greater or equal to zero, either by direct evaluation or the normalization-
condition ‖fk‖1 = 1, we have that gk(L, s) ≥ 0 for all L, s ≥ 0.

Recall that by formula (4.10) for the eigenvalues, the above proposition
contains an upper bound estimate for the operator norm of PE. In particular,

‖PE‖op ≤
∫ π|E|

0

f0(r)dr = 1− e−π|E| = ‖P[0,|E|]‖op. (4.35)

From here it is clear that the best localization on some spherically symmet-
ric subset E ⊆ R+ with measure |E| is obtained when we consider a disk of
radius

√
|E| centered at the origin. As remarked in Example 4.1, the best

concentration on such a disk is obtained when the signal equals the normal-
ized Gaussian. This latest result then corresponds well with the fact that a
Gaussian signal and window minimize Lieb’s inequality in Lemma 3.4.

In the next proposition we present a lower bound estimate for the norm.
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Proposition 4.3. Let E be a measurable subset R+ contained in the interval
[0, L]. Then

‖PE‖op ≥ e−π(L−|E|)‖P[0,|E|]‖op. (4.36)

Proof. We always have

‖PE‖op ≥ λ0 =

∫
π·E

f0(r)dr.

Since the integrand f0(r) = e−r is monotonically decreasing on [0, L], we may
apply Proposition A.1 to the above integral such that∫

π·E
f0(r)dr ≥

∫ πL

π(L−|E|)
f0(r)dr = e−π(L−|E|)

∫ π|E|

0

f0(r)dr.

Note that both of these estimates for the norm are quite generic as they
only require the measure and some upper bound for E. To summarize, if
E ⊆ [0, L] is measurable, then

‖P[0,|E|]‖ope
−π(L−|E|) ≤ ‖PE‖op ≤ ‖P[0,|E|]‖op. (4.37)

4.2.3 Set of Infinite Measure: Equidistant Intervals

Now, consider the case when the subset E ⊆ R+ has infinite measure. For
such subsets, it should be evident that the estimates of the previous section
provide no useful information regarding the operator norm ‖PE‖op. In par-
ticular, we obtain ‖PE‖op ∈ [0, 1], which, by Proposition 2.4 (A), holds for
any localization operator with weight F (not only spherically symmetric ones)
such that ‖F‖∞ ≤ 1.

In what follows, we will consider a non-trivial example of a subset with
infinite measure where it is possible to attain more precise estimates of the
operator norm. The subset is constructed such as to resemble the time set in
Example 3.2 for the separate time-frequency representation.

Example 4.3. (Equidistant Intervals) Suppose E ⊆ R+ is of the form

E(s) =
∞⋃
n=0

1

π
· [n, n+ s] for s ∈ [0, 1]. (4.38)
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Our goal is to show that there exists constants 0 ≤ C1 ≤ C2 such that the
associated localization operator PE satisfies

C1s ≤ ‖PE‖op ≤ C2s ∀ s ∈ [0, 1]. (4.39)

We begin by examining the eigenvalues, which, by formula (4.10), becomes

λk(s) =

∫
π·E(s)

fk(r)dr =
∞∑
n=0

∫ n+s

n

fk(r)dr for k = 0, 1, 2, . . . , (4.40)

where λk (as always) refers to the eigenvalue associated with the k-th Hermite
function. For each integral over [n, n + s], we apply the same zero order
approximation for the integrands fk as in Example 4.2. Since [n, n + s] ⊆
[n, n+ 1], we consider the maximum of fk(r) for r ∈ [n, n+ 1], which yields

λ0(s) ≤ s
∞∑
n=0

f0(n) = s
∞∑
n=0

e−n =
s

1− e−1
(4.41)

and

λk(s) ≤ s

(
fk(k) +

∞∑
n=0

fk(n)

)
for k = 1, 2, 3, . . . (4.42)

We now claim that the following inequality holds

fk(k) +
∞∑
n=0

fk(n) ≤
∞∑
n=0

f0(n) for k = 1, 2, 3, . . . (4.43)

For k = 1, we compute the series explicitly by

∞∑
n=0

fk(n) =
∞∑
n=0

ne−n =

(
− ∂

∂β

) ∞∑
n=0

e−nβ
∣∣∣
β=1

=

(
− ∂

∂β

)
1

1− e−β
∣∣∣
β=1

=
e

(e− 1)2
,

from which it is straightforward to verify (4.43). For k ≥ 2, we compare the
series with the integral over R+, that is∑

n6=k

fk(n) ≤
∫ ∞

0

fk(r)dr = 1.
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Thus,

fk(k) +
∞∑
n=0

fk(n) ≤ 1 + 2fk(k) ≤ 1 + 2f2(2) = 1 + 4e−2 for k = 2, 3, . . .

With this common upper bound, claim (4.43) readily follows for all k ≥ 1.
Combine the recent calculations with the bounds (4.41)-(4.43) to conclude
that for any k ≥ 1

λk(s) ≤ smax

{
e

(e− 1)2
+ e−1, 1 + 4e−2

}
< s

e

e− 1
, (4.44)

and

λk(s) ≤ s
e

e− 1
for every k = 0, 1, 2, . . . (4.45)

Note that the right-hand side of the above inequality represent the upper
bound estimate of the operator norm ‖PE‖op. For a lower bound estimate of
the operator norm, it is sufficient to find a lower bound estimate for any of
the eigenvalues. In particular, since f0(r) is monotonically decreasing,

λ0(s) ≥ s
∞∑
n=1

f0(n) = s

(
e

e− 1
− 1

)
=

s

e− 1
. (4.46)

We summarize with a proposition.

Proposition 4.4. Let E(s) ⊆ R+ be as in (4.38) with s ∈ [0, 1]. Then the
operator norm of PE(s) satisfies the bounds

(C − 1)s ≤ ‖PE(s)‖op ≤ min{Cs, 1} ∀ s ∈ [0, 1] with C =
e

e− 1
. (4.47)

Further, there exists s0 > 0 such that

‖PE(s)‖op = (1− e−s)C ∀ 0 < s < s0. (4.48)

Proof. The first part is just a restatement of identities (4.45) and (4.46). For
the second part, note that

λ0(s) =
∞∑
n=0

∫ n+s

n

e−rdr = (1− e−s)
∞∑
n=0

e−n = (1− e−s)C.

By inequality (4.44), there exists a constant 0 < C0 < C such that λk(s) ≤ C0s
for any k, s > 0. Since 1− e−s ↗ s as s→ 0, it then follows that some s0 > 0
with property (4.48) must exist.
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4.3 Localization on Cantor Set

As the headline suggests, we will in this section consider the case when weight
equals or, more precisely, approaches the characteristic function of a Cantor set
in the spherically symmetric sense. In measure theory, the Cantor set is a well-
known example of a set with the same cardinality as the reals, i.e. uncountable
but with zero measure. For this reason, no positive part of the signal may be
concentrated on such a set. However, these type of sets are constructed by
an iterative scheme, where each iterate has positive measure. Hence, instead
of localizing on the Cantor set directly, we consider the n-iterate of measure
εn > 0, and compare the asymptotic behaviour to other sets with the same
measure. Naturally, we will compare the operator norm of the n-iterate to the
disk [0, εn] and the ring [R,R + εn] for some R > 0.

