@NTNU

Norwegian University of
Science and Technology

FPGA Implementation of Hyperspectral
Anomaly Detection Algorithm

Martin Haukali

Master of Science in Electronics
Submission date: June 2018
Supervisor: Kjetil Svarstad, IES
Co-supervisor: Milica Orlandic, IES

Norwegian University of Science and Technology
Department of Electronic Systems

Project Assignment

Candidate name: Martin Haukali

Assignment title: FPGA Implementation of Hyperspectral Anomaly Detection Algo-
rithm

Assignment text: This topic is part of the large project Hyperspectral Imaging in
Small Satellites. Hyperspectral imaging relies on sophisticated acquisition and on data
processing of hundreds or thousands of image bands. Most of the algorithms for hyper-
spectral imaging perform intensive matrix manipulations, and FPGAs are recommended
to be used due to reconfiguration, low consumption, compact size and high computing
power.

Anomaly detection is an important task for hyperspectral data exploitation. A stan-
dard approach for anomaly detection in the literature is the method called RX algorithm.
The computational cost is very high for RX algorithm and current advances in high per-
formance computing can be good solution to reduce the run- time of this algorithm.

Tasks:
- Optimization of RX algorithm for parallel processing
- Covariance computation
- Hardware implementation of inverse matrix problem
- FPGA implementation of RX algorithm

Supervisor: Kjetil Svarstad

Co-supervisor: Milica Orlandic

ii

Abstract

On-board processing of hyperspectral data in satellites is done to perform a wide variety
of tasks. Field-Programmable Gate Arrays (FPGAs) are often used for such tasks due to
their reconfigurability and efficiency, especially when dealing with applications requiring
matrix computation. One of these applications is anomaly detection. Anomaly detection
might be used to discover harmful algae blooms, oil spills, micro-plastics and other irreg-
ularities in ocean and coastal areas. This might help us understand more about the ocean
and to monitor the effects of global warming and human pollution.

The Adaptive Causal anomaly detector (ACAD) is an anomaly detector (AD) de-
veloped to solve some of the issues that well-known ADs, such as the Reed-Xiaoli (RX)
algorithm, faces. ACAD utilizes inverse matrix computation as a part of the anomaly
detection. Computing the inverse matrix is an intensive task. It is therefore important
that the algorithm chosen for inverse matrix computation is parallellizable and efficient.
The Gauss-Jordan elimination was chosen due to its parallel computation and simplicity.

ACAD is causal, meaning that it relies on previously executed computations. This
enables real-time processing and makes it suitable for hardware implementation. ACAD
also builds a binary anomaly map, which is beneficial with regards to data transmission,
as this will lower transmission time and thereby energy. In this thesis, a proposed im-
plementation of the ACAD algorithm has been made, designed to be scalable for large
hyperspectral images. A parallel memory structure consisting of Block RAM (BRAM)-
arrays of size P__bands have been made. P_bands is the number of spectral bands of the
input pixel data to the ACAD AD. The correlation and inverse modules proposed in this
implementation have a large degree of parallelism, computing and updating up to two
rows of the correlation and inverse matrix respectively, of size P_bands x P_bands, per
clock cycle. The design is to be implemented on a Zyng-7000 series System-on-Chip (SoC).

iii

iv

Sammendrag

Prosessering av hyperspektrale bilder pa den innebygde datamaskinen i en satelitt blir
ofte gjort for & utfgre en mengde oppgaver. Field-Programmable Gate Arrays (FPGAs)
blir ofte brukt for slike oppgaver pa grunn av den hgye effektiviteten og muligheten for
rekonfigurasjon. Dette gjelder spesielt for applikasjoner som krever matrise-beregning.
En slik applikasjon er anomalie-deteksjon. Anomalie-deteksjon kan muligens bli brukt for
& oppdage oppblomstring av skadelige alger, oljesgl, mikro-plastikk og andre uregelmes-
sigheter i havet og i kystnaere omrader. Dette kan hjelpe oss & forstd mer om havet og &
observere effektene av global oppvarming og menneskelig forurensing.

Adaptive Causal anomaly detector (ACAD) er en anomalie-detektor (AD) utviklet for
& lgse noen av utfordringene som velkjente AD-er, slik som Reed-Xiaoli (RX)-algoritmen,
har. ACAD bruker invers-matrise-beregning som en del av anomalie-deteksjonen. A
beregne invers av en matrise er en intensiv oppgave. Det er derfor viktig at algoritmen
brukt for & beregne invers-matrisen er parallelliserbar og effektiv. I denne hovedoppgaven
ble Gauss-Jordan metoden valgt grunnet dens parallelle beregninger og enkelhet.

ACAD er kausal, som betyr at den avhenger av tidligere utfgrte beregninger. Dette
muliggjor sanntidsprosessering og gjor algoritmen egnet for implementasjon i maskin-
vare. ACAD lager ogsd et binsert anomalie-kart, som er fordellaktig med tanke pa
data-overfgring, da det vil senke transmisjonstiden og dermed transmisjonsenergien. I
denne hovedoppgaven har en foreslatt implementasjon av ACAD blitt laget, designet for
& veere skalerbar for store hyperspektrale bilder. En parallell minne-struktur bestaende
av Block RAM (BRAM)-tabeller av stgrrelse P_bands har blitt designet. P_bands er
antallet spektrable band i inngangs-piksel-dataen til ACAD AD-en. Korrelasjons- og
invers-modulene foreslatt i denne implementasjonen har en stor grad av parallellisme.
Modulene beregner og oppdaterer opp til to rader av henholdsvis korrelasjons-og invers-
matrisen, som er av stgrrelse P_bands x P _bands, per klokke-sykel. Designet skal bli
implementert pa en Zyng-7000 serie System-on-Chip (SoC).

vi

Preface

This thesis is submitted to the department of Electronics Systems at NTNU as part of
the Master of Science degree in Electronics, with specialization in digital circuit design.
The thesis is part of the SmallSat project at NTNU, a research project that is focused
on the design and creation of small satellites. The mission objectives of the SmallSat
project is to "provide and support ocean color mapping through a Hyperspectral Imager
payload, autonomously processed data, and on-demand autonomous communications in
a concert of robotic agents at the Norwegian coast". The thesis was started on in the mid
of January. It was not a continuation of the project thesis written in the past fall.

The implementation of an anomaly detector in hardware proved to be a challenging
task. Choosing the best anomaly detector for this project in an as objective manner as
possible proved to be difficult, as this meant creating synthetic images to provide ob-
jective metrics for performance measurement and testing the anomaly detectors on real
hyperspectral images. In the end, the Adaptive Causal anomaly detection algorithm was
chosen. The main challenge faced with the implementation in hardware was how to use
the given resources of the FPGA to compute the anomaly detection as efficient as possible.
Anomaly detection is a computationally intensive process, especially when doing inverse
computation. As such, the trade-off between resource utilization and throughput was a
difficult one.

Thanks to my co-supervisor Milica Orlandic for great guidance and help during the
semester. I would also like to thank my supervisor Kjetil Svarstad for a read-through of
my thesis in the latter stages.

The code, both VHDL and MATLAB, developed and used in this thesis is made
available public on github. The most important code can also be found in the appendices
to this thesis.
The VHDL source code is located on the following website, on the
"invert matrix computation"- branch: https://github.com/marthauk/Anomaly-detection/
tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_
detection.srcs/sources_1/new.
The VHDL-testbenches used are avaialable on the following website, on the
"invert matrix computation"- branch:
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/
FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new.

The MATLAB-code used and developed for hyperspectral processing can be found on
the following website, on the "dev" branch:

vii

https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sources_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sources_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sources_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new

viii

https://github.com/marthauk/HyperSpectralToolbox/tree/dev/functions

https://github.com/marthauk/HyperSpectralToolbox/tree/dev/functions

Contents

|2 Background theory|
12.1 Hyperspectral imaging|
.................................
2.1.1.1 Cuprite scene|. oo
2.1.2 NTNU SmallSat project|
2.2 NTNU Small5at’s hardware platform|.

2.3 Anomaly detection|
12.3.1 Reed-Xiaoli algorithm|
12.3.2 Local RX algorithm|
12.3.3 Adaptive Causal anomaly detection|
12.3.4 Adaptive Local RX|. o 0oL

W w w— -

© W 0o o O Ul Ut ut

= e
UL W O ©

13 Review of state of the art anomaly detectors|

13.1 Experiments on synthetic images|
B.1.1 RX detection resultsl
3.1.1.1 Hsueh-mimicked image]

3.1.1.2 Sem30 30AVIRIS scene|
3.1.1.3 Swm_AvirtsOl scene|

ix

13.1.2.1 Hsueh mimicked image]
3.1.2.2 Svm30 S0AVIRIS scenel.
3.1.2.3 SvmAveresOll
B.1.3 ALRX detectionresults|
3.1.3 STM30 30AVIRIS|.

3.1.3.2 SvmAveresOl

= =
S Ot

17

CONTENTS

X
3.1.4 ACADI. e 27
3.1.4.1 SIM AVIRIS 30 30. 27
B8.1.4.2 SimAveresOIlo 28
13.2 Testing on real image datal. 28
3575 D 29
B22 TRXI. . . .o 29
3.2.3 ACADI. e 29
13.2.4 Choice of anomaly detector algorithm| 30
4 Proposed hardware implementation| 33
4.1 Memory considerations|. Lo 33
4.1.1 Storing and updating matrices in ACAD | 33
4.1.1.1 Using registers| 34
4.1.1.2 Using BRAM|.o 35
4.2 Proposed implementation| L0000 39
4.3 Shiftregister| 41
4.4 ACAD correlationl 42
4.4.1 Normalizing with k| oo 0o 45
4.5 Inverse computation| Lo Lo 46
4.5.1 Elmination corel 48
4.5.2 FSMinversel. 50
4.5.3 Forward eliminationl 52
4.5.4 Backward eliminationl 55
455 Lastdivisionl 58
4.5.6 Output inverse matrix| 59
4.5.7 Inverse pipeline stages| oo 59
4.5.8 Execution time expectations inverse computation| 61
SO DIVISION! « « « v v oovoe e e e e 63
[£5.9.1 Using the division operator "/"|. 63
4.5.9.2 Adaptive shifting|. 64
4.5.9.3 LUT approach| 65
6Results| 69
.................................... 69
BT Shiftregister] 70
BET2 ACAD correlation] v v v i 70
BT2T Pizel data width =10 . .« o« v v v v i e 73
BET3 ACAD Inversel o o 73
P14 Timing results] 76
ETZ4T WNS ACAD correlationl. . . -« - v v v vvv oot 76
p.1.4.2 WNS division operator] 76
9.1.4.3 Worst Negative Slack adaptive shifting approach| s
5.1.4.4 Worst Negative Slack LU approach|. 77
B2 SImulation] . - - -« o v e e e 7
15.2.1 Shiftregister|. 77
522 ACAD correlationl 79

CONTENTS xi

[6Discussion| 85
6.1 Resource usage| 85
[-T.1 DSP usage Pixel data_waidth =16] 85

6.1.2 Pizel data width = 10] oo 86

16.2 ming results|] Lo oL oo 86
6.2.1 ACAD correlationl 86

6.22 ACADinversel 86

6.2.3 Simulation results] o 0o 87
[T_Conclusion| 89
1.1 Future workl 90
I7.1.1 Optimization| 90
Append 93
IA_ MATLAB hyperspectral| 95
[A-T High Tevel models of algorithms] oo v oo 95
1AL 1.1 Gauss-Jordan eliminationl L. 95

[A.1.2 RX anomaly detector| 97

[AT3 LRX anomaly detector]. oo v i i 98

A.1.4 ALRX anomaly detector|. 99

A.1.5 ACAD anomaly detector|. 101

A2 Testing|. L 105
|A.2.1 Hyper demo detectors| 105

[A22 Generating synthetic images|. o .. 108

1B VHDL Code description| 123
IC _VHDI codel 125
125

133

(C.3 BRAM SDP 18Kkbit] 142
|C.4 Package Common types and functions| 143
OB SWap ToWS - - - - -+ - @ o 152
[CEACADIOVEISE . v v o o oo e e e e e e 157
|C.7 Shiftregister|o 195
IC.8 Forward eliminationl 197

xii CONTENTS

List of Figures

1.1 Functional concept of HSI [If. | 1
1.2 Image of an algae bloom along the coast of Troms in Norway [2]. | 2
[2.1 Band 220 from the Cuprite scene 02 [3]. 5
[2-2 Spectral signatures of minerals from the Cuprite mining district [4]. | . . . 6
12.3 A spectral pixel vector.| oo 6
2.4 _Hyperspectral image cube|. 7
E.5 Push-broom hyperspectral imager mode of operation Jol. | 7
[2:6 Zynqg-7000 architecture [6]. | 8

2.7 Visualization of a kernel of size K’ X K used in LRX.| 10

[2.8 Visualizing processing of pixels in ACAD.|. 11
29 Results of n0ise testS [T]- | - -« « « « v v v v e 13
12.10 Pseudo-code for computing the inverse of a matrix by Gauss-Jordan elim- |

| nation [S. | - - . ¢ o e e 15

[2.1T Pseudo-code for computing the forward elimination in Gauss-Jordan elim- |

| ination [B. | . .« . . 16

12.12 Pseudo-code for computing the backward elimination in Gauss-Jordan elim- |

nation [S[. | 16
[i BN

[2.13 Pseudo-code for computing the last division in Gauss-Jordan elimination |

3.1 Test of RX (GRX) and LRX algorithms [9]. | 20
13.2 First class of synthetic images: 200 X 200 synthetic image with 25 inserted |
L anomaly panels as describe by Hsueh in m_l 21
[3-3~ Second class of synthetic images: Synthetic 30 x 30 image with an inserted |
[2x2 anomalous panel inserted into the center 22
3.4 Expected anomaly map for the third class of synthetic images created.| . . 23
B85 RX ADresult] 23
13.6 Generated anomaly map.| Lo 23

3.7 _RX AD test on synthetic image based on Hsueh’s description. The map in
Figure [3.6] was created to provide a way of computing false anomalies

and correctly predicted anomalies. | 23

results for the Sim scene. 24

E 9 RX AD rosults for the Sim _ Aviris0l scene. 24

|3 10 Band 220 from the Cuprite scene 02!@3 | 28
[3.1T Result from RX AD on Cuprite image data. | o v v v v v v v .. 29

xiii

xiv LIST OF FIGURES

13.12 Result from LRX AD with a kernel size of K =23 on Cuprite image scene |

| — 7 29
[3.13 Anomaly map created by ACAD (yellow dots) overlayed over Figure[3.10} | 29
[3-14 Power consumption in a WSN [TI. |o oo i ittt 30

— i - iminationJ 34
4.2 Zyng memory resources [12]] 34
4.3 Estimated time spent updating R(xg). | 37
[A-4Maximum memory accessing requirement by the Gauss-Jordan elimination. | 37

4.5 BRAM addressing scheme for storage of matrices utilized by ACAD. One |

[column of the matrix is stored per 36kbit BRAM]. 38
4.6 BRAM hierarchy, showing two 18kbit BRAM blocks contained within one |
[36Kbit BRAMDbBlock. 1 39
[£:8 Architecture of the Shiftregister block. | 41
[£79 Data output of the Shiftregister block. | 42
14.10 Data flow within the ACAD correlation module. | 43
[4.11 An example of the data handling done by ACAD correlation. For this |
[example P_0ands =4. | o i e 44
14.13 The operations computed by the Elimination core, utilized by both the |
L Forward elimination and the Backward elimination block. | 43
4.14 Elimination core part one| L. 49
14.15 Elimination core part two.| Lo oL 50
14.16 FSM controlling ACAD inverse shown in Figureld.121 |. 51
14.17 EFSM controlling Forward elimination. | 53
4.18 T'he check done 1n state Check diagonal element 1s zero.| 53
4.19 Operations done in Swap rows. [. 54
420 Even j write in the Backward elimination state. | 54
4.21 Odd j write in the forward elimination state. |. 55
4.22 FSM controlling Backward elimination. | 56
4.23 Even j write in backward elimination. | 57
4.24 Odd j write in backward elimination. | 57
425 Odd 1 start. | 58
4.26 Even 1 start. |. oL 58
4.27 FSM controlling Last division. | 59
14.28 Showing pipeline operations in the Store correlation matrix and For- |
| ward elimination states. | oo 0oL 60
14.29 Showing pipeline operations in the Forward elimination and Last division |
[states. 1 60
4.30 Showing pipeline operations i the Qutput wnverse matrix state. | . . . 61
4.31 Estimated execution time for computation of R (x1) for an image of size |
[T088X57T6 i secondS. |+« v v v v v e e e e e 63
|4.32 Dataflow of block Last division using the division operator "/" for divi- |
L SIONL | . v e e e e e e e s 64
14.33 Architecture of block Last division, approximating division with an adap- |
[tive number of shifts. |o oo 65
14.34 Architecture of block Last division, computing division using the LUT |
| approach. |. Lo 67

[5.1 Shiftregister synthesis results. | v v v i i i 70

LIST OF FIGURES XV

5.2 Architecture of the implemented version of ACAD correlation, without |

[normalization. | o oo 71
9.3 Number of synthesized BRAM36E1 and DSP48E1 as a function of P bands |
[for the ACAD correlation block. | 72

5.4 Number of synthesized Slice Registers and Slice LU'ls as a function of |

| P bands for the ACAD correlation block. |. 72
|§.5 The numbers of synthesized Slice Registers and Slice LUTS as a function |

s} ands for the correlation block for Pixe ata with =10. | 73

|5.6 Number of BRAMs synthesized for the Inverse block. | 74
. umbers o synthesized for the Inverse block. | 74
. umbers o s synthesized for the Inverse block. | 75
5.9 Numbers of registers synthesized for the Inverse block.. | 75
. 1mulation o iftregister for ands = 12. | 78

IB.1 "T'wo process method.| 124

xvi LIST OF FIGURES

List of Tables

13.1 Properties of StmAviris0l. Row and column locations are location of the

| center pixel in the kernel of size K' X K.|. 22
B2 _TRX results on Osueh scened v v o v v v v e e e 25
3.3 LRX detection results on SIM30 30AVIRIS scene|. 25
3.4 LRX results on SimAwvirisOl scenelo 26
3.0 ALRX results on STM30 S0AVIRIS scene| 26
3.6 ALRX results on StmAwviresQl scenel 27
3.7 ACAD results on SIM AVIRIS 30 30scene| 27
3.8 ACAD results on SimAwverysOl scenedo 28
13.9 Summary of comparison of anomaly detectors| 30
4.1 States of the mverse ESMJo o 51
4.2 States of the forward elimination FOMI 52
4.3 States of the backward elimmation FOMJ. 55
4.4 States of the last division ESMJ oo o000 59
-1 Timing results for ACAD correlation Pizel data_width = 16. 76
5.2 1ming results for correlation Pizel data width =10 76
[5.3~ Synthesis results for Zedboard for Last division using the division oper- |

ator "/ e 7

xvii

xviii LIST OF TABLES

List of Abbreviations

e ACAD - Adaptive Causal anomaly detection
e AD - Anomaly detector

e ALRX - Adaptive Local RX

e AVIRIS - Airborne Visible Infrared Imaging Spectrometer
¢ BRAM - Block RAM

e CLB - Configurable Logic Block

e CORDIC - COrdinate Rotation DIgital Computer
e DMA - Direct Memory Access

e DSP - Digital Signal Processor

o FPGA - Field-Programmable Gate Array

e F'SM - Finite State Machine

e GRX - Global RX

e HAB - Harmful algae bloom

e HSI - Hyperspectral imaging

e [P - Intellectual Property

e LRX - Local RX

e LUT - Look-up-table

e MSB - Most Significant Bit

e PCA - Principal Component Analysis

e RAM - Random Access Memory

e RX - Reed-Xiaoli

e SIPO - Serial-in Parallel-Out

e SNR - Signal-to-noise ratio

e SoC - System-on-Chip

e TDP - True dual port

e WNS - Worst Negative Slack

o WSN - Wireless sensor node

Also, it is worth mentioning that Zedboard Zynq Evaluation and Development kit will
be referred to as Zedboard.

Chapter 1

Introduction

1.1 Motivation

This master thesis is part of the NTNU SmallSat [5] project. One of the projects mission
objectives is to use hyperspectral imaging to observe and collect ocean color data, and to
detect and characterize spatial extent of algal blooms. A small satellite will be launched
in 2020 to be able to meet these objectives. The payload of the satellite will be a 1/3 U
push-broom type hyperspectral imager, dedicated to take images of a 30 x 50km? area.
In regular Red Green Blue (RGB) imaging each of the image pixels is made up of three
frequency components that represent the intensities in red, green and blue frequencies re-
spectively. Such a component is referred to as a band. In hyperspectral imaging (HSI), a
pixel will typically consist of hundreds to thousands of bands, providing more information
than regular images. This information can be used for a lot of different purposes. It can
for example be used to detect different materials in an area, by using spectral signatures
of materials as identifiers. Figure [I.I]shows the functional concept of HSL

\
Spaceborne
hyperspectral sensor

Swath width of
imaging sensor
Earth §
surface Soil
.] mVl

Wavelength

Water

B § Wavelength
B
2 é | Each pixel
(2] a sampled spectrum Vegetation
that is used to identify
the materials present in
/ the pixel by their %
reflectance e
Spectral images Wavelength

taken simultaneously

Figure 1.1: Functional concept of HSI [IJ.

2 CHAPTER 1. INTRODUCTION

NTNU SmallSat aims to use this information to detect algae blooms, phytoplankton,
oil spills, microplastic and possibly other irregularities or anomalies in the ocean. An
anomaly in the context of HSI is a spectral pixel vector that has significant spectral dif-
ferences from its surrounding background pixels [I3]. Detection of harmful algae blooms
(HABSs) is particularly interesting for the salmon farms located along the coast of Norway,
as such blooms can be toxic, even deadly, for the salmon. Algae were most likely the cause
of death for 38 000 salmons in southern Troms in September of 2017 [2]. An image of
such a bloom can be seen in Figure[[.:2} Increasing ocean temperatures as a consequence
of global warming may lead to more frequent and intense HABs [14].

Figure 1.2: Image of an algae bloom along the coast of Troms in Norway [2].

Algae will have a spectral signature that are different to the background, which will
be ocean water or land. Algae may therefore be considered anomalies.

Anomaly detection may help combat and monitor the challenges faced globally as
a consequence of global warming and human pollution. One of these challenges is the
vast amount of micro-plastic (plastic particles smaller than 5mm) in the world’s oceans.
Anomaly detection may be used to detect spots of ocean water having higher density of
micro-plastic than the surrounding ocean water, if such spots exist.

1.1. MOTIVATION 3

1.1.1 Main contributions
The main contributions in this thesis are:

e Making a fork of the MATLAB Hyperspectral toolbox. This is used to test high-
level models of the considered anomaly detectors (ADs).

e Making models in MATLAB of the Local Reed-Xiaoli (LRX), the Adaptive Causal
anomaly detector (ACAD) and the Adaptive Local Reed-Xiaoli (ALRX).

e Developing synthetic images for testing of ADs in MATLAB.
e Testing of ADs on real hyperspectral image data from the Cuprite mining scene.
e Doing an objective review of the considered ADs.

e Proposing hardware implementation of the chosen anomaly detection algorithm,
the ACAD algorithm.

e Synthesis and simulation of the ACAD hardware implementation.

1.1.2 Problem statement

The assignment text states that optimization of the Reed-Xiaoli (RX) algorithm should
be done. It also states that covariance computation is one of the tasks. As is described
in Section [3] the RX algorithm is less suited for implementation in hardware than the
ACAD algorithm. As such, this thesis describes an implementation of ACAD instead of
RX. ACAD utilizes correlation computing instead of covariance computation. Therefore,
this thesis describes implementation of correlation computation.

1.1.3 Master thesis overview

The following chapters in this report describe the implementation of an AD on a Xilinx
Kintex-7 FPGA. The AD is made for the SmallSat project [5].

Background theory is presented in Chapter[2] Algorithms considered used for anomaly
detection are described in this chapter. This include the RX algorithm, the LRX algo-
rithm, the ACAD algorithm and a proposed AD algorithm by the author, called the ALRX
algorithm. Inverse matrix computation is a part of all the considered ADs. Therefore,
Chapter [2] also contains theory about inverse computation.

Chapter [3] contains a review of the considered ADs presented in chapter 2] The main
object of this review is to provide means to decide which of the considered ADs is most
suited for hardware implementation. In this section, tests of the different ADs have been
done in MATLAB on synthetic images and on real image data from the Cuprite scene.

In Chapter [4] the proposed hardware implementation of the ACAD algorithm is de-
scribed. The architecture is presented, along with different design considerations. The
architecture is divided into five parts; FSM ACAD, Shiftregister, ACAD inverse,
ACAD correlation and dACAD. The FSM ACAD acts as the control logic of the
anomaly detector. Shiftregister handles input data from the Cube DMA used by the
SmallSat project. Inverse computation is done in ACAD inverse. In ACAD corre-
lation, the correlation matrix computation is done. The dACAD computes the final
result of the anomaly detection, and decides if a pixel is anomalous. Implementation of

4 CHAPTER 1. INTRODUCTION

these blocks are described in this chapter.

Results are presented in Chapter [5] This section contain synthesis results and simu-
lation results.

Chapter [g]is the Discussion section. The results presented in Chapter [5] are discussed,
including timing and synthesis results.

Chapter [7] is the Conclusion section. The most important results are presented here.
At last, the concluding remarks and recommendations for future work and optimization
are given.

In appendix [A] the most important MATLAB code used in this thesis is found. Ap-
pendix [B] contain a short description of the VHDL source code, which can be found in

Chapter 2

Background theory

2.1 Hyperspectral imaging

Hyperspectral imaging collects information from the electromagnetic spectrum. This
information can be utilized for a wide range of application, including anomaly detection.

2.1.1 AVIRIS

The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral imager
launched by NASA. Its main objective is to "identify, measure and monitor constituents of
the Earth’s surface and atmosphere" [I5]. AVIRIS has a spatial resolution of 224 spectral
bands. In MATLAB-processing 163 of these bands are used.

2.1.1.1 Cuprite scene

Data from the Cuprite mining district |3] captured by the AVIRIS imager is often used as
a benchmark scene for different image processing algorithms, including anomaly detection
algorithms. Scene 02 from the Cuprite mining can be seen in Figure [2.I] Twelve different
minerals with their respective spectral signature are extracted from the scene [4]. The
spectral signatures of the different minerals can be seen in Figure[2:2]

Band 220

Figure 2.1: Band 220 from the Cuprite scene 02 [3].

CHAPTER 2. BACKGROUND THEORY

#1 Alunite #2 Andradite #3 Buddingtenite #4 Dumortierite
1 1 1 L |
i WA 08 e i -\ 08 08 - "-ll —~
/ \ S I s y s
/ - A 08|/ 08 % el 06
v / 7 /
\ o4} | 04 A% 04t \/
02 02}’ 02
(5 1 18 2z 25 [1 15 2 25 "8 1 (3 z 25 05 1 18 2 25
¥3 lKecline, 96 Knlnhe, #7 Muscovite #8 Montmorllionite
1 1 1 1
08 08 08
= —f — —_
. o M/ B | \r V")
\f e f 1 06 .
2 R TAY / RN ; ' / a
w4 Y 04t/ . b 04}/ st |
N f
0z’ 02 02/
55 1 15 z z e 1 15 2 25 s 1 15 z 25 o 1 15 2 25
#9 Nentronite #10 Pyrope #11 Sphene #12 Chalcedony
1 1 1 1
08 - 08 08
0§ o o s 08 3 Ny
- \/
o~ o~ / o \/
faV Vv |/ \-;. 04 04 _; Dpempees ot 04
s Il‘" \ Vi . .~
/ 02| / 02 02
F / o
i 0 0 0
[5 1 18 2 i [1 5 2 25 (5 1 [z 2 [1 15 2 25

Figure 2.2: Spectral signatures of minerals

2.1.2 NTNU SmallSat project

The hyperspectral imager used in the NTNU SmallSat project has Nganps = 100 usable
bands. For a generic image cube the number of spectral bands is referred to as P__bands.
NTNU SmallSat’s imager has a sensor resolution of 2048 x 1088 pixels. The number of
effective pixels per row of the image, Npizeis, is 578, and the number of pixel rows, Nyows,
is 1088. A hyperspectral image cube of size Npigeis X Nrows X P_bands can be seen in
Figure[2.4} Each of the elements in the cube has a width of Pizel _data_width. A generic
spectral pixel vector can be seen in Figure [2:3] Figure 25] displays the functionality of
the hyperspectral imager. The imager captures data one pixel at the time, in a row-wise

from the Cuprite mining district [4].

fashion [5].
A
bit r g
Pixel_data 2*Pixel_data (P_bands-1)" P_bands*Pixel_
0 _width-1 _width-1 Pixel_data_width-1 ~ data_width-1
mmmmegemesaa S
1 1
0 1 ! ' P_bands|P_bands
! ! 2 |
e [,
—— >
»

One spectral
band

Pixel element number

Figure 2.3: A spectral pixel vector.

2.2. NTNU SMALLSAT’S HARDWARE PLATFORM

N rows

A 4

pixels

Figure 2.4: Hyperspectral image cube.

h = 500km

30 km

Az=2m
<
Ax = 250m

s
Ay =51.875m

Figure 2.5: Push-broom hyperspectral imager mode of operation [5].

8 CHAPTER 2. BACKGROUND THEORY

2.2 NTNU SmallSat’s hardware platform

The NTNU SmallSat’s on-board processing system is a Zyng-7000 series System-on-Chip
(SoC). The SoC can be divided into two parts: the processing system and the pro-
grammable logic. This is illustrated in Figure 2:6] The processing system consists of
a dual core ARM Cortex A9, while the programmable logic main processing unit is a
Artix-7 or Kintex-7 Series FPGA, depending upon the version of the Zyng-7000 series.

Processing System

Flash Controller NOR, NAND, Multiport DRAM Controller
SRAM, Quad SP1 DDR3, DDR3L, DOR2

AMBA® Interconnect AMBA® Interconnect

MPCore

NEON™ SIMD and FPU NEON™ SIMD and FPU

ARM® Cortex™ - A9 ARM® Cortex™ - A9
Snoop Control Unit
28010 512KB L2 Cache 258KB On-Chip Memory
with DMA
m JTAG and Trace | Configuration m

2xUSB
with DMA

Processor 1/0 Mux

2xGigE
with DEMA AMBA® Interconnect ANBA® Interconnect

HH— e

General-Purpose ACP High-Performance
AXI Ports AXI Ports

e Programmable Logic —
Thermal Sensor (System Gates, DSP, RAM) 1-8 Lanes

Multi-Standard 1/0s (3.3V & High Speed 1.8V) Serial Transceivers

Figure 2.6: Zyng-7000 architecture [6].

In NTNU SmallSat Project, an initial prototype will be developed on a Zynq Zedboard
Evaluation and Development kit (from now on referred to as Zedboard), featuring a Zynq-
77020, which contains an Artix-7 device. Later stage prototypes will feature Zynqg-Z7030
or Z-7035. These contain Kintex-7 devices.

The anomaly detection results will be transmitted from the satellite to a ground base
station. The data budget for packet transmissions is as given on page 23 in [5].

2.2.1 AXI-Stream

AXI-Stream is a slimmed-down protocol for transfers, without any concept of addresses,
where data is moved from one point to another. It is based on the read and write channels
in the AXI protocol. As for AXI buses, handshaking signals (TREADY and TVALID)

are used when transferring data.

2.3. ANOMALY DETECTION 9

The Cube Direct Memory Access (DMA) [I6] used by NTNU SmallSat utilizes AXI-
Stream as the communication protocol between Intellectual Properties (IP). The operating
frequency of the AXI-Stream protocol in the NTNU SmallSat project is 100 MHz. The
Cube DMA will be interfaced by the anomaly detector.

2.3 Anomaly detection

The process of detecting anomalies in a hyperspectral image is called anomaly detection.
For a spectral vector to be considered as an anomaly, it has to be significantly different
to its neighboring background. Four issues arising in anomaly detection are [7]:

e QI: How large should a target be to be considered as an anomaly?
e Q2: How does an anomaly respond to its neighbouring pixels?
e Q3: How sensitive is anomaly detection to noise?

e Q4: How are different anomalies to be detected and classified?

The above issues are important for the choice of anomaly detection algorithm, and
will be further discussed in this chapter.
Algorithms used for anomaly detection output a scalar for each pixel in an image indicating
the relative probability that the spectral pixel vector is an anomaly. A higher output
indicates a higher probability that the pixel vector is an anomaly.

2.3.1 Reed-Xiaoli algorithm

The Reed-Xiaoli (RX) algorithm [17] is one of the most widely used algorithms for anomaly
detection in HSI, and it is considered as the benchmark anomaly detection algorithm for
hyperspectral data [13].

The RX algorithm was developed to address the scenario where no prior knowledge about
the target signatures is available. Assuming that a single pixel target, x, is the observation
test vector, the result of the RX algorithm is given by the filter in equation 2.1}

RX(x) = (x —up) 27 (x — wp), (2.1)

where u, is the estimated background clutter sample mean, computed from the set of all
pixel vectors in the image (referred to as the global set). ¥ is the estimated background
clutter covariance, estimated on the global set. Since the covariance is computed on the
global set of pixels, the HSI needs to collect all data contained in the entire image before
the RX AD can start executing. This means that the RX-algorithm does not have the
possibility to operate in real-time.

2.3.2 Local RX algorithm

An often used and important variant of the RX algorithm is the local RX (LRX) [9]
algorithm. By substituting the sample covariance matrix computed on the global set with
the correlation matrix computed on a kernel of size K x K pixel vectors, it is possible to
increase the parallelism of the AD and get near real-time performance. The LRX can be
considered as a local AD because each pixel of the image has its own correlation matrix.

10 CHAPTER 2. BACKGROUND THEORY

Each correlation matrix is computed on a square kernel of size K x K. The result of the
LRX AD can be expressed as follows:

SR (%) = x" Righ (0%, (22)
where x is the observation test pixel vector, R xkxx (x) is the correlation matrix of pixel

vector x computed on a square kernel of size K x K containing local neighbouring pixels.
See Figure 2.7

— k—>

xij l
%F—J
Ricxk (Xij)

Figure 2.7: Visualization of a kernel of size K x K used in LRX.

2.3.3 Adaptive Causal anomaly detection

An AD developed to solve the issues of the RX AD is the Adaptive Causal anomaly de-
tection (ACAD) [7]. One issue of the RX algorithm is that previously detected anomalies
with strong spectral signatures may have an impact upon the detection of later anoma-
lies, as they might influence what is considered the background, which is shown in [7].
ACAD is adaptive in the way that it builds a map of detected anomalies and removes the
previously detected anomaly pixel vectors from the causal sample correlation set.

Another benefit of ACAD relative to RX and LRX is that it might be computed in real-
time. This is achieved by using the causal correlation matrix R(xx), presented in equation

2.3t

k
R(xx) = 7 > XiX; , (2.3)
i=1

instead of the covariance or the correlation matrix computed on the global or a local set
of pixel vectors, as in RX and LRX, respectively. In equation [2.3] xj is the observation
test pixel vector, and k is the index of the pixel vector currently being processed. The
summation in equation [2:3] sums the correlation matrix for the pixel sample vectors x1,
WXk

e

To remove the previously detected anomalous pixel vectors from the correlation set,
the sample spectral correlation matrix, referred to as the causal anomaly-removed sample

2.3. ANOMALY DETECTION 11

spectral correlation matrix, is presented in equation [7:

R(xx) =R(xx) = »_ tjt], (2.4)
t;€A(K)

where A(k) is the set of all earlier detected anomalous pixel vectors t; prior to the
image pixel currently being processed, X.
ACAD can then be defined as follows:

5P (%) = xi R (xk) Xk (2.5)

ACAD is a causal filter, meaning that only the pixels previously processed and the
current pixel are used for anomaly detection. ACAD computes the causal correlation
matrix for the previously captured pixel sample vectors X1,Xx—1 up to the pixel cur-
rently being processed, xx, as shown in equation [2:3] This means that ACAD might be
implemented in real-time or near real-time, as pixels can be processed as soon as they are
captured by the push-broom HSI. ACAD does not need to wait for the entire image to
be loaded into memory.

Processing of pixels in ACAD can be visualized in Figure 2.8}

Npixels)

X1 X2 X3 X4 X5 Xg X7 Xg

Nrows X9 = Xq0 = X1

Figure 2.8: Visualizing processing of pixels in ACAD.

x12 is the pixel currently being processed. The previously captured pixel sample vec-
tors are marked by solid grey lines. Pixels that have not been captured and processed are
marked by dashed grey lines.