To begin with, we recapitulate the construction of the mid-third Cantor set
on the real line, starting at zero. Start with an interval C0(R) = [0, R]. Then
remove the interior mid-third interval to produce the first iterate C1(R) =
R · [0, 1/3] ∪ R · [2/3, 1]. Similarly, remove the interior mid-third interval to
each of the two intervals R·[0, 1/3], R·[2/3, 1] to produce C2(R). Continue this
procedure inductively such that the n-iterate mid-third Cantor set becomes

Cn(R) =
⋃

a1,...,an=0,2

R ·

[
n∑
j=1

aj
3j
,

n∑
j=1

aj
3j

+
1

3n

]
, for n = 0, 1, 2, . . . (4.49)

See Figure 2 for an illustration of this process. It is clear from the above
description that Cn+1(R) ⊆ Cn(R) for each n = 0, 1, 2, . . . The mid-third
Cantor set C(R) on the interval [0, R] is then defined as the intersection of all
the n-iterates, i.e.

C(R) =
∞⋂
n=0

Cn(R). (4.50)

Since the n-iterate has measure

|Cn(R)| =
(

2

3

)n
R, (4.51)

the Cantor set itself will evidently have zero measure. Alternatively, we can
consider the mid-third Cantor set on the interval [s, s + R] by performing an
s-translation on the n-iterates in (4.49).
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Figure 2: Illustration of the first 4 iterates of the mid-third Cantor set on the
interval [0, R]. Here (n) refers to the n-iterate Cn(R) for n = 0, 1, 2, 3, 4.

Figure 3: Illustration of the first 3 iterates of the mid-third distance-regular
Cantor set on the disk. Note that the distances between the rings are the same
as for the real line case. Here (n) refers to the n-iterate C (0)

n for n = 1, 2, 3.

Figure 4: Illustration of the first 3 iterates of the mid-third measure-regular
Cantor set on the disk. Note that the measure of each ring is the same. Here
(n) refers to the n-iterate Cn for n = 1, 2, 3.
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For the disk of radius R > 0 centered at the origin, there are two natural
approaches to construct a similar mid-third Cantor set:

(i) The first scheme is to naively remove the interior part on the mid-third
radius to produce the first iterate and then proceed inductively. Then
Cn(R) from the real line corresponds to the different radii included in the
n-iterate for the disk, i.e. we identify Cn(R) with the following subset of
the plane

C (0)
n (R) = {(ω, t) ∈ R2 |

√
ω2 + t2 ∈ Cn(R)}. (4.52)

The procedure is illustrated in Figure 3, which reveals one caveat. Al-
though the distances between each ring in C (0)

n (R) coincides with the
distances between the intervals in Cn(R), the measures of each ring do
not. The rings near the center of the disk will obviously have smaller
measure than the rings close to the periphery. This behaviour does not
resemble the real line case where the intervals have a fixed length.

(ii) Another possibility is to remove spherically symmetric parts of the disk in
such a way that the remaining rings all have the same measure. This can
be achieved by considering the set Cn(R2) for the radius squared (instead
of Cn(R) for the radius). To reiterate the comment at the beginning of
section 4.2 regarding the spherically symmetric set E ⊆ R+, any point
r2 ∈ Cn(R2) corresponds to all points (ω, t) ∈ R2 such that ω2 + t2 = r2.
Hence, we identify Cn(R2) with the following part of the plane

Cn(R) = {(ω, t) ∈ R2 | ω2 + t2 ∈ Cn(R2)}. (4.53)

With this transformation from points in R+ to rings in R2, it is evi-
dent that the intervals in Cn(R2) corresponds to rings in Cn(R) all with
the same measure (but with different thickness). This latest scheme is
showcased in Figure 4.

Based on these two approaches there is a clear trade-off between correct dis-
tances and correct measures when attempting to mimic the Cantor set on the
real line now for a disk. Regularity in the distances between the rings, accord-
ing to the real line case, will result in irregularity in the measures. Conversely,
keeping the measures fixed will inevitably produce different distances between
the rings than on the real line.
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In what follows, we have prioritized regularity in the measures over regu-
larity in distances and have therefore chosen to consider the second Cantor set
construction for the disk. More precisely, we attempt to concentrate signals
on the set Cn(R) ⊆ R2 according to (4.53), which means we consider weights
of the form

F (r) = χCn(R2)(r), for R > 0 and n = 0, 1, 2, . . . (4.54)

With the same notation as in the previous section, the localization operators
in question are PCn(R2). In this context we will attempt to derive asymptotic
estimates for the operator norm for increasing iterates.

Observe that by (4.51), the measure of Cn(R2) equals |Cn(R2)| = (2/3)nR2,
from which Proposition 4.2 yields the upper bound

µn(R) := 1− exp

[
−
(

2

3

)n
α(R)

]
≥ ‖PCn(R2)‖op, for n = 0, 1, 2, . . . (4.55)

Similarly to that of Example 4.1, we have used the abbreviation α(R) :=
πR2 and will continue to do so throughout the remainder of this chapter.
Recall that the quantity µn(R) represents the best possible localization on any
spherically symmetric subset E ⊆ R+ with measure |E| = |Cn(R2)|. Thus,
the ratio ‖PCn(R2)‖op/µn(R) ∈ [0, 1] is relevant as it measures to what extent
the localization on Cn(R2) ⊆ R+ (i.e. localization on Cn(R) in the plane)
coincides with the optimal localization on a set of the same measure.

In order to produce sharper estimates, we will naturally consider the eigen-
values of the localization operator, namely λk = λk(Cn(R)) for k = 0, 1, 2, . . .
Based on formula (4.10), the eigenvalues can be expressed

λk(Cn(R)) =

∫
π·Cn(R2)

fk(r)dr =

∫
Cn(α(R))

fk(r)dr, (4.56)

with integrand fk as in (4.11).
Note, however, that from the inductive scheme in (4.49), the number of

intervals in Cn(·) grows as 2n. Hence, estimating the eigenvalue λk(Cn(R))
directly via the above integral or applying formula (4.21) for each interval
seem quite impractical.

Instead, our main approach is to consider the effect locally of increasing
from one iterate to the next. In particular, this means we initially consider the
integral of fk over a single interval, say [s, s+ 3L] for s ≥ 0 and L > 0. Then
we attempt to determine the relative area left under the curve fk once the
mid-third of the interval is removed, i.e. we wish to understand the function

Ak(s, 3L) :=

[∫ s+L

s

fk(r)dr +

∫ s+3L

s+2L

fk(r)dr

]/∫ s+3L

s

fk(r)dr. (4.57)
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By formula (4.21), this latest quantity can be written

Ak(s, 3L) =

[
k∑

n=0

1

n!

(
sn − e−L(s+ L)n + e−2L(s+ 2L)n − e−3L(s+ 3L)n

)]

·
/[

k∑
n=0

1

n!

(
sn − e−3L(s+ 3L)n

)]
. (4.58)

From this expression, we note that Ak(s, 3L) is independent of the starting
point s precisely when k = 0. Based on this simple observation, we derive
upper and lower bound estimates (including an exact expression) for the first
eigenvalue λ0(Cn(R)) in section 4.3.1. In the remaining subsections, we at-
tempt to generalize these estimates to include the operator norm.

4.3.1 Estimates for the First Eigenvalue λ0

We begin by making a few remarks on the relative area left under the curve
f0 when removing the mid-third of an interval [s, s + 3L], i.e. the quantity
A0(s, 3L). By identity (4.58), A0(s, 3L) reads

A0(s, 3L) =
1− e−L + e−2L − e−3L

1− e−3L
, (4.59)

which, as previously noted, is independent of s. For simplicity, we will always
write A0(s, 3L) =: A0(3L). Differentiating with respect to L, reveals

∂

∂L

[
A0(3L)

]
=
e−L
(
1 + e−L

)(
1− e−L

)3(
1− e−3L

)2 > 0 ∀ L > 0. (4.60)

Hence, we conclude

A0(3L) ≥ lim
L→0
A0(3L)

= lim
L→0

1− e−L + e−2L − e−3L

1− e−3L
=

2

3
(by L’Hôpital’s rule). (4.61)

Recall that the (n+ 1)-iterate of the Cantor set is constructed by remov-
ing the mid-third of each interval included in the n-iterate. By (4.56) the
eigenvalue λ0(Cn(R)) is obtained by integrating over the set Cn(α(R)), which
consists of 2n intervals each of length α(R)/3n. Since A0(s, ·) is independent
of the starting point s, we attain the recursive relation

λ0(Cn+1(R)) = A0(α(R)/3n)λ0(Cn(R)) for n = 0, 1, 2, . . . (4.62)
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From the above relation, the first eigenvalue of the n-iterate of the Cantor set
on a disk of radius R > 0 can readily be expressed as

λ0(Cn(R)) = λ0(C0(R))
n−1∏
j=0

A0(α(R)/3j)

=
(
1− e−α(R)

) n−1∏
j=0

A0(α(R)/3j), (4.63)

where the final equality follows from formula (4.17) for the disk. Note that by
result (4.61), we acquire the simple lower bound estimate

λ0(Cn(R)) ≥
(

2

3

)n (
1− e−α(R)

)
. (4.64)

In addition, we have the upper bound estimate µn(R) from (4.55).
To gain an impression of the sharpness of these two estimates, we consider

the quotient of the lower and upper bound for large n. That is,(
2

3

)n
1− e−α(R)

µn(R)
→ 1− e−α(R)

α(R)
as n→∞, (4.65)

where we have utilized the Taylor series expansion e−x = 1 − x + O(x2) in
the denominator. For small initial radii R the above limit is close to 1, while
for large R the fraction tends to α(R)−1(= (πR2)−1). Thus, for small R, it
is clear that both upper and lower bound represent quite sharp estimates for
λ0(Cn(R)). In contrast, as R increases, the sharpness of either of these es-
timates remain somewhat ambiguous. Since A0(α(R)/3j) → 1 as R → ∞,
the lower bound estimate will indeed deviate substantially from λ0(Cn(R)) for
sufficiently large R and n. It is unclear whether the same is true for the upper
bound estimate.

Proceeding, we will derive an improved asymptotic upper and lower bound
estimate for the eigenvalue λ0(Cn(R)) (see Proposition 4.6). For this pur-
pose, we shall express the relative area left under the curve f0, i.e. A0(3L),
somewhat more conveniently.

Lemma 4.5. Suppose s ≥ 0 and L > 0. Let A0(3L) denote the relative area
left under the curve f0 once the mid-third of the interval [s, s+3L] is removed,
which is defined by (4.57). Then we have the identity

A0(3L) =

(
1 + e−2L

)(
1− e−L

)
1− e−3L

. (4.66)
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Proof. Simply factorize expression (4.59) to obtain (4.66).

With this new identity, we write down a more explicit expression for the
eigenvalue λ0(Cn(R)) than in (4.63).

Proposition 4.5. Let λ0(Cn(R)) be the first eigenvalue to the localization
operator PCn(R2). Then

λ0(Cn(R)) =
(
1− e−α(R)/3n

) n∏
j=1

(
1 + e−2α(R)/3j

)
for n = 0, 1, 2, . . . (4.67)

Proof. Apply Lemma 4.5 to result (4.63) such that

λ0(Cn(R)) =
(
1− e−α

) n∏
j=1

(
1 + e−2α/3j

)( 1− e−α/3j

1− e−α/3j−1

)

=
(
1− e−α

) [ n∏
j=1

(
1 + e−2α/3j

)][ n∏
k=1

(
1− e−α/3k

1− e−α/3k−1

)]
(4.68)

Observe that the product over k is a telescoping product such that, after can-
cellation, only the initial denominator and final numerator remain. That is,

n∏
k=1

(
1− e−α/3k

1− e−α/3k−1

)
=

1− e−α/3n

1− e−α
.

Combine this with (4.68) to produce (4.67).

We are now ready to formulate the improved asymptotic estimate for the
first eigenvalue λ0(Cn(R)).

Proposition 4.6. Let µn(R) and λ0(Cn(R)) be as in equation (4.55) and
(4.56), respectively. Then there exist positive, finite constants c1 ≤ c2 such
that for each n = 0, 1, 2, . . .

c1

(
2α(R) + 1

)− ln 2/ ln 3

≤ 2−nλ0(Cn(R))
/(

1− e−α(R)/3n
)

≤ c2

(
2α(R) + 1

)− ln 2/ ln 3

∀ α(R) ∈ [0, 3n/2]. (4.69)

In particular,

c1

(
2α(R) + 1

)− ln 2/ ln 3

≤ lim
n→∞

λ0(Cn(R))

µn(R)

≤ c2

(
2α(R) + 1

)− ln 2/ ln 3

∀ R > 0. (4.70)
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Proof. By equation (4.67), the ratio

lim
n→∞

λ0(Cn(R))

µn(R)
= lim

n→∞

(
1− e−α/3n

1− e−α(2/3)n

) n∏
j=1

(
1 + e−2α/3j

)
= lim

n→∞

n∏
j=1

1

2

(
1 + e−2α(R)/3j

)
.

Note that for each j in the above product, the factors converge to 1 at a
geometric rate. Thus, for any fixed α(R) > 0, the limit will indeed be defined
and positive. For any n-iterate, we consider the product of the n first factors,
which we exchange for a sum

n∏
j=1

1

2

(
1 + e−2α(R)/3j

)
= exp

[
−n ln(2) +

n∑
j=1

ln
(

1 + e−2α(R)/3j
)]

.

Observe, the statement follows once we show that there exist finite constants
c̃1 ≤ c̃2 such that

c̃1 ≤
n∑
j=1

ln
(

1 + e−x/3
j
)
−
(
n− ln(x+ 1)

ln(3)

)
ln(2) ≤ c̃2 for x ∈ [0, 3n]. (4.71)

The proof of (4.71) is based on two claims

(i) sup
y∈[0,1]

∞∑
j=1

[
ln
(

1 + y1/3j
)
− y1/3j ln(2)

]
=: β <∞, and

(ii) there exist finite constants γ1 ≤ γ2 such that

γ1 ≤
n∑
j=1

e−x/3
j −

(
n− ln(x+ 1)

ln(3)

)
≤ γ2 for x ∈ [0, 3n].

Although it is not particularly difficult to verify each claim, the arguments
are somewhat technical. Details and precise arguments for claim (i) and (ii)
are left in Appendix B.1 and B.2, respectively. Once these two claims are
established, it becomes trivial to prove (4.71).

Since ln(1 + y)− y ln(2) ≥ 0 for all y ∈ [0, 1], claim (i) yields

0 ≤
n∑
j=1

ln
(

1 + e−x/3
j
)
− ln(2)

n∑
j=1

e−x/3
j ≤ β.
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Now for x ∈ [0, 3n], apply claim (ii) to the above inequality such that

γ1 ln(2) ≤
n∑
j=1

ln
(

1 + e−x/3
j
)
−
(
n− ln(x+ 1)

ln(3)

)
ln(2) ≤ β + γ2 ln(2).

Since any constants c̃1 ≤ γ1 ln(2) and c̃2 ≥ β + γ2 ln(2) work, we are done.