An anomalous pixel vector has a significant spectral vector difference from its sur-
roundings. Since ACAD is causal, the surroundings are defined as the nacap previously
processed pixels. ACAD defines the variable wug, used to evaluate if a pixel vector is
anomalous, as shown in equation 2.6

NACAD
1

up = > 5P (). (2.6)

i—1

NACAD

12 CHAPTER 2. BACKGROUND THEORY

In order to classify if a pixel vector is anomalous the variable tj is introduced, defined
in equation 2.7}

tr = 5ACAD(Xk) — Uk. (2.7)

If ti is greater than a predetermined value 7, the pixel vector is considered to be an
anomaly and added to the set of anomalous targets. If not, it is used in subsequent data
processing. The anomaly map created by ACAD is shown in equation [2.8

1,if ty > 7

mapacap(te) = {0 otherwise >

The four issues labelled Q1, Q2, Q3 and Q4 still remain. For a pixel vector to be
considered anomalous it has to be relatively small compared to the size of the image. The
relationship between the size of an anomaly and the size of the entire image is 3, shown

in equation [2:9}

Image size
B = I (2.9)

size_of anomaly’

Empirical results show that 8 will be &~ 100 [7]. The relationship between 8 and
nacap is shown in equation [2.10]

N PIXELS TOT
NACAD = —= 3 = , (2.10)

where N PIXFELS TOT is the total number of pixels in the image. In RX and
LRX, an earlier detected anomaly with a strong spectral signature may influence the
detection of subsequent anomalies, as the anomalies are used for calculation of the corre-
lation or covariance matrix. This is shown in Figure 12 in [7], where an anomaly with a
strong spectral signature influences the RX detector to such a degree that it fails to detect
four subsequent anomalous pixels. This problem is solved in ACAD by removing previ-
ously detected anomalous pixels from the sample spectral correlation matrix, as shown in

equation [2:4]

In [7], noise-immunity tests have been done on different ADs, including RX and ACAD.
These tests add Gaussian noise with a Signal-to-noise ratio (SNR) of 20:1, 10:1 and 5:1
to a test image. One of the conclusions is that noise has less effects on ACAD compared
to the RX detector as shown in Figure [7].

2.3. ANOMALY DETECTION 13

DWEST ACAD
(c) SNR 5:1

Figure 2.9: Results of noise tests [7].

2.3.4 Adaptive Local RX

A modification of the LRX algorithm is the Adaptive Local RX (ALRX) presented by the
author. To the author’s knowledge, it is not yet described in literature.

ALRX is inspired by the anomaly-map creation and the removal of previously detected
anomaly pixel vectors from the causal sample correlation set as done in the ACAD AD.
Similarly, ALRX builds an anomaly map and removes previously detected anomaly pixel
vectors that are located within the local window from the local sample correlation set.
The result of the ALRX AD is shown in equation [2.11

SR (x) = x" R w i (%) ' (2.11)

Rixi(x) = Rrxi(x) — Z tjtf, (2.12)

t; €EA(kK x K)

14 CHAPTER 2. BACKGROUND THEORY

where A(kxx k) is the set of previously detected anomalous pixel vectors t; located
within the local window of size K x K with center in the image pixel vector currently
being processed, x.

2.4 Inverse matrix

The computation of the inverse of a matrix is a part of all the considered ADs. This
is a computationally intensive task. There exist multiple algorithms for computing the
matrix inverse. One option is to do QR factorization [I8], and compute the inverse of
QR. In hardware (HW), the QR-factorization is most often computed using Givens rota-
tion enabled by a trigonometric algorithm called COrdinate Rotation DIgital Computer
(CORDIC) [19)].

Another option is to implement the inverse matrix computation by doing Gauss-
Jordan elimination [§]. The Gauss-Jordan elimination is highly parallelizable [§] and less
complex than the QR-factorization enabled by CORDIC. A pseudo-code for computing
the Gauss-Jordan elimination is shown in Figure[2.10} The Gauss-Jordan elimination can
be tiled into three parts: forward elimination, backward elimination and last division,
marked by black, red and green squares in Figure respectively.

2.4. INVERSE MATRIX 15

row = [0,..., n — 1] // n denotes the size of the square matr
A
Al =1

/fForward Elimination to build an upper triangular matrix
for(i =0:i<mii++){
(A [row[i]][i] == 0){
for(j =i+ 1;j <mj++){
itcAfrow]! — 0){
row [i] = row|j];
row[j] = row[i]; // This operation is done in parallel wi
the previous one
break:
Jend if
}end for
Jend if
if{A[row [i]][i] == 0) error "Matrix is singular™;
for(j =i+ L:j <mij++){
Alrow[j]] = Afrow[j]] — Alrow[i]] * (Alrow][3]][i]/
Alrow[i]][d]);
A~ Yrow(j]|= A~ row[j]] - A~ [row(d]) = (Alrow[j]][i]
Alrowl[i]][z]); # This operation is done in parallel with tl
previous one

Jend for
end for
ffBackward Elimination to build a diagonal matrix
for(i =n—1;i>0;i — =)
for(j=i—Lj>=0:j——){

Allrow[j]] = Al[row[j]] — [A[[row[i]] = (A[[row[5]][i]/
Af[row]i]][i]);
A [row[j]| =A™ [row[j]] — A [[row[i]] = (A[[row][;]]
[i]/A[[row[i]|[]): /f This operation is done in parallel wi
the previous one

Jend for

end for

ffLast division to build an identity matrix
for(i =0:i<mii++){

A~ [row(i]] = A7 [rowl[i]] = (1/Alrowli]][i]);
Liendfor

Figure 2.10: Pseudo-code for computing the inverse of a matrix by Gauss-Jordan elim-
ination [§].

2.4.1 Gauss-Jordan elimination

There are three different types of row operations performed on the rows of a matrix in
Gauss-Jordan elimination:

1. Swap the positions of two rows.
2. Multiply a row by a nonzero scalar.

3. Adding a scalar multiple of one row to another.

2.4.1.1 Forward elimination

The first part of the Gauss-Jordan elimination reduces the matrix to row echelon form
(upper triangular matrix) by using row operations, starting at the topper-most row of the
matrix, which is denoted as index zero, and iterating downwards. Two indexes are used,
the outer index ¢ and the inner index j. This is shown in Figure[2.11] Forward elimination
may use all of the different row operations listed, depending upon the existence of a zero
element in the diagonal of the matrix.

16 CHAPTER 2. BACKGROUND THEORY

//Forward Elimination to build an upper triangular matrix
for(i = 0,4 < mn;yi++){
if(A[row[i]][i] == 0){
for(j =i+ 1;j < n;j+ +){
(A row j])[j]! = 0){
row [i] = row[j];
row[j] =row[i]; // This operation is done in parallel with
the previous one
break;
}end if
}end for
}end if
if(A[row [i]][i] == 0) error "Matrix is singular™;
for(j =i+ 1;j <n;j+ +){
Alrow[j]] = Arow[j]] — Afrow[i] (Afrow(;]][i]/
Alrowl[i]][i]);
A~ row[j]] = A~ [row[j]] = A~ [row(i]] (A[row(j]] i]
Alrowl[i]][¢]); // This operation is done in parallel with the
previous one
}end for
}end for

Figure 2.11: Pseudo-code for computing the forward elimination in Gauss-Jordan elim-
ination [8].

2.4.1.2 Backward elimination

Backward elimination utilizes row operation two and three mentioned in the list on the
previous page, in order to create a diagonal matrix. It starts at the bottom of the matrix,
denoted index P_bands — 1 and iterates upwards. Two indexes are used, the outer index
i and the inner index j. This is shown in Figure 2:12}

//Backward Elimination to build a diagonal matrix
for(i =n—1;i>0;i——){
for(j =i — 13§ >=0; j — —){
Affrowlj]) = Allrow[j]] — [Alfrow(i]] * (Allrow[sl][i)/
Alfrowi][i);
A~ [rowlj]] = A~ [[row|j]] — A~ {[row[d]]* (A[[row[4]]
[i]/A[[row[i]][i]); // This operation is done in parallel with
the previous one
}end for
tend for

Figure 2.12: Pseudo-code for computing the backward elimination in Gauss-Jordan
elimination [g].

2.4. INVERSE MATRIX 17

2.4.1.3 Last division

Last division is the last step of the Gauss-Jordan elimination. The last division starts at
the topper-most index of the matrix and iterates downwards as shown in Figure It
creates the matrix A~! by utilizing the second type of row operations. A~ is the inverse
matrix of A which fulfills the property A x A=Y = I. T is the identity matrix of size
P_bands x P_bands containing zero elements, except for the diagonal of the matrix,
which contains ones.

//Last division to build an identity matrix
for(i = 0;i < n;i+ +){

A~ rowli]] = A7t [rowl[i]] * (I/A[row[4]][i]);
\}end for

Figure 2.13: Pseudo-code for computing the last division in Gauss-Jordan elimination

IS

18

CHAPTER 2. BACKGROUND THEORY

Chapter 3

Review of state of the art
anomaly detectors

To evaluate the performance of the ADs considered in this thesis, models of the algorithms
described in Section were developed in MATLAB, and tested on both hyperspectral
image data from the Cuprite site [3] captured by the AVIRIS imager and synthetic images
created by the author. The creation of the synthetic images is described in Section

The MATLAB hyperspectral toolbox |20] was used for image preprocessing, visual-
ization and for having a good starting point for developing further functionality. The
toolbox included an implementation of the RX algorithm. A fork of the toolbox was
made, available at |21], to be able to do MATLAB implementations of LRX, ALRX and
ACAD in order to evaluate the performance of the ADs. The most important scripts and
functions from the forked toolbox are also located in Appendix [A]

3.1 Experiments on synthetic images

To make an objective analysis of the considered ADs performance, synthetic hyperspec-
tral images were created. These images contain inserted pixels flagged as anomalies, with
known spectral signature and position, to be able to create a reference anomaly map. The
anomalies are of various sizes, to test the ADs ability to detect variably sized anomalies.
A similar test is also done in [9]. Figure [9] shows that the RX (referred to as Global
RX (GRX) [9]) algorithm was not able to detect anomalies in the third and four column
(anomalous pixels made up of > 50% abundance of the anomaly signature). The LRX
exhibits slightly better anomaly detection accuracy in this test.

19

20CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

(a) 65X (SNR=10:1) (by 847X (SNR=10:1)
(a) 877X (SNR=30:1) (b) 677X (SNR=30:1)
(a) 897X (SNR=50:1) (b} 657X (SNR=50:1)

Figure 3.1: Test of RX (GRX) and LRX algorithms [9].

The purpose of the synthetic images used in this thesis was to provide means for doing
objective evaluations of the performance of the considered ADs. Two different metrics
are important in order to evaluate the performance of the ADs: false anomalies and
correctly _predicted _anomalies. These metrics are defined in equation and

false _anomalies = predicted _anomalies — true__anomalies, (3.1)

in which predicted _anomalies is the number of predicted anomalies by the anomaly
detector and true anomalies are actual anomalies found by the anomaly detector.

predicted _anomalies _in_reference _map

correctly predicted _anomalies = -
- - reference _anomalies

(3.2)

Parameter predicted _anomalies _in_reference _map is the number of predicted anoma-
lies that are also found in the reference anomaly map. Parameter reference anomalies
is the number of anomalies in the reference anomaly map. These metrics are important
as they provide an objective way to evaluate the performance of the ADs, something
that can not be done with real hyperspectral image data, unless one possesses a reference
anomaly map to the real image data, which the author has not been able to find.
Synthetic images with different sizes and anomaly sizes were created to evaluate the
performance of the ADs. Tests were performed to get an objective evaluation of the

3.1. EXPERIMENTS ON SYNTHETIC IMAGES 21

considered ADs. To be able to compare to the test done on images with a size of 200 x
200 as described in chapter 5.5.1 in [I0] by Hsueh, this test were mimicked. The synthetic
image used in this mimicked test can be seen in Figure (3.2

Band 160 of Hsueh-mimicked image

20 40 60 80 100 120 140 160 180 200

Figure 3.2: First class of synthetic images: 200 x 200 synthetic image with 25 inserted
anomaly panels as describe by Hsueh in [10].

Additionally, synthetic images with a size of 30 x 30 pixels were created with an
anomalous panel of size 2x2 inserted into the center of the images. This image scene
is labelled Sim30_30AVIRIS. The anomalous pixels are pure pixels with a spectral
signature of Buddingtonite. These synthetic images has a background consisting of 33%
Alunite, 33% Kalonite and 33% Pyrope. Such a generated synthetic image can be seen
in Figure [3.3] displaying spectral band 160.

22CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

30 x 30 synthetic image

Figure 3.3: Second class of synthetic images: Synthetic 30 x 30 image with an inserted
2x2 anomalous panel inserted into the center.

A third class of synthetic images with a size of 100 x 614 pixels was also created,
labelled SimAviris01l. These images have a background consisting of 33% Alunite, 33%
Kalonite and 33% Pyrope. The anomalous pixels are pure pixels with a spectral sig-
nature of Buddingtonite, extracted from the Cuprite mining scene [22]. Six different
sized anomalous target kernels were made, with a size of 1x1, 2x2, 5x5, 10x10, 15x15,
20%20 and 25x25 pixels. Table [3.1] describes the position and size of anomalous areas of
SimAviris0l.

Table 3.1: Properties of SimAviris0l. Row and column locations are location of the
center pixel in the kernel of size K x K.

Scene Row | Column | Anomaly size [pixels x pixels]|
SimAviris01 | 35 50 1x1
SimAviris01 | 70 50 1x1
SimAviris01 | 35 100 2x2
SimAviris01 | 70 100 2x2
SimAviris01 | 35 150 5x5
SimAviris01 | 70 150 5x5
SimAviris01 | 35 250 10x10
SimAviris01 | 70 250 10x10
SimAviris01 | 35 350 15x15
SimAviris01 | 70 350 15x15
SimAviris01 | 35 450 20x20
SimAviris01 | 70 450 20x20
SimAviris01 | 35 550 25x25
SimAvirisO1 | 70 550 25x25

3.1. EXPERIMENTS ON SYNTHETIC IMAGES 23

Expected anomaly map

Figure 3.4: Expected anomaly map for the third class of synthetic images created.

Since the RX and LRX AD do not build an anomaly map, the author defines anoma-
lous pixels as pixels having a score of > 75% of the maximum value outputted from the
RX AD or the LRX AD. This is done in order to be able to set the objective metrics
false _anomalies and correctly predicted _anomalies.

3.1.1 RX detection results

3.1.1.1 Hsueh-mimicked image

RX AD.
50
2
2
450
0
“
a0
© 60
0 g
i 1w 100
120
20 120
10
140
20
180
160
15
180
180
20 o
2 “) & 100 120 150 160 180 20

200

RX anomaly map

2 40 60 80 100 120 140 160 180 200

Figure 3.5: RX AD result.

Figure 3.6: Generated anomaly map.

Figure 3.7: RX AD test on synthetic image based on Hsueh’s description. The
map in Figure @ was created to provide a way of computing false anomalies and
correctly predicted anomalies.

For this test, false anomalies = 0, and correctly predicted _anomalies = 0.3714. A
score of 0.3714 for correctly predicted _anomalies is reasonable when comparing to the
tests done in [9], where no anomalies were detected in the fourth and fifth column, shown
in Figure As can be seen in the RX detector is not able to detect the smallest
anomalous targets, which leads to the poor score.

0.8

0.6

0.4

0.2

24CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

3.1.1.2 Sim30_30AVIRIS scene

RX AD results

5 10 15 20 25 30

Figure 3.8: RX AD results for the Sim30_ 30AVIRIS scene.

The RX detector performs well for the Sim30 AV IRIS scene, which can be seen in
Figure Parameter false anomalies = 0 and correctly _predicted _anomalies = 1
for this test.

3.1.1.3 Sim__ Aviris0Ol scene

RX AD results

Figure 3.9: RX AD results for the Sim__Aviris0l scene.

The RX detector performs well for the Sim_AvirisOl scene. RX AD results, shown
in Figure [3.9] are quite similar to the expected anomaly map, shown in Figure
false _anomalies = 0 and correctly predicted _anomalies = 1 for this test.

3.1. EXPERIMENTS ON SYNTHETIC IMAGES 25

3.1.2 LRX detection results
LRX was tested for different kernel sizes K=[5, 10, 15, 20, 23, 25 and 30]. These values

were chosen as [9] tested LRX and optimized the value K empirically, in the range of K
=[3,30].

3.1.2.1 Hsueh mimicked image

K | false _anomalies | correctly predicted anomalies
5 | 967 0.0429
10 | 62 0.1143
15 | 58 0.1714
20 | 50 0.2857
23 | 46 0.4782
25 | 34 0.5143
30 | 38 0.4571

Table 3.2: LRX results on Hsueh scene.

The LRX yields better results for correctly _predicted _anomalies on the Hsueh test than
the RX AD with a top score of 0.5143 for kernel size K =25. It does however have a
higher number of false anomalies, with the best score of 34.

3.1.2.2 Sim30_30AVIRIS scene

K | false _anomalies | correctly predicted anomalies
5 | 12 0.33

10 | 0 1

1510 1

200 1

2310 1

2510 1

30 |0 1

Table 3.3: LRX detection results on STM30 30AVIRIS scene.

LRX performs well for the Sim30 30AVIRIS scene, and yields perfect results for K>=
10, as shown in Table [3.3]

26CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

3.1.2.3 SimAvirisOl

K | false _anomalies | correctly predicted anomalies
5 | 703 0.3562
10 | 2584 0.5106
15 | 2247 0.5621
20 | 2167 0.5710
23 | 1379 0.6737
25 | 1126 0.7192
30 | 1056 0.7208

Table 3.4: LRX results on SimAviris01 scene.

Table [3.4] shows that the LRX AD struggles more on the SimAviris01 scene. The LRX
produces a significant number of false anomalies, with a score of 1379 and 1126 for ker-
nels sizes K of 23 and 25 respectively. The best score for correctly predicted _anomalies
is 0.7208 for K = 30.

3.1.3 ALRX detection results

The threshold 7 used in the ALRX algorithm was tested in range [0.5, 100]. The values
of 7 yielding best results for K are presented in Table and The results gathered
from the ALRX detection are worse than those for RX, LRX and ACAD. The work done
on improving the algorithm was stopped to be able to prioritize hardware implementation
of an anomaly detector.

3.1.3.1 SIM30_ 30AVIRIS

T K | false _anomalies | correctly predicted anomalies
35|15 |50 0

3.5 | 10 | 46 0

90 | 15| 0 0.5

90 |20 |0 0.5

90 |23 |0 0.5

90 |25 |0 0.5

90 |30 (0 0.5

Table 3.5: ALRX results on SIM30 30AVIRIS scene.

3.1. EXPERIMENTS ON SYNTHETIC IMAGES 27

3.1.3.2 SimAvirisOl

correctly predicted anomalies
0.3447
0.1553
0.1252
0.0888

Table 3.6: ALRX results on SimAviris0l scene.

T K | false anomalies
3.5 |5 | 4760
3.5 | 10 | 2953
3.5 | 15 | 2871
3.5 | 20 | 2985
3.1.4 ACAD

The ACAD algorithm was extensively tested by Hsueh et al [I0]. In this thesis, ACAD
was tested on the SIM AVIRIS 30 30 scene and the SimAviris0l scene, to be able
to do a comparison to the other ADs performances.

3.1.4.1 SIM_AVIRIS 30 30

0.1
0.3
0.5
0.7
0.8
0.9

false _anomalies

SO N = O

correctly predicted _anomalies
0.33

0.4

0.5

0.6667

0.25

0

0

Table 3.7: ACAD results on SIM _AVIRIS 30 30 scene.

Table [3.7] shows that ACAD yields poorer results than both RX and LRX for the
SIM AVIRIS 30 30 scene. The best performance of ACAD is for 7 = 0.7, resulting
in false _anomalies = 2 and correctly _predicted _anomalies = 0.667.

28CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

3.1.4.2 SimAvirisOl

T false _anomalies | correctly predicted anomalies
0.1 | 552 1

0.2 | 491 1

0.3 | 429 1

0.4 | 368 1

0.5 | 306 0.6727
0.6 | 245 0.3457
0.7 | 184 0.1685
0.8 | 122 0.0631
0.9 | 61 0.0420
1 0 0

Table 3.8: ACAD results on SimAvirisOl scene.

Table [3.7 shows that ACAD is able to accomplish a score of 1 for

correctly _predicted _anomalies, but produces a high number of false anomalies. The
best performance of the ACAD for this scene is for 7 =0.4, yielding

correctly predicted _anomalies = 1 and false anomalies = 368, which is better than
the results accomplished by the LRX detector on this scene.

3.2 Testing on real image data

The ADs considered in this thesis were tested on hyperspectral image data from the
Cuprite mining area captured by the AVIRIS hyperspectral camera to evaluate their
performance. Band 220 from Cuprite scene 02 can be seen in Figure[3.10] As no reference
anomaly map for this data has been found, it is not possible to calculate false anomalies
and correctly predicted _anomalies. The real image data provides a subjective method
of evaluating the performance of the ADs.

Band 220

Figure 3.10: Band 220 from the Cuprite scene 02[3].

3.2. TESTING ON REAL IMAGE DATA 29

3.2.1 RX

Figure [3.11] shows the result of the RX AD on the Cuprite scene 02. A higher score
indicates a higher likelihood for the pixel being anomalous.

6000
4000
2000

Figure 3.11: Result from RX AD on Cuprite image data.

3.2.2 LRX

Figure [3.12]shows the result of the LRX AD on the Cuprite scene 02. K = 23 was chosen
due to the results presented in Table and the evaluation done in [9], which concluded
that K =23 yielded the best trade-off between detection accuracy and computational bur-
den.

is: 3 05

Figure 3.12: Result from LRX AD with a kernel size of K=23 on Cuprite image scene
02.

3.2.3 ACAD

The resulting anomaly map from ACAD AD on the Cuprite scene 02 is shown in Figure
7 is set to 250. The anomaly map is overlayed over Figure [3.10]

Band 220

Figure 3.13: Anomaly map created by ACAD (yellow dots) overlayed over Figure

30CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

3.2.4 Choice of anomaly detector algorithm

Table [3.9] summarizes the comparison of the different ADs.

AD false__anomalies correctly _predicted _ Performance | Possibility of

(best performance) anomalies on real data | implementing
(best performance) in real time

RX Hsueh : 0 Hsueh: 0.3714 Figurolﬂl Low. Need global
SIM30 30AVIRIS : 0 Sim30_30AVIRIS : 1 covariance matrix
Sim_ Aviris0l : 0 Sim_ Aviris0l : 1 before computing

inverse.

LRX Hsueh: 50 Hsueh: 0.5143 Figure Medium. Need to
SIM30_30_ AVIRIS:0 | SIM30_30_AVIRIS:1 wait for a window of
SimAviris0l : 1056 SimAviris01 : 0.7208 size K X K to be

captured by the imager
before processing can start.

ALRX | Hsueh: - Hsueh:- - Medium. Need to
SIM30 30 AVIRIS:0 | SIM30_ 30 AVIRIS:0.5 wait for a window of
SimAviris0l1 : 4760 SimAviris01 : 0.3447 size K x K to be

captured by the imager
before processing can start.

ACAD | Hsueh:- Hsueh:- Figurcw High. Pixels can be

SIM30 30 AVIRIS:2
SimAvirisOl : 368

SIM30 30 AVIRIS :0.667
SimAvirisOl : 1

processed as soon
as they are captured
by the imager

Table 3.9: Summary of comparison of anomaly detectors.

Other metrics are also important to consider in order to choose the best AD for im-
plementation in HW. The ACAD and the ALRX algorithms are beneficial with regards
to data transmission requirements as they build a binary anomaly map of size Npizers
X Nrows which may be transmitted, as opposed to the RX and LRX algorithms which
produce output results of size Pizel data width X 2 X Npigels X Npows. If the re-
sult from the AD is to be transmitted via radio to a ground station, this will become
an important consideration as the transmission layer is usually the most power-hungry
layer in wireless sensor nodes (WSN) [I1]. One example of this is shown in Figure[3.14][11]:

216

€1

£

£ 12 —

3_10

E 8

3

g6

[

0 4

e —

3 2

¢ LI | | [
Sensor Processor Send Receive Idle Sleep

Communication

Figure 3.14: Power consumption in a WSN [I1].

3.2. TESTING ON REAL IMAGE DATA 31

In Figure the different states of operation of the WSN and the operation state
power consumption are shown. The two states "Send" and "Receive" consume most and
third-most power respectively. These states are part of the transmission layer in a WSN.
A satellite may also be considered as a WSN as it is wireless and connected via a radio
link to a ground station.

The ACAD algorithm’s causality and the use of correlation matrix makes it easier
to process in real-time compared to the LRX and GRX algorithms. ACAD can immedi-
ately start processing when the first pixel is captured. RX, utilizing the global covariance
matrix, can not start computing the global covariance matrix until the entire image is
captured by the hyperspectral imager. LRX needs an image tile of size K x K to be
captured by the imager before computation of the local correlation matrix can start.

Chan et al. [7] conclude that ACAD has advantages over the RX AD in several ways. It
can be processed in real time. "It detects various anomalies regardless of whether they are
of the same type or distinct types" [7]. The findings in [7] and the above comparison made
by the author lead to the ACAD algorithm being chosen as the AD for implementation
in HW.

32CHAPTER 3. REVIEW OF STATE OF THE ART ANOMALY DETECTORS

Chapter 4

Proposed hardware
implementation

The following chapter describe the proposed implementation of the Adaptive Causal
anomaly detection (ACAD) algorithm on a Zynq Z-7030 or Z-7035 device, used by the
NTNU Smallsat project. The fact that the initial prototype of the ACAD algorithm is
to implemented on the Zedboard and Development kit (referred to as Zedboard) is taken
into account.

4.1 Memory considerations

As the ACAD AD is to be implemented on a Zynq Z-7030 or Z-7035 device, care must be
taken in the design process regarding the logic and memory usage. The hyperspectral pixel
data inputted to the AD might have number of spectral bands, P_bands = Npanbps,
depending upon if preprocessing steps such as Principal Component Analysis (PCA) is
done on the image cube. Pizvel data width is the data width per spectral band of the
input pixel to the AD. This will be up to 16 bit in the SmallSat project. The large size
of P_bands and Pizel data _width make memory usage an important consideration.

4.1.1 Storing and updating matrices in ACAD

The ACAD algorithm requires storage of the following matrices: R(x,), R(xx) and
th eAk) t;t7. Additionally, the matrices A and A~" used in Gauss-Jordan elimina-
tion as shown in Figure must be stored in memory. These matrices have a size of
P_bands x P_bands, with matrix elements of size Pixel data_width x 2.

33

34 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

i\[[row[[{,ij}][]=) Alrow|j|] — Alrowli|| * (Alrow|j]||¢]/
A~ row [}]],= A~ Yrow[j]]— A= rowl[i]] * (Alrow][;]][i]/
Alrowli]|[]); // This operation is done in parallel with the

Figure 4.1: Matrix A and A~! used in Gauss-Jordan elimination.

Storing and updating matrices of size P_bands x P__bands with matrix elements of
size Pizel data_width X 2 require a lot of memory resources. One of the matrices is the
causal correlation matrix R(x,). Update of this matrix needs to be done for each pixel
in the image, and the memory used for this operation is therefore important in order to
make the AD real-time. As R(x,) is the product of x x x”, the resulting data width
will be 2 x Pixel _data_width. For Pixel _data_width = 16, using spectral information
from all Npanps would require P_bands x P_bands x 32 = 100 x 100 x 32 bit =
320kbit of memory storage.

There exist two alternatives for storage of all this information on the Field-Programmable
Gate Array (FPGA) in the Zynq device: storing it in block RAM (BRAM) or in registers.
The initial prototype for the SmallSat project will be developed on the Zedboard. Later
stage prototypes will contain the Zynq Z-7030 or the Zynq Z-7035. The FPGAs contain
the memory resources as shown in Figure[f:2] The Z-7030 and the Z-7035 contain 265 and
500 36kbit BRAM blocks respectively. The number of DSP Slices is 400 for the Z-7030
and 900 for the Z-7035.

Table 1: Zynq-7000 and Zyng-7000S All Programmable SoCs (Cont’d)

Device Name Z7007S | Z-70128 | Z-7014S z-7010 Z-7015 27020 Z-7030 Z-7035 Z-7045 Z-7100
Part Number XC7Z007S | XC72012S | XC7Z014S | XC7Z010 | XC7Z015 | XC72020 | XC7Z030 | XC7Z035 | XC7Z045 | XC7Z100
Xilinx 7 Series " " " " " . . - .
Artix®-7 Artix-7 Artix-7 Artix-7 Artix-7 Artix-7 Kintex®-7 Kintex-7 Kintex-7 Kintex-7
Eg%%‘;:?;ﬂa"'e Logic FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA
Frogrammable Logic 23K 55K 65K 28K 74K 85K 125K 275K 350K 244K
Look-Up Tables (LUTs) | 14,400 34,400 40,600 17,600 46,200 53,200 78,600 171,900 | 218,600 277,400
o | Flip-Flops 28,800 68,800 81,200 35,200 92,400 106,400 157,200 | 343800 | 437,200 554,800
& | Block RAM 1.8 Mb 2.5Mb 3.8 Mb 2.1 Mb 33Mb 4.9Mb 9.3 Mb 17.6Mb | 19.2Mb 26.5 Mb
@ | (# 36 Kb Blocks) (50) (72) (107) (60) (95) (140) (265) (500) (545) (755)
3
2 | DSP Slices
E | (18x25 MACCs) 66 120 170 80 160 220 400 900 900 2,020
g
g | peak DSP 73 131 187 100 200 276 593 1,334 1,334 2,622
& | (Symmatic FIR) GMACs | GMACs | GMACs GMACs GMACs GMACs GMACs | GMACs | GMACs GMACs

Figure 4.2: Zynq memory resources [12].

4.1.1.1 Using registers

The Zynq Z-7030 and the Zynq Z-7035 contain 157,200 and 343, 800 flip flops (registers),
respectively. By using equation [£1}

number of registers
bands — _of_ , 4.1
maz_banas \/2 x Pixel data _width x number _of matrices (1)

4.1. MEMORY CONSIDERATIONS 35

it is possible to do an estimation of the maximum value of P_bands if using registers for
storage of the matrices. Parameter number of registers is the total number of registers
(flip flops) available in the device. number _of matrices is the number of matrices of size
P_bands x P _bands with matrix elements of size Pixzel data_width x 2 that need to be
stored in memory. max_bands is the maximum number of P_bands for the matrices used
in ACAD. As the ACAD algorithm needs to store five matrices, number of matrices
= 5, which yields maz _bands = [31, 46| for the Z-7030 and Z-7035 respectively.

However, using this amount of registers is unrealistic as it leaves no registers free
for other use in the design. As the AD implemented in this thesis is a part of a larger
processing pipeline, it is not acceptable to use all of the available registers. Assuming
that it is acceptable to use 15% of the available registers, the number of spectral bands
that can be used is 12 and 17 for the Zynq Z-7030 and the Zynq Z-7035 respectively.
Dimensional reduction to reduce P_bands from 100 to 12 or 17 can be done through
pre-prossesing of the data by for example PCA. The benefit of using registers to store
matrices is the ability of instantaneous update.

4.1.1.2 Using BRAM

The Z-7030 and the Z-7035 contain 265 and 500 36kbit BRAM - blocks respectively. In
order to store the largest matrix of 320kbit, a minimum of nine BRAM blocks are needed.
Each 36 kbit BRAM block consists of two 18 kbit BRAM blocks. In true dual port
(TDP) mode [23], it is possible to do two writes and two reads per 36kbit BRAM per
clock cycle, with each write and read being maximum 36 bits. BRAMs in TDP mode have
only one address input, the same address for reads and writes. This makes it hard to use
for the correlation module as the ACAD correlation needs to read previously stored data
from the BRAM before writing to the same address. Therefore, it is necessary to have
a separate read and write address. By inferring two separate Simple Dual Port (SDP)
18kbit BRAMs, by the code shown in Listing [4.1] it is possible to get two writes and two
reads per cycle per 36kbit BRAM, with separate read and write addresses.

Listing 4.1: Code for inferring a SDP 18 kbit BRAM.

library IEEE;
use IEEE.STD LOGIC 1164. all;
entity block ram is

generic (
B _RAM SIZE : integer := 100;
B RAM BIT WIDTH : integer := 32
);
port (
clk : in std _logic;
aresetn : in std_logic;
data in : in std logic_vector (B _RAM BIT WIDTH-1 downto 0);
write enable : in std logic;
read _enable : in std_logic;
read _address : in integer range 0 to B_RAM SIZE-1;
write address : in integer range 0 to B RAM SIZE —1; — added
data_out : out std logic_vector (B_RAM BIT WIDTH-1 downto 0)

);
end block ram;
architecture Behavioral of block ram is

36 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

type bus_ array is array(0 to B_RAM SIZE-1) of
std _logic_ vector (B_RAM BIT WIDTH-1 downto 0);

signal b _ram data : bus_array;
begin
process (clk)
begin
if (rising edge(clk)) then
if (write _enable = ’1’) then
b ram data(write address) <= data_in;
end if;
end if;

end process;
process (clk)

begin
if (rising edge(clk)) then
if (read enable = ’1’) then
data _out <= b_ram data(read address);
end if;
end if;

end process;
end Behavioral;

To be able to evaluate if it is possible to store a matrix of size P_bands x P_bands
with matrix elements of size Pizel data _width x 2 in BRAM, with acceptable update
characteristics, the time spent updating R(xk) has been used as a benchmark. Equa-
tion shows the calculation of number of clock cycles needed to update R(xk) of size
P _bands x P_bands, n_clk _update corr BRAM:

P _bands x P_bands

1k dat BRAM = :
n_clk_update_corr_BR 2 x N_bram__correlation

(4.2)

The update is done for each pixel in the image. N _bram_ correlation is the number of
36 kbit BRAMs used to store R(xy). The total time spent updating R(xy) for the entire
image is given by equation

clk_corr_image BRAM = N _pizels x N_rows x n_clk _update_corr_BRAM.
(4.3)
Updating a matrix with P_bands = 100 using nine BRAMs would require 556 clock
cycles. For the entire image, having N _pizels = 578 and N _rows = 1088, the total
amount of clock cycles spent updating the correlation matrix would be 349,648,384. At a
target clock frequency of 100 MHz this would require 3.49648 seconds.

Figure shows the estimated total time spent updating R(xk) for an image of
N _rows =1088 x N pizels = 578, with a target clock frequency of 100 MHz, plotted
as a function of N _bram_correlation. The BRAMs are assumed written to in parallel.
Figure is plotted for P_bands =[20, 30, 40, 50, 60, 70, 80, 90, 100].

4.1. MEMORY CONSIDERATIONS 37

Updating correlation matrix
T T

3.5 T 1
— —P_bands =20
= s ---P_bands = 30 ||
% P_bands =40
IS - --P_bands = 50
S25- —P_bands =60 |
" P_bands =70
I —P_bands = 80
g 25 - -P_bands = 90 |]
=2 —P_bands = 100
_%,-1.5
=]
T 1r il
[}
&
gosr 1
£
0 =
0 250 300

Figure 4.3: Estimated time spent updating R(Xk)

As shown in Figure the time spent updating f{(xk) can be reduced by increasing
N _bram__correlation. One column of R(xy) will maximum contain 100 x 32 = 3200
bit of data. By setting N _bram_correlation = P_bands it is possible to store one col-
umn of the correlation matrix in each BRAM, and enable writing of P_bands number
of columns at the same time. As it is possible to write two 32 bit elements per cycle for
each 36 kbit BRAM block, the total correlation matrix update time per pixel is %.
Storing one column in each 36 kbit BRAM block simplifies the control logic while achiev-
ing an acceptable trade-off between speedup as a function of the number of BRAMs used
and resources used.

In order for each of the inner-most for-loops in Figure to be executed within one
clock cycle, it is possible to determine the maximum memory requirements of the Gauss-
Jordan elimination. The maximum memory requirement of the Gauss-Jordan elimination
is when executing the operations showed in Figure [£.4]

row |i| = row|j|;
row[j] =row[i]; // This operation is done in parallel with
the previous one

Figure 4.4: Maximum memory accessing requirement by the Gauss-Jordan elimination.

The operations shown in Figure [4.4] need to swap two rows of A. By choosing to have
P_bands number of 36 kbit BRAMs for storage of A and A™! it is possible to write and
read two rows of each matrix per clock cycle, and thereby execute the operations shown
in Figure [£.4] in one clock cycle.

38 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

The Zyng-77030 and the Zyng-Z7035 contain 265 and 500 BRAM blocks respectively.
By utilizing P_bands to store each of the five matrices, this means maximum P_bands
will be 53 for the Z7030 and 100 for the Z7035.

R(xx) is written to N _bram_correlation in parallel, where the leftmost column
(column zero) of R(xy) is written to BRAM 0, column one to BRAM 1, ... and column
P _bands-1 to BRAM P bands-1. For each 36 kbit BRAM, two 18kbit BRAM blocks
are accessed, one for even row indices of the column and one for odd row indices of
the column. In Figure [£5] the addressing scheme for each 36kbit BRAM is presented,
exemplified by BRAM 0 and BRAM P bands-1. As shown in the figure, elements of
column zero are stored in BRAM 0, while elements of column P_ BANDS-1 are stored
in BRAM P bands-1.

BRAM_0 36 kbit BRAM_P_bands-1 36 kbit
column 1
column P_BAND-]
0 1 Address ! Address
Row index : [ttt

0 0 0 0 1 2 3] 0 1 2 3
1
1
1 0 0 1

BRAM_0_EVEN ! BRAM_P_bands-1_EVEN

18kbit ! 18Kkbit
2 1 1 .
1
Matrix !
3 i address P_bands* 1 1
P_bands :
4 ‘ 2 2 Address : Address

1

5 2 2 0 1 2 3 . 0 1 2 3
1
1
6 3 3 1

BRAM_0_ODD 1 BRAM_P_bands-1_ODD

18kbit | 18kbit

7 3 3 1
y 1
1
1
1
1
1
1
'

Figure 4.5: BRAM addressing scheme for storage of matrices utilized by ACAD. One
column of the matrix is stored per 36kbit BRAM.

By using the same addressing logic for R(x,,), EtjeA(k> t;t], Aand A™! as for R(x4),
the control logic of the design is simplified.

Figure [4:6] shows a 36 kbit BRAM block used in the design and the dataflow within.

4.2. PROPOSED IMPLEMENTATION 39

BRAM_X_36 kbit
32/ » DI “
\OQZ(P,bandsif) Yy > WRADDR BRAM_X_EVEN DO pa >
I092(F’,bands/{)/ : BRAM_18_kbit 7 -

V4 »| RADDR

32/ | DI “
10G2(P_pands/2) ya 3! WRADDR BRAM_X_ODD DO ya .
loa2 Ve > BRAM_18_kbit 7 »
092(P_pands/2) -

~ » RADDR

Figure 4.6: BRAM hierarchy, showing two 18kbit BRAM blocks contained within one
36kbit BRAM block.

BRAM X EVEN contains even row index elements for column X. BRAM X ODD
contains odd row index elements of the same column. The width of the addresses
WRADDR and RADDR will be logg(%). This is because a maximum of %
addresses is needed as one 36kbit BRAM contains two 18kbit BRAM blocks, storing
even and odd indexes of the column as shown in Figure This means half the col-
umn is stored in the BRAM X EVEN and the other half in the BRAM X ODD.

4.2 Proposed implementation

The top level architecture of the ACAD Anomaly detector is presented in Figure
It consists of five blocks: FSM ACAD, Shiftregister, ACAD correlation, ACAD
inverse and dACAD module. The matrices R(x,), theA(k) t;t7, A, A" and R(x)
are all stored in BRAM. The ACAD anomaly detector interfaces the Cube DMA [16] via
an AXI-Stream interface. The output of the ACAD anomaly detector, anomaly map, is
a binary anomaly map.

CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

40

"1090999p AewIoue (JYV o1} JO 9Injoa)rydre [049] doJ,) 'f 9InSI

7 B _EEep _mxalw:a_)w_n_L
ui _mxaAH_ lexid

A

dew ¢ e B 3T [SEY M s iy
Alewoue A‘ 3|npow QVOVP ¢ | esieaulgyov - ~ | uopejalod AVIY psIbamllus N vAdeam

e _ e1ep pIjRA - S
—— BIED PIBA —FIEls _
—3E)S s q

€—— ajels
ams «—— AVOV NS o
< QvOVP N0 Eep piea

Ay WUS G——— |onuon
i YINg 8and

)3

Cube DMA 4| Counter and

control

Cube DMA
AXI Stream

4.3. SHIFTREGISTER 41

The Shiftregister is a Serial-in Parallel-Out (SIPO) shiftregister which interfaces the
SmallSat’s Cube DMA. It is AXI-Stream compatible. 64-bit data is shifted in per clock
cycle. For Pizel data _width of 16, four bands are shifted in per cycle. When a complete
pixel is shifted in, it is sent to ACAD correlation, which computes the matrix R(xz).
After R(x}) is computed, it is sent to ACAD inverse. Two rows of R(x}) are outputted

per clock cycle to ACAD inverse, which computes Ril(xk).

Two rows of f{_l(xk) are then sent to the dACAD module per clock cycle. This
block computes 4¢P as given by:

§ACAD (%) = xTR ™ (x) % (4.4)

ur and t; are calculated in this block to decide if the pixel is anomalous. A binary
anomaly map is created. When all pixels have been processed, the generated anomaly
map is outputted and the ACAD anomaly detection is finished.

The FSM__ACAD block controls the state of the ACAD anomaly detector. It
chooses which of the blocks should have its clock enabled and controls the general be-
haviour of the anomaly detector.

4.3 Shiftregister

The width of the the data input to Shiftregister is 64, while the width of the output is
P_bands x Pizel data _width x 2. Shiftregister is designed to function for P_bands

dividable by four, i.e. the remainder of modulo(%) is zero. Figure shows the

architecture of Shiftregister, while the output of Shiftregister is shown in Figure [£.9]

control

alid

N

SHIFT # SHIFT # SHIFT #
l::> data=——J>| P_baflldsM- —> P_ba;dsm- > 0

Figure 4.8: Architecture of the Shiftregister block.

The depth of Shiftregister is %. The Counter and control block in Figure

[L8 controls the shiftregister. It counts the number of shifts executed with the counter

A
7 data_out

42 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

count _number _of shifts. For each clock cycle that valid data is inputted from the
Cube DMA, count_number_of _shifts increments. When P_bands shift operations
have been executed, valid is asserted and data out is sent to ACAD correlation.
data_out will be a P_bands x Pizel data _width wide signal. The signal data_out is
shown in Figure 9| for Pizel_data_width = 16.

bit indices
-
. N
e P_bands*16 P_bands*16
P_bands*16-1 16 e 31 15 0

%r % J

P_bands-1 P_bands-2

S

Spectral band number

Figure 4.9: Data output of the Shiftregister block.

4.4 ACAD correlation

The ACAD correlation, as shown in Figure[d.7] computes the causal correlation matrix:

1
R(xx) = % Z XXy . (4.5)

ACAD correlation is designed for an even number of P_bands. If an odd number
of P_bands is used, a band with zero values has to be inserted or the matrix needs to be
re-scaled to an even number of P_bands before inputting to the ACAD correlation.

Data flow and architecture of ACAD correlation can be seen in Figure

4.4. ACAD CORRELATION 43
: Submeodule 0
prev_alZ_e_ b shift k
: 0 —" "
a_01
din- —— > Multiplier +
i 2 02.0| EVEN oy
b —>i . B
shift_k | b01 b shift k BRAM_0_
| muttiplier B ‘L_ 36kbit
a_02_0 oDD
> m dout
by ®
prev_al2_o 0
Submodule P_bands-1
prev_al2_e_ b_shift_k
F_bands-1
a_01 L
Multiplier =+
a_02_
P_bands-{| EVEN b
> BRAM P_
o0 b_shift_ bands-
b oz p_ | Multiplier v 1_36Kbit
bands-1
yk [

prev_ad2_o P_
bands-1

Figure 4.10: Data flow within the ACAD correlation module.

The dotted squares mark one correlation sub-module. One correlation sub-module
computes two elements of R(xk) P _bands correlation sub-modules are synthesized in
the design. Input signal din is a P_bands x Pizel data _width wide bus. It is sent from
the Shiftregister block and contains data from one pixel vector. Signal b_shift k is
sent from FSM ACAD and indicates the number of shift operations to be done by the

Normalize by k blocks.

The elements from the previously computed R(xx_1), prev_a02 e/o_x, are stored
in BRAMs. In the signals prev_a02_e/o_x, e/o marks that it is for an even or odd
element, and x is the column index of the element computed. prev_a02 e/o x are added
to the output of the multipliers before being normalized by the block Normalize by k.

44 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

The block Normalize by k approximates the operation of multiplying the result after
addition with %, where k is the index of the currently processed pixel. This block performs
a right hand shift operation, dependent upon k. The architecture and functionality of
Normalize by k is further described in section [{:4.1] The outputs of the Normalize
by k blocks drive the output signal dout and the data inputs of the BRAMSs. Signal dout,
marked by red, is a P_bands x Pizel data width x 2 x 2 wide bus containing two rows
of R(xy).

Figure shows an example of the operations done by the ACAD correlation
block, and how the results are stored in BRAMSs. In this example, din is a spectral pixel

vector with P_bands = 4. din.’ is the transposed vector of din.

_ din |a_02_|a_02_1a 02 fa 02 BRAM_0_36_kbit
din 0 1 2 3
BRAM 0 EVEN BRAM_1_ODD
a0l pypN | aor | a0t a0t a0t rhs((a_01*a_02 0+ rhs((b_01*a 02 0+
a020|a021 a022fa023 prev_a02_e 0), prev_a02_o 0),
b 01* | b 01* | b 01* | b 01* b shift_k) b_shift_k
b 01 ODD SSHIIE Ll
B alED|alhl | aias @i rhs((a_01*a_02 0+ |rhs((b_01*a 02 0+
a 01" [a 01" | a01* | a0t prev_a02_e_0), prev_a02_o_0),
a0l EVENao20|ao21/a022|a023 b_shift k) b_shift_k
b 01* | b_01* | b 01* | b_01*
ODD |ap20f{ao021fao022]a023 - e m = == E ===
b 01 BRAM 3 36 kbit
BRAM_ 3 EVEN BRAM_3 ODD

= 1st clock cycle

= 2nd clock cycle

rhs((a_01*a 02 3+
prev_a02_e 3),
b_shift_k)

rhs((b_01*a_02_3+

prev_aO2__o 3),

b_shift_k

rhs((a_01*a 02 3+
prev_a02_e 3),
b_shift_k)

ths((b_01*a_02_3+

prev_a02_o_3),

b_shift_k

Figure 4.11: An example of the data handling done by ACAD correlation. For this
example P_bands =4.

The yellow blocks in Figure [{.11] are blocks that are executed, utilized or written
to within the first clock cycle. In the first clock cycle, a_01 and b_ 01 are set to
the first and second element of the input signal din. These elements have a width
of Pizel data width. a 01 in this cycle is din[Pizel data width-1:0] and b_01 is
din|Pizel data _width x 2 -1 :Pizel _data_width]. Each of the sub-modules shown in
Figure computes two elements of R(x) before inputting the results to BRAMs.
Sub-module 0 computes column zero, which is written to BRAM 0 _36kbit, sub-module
1 computes column one, which is written to BRAM 1 36 kbit, ..., while sub-module
P _bands-1 36kbit computes column P _bands-1, which is written to BRAM P _bands-
1 36kbit. Figure illustrates these operations. The rhs operation is a right shift
operation by b_shift k spaces.

The blue blocks in Figure 1] are blocks that are executed, utilized or written to
within the second clock cycle. a_ 01 in this cycle is din[Pizel data width x 3-1:
Pizel data_width x 2] and b_01 is din|Pizel _data_width x 4-1: Pizel data_width

4.5. INVERSE COMPUTATION 45

x 3.

4.4.1 Normalizing with k

The Normalizing with k block approximates the operation of multiplying Zle XX
with %, where k =[1,2,3...,N PIXELS TOT] is the index of the pixel currently being
processed. N PIXELS TOT is the total amount of pixels in the hyperspectral image,
N _ PIXELS TOT = Nrows X Npizels- Due to division being an operation that is com-
putationally intensive, a shifting approach is proposed instead of doing actual division by
utilizing the division operator "/".

Doing shifting instead of actual division will lead to a precision error for k that is not
power of two.

The signal b_shift k shown in Figure @ is the number of shifts that best approx-
imates the division % The signal is driven by FSM ACAD and inputted to ACAD
correlation.

The author propose to store an array called b_shift k array(k) in LUTs.
b_shift k_array(k) contains the best shifting approximation for pixel indexes k =[1,2,3...
N _ PIXELS TOT]. The array can be generated by the MATLAB-script shown in List-

ing [L.2}

Listing 4.2: Code for creating the array b_shift k array.

clear; clc;

N pixels = 578;

N rows = 1088;

N_PIXELS TOT = N _ pixels*N_rows;
b_shift k array = zeros(1,N_PIXELS TOT);
file = fopen(’b_shift array.txt’, 'w’);

for k =1: N_PIXELS TOT
if mod(k,2) = 0
% k is power of two
b_shift _k_array(k) = log2(k); % Number of shifts is log2 (k)
else
b _shift k array(k) = ceil (log2(pow2(floor (log2(k)))));
end
fprintf(file , ’%d,\n’,round(b_shift k array(k)));
end

fprintf(’\n’);
fclose (file);

46 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

4.5 Inverse computation

Due to its low complexity, the Gauss-Jordan elimination was chosen for implementation
of inverse matrix computation.

The top level architecture of ACAD inverse is presented in Figure This is an
implementation of the Gauss-Jordan elimination shown in Figure ACAD inverse
interfaces ACAD correlation. The outputs from ACAD inverse are sent to dACAD.

47

INVERSE COMPUTATION

4.5.

"9[NPOTWL ISIFAUL AT} JO DINGIONYDIR [oAd] dOT, :g T F @INS1]

EE BN :
i : L piiea
m — i — Wsd i
i alels H i
uwnjos ue BUopTSAIM |
: D BI0D UONEUILIE LUOY i
Fmou”aul _ XRELYW ALILNAGL 2)R)S
i < spueq d. \«\ :
H I”mol~Aul 9ENvYYg H
H «——S2SS2IppE) l——— uosiaip Jse| woy i
i = RN PR :
H — MOQVHM < AUITY —sassaippem [€—=u02 voneUILLE WOy |
i B D [TomeuLws premio) Wol |
i [T :
i HotsInp fonsuitale uoneuis . m_m—mV\ UOSIAID 158 Woy |
H iseq piemyoeg plemiod f—— i
] <« daavy = i
s EEmA|. Haavy < 2l 2102 UoneUIWI|D _.r_nEM
+— HAavam <« Haavy Faaovy olels . le— EJEIS UONE[BLI0D WOl
<« yaavy AH_ 2109 S35S3IPpPE L V\ UOSIAIP 1SE| WOl
<] _ PR - :
oty uoneLIw o) : spueq 4. %mmmmmﬁbm) le———a109 uoneuIWR Wou;
2eWVHE — H
i luoneuIw 3 oF ["mol v uip UOIBUILLIS PIBAUIO) WO
—— I moJ m_m_mv.\
: UOSIAIP 1SE] WOl
- A —
Ay woid T < 2102 USHEUILIS oY
ppo le— uoneUILIE preMIo) WOy
o1 AU moa™aul mou “BIEIs UoIB|aII00 W0
-« AUl Y Wolq - <«—Uuip
u2n;
MO AU 2109 :
uoneulwi|g
s
o o4
H piEvpeg pIRDS
i wioyy woy

48 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

The Forward elimination, Backward elimination and Last division execute
the operations done in the forward elimination, backward elimination and last division
part of Gauss-Jordan elimination as described in Section [2.4.1] with an exception to the
operations shown in Figure[f.T13] These operations are part of both the forward elimination
and backward elimination blocks in the Gauss-Jordan inverse. They are therefore put in
an external process, called Elimination core. A and A _inv are two arrays of BRAM36
of size P_bands, in which A and A™" are stored.

A[[YOW[[J]]]][; Afrowl[j]] — Afrowf[i]] * (A[row[j]][i]/

row[jfl = A~ frow[j])— A= [rowlil]+ (Alrow[s]][il/

[row[z] [i]); // This operation is done in parallel with the
previous one

Figure 4.13: The operations computed by the Elimination core, utilized by both the
Forward elimination and the Backward elimination block.

4.5.1 Elimination core

Elimination core is utilized by both Forward elimination and Backward elimi-
nation. Its input are driven by Forward elimination or Backward elimination,
depending upon which of the states in FSM inverse that are active (states are presented
in Section . Elimination core does not use the division operator "/" to compute
division, but rather use a combination of the LUT approach and the adaptive-shifting
approach. See Section [£.5.9] for more details about these approximations to division.

The architecture of Elimination core can be seen in Figure [f.14] and Figure [£15]
The input signals control BRADM, row _j, row i, inder i, index j and state are
driven by Forward elimination or Backward elimination. The signal divisor inv
is the inverse of the divisor used in the operations shown in Figure [f13] best_approz is
the best adaptive-shifting approximation to the divisor. The division is computed using
divisor _inv if Div_ Precision >= MSB of the divisor (signal msb_index in Figure[£.14)).
The blocks rhs(DIV_PRECISION) and rhs(best approx) perform a right shift
operation by Div_ Precision and best _approx spaces respectively. If Div_ Precision <
MSB of the divisor, the adaptive shifting approach is utilized to approximate division.

4.5. INVERSE COMPUTATION 49

row_i(
index_i)

DIV_PRECISION

msb_index
row_j - —> , Check if
: —y| row i o . .
row_|) d__" divisor is Find MSB —>» Look up divisor —>»
index_i —» "“Z-» pegative divisor inv
index_j —»
flag_write_to -
_odd_row
flag_write_to best_approx
Choose best
e:en;zw > approximation)
write_address
i —* Right shift
odd T
wiite_address control BRAM > PIXEL_DATA_WIDTH
_even e *2-1-DIV_PRECISION
read_address
_even >
_) =
read_address Right shift
_odd > PIXEL_DATA_WIDTH
state —t *2-1-
DIV_PRECISION+1
Right shift
Ly PIXEL_DATA_
WIDTH*2-1

Figure 4.14: Elimination core part one.

The output signal data_out consists of new matrix data for matrices A and A™!,
stored in A and A _inv, for index_j. The bus control_ BRAM contains control sig-
nals to A and A _inv. The control signals include read and write addresses and write
and read-enabling signals. Elimination core contains P_bands sub-modules marked
by the dotted squares in Figure One such sub-module computes one element of
new_row_j and one element of new inv_row _j. new_row _j and new inv_row_j
are updated row data for the rows indexed by index j in matrices A and A~!, which are
written to A and A _inv respectively. As shown in Figure Submodule(0) computes
new_row_j(0) and new _inv_row_j(0), Submodule(1) computes new row_j(1) and
new_inv_row_j(1),..., and Submodule(P_bands—1) computes new row _j(P_bands—
1) and new_inv_row_j(P_bands — 1). As such, the operations shown in Figure [£.13]
are implemented.

50 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

SUBMODULE(D) divisor_inv divisar_inv
5 e
i row_i(rowi_i(i i ! i
: index_j) index) | iny_row_ row_it.) row Mt A
! rowL_i0) iny_row_i(0) (0) RIS rovio) e IR
| P
i l R R
; P e
| L ohig
| Multiplier Multiplier Multiplier Multiplier Pa i S
| g g
' L | o my
: PR
; PE e
| 4 NI
H Y | 1 =21 2 |
| * Tine
| LT
i rhs{DIV_PRECISION) rhs{DIV_PRECISION) rhs{best_approx) rhs{best_approx) H i 1 i 1
i L R
| P
| row_j(0) inv_row_j(0) l inv_row_j(0) l row_i(0) l i i : i ;
i l’ P
i R R
E Subtracter Subtracter Subtracter Subtracter i | : | i
| A
E adapt_new_ msh i iy |
i msb_index row_i(0) index N R
' DIV, o
$ DV adapt_new_ 1 Vo |
: PRECISION rour_j(0) i i 1 i E
i R R
| ot
new_row_ji0)))
new_inv_row_j(0)
”~l
new_inv_row_j
-new_in‘.f_row_i—>
1EW_TOW_) pum— SV _TOW i—)
data_out
Control_BRAM = =control_BRAN=—3
state —» s>

Figure 4.15: Elimination core part two.

4.5.2 FSM inverse

The finite state machine (FSM) for the ACAD inverse shown in Figure is illus-
trated in Figure Its possible states are described in Table

4.5. INVERSE COMPUTATION o1

State Description
Unknown state An unknown state. The behaviour of the ACAD inverse is unknown.
The FSM should transition to state Idle.

Idle The ACAD inverse is not performing any operations.

?;or;ﬁz)ﬁ‘elatlon_matrlx_ Writing data inputted from ACAD correlation to A. Two rows are
N written to BRAMs per clock cycle.

Forward _elimination Computing the forward elimination of the Gauss-Jordan elimination.

Backward _elimination Computing the backward elimination of the Gauss-Jordan elimination.

Last_division Computing the last division of the Gauss-Jordan elimination.

Output__inverse matrix Outputting the completed inverse matrix for the pixel. Two rows are

outputted per clock cycle.

Table 4.1: States of the inverse FSM.

writes_done_on_column< P_BANDS/2-1

~ N
’étore_correlatioﬁx‘
(_matrix_in_ |
\ BRAM

~
~ writes_done_on_column>=

lvalid || Ireset_n P_BANDS/2-1
A
valid /' Forward_ \“
¥ /‘\ elimination /
Pl X Ireset_n 7
Idle)

\ Forward_elimination_finished

e - N
reset n_ / \
~—/ Backward_

. elimination /
Ireset_n AN e

output_inverse_matrix —
puL T - backward_elimination_finished
. 4

finished
_ — e

(output_inverse_ _last_division | Last_division
‘ matrix / finished \

y N
_ S

Figure 4.16: FSM controlling ACAD inverse shown in Figure m

In state Idle, ACAD inverse is not performing any operations. The outputs of
ACAD inverse are not valid in this state. All states transition to Idle if signal reset n
is asserted.

When valid data is written to ACAD inverse from ACAD correlation, signal valid
is asserted, and the FSM transitions from Idle to Store correlation matrix in
BRAM. Store correlation matrix in BRAM stores two rows per clock cycle of
the causal anomaly-removed sample spectral correlation matrix outputted from ACAD
correlation in BRAMs A. It also writes two rows per clock cycle of the identity matrix of
size P_bands X P_bands with matrix elements of size Pizel _data_width x 2to A _inv.

write__done__on__column is a signal indicating the number of writes done on 36 kbit
BRAMSs. The number of writes per BRAM per clock cycle is two. When
write__done__on__column = %, all P bands elements of the different BRAMs have
been written, and the entire causal anomaly-removed sample spectral correlation matrix

52 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

is stored in BRAM.

Forward _elimination and Backward _elimination compute the forward and back-
ward elimination of the Gauss-Jordan elimination.

In Last division, the last division of the Gauss-Jordan elimination is computed.

Output inverse matrix outputs the matrix A1 stored in A inv. Two rows of
the matrix are outputted per clock cycle and sent to dACAD.

4.5.3 Forward elimination

Forward elimination contains a FSM with the following valid states: Idle,
Check diagonal element is zero, Swap rows, Even j writeand Odd j write.
The states are described in Table

State Description
Unknown state An unknown state. The behaviour of Forward elimi-
nation is unknown.The FSM should transition to state Idle.
Idle Forward elimination is not performing any
operations.

Check diagonal element is zero | Checking if element row_i[index_i| = 0 as done
in Gauss-Jordan elimination.

Swap__ rows Swapping row_i and row_j of A stored in A.
Even j write Updating an even indexed row of A and A~
Odd_j_write Updating an odd indexed row of A and A",

Table 4.2: States of the forward elimination FSM

The FSM controlling Forward elimination can be seen in Figure [{:17]
flag_prev_row i _at _odd_row is a flag used as control to indicate whether or not the
previous row i was located at an odd indexed row.

4.5. INVERSE COMPUTATION 93

e Ny r.flag_flipped_rows='0"|| r.flipped_rows &&
CHECK_DIAGONAL wait_counter< B_RAM_wait_clk_cycles

l)
/.ELEMENT_IS_ZERQF.__ . o
flag_first_data_elimination . - row_ifindex_il==0 = /7

[swaP_Rows
IDLE -

row_iflindex_i]l=0 &&
flag_write_to_even="1"
s Sl flag_flipped_rows="1" &&
row_ifindex_i]'=0 && — —
flag 7w[rile o]even=.0, wait_counter >= B_RAM_WAIT_CLK_CYCLES
- - - && flag_prev_row_i_at_odd row=

(ODD_j_WRITE . o / flag_flipped_rows="1" &&

index_j>=P_bands-1

,"Ii‘n\d‘exAdLbands y \ wait_counter >= B_RAM_WAIT_CLK CYCLES

) { EVEN i WRITE 8& flag_prev_r?[;iy_i_al_odd_row=

index_j<= P_bands-3——

index_i =P_bands-2 and index_j = P_bands-1
BACKWARD_ELIMINATION

Figure 4.17: FSM controlling Forward elimination.

State Check diagonal element is zero executes the check shown in Figure
If the check evaluates to true, the FSM transitions to state Swap rows. If it
evaluates to false, it transitions to either Even j write or Odd_j write, depending
upon if the location of the outer loop index 7 is at an odd or even index.

if(A[rowli]][s] == 0){

Figure 4.18: The check done in state Check diagonal element is zero.

Swap rows executes the operations given in Figure[{.19] When two rows are swapped,
the FSM needs to wait for B RAM wait_clk cycles before issuing transitioning to
another state and issuing new reads. This is to ensure that data read is valid, and that
the swap has been executed in A.

54 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

for(j =i+ 1;7 <n;j++)
if(A [row[;]][5]! = 0){
row [i] = row|[j];
row[7] =row|i]; // This operation is done in parallel with
the previous one
break;
}end if
}end for

Figure 4.19: Operations done in Swap rows.

Even j write issues writes for an even indexed row of A and A7l to A and A inv,
by driving the control and data signals to Elimination core. It also issues reads to A
and A _inv. Data is structured and sent to Elimination core. The operation of the
state is illustrated in Figure In this example P_bands = 6, index _i=0, index j=2,
w__address=1 and r_address=2. The green row marks row_i. Elements marked by red
are writes being issued. Yellow elements are reads being issued.

index i and index _j correspond to the loop indexes ¢ and j of the Forward elimi-
nation and Backward elimination. row_ ¢ and row_j are the rows of the matrices A
and A™! indexed by index i and index j.

even 0

0
odd 1 0

index address
even 2 w w w w w W 1
odd 3 1
even4 r r r r r r 2
odd 5 2
Y

Figure 4.20: Even j write in the Backward elimination state.

Odd_j write issues writes for an odd indexed row of A and A7' to A and A inv,
by driving the control and data signals of Elimination core. It also issues reads to to
A and A_inv. Data is structured and sent to Elimination core. The operation of the

4.5. INVERSE COMPUTATION

95

state is illustrated in Figure In this example P_bands = 6, index =0, index _j=3,
w_address=1 and r_address=2.

even 0

odd 1

index

even?2

odd 3

even4

odd 5

address

\

Figure 4.21: Odd_j write in the forward elimination state.

4.5.4 Backward elimination

Backward elimination contains a FSM with the following valid states: Idle,
First elimination, Even i start,Odd i start,Even j writeand Odd_j write.
These are shown in Table [4.31

State

Description

Unknown state
Idle
First _elimination

Odd_i_start

Even i _start

Even j write
Odd_j_ write

An unknown state. The behaviour of the Backward elimination is unknown.
The FSM should transition to state Idle.

Backward elimination is not performing any

operations.

Doing the first backward elimination iteration in the inverse

computation. The first row written will be to an even indexed row.

Starting at a new iteration of the outermost loop of the backward
elimination loop in the Gauss-Jordan elimination.

Starting at an odd indexed row index_i of the matrix. Computing A[row_ j]
and A~ row_j], which is at an even row index.

Starting at a new iteration of the outermost loop of the backward
elimination loop in the Gauss-Jordan elimination.

Starting at an even row index_i of the matrix. Computing A[row _j]

and A~ ![row_j], which is at an odd row index.

Updating an even indexed row of A and A~L.

Updating an odd indexed row of A and A~

Table 4.3: States of the backward elimination FSM.

The FSM controlling Backward elimination can be seen in Figure [4.16]
flag_index i _at_odd_row is a flag used to signal if previous row ¢ was located at an

56 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

odd indexed row.

 FIRST_ELIMINATION |

flag_first_data_elimination

index_j>=1 and read_address>=1

IDLE

—— (oDD_j WRITE)

index_j>=1 and read_address>=1

index_j>=1 and read_address>=1 " EVEN i START
index_j>=1 and read_address>=1 \ T /

([oDD i START |

index_j =0 and read_address =0 and
flag_index_i_at_odd_row
index_i =1 && index_j =0

. | S index_j>=1 and read_address>=1
index_j =0 && read_address =0 && .

flag_index_i_at_odd_row ='0'

LAST_DIVISION | EVEN_j WRITE |

Figure 4.22: FSM controlling Backward elimination.

First _elimination is the first iteration of the backward elimination. The flag
flag _first data__elimination is asserted once the two rows with index P_bands-1 and
P _bands-2 have been read from memory. First elimination will always issue a write
to an even row.

Even j write issues writes for an even indexed row of A and A7l to A and A inv,
by driving the control and data signals to Elimination core. It also issues reads to A
and A _inv. Data is structured and sent to Elimination core. The operation of the
state is illustrated in Figure In this example P__bands = 6, index i=P bands-1,
indexr _j=4, w_address=2 and r_address=1.

4.5. INVERSE COMPUTATION o7

even 0

0
odd 1 0

index address
even 2 r r r r r r 1
odd 3 1
even4 w w w w w w 2
odd 5 2
\4 \4

Figure 4.23: Even j write in backward elimination.

Odd_j write issues writes for an odd indexed row of A and A7' to A and A inv,
by driving the control and data signals to Elimination core. It also issues reads to A
and A_inv. Data is structured and sent to Elimination core. The operation of the
state is illustrated in Figure In this example P_bands = 6, index _i=P _bands-1,
indexr j=3, w_address=1 and r_address=0.

even 0

0
odd 1 r r r r r r 0

index address
even?2 1
odd 3 w w w w w w 1
even4 2
odd 5 2
\4 \4

Figure 4.24: Odd_j write in backward elimination.

Odd_i start is a new iteration of the outermost loop in backward elimination.
index i islocated at an odd indexed row. In this state, a write is issued to an even indexed
row by driving the control and data signals to Elimination core. An example is shown
in Figure For this example P_bands=6, index =3, index j=2, w_address=1
and r_address=0.

58 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

even 0

r r r r r r 0
odd 1 0

index address
even 2 w w w w w w 1
odd 3 1
even4 2
odd 5 2
\4 \ 4

Figure 4.25: Odd_i_start.

Even i start is a new iteration of the outermost loop in backward elimination.
index i islocated at an odd indexed row. In this state, a write is issued to an even indexed
row by driving the control and data signals to Elimination core. An example is shown
in Figure For this example P_bands=6, index i=4, indexr j=3, w_address=1
and r_address=0.

even 0

0
odd 1 r r r r r r 0

index address
even 2 1
odd 3 % w % w W w 1
even4 2
odd 5 2
\4 \4

Figure 4.26: Even i start.

4.5.5 Last division

Last division contains a FSM with the following valid states: Idle, Even i write
and Odd_i_write. These are described in Table

4.5. INVERSE COMPUTATION 99

State ‘ Description

Unknown state | An unknown state. The behaviour of Last division is unknown.
The FSM should transition to state Idle.

Idle Last division is not performing any operations.

Even i write | Updating an even indexed row of A7

Odd i write | Updating an odd indexed row of A1

Table 4.4: States of the last division FSM.

In Even i write, an even indexed row of A~ is updated. A read is issued for the
next even indexed row.

In Odd i write, an odd indexed row of A~1 is updated. A read is issued for the
next odd indexed row.

statel= STATE_LAST_DIVISION || Ireset_n

e) N state=
STATE_IDLE ‘: . STATE_LAST_DIVISION

B AN

vesen_ | EVENi WRITE

/
\ index_i<=P_BANDS-2

Ireset_n || index_i= P BANDS1
index_i<=P_BANDS-3

(oDD_i WRITE

N
index_i=P_BANDS-1
OUTPUT_INVERSE_MATRIX

Figure 4.27: FSM controlling Last division.

4.5.6 Output inverse matrix

In the Output inverse matrix state, the contents of A _inv is read and outputted

to dACAD. Reading the contents of A _inv takes P _bands",

5 clock cycles.

4.5.7 Inverse pipeline stages

The inverse module is pipelined into four stages in order to achieve high throughput.
The pipeline can be seen in Figure [£:28] Figure [£:29] and Figure [£:30] The green squares
mark processes in which data is written to A/A _inv. Blue squares represent reading
of data from A/A inv. Purple squares mark inputs being set from FSM inverse and
A and A _inv to Forward elimination, Backward elimination, Elimination core
and Last division. Yellow squares mark calculation of new data for row j by either
Forward elimination, Backward elimination or Last division.

60 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

expected .
execution best case: i=P_bands-1
time in clock i
cycles i=1
P_bands/2 > >
STATE=STORE_CORRELATION_MATRIX STATE=FORWARD_ELIMINATION
1 1 N] 1 1 1 1] 1] 1
1 1 ! 1 1 1 1 1 ' 1 ' 1
1 1 ! 1 1 1 1 1 1 1] 1
¥ t : i 1 4 ' ' 7 1 | -
| | i n | o 1 | ! | Writerow | Write row
! Witeto | Witeto | | PR | EERR ' | Write row 1 | Write row2 ! { P_bands-2 | P_bands-1
: BRAMs ; BRAMs :] e | e : | toBRAMs | to BRAMs : : to BRAMs | to BRAMs
| addressO | address1 | m m w m m ®m [pioiice oo poias 4 b | address0 | address1 | ™ ® ™| address address
\ |] i - ' |) |P_BANDS/2-1P_BANDS/2-1
] 1 1 1] 1
1 1 : {] 1
. . | | Read Read Read Read Read Read . '
! ! ' | add 0 1 1 i 1 i 2 2 3 ! '
) 1 ! |) 1
1 1 ' { |
! {
{
: i | Setinputs to| Set inputs to | Set inputs to Set inputs to | Setinputs to| Set inputs to Set inputs to| Set inputs to
gif)mgmﬁe‘: gzgmg:t‘ﬁ:: :submndules submodules | submodules| submodules | submodules| submodules submodules | submodules
{
L
| . !] | [| 1
1 1 1] 1 [lculat Iculat T [|
1 1 ' amEmmnm ! ' '] € : | G = C : s n m, Calculate
B 1 1 2, I P bands/? 1P bands2 1 | nmewrowj newrowj new row j | newrowj |
—— 1 13 g 1 1 []
1 1 1 1 I 1 1 1 i 1
|]] | [] I | | 1
Clock cycle 1 1 1 1 1 1 1 1 1 1

Figure 4.28: Showing pipeline operations in the Store correlation matrix and For-
ward__elimination states.

i=P_bands-1

2 i
i=1
< > <« P_band > -
STATE=BACKWARD_ELIMINATION STATE=LAST_DIVISION
[[i i i T 1 T 1 i 1
]] 1]] ' ' 1 !] 1] 1
1 1 1 1 1 ! ! 1 ! 1 1 1 1
! ! ' ' 1 t y] 1 ' ¢ t 1
) ' ' 1 Write row 1 ! ' | Write row |
’ ! ! ' P_bands-2 Write row 0 1 ! ' Write row 0 |P_BANDS-1 !
' ! ! ' toBRAMs = ™ ® ® {5 BRAMs ! : ' toBRAMs 5 g @ | toBRAMs '
! . . | address address 0 . . , address 0 | address |
! X : | P_bands/2-1 : . , |P_BANDS/2-1]
f T I | 1 I
1 | ! ! 1 |
Read : Read : Read Read : : Read Read Read Read Read : :
P_bands/2-1 | P_bands/2-2 | P_bands/2-2 | P_bandsi2-2 ! : 0 0 1 1 2 : 1
| L ! |
Set inputs to, Set inputs to | Set inputs to |Set inputs to Set inputs to| Set inputs to | Set inputs to |Set inputs to | Setinputs to|Set inputs to Set inputs to
submodules submodules | submodules submodules submodules submodules | submodules | submodules | submodules |submodules submodules

Calculate Calculate
new row j New row j

Calculate Calculate
new row j new row j ']

[R —

{
[
f
f
[
I 1
]
1

Figure 4.29: Showing pipeline operations in the Forward _elimination and Last _division
states.

4.5. INVERSE COMPUTATION 61

< P_bands/2 >
STATE=OUTPUT_INVERSE_MATRIX
T 0 0 T

| 1 1 1 1 1
I 1 1 1 1 1
] L} 1 1 1 1
| 1 1 1 1 1
| 1 1 1 1 1
I L} 1 1 1 1
| 1 1 1 LI 1 1
| 1 1 1 1 1
I L} 1 1 1 1
| |
‘ Read ‘
! |
Read Read Read [address |
0 1 2 P_bands/2-1 |
] |

)

|

]
Set inputs to | Set inputs to Set inputs to | Set inputs to
submodules | submodules| submodules : submodules

. A

)
! i
I]
I 1
I 1
I , EEEm
I 1
L L
i [
I 1

Figure 4.30: Showing pipeline operations in the Output inverse matrix state.

4.5.8 Execution time expectations inverse computation

Using P_bands 36 kbit BRAMs for storage of A and A~' enables to read and write a
maximum of two rows to and from A and A _inv per clock cycle. Assuming that each
of the row-operations in the Gauss-Jordan elimination can be calculated within one clock
cycle, it is possible to do an estimation of the expected execution time in clock cycles for
the inverse computation per pixel. By using that assumption and the fact that a swap
of rows can be executed within one clock cycle, this means each of the inner loops in the
Gauss-Jordan elimination can be completed within one clock cycle.

Expected execution time for the different states is shown in Figure Figure
and Figure [£30} For state Forward_elimination, the execution time will be greater if
it is necessary to swap rows, which is done in the state Swap rows. The worst case
execution time of Forward _elimination is assumed to be when the first element of the
matrix A has a zero element at row(i,i) and all other rows, except the last row, which has
a zero element at row(j,j).

A worst case and a best case execution time, inv_worst _case and inv_best _case,
for the computation of the inverse per pixel are estimated. The estimations are shown in
equations .6 and @7} N_STATES_INYV is the number of valid states in the inverse
top level FSM, shown in Figure worst _case__ex _state is the set of expected worst
case execution times for the states. best case ex state is the set of expected best case

62 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

execution times for the states.