By close inspection of the above proof, it becomes clear that restriction
α(R) ∈ [0, 3n/2] in (4.69) is not a strict condition. This restriction is a result of
the condition x ∈ [0, 3n] in claim (ii). If we had instead considered x ∈ [0, 3nM ]
for some fixed M > 1, we could have shown a similar identity as in claim (ii),
but with different constants γ1(M) ≤ γ2(M). Since these constants would have
to be updated according to our choice of M , we would not gain any additional
information about the n-iterates where α(R) ≥ 3n/2. More naturally is to
consider n-iterates such that α(R)� 3n/2.

4.3.2 Upper Bound for the Second Eigenvalue λ1 ≤ λ0

In Example 4.1 it was established that the localization operator for a disk
produces eigenvalues {λk}k which are ordered according to the order of the
associated eigenfunctions, namely the Hermite functions {Hk}k. Since the
subset C0(R) equals a disk of radius R > 0 centered at the origin, we must
have

λ0(C0(R)) > λ1(C0(R)) > · · · > λk(C0(R)) > λk+1(C0(R)) > . . .

Proceeding to the n-iterate, it remains an open question what are the necessary
conditions under which λ0(Cn(R)) continues to be the largest eigenvalue. In
this section we consider the second eigenvalue λ1(Cn(R)) and present a simple
proof that this eigenvalue is always bounded by λ0(Cn(R)) for n = 0, 1, 2, . . .
The statement itself is listed as Proposition 4.7.

The idea is to consider the relative area left under the curve f1 for a single
interval [s, s + 3R] after the mid-third is removed. We then compare this
area to the relative area under the curve f0, from which we attain a constant
ordering presented in the next lemma.

Lemma 4.6. Let {Ak}k be given by (4.57). Then

A1(s, 3L) ≤ A0(3L) ∀ s, L ≥ 0. (4.72)
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Proof. By formula (4.58), A1(s, 3L) can be written

A1(s, 3L) =

[
(1 + s)− e−L(1 + s+ L) + e−2L(1 + s+ 2L)

− e−3L(1 + s+ 3L)

]/[
(1 + s)− e−3L(1 + s+ 3L)

]
.

Differentiating with respect to s, yields, after factorization,

∂A1

∂s
(s, 3L) =

Le−L
(
1− e−2L

) (
1− e−L

)2(
(1 + s)− e−3L(1 + s+ 3L)

)2 > 0 ∀ L > 0, s ≥ 0.

Hence,

A1(s, 3L) ≤ lim
s→∞
A1(s, 3L) =

1− e−L + e−2L − e−3L

1− e−3L
,

where we identify, by (4.59), the right-hand side as A0(3L).

From here it becomes easy to verify the ordering of the first two eigenvalues.

Proposition 4.7. Let {λk(Cn(R))}k be the eigenvalues of PCn(R2) given by
(4.56). Then

λ1(Cn(R)) ≤ λ0(Cn(R)) ∀ R > 0 and n = 0, 1, 2, . . . (4.73)

Proof. By a similar argument to how the relation (4.62) was acquired, we now
apply Lemma 4.6 to obtain the recursive inequality

λ1(Cn+1(R)) ≤ A0(α(R)/3n)λ1(Cn(R)), for n = 0, 1, 2, . . . ,

from which we have

λ1(Cn(R)) ≤ λ1(C0(R))
n−1∏
j=1

A0(α(R)/3j)

≤ λ0(C0(R))
n−1∏
j=1

A0(α(R)/3j) = λ0(Cn(R)).

The final inequality follows by the constant ordering of the eigenvalues for the
disk.
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The crucial point of Lemma 4.6 is that the relative area under f1 is less
than the relative area under f0 regardless of the starting point s ≥ and the
length 3L > 0 of the initial interval [s, s + 3L]. Should the same constant
ordering hold when we exchange f1 with fk for some k > 1, we would arrive
at a similar conclusion as in Proposition 4.7, namely λk(Cn(R)) ≤ λ0(Cn(R)).
However, as it turns out, for k > 1 the ordering of the relative areas is no
longer independent of both s and L.

We illustrate by a simple counter-example:

Example 4.4. (Counter-example to Lemma 4.6 for k > 1)
Consider the relative area under the curve fk for k > 1 with the initial interval
[0, 3L], i.e. consider

Ak(0, 3L) =

[∫ L

0

fk(r)dr +

∫ 3L

2L

fk(r)dr

]/∫ 3L

0

fk(r)dr.

Further, let the length L tend to zero. By L’Hôpital’s rule and the Fundamen-
tal Theorem of Calculus,

lim
L→0
Ak(0, 3L) = lim

L→0

(
fk(L)− 2fk(2L) + 3fk(3L)

)/(
3fk(3L)

)
= lim

L→0

(
e−L − 2k+1e−2L + 3k+1e−3L

)/(
3k+1e−3L

)
=

1− 2k+1 + 3k+1

3k+1
.

Note that for k = 0, 1 this limit equals 2/3, while for k > 1 it is clear that
this limit is strictly greater than 2/3. Therefore, by continuity of Ak, for any
k > 1 there exists Lk > 0 such that

Ak(0, 3L) > A0(3L) ∀ 0 < L < Lk.

4.3.3 Upper Bound Estimate for the Operator Norm

In this section we finally determine an upper bound estimate for the operator
norm of PCn(R2) for each n = 0, 1, 2, . . . Since every eigenvalue λk(Cn(R))
satisfies

λk(Cn(R)) ≤ ‖PCn(R2)‖op for k = 0, 1, 2, . . . , (4.74)

we already have a lower bound estimate, e.g., the lower bounds estimates for
λ0(Cn(R)) in section 4.3.1.
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Returning to the upper bound, for a small initial radius R > 0, it is clear
that λ0(Cn(R)) represents the largest eigenvalue. By ”small” we mean any
radius R such that α(R) = πR2 ≤ 1, where the monotonicity of the integrals
(4.56) guarantees such an ordering. This notion can further be extended, by
Proposition 4.7, to include α(R) ≤ 2.

However, for a larger radius, we have not verified whether λ0(Cn(R)) re-
mains the largest eigenvalue or not. In particular, the counter-example 4.4
shows that we cannot utilize the relative areas {Ak(s, 3L)}k directly to de-
termine which eigenvalue is the largest for an arbitrary initial radius R > 0.
Nevertheless, from these relative areas we will be able to show that the opera-
tor norm ‖PCn(R2)‖op ≤ 2λ0(Cn(R)) for all radii R > 0 and n = 0, 1, 2, . . . (see
Proposition 4.9).

Initially, we compare the relative areas Ak(s, 3L) and A0(3L) when s ≥ k.

Proposition 4.8. Let {Ak}k be given by (4.57). Then

Ak(s, 3L) ≤ A0(3L) ∀ s ≥ k, L > 0 and k = 0, 1, 2, . . . (4.75)

Proof. See Appendix C.

Thus, for any shifted n-iterate Cantor set Cn(α(R)) + s + k for s ≥ 0, we
obtain the recursive inequality∫

Cn+1(α(R))+s+k

fk(r)dr ≤A0(α(R)/3n)

·
∫
Cn(α(R))+s+k

fk(r)dr, for n = 0, 1, 2, . . . (4.76)

Furthermore, by Proposition 4.2,∫
C0(α(R))+s+k

fk(r)dr =

∫ α(R)+s+k

s+k

fk(r)dr

≤
∫ α(R)

0

f0(r)dr = λ0(C0(R)),

such that∫
Cn(α(R))+s+k

fk(r)dr ≤
∫
C0(α(R))+s+k

fk(r)dr ·
n−1∏
j=0

A0(α(R)/3j)

≤ λ0(C0(R))
n−1∏
j=0

A0(α(R)/3j) = λ0(Cn(R)). (4.77)
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In the next lemma we relate the integrals of fk over the shifted n-iterate Cantor
sets to the non-shifted iterates.