N_STATES_INV
inv_worst_case = E worst_case__ex _state()
i=0
STATE_FORWARD_ELIMINATION

P_bands—1
P_bands .
= —a + E i1+ P_bands
—— i=0
STORE_ CORRELATION MATRIX
P bands—1 LAST_DIVISION
- —
+ E i + P _bands + P _bands/2
— —_——
Ny A OUTPUT_INVERSE _MATRIX
STATE_BACKWARD _ELIMINATION
P_bands—1
=3P _bands + 2 E i
i=0
(4.6)
N_STATES_INV
inv_best case = E best case ex_state(i)
i=0
STATE_FORWARD _ELIMINATION
—_——~~
P_bands—1
P bands + .
= =" i
2 ‘
—— i=0
STORE_CORRELATION _MATRIX
P bands—1 LAST_DIVISION
- —
+ E 7 + P_bands + P _bands/2

N OUTPUT_INVERSE _MATRIX
STATE BACKWARD _ELIMINATION
P_bands—1
=2P bands+2 Z i
i=0

(4.7)

Figure shows the estimated execution time in seconds for computing Ril(xk) for
all x;, in the hyperspectral image, for an image size of 1088x576, with an operating clock
frequency of 100MHz.

Time[s]

4.5. INVERSE COMPUTATION 63

70

—Best case
—Worst case

60—

50

40 —

30

20~

0 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

P_bands

Figure 4.31: Estimated execution time for computation of R (x1) for an image of size
1088x576 in seconds.

4.5.9 Division

A drawback with the Gauss-Jordan algorithm is that it uses division. Division is an op-
eration that is computationally intensive, and it requires a large amount of logic to be
implemented. An early implementation of the Gauss-Jordan elimination by the author
utilized the division operator "/". This is further described in Section

An approach to implement division by adaptive shifting is described in Section

A third approach for computing division was made. This approach utilizes LUTs to
store an array containing the inverse of the divisor in the division. It is further described

in Section {.5.9.3

The semantics used to described the division operation will be C = B % % where C, B
and @ are integers in the range of s=[-2Ft@el_data_widthx2 1 "gPizel_data_widthx2_ 1]

4.5.9.1 Using the division operator " /"

To evaluate if division could be implemented by using the " /" operator for signed datatypes,
the Last division block was synthesized, and the worst negative slack (WNS) was used
as a criteria to see if the design met the system clock target constraint of 100 MHz. The

64 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

max frequency, fmaz, is calculated by equation [L.8}

1

Fmaz = ~WNS +10ns’

(4.8)

Results for different divisor-and-divident bit widths are presented in Table [5.3] The
data flow for block Last division using the division operator can be seen in Figure

N/

TOW_| 3y

- new_row_inv_i
row_i ———» Divide — —>
index_jm———»

Figure 4.32: Dataflow of block Last division using the division operator "/" for divi-
sion.

4.5.9.2 Adaptive shifting

To avoid using the division operator, the adaptive shifting approach shown in Figure @
has been implemented. It approximates the divisor by an adaptive number of shift op-
erations as the divisor is not constant. To achieve this, the most significant bit (MSB)
of the divisor is first checked to evaluate if the divisor is a negative number. If it is,
the divisor is negated. The block Find MSB finds the MSB of the unsigned divisor.
In parallel, Pizel Data Width x 2-1 numbers of shift-operation processes shifts the
unsigned divisor by n__shifts=[1,2...Pizel Data_Width x 2 - 1]. These shift-operation
processes are illustrated in Figure [£:33] by the blocks Right shift one, Right shift two
and Right shift PIXEL DATA WIDTH*2-1. The remainders after shifting are
sent to the Choose best approximation block. This block chooses the best approx-
imation depending upon the index of the MSB and the remainders after shifting. The
best approximation to the divisor will be a shift operation by MSB or MSB+1 number
of shifts. Each element of the row inv_row i is then shifted in parallel to compute the
approximate division. If the divisor is a negative number, the row is negated before out-
putting data to register.

row i ———3!
index_i >

4.5. INVERSE COMPUTATION 65

Check if
divisor is Find MSB
negative

—> Right shift one inv_row_i
Choose best —> new_inv_ ——»
approxi : number_of row_i
14 shifts
Approximate division
)) hifting) = waddiess—>
—> Right shift two w_address —————> e
index_i ———>» index_i ——
write_even —————>| write_evel >
state ——>
Right shift
PIXEL_DATA_
WIDTH*2-1

Figure 4.33: Architecture of block Last division, approximating division with an
adaptive number of shifts.

4.5.9.3 LUT approach

Instead of computing the division in the operation C' = B x %, an approach based on the
solution in [24] was used. This approach utilizes LUTs to store the array divisor inv=
w, where a = [1,2...2P"_Frecision] " Dy Precision is the bit width of the
divisor possible to represent with this approach. If the MSB of the divisor a is at an index
> Div_ Precision, the adaptive shifting approach is used. If not, a is used as an index
to look up in LUTs storing divisor _inv. Then, divisor inv(a) is multiplied by B, which
yields product C. C is right shifted Div_ Precision spaces. This can be seen in equation
4.9

C = shift_right(B x divisor _inv(a), Div_ Precision) (4.9)

The code for inferring LUTs for storage of divisor _inv is shown in Listing exem-
plified for Div_ Precision=4.

Listing 4.3: LUT division approach exemplified for Div_ Precision = 4.
library ieee ;
use ieee.std_ logic_ 1164.all;
use ieee.numeric_std. all;
entity division_lut is

port (
y : in std logic_ vector(3 downto 0);
y_inv : out std logic_ vector(3 downto 0));

end division lut;

architecture rtl of division lut is

constant C_NY : integer:= 4;

constant C NDY : integer:= 4;

type t_ divition lut is array (0 to 2%xC NY—1) of
integer range 0 to 2xxC _NDY—1;

66 CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

constant C_DIV_LUT : t_divition lut := (
16,

o]

o = = = NN NN W W RO

);
begin
y_inv <= std_ logic vector(to unsigned (
C DIV _LUT(to integer (unsigned(y))),C NDY));

end rtl;

The values of divisor _inv can be generated by the MATLAB script shown in Listing [4.4}

Listing 4.4: MATLAB code for generating the values of divisor _inv, for Div_ Precision
= 17.

clear; clc;

DIV_PRECISION =17;
division lut_ values = zeros(1,2"DIV_PRECISION);
file = fopen(’generated luts 17 bit.txt’, ’w’);

for i =1: 2°DIV_PRECISION
division lut_values(i)=(2"DIV_PRECISION x1)/1i;
str = num2str(division lut_ values(i));
fprintf(file , '%8.0f,\n’,division lut wvalues(i));
end

fclose (file);

The architecture of the Last division block, utilizing this LUT approach, is shown
in Figure [£:34] If Div_ Precision< Pixzel_Data_Width x 2, an adaptive shifting ap-
proach is added in parallel. If the MSB is located at an index > Div_ Precision, then
the adaptive shifting approach is used.

4.5. INVERSE COMPUTATION 67

i|1\.'7row7_'>
Check if row_i = Multiolicat
eck i > ultiplicator
row_i i : index_i Look up divisor) :
—— — i - index_i
dlwso_r is Find MSB . _i
index_i negative . —I_’
DIV -
DIV = -
PRECISION ; PRECISION Choose best
approximation_shifts
Right shift

> PIXEL_DATA_WIDTH
*2-1-DIV_PRECISION

Right shift
PIXEL_DATA_WIDTH
9.1

¥ Right shift
DIV_PRECISION+1

Right shift
PIXEL_DATA_
WIDTH*2-1

Figure 4.34: Architecture of block Last division, computing division using the LUT
approach.

Look up divisor looks up the inverse of the unsigned divisor a by using the ab-
solute value of row i[index i] as an index to the LUTS storing the array divisor inv.
If Div_ Precision >= MSB of the unsigned divisor a, then divisor inv(a) is sent to
Multiplicator, which performs a multiplication, else 1 is sent to Multiplicator and
Last division utilizes the adaptive shifting approach. If Div_Precision >= MSB the
LUT approach is used by Last division. The Choose best approximation shifts
block choose the best approximation made by the adaptive shifting approach. In block
Right shift, a right shift operation of b shift spaces is performed on each element
of the row inv_row_i, which is the row indexed by i in matrix A~ stored in A _inv.
b_shift spaces is dependent upon if the adaptive shifting or LUT approach is used.

68

CHAPTER 4. PROPOSED HARDWARE IMPLEMENTATION

Chapter 5

Results

5.1 Synthesis

All synthesis results in this chapter are synthesized for Pizel data width of 16, unless
another value is especially mentioned. Results presented in this chapter are gathered from
synthesis utilization reports. "Vivado Synthesis Defaults" was used as the "Strategy" in
the Option field for the synthesis project settings, in order to get the best trade-off be-
tween performance and area.

The designs were synthesized in Vivado. As Zyng-7000 - Z7030/Z7035 was not eligible
for synthesis, the Zedboard was used. This kit contains less logic than the Z7030/Z7035,
and it contains only 220 DSPs. This leads to the ACAD inverse over-utilizing DSPs
when running synthesis with P_bands >= 20 and Pizxel data width = 16, when uti-
lizing the LUT approach to approximate division. When over-utilizing DSPs, the logic
gets mapped to LUTs instead, as described in [25], and will produce unusable synthesis
results. Therefore, ACAD inverse was synthesized for xc7k160tiffv676-2L for P_ bands
>= 20 and Pizel data_width = 16, as this device contains 600 DSPs as well as hav-
ing a similar architecture as the Zedboard (has Slice Registers and Slice LUTs, as op-
posed to Configurable Logic Block (CLB) Registers and CLB LUTs). ACAD correla-
tion also over-utilizes DSPs for P_bands >= 60 and Pizel data width = 16. There-
fore, ACAD correlation is synthesized for xc7k160tiffv676-2L for P_bands >= 60 and
Pizel data_width = 16.

Timing results when synthesizing for xc7k160tiffv676-2L are not considered usable as
the performance of the device logic is different to the Zedboard’s. The Zedboard contains
an Artix-7 device, which is a slower device than the Z-7030/Z-7035, which are Kintex-7
devices. Designs that meet timing demands for the Zedboard will therefore also most
likely meet timing requirements for the Z-7030/Z-7035 devices. In addition to this, the
initial test prototype is to be implemented on a Zedboard. As such, it is valuable to see if
the design meet timing when running on Zedboard. Therefore, only timing results from
synthesis on the Zedboard are presented.

69

70 CHAPTER 5. RESULTS
5.1.1 Shiftregister

Shiftregister was synthesized for P__bands = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. The
numbers of synthesized Slice registers and Slice LUTs are shown in Figure 5.1} plotted as
a function of P_ bands.

1800

—=—Slice LUTs
——Slice registers

1600

1400

1200

1000

Quantity

600

400

200

10 20 30 40 50 60 70 80 90 100
P_bands

Figure 5.1: Shiftregister synthesis results.

5.1.2 ACAD correlation

The design was synthesized for P__bands = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. Figure
shows the number of synthesized BRAM36E1 and DSP48E1. Figure shows the
number of synthesized Slice Registers and Slice LUTs as a function of P_ bands.

The block Normalize by k, which is a sub-module of ACAD correlation that
performs a shift operation depending upon the index k, has not been implemented. The
architecture of ACAD correlation synthesized is illustrated in Figure The syn-
thesis and timing results for ACAD correlation without Normalize by k do produce
relatively accurate results as a shift operation is "free" in hardware, meaning that it does
not lead to an increase in logic usage and delay worth mentioning.

5.1. SYNTHESIS

71
Submodule 0
prev_al2_e_
0
) a_01
din —=» > Multiplier
a_02_0| EVEN
b —> B
shift_k b_01 N b_shift_k BRAMTO_
Multiplier 36kbit
a_02_.0 | oDD

m dout
+ =

prev_al2_o_0

Submodule P_bands-1

prev_al2_e_|
F_bands-1

a_01

Multiplier
a_02_
P_bands-1| EVEN

O BRAM_P_ |

_ > . bands-
bozp_ | oo 1_36kbit
bands-1

prev_al2_o_P_
bands-1

Figure 5.2: Architecture of the implemented version of ACAD

normalization.

correlation, without

72 CHAPTER 5. RESULTS

400

350

300

250

Quantity
N
8

150

100

50

1 | | 1 | | 1
10 20 30 40 50 60 70 80 90 100
P_bands

Figure 5.3: Number of synthesized BRAM36E1 and DSP48ELl as a function of P bands
for the ACAD correlation block.

900
——Slice LUTs
——Slice Registers

o
o
o

Quantity

400

P_bands

Figure 5.4: Number of synthesized Slice Registers and Slice LUTs as a function of
P_bands for the ACAD correlation block.

5.1. SYNTHESIS 73

5.1.2.1 Pixel data__width = 10

As ACAD correlation inferred a large number of DSPs, Pizel data width was lowered
to see if the number of DSPs inferred would be decreased. The design inferred DSPs for
Pizel data _width >= 11, but for Pizel data _width = 10 the synthesis tool did not in-
fer any DSPs. Instead, the logic was mapped to LUTs. When varying Pixel data_width,
the number of BRAMs synthesized are unchanged. The numbers of LUTs and registers
synthesized as a function of P_bands are shown in Figure [5.5}

x10*

—=—Slice LUTs
——Slice Registers

25

Quantity
&
T

10 20 30 40 50 60 70 80 90 100
P_bands

Figure 5.5: The numbers of synthesized Slice Registers and Slice LUTs as a function of
P_bands for the ACAD correlation block for Pixel data_with =10.

5.1.3 ACAD inverse

ACAD inverse was synthesized using the three different division-approaches. The num-
bers of BRAMs synthesized for the three approaches are equal as shown in Figure [5.6]

DSPs inferred for the three approaches can be seen in Figure[5.7] The LUT-approach
infers more DSPs than the two other approaches.

The numbers of LUTs synthesized for the three approaches are illustrated in Figure
while the numbers of registers synthesized can be seen in Figure

74

Quantity

Quantity
S
o
o

CHAPTER 5. RESULTS

120
——BRAMs
110 - 8
100 - .
90 - 8
80 .
70 8
60 .
50 - .
40 .
30 b
20 1 1 1 1 1 L L L L
10 15 20 25 30 35 40 45 50 55 60
P_bands
Figure 5.6: Number of BRAMs synthesized for the Inverse block.
900 T PZai T
~-o-DSPs division operator approach
-e -DSPs shifting operator approach
800 ——DSPs LUT-approach

700

600

500

300

200

100

Figure 5.7:

35
P_bands

40

45 50 55 60

Numbers of DSP48E1 synthesized for the Inverse block.

5.1. SYNTHESIS 75

4
12210 ‘ \ \
—=—LUTs divisor operator approach
—=—LUTs shifting approach
LUTs LUT-approach
10~
sk i
2
§ 6 .
3
a
4- i
\
oL i
0 | | | 1 | | | | 1
10 15 20 25 30 35 40 45 50 55 60
P_bands
Figure 5.8: Numbers of LUTs synthesized for the Inverse block.
4
5.5 10 T T T T T T
——Registers divisor operator approach| |
—=—Registers shifting approach
51 Registers LUT-approach [
4.5 -
4 i
3.5 -
2
5 o 1
3
a
25 -
2 i
1.5 -
1 i
05 1 | 1 1 | 1 | 1 1
10 15 20 25 30 35 40 45 50 55 60

P_bands

Figure 5.9: Numbers of registers synthesized for the Inverse block..

76 CHAPTER 5. RESULTS

5.1.4 Timing results

To check if the design met timing requirements, the WNS of the synthesized designs was
checked. The target clock constraint was set to 100 MHz.

5.1.4.1 WNS ACAD correlation

ACAD correlation was synthesized for P_bands = [10, 20, 30, 40, 50] and Pizel data_width
= 16 on the Zedboard. The timing results are presented in Table

P _bands | WNS [ns]
10 1.272
20 0.721
30 1.446
40 0.845
50 0.509

Table 5.1: Timing results for ACAD correlation Pizel data_width = 16.

ACAD correlation was synthesized for P_bands = [10, 20, 30, 40, 50, 60, 70, 80,
90] and Pizel data width = 10 on the Zedboard. The timing results are presented in
Table

P _bands | WNS [ns] | Net delay [ns] | Logic delay [ns]
10 -3.074 7.860 5.078
20 -3.309 7.868 5.305
30 -3.109 6.732 6.241
40 -3.319 7.698 5.485
50 -3.324 7.703 5.485
60 -3.331 7.518 5.677
70 -4.923 8.563 6.224
80 -4.881 8.521 6.224
90 -5.224 9.373 5.735

Table 5.2: Timing results for ACAD correlation Pizel data_width = 10.

5.1.4.2 WNS division operator

Implementing division by the use of the division operator "/" yielded the timing results
presented in Table when synthesizing block Last division, computing the product
C =B« %. Width of B is 32 bit. The design was synthesized for dividend and divisor
data width of 32, 16, 12 and 10, with P_bands =10 and a target clock constraint of 100
MHz. The target device was the Zedboard.

5.2. SIMULATION 7

Data width divisor and dividend | WNS [ns| | fia.|[MHz]

32 -80.524 11.046
16 -11.776 45.934
12 -7.071 58.578
10 -5.730 63.572

Table 5.3: Synthesis results for Zedboard for Last division using the division operator

H/N.

5.1.4.3 Worst Negative Slack adaptive shifting approach

The design shown in Figure [£:33] was synthesized for Zedboard to check timing for
P_bands = [10, 20, 30, 40, 50, 60]. The worst WNS was 2.034 nanoseconds (ns), which
yields finaz of &~ 125M H z.

5.1.4.4 Worst Negative Slack LUT approach

The Inverse block was synthesized for Zedboard, with Div_ Precision =17 and P__bands
=10. The synthesis results yielded a WNS of -5.972 ns. Net delay accounts for 4.847 of
this.

P_bands =10 was chosen for testing of WNS due to the LUT approach over-utilizing
DSP48Els in the Zedboard for a higher number of P_bands.

5.2 Simulation

The designs have been tested on simulation runs in Vivado. The testbenches used for
simulation are available at https://github.com/marthauk/Anomaly-detection/tree/
invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.
srcs/sim_1/new.

5.2.1 Shiftregister

Shiftregister has been simulated and tested for constrained random inputs of din, and
for values of P_bands dividable by 4 satisfying the condition modulo(P _bands,4) = 0.
Figure shows a simulation for P_bands = 12.

dout is the output signal and outputs a spectral pixel vector of size P_bands X
Pizel data _width. din is input pixel data of size 64 bit. valid and valid out are control
signals signalling the validity of the input and output signals, while shift counter is an
internal counter which signalizes how many shifts that have been done.

https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new
https://github.com/marthauk/Anomaly-detection/tree/invert_matrix_computation/FPGA_implementation/Anomaly_detection/Anomaly_detection.srcs/sim_1/new

78 CHAPTER 5. RESULTS

> M dout(19
& valid
lid_out

> W shifl_counter{1:0]

Figure 5.10: Simulation of Shiftregister for P_bands = 12.

5.2. SIMULATION 79

5.2.2 ACAD correlation

Constrained random input simulation of ACAD correlation has been done in Vivado,
and the captured waveforms have been visually inspected. The waveforms shown in Fig-
ure [5.11] and Figure [5.12] show simulations of input pixel vectors of size P_bands = 4,
Pizel data_width = 16.

Figure[5.11|shows a simulation for a data input pixel vector = [0x00ff, 0x00f9, 0x00a5,
0x0055]. This is simulated to be the first pixel of the hyperspectral image. wvalid is an
input signal signalizing if the input din is valid. The output data_out outputs two rows
of the causal anomaly-removed correlation matrix per clock cycle.

Figureshows a simulation for a data input pixel vector = [0x0015, 0x00aa, 0x0029,
0x0009]. This is simulated to be the second pixel of the hyperspectral image. As can
be seen by the output signal data out, the contents of the BRAMs, which store the
causal anomaly-removed correlation matrix for the previous pixel, are added to the causal
anomaly-removed correlation matrix of the current pixel.

RESULTS

CHAPTER 5.

80

“Y00[(UOIJR[aII0d (IVV o} Jo uonemuilg :11°¢ omsrg

onnnn ¥ onnan y onoonn

4006005

05500

0-LJuwnjoo" U0 T BUOpP T SBIUM iy ¢

[0:GGZhnop g <
lo:eoluip Py <

81

SIMULATION

5.2.

“J00[q UOIJR[RII0D (IVD

V U3 Jo uoneuIg :g1°¢ omSL]

2G2400008 264001

04]uwnjod"UOTBUOPT SBIUM iy <

82 CHAPTER 5. RESULTS

5.2.3 Inverse

Simulation has been done for P_bands = [4,6] and Pizel data width = 16, with con-
strained random input. Figure shows a simulation with P_bands = 4. For this
simulation the division operator "/" is utilized. Data input signal din is a P_bands
x Pixel data width x 2 wide signal. The output inverse rows is a P_bands x 2
x Pizel data_width x 2 wide signal which outputs two rows of the inverse matrix
A~!, stored in A _inv, per clock cycle, while the signals data_out__brams_M _inv and
data_out_brams_ M are data that are read from A __inv and A respectively. The signal
state is the state of the top level inverse FSM.

83

SIMULATION

5.2.

“J00[q 9SIDAUT 91} JO UOIYR[NWIS :¢]'G 2INSI,

84

CHAPTER 5. RESULTS

Chapter 6

Discussion

6.1 Resource usage

ACAD is more suited for hardware implementation than the RX and LRX algorithms, due
to its causality, creation of an anomaly map and use of causal correlation matrix. Addi-
tionally, it enables real-time or near real-time performance. It is however computationally
intensive and requires a lot of resources.

6.1.1 DSP usage Pizel data width = 16

Synthesis results show that ACAD correlation infers P _bands x 4 DSP48Els and
P_bands BRAMs for Pizel data_width = 16.

When using the LUT approach, ACAD inverse also infers a large number of DSPs.
The Zynq Z-7030 contains 400 DSP Slices, while the Z-7035 contains 900 DSP Slices. Ac-
cording to synthesis results, the LUT approach for implementation of ACAD inverse
utilizes 540 DSPs for P_bands = 30 and Div_Precision = 17. As ACAD corre-
lation infers P_bands x 4 DSPs for Pixel data_width >= 11, the total number of
DSPs synthesized for these two modules for P_bands = 30, Pizel data_width = 16
and Div_ Precision = 17 will be 660. This is a high number, especially considering
that dACAD computes §494P (x;,) = xfﬁ._l(xk)xk, where xj, is a pixel vector of size
P _bands x Pixel data_width and R_l(xk) is a matrix of size P_bands X P_bands
x Pizel data_width x 2. Depending upon the implementation, this computation will
most likely also utilize DSPs. The large number of DSPs used constrains the size of the
pixel vector possible to input to the ACAD AD. For the Zynq Z-7030, while the maximum
number of spectral bands of the pixel vector will be ~ 20. It will be ~ 40 for the Zynq
7Z-7035. The initial prototype is to be implemented on the Zedboard Zynq Evaluation and
Development kit (referred to as Zedboard), which only contains 220 DSPs. Therefore, the
maximum size of P_bands is ~ 10 for the Zedboard.

85

86 CHAPTER 6. DISCUSSION

6.1.2 Pirel data__width = 10

When synthesizing ACAD correlation for Pizel data_width = 10, no DSPs are in-
ferred. Instead, the logic gets mapped to LUTs as shown in Figure[5.5] By doing this, the
number of DSPs used by the ACAD AD is heavily reduced. This might be an important
consideration for the SmallSat project as the number of DSPs inferred by the ACAD AD
is high, which constrains the value of P_bands.

6.2 Timing results

6.2.1 ACAD correlation

ACAD correlation meets timing demands for Pizel data _width = 16. For
Pizel data width = 10, the synthesized design infers no DSPs, but maps the logic to
LUTs. The WNS of the design is negative for Pizel data width = 10 as can be seen in
Table [5.2] meaning ACAD correlation fails to meet timing demands.

But, as can also be observed in Table the net delay is high and increasing as a
function of P_bands. This is due to the output ports of ACAD correlation getting
mapped to physical output pins on the synthesized device. However, this will not be
the case in implementation as the output ports of ACAD correlation are connected to
ACAD inverse and FSM ACAD. As such, the net delay is most likely unrealistically
large, as mapping to output pins scattered on the physical interface of the device will result
in a higher delay than mapping to internal buses located inside the device. Therefore,
the author believe that ACAD correlation will meet timing demands once the design
is a sub-module of the ACAD anomaly detector, and the output ports are mapped to an
internal bus instead of actual output pins.

6.2.2 ACAD inverse

Implementing division using the division operator "/" is not viable as the Last divi-
sion block fails to meet timing requirements when using this approach. This holds for
dividend-and-divisor bit width down to 10.

The adaptive shifting approach is an interesting approach for implementation of di-
vision, and the approach meets timing requirements. A big uncertainty however, is the
effect of precision error when utilizing this approach.

Implementing division through the LUT approach reveals promising results with re-
gards to timing, especially when taken into account that the author has not focused on
optimizing the LUT approach with regards to timing as the approach was implemented
late in the process of writing this thesis. Precision errors are most likely less probable in
this approach as opposed to the adaptive-shifting approach, especially when using a large
value for Div_ Precision. The synthesis results for the ACAD inverse block when using
LUT approach with Div_ Precision = 17 yielded a WNS of -5.972ns, in which 4.847 of
this is net delay. As the outputs of ACAD inverse is mapped to output pins when
running synthesis using ACAD inverse as top module, the net delay is most likely un-
realistically large. However, this will not be the case for the complete implementation
of the ACAD anomaly detector as the output from the ACAD inverse module will be

6.2. TIMING RESULTS 87

mapped to an internal bus connected to the dACAD block. The net delay will therefore
be considerably lower. The additional -1.25 ns WNS owing to logic delay may be reduced
when running implementation instead of synthesis, as implementation results typically
reduce the number of LUTs inferred. Still, it it uncertain if the design will meet tim-
ing requirements. If the requirements are not met, registers should be inserted into the
critical path, which most likely goes through Elimination core. If insertion of registers
is necessary, the estimated inverse computation execution times, inv_worst case and
inv_best case, need to be re-estimated.

6.2.3 Simulation results

The simulations of Shiftregister, ACAD correlation and ACAD inverse proved to
be successful, and the designs acts as expected. The simulations done is on a limited
range of possible inputs to the designs. Simulations done by the author should act as a
proof of concept of the simulated designs.

A wider set of data-inputs and test cases should be created for simulation in order
to test the designs more thoroughly. Testing on the Zedboard should be done once the
ACAD AD is completed.

88

CHAPTER 6. DISCUSSION

Chapter 7
Conclusion

A proposed implementation of the Adaptive Causal anomaly detection (ACAD) algorithm
has been made in this thesis. The implementation is to be implemented on the Zyng-
77030 or the Zyng-Z7035. ACAD was chosen after a comprehensive review of existing
anomaly detector (AD) algorithms. The ACAD algorithm has been tested on real and
synthetic image data by the author and Chang et al. [7], and it shows promising results.

The causality of the ACAD algorithm is beneficial for hardware implementation as
it enables real-time anomaly detection. ACAD builds a binary anomaly map of size
N _TOT PIXFELS, which it is possible to transmit to a ground station instead of
transmitting §4°4P (x},) of size N_TOT _PIXFELS x Pizel data_width x 2, where
Pixel data width is the data width of an input pixel per spectral band. This is advan-
tageous with regards to data transmission as it lowers transmission time and thereby also
transmission energy.

The Gauss-Jordan elimination was chosen for implementation of inverse. One of
the main drawbacks of this algorithm is the usage of division. Usage of the division
operator "/" leads to the design failing to meet timing requirements. Therefore, other
approximations have been made, including the adaptive-shifting and LUT approaches.
As these approaches are approximations, there might be precision errors leading to errors
in the outputted anomaly map from the ACAD.

The proposed implementation is made to be scalable in order to handle large val-
ues of spectral bands, P_bands. To be able to read and write two rows of a matrix
of size P_bands x P _bands per clock cycle, a parallel memory structure consisting of
BRAM-arrays of size P__bands for storage of matrices utilized by the ACAD algorithm is
made. Zynqg-Z7030 and Zyng-7035 contain enough BRAMs to store the matrices needed
in ACAD of sizes 53 x 53 and 100 x 100 respectively. These matrices have matrix ele-
ments of size Pixel data_width x 2.

The correlation and inverse modules have a large degree of parallelism, computing and
updating up to two rows of the correlation and inverse matrix respectively, both of size
P_bands x P_bands, per clock cycle. This computation is largely done by DSP-blocks
for Pixel data width of 16. For this data width, the correlation module, ACAD cor-
relation, infers P_bands x 4 DSPs. By setting Pizel data _width = 10, no DSPs are
inferred by ACAD correlation. The inverse module, ACAD inverse, also utilizes a

89

90 CHAPTER 7. CONCLUSION

high number of DSPs. For P_bands = 30, Div_ Precision = 17 and Pizel _data_width
of 16, ACAD inverse utilizes 540 DSPs. As the Z-7030 and Z-7035 have 400 and 900
DSPs respectively, the high number of DSPs utilized by the ACAD AD constrains the
value of the parameter P_bands.

One of the main bottlenecks of the processing pipeline in the ACAD is the inverse
computation. The estimat}c;d bwo;st case execution time per pixel for the inverse compu-
ands—1 .
5)

tation is 3P _bands + 2>, o

The largest uncertainty of the proposed implementation of ACAD is the effect of the
approximation to the division operation done in both the inverse and correlation modules.
This effect should be heavily tested to investigate whether it is possible to implement
ACAD using the approach proposed in this thesis.

7.1 Future work

For future work, the ACAD AD should be completed. To complete it, dACAD should
be implemented as well as FSM ACAD. When the ACAD AD is completed it should
be tested on a Zedboard Zynq Evaluation and Development kit.

Verification of the design should be done. As of now, the only form of verification
done has been constrained random input simulation on the blocks Shiftregister, ACAD
correlation and ACAD inverse. The designs should be further simulated for a wider
range of inputs. An automatic test-setup should be made, with a golden reference model,
possibly by using MATLAB or other high-level tools or languages.

The consequences of precision errors when doing an approximation to division in both
ACAD correlation and ACAD inverse should be investigated. This must be tested
on real hyperspectral data, preferably from the hyperspectral imager used by the SmallSat
project.

7.1.1 Optimization

One way of optimizing the ACAD AD is by finding a suited methodology for setting the
parameter 7. An option is to set 7 based on empirical results. The experiments should
contain real hyperspectral image data from coastal areas with algae that are interesting
for the SmallSat project. To be able to make a correct anomaly map, the value of 7 is
important.

Power optimization should be also done. This is especially important as the ACAD
AD is to be implemented on an energy-limited satellite. One of the most efficient and
easiest power optimization techniques is the usage of clock enable signals for sub-modules
in the design, for instance ACAD inverse, ACAD correlation, dACAD. Their re-
spective sub-modules could also have clock enable signals.

Bibliography

(1]
2]

3l
[4]
]

[6]
7l
(8]

(9

(10]

[11]

[12]

[13]

What is imaging spectroscopy (hyperspectral imaging)? [Online]. Available:
http://www.markelowitz.com/Hyperspectral.html

Qystein Antonsen. Alger drepte trolig 38.000 laks pa oppdrettsan-
legg. [Online]. Available: https://www.nrk.no/troms/alger-drepte-trolig-38.
000-laks-pa-oppdrettsanlegg-1.13633680

NASA. Aviris data- ordering free aviris standard data products. [Online]. Available:
https://aviris.jpl.nasa.gov/data/free data.html

L. Sun. Dataset for classification. [Online]. Available: |http://lesun.weebly.com/
hyperspectral-data-set.html

M. E. Grgtte. Ntnu smallsat: a hyper-spectral imaging mission. [Online].
Available: https://www.ntnu.edu/documents/20587845/1277298890/022 Gr%C2%
A2tte NTNU SmallSat Mission.pdf/f98477c2-4tb3-4fa9-a01d-d732c93b53a6

Xilinx. Zyng-7000. [Online]. Available: |https://www.xilinx.com/content/dam/
xilinx /imgs/block-diagrams,/zyng-mp-core-dual.png

C.-I. Chang and M. Hsueh, “Characterization of anomaly detection in hyperspectral
imagery,” Sensor Review, vol. 26, no. 2, pp. 137-146, 2006.

C. Gonzalez, S. Bernabé, D. Mozos, and A. Plaza, “Fpga implementation of an algo-
rithm for automatically detecting targets in remotely sensed hyperspectral images,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 9, no. 9, pp. 4334-4343, 2016.

J. M. Molero, E. M. Garzén, I. Garcia, and A. Plaza, “Analysis and optimizations of
global and local versions of the rx algorithm for anomaly detection in hyperspectral
data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 6, no. 2, pp. 801-814, 2013.

M. Hsueh, “Reconfigurable computing for algorithms in hyperspectral image process-
ing,” 2007.

V. K. Sachan, S. A. Imam, and M. Beg, “Energy-efficient communication methods
in wireless sensor networks: A critical review,” International Journal of Computer
Applications, vol. 39, no. 17, 2012.

Xilinx. Zyng-7000 all programmable soc data sheet: Overview(ds190). [On-
line|. Available: https://www.xilinx.com/support/documentation/data sheets/
ds190-Zyng-7000-Overview.pdf

B. Yang, M. Yang, A. Plaza, L. Gao, and B. Zhang, “Dual-mode fpga implementation
of target and anomaly detection algorithms for real-time hyperspectral imaging,”

91

http://www.markelowitz.com/Hyperspectral.html
https://www.nrk.no/troms/alger-drepte-trolig-38.000-laks-pa-oppdrettsanlegg-1.13633680
https://www.nrk.no/troms/alger-drepte-trolig-38.000-laks-pa-oppdrettsanlegg-1.13633680
https://aviris.jpl.nasa.gov/data/free_data.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
https://www.ntnu.edu/documents/20587845/1277298890/022_Gr%C2%A2tte_NTNU_SmallSat_Mission.pdf/f98477c2-4fb3-4fa9-a01d-d732c93b53a6
https://www.ntnu.edu/documents/20587845/1277298890/022_Gr%C2%A2tte_NTNU_SmallSat_Mission.pdf/f98477c2-4fb3-4fa9-a01d-d732c93b53a6
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

92

[14]

(15]

[16]

[17]

[18]

[19]

20]
21]
[22]

23]

24]

[25]

BIBLIOGRAPHY

IEEFE Journal of Selected Topics in Applied Farth Observations and Remote Sensing,
vol. 8, no. 6, pp. 2950-2961, 2015.

E.-U. S. E. P. Agency. Climate change and harmful algal blooms. [Online]. Available:
https://www.epa.gov/nutrientpollution /climate-change-and-harmful-algal-blooms

NASA. Aviris airborne visible infrared imaging spectrometer. [Online]. Available:
https://aviris.jpl.nasa.gov /index.html

J. Fjelltvedt, “Direct memory access for hyperspectral imaging applications.”

1. S. Reed and X. Yu, “Adaptive multiple-band cfar detection of an optical pattern
with unknown spectral distribution,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 38, no. 10, pp. 1760-1770, 1990.

M. Karkooti, J. R. Cavallaro, and C. Dick, “Fpga implementation of matrix inversion
using qrd-rls algorithm,” in Asilomar Conference on Signals, Systems, and Comput-
ers, 2005.

R. Andraka, “A survey of cordic algorithms for fpga based computers,” in Proceedings
of the 1998 ACM/SIGDA sizth international symposium on Field programmable gate
arrays. ACM, 1998, pp. 191-200.

D. Kun. Matlab hyperspectral toolbox. [Online|. Available: |https://github.com/
davidkun/HyperSpectral Toolbox

M. Haukali. Matlab hyperspectral toolbox fork. [Online]. Available: |https:
//github.com/marthauk /HyperSpectralToolbox/tree/dev

G. D. intelegencia Computacional. Hyperspectral remote sensing scenes. [Online].
Available: http://lesun.weebly.com/hyperspectral-data-set.html

Xilinx. Vivado design suite 7 series fpga and zyng-7000 all programmable
soc libraries guide(ug953). [Online|. Available: https://www.xilinx.com/support/
documentation/sw manuals/xilinx2017 4/ug953-vivado-7series-libraries.pdf

S. VHDL. How to implement division in vhdl. [Online|. Available: |http:
/ /surf-vhdl.com /how-to-implement-division-in-vhdl/

Xilinx. Overutilizng dsps. [Online]. Available: |https://forums.xilinx.com/t5/
Implementation/LUT-and-DSP-Utilization/td-p /692728

https://www.epa.gov/nutrientpollution/climate-change-and-harmful-algal-blooms
https://aviris.jpl.nasa.gov/index.html
https://github.com/davidkun/HyperSpectralToolbox
https://github.com/davidkun/HyperSpectralToolbox
https://github.com/marthauk/HyperSpectralToolbox/tree/dev
https://github.com/marthauk/HyperSpectralToolbox/tree/dev
http://lesun.weebly.com/hyperspectral-data-set.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug953-vivado-7series-libraries.pdf
http://surf-vhdl.com/how-to-implement-division-in-vhdl/
http://surf-vhdl.com/how-to-implement-division-in-vhdl/
https://forums.xilinx.com/t5/Implementation/LUT-and-DSP-Utilization/td-p/692728
https://forums.xilinx.com/t5/Implementation/LUT-and-DSP-Utilization/td-p/692728

Appendices

93

Appendix A

MATLAB hyperspectral

A.1 High level models of algorithms

A.1.1 Gauss-Jordan elimination

function

Listing A.1: Gauss Jordan inverse

gauss _jordan inverse (A, mode)

% This function

calculating inverse of a square
as a high level model for
hardware .

% It acts

% Detailed explanation goes

% USAGE:

% Inputs:
% A

% size p

% Outputs:

% A_inv

here

matrix.
later

— Matrix of size p x p

— column size

— inverse matrix

[size p ,m|=size (A);
A inv = eye(size p);

% Forward

elimination to build

for (i=1:1:size_ p)
if (A(i,i) = 0)
for (j =i+1:1:size_p)

if (A(j,Jj)7=0)

an upper
if (strcmp (mode, "forward’) | stremp (mode, ’

% The operations below will

hardware, because
% of parallell operations
Ytemp 1 = row(i);

95

[A inv,A mode elim,A mode elim inv | =

implements the Gauss—Jordan method for

implementation

triangular

all 7))

be

different

matrix

in

in

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39
40
41
42

43

44

45

46

62

63

64

65

66

67

96

APPENDIX A.
Yrow (i) = row(j);
Yrow (j) = temp i;
temp i = A(i,:);
A(i,:) =A@ ,:);
A(j,:) = temp i;
end
end
end

if (A(i,i) ==0)

MATLAB HYPERSPECTRAL

% error (’Matrix is singular ’);
end
for (j =1 +1:1: size p)
% The operations below will be different in hardware,
because
% of parallcll operations
A_j_i_temp =A(j,i);
A i i temp = A(i,i);
YA(] ,:) = A(j) A(i,:)*A j i temp/A i i temp;
%A _inv(j,:) = A inv(j,:) — A inv(i,:)*A _j i temp/
A i i temp;
for (1= 1:size_p)
A(j,1) = A(] , 1)— A(i,1)*A _j i temp/A i i temp;
A inv(j,l) = A inv(j,l) — A inv(i,l)*xA _j i temp/
A i i temp;
end
end
end
end
if (strcmp(mode, forward’))
A mode_elim = A;
A mode_elim_inv = A_inv;
end
% Backward elimination to build a diagonal matrix
if (stremp (mode, "backward’) | strcmp (mode, "all ’))
for (i=size p:—1:2)
for(j=i—-1:—1: 1)
% The operations below will be different in hardware,
because
% of parallell operations
A j i temp =A(j,i);

A i i temp = A(i,i);

;i) kcast (cast (A(]j

TA()) = A>),:)-AU
,’double) ;
%A_inv(j ,-
A j i temp/A i i

) = A inv(j,:) — A _inv(i
"int327) |

temp,

Ji)/A(i,1),7int32 ")

,:)*cast (cast (
“double ") ;

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

o T A B VI R

A.1. HIGH LEVEL MODELS OF ALGORITHMS

% inv (;o) = A inv(j,:) — A inv(i,:)*A _j i temp/
A i i _temp;

for (k=1:size_p

)
Al k) = A>) L K)=ACLLK) A, 1) /A(T, 1)

A inv(j,k) A inv(j,k) — A _inv(i,k)*A _j i temp/
A i i temp;
end
end
end
end
if (strcmp (mode, "backward’))
A mode elim_inv = A_inv;
A mode_elim = A;
end
if (strcmp (mode, "identity "))
A mode elim inv = zeros(3);
A _mode_elim = zeros(3);
end
if (strcmp (mode, "all 7))
A _mode_elim_inv = zeros(3);
A mode elim = zeros(3);
end

% Last division to build an identity matrix
for (i = 1:+1:size_p)
A inv(i,:)= A inv(i,:)*1/A(i,1);

end

end

A.1.2 RX anomaly detector

Listing A.2: RX AD

function [result, sigma, sigmalnv] = hyperRxDetector (M)
YHYPERRX RX anomaly detector

% hyperRxDetector performs the RX anomaly detector

% Usage

% [result] = hyperRxDetector (M)

% Inputs

% M — 2D data matrix (p x N)

97

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

12

13

14

15

16

17

18

19

20

N

1

22

98 APPENDIX A. MATLAB HYPERSPECTRAL

% Outputs

% result — Detector output (1 x N)

% sigma — Covariance matrix (p x p)

% sigmalnv — Inverse of covariance matrix (p x p)

% Remove the data mean

[p, N] = size(M);

mMean = mean (M, 2);

M =M — repmat (mMean, 1, N);

% Compute covariance matrix
sigma = hyperCov (M) ;

sigmalnv = inv (sigma);
result = zeros(N, 1);
for i=1:N
result (i) =M(:,1i). *xsigmalnvM(:,1);
end
result = abs(result);
return ;

A.1.3 LRX anomaly detector

Listing A.3: LRX AD

function [result, autocorr, sigmalnv] = hyperLRxDetectorCorr (MK
)

YHYPERRX LRX anomaly detector

% hyperLRxDetector performs the Local RX anomaly detector
using Correlation

% instead of covariance
%
% Usage

% [result| = hyperRxDetector (M)

% Inputs

% M — 2D data matrix (p x N)

% K — Size of the kernel window, K x K
% Outputs

% result — Detector output (1 x N)

% sigma — Correlation matrix (p x p)
% sigmalnv — Inverse of correlation matrix (p x p)

[p, N] = size(M);

% Compute correlation matrix of size K
% correlation matrix will be of size p x p
result = zeros(N, 1);

23

24

25

26

27

28

29

30

31

32

33

34

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

A.1. HIGH LEVEL MODELS OF ALGORITHMS 99

h = waitbar (0, Initializing waitbar ..7);
for j=1:N
autocorr = hyperCorrK (M,K, j);
% M _inv = gauss jordan inverse(autocorr,’all ’);

result (j) =M(:,j).’ * pinv(autocorr) * M(:,]);
Yresult (j) =M(:,j)." = M _inv % M(:,j);

waitbar (j/N,h, "Updated LRX progress’);
end

return;

A.1.4 ALRX anomaly detector

Listing A.4: ALRX AD

function [result , anomaly map,location of anomalies,

last _local anomalies set| = hyperLRX anomaly set_remover (MK,
treshold)

% LRX anomaly detector, that also removes the detected anomalous
targets

% causaly .

% hyperLRxDetector performs the Local RX anomaly detector
using Correlation

% instead of covariance

%

% Usage

% [result| = hyperRxDetector (M)

% Inputs

% M — 2D data matrix (p x N)

% K — Size of the kernel window, K x K

% Outputs

% result — Detector output (1 x N)

[p, N] = size (M)
Y%waitbar for progress monitoring
h = waitbar (0, Initializing waitbar ..7);

% Compute correlation matrix of size K
% correlation matrix will be of size p x p

result = zeros (N, 1);

anomaly map = zeros (N,1);

anomalies detected=zeros(p,N/2);
anomalies detected transpose sum = zeros(p,p);

Y%tresh LRX = 6.0000e-+14;
tresh LRX=treshold;
location of anomalies= zeros(N/2,1);

local anomalies set=0;

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

APPENDIX A. MATLAB HYPERSPECTRAL

last _local anomalies set =0;
ROWS=100;

flag local anomaly found =0;
for j=1:N

autocorr = hyperCorrK (M,K,p);

%adaptive autocorr inv = inv(autocorr —
anomalies detected transpose sum);

adaptive autocorr inv = pinv(autocorr —
local anomalies set);

Yresult (j) =M(:,1i).’ * autocorrInv;

result (j) =M(:,j).’ * adaptive autocorr inv * M(:,j);
if result(j) > tresh_LRX
% This pixel is an anomaly! Add it to the set of
anomalies
anomalies detected (:,t_an) = M(:,j);
anomaly map(j)=1;
location of anomalies(t_an)=j;
anomalies detected transpose sum = M(:,j)x M(:,j).
+ anomalies detected transpose sum;
t an =t _an + 1;
end
%if anomalies detected transpose sum contains elements
from outside
%the KERNEL

)

lower limit_ matrix = j — floor (K/2);
higher limit matrix = j + floor (K/2);

% Check if index is out of bounds
if (lower limit matrix < 1)
% for edges of the matrix, gonna assume that we just
throw out points
% outside of the edge, and use half the KERNEL
lower limit matrix = 1;
end
if (higher limit matrix > N)
% M(band, neighbouring pixels) % (M(band, Neighbouring
pixels)
higher limit_ matrix = N;
end

if (any(local anomalies set))
%just to check that it works
last local anomalies set = local anomalies set;
end
%resetting local anomalies set before using it the next

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

oA woN

© o N o

A.1. HIGH LEVEL MODELS OF ALGORITHMS 101

iteration
local anomalies set = 0;
flag _local anomaly found =0;
for i=1:t_an

if flag local anomaly_ found = 0
for k=1:K
if (flag local anomaly found==0)

if (location of anomalies(i) >
lower limit matrix+(k—1)«ROWS &
location _of anomalies(i)<
higher limit matrix+(k—1)+ROWS)
local anomalies set =
local _anomalies _set +
anomalies detected (:,1
anomalies detected (:,1i
flag_local anomaly found =1;
break ;
end
end
end
end
%if location of anomalies(t an)<j—floor (K/2) |
location of anomalies(t_an)>j+floor (K/2)

% anomalies detected transpose sum =
anomalies detected transpose sum — M(:,t an)=M(:,
t_an).’;

Yoend
end

P%result (j)= result(j) = M(:,i);
waitbar (j/N,h, "Updated progress’);
end

result = abs(result);

A.1.5 ACAD anomaly detector

Listing A.5: ACAD

function [d_acad, anomaly map,threshold check values| =
hyperACAD (M, tresh)

YHYPERRX Adaptive Causal Anomaly detector

% hyperLRxDetector performs the Adaptive Causal detector using

% correlation matrix

% 1t is adaptive in the sense that it removes the previously
detected

% anomalies from the correlation set

% Usage
% [result| = hyperACAD (M)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

102 APPENDIX A. MATLAB HYPERSPECTRAL

% Inputs
% M — 2D data matrix (p x N)
% tresh — Treshold for a pixel to be considered anomaly

% Outputs
% d_acad — Detector output (1 x N)
% anomalies detected — (1 x t_ an)

% t_an is the number of anomalies detected. Since MatLab is 1—
index, T is

% initially set to 1, not 0.

t an—1;

% bheta is the ratio of the entire image size to the size of

anomaly
bheta = 100;
%bheta = 50;

% p is number of spectral bands, N is number of pixels
[p, N = size(M);

% anomalies detected is the growing set of anomalies detected in
the image.

% Numbers of anomalies will not exceed N/2. Even that is way to
much .

% Starting point N/2. Need to include the pixel it was found, j.
Make some

% kind of map

anomalies detected=zeros(p,N/2);

% anomalies detected transpose sum is the sum of the transposes
taken on

% anomalous pixels

anomalies detected transpose sum = zeros(p,p);

% n_acad is used in the process of setting the threshold for
finding an

% anomaly

n_acad = (N/bheta);

% u_k is the expected value/causal mean in the image. Initial
value is set

% to the first pixel.. This is wrong!!

Tu_k = M(:,1);

u_k =0;

% tresh is the treshold value used to consider if the pixel is
an anomaly

% or not. I think that it the anomaly detection will be

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

A.1. HIGH LEVEL MODELS OF ALGORITHMS 103

normalized ... (?777)

% Grubbs test for setting treshold?
%tresh = 50;

% d_acad is the result of Adapative Causal anomaly detection
d_acad = zeros(N, 1);

%waitbar for progress monitoring
h = waitbar (0, 'Initializing waitbar ..7);

% Since this is causal, it is useful to have the value

prev _autocorr

prev__autocorr = 0;

% Causality
prev_u_k = 0;

threshold check values = zeros(N,1);

%

location of anomalies= zeros(N/2,1);

% for all N=m x n pixels
for j=1:N

%

0y
(4

[0y,
0

%

% want to store the result of hyperCausalCorr, in case
this pixel isan

% anomaly. In that case we need to subtract it from the
set .

autocorr = prev_autocorr + hyperCausalCorr(M,j);

prev__autocorr = autocorr;

% Normalizing

%autocorr = autocorr/j;

% Since anomalies detected transpose is firstly
initialized to

% zero, this will sum N/2 elements being zero. This is

not
% necessary , and will cost computation time. Find fix
%adaptive autocorr inv = inv(autocorr —
anomalies detected transpose sum);
%adaptive autocorr inv = gauss_ jordan inverse(autocorr —

anomalies detected transpose sum,’all ’);
if (j>floor (n_acad))

adaptive autocorr inv = gauss_jordan inverse ((
autocorr — anomalies detected transpose sum)/(n_acad—t_ an),’
all 7) ;
else
adaptive autocorr inv = gauss jordan inverse ((

autocorr — anomalies detected transpose sum) /(j:tian) ,all)

90

91

92

93

94

95

96

97

98

99

100

101

102

103

105

104 APPENDIX A. MATLAB HYPERSPECTRAL

% end
%
%
if (j>floor (n_acad))
adaptive autocorr inv = pinv((autocorr —
anomalies detected transpose sum))/(n_acad—t_an));
else
adaptive autocorr inv = pinv ((autocorr —
anomalies detected transpose sum))/(j—t_an));
end
Y%temp acad = M(:,j).’ * adaptive autocorr inv x M(:,]);
d _acad(j)=M(:,j).’ % adaptive autocorr inv * M(:,j);
if (j>floor (n_acad))
u_k un_ normalized = prev_u_k + d_acad(j) — d_acad(j—
floor (n_acad));
%u_k un_ normalized = sum(d_acad(j—n_acad:j));
else
u_k un_ normalized = prev_u_k + d_acad(j);
end
u k = (1/n_acad) * u_k un_ normalized;
%u_k = abs(u_k);
%disp (d_acad(j)—u_k);
threshold check values(j) = d_acad(j)—u_k;
%if (abs(d_acad(j) — u_k)) > tresh
if ((d_acad(j) — u_k)) > tresh
% This pixel is an anomaly! Add it to the set of
anomalies
anomalies detected (:,t_an) = M(:,]);
location of anomalies(t_an)=j;
anomalies detected transpose sum = M(:,j)* M(:,j).’
+ anomalies detected transpose sum;
t an =t _an + 1;
end
prev_u_k = u_k_ un_ normalized;
waitbar (j/N,h, "Updated progress ACAD’);
end

anomaly map= zeros (1,N);
for i=1:1:N/2
if (anomalies detected(1,i) = 0)

pixel pos anomaly = location of anomalies(i);
anomaly map (pixel pos anomaly) = 1;
end

end

135

136

AW N e

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

A.2. TESTING 105

return;

A.2 Testing
A.2.1 Hyper demo detectors

Listing A.6: Hyper Demo Detector
function hyperDemo detectors
% HYPERDEMO DETECTORS Demonstrates target detector algorithms
clear; clc; dbstop if error; close all;

%% Parameters

%resultsDir =’E:\One Drive\OneDrive for Business\NINU\Master\
Forked MATLAB hyperspectral toolbox\
MATLAB Hyperspectral toolbox\results ’;

%dataDir = ’E:\One Drive\OneDrive for Business\NINU\Master\
Forked MATLAB hyperspectral toolbox\MATLAB DEMO hyperspectral
\f970619t01p02r02c”’

resultsDir =[’E:\One Drive\OneDrive for Business\NINU\Master\
Anomaly detection results \MATLAB\LRX\real image data Cuprite
scene\’ ,datestr (now, ’dd-mmm-yyyy’)];

dataDir = 'E:\One Drive\OneDrive for Business\NINU\Master\
MATLAB DEMO hyperspectral\ f970619t01p02r02c ’;

%

mkdir(resultsDir);

9% Read part of AVIRIS data file that we will further process

M = hyperReadAvirisRfl (sprintf (%s\\f970619t01p02 r02 sc02.a.rfl
", dataDir), [1 100], [1 614], [1 224]);

%M = hyperReadAvirisRfl (sprintf(’%s\\f970619t01p02 r02 sc04.a.
rfl 7, dataDir), [1 100], [1 614], [1 224]);

M = hyperNormalize (M) ;

%% Read AVIRIS .spc file

lambdasNm = hyperReadAvirisSpc(sprintf('%s\\{970619t01p02 r02.a.
spc’, dataDir));

%% Isomorph

[b, w, p] = size(M);

M = hyperConvert2d (M) ;

%KSC_2d = hyperConvert2d (KSC) ;

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

106 APPENDIX A. MATLAB HYPERSPECTRAL

9VEKSC 2d;

%% Resample AVIRIS image.

desiredLambdasNm = 400:(2400—-400) /(224—-1):2400;

M = hyperResample (M, lambdasNm, desiredLambdasNm);

%% Remove low SNR bands.
goodBands = [10:100 116:150 180:216]; % for AVIRIS with 224
channels

%goodbands KSC =[10:100 116:150];

PKSC_2d = KSC_2d(goodbands KSC,:) ;
%p = length (goodbands KSC);

M = M(goodBands, :);

p = length (goodBands) ;

%% Demonstrate difference spectral similarity measurements

M = hyperConvert3d(M, h, w, p);

target = squeeze(M(11, 77, :));

figure; plot (desiredLambdasNm (goodBands), target); grid on;
title (' Target Signature; Pixel (32, 257)7);

M = hyperConvert2d (M) ;

%% RX Anomly Detector

%r = hyperRxDetector (M) ;

%r = hyperRxDetectorCor (M) ;

K=23;

resultsDir :[’E:\One Drive\OneDrive for Business\NITNU\ Master\
Anomaly detection results \MATLAB\LRX\real image data Cuprite
scene\’ ,datestr (now, ’dd—mmu-yyyy’)];

%r = hyperLRxDetectorCorr (M,K) ;

%g = ground truth(h,614, M, M _endmembers) ;

%tigure; imagesc(g);colorbar;

treshold = 500;

for treshold= 500: 250 :2000

[r,anomalies detected , location of anomalies,
last _local anomalies set|=hyperLRX anomaly set remover (MK,
treshold);

[r,anomalies detected, location of anomalies,

last _local anomalies set|=hyperLRX anomaly set remover(KSC_ 2d
,K, treshold);

figure; imagesc(r); title ([’ALRX Detector Results .K=23, tresh =’
num2str(treshold) ’.’]); axis image;
colorbar;

hyperSaveFigure(gcf, sprintf ([%s \\ALRX Detector Results .K=23,

69

70

71

72

73

74

75
76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

A.2. TESTING 107

tresh’ num2str(treshold) ’'.png’ |, resultsDir));%

%figure; imagesc(r); title (| 'LRX removing anomalies, tresh =2000,
K=25 .’]); axis image;

% colorbar ;

% figure; imagesc(r); title ([’LRX Cuprite image data sc02 K=’
num2str(K) ’.’]); axis image;

% colorbar;

% hyperSaveFigure(gcf, sprintf([’%s\\LRX K=25 treshold 500 KSC’
num?2str (treshold) ’.png’ |, resultsDir));%

%
anomaly map = hyperConvert3d (anomaly map.’, h, w, 1);
figure; imagesc(anomaly map); title ([’Anomaly map ACAD, using
LUTs, treshold = ’ num2str(treshold) ’.’]); axis image;

colorbar;
hyperSaveFigure (gef, sprintf (['%s\\Anomaly Map ACAD using LUTs.
treshold= 7 num2str(treshold) ’.png’ |, resultsDir));%

end

%% Constrained Energy Minimization (CEM)

r = hyperCem (M, target);

r = hyperConvert3d(r, h, w, 1);

figure; imagesc(abs(r)); title(’CEM Detector Results’); axis
image;
colorbar;

hyperSaveFigure (gcf, sprintf('%s\\cem detector.png’, resultsDir)

)

%% Adaptive Cosine Estimator (ACE)

r = hyperAce(M, target);

r = hyperConvert3d(r, h, w, 1);

figure; imagesc(r); title(’ACE Detector Results’); axis image;
colorbar;

hyperSaveFigure (gef, sprintf('%s\\ace detector.png’, resultsDir)

))

%% Signed Adaptive Cosine Estimator (S—ACE)

r = hyperSignedAce (M, target);

r = hyperConvert3dd(r, h, w, 1);

figure; imagesc(r); title(’Signed ACE Detector Results’); axis
image;
colorbar;

hyperSaveFigure (gef, sprintf('%s\\signed ace detector.png’,
resultsDir));

%% Matched Filter
r = hyperMatchedFilter (M, target);

108

109

111

112

113

115

116

117

128

129

130

131

132

134

108 APPENDIX A. MATLAB HYPERSPECTRAL

r = hyperConvert3d(r, h, w, 1);

figure; imagesc(r); title(’MF Detector Results’); axis image;
colorbar;

hyperSaveFigure (gef, sprintf('%s\\mf detector.png’, resultsDir))

)

%% Generalized Likehood Ratio Test (GLRT) detector

r = hyperGlrt (M, target);

r = hyperConvert3dd(r, h, w, 1);

figure; imagesc(r); title (’GLRT Detector Results’); axis image;
colorbar;

hyperSaveFigure(gecf, sprintf(’'%s\\cem detector.png’, resultsDir)

)

%% Estimate background endmembers

U = hyperAtgp(M, 5);

r = hyperHud (M, U, target);

r = hyperConvert3dd(r, h, w, 1);

figure; imagesc(abs(r)); title(’HUD Detector Results’); axis
image;
colorbar;

hyperSaveFigure(gcf, sprintf('%s\\hud detector.png’, resultsDir)

)

%% Adaptive Matched Subspace Detector (AMSD)

r = hyperAmsd(M, U, target);

r = hyperConvert3dd(r, h, w, 1);

figure; imagesc(abs(r)); title (’AMSD Detector Results’); axis
image;
colorbar;

hyperSaveFigure (gef, sprintf('%s\\amsd detector.png’, resultsDir
)5

figure; mesh(r); title (’AMSD Detector Results’);

%% Orthogonal Subspace Projection (OSP)

r = hyperOsp(M, U, target);

r = hyperConvert3dd(r, h, w, 1);

figure; imagesc(abs(r)); title(’OSP Detector Results’); axis
image;
colorbar;

hyperSaveFigure(gef, sprintf('%s\\osp detector.png’, resultsDir)

)

A.2.2 Generating synthetic images

Listing A.7: Synthetic image 30 30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

A.2. TESTING 109

clc; clear;close all;

%generating random image based on cuprite scene data

h=30;

w= 30;

%load (’E:\ One Drive\OneDrive for Business\NINU\Master\
ground truthing aviris cuprite\cuprite)
groundTruth Cuprite end12\groundTruth Cuprite nEnd12.mat’,’ —
mat’) ;

load (’groundTruth Cuprite nEnd12.mat’, ’—mat’);

M _endmembers=M,;

goodBands = [10:100 116:150 180:216]; % for AVIRIS with 224
channels

M _endmembers=M(goodBands ,:) ;

[n_bands,k]| = size (M_endmembers) ;
image 30 30 = zeros(30,30,n_bands);
reference _anomaly map = zeros(30,30);

n_true_anomalies =4;
% Setting background
for i=1:h
for j=1:w
dice = randi(6);
if dice>4
image 30 30(i,j,:)= M_endmembers(:,1); %setting
background to alunite
elseif dice>2
image 30 30(i,j,:)= M_endmembers(:,6); %setting
background to Kalonite
else
image 30 30(i,j,:)= M_endmembers(:,10) ;% setting
background to pyrope

end
% rN = rand;
% image 30 _30(i,j,:)= rN *x M _ endmembers(:,1) + 0.25%

M _endmembers (:,3) +0.25% M _endmembers (:,6) +(1—rN)x
M endmembers (:,8) ;

% rN= rand;

% image(i,j,:) = rN+«+M _ endmembers(:,1) +0.2%xM _endmembers
(:,3)+0.2«M _endmembers (: ,4) +0.2«M _endmembers (: ,7)+rNx
M _endmembers (: ,12) ;

end
end

%create kernels with anomalies of size 2x2 with bottom left
pixel in 15,15
%column locations

KERNEL_SIZE TWO LOCATION — 15;

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

110 APPENDIX A. MATLAB HYPERSPECTRAL

image 30 30 (KERNEL SIZE TWO LOCATION,KERNEL SIZE TWO_ LOCATION, :)
= M_endmembers (:,3) ;

reference _anomaly map (KERNEL SIZE TWO LOCATION+1,
KERNEL SIZE TWO_LOCATION) =1;

reference anomaly map (KERNEL SIZE TWO_LOCATION,
KERNEL SIZE TWO_LOCATION) =1;

reference anomaly map (KERNEL SIZE TWO LOCATION+1,
KERNEL_SIZE_TWO_LOCATION+1)=1;

reference _anomaly map (KERNEL SIZE TWO_LOCATION,
KERNEL SIZE TWO_ LOCATION+1)=1;

image 30 30 (KERNEL SIZE TWO LOCATION+1,KERNEL SIZE TWO LOCATION
,:)= M _endmembers(:,3) ;

image 30 30 (KERNEL SIZE TWO LOCATION,KERNEL SIZE TWO LOCATION
+1,:)= M_endmembers (:,3) ;

image 30_30(KERNEL SIZE TWO_LOCATION+1 ,KERNEL SIZE TWO_LOCATION
+1,:)= M_endmembers (:,3) ;

imnoise (image 30 30, gaussian’,1);

matrix=hyperConvert2d (image 30 30);

%[d_acad, anomaly map,threshold check values| = hyperACAD (matrix
,100) ;

% K is size of kernel

K=5;

treshold = 0.9;

%|r _alrx ,anomaly map,not used ,not use| =
hyperLRX anomaly set remover(matrix K, treshold);

[r_alrx ,anomaly map,not used | =hyperACAD (matrix ,treshold);

%d _acad 2d = hyperConvert3d(d acad.’, 30, 30, 1);
r_alrx 2d = hyperConvert3d(r_ alrx.’, 30, 30, 1);
anomaly map 2d = hyperConvert3d (anomaly map.’, 30, 30, 1);

%figure ;imagesc(r_alrx 2d);title ([’ALRX AD detector , K=
num2str (K) |); axis image; colorbar;
figure;imagesc(r_alrx 2d);title (['ACAD result ., treshold’ num2str
(treshold)]); axis image; colorbar;

figure ;imagesc (anomaly map 2d); title ([TACAD anomaly map,
treshold= 7 num2str(treshold) |]); axis image; colorbar;

%% Evaluate the performance of the AD by setting objective
measures

% find max value outputted from the AD

Y%max ad score = max(r_rlx);

treshold percentage = 0.75;

predicted anomalies =0;

% for i=1:wxh

% if r rlx(i)>=treshold percentage xmax_ ad_score

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

103

10

11

13
14

15

A.2. TESTING

% predicted anomalies =predicted anomalies+1;
% end
% end
n_actual anomalies=n_true anomalies;
n_true_anomalies =0;
for i=1w
for j=1:h
if anomaly map 2d(i,j)==1
predicted anomalies =predicted anomalies—+1;
if reference anomaly map(i,j)==1
n_true anomalies=n_true anomalies+1;
end
end
end
end

false anomalies = predicted anomalies—n_true anomalies;
if predicted anomalies<n actual anomalies
correctly predicted anomalies =n_true anomalies/
n_actual anomalies;
else
correctly predicted anomalies =n_true anomalies/
predicted anomalies;
end

%tigure ;imagesc(d_acad 2d); axis image; colorbar;
%figure ;imagesc (anomaly map 2d); axis image; colorbar;

%figure ;imagesc (reference anomaly map);axis image; colorbar;

Listing A.8: Synthetic image 100x614

%for Cuprite scene

clc; close all; clear;

h=100;

w= 614;

load (’groundTruth Cuprite nEnd12.mat’, ’—mat’);

M _endmembers=M,;

goodBands = [10:100 116:150 180:216]; % for AVIRIS with 224
channels

M endmembers=M(goodBands ,:) ;

[n_bands,k] = size (M _endmembers) ;

image = zeros (h,w,n_ bands);
reference anomaly map = zeros (h,w);
% Setting background

for i=1:h

for j=1:w
dice = randi(6);

111

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

112 APPENDIX A. MATLAB HYPERSPECTRAL

if dice>4
image(i,j,:)= M_endmembers(:,1); %setting background
to alunite
elseif dice>2
image(i,j,:)= M_endmembers(:,6); %setting background
to Kalonite
else
image(i,j,:)= M_endmembers(:,10) ;% setting
background to pyrope
end
% rN=rand ;
% image(i,j,:) = rNx«M_ endmembers(:,1) +0.2«M _endmembers
(:,3)4+0.2«M _endmembers (: ,4) +0.2%xM _endmembers (:,7)+(1-rN) =
M _endmembers (:,12) ;
end
end

%imnoise (image ,’ gaussian ’,1);

Y%setting 50 random pixels to be an anomaly
% for i=1: 50

% h index=randi(h);

% w_index= randi(w);

% signature index = randi([2 12]);

% image (: ,h_index,w index) = M _endmembers (:,signature index)
5

% anomaly map(h index,w index)=1;

% end

%create kernels with anomalies of size 1, 5, 10,15, 20, 25 in

columns 5, 20,50,100, 400,
%600, in row 35 and 70
Y%column locations
KERNEL SIZE ONE LOCATION =50;
KERNEL SIZE TWO_LOCATION = 100;
KERNEL SIZE FIVE LOCATION =150;
KERNEL SIZE TEN LOCATION =250;
KERNEL_SIZE FIFTEEN LOCATION =350;
KERNEL SIZE TWENTY LOCATION =450;
KERNEL SIZE TWENTYFIVE LOCATION =550;
for i=1:h
if (mod(i,35)==0)
image (i ,KERNEL SIZE ONE LOCATION,:) = M _endmembers(:,3) ;
reference _anomaly map (i ,KERNEL SIZE ONE LOCATION)=1;

image (1 ,KERNEL SIZE TWO LOCATION,:) = M _endmembers(:,3) ;
reference _anomaly map (i ,KERNEL SIZE TWO_LOCATION)=1;

image (i ,KERNEL SIZE TWO_ LOCATION +1,:) = M_endmembers

59
60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

A.2. TESTING 113

(+,3);
reference anomaly map (i ,KERNEL SIZE TWO LOCATION +1)=1;

image (i+1,KERNEL SIZE TWO LOCATION,:) = M _endmembers
(:,3);
reference anomaly map (i+1,KERNEL SIZE TWO LOCATION) =1,

image (i+1,KERNEL SIZE TWO_LOCATION +1,:) = M_endmembers
(:,3);

reference anomaly map (i+1KERNEL SIZE TWO LOCATION +1)
=1,

for (j=5:5:25)
for row =i—floor (j/2):i+floor (j/2)

switch j
case 5
colcenter =KERNEL_ SIZE FIVE LOCATION;
case 10
colcenter =KERNEL SIZE TEN LOCATION;
case 15

colcenter =
KERNEL SIZE FIFTEEN LOCATION;
case 20
colcenter =KERNEL SIZE TWENTY LOCATION
case 25
colcenter =
KERNEL SIZE TWENTYFIVE LOCATION;
end
for col =colcenter—floor(j/2):colcenter+floor (j
/2)
image (row, col ,:) = M _endmembers(:,3) ;
reference _anomaly map (row, col)=1;
end
end
end
end
end
imnoise (image, gaussian ' ,1);

matrix=hyperConvert2d (image) ;

% r_rx_2d = hyperConvertdd(r_rx.’, h, w, 1);

% figure; imagesc(reference anomaly map); title ([’ Expected
anomaly map’|); axis image; colorbar;

% figure; imagesc(r_rx 2d); title ([’RX AD results ']); axis
image; colorbar;

99

100

102

103

104

105

106

107

108

109

111

126

127

129

130

132

133

134

135

136

114 APPENDIX A. MATLAB HYPERSPECTRAL

%
%o

%
%o
%o
%o
%o
%o
%o
%o
%o
%o

%o
%o

%o
%o
%
%o
%o
%
%o

%
%o
%o

%
%o
%o

%
%o
%o
%
%o
%o

%o
%o

max_value rx= max(r rx);
% set 75% of max value as an anomaly
treshold rx = max value rxx0.75;
anomaly map rx=zeros (h,w);
for i=1:h
for j=1:w
if r rx 2d(i,j) >=treshold rx
anomaly map rx(i,j)=1;
end
end
end
figure; imagesc(anomaly map rx); title (['RX anomaly map’|);
axis image; colorbar;
%check difference RX—anomaly map and reference anomaly map
difference from reference rx = zeros(h,w);
false anomalies hsueh rx=nnz(anomaly map rx) — nnz(
reference anomaly map) ;
if (false anomalies hsueh rx <0)
false anomalies hsueh rx=0;
end
for i=1:h
for j=1:w
difference from reference rx(i,j)= (
reference _anomaly map(i,j)— anomaly map rx(i,j));
end
end
figure; imagesc(difference from reference rx); title ([’ false

or undetected anomalies RX’]); axis image; colorbar;

%hyperSaveFigure (gcf, sprintf([’%s\\Undetected anomalies RX’
“.png’ |, resultsDir));%

nnz rx = nnz(difference from reference rx);

percent predicted anomalies hsueh rx = (nnz(anomaly map rx) —
false _anomalies hsueh rx)/nnz(reference anomaly map);

K=25;

r_rlx =hyperLRxDetectorCorr (matrix ,K);

r rlx 2d = hyperConvert3d(r_rlx.’, h, w, 1);

Y%anomaly map 2d = hyperConvert3d (anomaly map.’, 30, 30, 1);

figure;imagesc(r rlx 2d);title ([’LRX AD detector , K= ’> num2str

(K) |); axis image; colorbar;

treshold =100;

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

162

163

164

166

167

168

M)

N o o« oA~ w

A.2. TESTING

TIACAD

figure;imagesc (reference anomaly map);axis image; colorbar;
false _anomalies = zeros(1,10);

true anomalies = zeros (1,10);

correctly predicted anomalies = zeros(1,10);

counter i=1;

for treshold =0.1:0.1:1

115

[d acad, anomaly map,threshold check values| = hyperACAD (matrix,

treshold);

d _acad 2d = hyperConvert3dd(d acad.’, h, w, 1);

anomaly map 2d = hyper

Convert3d (anomaly map.’, h, w, 1);

figure ;imagesc(d_acad 2d); title ([’ACAD result , treshold

num?2str (treshold)

|); axis image; colorbar;

figure ;imagesc (anomaly map 2d); title ([TACAD anomaly result ,

treshold ’ num2str(treshold) |); axis image; colorbar;
for i=1:h
for j =1:w
if (anomaly map 2d(i,j)==1 && reference anomaly map (i, j
)==1)
true anomalies(counter i) =true anomalies(counter i
)+ 1
elseif anomaly map 2d(i,j)==
false _anomalies (counter i) =false anomalies(
counter i)+1;
end
end
% end
correctly predicted anomalies(counter i) = true anomalies|(
counter i)/nnz(reference anomaly map);
end

counter i=counter i-+1;
end

Listing A.9: Hsueh mimicked image

clear; clc;close all;

load (’groundTruth Cuprite nEnd12.mat’, ’—mat’);

w = 200;
h = 200;

resultsDir= ['M:\ Documents\Forked MATLAB hyperspectral toolbox\
HyperSpectralToolbox\ figures\Hsueh’ ,datestr (now, ’dd-mmm-

yyyy ') l;

Y%resultsDir =regexprep

(resultsDir , ":dx’,"")

%resultsDir =’E:\One Drive\OneDrive for Business\NINU\Master\

Anomaly detection

results \MATLAB\ synthetic _images\lol’

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

42

43

44

45

46

47

48

49

50

51

52

53

54

116 APPENDIX A. MATLAB HYPERSPECTRAL

[status, msg, msgID| = mkdir(resultsDir);

M _endmembers=M,;

goodBands = [10:100 116:150 180:216]; % for AVIRIS with 224
channels

M _endmembers=M(goodBands ,:) ;

[n_bands,k] = size (M_endmembers) ;

image = zeros (h,w,n_ bands);

reference anomaly map = zeros (h,w);

BACKGROUND=0.2+M endmembers (:,1) +0.2xM_endmembers (:,3) +0.2x
M _endmembers (: ,5) +0.2%M _endmembers (:,7) +0.2%xM _endmembers
(:,12);

SNR = 20;

% Setting background

for i=1:h
for j=1:w

image(i,j,:) = BACKGROUND;
end

end

Y%column locations

KERNEL SIZE TWO_LOCATION =40; % column one

KERNEL SIZE TWO 2 LOCATION = 70; %column two, mixed pixels

KERNEL SIZE TWO MIXED LOCATION =100; % column three, mixed pixel

KERNEL SIZE ONE BKG MIXED LOCATION =130; % column four , mixed
pixel and background, 50/50

KERNEL SIZE ONE BKG 75 MIX LOCATION =160; %column five , mixed
pixel and background, 25/75

M _anomaly pure = M _endmembers (:,10) ;

M A = M_endmembers(:,1);
M B = M_endmembers (:,3) ;
M K = M_endmembers (: ,5) ;
M M = M _endmembers(:,7) ;
M C = M _endmembers(:,12);

for i=KERNEL SIZE TWO_LOCATION:30:
KERNEL_SIZE_ONE_BKG_75_MIX_LOCATION
%first column
image (i ,KERNEL SIZE TWO LOCATION,:) = M _anomaly pure;
reference anomaly map (i ,KERNEL SIZE TWO LOCATION) =1;

image (i ,KERNEL SIZE TWO LOCATION +1,:) = M _anomaly pure;
reference anomaly map (i ,KERNEL SIZE TWO LOCATION +1)=1;

image (i+1,KERNEL SIZE TWO_ LOCATION,:) = M _anomaly pure;
reference anomaly map (i+1,KERNEL SIZE TWO LOCATION)=1;

image (i-+1,KERNEL SIZE TWO LOCATION +1,:) = M _anomaly pure;
reference anomaly map (i+1KERNEL SIZE TWO LOCATION +1)=1;