Lemma 4.7. Let R > 0. Then for every fixed k, n = 0, 1, 2, . . . , we have

(A)

∫
Cn(α(R))∩[k,∞[

fk(r)dr ≤
∫
Cn(α(R))+k

fk(r)dr and

(B)

∫
Cn(α(R))∩[0,k]

fk(r)dr ≤
∫
Cn(α(R))+k

fk(r)dr.

Proof. For the first case (A), note that the integrand fk(r) is monotonically
decreasing. For this reason, it suffices to verify the following inequality

|Cn(α(R)) ∩ [k, r]| ≤ |(Cn(α(R)) + k) ∩ [k, r]| ∀ r ≥ k. (4.78)

Introduce the function

Gn(x) :=

{
0, x < 0

|Cn(α(R)) ∩ [0, x]|, x ≥ 0

which is a non-normalized version of the n-iterate Cantor function (on the
interval [0, α(R)]). With this notation, the left-hand side of inequality (4.78)
can be written

|Cn(α(R)) ∩ [k, r]| = Gn(r)−Gn(k)

and by shift-invariance, the right-hand side

|(Cn(α(R)) + k) ∩ [k, r]| = Gn(r − k).

Claim (4.78) can then be rephrased as

Gn(r) ≤ Gn(k) +Gn(r − k) ∀ r ≥ k, (4.79)

i.e. it is sufficient to show that Gn is subadditive. This property is shown in
Appendix D.

For the second case (B), consider the subset

Rn,k := {r ≥ k | 2k − r ∈ Cn(α(R)) ∩ [0, k]},

which denotes the reflection of elements in Cn(α(R)) ∩ [0, k] about the point
k. By Lemma 4.3, we have∫

Cn(α(R))∩[0,k]

fk(r)dr ≤
∫
Rn,k

fk(r)dr.
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Similarly to (A), it suffices to show that

|Rn,k ∩ [k, r]| ≤ Gn(r − k) ∀ r ≥ k. (4.80)

By symmetry of the Cantor set, the reflected set Rn,k satisfies

|Rn,k ∩ [k, r]| = |Cn(α(R)) ∩ [α(R)− k, α(R) + r − 2k]|
= Gn(α(R) + r − 2k)−Gn(α(R)− k).

Claim (4.80) then follows by subadditivity of Gn.

From this latest lemma and formula (4.56), we have that each eigenvalue
λk(Cn(R)) satisfies

λk(Cn(R)) =

∫
Cn(α(R))∩[0,k]

fk(r)dr +

∫
Cn(α(R))∩[k,∞]

fk(r)dr

≤ 2

∫
Cn(α(R))+k

fk(r)dr.

By inequality (4.77), this means

λk(Cn(R)) ≤ 2λ0(Cn(R)) for k, n = 0, 1, 2, . . . (4.81)

Since the operator norm of PCn(R2) equals its largest eigenvalue, and since these
eigenvalues all share a common upper bound, we conclude in the following
statement.

Proposition 4.9. Let λ0(Cn(R)) denote the first eigenvalue of the localization
operator PCn(R2). Then the operator norm is bounded from above by

‖PCn(R2)‖op ≤ 2λ0(Cn(R)) for n = 0, 1, 2, . . . (4.82)

Hence, by the above inequality, the asymptotic estimates for λ0(Cn(R)) in
Proposition 4.6 must also hold for the operator norm (although possibly with
different constants).

Corollary 4.1. Let µn(R) be as in equation (4.55). Then there exist positive,
finite constants β1 ≤ β2 such that for each n = 0, 1, 2, . . . the operator norm
of PCn(R2) is bounded by

β1

(
2α(R) + 1

)− ln 2/ ln 3

≤ 2−n‖PCn(R2)‖op

/(
1− e−α(R)/3n

)
≤ β2

(
2α(R) + 1

)− ln 2/ ln 3

∀ α(R) ∈ [0, 3n/2]. (4.83)
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In particular,

β1

(
2α(R) + 1

)− ln 2/ ln 3

≤ lim
n→∞

‖PCn(R2)‖op

µn(R)

≤ β2

(
2α(R) + 1

)− ln 2/ ln 3

∀ R > 0. (4.84)

Proof. Simply combine the estimates of Proposition 4.6 with Proposition 4.9.

Assume now that the area of the initial disk α(R) ≥ 1. For such α(R) we
may express identity (4.83) on a simpler and perhaps more comprehensible
form.

Corollary 4.2. There exists positive, finite constants γ1 ≤ γ2 such that for
each n = 0, 1, 2, . . . the operator norm of PCn(R2) is bounded by

γ1

(
2

3

)n
R2−2 ln 2/ ln 3 ≤ ‖PCn(R2)‖op

≤ γ2

(
2

3

)n
R2−2 ln 2/ ln 3 ∀ πR2 ∈ [1, 3n/2] (4.85)

Proof. Based on identity (4.83), it is sufficient to determine positive, finite
constants a ≤ b and c ≤ d such that

(i) (1− e−x)/x ∈ [a, b] ∀ x ∈ [0, 1/2]

(ii) 1 + 1/x ∈ [c, d] ∀ x ≥ 1.

Since it is straightforward to show that conditions (i) and (ii) are satisfied
whenever a ≤ 2(1− e−1/2) < 1 ≤ b and c ≤ 1 < 2 ≤ d, we are done.

Notice that we could have chosen a different threshold α(R) ≥ ε for some
fixed 0 < ε < 1, but then we would have to update the constants γ1 ≤ γ2

accordingly.
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4.3.4 Comparisons and Concluding Remarks

We begin by comparing localization on the n-iterate Cantor set Cn(R) with
localization on a ring of same measure and with inner radius R > 0.

Example 4.5. (Comparison Between the n-iterate Cantor Set and the Ring)
From Example 4.2, we have that the operator norm of a ring with inner radius
R > 0 and measure a ≤ 1 is of the form

‖P[R2,R2+aπ−1[‖op =
1

π
√

2
R−1a+ a ·O(R−3) as R→∞. (4.86)

Recall that the measure of the n-iterate spherically symmetric Cantor set
Cn(R) is given by (2/3)nα(R) =: a(n), which is less than 1 whenever

n ≥ ln(α(R))

ln(3/2)
=: N(R). (4.87)

Hence, for all such n we may compare the operator norm ‖PCn(R2)‖op with the
asymptotic estimate (4.86) for the operator norm of a the ring with measure
a(n) and inner radius R.

From (4.85), we obtain

‖PCn(R2)‖op ≤ γR−2 ln 2/ ln 3a(n) ∀ α(R) ∈ [1, 3n/2].

Thus, for large R� 0, we have that

‖PCn(R2)‖op

/
‖P[R2,R2+a(n)π−1‖op ≤ O(α(R)1/2−ln 2/ ln 3)

= O(R1−2 ln 2/ ln 3) ∀ n ≥ N(R). (4.88)

Notice that once we require n ≥ N(R), the restriction α(R)(= πR2) ≤ 3n/2 in
(4.85) is automatically satisfied. Since ln 2/ ln 3 ≈ 0.6309 · · · > 1/2, it is clear
that the right-hand side of inequality (4.88) tends to zero as R→∞.