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

A.2. TESTING

% second column
image (1 ,KERNEL SIZE TWO_2 LOCATION,:) = M _anomaly pure;
reference anomaly map (i ,KERNEL SIZE TWO 2 LOCATION)=1;

image (1 ,KERNEL SIZE TWO 2 LOCATION +1,:) = M_anomaly pure;
reference anomaly map (i ,KERNEL SIZE TWO 2 LOCATION +1)=1;

image (i+1,KERNEL SIZE TWO_2 LOCATION,:) = M _anomaly pure;
reference anomaly map (i+1,KERNEL SIZE TWO 2 LOCATION)=1;

image (i+1,KERNEL SIZE TWO 2 LOCATION +1,:) = M_anomaly pure;
reference anomaly map (i+1,KERNEL SIZE TWO 2 LOCATION +1)=1;

for (j=KERNEL SIZE TWO MIXED LOCATION:30:
KERNEL SIZE_ONE_BKG_75 MIX_LOCATION)

switch j
case KERNEL SIZE TWO MIXED LOCATION
switch i
case 40

image(i+1,j,:)= 0.5«xM A + 0.5 «M B;

(

image (i+1,j+1,:)=0.5«sM_A + 0.5xM _C;

image(i,j,:) = 0.5«xM A + 0.5%xM K;

image(i,j+1,:)= 0.5xM A + 0.5xM M;
case 70

image(i+1,j,:)= 0.5«sM A + 0.5 =M B;

image(1+1 j+1,:)=0.5xM A + 0.5xM C;

image(i,j,:) = 0.5%xM B + 0.5xM K;

image (i j+1,:)7 0.5«xM B + 0.5xM M;
case 100

image(i+1,j,:)= 0.5«xM A + 0.5 M C;

image(1+1 j+1,:)=0.5xM B + 0.5xM _C;

image(i,j,:) = 0.5xM C + 0.5xM K;

image (1 ,J+1)= 0.5«M_C + 0.5xM M;
case 130

image(i+1,j,:)= 0.5sM A + 0.5 M K;

image (i+1,j+1,:)=0.5sM B +0.5+M K;

image(i,j,:) = 0.5«xM C + 0.5xM K;

image(i,j+1,:)= 0.5xM K + 0.5*M M;
case 160

image(i+1,j,:)= 0.5«sM A + 0.5 =M M;

image(i+1,j+1,:)=0.5+«M B + 0.5x*M M;

image(i,j,:) = 0.5%xM C + 0.5+M M;

image(i,j+1,:)= 0.5xM K + 0.5xM M;

end

reference _anomaly map(i,j)=
reference anomaly map (i+1, J) 1;
reference _anomaly map(i+1,j+1)=1;
reference _anomaly map(i,j+1)=1;
case KERNEL SIZE ONE_BKG_MIXED LOCATION
switch i

125

145

147

148

149

151

118 APPENDIX A. MATLAB HYPERSPECTRAL

case 40
image(i,j,:) = 0.5xM A + 0.5*BACKGROUND;
reference _anomaly map(i,j)=1;
case 70
image(i,j,:) = 0.5%xM B + 0.5*BACKGROUND;
reference _anomaly map(i,j)=1;
case 100
image(i,j,:) = 0.5%xM C + 0.5*BACKGROUND;
reference _anomaly map(i,j)=1;
case 130
image(i,j,:) = 0.5xM K + 0.5*BACKGROUND;
reference _anomaly map(i,j)=1;
case 160
image(i,j,:) = 0.5«sM M + 0.5*BACKGROUND;
reference _anomaly map(i,j)=1;
end
case KERNEL SIZE ONE BKG 75 MIX LOCATION
switch i
case 40
image(i,j,:) = 0.25«xM A + 0.75*BACKGROUND;
reference _anomaly map(i,j)=1;
case 70
image(i,j,:) = 0.25«xM B + 0.75*BACKGROUND;
reference _anomaly map(i,j)=1;
case 100
image(i,j,:) = 0.25«xM _C + 0.75*BACKGROUND;
reference _anomaly map(i,j)=1;
case 130
image(i,j,:) = 0.25«xM K + 0.75*BACKGROUND;
reference _anomaly map(i,j)=1;
case 160
image(i,j,:) = 0.25«M M + 0.75*BACKGROUND;
reference _anomaly map(i,j)=1;
end
end
end
end
for (i=1:n_bands)
image (:,:,i) = awgn(image (:,:,1),SNR);
end
figure ;imagesc (image(:,:,160)); title(’Band 160 of Hsueh—
mimicked image, with gaussian noise’); axis image;

9% RX testing

matrix = hyperConvert2d (image) ;

r _rx=hyperRxDetector (matrix) ;

r_rx = hyperConvert3d(r_rx.’, h, w, 1);

figure; imagesc(reference anomaly map); title ([’Expected anomaly
map’]); axis image; colorbar;

hyperSaveFigure (gcf, sprintf (['%s\\hsueh expected anomaly map’

152

154

155

156

157

158

159

160

162

163

164

166

167

168

170

171

173

174

176

177

178

179

181

182

184

185

187

188

189

190

A.2. TESTING 119

.png’], resultsDir));%

figure; imagesc(r _rx); title ([’'RX AD ’]); axis image; colorbar;

hyperSaveFigure(gecf, sprintf (['%s\\RX AD’ ’.png’ |, resultsDir))
;%

max_value rx= max(r_ rx);

max_value rx = max(max_value rx);

% set 90% of max value as an anomaly

treshold rx = max_value_rx*0.90;

anomaly map rx=zeros (h,w);
correctly predicted anomalies rx=0;
for i=1:h
for j=1:w
if r rx(i,j) >=treshold rx
anomaly map rx(i,j)=1;
if reference anomaly map(i,])==
correctly predicted anomalies rx =
correctly predicted anomalies rx-+1;
end
end
end
end
figure; imagesc(anomaly map rx); title (['RX anomaly map’]);
axis image; colorbar;
hyperSaveFigure(gcf, sprintf (['%s\\RX anomaly map’ ’.png’ |,
resultsDir)) ;%
%check difference RX—anomaly map and reference anomaly map

difference from reference rx = zeros(h,w);
false anomalies hsueh rx=nnz(anomaly map rx) — nnz(
reference anomaly map);
if (false _anomalies hsueh rx <0)
false _anomalies hsueh rx=0;
end
for i=1:h
for j=1:w
difference from reference rx(i,j)= (
reference anomaly map(i,j)— anomaly map rx(i,j));
end
end
figure; imagesc(difference from reference rx); title ([false or
undetected anomalies RX’]); axis image; colorbar;
hyperSaveFigure (gcf, sprintf (['%s\\Undetected anomalies RX’
png’ |, resultsDir));%
nnz_rx = nnz(difference from reference rx);
percent predicted anomalies hsueh rx = (

correctly predicted anomalies rx)/nnz((reference anomaly map)

)3

191

192

194

195

196

198

199

200

201

202

203

204

206

207

208

211

212

214

215

216

219

220

222

223

225

227

228

229

230

120 APPENDIX A. MATLAB HYPERSPECTRAL

%% LRX without anomaly removal
difference from reference lrx = zeros(h,w);
counter i=1;

anomaly map alrx=zeros (1,hsw);

for K=5:5:30 % 35 bugged
difference from reference lrx = zeros(h,w);
r _lrx=hyperLRxDetectorCorr (matrix ,K) ;
r lrx = hyperConvert3d(r Irx.’, h, w, 1);
figure; imagesc(r_lrx); title (['LRX K=’ num2str(K)]|); axis
image; colorbar;
hyperSaveFigure(gcf, sprintf (['%s\\LRX K=" num2str(K) ’'.png’
resultsDir)) ;%
max_value Irx= max(r_Irx);
max_value Irx = max(max value Irx);
% set 75% of max value as an anomaly
treshold Irx = max_value Irx*0.75;

anomaly map lIrx=zeros(h,w);

correctly predicted anomalies lrx =0;
for i=1:h
for j=1:w
if r lrx(i,j) >=treshold Irx
anomaly map lIrx(i,j)=1;
if reference anomaly map(i,])==
correctly predicted anomalies Irx =
correctly predicted anomalies lrx-+1;
end
end
end
end
for i=1:h
for j=1:w
difference from reference lrx(i,j)= (
reference anomaly map(i,j)— anomaly map lrx(i,j));
end
end
figure; imagesc(difference from reference lIrx); title ([’ False
or undetected anomalies LRX, K=’ num2str(K)]); axis image;
colorbar;
hyperSaveFigure(gcf, sprintf ([%s\\false anomalies LRX K-’
num?2str (K) .png’ |, resultsDir));%
false _anomalies hsueh lrx(counter i)=nnz(anomaly map Irx) — nnz(
reference anomaly map) ;
if (false anomalies hsueh lrx(counter i) <0)
false anomalies hsueh lrx(counter i)=0;
end
percent predicted anomalies hsueh lIrx(counter i) =
correctly predicted anomalies lrx/nnz(reference anomaly map);
%percent predicted anomalies hsueh Irx(counter i) = (nnz(

anomaly map Irx) — false anomalies hsueh Irx)/nnz(

231

233

234

235

236

237

238

239

240

243

244

245

259

260

261

262

263

264

265

A.2. TESTING 121

reference _anomaly map);

nnz_lrx(counter i) = nnz(difference from reference Irx);
counter i= counter i +1;
end
9LRX with anomaly removal
difference from reference lrx ad remov = zeros(h,w);
counter i=1;
correctly predicted anomalies alrx=0;
treshold =250;
for K=5:5:35
difference from reference lrx ad remov = zeros(h,w);
[r_Irx ad remov,anomaly map alrx,location of anomalies, lsllsl]=
hyperLRX anomaly set remover(matrix K, treshold);
r Irx ad remov = hyperConvert3d(r Irx ad remov.’, h, w, 1);
figure; imagesc(r_lrx_ad remov); title ([’ALRX AD K=’ num2str (K)
|); axis image; colorbar;
hyperSaveFigure(gcf, sprintf (['%s\\ALRX AD K=’ num2str(K) ’.png
"], resultsDir));%
anomaly map alrx 2d = hyperConvert3d (anomaly map alrx.’ ,h,w,1);
for i=1:h
for j=1:w
if anomaly map alrx 2d(i,j) ==1 &&
reference _anomaly map(i,j) ==1
correctly predicted anomalies alrx =
correctly predicted anomalies alrx +1;
end
end
end
false _anomalies hsueh alrx(counter i)=nnz(anomaly map alrx) —

correctly predicted anomalies alrx;
% if (false anomalies hsueh alrx(counter i)<0)

% false _anomalies hsueh alrx=0;
% end
%percent predicted anomalies hsueh alrx(counter i) = (nnz(
anomaly map alrx) — false anomalies hsueh alrx)/nnz(
reference anomaly map);
percent predicted anomalies hsueh alrx(counter i) =
correctly predicted anomalies alrx/nnz(reference anomaly map)
)
figure; imagesc(difference from reference rx); title ([False or
undetected anomalies ALRX AD, K-’ num2str(K)]); axis image;
colorbar;
hyperSaveFigure(gcf, sprintf ([%s\\false anomalies ALRX AD K=’
num?2str (K) ’.png’ |, resultsDir));%
nnz_Irx(counter i) = nnz(difference from reference Irx ad remov
)
counter_i= counter_i +1;

end

266

267

269

270

271

272

274

276

277

278

279

280

281

282

284

285

286

287

289

122 APPENDIX A. MATLAB HYPERSPECTRAL

%% ACAD

matrix = hyperConvert2d (image) ;

treshold= 0.9;

[r _acad,anomaly map,not used|=hyperACAD (matrix , treshold);

r _acad = hyperConvert3d(r_acad.’, h, w, 1);

figure; imagesc(reference anomaly map); title ([Expected anomaly
map’]); axis image; colorbar;

figure; imagesc(r_acad); title ([’ACAD ']); axis image; colorbar

figure; imagesc(anomaly map); title ([’Anomaly map ’|); axis
image; colorbar;

%% format data

r _acad_ formatted = zeros(w,h);
for i =1 w
for j=1:h

if r_acad(i,j) <0
r_acad formatted (i,j)=0;

elseif r_acad(i,j) >0 && Tisinf(r_acad(i,j))
r _acad_formatted(i,j) = r_acad(i,]);

else
r _acad_formatted(i,j)=0;

end

end
end

Appendix B

VHDL Code description

Most of the entities are written in the code-writing technique called the two-process
method, introduced by Jiri Gaisler. This technique is described on the following web-
page:

"https://www.gaisler.com /doc/vhdl2proc.pdf".

The two-process method divides the code into two processes; one asynchronous process
and one synchronous process. The algorithm to be executed by the entity is located
within the asynchronous block. Results of the asynchronous block get registered into the
synchronous process. The asynchronous process uses variables to a wide extent. Record
types are also widely used. A two-process entity can be seen in Figure

123

124 APPENDIX B. VHDL CODE DESCRIPTION

Combinational

D Q
> o=fDr —mo—p
r » rin = fo(D,r)
| rin
r=rin
Clk N
»
Sequential

Figure 20: Generic two-process circuit

Figure B.1: Two process method.

[

sw N

11

12

13

14

15

16

17

18

19

20

21

22

23

25

Appendix C

VHDL code

C.1 ACAD correlation

Listing C.1: ACAD correlation

library IEEE;
use IEEE.std logic 1164. all;
use ieee.numeric_std. all;

library work;
use work.Common_types_ and_functions. all;

— Correlation module with AXI lite stream interface
entity acad correlation is
port (din ¢ in std logic_ vector (P_BANDSx
PIXELL DATA WIDTH-1 downto 0); ——
—Horizontal
—input vector

valid : in std _logic;
clk : in std _logic;
clk _en ¢ in std logic;
reset_n : in std_logic;
dout : out std logic vector (P_BANDSx
PIXEL DATA WIDTH#+2%2 —1 downto
0); — writing two 32—Dbit
elements per cycle
valid out : out std logic;
writes _done_on_column : out std logic vector(log2(

P_BANDS/2) downto 0)
)

end acad_correlation;

architecture Behavioral of acad correlation is
— wusing 18kbit BRAM, one for odd indexes, one for even per row

125

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

126 APPENDIX C. VHDL CODE

of the
— correlation matrix. This results in P _BANDS 36kbit BRAMSs
actually being synthesized.

constant NUMBER OF WRITES PER CYCLE : integer range 0 to 2

= 2; —
constant NUMBER OF WRITES PER COLUMN : integer range 0 to
P BANDS/2 := P _BANDS/2;
signal r write address : integer range 0 to B_RAM SIZE-1
= 0
signal write_done on_ column : integer range 0 to P_BANDS/2
= 0
signal flag has read first : std_ logic :=
’0’; ——first element in the read—write pipeline
signal flag has read second : std_ logic :=
’0’; ——second element in the read—write pipeline
signal write enable : std_logic := ’07;
signal read enable : std _logic = ’'17;
signal read address : integer range 0 to B_RAM SIZE-1,
signal write address : integer range 0 to B_RAM SIZE—1;
signal flag first pixel : std_ logic := '17;
—— indicates that the current pixel working on is the first
pixel

signal r dout prev : std logic vector (P_ BANDS«PIXEL DATA WIDTH
*2x2—1 downto
0); — Previous value
— outputted from

the BRAMS.

signal r read address : integer range 0 to
B RAM SIZE-1 = 0;

constant EVEN ROW_ TOP_ INDEX INPUT : integer range 0 to
P_BANDS+PIXEL DATA WIDTH-1 := P_BANDS+PIXEL DATA WIDTH-1;

constant EVENiRO\NiTOPilNDEXiOORREIATTON : integer range 0 to
P_BANDS#PIXEL DATA WIDTH*2—1 := P_BANDS«PIXEL DATA WIDTH
*2—1;

signal dout BRAMS : std_logic vector(
P_BANDS#PIXEL DATA WIDTH*2%2—1 downto 0):= (others=>’0");

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

C.1. ACAD CORRELATION 127
begin
GEN_BRAM 18 updates for i in 0 to P_BANDS-1 generate
— Generating N BRAMS = P BANDS BRAM 36 kbits.
signal data_in_ even i, data_ in odd i, data out even i,
data_out_odd i std logic_vector (B_RAM BIT WIDTH —1
downto 0);
—value read from BRAM (odd index) before writing to address
begin
— Block ram row for even addresses and row indexes of the
correlation matrix
block ram even entity work.block ram
generic map (
B_RAM SIZE => B _RAM SIZE,
B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (
clk => clk,
aresetn => reset_n,
data_in => data_in_even i,
write enable => write enable,
read _enable => read_enable,
read address => read_address,
write address => write address,
data_out => data_out even 1i);
— Block ram row for odd addresses and row indexes of the
correlation matrix
block ram odd entity work.block ram
generic map (
B_RAM SIZE => B_RAM SIZE,
B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (
clk = clk,
aresetn => reset_n,
data_in => data_in_odd i,
write _enable => write_enable,
read _enable => read_enable,
read address => read address,
write address => write address,
data_out => data_out_odd i);
— generate P_BAND write PROCESSES writes on clock cycle after

process (clk, clk _en,
read address,

data_out_ even i, write _done on_ column,

write enable)
— a_factor Ox is
— b_factor Ox is

the
the odd
variable a_factor 01 _i

din, valid, reset_n, r write address,

write address, data out odd i,

flag first pixel,

factor
factor
std _logic_vector(

indexed
indexed

even row

Trow

PIXEL, DATA WIDTH-1 downto 0);

98

99

100

102

103

104

105

106

108

109

110

111

113

115

116

118

119

120

121

128 APPENDIX C. VHDL CODE

variable a_factor 02 i : std_logic vector (
PIXEL DATA WIDTH-1 downto 0);
variable b_factor 01 i : std_logic_vector(
PIXEL DATA WIDTH-1 downto 0);
variable b_factor_ 02 _i ¢ std_logic_vector (
PIXEL DATA WIDTH-1 downto 0);
variable v_input even i, v_input_odd i : std logic_ vector(
B RAM BIT WIDTH-1 downto 0); —
variable v _data_ out prev_even i : std _logic_vector (
PIXEL DATA WIDTH*2—1 downto 0);
variable v_data out prev_odd i : std_logic_vector(
PIXEL DATA WIDTH*2—1 downto 0);
begin
if rising edge(clk) and clk_en = ’1’ then
if reset_n = ’0’ or valid = ’0’ then
a_factor 01 i := (others => ’0’);
a_ factor 02 i := (others = ’07);
b _factor 01 i := (others = ’07);
b factor 02 i := (others = ’07);
elsif valid = '1’ and write_done on_ column <=
NUMBER OF WRITES PER COLUMN-1 and write enable = 1’
then —and to integer(unsigned (write done on column)
) > 0 then
if flag first pixel = 0’ then

—input din is horizontal vector. A/B_factor 01 is
the transposed

—vertical element factor of the product din.’ % din
. A/B_ factor_ 02 is

—the horizontal element.

a_ factor 01 i := din(PIXEL DATA WIDTH -1 +
PIXEL DATA WIDTH*write done on_columnsx
NUMBER OF WRITES PER CYCLE downto
PIXEL DATA WIDTH*write done on columnx
NUMBER_OF WRITES PER CYCLE) ;

b factor 01 i := din (PIXEL DATA WIDTH%2—1 +
PIXEL DATA WIDTH*write done on columnsx
NUMBER OF WRITES PER CYCLE downto
PIXEL DATA WIDTH + PIXEL DATA WIDTHx
write _done on column*NUMBER OF WRITES PER CYCLE) ;

— "Horizontal" element

a_ factor 02 i := din(P_BANDS«PIXEL DATA WIDTH —(
P_BANDS-i) «PIXEL DATA WIDTH + PIXEL DATA WIDTH-1
downto P_BANDS«PIXEL DATA WIDTH—((P_BANDS — 1i)x
PIXEL DATA WIDTH)) ;

b factor 02 i := a_ factor 02 i;

v_input_even i := std_ logic vector (to_ signed(
to integer(signed(a factor 01 i))*to integer

125

126

127

128

130

131

133

134

135

137

138

140

141

142

143

C.1. ACAD CORRELATION 129

signed (a_factor 02 i)), v_input even i’length));
v_input_odd i := std_logic vector(to_signed/(

to_ integer(signed(b_factor 01 i))*to integer(

signed (b_factor 02 i)), v_input _odd i’length));

v_data out prev_even i := r dout prev(P_BANDSx

PIXEL DATA WIDTH*2—(P_BANDS-i) +PIXEL DATA WIDTHx2
+ PIXEL DATA WIDTH+2—1 downto P_BANDSx

PIXEL DATA WIDTH«2 —((P_BANDS-i) +PIXEL DATA WIDTH
*2));

v_data_out_prev_odd i := r_ dout_ prev(P_BANDSx
PIXEL DATA_ WIDTH+NUMBER OF WRITES PER CYCLE*2—(
P BANDS-i) «+PIXEL DATA WIDTH*2+PIXEL DATA WIDTH
*2—1 downto P_BANDS«PIXEL DATA WIDTHx
NUMBER_OF WRITES PER CYCLE+2—(P_BANDS-i) *
PIXEL DATA WIDTH%2) ;

data in_even i <= std logic vector(to_ signed(
to_integer(signed(v_input_even i))+ to integer(
signed (v_data out prev_even 1)), data in_ even i
length));

data_in _odd i <= std_logic_ vector (to_signed(
to integer (signed (v_input _odd i)) + to integer
signed (v_data_out prev_odd i)), data_ in_ odd i’
length));

)

elsif flag first pixel = '1’ then
— special case for the first pixel written, where
— the data contained in the BRAM is not
— initialized to something known.
—input din is horizontal vector. A/B_ factor 01 is
the transposed
—vertical element factor of the product din.’ % din
. A/B_ factor 02 is
—the horizontal element.
a_factor 01 i := din(PIXEL DATA WIDTH -1 +
PIXEL DATA_ WIDTH+write _done on_ columnx
NUMBER OF WRITES PER CYCLE downto
PIXEL DATA WIDTH*write done on_columnsx
NUMBER_OF WRITES PER CYCLE) ;
b factor 01 i := din(PIXEL DATA WIDTH*2—1 +
PIXEL DATA WIDTH*write done on_column
NUMBER OF WRITES PER CYCLE downto
PIXEL DATA WIDTH + PIXEL DATA WIDTHx
write _done on_column«NUMBER_OF WRITES PER CYCLE) ;
— "Horizontal" element
a_ factor 02 i := din(P_BANDS«PIXEL DATA WIDTH —(
P _BANDS-i) «PIXEL, DATA WIDTH + PIXEL DATA WIDTH-1
downto P_BANDS«PIXEL. DATA WIDTH—((P_BANDS — 1i)x
PIXEL DATA WIDTH)) ;

144

145

147

155

158

159

160

163

164

165

166

168

169

170

172

173

130 APPENDIX C. VHDL CODE

b_factor 02 i := a_factor_ 02 i;

v_input_even i := std logic_ vector(to_ signed(
to_integer(signed(a_ factor 01 i))*to integer
signed (a_factor 02 _i)), v_input_even i’length));

v_input_odd i := std_ logic_ vector(to_ signed(
to_integer(signed(b_factor 01 i))*to integer
signed (b_factor 02 i)), v_input_odd_ i’length));

data_in_even i <= v_input_even_ i;

data_in_odd_i <= v_input_odd_ij;

end if;

end if;
end if;

end process;

— Even row of output

dout BRAMS(P_BANDS«PIXEL DATA WIDTH«2—(P_BANDS-i) %
PIXEL DATA WIDTH*2 +PIXEL DATA WIDTH*2—1 downto P_BANDS«
PIXEL DATA WIDTH«+2 —(P_BANDS-i) +«PIXEL DATA WIDTH=x2)

<= data_out_even_ i;
dout (P_ BANDS+PIXEL DATA WIDTH%2—(P_BANDS-i) «PIXEL DATA WIDTH
%2 +PIXEL DATA WIDTH%2—1 downto P_BANDS«PIXEL DATA WIDTH
%2 —(P_BANDS-i) *PIXEL_DATA_ WIDTHx2)

<= data_in_even_ i;
— 0Odd row of output
dout BRAMS (P_ BANDS+PIXEL. DATA WIDTHx*2—(P_BANDS-1) *
PIXEL DATA WIDTH*2+ PIXEL DATA WIDTH+2—1+
EVEN ROW_TOP INDEX CORRELATION+1 downto P_BANDSx
PIXEL DATA WIDTH 2 — (P_BANDS-i)+PIXEL DATA WIDTHx2 +
EVEN ROW_TOP_ INDEX CORRELATION+1) <= data out odd i;
dout (P_BANDS«PIXEL DATA WIDTH«2—(P_BANDS-i) «PIXEL DATA WIDTH
*2+ PIXEL DATA_ WIDTH+2—14+EVEN_ROW_TOP_INDEX CORRELATION+1
downto P_BANDS+PIXEL DATA WIDTH %2 — (P_BANDS-i)x
PIXEL DATA WIDTH%2 +EVEN ROW_ TOP_ INDEX CORRELATION+1)
<= data_in_odd i;

end generate;

— Register in old values of dout
process (clk, clk _en, dout)
begin
if rising edge(clk) and clk_en = ’1’ then

—r dout prev <= dout;
r _dout prev <= dout BRAMS;
end if;
end process;

174

175

177

178

179

180

181

182

186

187

188

189

190

191

192

194

195

197

198

200

201

202

203

205

206

208

209

210

211

213

215

C.1. ACAD CORRELATION

— process to drive address and control
process (clk, clk _en, r write address, write _done on_column,
reset_n, valid, flag has read second, flag has read first)

begin
if rising edge(clk) and clk_en = ’1’ then
if reset_ n = ’0’ then —or valid = ’0’ then
r_write_address <= 0;
read address <= 0;
write enable <= '07;
read enable <= 17,
write _done on_ column <= 0;
flag _has read first <= '07;
flag first pixel <= 17,
valid _out <= ’07;
elsif valid = 0’ then
write enable <= 0",
flag has read first <= ’07;
flag has read second <= ’0;
valid_out <= ’07;
elsif valid = 1’ and write done on_ column <=
NUMBER OF WRITES PER COLUMN-1 and flag first pixel =
"1’ then
if flag has read first = 0’ then
—— Need to read first element of the pixel before
starting any writes
flag has read first <= ’'17;
read _address <= r_write_address;
write address <= r_write_ address;
read enable <= 17,
write enable <= 17,
valid _out <= ’07;
elsif flag has read first = ’1’ and write enable = 1’
then
r write address <= r_write address +1;
write address <= r_write address;
read address <= r_write_address+1;
write enable <= 17,
write _done on_ column <= write done on_ column + 1;
valid_out <= ’17;
end if;
— Going to buffer two read elements.
elsif valid = 1’ and write_done_on_column <=
NUMBER_OF WRITES PER, COLUMN-1 and flag first pixel =
0’ then
if flag has read first = 0’ and flag has read second =
0’ then

— Need to read first element of the pixel before

228

229

230

231

232

234

235

132

APPENDIX C. VHDL CODE

starting any writes

flag _has_read_first <= '17;

read address <= r_write_address;

write address <= r_write_ address;

read enable <= 17,

write enable <= '07;

valid_out <= ’07;

elsif flag has_ read_first = 1’ and write_enable = 0’
and flag has read second = ’0’ then

end if;
if flag has_read_second = ’1’ and write_enable = ’0’
then
write address <= r_write address;
read address <= r_write address+2;
write enable <= 17,
r_read address <= r_read address +1;
valid_out <= ’07;
elsif flag has read second = ’1’ and write enable = "1’

read address
read enable

r_read_address
valid_out <= ’0°;

then
r_write_address
write address
read address
r_read_address

<= r_write address +1;

<: 71 7;
flag has_ read second <= ’17;

<= r_read address +1;

<= r_write address +1;

<= r_write address;
<= r_read_address;

<= r_read_ address +1;

write _done on_column <= write done on_ column + 1;

valid_out <= ’17;

end if;
elsif valid = 1’ and write _done_ on_column >
NUMBER OF WRITES PER COLUMN-1 then

— New pixel coming on data in input

—— Assuming consequent pixels are hold wvalid,

working on
next pixel next

valid _out <= ’17;
r _write address
r_read_address
read address
write enable
write _done on_column <= 0;
flag has read first
flag _has_ read_ second <=

— Now one pixel has been finished processed,

contents of the

cycle;

<=

N

0;

70);

0 0.
07
0 0.
07

— BRAM is at least known
flag first_pixel

end

if;

<=

707;

starting

the

259

260

261

262

263

264

265

266

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

C.2. ELIMINATION CORE 133

end if;
end process;

writes _done on_ column <= std logic vector (to_ unsigned (
write_done on_column, writes done on_column’length));

end Behavioral;

C.2 Elimination core

The entity referred to as Elimination core in the thesis, is named backward elim core
in the VHDL code.

Listing C.2: Elimination core

library IEEE;

use IEEE.std logic 1164. all;
use ieee.numeric_std.all;
—use IEEE.fixed pkg.all;

library work;
use work.Common types and functions. all;

—— This core is utilized by both backward and forward
elimination
entity backward elim core is

port (clk : in std_logic;
reset n : in std_logic;
clk _en : in std_logic;
input _backward elim : in input elimination reg type;
output backward elim : out

output backward elimination reg type);
end backward elim core;

architecture Behavioral of backward elim core is

signal r, r_in : input elimination reg type;
constant ONE : signed (PIXEL DATA WIDTHx2—1
downto 0) := (0 == ’1’, others = ’07);
constant PRECISION SHIFT : integer range 0 to 3
:= 3; —— Used to specify numbers of

— shift of r j i
signal divisor is negative : std logic;
— If the divisor is negative, we need to take two’s
complement of the divisor
signal divisor : std logic vector (PIXEL DATA WIDTH
x2 —1 downto 0);

134 APPENDIX C. VHDL CODE

28 signal divisor_ valid : std_logic
= 707;
29 signal remainder valid : std _logic
= 707;

30 type remainders array is array (0 to PIXEL DATA WIDTH%2-2) of
std logic_vector (PIXEL DATA WIDTH«2—1 downto 0);

31 signal remainders : remainders_array;

32 signal msb_index : integer range 0 to 31; — msh of
the divisor (unsigned)

33 signal msb_valid : std_logic

= 07,

34 — to be used in two’s complement.

35 signal divisor lut : unsigned (DIV_PRECISION—1 downto
0);

36 signal divisor inv : unsigned (DIV_PRECISION—1 downto
0);

37 begin

38

39 division lut_2 : entity work.division lut

40 port map (

41 y => divisor _lut ,

42 y_inv => divisor_inv);

43

44 input_to_ divisor lut : process(msb_valid, msb_index)

45 begin

46 if msb_ valid = ’1’ and msb_index<=DIV_ PRECISION then

a7 divisor lut <= to_ unsigned(to_ integer (unsigned(divisor)),

DIV_PRECISION) ;

48 else

49 divisor lut <= to_unsigned (0, DIV_PRECISION) ;

50 end if;

51 end process;

52

53

54 check if divisor is mnegative : process (input backward elim.

state reg.state, input_ backward elim.row i,
input _backward elim.valid data, reset n)

55 begin

56 if reset_n = ’0’ or not(input backward elim.state reg.state
= STATE_LAST DIVISION) then

57 divisor valid <= '07;

58 divisor _is_mnegative <= ’07;

59 divisor <= std _logic_vector(to_signed (1,

PIXEL DATA WIDTH%2)) ;

60 elsif (input_backward elim.row_i(input backward elim.index i)
(PIXEL_DATA WIDTH%2—1) = ’1’ and input_backward elim.
valid data = ’1’) then

61 — row|[i]|[i] is negative

62 — using the absolute value

63 divisor is_ negative <= '17;

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

C.2. ELIMINATION CORE 135

divisor <= std _logic_vector (abs(signed (
input _backward elim.row i(input backward elim.index 1i))

)) s

divisor valid <= 17,

elsif input backward elim.valid data = 1’ then
divisor is_mnegative <= ’07;
divisor <= std_logic_vector(

input_backward elim.row i(input backward elim.index 1))

divisor valid <= 17,
else
divisor valid <= '07;
divisor is_ negative <= ’07;
divisor <= std_logic_vector(to_signed(1,
PIXEL DATA WIDTH%2)) ;
end if;

end process;

— generate PIXEL DATA WIDTH%2—1 number of shifters that shifts
— A[i]|[i] n places in order to see how many shifts yield the

best
— approximation to the division. Don’t need to shift the
— 31 bit as this is the sign bit.

generate shifters : for i in 1 to PIXEL DATA WIDTHx2—-1
generate
signal remainder after approximation i
remainder after approximation_ record;

begin
process(divisor , divisor valid, reset_n, input_ backward elim
.state reg)
begin
if reset_n = ’0’ or not(input backward elim.state reg.
state = STATE LAST DIVISION) then
remainder after approximation i.remainder <=
std _logic_vector(shift right(signed(divisor), i));
remainder after approximation_ i.number_of_ shifts <= i;
remainder after approximation i.remainder valid <= ’07;
elsif divisor wvalid = 1’ then
remainder after approximation i.remainder <=
std logic vector(shift right(signed(divisor), i));
remainder after approximation i.number of shifts <= i;
remainder _after approximation_ i.remainder_ valid <= ’'17;
else
remainder after approximation i.remainder <=
std _logic_vector(shift right(signed(divisor), i));
remainder after approximation i.number of shifts <= i;
remainder after approximation i.remainder valid <= ’07;
end if;

end process;

136 APPENDIX C. VHDL CODE

101 remainders (i—1) <= remainder after approximation i.remainder
102 remainder valid <= remainder after approximation i.
remainder valid;

103 end generate;

104

105

106 find_msb : process(divisor valid, input_ backward elim, reset n
, divisor)

107 begin

108 if divisor_valid = ’1’ and reset_n = ’'1’ then

109 —For PIXEL DATA WIDTH = 16.