By Corollary 4.1, it is evident that localization on the spherically symmet-
ric Cantor set is in essence a two-parameter problem, in terms of iterate n and
initial radius R (or equivalently the measure of the initial disk α(R) = πR2).
Similarly to what was done in Example 3.3, we reduce the number of param-
eters by making the choice of iterate n dependent on α(R).
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Example 4.6. (Comparison with Dyatlov’s Cantor Set Construction)
In Example 3.3 we considered the operator πCn(M)QCn(M), first projecting onto
Cn(M) in frequency and then projecting onto Cn(M) in time. In terms of the
time-frequency plane, this operator attempts to concentrate a signal in the
following region of the plane Cn(M)×Cn(M) ⊆ R2. Recall that for the regular
n-iterate in [0,M ], Dyatlov restricts to iterates consisting of 2n intervals Ij such
that

(i) |Ij| ∼
1

M
, which in returns means

(ii) |Cn(M)× Cn(M)| ∼
(

4

3

)n
.

While these two conditions are equivalent for the Cartesian product, they refer
to different aspects of localization on the n-iterate in time and frequency. In
particular, condition (i) refers to the measure of any single interval included
in the n-iterate in either time or frequency, and (ii) is the total measure of
the relevant region of the phase space. For the spherical symmetric n-iterate
Cn(R), we treat these conditions separately, which yields two natural options
for how to make n and α(R) dependent.

(I) Consider n-iterates Cn(R) such that the rings included satisfy a similar
measure scale condition as the intervals in (i). More precisely, let Ij
denote any ring in Cn(R) and restrict to n such that |Ij| ∼ 1/α(R). This
leads to

α(R) ∼ 3
n
2 . (4.89)

Consider a family of n-iterates {E(I)
n = Cn(R2)}n in R+ such that the

above condition (4.89) holds.12 Since 3
n
2 ≤ 3n/2 whenever n ≥ 2, we

may apply estimate (4.83) such that

‖P
E

(I)
n
‖op = O

((
2

3

)n
2
)

= O
(

exp

[
−1

2
ln

(
3

2

)
n

])
as n→∞.

(4.90)

(II) Let instead the measure of Cn(R) be the same as in (ii), which yields the
condition

α(R) ∼ 2n. (4.91)

12Recall that the subset En corresponds to the spherically symmetric set in the plane
En = {(ω, t) ∈ R2 | ω2 + t2 ∈ En}.
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Once again, consider a family of n-iterates {E(II)
n = Cn(R2)}n in R+

but now such that condition (4.91) is satisfied. Similarly, 2n ≤ 3n/2
whenever n ≥ 2, from which we apply estimate (4.83) to produce

‖P
E

(II)
n
‖op = O

((
22−ln 2/ ln 3/3

)n)
= O

(
exp

[
−
(

ln 3 + (ln 2)2/ ln 3− 2 ln 2
)
n
])

as n→∞. (4.92)

Observe that in both cases (I) and (II), we end up with a situation where

‖P
E

(·)
n
‖op → 0 as |E(·)

n | → ∞. In addition, we have precise estimates for the

rate at which ‖P
E

(·)
n
‖op tends to zero, i.e. we know the exponential coefficient

β(·) > 0 in ‖P
E

(·)
n
‖op = O(e−β

(·)n) for large n.

At this point it should come as no surprise that having explicit expressions
for the eigenvalues at our disposal is a great advantage when attempting to
estimate the operator norm. For Daubechies’ localization operator with a
spherically symmetric weight and Gaussian window, we have such expressions
for the eigenvalues (on integral form, see (4.3)). By virtue of the numerous
examples provided in this chapter, it is clear that the main challenge then
becomes how to determine the largest eigenvalue or at least how to determine
a common upper bound. Although not without computational effort, in the
same examples we have been able to produce precise asymptotic estimates for
the operator norm.

It is worth noting that in the computations for the mid-third spherically
symmetric Cantor set, the specific regularity of the iterates has been of great
benefit. Based on this observation, it seems relevant to ask whether similar
results could hold for subsets with the same type of regularity. One natural
extension could be to consider more general Cantor set constructions, e.g., the
mid- 1

L
Cantor set Cn(R,L) for L > 1, where we remove the mid-interior 1

L

inductively.
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Appendices

A Monotonic Functions and Integral Bounds

The purpose of this section is to provide formal proofs of the rather intuitive
statements regarding integral bounds of monotonic functions (either monoton-
ically increasing or decreasing) integrated over some measurable set. The idea
can be summarized as follows:

Proposition A.1. Let f : [a, b] → R+ be an integrable, monotonically in-
creasing function, and let E be a measurable subset of [a, b] with measure |E|.
Then ∫ a+|E|

a

f(x)dx ≤
∫
E

f(x)dx ≤
∫ b

b−|E|
f(x)dx. (A.1)

Proof. We only show the first inequality in (A.1) as the proof for the second
inequality is almost completely analogous. Since f is monotonically increasing,
we have that∫

E

f(x)dx =

∫
E∩[a,a+|E|]

f(x)dx+

∫
E\[a,a+|E|]

f(x)dx

≥
∫
E∩[a,a+|E|

f(x)dx+ inf
x∈E\[a,a+|E|]

f(x)|E\[a, a+ |E|]|

≥
∫
E∩[a,a+|E|]

f(x)dx+ f(a+ |E|)|E\[a, a+ |E|]|.

Similarly, we obtain∫ a+|E|

a

f(x)dx ≤
∫
E∩[a,a+|E|]

f(x)dx+ f(a+ |E|)|[a, a+ |E|]\E|.

By symmetry, |E\[a, a+ |E|]| = |[a, a+ |E|]\E| such that the difference∫
E

f(x)dx−
∫ a+|E|

a

f(x)dx ≥ 0.
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We obtain the reverse inequality if the function is monotonically decreasing.

Corollary A.1. Let g : [a, b]→ R+ be an integrable, monotonically decreasing
function, and let E be a measurable subset of [a, b] with measure |E|. Then∫ a+|E|

a

g(x)dx ≥
∫
E

g(x)dx ≥
∫ b

b−|E|
g(x)dx. (A.2)

Proof. Simply recognize that g(x) = f(−x) for some monotonically increasing
function f .

Corollary A.2. Let f : [a, b] → R+ be an integrable function, and let E be
a measurable subset of [a, b]. Suppose there exist a point x0 ∈ [a, b] such that
f is monotonically increasing in [a, x0] and decreasing in [x0, b]. Then there
exists an interval I with |I| = |E| such that∫

E

f(x)dx ≤
∫
I

f(x)dx. (A.3)

Proof. Apply inequality (A.1) to E ∩ [a, x0[ and inequality (A.2) to E∩]x0, b]
to produce the desired interval.

B Details on Series

In this section we present precise arguments for the two claims (i), (ii) set
forth in Proposition 4.6, thus completing the proof. Details on claim (i) can
be found in section B.1 while claim (ii) in section B.2.

B.1 Logarithmic Series

We shall prove the following statement:

Proposition B.1.

sup
y∈[0,1]

∞∑
j=1

[
ln
(

1 + y1/3j
)
− y1/3j ln(2)

]
<∞. (B.1)
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Figure 5: Plot of the difference g(y) given by (B.2) for y ∈ [0, 1]. The linear
spline h from (B.3) which bounds g from above is plotted alongside.

Proof. Initially, consider only the function

g(y) := ln(1 + y)− y ln(2) for y ∈ [0, 1]. (B.2)

It is easily verified that g(y) ≥ 0 for all y ∈ [0, 1]. Furthermore, the slope of
the function is bounded by the slope of the endpoints y = 0, 1, i.e.

|g′(y)| ≤ max{|g′(0)|, |g′(1)|} = 1− ln(2) =: a ∀ y ∈ [0, 1].

Our function g may therefore be bounded from above by a linear spline, say
h, defined by

h(y) := a ·

{
y, y ∈ [0, 1/2]

(1− y), y ∈]1/2, 1].
(B.3)

Both the function g and the linear spline h are depicted in Figure 5.
Further, the sum in (B.1) is bounded from above by

∞∑
j=1

h
(
y1/3j

)
for y ∈ [0, 1]. (B.4)
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Hence, it is sufficient to show that there exists a common upper bound for
(B.4) for all y ∈ [0, 1].

Since the sum (B.1) (and (B.4)) is zero for y = 0, we may, without loss of
generality, assume y > 0. In addition, for any y ∈]0, 1] we have that y1/3j ↗ 1
as j → ∞. Thus, for any fixed y ∈]0, 1] there exists a smallest j0 ∈ N such
that y1/3j ≥ 1/2 for all j ≥ j0. With this notion, we split the sum to the effect

∞∑
j=1

h
(
y1/3j

)
=

j0−1∑
j=1

h
(
y1/3j

)
+
∞∑
j=j0

h
(
y1/3j

)
= a

j0−1∑
j=1

y1/3j + a

∞∑
j=j0

(
1− y1/3j

)
(B.5)

Consider each of these two sums separately.
Observe that the first sum is empty whenever y1/3 ≥ 1/2. For the non-

empty case, introduce the variable z := y1/3j0−1 ∈]0, 1/2[. Then the first sum
can be expressed

j0−1∑
j=1

y1/3j =

j0−2∑
j=0

z3j ≤
∞∑
j=0

z3j (B.6)

Since z3j ≤ zj for any j = 0, 1, 2, . . . , by direct comparison with the geometric
series, we obtain

∞∑
j=0

z3j ≤
∞∑
j=0

zj =
1

1− z
≤ 1

1− 1/2
= 2 ∀ z ∈ [0, 1/2]. (B.7)

Similarly to the first sum, introduce the variable z̃ := y1/3j0 ∈ [1/2, 1], now for
the second sum, such that

∞∑
j=j0

(
1− y1/3j

)
=
∞∑
j=0

(
1− z̃1/3j

)
≤

∞∑
j=0

(
1− (1/2)1/3j

)
∀ z̃ ∈ [1/2, 1]. (B.8)

Inserting these two upper bounds (B.7), (B.8) into (B.5), yields

∞∑
j=1

h
(
y1/3j

)
≤ 2a+ a

∞∑
j=0

(
1− (1/2)1/3j

)
∀ y ∈ [0, 1].
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It only remains to verify that the right-hand side series converges. By the ratio
test,

lim
j→∞

1− (1/2)1/3j+1

1− (1/2)1/3j
=

1

3
< 1,

where we have identified (1/2)x = e−x ln(2) and applied the Taylor series ex-
pansion e−x = 1− x+O(x2) in both numerator and denominator. From here
we conclude that the series is in fact convergent.

B.2 Exponential Series

We shall prove the following statement:

Proposition B.2. There exists finite constants γ1 ≤ γ2 such that

γ1 ≤
n∑
j=1

e−x/3
j −

(
n− ln(x+ 1)

ln(3)

)
≤ γ2 for x ∈ [0, 3n]. (B.9)

Proof. Initially, observe that for any fixed x ≥ 0, we have that x/3j ≤ 1
precisely when j ≥ ln(x)/ ln(3). Let b·c denote the floor function which rounds
down any number to the nearest integer. Define

j0(x) := max

{⌊
ln(x)

ln(3)

⌋
, 0

}
(B.10)

and consider the split

n∑
j=1

e−x/3
j

=

j0(x)∑
j=1

e−x/3
j

+
n∑

j=j0(x)+1

e−x/3
j

for x ∈ [0, 3n]. (B.11)

Note that the first sum is possibly empty, while the second sum is always non-
empty except when x = 3n. Nonetheless, since e−1 ∈ [0, 1/2], we attain, by
the same reasoning as in equations (B.6) and (B.7), the following bounds for
the first sum

0 ≤
j0(x)∑
j=1

e−x/3
j ≤ 2. (B.12)
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For the second sum, we utilize the fact that 1 − y ≤ e−y ≤ 1 for all y ≥ 0.
Thus, we acquire the upper bound

n∑
j=j0(x)+1

e−x/3
j ≤ n− j0(x), (B.13)

in addition to the lower bound

n∑
j=j0(x)+1

e−x/3
j ≥

n∑
j=j0(x)+1

(
1− x

3j

)

= n− j0(x)− x

3j0(x)+1

n−j0(x)−1∑
j=0

3−j.

By comparison with the geometric series and by the fact that x/3j0(x)+1 ≤ 1,
we further conclude

n∑
j=j0(x)+1

e−x/3
j ≥ n− j0(x)−

∞∑
j=0

3−j

= n− j0(x)− 3

2
. (B.14)

Now, insert these three estimates (B.12)-(B.14) into (B.11) such that

−3

2
≤

n∑
j=1

e−x/3
j − (n− j0(x)) ≤ 2 ∀ x ∈ [0, 3n].

Finally, the desired inequality (B.9) follows once we include the bounds

ln(x+ 1)

ln(3)
− 1 ≤ j0(x) ≤ ln(x+ 1)

ln(3)
.

78



C Technical Proof of Proposition 4.8

In this section we provide a formal proof to Proposition 4.8, which, as it turns
out, is a rather long and technical proof. Note that all the symbols correspond
to the symbols used in the aforementioned proposition.

Proof. In the current context we will deal directly with the integral definition
of Ak(s, 3L), namely definition (4.57):

Ak(s, 3L) =

[∫ s+L

s

fk(r)dr +

∫ s+3L

s+2L

fk(r)dr

]/∫ s+3L

s

fk(r)dr.

Differentiate said definition with respect to s, which, by the Fundamental
Theorem of Calculus, yields

∂Ak

∂s
(s, 3L) = Nk(s, L)

/[∫ s+3L

s

fk(r)dr

]2

,

where

Nk(s, L) =
(
fk(s+ L)− fk(s) + fk(s+ 3L)− fk(s+ 2L)

)∫ s+3L

s

fk(r)dr

−
(
fk(s+ 3L)− fk(s)

)[∫ s+3L

s

fk(r)dr +

∫ s+3L

s+2L

fk(r)dr

]
. (C.1)

From identity (4.58), it is clear that lims→∞Ak(s, 3L) = A0(·, 3L). Hence, in
order to prove the proposition, it is sufficient to show that Nk(s, L) ≥ 0 for all
s ≥ k, L > 0 and k = 1, 2, 3, . . . 13

Proceeding, we shall express Nk(s, L) in (C.1) more conveniently. Firstly,
observe that the integral over [s, s+3L] can be split into three separate integrals
over [s, s+L], [s+L, s+ 2L] and [s+ 2L, s+ 3L], respectively. On this form,
certain terms cancel such that

Nk(s, L) =
(
fk(s+ L)− fk(s+ 2L)

)[∫ s+L

s

+

∫ s+2L

s+L

+

∫ s+3L

s+2L

]
fk(r)dr

−
(
fk(s)− fk(s+ 3L)

)∫ s+2L

s+L

fk(r)dr.

13The proposition holds trivially for k = 0.
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Secondly, we rewrite Nk(s, L) as a single integral over [0, L] by shifting the
integrands fk(r) accordingly. After rearrangement, we obtain

Nk(s, L) =

∫ L

0

{[
fk(r + s)

(
fk(s+ L)− fk(s+ 2L)

)
−fk(r + s+ L)

(
fk(s)− fk(s+ L)

)]
−
[
fk(r + s+ L)

(
fk(s+ 2L)− fk(s+ 3L)

)
−fk(r + s+ 2L)

(
fk(s+ L)− fk(s+ 2L)

)]}
dr.