110 if divisor(30) = ’'1’ then

111 msb_index <= 30;

112 msb_valid <= ’17;

113 elsif divisor(29) = ’1’ then

114 msb_index <= 29;

115 msb_valid <= ’17;

116 elsif divisor(28) = ’1’ then

117 msb_index <= 28;

118 msb_valid <= ’17;

119 elsif divisor(27) = ’1’ then

120 msb_index <= 27;

121 msb_valid <= ’17;

122 elsif divisor(26) = ’1’then

123 msb_index <= 26;

124 msb_valid <= ’17;

125 elsif divisor(25) = 1’ then

126 msb_index <= 25;

127 msb_valid <= ’17;

128 elsif divisor(24) = ’1’ then

129 msb_index <= 24;

130 msb_valid <= ’17;

131 elsif divisor(23) = ’1’ then

132 msb_index <= 23;

133 msb_valid <= ’17;

134 elsif divisor(22) = ’1’ then

135 msb_index <= 22;

136 msb_valid <= ’17;

137 elsif divisor(21) = ’1’ then

138 msb_index <= 21;

139 msb_valid <= ’17;

140 elsif divisor(20) = 1’ then

141 msb_index <= 20;

142 msb_valid <= ’17;

143 elsif divisor(19) = ’1’ then

144 msb_index <= 19;

145 msb_valid <= ’17;

146 elsif divisor(18) = ’1’ then

147 msb_index <= 18;

175

C.2. ELIMINATION CORE

msb_valid <= ’17;

elsif divisor (17)
msb_index <= 17;

msb_valid <= ’17;

elsif divisor (16)
msb_index <= 16;

msb_valid <= ’17;

elsif divisor (15)
msb_index <= 15;

msb_valid <= ’17;

elsif divisor (14)
msb_index <= 14;

msb_valid <= ’17;

elsif divisor(13)
msb_index <= 13;

msb_valid <= ’17;

elsif divisor(12)
msb_index <= 12;

msb_valid <= ’17;

elsif divisor(11)
msb_index <= 11;

msb_valid <= ’17;

elsif divisor (10)
msb_index <= 10;

msb_valid <= ’17;
elsif divisor(9) =

msb_index <= 9;

msb_valid <= ’17;
elsif divisor(8) =

msb_index <= 8§;

msb_valid <= ’17;
elsif divisor (7) =

msb_index <= 7;

msb_valid <= ’'17;
elsif divisor (6) =

msb_index <= 6;

msb_valid <= ’17;
elsif divisor(5) =

msb_index <= 5;

msb_valid <= ’'17;
elsif divisor(4) =

msb_index <= 4;

msb_valid <= ’'17;
elsif divisor(3) =

msb_index <= 3;

msb_valid <= '17;
elsif divisor(2) =

msb_index <= 2;

msb_valid <= '17;
elsif divisor(1l) =

717

717

717

717

717

717

717

717

717

717

717

717

717

717

717

717

717

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

137

214

138

msb_index <= 1;

APPENDIX C. VHDL CODE

msb_valid <= ’'17;
elsif divisor(0) = ’1’ then
msb_index <= 0;
msb_valid <= ’'17;
else
msb_index <= 0;
msb_valid <= ’'07;
end if;
else
msb_index <= 0;
msb_valid <= ’07;
end if;
end process;
comb process : process (input_ backward elim, r, reset n,
divisor is negative, divisor , remainder valid, remainders,
msb_valid, divisor, divisor inv, msb_index)
variable v :
input elimination reg type;
variable r_j i : signed(
PIXEL DATA WIDTH%2 + PRECISION SHIFT—1 downto 0);
variable r i i : integer;
variable temp : integer;
—variable r j i divided : signed (
PIXEL DATA WIDTH*2+PRECISION SHIFT—1 downto 0);
variable inner product : signed(
PIXEL DATA WIDTH+2 + PIXEL DATA WIDTHx2+PRECISION SHIFT-1
downto 0);
variable shifted down inner product : signed(
PIXEL DATA WIDTH#2—1 downto 0);
—variable r i i halv : integer;
variable r_ i i halv : signed(

PIXEL DATA WIDTH%2 +PRECISION_ SHIFT—1 downto 0);
variable divisor inv_ from lut integer range 0 to 2%

DIV_PRECISION := 0;

begin
vV = rT;

if ((input_backward elim.state reg.state =

STATE BACKWARD ELIMINATION or input backward elim.

state reg.state = STATE FORWARD ELIMINATION) and

input _backward elim.valid data = ’1’ and remainder valid
= "1’ and msb_valid = ’1’) then

229

230

232

233

— Load data set

V.Iow _j
v.row i
v.inv_row_j
v.inv_row i

index j

input _backward elim.
input_backward elim.
input _backward elim.
input _backward elim.

row_j;
row_ij;
inv_row_j;
inv_row ij;

234

235

237

238

239

241

242

244

246

247

248

250

251

252

253

258

260

261

262

264

265

C.2. ELIMINATION CORE 139

v.index i := input_backward elim.index 1i;

v.index_j := input_backward_elim.index_j;

v.best approx := INITIAL BEST APPROX;

v.msb_index := msb_index;

roi i := to_integer (input backward elim.row i(
input_backward elim.index 1i));

r i i halv := shift left ((shift right(to signed(r_ i i,

r_i_i_halv’length), 1)), PRECISION SHIFT);

—dividing by two, then shifting up again with precision shift.

r j i := shift left(resize (input_ backward elim.row j(
input backward elim.index i), r j i’length),
PRECISION SHIFT) ;
— For more precise integer division(in Vivado the
rounding is always downwards)
— r j i:=r j i+r i i halv;

if v.msb_ index <= DIV_PRECISION then

divisor inv_from lut := to_integer(divisor inv);
else

—Using shifting approach

divisor inv_from lut := to_integer(divisor inv);

—— The best approximation may be either the msb—shifted
division , or the
— msb+1 shifted division.

v.best approx.remainder := remainders(v.msb_index
)
v.best approx.number of shifts := v.msb_index;

— The best approximation to the divisor may be larger
than the divisor.

if to_integer(signed(divisor))— to_integer(shift left (
to_signed (1, PIXEL DATA WIDTH*2), v.best approx.
number of shifts)) > to integer(shift left (to_ signed
(1, PIXEL_ DATA WIDTH%2), v.best approx.
number of shifts+1))— to integer(signed(divisor))

then
— This is a better approximation
v.best approx.remainder := std_logic_vector(

to_ signed(to_ integer(shift left (to signed (1,
PIXEL DATA WIDTH%2), v.best approx.number of shifts
+1))—to_integer (signed(divisor)), PIXEL DATA WIDTH
¥2));

v.best approx.number of shifts := v.best approx.
number_of shifts+1;
end if;
end if;

for i in 0 to P_BANDS-1 loop

266

267

268

269

270

272

273

275

276

277

278

279

280

282

283

284

285

286

287

288

289

140 APPENDIX C. VHDL CODE

—inner product := to_ signed(to integer(
input _backward elim.row i(i))xto integer(
r _j i _divided), inner product’length);

if v.msb_ index <= DIV_PRECISION then

—— Using lut—table

inner product ;= resize (
input backward elim.row i(i)* r j ix
divisor inv_from lut, inner product’length);

shifted down inner product := resize (shift right(
inner product, PRECISION SHIFT+DIV PRECISION) ,
shifted down inner product’length);

— To matrix A

v.row_j(1) := to_signed(to_integer (
signed (input backward elim.row j(i)))—to integer(
shifted down inner product), PIXEL DATA WIDTHx%2) ;

inner product := resize (
input _backward elim.inv_row i(i)* r_ j ix
divisor inv_from lut, inner product’length);

shifted down inner product := resize (shift right(
inner product , PRECISION SHIFT4+DIV PRECISION) ,
shifted _down inner product’length);

— To matrix A _inv

v.inv_row j(1i) := to_signed(to _integer(
input_backward elim.inv_row j(i))—to_integer (
shifted down inner product), PIXEL DATA WIDTH*2) ;

else

—— Using shifting approach to division

inner product := shift _right(
input backward elim.row i(i)*r j i, v.best approx.
number of shifts);

shifted down inner product := resize (shift right(
inner product, PRECISION SHIFT),
shifted down inner product’length);

— To matrix A

v.row_j(1i) := to_signed(to_ integer (
signed (input_backward elim.row j(i)))—to integer (
shifted down inner product), PIXEL DATA WIDTHx*2) ;

inner product := shift _right(
input _backward elim.inv_row i(i)*r_ j i, v.
best approx.number of shifts);

shifted down inner product := resize (shift right(
inner product, PRECISION SHIFT) ,
shifted down inner product’length);

— To matrix A inv

v.inv_row j(1i) := to_signed(to integer(
input _backward elim.inv_row_ j(i))—to integer (
shifted down inner product), PIXEL DATA WIDTH*2) ;

290

291

293

294

295

296

298

299

300

301

302

304

305

306

307

309

310

311

312

313

314

315

316

317

319

320

322

323

141

C.2. ELIMINATION CORE
end if;
end loop;
— Control signals —
v.write_address_odd := input_backward _elim.
write address odd;
v.write address even := input_backward elim.
write address even;
v.flag write to odd row := input_ backward elim.
flag _write _to_odd_ row;
v.flag write to_even_ row := input_backward elim.
flag write to even row;
v.state reg := input_backward elim.
state reg;
v.valid data := input_ backward elim.
valid data;
v.forward elimination write state := input_ backward elim.
forward elimination write state;
v.valid data = 17
end if;
if (reset_n = ’0’) then
v.index i := P_BANDS-1;
v.index j := P_BANDS-2;
v.valid data := '07;
end if;
r_in <= Vv;
— data
output backward_elim.new_row_j <= .
row_j;
output backward elim.new inv_row_j <= .

inv_row_j;
— control

output backward elim.state reg <= .
state reg;

output backward elim.valid data <=T.
valid data;

output backward_elim.write address_even <= .
write address even;

output backward elim.write address odd <= .
write address odd;

output backward elim.flag write to_ even row <=T.
flag write to even row;

output backward elim.flag write to odd_ row <= .

flag write to_ odd_row;
output backward elim.forward elimination write state <= r.
forward elimination write state;
end process;

sequential process : process(clk)
begin

324

325

327

328

329

330

331

© o N o w A W N e

[
o

-
=

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

142

APPENDIX C. VHDL CODE

if rising edge(clk) then

if clk _en = ’1’ then
r <= r_in;
end if;
end if;

end process;

end Behavioral;

C.3 BRAM SDP 18kbit

library IEEE;

Listing C.3: BRAM

use IEEE.STD LOGIC 1164. all;

entity block ram is
generic (
B_RAM SIZE

))
port (
clk
aresetn
data _in :
downto 0);
write enable
read enable
read address
write address
added
data_out
downto 0)
)

end block ram;

B_RAM_BIT WIDTH :

integer := 100;
integer := 32

in std_logic;
in std_logic;
in std_logic_ vector (B_RAM BIT WIDTH-1

in std _logic;

in std _logic;

in integer range 0 to B_RAM SIZE-1;

in integer range 0 to B_RAM SIZE —-1; —

out std logic vector (B_RAM BIT WIDTH-1

architecture Behavioral of block ram is

type bus_array is

array (0 to B_RAM SIZE-1) of std logic_ vector

(B_RAM BIT WIDTH-1 downto 0);

signal b_ram data
begin

process (clk)

begin

bus array;

if (rising edge(clk)) then
if (write_enable = ’1’) then
b ram data(write address) <= data_in;

end if;

end if;
end process;
process (clk)

© ® N o « oA W N

e e e s i e
© N o ook W N R O

o
©

20

21

22

23

24

25

26

27

28

29

30

C.4. PACKAGE COMMON TYPES AND FUNCTIONS 143

begin
if (rising edge(clk)) then
if (read enable = ’17) then
data_out <= b_ram_data(read address);
end if;
end if;

end process;
end Behavioral;

C.4 Package Common types and functions

Listing C.4: Common types and functions

—— Company :
— Engineer:

— Create Date: 01/29/2018 12:31:59 PM

— Design Name:

— Module Name: common types and_ functions — Behavioral
— Project Name:

— Target Devices:

— Tool Versions:

— Description:

— Dependencies:
— Revision:

— Revision 0.01 — File Created
— Additional Comments:

library IEEE;
use IEEE.STD LOGIC 1164. all;
use ieee.numeric_std. all;

library work;

package Common types and _ functions is
— N PIXELS is the number of pixels in the hyperspectral image
constant N_PIXELS : integer range 0
to 628864 := 628864; — 578 pixels per row = 1088 rows

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

144

— P _BANDS is the number of spectral bands

constant P_BANDS
to 100 = 12;

—oconstant P_BANDS : integer := 100;

APPENDIX C. VHDL CODE

— K is size of the kernel used in LRX.

constant K
— PIXEL DATA WIDTH is the width

the HSI
constant PIXEL DATA WIDTH
to 16 = 16;
constant NUMBER OF WRITES PER CYCLE
to 2 = 2
constant BRAM TDP ADDRESS WIDTH
to 10 = 10;

— component generics
constant B_RAM _ SIZE
:= 100;

integer range 0

integer;

of the raw input data from

integer range 0
integer range 0

integer range 0

integer

— Need to be 33 bit due to updating(adding) of two 32 bit

variables. Is 33 bit necessary?
constant B RAM BIT WIDTH
= 32

—— Time from issuing write in top—level

possible to read

—— from BRAM:

constant B RAM WAIT CLK CYCLES
to 3 = 3;

constant ELEMENTS SHIFTED IN FROM CUBE DMA :

to 6 = 4_;
—per clock cycle

Precision

question .
integer

inverse to data is

integer range 0

integer range 0

type matrix is array (natural range <>, natural range <>) of

std logic_vector (15 downto 0);
— for correlation results

type matrix 32 is array (natural range <>, natural range <>)
of std logic_vector(31 downto 0);

type row_array is array (0 to P_BANDS-1) of signed (

PIXEL DATA WIDTH%2 —1 downto 0);

— drive signals
constant STATE IDLE DRIVE
std logic vector(2 downto 0)

n 000 n ’

constant STATE FORWARD ELIM_TRIANGULAR_FINISHED :

std logic_vector (2 downto 0)

constant STATE FORWARD ELIMINATION FINISHED

std logic_vector (2 downto 0)

constant STATE BACKWARD_ELIMINATION FINISHED

std logic vector(2 downto 0)

”001 n 7
"010";

NOllH;

constant STATE_ LAST DIVISION FINISHED

std logic_vector (2 downto 0)

Hlllll;

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

C.4. PACKAGE COMMON TYPES AND FUNCTIONS 145

— start signals for fsm

constant IDLING : std_logic vector (1
downto 0) := "00";

constant START FORWARD _ ELIMINATION : std_logic vector (1
downto 0) := "01";

constant START BACKWARD ELIMINATION : std_logic vector(1
downto 0) := "10";

constant START IDENTITY MATRIX BUILDING : std logic vector(1
downto 0) := "11";

— Forward—elimination specific signals

constant START FORWARD ELIM TRIANGULAR : std logic_vector (1

downto 0) := "10";

constant START FORWARD ELIM CORE : std_logic vector (1
downto 0) := "11";

constant STATE FORWARD TRIANGULAR ¢ std_logic_vector (1
downto 0) := "10";

constant STATE FORWARD_FELIM : std_logic vector (1
downto 0) := "I1";

— Different state machines used in the design

type state type is (STATE IDLE, STATE STORE CORRELATION MATRIX
, STATE FORWARD ELIMINATION, STATE BACKWARD ELIMINATION,
STATE LAST DIVISION, STATE OUTPUT INVERSE MATRIX) ;

type elimination write state is (STATE_IDLE, FIRST ELIMINATION
, ODD_j WRITE, EVEN j WRITE, EVEN i START, ODD i START);

type forward elimination write state type is (STATE IDLE,
CHECK_DIAGONAL ELEMENT IS ZERO, SWAP ROWS, EVEN_j WRITE,
ODD j WRITE) ;

type last division write state type is (STATE IDLE,
EVEN i WRITE, ODD i WRITE) ;

type remainder after approximation record is record

remainder : std _logic vector (PIXEL DATA WIDTHx%2—1
downto 0); —— For PIXEL DATA WIDTH of 16

number of shifts : integer range 0 to 31;

remainder valid : std_logic;

end record;

type reg state type is record
state : state type;

—drive : std _logic _vector (2 downto
0);

—fsm start signal : std _logic vector (1l downto
0);

—inner loop iter finished : std_logic;

—inner loop last iter finished : std _logic;

——start _inner loop : std _logic;

96

97

98

99

100

101

102

103

104

106

107

108

109

111

112

113

115

116

117

118

119

120

121

122

124

126

127

128

129

130

131

146

—forward elim ctrl signal
0);
—forward elim state signal
0);
—flag forward core started
—flag forward triangular started
end record;

type input_ elimination reg type is
row _j
row i
row_even
row_odd
inv_row__even
inv_row_odd
inv_row_j
inv_row i
state reg

index i
P_BANDS —1;
index j
P BANDS —1;
valid data
write address even
P BANDS/2—1;
write address_odd
P_BANDS/2—1;
read address
P _BANDS/2—1;

flag write to_ even row

flag write to odd row

write enable odd

write enable even

forward elimination write state

APPENDIX C. VHDL CODE

std _logic_vector (1l downto
std _logic_vector (1 downto

std logic;
std logic;

record

row _array;
row _array;

TOW _array;

row array;

row _array;

TOW _array;

row _array;

Tow _array;

reg state type;
integer range 0 to

integer range 0 to

std logic;
integer range 0 to

integer range 0 to

integer range 0 to

std logic;
std logic;
std _logic;
std logic;

forward elimination write state type;

address_row _i
P BANDS/2-1;
address _row _j
P_BANDS/2—1;
flag prev_row i at odd row
cycles ahead
flag prev_row_j at odd_ row
for flip
flag start swapping rows
elimination

rows

forward
flag started swapping rows

flip rows and forward
flag_wrote swapped rows_ to BRAM
flag first data elimination

elimination

integer range 0 to

integer range 0 to

std logic; —two

std logic; —— needed
std logic; — used in
std logic; — used in
std logic;

std logic;

132

134

135

136

137

138

139

146

148

149

151

155

156

157

158

159

C.4. PACKAGE COMMON TYPES AND FUNCTIONS

read address_even : integer range
P BANDS/2-1;

read address_odd : integer range
P_BANDS/2—1;

read enable ¢ std_logic;

best approx :
remainder after approximation_record;

msb_index : integer range

index i two_cycles ahead : integer range
P_BANDS-1;

index j two_ cycles ahead : integer range
P_BANDS-1;

read address_row i two_cycles ahead : integer range
P BANDS/2—1;

wait _counter : integer range

flag _waiting for bram update ¢ std_logic;

end record;
type inverse top level reg type is record

row_j
row _array;
row i

row _array;
inv_row _j

row _array;
inv_row i

row _array;
state reg

reg state type;
index i two_cycles ahead

integer range 0 to P_BANDS-1;
index j two_cycles ahead

integer range 0 to P_BANDS-1;
index i

integer range 0 to P_BANDS —1;
index j

integer range 0 to P_BANDS —1;
valid data

std logic;
write address even

integer range 0 to P_BANDS/2-1;
write address odd

integer range 0 to P_BANDS/2—1;
read address_even

integer range 0 to P _BANDS/2-1;
read address_odd

integer range 0 to P_BANDS/2-1;
bram write data M

std _logic_vector (P_BANDS«PIXEL, DATA WIDTH*2%2 —1

0);
bram write data M inv

o

to

to

to

to

to

to

147

31;

downto

161

163

164

165

166

168

169

170

171

174

175

176

177

178

179

180

182

183

184

185

187

188

APPENDIX C. VHDL CODE

std _logic_vector (P_BANDS«PIXEL DATA WIDTH%2%2 —1 downto

0);
write enable even
std _logic; —— Remove?
write enable odd
std logic; — Remove?
read _enable
std logic;
writes _done on_column
std _logic_vector (0 downto 0); ——should

—Dbe size log2 (P _BANDS/2)downto 0. Need to edit the
manually if

——changing P_BANDS.

flag first data elimination

std logic;
flag waited one clk
std logic;
flag first memory request
std _logic; — between each state shift
flag write to odd row
std logic; —— row j might be on both odd and

—— even rows.
flag write to even row

std logic; —— sometimes its necessary to write

— both rows.

—" Needed for forward elimination
elimination write state

elimination write state;
read address row i two_ cycles ahead

integer range 0 to P_BANDS/2—1;
— read address of the row i
address _row i

integer range 0 to P_BANDS/2-—1;
flag prev_row_i at odd_ row

std logic; —two cycles ahead

flag_wr _row_ i at odd_ row
std logic;

——x

flag finished sending data _to BRAM one cycle ago
std logic;

flag finished sending data to BRAM two cycles ago
std _logic;

flag finished sending data to BRAM three cycles ago
std logic;

flag last read backward elimination
std logic;

flag first iter backward elim : std_ logic;

size

wait counter : integer range 0 to 3;

189

190

192

193

194

195

196

197

199

200

201

203

204

205

207

208

209

210

211

213

214

flag _waiting for bram update

— Needed for last division:

last division write state

C.4. PACKAGE COMMON TYPES AND FUNCTIONS

std _logic;

last division write state type;
counter output inverse matrix

/2-1;

end record;

type inverse output reg type is

—outputting two rows of the

inverse

149

integer range 0 to P_BANDS

record

matrix per cycle:

two inverse rows : std logic vector (P_BANDS«PIXEL DATA WIDTH

*2x2—1 downto 0);
valid data

std logic;

address : integer range 0 to P_BANDS/2-—1;

end record;

type output forward elimination reg type is record

row_j
row i
inv_row _j
inv_row i

TOwW _array;
rOw _array;
TOW _array;
TOW _array;

219

221

222

index i integer range 0 to
P_BANDS —1;
index j integer range 0 to
P BANDS —1;
state reg reg state type;
r_addr_next integer range 0 to
P BANDS/2—1;
write address even integer range 0 to
P _BANDS/2—1;
write address odd integer range 0 to
P _BANDS/2—1;
valid data std logic;
flag write to odd_ row std logic; — row j
might be on both odd and
— even
TOWS .
flag _write _to_even row std logic; —
sometimes its necessary to write
— both
rows .
write enable even std logic;
write enable odd std logic;
flag _prev_row_i at odd_ row std _logic; —two
cycles ahead
read address_even integer range 0 to
P_BANDS/2—1;
read address_odd integer range 0 to

P_BANDS/2-1;

224

225

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

245

246

247

248

249

250

252

253

254

255

256

257

258

260

261

150

read _enable

forward _elimination_ write_ state

APPENDIX C. VHDL CODE

std _logic;

forward elimination write state type;

flag started swapping rows

std logic; — used in

flip rows and forward elimination

wait _counter integer range 0 to 3;

index_i_two_cycles_ahead integer range 0 to
P_BANDS-1;

index j two _cycles ahead integer range 0 to
P_BANDS-1;

read address_row_i_two_cycles ahead integer range 0 to

P_BANDS/2—1;

end record;

type output backward elimination reg type

new_row_j

new_inv_Trow_j

r _addr_next
/2-1;

write address even
/2-1;

write address odd
/2-1;

valid data

state reg

flag write to odd row
be on both odd and

flag write to even row
its necessary to write

write enable even

write enable odd

forward elimination write state

is record
row _array;
row _array;

integer range 0 to P_BANDS
integer range 0 to P_BANDS

integer range 0 to P_BANDS

std logic;

reg state type;

std logic; — row j might
—— even Trows.

std logic; —— sometimes
— both rows.

std logic;

std _logic;

forward elimination write state type;
end record;

type input last division reg type is record

row i

inv_row i

state reg

index i

flag write to_even row :
write one at the

— time

valid data

write address even

write address_odd

row

best approx

in STATE LAST DIVISION

std _logic;

integer range 0 to P _BANDS/2-1;
integer range 0 to P_BANDS/2-1;

row _array;
row _array;
reg state type;

integer range 0 to P_BANDS -1,
std _logic;

— Maximum need to

262

264

265

266

267

268

269

270

271

273
274

275

277

278

280

281

282

283

285

286

288

289

290

291

293

294

295

297

298

299

300

302

303

304

306

307

C.4. PACKAGE COMMON TYPES AND FUNCTIONS 151

remainder after approximation_ record;

msb_index : integer range 0 to 31;

end record;

type output last division reg type is record

new_inv_row i : ToOw_ array;

valid data : std_logic;

index i : integer range 0 to P_BANDS —1;
write address even : integer range 0 to P _BANDS/2-1;
write address odd : integer range 0 to P_BANDS/2-1;
flag write _to even row : std logic;

state reg : reg state type;

end record;

constant INITIAL BEST APPROX

remainder after approximation_record

71)) ,
number of shifts => 0,
remainder valid => 0’

)3

-
remainder => (PIXEL DATA WIDTHx*2—

1 = 0", others =>

constant DIV_PRECISION : integer range 0 to 31 := 17;

function log2 (i : natural) return integer;
function sel (n : natural) return integer;
function create identity matrix (n : natural) return matrix 32

)
end Common types and_ functions;

package body Common types and functions is
— Found in SmallSat project description:

—constant P_BANDS : integer := 100;
constant K : integer := 0;
function log2(i : natural) return integer
variable temp : integer = 1i;
variable ret_val : integer := 0;
begin
while (temp > 1) loop
ret_val := ret_val + 1;
temp := temp / 2;
end loop;

return ret val;
end function;

function create identity matrix(n : natural) return matrix 32

308

309

310

10

11

12

13

14

15

16

17

18

19

20

21

152
is
variable M _identity matrix
P_BANDS-1);
begin

M identity matrix

)

for i in 0 to n—1 loop
M _identity matrix (i, i
32));
end loop;

return M _identity matrix
end function;

function sel(n
begin

return n;
end function;

(others

)

)

natural) return integer

APPENDIX C. VHDL CODE

matrix 32(0 to P_BANDS-1, 0 to

=> (others => (others => ’0’)))

std logic_vector(to unsigned (1,

is

end Common types and functions;

C.5 Swap rows

Listing C.5: Swap rows

library IEEE;
use IEEE.std logic 1164. all;
use ieee.numeric_std. all;

library work;

use work.Common_types_ and_functions. all;

—— This module is used in the
— It flips rows i and j if a
j does not
— contain a 0 at index j
entity swap rows_ module is
port (clk : in
reset n in
clk en in
input _swap_rows in
output swap rows out

forward elimination

zero is detected in row i, and row
std _logic;
std logic;
std logic;

input _elimination reg type;

output forward elimination reg type

)

end swap_rows_module;

architecture Behavioral of swap_ rows module is

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

57

58

60

153

C.5. SWAP ROWS
signal r, r_in input_elimination reg type;
begin
comb_process process (input swap rows, r, reset mn)
variable v input_elimination reg type;
begin
VvV = T1;
case input_ swap rows.forward elimination write state is
when SWAP ROWS =>
if input swap rows.flag start swapping rows = ’'1’ then
v.flag started swapping rows = 17
v.flag_wrote swapped rows to BRAM := '0’;
v.index j = input swap_ rows.
index j;
v.index i = input_swap_rows.
index 1i;
v.row_i = input_swap_ Trows.
row_i;
V.IOW] = input_ swap_ rows.
row_j;

v

.address_row _i

address _row i;

.address _row _j

address_row_j;

.flag _write to_ even row

flag _write _to_ even_ row;

.flag _write _to_odd_row
flag write to odd row;
.flag_prev_row i at odd_row

flag prev_row i at odd row;

.flag_prev_row j at odd_ row

input _swap_rows.

input _swap_ rows.

input _swap_ rows.

input _swap_rows.

input _swap_ rows.

not (

input_swap_ rows.flag prev_row i at odd row);
if v.row_j(v.index j) /= 0 then

— flip
v.row i
V.row_j

.row_1i;

the rows, write to BRAM

v.flag _wrote swapped rows to BRAM
v.flag write to_ even row

v.flag write to odd row

if v.flag prev_row i at odd_row
v.write address odd
v.write address even

else

v.write address_even
v.write address odd

end if;

else

— mneed to check

row_j.

Il

V.row_j;

= 17
= 17
= 17
- 1

then

v.address _row i;
v.address _row_j;

v.address _row i;
v.address _row_j;

Issue

reads for two

input swap_rows

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

154 APPENDIX C. VHDL

cycles ahead
if v.index_ j <= P_BANDS-3 then
if input swap rows.flag write to_ even row = ’
then

CODE

1 I

— mneed to read an odd row, has already read the

even row with the
— same address as this odd row

v.read _enable = 17
v.read address even := input_ swap_ rows.
read address_even;
v.read address odd := input_ swap rows.
read address odd;
else
— need to read an even row
v.read enable = 17
v.read address even := input_swap_rows.
read _address_even+1;
v.read address _odd := input_ swap_ rows.
read address odd +1;
end if;
—end if;
else
—all reads has been issued. Need to wait to see
if some of the latest
—rows can be swapped
v.read _enable := '07;
end if;
end if;
if r.flag started swapping rows = ’1’ and r.
flag_wrote swapped rows to BRAM = ’0’ then
—need to check if index i and index j is at two
even or two odd
—indexes. If so, the writes two BRAM will have to
continue in two cycles.
v.index j := r.index j +1;
v.flag prev_row j at odd row := not(r.
flag prev_row j at odd row);
v.flag write to_even row := not(r.
flag write to_even row);
v.flag write _to odd row := not(r.
flag _write _to_odd row);
V.row_j := input swap_ rows.
row_j; —this is outputted directly from BRAMS.
if v.flag prev_row j at _odd row = ’0’ then

—-current row j is at an even index, need to
update row j address
v.address _row_ j := r.address_row j+1;
end if;
if v.row_j(v.index j) /= 0 then

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

115

116

118

119

120

121

123

124

125

126

128

129

130

132

133

134

136

137

139

140

C.5. SWAP ROWS 155

—flip the rows, write to BRAM

v.row i = V.ITOW _j;
V.Irow _j =
input_swap_ rows.row_i; ——this correct?
v.flag wrote swapped rows to BRAM := ’17;
v.flag write to_ even row = 17
v.flag write to_odd_row = 17
if v.flag prev_row_i_at_odd_row = ’'1’ then
v.write address _odd := v.address row i;
v.write address even := v.address_row _j;
else
v.write address even := v.address row i;
v.write address _odd := v.address_row _j;
end if;
else

— need to read new data
if v.index_j <= P_BANDS-3 then
v.valid data := ’0’;
if v.flag write to_even row = ’1’ then
—need to read an odd row, has already read
the even row with the
— same address as this odd row

v.read enable = 17
v.read address _even := v.read address even;
v.read address odd := v.read address_odd;

else
— need to read an even row
v.read enable = 17
v.read address even := v.read address even+1;
v.read address _odd := v.read address odd +1;

end if;

end if;
end if;
elsif v.index_j = 0 then

—— The loop has continued without any swap of rows
—— The matrix is singular.
v.valid data := ’17;
else
— all reads has been issued. Need to wait to see if
some of the latest
— rows can be swapped

v.read enable := ’07;
end if;
end if;
if r.flag wrote swapped rows to BRAM = ’1’ then
— valid data is used to signal that the swapping is
done
— and that the data is finished written to BRAM
v.valid data = 17

v.flag write to even row := ’07;

160

161

162

163

165

166

167

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

156

APPENDIX C. VHDL CODE

v.flag write_to_odd_row := ’07;
v.read _enable = 07
— Start issuing reads
if r.flag prev_row_i_at_odd_row = ’0’ then
—— This means that row j two cycles ahead is at an
odd index
— because the first row j is at an odd index
v.read address odd := r.address row i;
v.read address even := r.address_row i;
else
—— This means that row j two cycles ahead is at an
even index
— because the first row j is at an even index
v.read address odd := r.address row i;
v.read address even := r.address_ row i+1;
end if;
end if;

when others =>

v.index i = 0;
v.index j = 1;
v.valid data = 07,
v.address _row i = 0;
v.address _row j = 1;
v.flag write to_ even row = 07,
v.flag write to_odd_row = 07
v.flag started swapping rows := ’07;
end case;
if (reset_n = ’0’) then
v.index i = 03
v.index j = 1;
v.valid data = 07
v.address row i = 03
v.address _row _j = 1;
v.flag write to_even row = 07
v.flag write to odd row = 07,
v.flag started swapping rows := ’07;
end if;
r_in <= Vv;
— This module needs to write
output forward elimination
output swap rows.row_j <= r.row_j;
output_swap_rows.row_i <= r.row_i;
output swap_ rows.read address odd <=T.
read address odd;
output_swap_rows.read address_even <=r.
read address_even;
output _swap_ rows.flag write to odd_ row <=r.
flag _write _to_odd_row;
output swap rows.flag write to_ even row <=T.

flag _write _to_ even_ row;

185

187

188

189

190

191

193

194

195

196

197

198

199

200

202

10

11

12

13

14

15

16

17

18

19

C.6. ACAD INVERSE

output swap_ rows.

)

output swap rows.
output swap rows.

write address_odd;

output swap rows.

write address even;

output__swap_rows.
output swap rows.
flag _prev_row _

end process;

sequential process
begin

157
read _enable <= r.read enable
valid data <= r.valid data;
write address odd <=
write address even <=r.
state reg <= r.state reg;

flag_prev_row_ i at odd row <= r
i_at_odd_row;

process (clk, clk en)

if (rising edge(clk) and clk_en = ’1’) then

r <= r_in;
end if;
end process;

end Behavioral;

C.6 ACAD inverse

Listing C.6: ACAD inverse

—— Company :
— Engineer:

— Create Date: 02/07/2018 02:19:19 PM

— Design Name:

— Module Name: inverse matrix — Behavioral

— Project Name:
— Target Devices:
— Tool Versions:
— Description:

— Dependencies:

— Revision:

— Revision 0.01 — File Created
— Additional Comments:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

49

50

51

52

53

54

55

56

57

158 APPENDIX C. VHDL CODE

library IEEE;
use IEEE.STD LOGIC 1164. all;

library IEEE;
use IEEE.STD LOGIC 1164. all;
use ieee.numeric_std. all;

library work;
use work.Common types and_functions. all;

—— Uncomment the following library declaration if using
— arithmetic functions with Signed or Unsigned values

—use IEEE.NUMERIC STD.ALL;

—— Uncomment the following library declaration if instantiating
— any Xilinx leaf cells in this code.

—Ilibrary UNISIM;

——use UNISIM. VComponents. all ;

—— This entity is the top—level for computing the inverse of a

matrix
— It is written using the two—step method, as described by Jiri
Gaisler ,
entity inverse_ matrix is
port (reset n : in std_logic;
clk _en : in std_logic;
clk : in std_logic;
valid : in std_ logic; —— connect this
to valid out from
—— correlation module
— assumes that data are inputted row—wise, two rows at
the time
din : in std_logic_vector (P_BANDSx

PIXEL DATA WIDTH%2%2 —1 downto 0);
——increases by one for every two write to BRAM:
writes done on column : in std logic vector(log2(
P BANDS/2) downto 0);
—— outputting two and two rows of the inverse matrix
inverse rows : out inverse output reg type
)

end inverse matrix;

architecture Behavioral of inverse matrix is
signal r, r_in : inverse top level reg type;

signal output_ backward elim
output backward elimination reg type;

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

C.6. ACAD INVERSE 159

signal output_ forward elim
output forward elimination reg type;

signal output last division : output last division reg type;

signal data_ out brams M : std _logic_vector (P_BANDS«
PIXEL DATA WIDTH*2+2—1 downto 0);

signal data out brams M inv : std logic vector (P_BANDSx

PIXEL DATA WIDTH*2+2—1 downto 0);

— write address for 18kbit BRAMs storing even indexes of the
matrices

signal write address even : integer range 0 to B_RAM SIZE
—1;

— write address for 18kbit BRAMs storing odd row indexes of
the matrices

signal write address odd : integer range 0 to B_RAM SIZE
—1;

signal read address even : integer range 0 to B_RAM SIZE
—1;

signal read address odd : integer range 0 to B_RAM SIZE
—1;

signal write enable odd : std_logic := ’07;

signal write enable even : std_logic := ’07;

— for BRAMs containing the inverse matrix:

signal write enable inv_odd : std logic := ’07;

signal write_enable inv_even : std_logic := ’07;

— input record to the forward elimination module

signal input forward elimination : input elimination reg type;
— input record to the elimination core

signal input elimination : input elimination reg type;
signal input last division :

input_last division reg type;
— index of the top bit of the even rows in data out from the

BRAMs:
constant EVEN ROW_ TOP INDEX : integer range 0 to P_BANDSx
PIXEL DATA WIDTH*2—1 := P_BANDS«PIXEL DATA WIDTH*2 —1;
— index of the topper bit of the odd rows in data out from the
BRAMs:
constant ODD_ROW_ TOP INDEX : integer range 0 to 2x
P_BANDS«PIXEL. DATA WIDTH*2—1 := 2«P_ BANDS«PIXEL DATA WIDTH
*2 —1;
begin
gen_ BRAM 18 for_ storing correlation matrix : for i in 0 to

P BANDS-1 generate
— Generating N_BRAMS = P_BANDS BRAM 36 kbits.
— Storing matrix M in the Gauss Jordan elimination
signal data_in even i, data_ in odd i, data out even i,
data_out _odd i : std_ logic_ vector (B_RAM BIT WIDTH —1
downto 0);
begin

95

96

97

98

99

100

101

102

103

104

106

107

108

109

128

129

130

131

133

160

— Block ram row
matrix
block ram even
generic map (

for

APPENDIX C. VHDL CODE

even row indexes

entity work.block ram

B_RAM_SIZE => B_RAM_SIZE,

B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (

clk => clk,

aresetn => reset_n,

data_in => data_in_even_i,

write enable => write_ enable_ even,

read _enable => r.read enable,

read address => read address even,

write address => write_ address_even,

data_out => data_out_even 1i);

— Block ram row
matrix
block ram odd
generic map (

for

odd row indexes of the

entity work.block ram

B_RAM_SIZE = B RAM SIZE,

B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (

clk => clk,

aresetn => reset_n,

data_in => data_in_odd i,

write enable => write enable odd,

read _enable > r.read_enable,

write address => write_address_odd,

read address => read address odd,

data_out => data_out_odd _1i);

— Process to control

process(valid, r,

begin

data input to BRAMSs.

of the correlation

correlation

output last division, output forward elim,
output backward elim)

if (r.state_reg.state = STATE STORE CORRELATION MATRIX)

then

data_in even i <= r.bram write data M (PIXEL DATA WIDTH
*2—1 + i+PIXEL DATA WIDTH*2 downto isPIXEL DATA WIDTH

*x2) ;

data_in _odd i

<= r.bram write data M (PIXEL DATA WIDTH
#2—1 +i+PIXEL_DATA_ WIDTH«2P_BANDS+PIXEL_ DATA_WIDTHx2

downto i*PIXEL DATA WIDTH*2 + P_BANDSx
PIXEL DATA WIDTHx*2) ;
elsif (r.state reg.state = STATE FORWARD ELIMINATION) then
if output forward elim.forward elimination write state =
SWAP ROWS then
if output forward elim.flag started swapping rows =
1’ then
if output forward elim.flag prev_row i at odd row =

C.6. ACAD INVERSE 161

’1’ then
134 — row i at odd index
135 data _in_even i <= std logic_ vector
output forward elim.row j(i));
136 data_in_odd i <= std_logic_vector(
output forward elim.row i(i));
137 else
138 data _in_ even i <= std_ logic_vector(
output forward elim.row i(i));
139 data_in_odd i <= std_logic_vector (
output forward elim.row j(i));
140 end if;
141 else
142 data_in _odd i <= std_logic_vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
143 data _in_even i <= std_logic vector(to_signed (0,
PIXEL DATA WIDTHx*2)) ;
144 end if;
145 — output backward elim in state EVEN j or ODD j
146 elsif output backward elim.flag write to even row = ’'1°
and output backward elim.valid data = ’'1’ then
147 — row_j is at even row
148 data_in even i <= std_ logic vector (
output backward elim.new row j(i));
149 data _in_odd i <= std_ logic_ vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
150 elsif output backward elim.flag write to_ _odd_ row = ’1’
and output backward elim.valid data = ’1’ then
151 — row_j is at odd row
152 data in odd i <= std_logic vector (
output backward elim.new row j(i));
153 data_in even i <= std logic vector(to_ signed(0,
PIXEL DATA WIDTH%*2)) ;
154 else
155 data in odd i <= std_ logic vector(to_ signed(0,
PIXEL DATA WIDTHx*2)) ;
156 data_in_ even i <= std logic vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
157 end if;
158 elsif (r.state reg.state = STATE BACKWARD ELIMINATION)
then
159 if (output backward elim.valid data = ’1’) then
160 — Received data from backward elimination.
161 if (output backward elim.flag write to _odd row = ’17)
then
162 —— the j—indexed row is an odd row of the matrix
163 data in odd i <= std logic vector(
output backward elim.new row j(i));
164 data _in_ even i <= std logic vector(to_ signed (0,

PIXEL DATA WIDTH*2)) ;

165

167

168

169

170

171

172

173

174

176

177

179

180

182

184

185

186

187

188

189

190

191

192

193

162 APPENDIX C. VHDL CODE

elsif (output_backward elim.flag write to_ even row =
’17) then
— the j—indexed row is an even row of the matrix
data_in_even i <= std_logic_vector(
output backward elim.new row j(i));
data in odd i <= std_ logic vector(to signed(0,
PIXEL DATA WIDTHx2)) ;
else
data in odd i <= std_ logic vector(to signed(0,
PIXEL DATA WIDTHx*2)) ;
data in even i <= std_ logic_vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
end if;
else
data in odd i <= std_ logic vector(to_ signed(0,
PIXEL DATA WIDTHx2)) ;
data_in even i <= std logic vector(to_ signed(0,
PIXEL DATA WIDTH%*2)) ;
end if;
elsif (r.state reg.state = STATE LAST DIVISION) then
data in odd i <= std_ logic vector(to_ signed(0,
PIXEL, DATA WIDTHx2)) ;
data_in even i <= std logic vector(to_ signed(0,
PIXEL DATA WIDTH%2)) ;
else
data in odd i <= std_ logic vector(to_ signed(0,
PIXEL DATA WIDTH%2)) ;
data_in_even i <= std_logic vector(to_signed (0,
PIXEL DATA WIDTHx*2)) ;
end if;
end process;
data_out brams M (PIXEL DATA WIDTH*2—1 + i+PIXEL DATA WIDTHx2
downto i+PIXEL DATA WIDTHx2)

<= data_out_ even i;
— even row
data_out brams M (PIXEL DATA WIDTH*x2—1 + i«PIXEL DATA WIDTHx2
+ P_BANDS«PIXEL. DATA WIDTH%2 downto ixPIXEL DATA WIDTHx2
+ P_BANDS«PIXEL DATA WIDTH%2) <= data_out odd i;
— odd row
end generate;

gen BRAM _ 18 for_ storing inv_correlation_ matrix : for i in 0 to

P BANDS-1 generate

— Generating N_BRAMS = P_BANDS BRAM 36 kbits.