Based on the division into square brackets [. . . ], we introduce the function

Φk(r, s, L) := fk(r + s)
(
fk(s+ L)− fk(s+ 2L)

)
−fk(r + s+ L)

(
fk(s)− fk(s+ L)

)
, (C.2)

such that

Nk(s, L) =

∫ L

0

(
Φk(r, s, L)− Φk(r, s+ L,L)

)
dr. (C.3)

Observe that if the difference Φk(r, s, L) − Φk(r, s + L,L) is positive for all
r ∈ [0, L] and s ≥ k, then so is Nk(s, L). Furthermore, this difference is
positive if the derivative of Φk(r, s, L) with respect to s is negative whenever
s ≥ k. In what follows, we will verify that this particular partial derivative is
indeed negative (where we assume the same restrictions on the variables r, s, L
and k as outlined above).

Begin by rearranging the terms in definition (C.2) such that

Φk(r, s, L) =
[
fk(r + s)fk(s+ L)− fk(r + s+ L)fk(s)

]
+
[
fk(r + s+ L)fk(s+ L)− fk(r + s)fk(s+ 2L)

]
.

Consider the terms in each square bracket [. . . ] and define the function

Ψk(r, s, L, y) :=fk(r + s+ y)fk(s+ L)

− fk(r + s+ L− y)fk(s+ 2y) for y ∈ {0, L}, (C.4)

where

Φk(r, s, L) = Ψk(r, s, L, 0) + Ψk(r, s, L, L). (C.5)
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The key observation here is that the arguments of fk(·) in each term of Ψk

add to a fixed value, namely

(i) 2a := 2s+ r + L+ y.

In addition, define the corrections to each argument

(ii) ε :=
L− r − y

2
,

(iii) δ :=
L+ r − 3y

2
.14

Based on the quantities (i)-(iii), we now express Ψk on the form

Ψk(r, s, L, y) = fk(a− ε)fk(a+ ε)− fk(a− δ)fk(a+ δ)

=
1

(k!)2
e−2a

[(
a2 − ε2

)k
−
(
a2 − δ2

)k]
(by definition (4.11)).

Since a = a(s) is the only quantity that depends on the parameter s, we easily
differentiate the latest result to obtain

∂Ψk

∂s
(r, s, L, y) =

2

(k!)2
e−2t

[(
a2 − ε2

)k−1(
− a2 + ε2 + ka

)
−
(
a2 − δ2

)k−1(
− a2 + δ2 + ka

)]
. (C.6)

By (i)-(iii) and that r ≤ L, we always have the inequalities

|ε(y)| ≤ |δ(y)| ≤ a(s, y) ∀ s ≥ k and y ∈ {0, L}. (C.7)

From this ordering, it is clear that expression (C.6) is negative whenever the
factor −a2 + ε2 + ka is negative.

By inspection of (i) and (ii), note that since s ≥ k, we must have

a(s, y)− k ≥ a(s, y)− s =
r + L+ y

2
≥ |ε(y)| for y ∈ {0, L}.

Completing the square then reveals

−a2 + ε2 + ka = −
(
a− k

2

)2

+ ε2 +

(
k

2

)2

≤ 0.

14For simplicity with regard to notation, we have avoided writing these three quantities
as functions of the variables s, y, k, L and r. Nevertheless, they should always be thought of
as functions of such variables (e.g. a = a(s, y, k, L, r)).
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In total, by (C.5), this means

∂Φk

∂s
(r, s, L) ≤ 0 ∀ s ≥ k, L > 0 and r ∈ [0, L],

for which we are done.

D Cantor Function

This section completes the proof of Lemma 4.7, where we formally introduce
the family of n-iterate Cantor functions {Gn}n and show that every member
of said family is subadditive. This is based heavily on and structured similarly
to the short 1996-paper by Jozef Doboš [23], which proves this exact property
by induction.

Consider the n-iterate Cantor set Cn(1) on the interval [0, 1] according to
definition (4.49). Then we may define a corresponding map Gn : R→ [0, 1] by

Gn(x) =
1

|Cn(1)|
·

{
0, x ≤ 0,

|Cn(1) ∩ [0, x]|, x > 0 for n = 0, 1, 2, . . . ,
(D.1)

which we refer to as the (standard) n-iterate Cantor function. From the above
expression, we may think of Gn(x) as the amount of the n-iterate contained in
the interval ] −∞, x]. Thus, every Gn is obviously monotonically increasing.
Further, as n→∞, the sequence Gn converges uniformly to some continuous
function G, known as the Cantor function. In Figure 6 the first few iterates
Gn for n = 0, 1, 2, 3 are plotted. In the subsequent Figure 7 an approximation
of the Cantor function is shown.

For the purpose of verifying subadditivity, the sequence {Gn}n can alter-
natively be expressed recursively by

G0(x) =


0, x < 0,

x, x ∈ [0, 1],

1, x > 1,

(D.2)

and

Gn+1(x) =
1

2
·

{
Gn(3x), x ≤ 2

3
,

1 + Gn(3x− 2), x ≥ 1
3
.

(D.3)
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(0) (1)

(2) (3)

Figure 6: Illustration of the first iterates of the Cantor function on the interval
[0, 1]. Here (n) refers to the n-iterate Gn for n = 0, 1, 2, 3.
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Figure 7: Plot of the Cantor function G(x) = limn→∞ Gn(x) on the interval
[0, 1]. This function has also been referred to by the more intriguing name the
”Devil’s staircase”.

Note that there is some overlap in the split expression in (D.3), namely
for arguments x ∈ [1

3
, 2

3
]. However, as Gn(3x) = 1 + Gn(3x − 2) for such x,

(D.3) is indeed well-defined, and in the overlap we can apply either form at
convenience. This observation will prove useful with regard to subadditivity.

Proposition D.1. The standard n-iterate Cantor function Gn is subadditive,
i.e.

Gn(a+ b) ≤ Gn(a) + Gn(b) ∀ a, b ∈ R and n = 0, 1, 2, . . . (D.4)
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Proof. We will prove the statement by induction. Since the base case n = 0
is trivial, assume the subadditivity holds for n = m. We will show that
subadditivity must also holds for n = m + 1. Without loss of generality,
assume a ≤ b and consider the following possibilities:

(i) a ≤ 0. Evident as Gm+1 is monotonically increasing.

(ii) a ≥ 1

3
. Then Gm+1(a+ b) ≤ 1 =

1

2
+

1

2
≤ Gm+1(a) + Gm+1(b).

So far we have not required the induction hypothesis. The next two cases,
however, utilize said hypothesis.

(iii) b ≤ 1

3
. Since a, b, a+ b ≤ 2

3
, we must have

Gm+1(a+ b) =
1

2
Gm(3a+ 3b)

≤ 1

2
Gm(3a) +

1

2
Gm(3b) = Gm+1(a) + Gm+1(b).

(iv) 0 ≤ a ≤ 1

3
≤ b. Since a+ b ≥ 1

3
, we attain

Gm+1(a+ b) =
1

2
+

1

2
Gm(3a+ 3b− 2)

≤ 1

2
Gm(3a) +

1

2
+

1

2
Gm(3b− 2) = Gm+1(a) + Gm+1(b).

Since these four cases (i)-(iv) cover every possible value a ≤ b can take in R,
we are done.
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[23] Jozef Doboš. The standard Cantor function is subadditive. Proceedings of
the American Mathematical Society, 124(11):3425–3426, November 1996.

87