— Storing the inverse matrix in the Gauss—Jordan
Elimination

signal inv_data_in even i, inv_data_ in_ odd i,
inv_data_ out_even i, inv_data_out odd i
std logic_ vector (B RAM BIT WIDTH —1 downto 0);

225

229

230

C.6. ACAD INVERSE 163

begin
— Block ram row for even indexes of the inverse matrix
block ram even : entity work.block ram
generic map (
B RAM SIZE => B RAM SIZE,
B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (
clk => clk,
aresetn => reset_n,
data_in => inv_data_in_even_i,
write _enable => write_enable inv_even,
read _enable => r.read_enable,
read address => read address even,
write address => write_ address_even,
data_out => inv_data_out even 1i);
— Block ram row for odd indexes of the inverse matrix
block ram odd : entity work.block ram
generic map (
B_RAM SIZE => B_RAM SIZE,
B RAM BIT WIDTH => B RAM BIT WIDTH)
port map (
clk = clk,
aresetn => reset_n,
data_in => inv_data_in_odd i,
write enable => write enable inv_odd,
read enable => r.read enable,

write address => write_address_odd,
read address => read address_ odd,
data_out => inv_data out odd 1i);

— Process to control data input to BRAMSs.
process (valid, r, output forward elim, output backward elim,
output last division)
begin
if(r.state reg.state = STATE STORE CORRELATION MATRIX)
then
inv_data in even i <= r.bram write data M inv(
PIXEL DATA WIDTH+2—1 + i*PIXEL DATA WIDTH*2 downto ix*
PIXEL DATA WIDTHx*2) ;
inv_data_in _odd i <= r.bram write data M inv(
PIXEL DATA WIDTH+2—1 +i«+PIXEL DATA WIDTH*2+P BANDSx
PIXEL DATA WIDTH*2 downto i*PIXEL DATA WIDTHx*2 +
P_BANDS«PIXEL DATA WIDTHx*2) ;
elsif r.state reg.state = STATE FORWARD ELIMINATION then
if output forward elim.forward elimination write state =
SWAP ROWS and output forward elim.valid data = 1’
then
— do nothing actually
—— Set data in to zero. Should not overwrite data
anyway, write enable

235

236

237

238

239

240

241

243

244

245

246

248

249

251

252

253

254

255

257

258

260

261

262

263

265

164 APPENDIX C. VHDL CODE

— 1is not active

inv_data_in_odd i <= std_logic_ vector(to_ signed(0,
PIXEL DATA WIDTHx*2)) ;

inv_data_in_even i <= std logic_ vector(to_signed (0,
PIXEL DATA WIDTHx*2)) ;

elsif output backward elim.flag write to even row = ’1°
and output backward elim.valid data = ’1’ then
— row_j is at even row

inv_data_in_ even i <= std_ logic vector
output backward elim.new inv_row j(i));

— data in to odd row is not important; write enable
odd is not

— enabled anyhow

inv_data_in_odd i <= std_ logic_ vector(to_ signed(0,
PIXEL DATA WIDTHx*2)) ;

elsif output_backward_elim.flag write to_odd_row = 1’
and output backward elim.valid data = ’1’ then

— row_j is at odd row

inv_data in odd i <= std logic vector(
output backward elim.new inv_row j(i));

— data in to even row is not important; write enable
even is not

— enabled anyhow

inv_data_in_ even i <= std logic vector(to_ signed (0,
PIXEL DATA_ WIDTHx2)) ;

else

inv_data in odd i <= std_ logic vector(to_ signed (0,
PIXEL DATA_ WIDTHx2)) ;

inv_data_in_ even i <= std logic vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;

end if;
elsif (r.state reg.state = STATE BACKWARD ELIMINATION)
then
if (output backward elim.valid data = ’1’) then
— Received data from backward elimination.
if (output backward elim.flag write to _odd row = ’17)
then

— the j—indexed row is an odd row of the matrix
inv_data in odd i <= std_ logic vector(
output backward elim.new inv_row j(i));
inv_data_in even i <= std logic vector(to signed (0,
PIXEL DATA WIDTHx*2)) ;
elsif (output_ backward elim.flag write to even row =
’17) then
—— the j—indexed row is an even row of the matrix
inv_data_in_ even i <= std_logic_vector
output backward elim.new inv_row j(i));
inv_data in odd i <= std_ logic vector(to_ signed (0,
PIXEL, DATA WIDTHx2)) ;
else

266

268

269

270

271

272

274

275

276

278

280

281

283

284

285

286

287

289

291

292

293

294

295

296

C.6. ACAD INVERSE 165

inv_data_in_odd i <= std logic_ vector(to signed (0,
PIXEL DATA WIDTHx*2)) ;
inv_data_in_ even i <= std_ logic vector(to_ signed (0,
PIXEL, DATA WIDTHx2)) ;
end if;
else
inv_data_in_odd i <= std_ logic_vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
inv_data_in_ even i <= std logic vector(to_ signed (0,
PIXEL, DATA WIDTHx2)) ;

end if;
elsif (r.state reg.state = STATE LAST DIVISION) then
if output_ last division.valid data = ’1’ then
if output last division.flag write to even row = '1’
then

— index 1 is at an even index of the matrix
inv_data_in_even_ i <= std_logic_vector (
output last division.new inv_row i(i));
inv_data_in_odd i <= std_ logic_vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
elsif output last division.flag write to even row =
0’ then
— index 1 is at an odd index of the matrix
inv_data in odd i <= std_ logic vector(
output last division.new inv_row i(i));
inv_data_in_ even i <= std logic vector(to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
else
inv_data in odd i <= std_ logic vector(to signed (0,
PIXEL DATA WIDTHx*2)) ;
inv_data_in_ even i <= std_ logic vector(to_signed (0,
PIXEL DATA WIDTHx*2)) ;
end if;
else
inv_data in odd i <= std logic vector(to signed (0,
PIXEL DATA WIDTH%*2)) ;
inv_data_in even i <= std logic vector (to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
end if;
else
inv_data in odd i <= std logic vector(to signed(0,
PIXEL DATA WIDTH%2)) ;
inv_data_in even i <= std logic vector (to_ signed (0,
PIXEL DATA WIDTHx*2)) ;
end if;
end process;
— DATA outputted from the BRAMSs
data_out brams M inv(PIXEL DATA WIDTH%2—1 + ix
PIXEL DATA WIDTH%2 downto iPIXEL DATA WIDTHx*2)

298

299

300

301

302

303

305

306

307

308

309

310

311

313

314

315

316

317

318

319

320

322

323

324

325

326

327

328

330

331

166

APPENDIX C. VHDL CODE

<= inv_data_out_even_ i;

data _out brams M inv(PIXEL DATA WIDTH%2—1 + ix
PIXEL DATA WIDTH#*2 + P_BANDS«PIXEL DATA WIDTH+2 downto i=x
PIXEL DATA WIDTH%2 + P BANDS«PIXEL DATA WIDTHx*2) <=
inv_data_out odd i;

end generate;

top forward elimination 1 : entity work.
top_ forward elimination
port map (
clk = clk,
reset n => reset _n,
clk_en = clk_en,
input forward elimination => input_ forward elimination,

output forward elimination => output forward elim);

—backward elim core is used by both forward elimination and
backward elimination.
elimination_core_1 : entity work.backward_ elim_core
port map (
clk = clk,
reset _n => reset_n,
clk_en => clk_en,

input _backward_elim => input_elimination,
output_backward_elim => output_backward_elim);

top last division 1 : entity work.top last division
port map (
clk = clk,
reset_n => reset_n,
clk_en = clk_en,
input_last _division => input_last_division,

output last division => output last division);

just for test : process(data_out brams M, r)
variable row even, row odd, inv_row_ even, inv_row_ odd
row _array;

begin
for i in 0 to P_BANDS-1 loop
row _even (1) := signed (data_out brams M(ix

PIXEL DATA WIDTH+2 + PIXEL DATA WIDTH*2—1 downto 1ix
PIXEL_DATA_ WIDTH#2)) ;

row_odd (1) := signed (data_out brams M(ix
PIXEL DATA WIDTH%2 -+ PIXEL DATA WIDTH%2 +EVEN ROW TOP INDEX

downto i+PIXEL DATA WIDTH*2 +EVEN ROW TOP INDEX+1)) ;

the odd row

inv_row_even(i) := signed(data_out brams M inv(ix
PIXEL DATA WIDTH#2 + PIXEL DATA WIDTH#2—1 downto i*
PIXEL DATA WIDTH%2)) ;

335

336

337

338

339

340

341

343

344

345

346

347

348

349

350

358

359

360

361

362

363

364

365

366

C.6. ACAD INVERSE 167

— inv_row_odd(i) := signed(data_out brams M inv(ix
PIXEL DATA WIDTH%2 + PIXEL DATA WIDTH+2 EVEN ROW TOP INDEX
downto i+PIXEL DATA WIDTH%2 +EVEN ROW _ TOP INDEX+1));
— end loop;
— end process;

— control address inputs and control inputs to BRAMSs
control addresses _and_ control BRAM : process(r,
output backward elim, output last division,
output forward elim)

begin
if (r.state reg.state = STATE STORE CORRELATION MATRIX) then
write address even <= r.write_ address_even;
write address odd <= r.write_address_odd;
read address_even <= r.read_address_even;
read address odd <= r.read address_odd;
write enable even <= 17,
write enable odd <= 17,
write enable inv_even <= ’17;
write enable inv_odd <= '17;

elsif (r.state reg.state = STATE FORWARD ELIMINATION) then
—— Set read addresses to output from top elimination
read address even <= output_ forward elim.read address_ even
read address _odd <= output_ forward elim.read address odd;
if output forward elim.forward elimination write state =
SWAP ROWS then

write address_even <= output_forward elim.
write address even;

write address_odd <= output_forward elim.
write address odd;

write enable even <= output_forward elim.
flag _write _to_even_ row;

write _enable odd <= output_forward_elim.
flag write to odd_ row;

write enable inv_even <= '07;

write enable inv_odd <= ’0’;

elsif (output backward elim.
forward elimination write state = EVEN j WRITE or
output backward elim.forward elimination write state =
ODD j WRITE) and output backward elim.valid data = ’1’

then

write address even <= output_backward elim.
write address even;

write address _odd <= output_backward_ elim.
write address odd;

write enable even <= output_backward elim.
flag _write _to_ even_ row;

write enable odd <= output_backward elim.

flag _write to odd_ row;

367

369

370

371

372

373

374

375

377

378

379

380

381

382

383

391

392

393

394

395

397

398

400

401

402

403

405

406

407

409

410

168

APPENDIX C. VHDL CODE

write enable inv_even <= output_backward elim.
flag_write_to_even_row;

write enable inv_odd <= output_ backward elim.
flag write to_odd_row;

else
write enable even
write_enable odd
write enable inv_ even
write enable inv_odd
write address even
write address odd

end if;

<=
<=
<=
<=
<=
<=

707;
707;
707;
707;
0;
0;

elsif (r.state reg.state = STATE BACKWARD ELIMINATION) then
read address even <= r.read address_ even;
read address _odd <= r.read address odd;

if (output backward elim.valid data = ’1’) then
— Received data from backward elimination.
if (output backward elim.flag write to odd row = ’17)
then

— the j—indexed row is an odd row of the matrix
write enable inv_odd <= ’17;
write enable inv_even <= ’07;
write enable odd <= 17,
write enable even <= 0",
write address even <= 0;
write address_odd <= output_backward_ elim.

write address odd;
elsif (output backward elim.flag write to even row =

then
—— the j—indexed row is an even row of the matrix
write enable inv_odd <= ’0’;
write enable inv_even <= '17;
write enable odd <= 0",
write enable even <= '17;
write address_even <= output_backward_ elim.

write address even;

write address odd <= 0; — To avoid latches
else

write _enable inv_odd <= ’0’;

write enable inv_even <= ’07;

write enable_ odd <= '07;

write enable even <= 0",

write address even <= 0;

write address_odd <= 0;

end if;

else
write enable inv_odd
write _enable inv_even
write enable even

<=
<=
<=

0 7.
07
' O 0.
07
10 0.
0°;

420

422

424

C.6. ACAD INVERSE

write_enable odd

write address_even

write address_odd
end if;

<=
<=
<=

707;
0;

0; — To avoid

latches

elsif r.state_ reg.state = STATE_LAST DIVISION then
read address_odd <= r.read_address_ odd;
read address even <= r.read address_even;

if output last division.valid data = ’1’ then

write enable inv_odd <= not(output last division.

flag write _to_even row);
write_enable _inv_even <= output_last_division.

flag _write _to_ even_ row;
<= not(output_last division.
flag write to even row);
<= output_last division.
flag _write to_even_ row;
<= output_last division.
write address even;
<= output_last division.

write_enable odd
write enable even
write address even

write address odd
write address odd
else
write enable inv_even
write enable inv_odd
write enable even
write_enable odd
write address even
write address_odd
end if;

elsif r.state reg.state =

read address_even
read address odd

)

<
<=
<=
<=
<=
<=

write enable inv_even <=
write enable inv_odd <=
write enable even <=
write enable odd <=
write address_even <= 0;
write address odd <= 0;
else
read _address_even <= 0;
read address odd <= 0;
write enable inv_ even <=
write enable inv_odd <=
write enable even <=
write enable odd <=
write address _even <= 0;
write address odd <= 0;
end if;

end process;

control inputs to eliminat

ion

707;
707;
70);
707;
0;
0;

processes

and last

STATE OUTPUT INVERSE MATRIX then
<= r.read_address_even;
<= r.read address_odd;

70 7;
70 ’;
70 7;
70 7;

division

169

455

456

457

458

460

461

463

464

466

468

469

470

471

472

473

474

475

476

479

480

170 APPENDIX C. VHDL CODE

control input to elimination : process(r, output_ backward elim
, output last division, output forward elim,
data_out brams M inv, data out brams M)
begin
if (r.valid data = ’1’) then
if (r.state reg.state = STATE FORWARD ELIMINATION) then
— In state forward elimination the reads and writes are
issued from
— top_ forward elimination, not from top—inverse

input_forward_elimination.state_ reg <=
r.state reg;
input forward elimination.valid data <=
17

input forward elimination.flag first data elimination <=
r.flag first data elimination;
—— Set input to last division

input last division.row i <=
((others => (others => ’07)));

input_last_division.inv_row_i <=
((others => (others => ’07)));

input_last division.state reg.state <=
STATE IDLE;

input last division.index i <=
0;

input_last_division.valid_data <=
70,;

input_last_division.flag write _to_ even row <=
707;

input_last division.write address even <=
0;

input last division.write address odd <=
0;

for i in 0 to P_BANDS-1 loop

input_forward elimination.row_even(i) <= signed (

data _out brams M (i+PIXEL DATA WIDTH*2 -+
PIXEL DATA WIDTH*2—1 downto i+PIXEL DATA WIDTHx*2)) ;
input_forward elimination.row_odd(i) <= signed (
data _out brams M (i+PIXEL DATA WIDTH%2 -+
PIXEL DATA WIDTH+2 +EVEN ROW_TOP INDEX downto i
PIXEL DATA WIDTH%2 +EVEN ROW TOP INDEX+1)) ;
input forward elimination.inv row even(i) <= signed (
data_out brams M inv(i*PIXEL DATA WIDTH%*2 +
PIXEL, DATA WIDTH+2—1 downto i+PIXEL DATA WIDTH#2)) ;
input forward elimination.inv_row odd(i) <= signed(
data_out brams M inv(i*PIXEL DATA WIDTH«*2 +
PIXEL DATA_ WIDTH+2 +EVEN ROW_TOP_INDEX downto 1ix
PIXEL DATA WIDTH+2 +EVEN _ROW_TOP INDEX+1)) ;
end loop;

—if (output_ forward elim.

481

482

483

484

485

486

487

488

490

491

492

493

494

495

497

499

500

504

C.6. ACAD INVERSE

forward elimination write state = EVEN j WRITE or
output forward elim.forward elimination write state =

ODD_j WRITE) and output forward elim.valid data
"1’ then
if not(output forward elim.
forward elimination write state = SWAP ROWS) and
output forward elim.valid data = ’1’ then
— USE the same elimination—core as backward
elimination
— set inputs elimination core elimination
input elimination.row j
output forward elim.row j;
input _elimination.row i
output forward elim.row i;
input elimination.index i
output forward elim.index i;
input elimination.index j
output forward elim.index j;
input _elimination.inv_row _j
output forward elim.inv_row j;
input _elimination.inv_row i
output forward elim.inv_row_i;
input elimination.valid data
output forward elim.valid data;
input_elimination.state_reg
output forward elim.state reg;
input elimination.write address even
output forward elim.write address even;
input elimination.write address odd
output forward elim.write address odd;
input elimination.flag write to even row
output forward elim.flag write to even row;
input _elimination.flag write to_ odd_ row
output forward elim.flag write to odd row;
input elimination.forward elimination write state

<=

171

output forward elim.forward elimination write state

I

else

— set input to elimination core

input_elimination.row_j
.TOW _j;

input _elimination.row i
.TOW _1i;

input elimination.index i
.index i}

input elimination.index j
.index j;

input _elimination.inv_row j
.inv_row_j;
input elimination.inv_row i

505

507

508

511

517

519

520

522

527

529

530

172

.inv_row_ij;

APPENDIX C. VHDL CODE

input_elimination.valid_data <=
0 7;

input_elimination.state_ reg.state <=
STATE IDLE;

input elimination.write address_even <=
.write address_even;

input elimination.write address odd <=
.write address odd;

input elimination.flag write to_ even row <=
0 ,;

input_elimination.flag write to_ odd row <=
0 7;

input elimination.forward elimination write state <=
output forward elim.forward elimination write state

)
end if;

elsif (r.state reg.state = STATE BACKWARD_ ELIMINATION) then

— set input to forward elimination

input forward elimination.valid

707;

input_forward_elimination.state

r.state reg;

data <=

reg <=

input forward elimination.flag first data_ elimination <=

707;
for i in 0 to P_BANDS-1 loop

input forward elimination.row_even(i) <= to_signed

(0, PIXEL DATA WIDTHx2) ;

input forward elimination.row odd(i) <= to_signed

(0, PIXEL_DATA WIDTHx2) ;

input_forward_elimination.inv__

(0, PIXEL DATA WIDTHx2) ;

input _forward elimination.inv__

(0, PIXEL DATA WIDTHx*2) ;
end loop;

— set input to elimination core

input_elimination.row_j
row_j;

input _elimination.row i
row_i;

input elimination.index i
index i;

input_ elimination.index j
index j;

input _elimination.inv_row j
inv_row_j;

input elimination.inv_row i
inv_row i;

input _elimination.valid_data
valid data;

row _even(i) <= to_signed

row_odd(i) <= to_signed

<=
<=
<=
<=
<=
<=
<=

C.6. ACAD INVERSE 173

532 input_elimination.state_ reg <=r.
state reg;
533 input_elimination.write address_even <=r.
write address even;
534 input elimination.write address odd <=r.
write address odd;
535 input_elimination . flag_write_to_even_row <=r.
flag write to even row;
536 input_elimination.flag write to_ odd_ row <=r.
flag write to_odd_row;
537 input elimination.forward elimination write state <=
output forward elim.forward elimination write state;
538 —— Set input to last division
539 input last division.row i <= ((
others => (others => ’07)));
540 input last division.inv_row i <= ((
others => (others => 0)));
541 input_last division.state reg.state <=
STATE IDLE;
542 input_ last division.index i <= 0;
543 input_last division.valid data <=
0 7;
544 input last division.flag write to even row <=
0 7;
545 input_last division.write address even <= 0;
546 input last division.write address odd <= 0;
547 elsif (r.state _reg.state = STATE LAST DIVISION) then
548 —— Set input to last division
549 input last division.row i <=
r.row_1i;
550 input_last division.inv_row i <=
r.inv_row 1i;
551 input_last division.state_ reg.state <=
r.state reg.state;
552 input last division.index i <=
r.index i;
553 input last division.valid data <=
r.valid data;
554 input_last_division.flag write_to_ even row <=
r.flag write to even row;
555 input last division.write address even <=
r.write address even;
556 input last division.write address odd <=
r.write address odd;
557 — set input to elimination core
558 input_elimination.row_j <=
r.TOW_j;
559 input _elimination.row_i <=
r.row_i;

560 input elimination.index i <=

561

563

567

569

570

574

575

577

579

583

587

174

APPENDIX C. VHDL CODE

r.index 1i;

input_elimination.index_j <=
r.index j;

input _elimination.inv_row j <=
r.inv_row _j;

input_elimination.inv_row i <=
r.inv_row_i;

input elimination.valid data <=
0 7;

input_elimination.state_reg <=
r.state reg;

input elimination.write address_even <=
r.write_address_even;

input elimination.write address odd <=
r.write address odd;

input _elimination.flag write to_ even row <=
0 ,;

input_elimination.flag write to_ odd row <=
0 7;

input elimination.forward elimination write state <=

output forward elim.forward elimination write state;

— set input to forward elimination

input forward elimination.valid data
’O?;

input_forward_elimination.state_ reg
r.state reg;

<=

<=

input _forward elimination.flag first data_elimination <=

707;
for i in 0 to P_BANDS-1 loop
input _forward elimination.row_even(i)
(0, PIXEL_DATA_ WIDTHx2) ;
input forward elimination.row_ odd(1i)
(0, PIXEL DATA WIDTHx2);

<= to_signed

<= to_signed

input_forward elimination.inv_row_ even(i) <= to_signed

(0, PIXEL DATA WIDTHx2) ;

input _forward elimination.inv_row_odd(i)

(0, PIXEL DATA WIDTHx*2) ;
end loop;

else

input_last division.row i
((others => (others => ’07)));

input last division.inv_row i
((others => (others => ’07)));

input last division.state reg.state
STATE IDLE;

input_last_division.index i

o

input_last division.valid data
7() 7;

input last division.flag write to_ even row

<= to_signed

588

592

593

595

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

C.6. ACAD INVERSE

175

0 7;

input_last_division.write_address_even <=
0;

input last division.write address odd <=
0;

— set input to elimination core

input_elimination.row_j <=
r.row_j;

input _elimination.row_i <=
r.row_i;

input elimination.index i <=
r.index i;

input _elimination.index j <=
r.index j;

input _elimination.inv_row_j <=
r.inv_row_j;

input_elimination.inv_row i <=
r.inv_row _1i;

input_elimination.valid _data <=
0 ,;

input_elimination.state reg.state <=
STATE IDLE;

input elimination.write address even <=
r.write address even;

input _elimination.write address_ odd <=
r.write address odd;

input_elimination.flag write to_even row <=
0 >;

input elimination.flag write to odd row <=
’O 7;

input elimination.forward elimination write state <=

output forward elim.forward elimination write state;

— set input to forward elimination
input_forward_elimination.valid_data
7_07, - -

)
input_forward elimination.state reg
r.state reg;

input forward elimination.flag first data elimination <=

707;
for i in 0 to P_BANDS-1 loop
input forward elimination.row even(1i)
(0, PIXEL DATA WIDTHx*2);
input forward elimination.row odd(1i)
(0, PIXEL DATA WIDTHx2);

<= to_signed

<= to_signed

input forward elimination.inv_row_ even(i) <= to_signed

(0, PIXEL_DATA WIDTHx2) ;

input _forward elimination.inv_row odd(i)

(0, PIXEL DATA WIDTH=%2) ;
end loop;

end if;

<= to_signed

176 APPENDIX C. VHDL CODE

615 else
616 — set input to forward elimination
617 input forward elimination.valid data <=
) 7;
618 input_forward_elimination.state_reg <=
.state reg;
619 input_forward_elimination.flag first data_elimination <=
0 7;
620 for i in 0 to P_BANDS-1 loop
621 input_forward elimination.row_even(i) <= to_signed
(0, PIXEL DATA WIDTHx*2) ;
622 input forward elimination.row_odd(i) <= to_signed
(0, PIXEL DATA WIDTHx*2) ;
623 input_forward elimination.inv_row_ even(i) <= to_signed
(0, PIXEL DATA WIDTHx*2) ;
624 input_forward elimination.inv_row odd(i) <= to_signed
(0, PIXEL DATA WIDTHx*2) ;
625 end loop;
626 — set input to elimination core
627 input elimination.row j <= .
row_j;
628 input_elimination.row i <=r.
row 1ij;
629 input_elimination.index i <=r.
index 1i;
630 input elimination.index j <= .
index j;
631 input _elimination.inv_row j <=r.
inv_row_j;
632 input_elimination.inv_row_i <=r.
inv_row_1i;
633 input elimination.valid data <= '07;
634 input_elimination.state_reg.state <=
STATE IDLE;
635 input elimination.write address even <= .
write address even;
636 input_elimination.write address_ odd <=T.
write address odd;
637 input_elimination.flag_ write to_even_ row <= '07;
638 input_elimination.flag write to odd_ row <= 0",
639 input elimination.forward elimination write state <=
output forward elim.forward elimination write state;
640 — Input to last division
641 input last division.row i <= ((
others => (others => ’0")));
642 input _last division.inv_row i <= ((
others => (others => ’07)));
643 input_last division.state reg.state <=
STATE IDLE;

644 input_last division.index i <= 0;

668

670

671

672

673

675

676

677

679

680

681

682

C.6. ACAD INVERSE

177

input_last division.valid data <= 0",

input _last_division.flag write_to_even_ row <= '07;

input_last division.write address_even <= 0;

input_last division.write address odd <= 0;
end if;

end process;

control inverse output : process(r, data out brams M inv)
begin
case r.state reg.state is
when STATE OUTPUT INVERSE MATRIX =>
inverse rows.valid data <= '17;
inverse rows.address <=T.
counter output inverse matrix;

inverse _rows.two_inverse rows <= data_out_ brams M inv;

when others =>

inverse rows.valid data <= '07;

inverse rows.address <= 0;

inverse rows.two_inverse rows <= (others => ’07);
end case;

end process;

comb : process(reset _n, valid, r, data_out brams M inv,

data_out brams M, output forward elim, output_ backward elim

, output last division, din, writes done on_ column,

write address _odd, write address even) —— combinatorial
process
variable v : inverse top level reg type;
begin
Vo= T;

case v.state reg.state is
when STATE IDLE =>

v.read enable = 07,
v.flag write to even row := ’07;
v.flag write _to_odd_row := ’07;
v.valid data = 07
if(valid = ’1’) then

v.valid data

= 717;
v.state reg.state

:= STATE STORE CORRELATION MATRIX;
—— Set write address
BRAMS
v.write address even

= 0
v.read address odd

to

684

685

687

688

690

691

692

693

694

695

696

697

698

699

178

= 0;
v.read address_even

= 0
v.flag write to_ odd_ row

e 717;

v.flag write to_ even_ row

= 71 7;
v.read enable

=) 1) ;
v.bram write data_ M

= din;
v.writes _done on_ column

:= writes _done on_column;

v.bram_ write data_ M inv

:= (others = ’0);
v.bram write data_ M inv

:= (others => ’07);

APPENDIX C. VHDL CODE

v.bram write_data M inv((to integer (unsigned(r.

writes _done on_column)) *2)«PIXEL

identity matrix

 DATA_ WIDTHx2)

1’; —— creating the

v.bram write data M inv((to integer (unsigned (
writes done on_column))*2+1)«PIXEL DATA WIDTHx2+
P_BANDS#PIXEL_DATA WIDTH#2) := '17;

v.wait_counter

= 0;

v.flag waiting for bram update

= ’O?;
end if;

— mneed to wait until wvalid

data on all

when STATE_STORE_CORRELATION MATRIX —>

v.writes _done on_ column

:= writes _done on_column;

v.write address even

= r.write address even +1;

— SET BRAM to write

input data

701

702

703

704

705

706

707

708

710

711

713

715

C.6. ACAD INVERSE 179

v.write address odd

:= r.write address _odd +1;
v.read address odd

= 0;
v.read address_even

= 0;
v.read enable

=) 1) ;
v.bram write data M

:= din;
v.bram write data_ M _inv

:= (others => ’0");
v.bram write data M inv((to integer (unsigned (
writes done on_ column)) x2)«PIXEL DATA WIDTH=%2)
:= ’1’; —— creating the
identity matrix
v.bram write _data M inv((to integer (unsigned (
writes _done on_ column))*2+1)«PIXEL DATA WIDTHx2+
P_BANDS+«PIXEL _DATA WIDTH*2) := ’1’;
v.flag waiting for bram update

= 0",
if (to_integer(unsigned(r.writes done on column)) +1 <
P _BANDS/2) then
v.bram write data M inv((to integer (unsigned (
writes done on_ column)) x2)«PIXEL DATA WIDTH=%2)
:= ’1’; —— creating
the identity matrix
v.bram write _data M inv((to integer (unsigned (
writes _done on_ column))*2+1)«PIXEL DATA WIDTHx2+
P_BANDS+«PIXEL DATA WIDTH*2) := ’1’;
end if;
if to_integer (unsigned(r.writes done on_ column)) =
P_BANDS/2—1 then

716

718

719

720

721

722

723

724

726

727

728

730

731

732

733

735

736

737

738

739

740

742

743

745

180

APPENDIX C. VHDL CODE

— in BRAM before

starting to edit
v.read enable = 17
v.read address_even = 0;
v.read address odd = 0;
v.state reg.state =
STATE FORWARD ELIMINATION;
v.write enable even = 07
v.write enable odd = 07
v.wait counter = 0;
v.flag last_read_ backward_elimination := ’07;
v.flag first data elimination = 17
v.valid data = 17
end if;
if valid = ’0’ then

v.state_ reg.state := STATE IDLE;
v.state reg.drive := STATE IDLE DRIVE;
end if;
when STATE FORWARD ELIMINATION =>
— Set first memory request?
— Set write state?
v.flag first data_elimination := ’07;
if output forward elim.index j = P _BANDS-1 and
output forward elim.index i = P_BANDS-2 then
— finished forward elimination

v.state reg.state =
STATE BACKWARD ELIMINATION;
v.flag first iter backward elim := ’17;
— Request data for BACKWARD elimination
v.read address even := P_BANDS/2-1; —
read toppermost address, contains
—row P_BANDS-1 and
P_BANDS-2

v.read address odd := P_BANDS/2-1;

it .

746

747

749

750

751

752

753

754

756

760

761

762

763

764

765

767

769

770

771

772

773

C.6. ACAD INVERSE

end if;
when STATE BACKWARD ELIMINATION =>

if(r.flag first iter backward elim = ’1’) then

— Read first data from BRAMSs
v.write address even

P BANDS/2—-1; — first write will

— to even Trow ,

— in even BRAMS.

v.write address odd

P_BANDS/2—1;
v.read enable
’1 7;
v.write enable_ even
0 7;
v.write enable odd
0 >;
v.flag first data_ elimination
’0 7;
—v.flag waited one clk
= 0";
v.flag first memory request
71 7;
v.index j two_cycles ahead
P_BANDS-2;
v.index_ i_two_cycles_ahead
P BANDS-1;

v.read address _row i two_cycles ahead
P_BANDS/2-1;
v.read address even

P _BANDS/2—1;
v.read address odd
P _BANDS/2—1;

v.address _row i
P_BANDS/2—1;

v.flag finished sending data to BRAM one cycle ago

’0 7;

v.flag finished sending data to BRAM two_cycles ago :
70 7;

v.flag _wr _row_ i at odd_ row
) 1) ;

v.flag prev_row i at odd_ row
) 1) ;

v.flag first iter backward elim
70 7;

v.wait_counter
0;

v.flag waiting for bram update
70 7;

v.flag last_read_ backward_elimination
70 7;

181

located

774

775

T

778

779

780

781

782

783

785

786

787

788

789

790

792

793

794

795

796

797

798

799

800

802

803

804

182 APPENDIX C. VHDL CODE

end if;
if(r.flag first memory request = ’'1’) then
v.flag first memory request := ’'0’;
—v.flag waited one clk = 17
v.index j two_ cycles ahead := r.
index j two_cycles ahead —1;
v.read address even := r.read address even —1;
— need to read an odd row
v.read _address_odd := r.read_address_odd —1;
v.flag first data_ elimination := ’17;
end if;
— if (r.flag _waited one_ clk = ’17) then
— v.flag first data elimination : ’17; — the next

clock cycle the BRAM

— — will have the
correct output, for

— — the first input of the inverse matrix

— v.flag waited one clk :='0";

— if (r.index j two_cycles ahead—1 >= 0) then

—_— — need to read an even row, do not change read
address

—_— v.index j two_ cycles ahead := r.
index j two_cycles ahead—1;
— end if;
— end if;
if (r.flag first data elimination = ’1’) then —

received the first
—input_data to backward elimination from BRAM

— v.state reg.fsm start signal :=

START BACKWARD ELIMINATION;,

— must set the flag low again

v.flag_ first_ data_elimination := ’'07;
for i in 0 to P_BANDS-1 loop
v.row_j(1i) := signed (data_out brams M(ix

PIXEL_DATA_ WIDTH+2 + PIXEL DATA WIDTH+2—1 downto
i +PIXEL, DATA_WIDTHx2)) ;

v.row i(1i) := signed (data_out brams M(ix
PIXEL_DATA WIDTH%2 + PIXEL DATA WIDTHx2 +
EVEN ROW TOP INDEX downto i+PIXEL DATA WIDTHx2 +
EVEN ROW_TOP INDEX+1)) ;

— the odd row

v.inv_row_ j(i) := signed(data_out brams M inv(ix
PIXEL_DATA WIDTH+2 + PIXEL DATA WIDTHs2—1 downto
i PIXEL, DATA_WIDTHx2)) ;

v.inv_row_i(i) := signed(data_out brams M inv(ix
PIXEL_DATA WIDTH«2 + PIXEL DATA WIDTH#2 +
EVEN ROW TOP INDEX downto i+PIXEL DATA WIDTH«2 +

819

820

821

822

823

824

826

827

828

830

831

833

834

836

838

839

840

841

842

843

C.6. ACAD INVERSE

EVEN ROW TOP INDEX+1)) ;

end loop;

v.index i := P_BANDS-1;
v.index j := P_BANDS-2;
v.address_row i := P_BANDS/2—1;
v.valid data = 17

— The first written j—row will
row .

183

alway be at an even—

v.flag write to_ even row = 17

v.flag write to_odd_row = 07

v.write enable even = 17

v.write enable odd = 07,

v.write address even := P_BANDS/2 —1;
v.write_address_odd := P_BANDS/2—1;
v.flag _wr_row i at odd_ row := ’'17;
v.elimination write_state := ODD_j WRITE;

— read new data

if (r.read address _odd >= 0 and r.

index j two_cycles ahead >= 1) then

— need to read an even row

v.read address odd =
v.read address_even =
v.index j two_cycles ahead :=

r.read address odd;
r.read address_even;

T.

index j two_cycles ahead—1;
elsif r.index j two_cycles ahead < 1 then

— mnew i or finished , update
if r.index i two_cycles ahead

>= 2 then

v.index i two_cycles ahead := r.
index i two_cycles ahead —1;
v.index j two_cycles ahead := r.
index i two_cycles ahead —1;
if r.flag prev_row i at odd row = ’1’ then
— mnext row i will be located in an even
row
v.read address even =

read address _row i two_cycles ahead;

v.read address odd

read address row i two cycles ahead —
v.read address _row i two_cycles ahead :=

read address _row i two cycles ahead;

v.flag prev_row i at odd row

else

— mnext row i will be located

row
v.read address_odd

read address _row i two_ cycles ahead —1;

v.read address even

in

an odd

indexed

Ir.

1;

Ir.
707;

indexed

Tr.

read address_row i two_ cycles ahead -1;
v.read address _row i two cycles ahead :=
read address _row i two cycles ahead—1;

T.

844

845

847

848

849

850

851

852

854

855

856

857

858

859

860

861

863

864

865

867

868

869

871

872

873

875

876

877

879

880

184

APPENDIX C. VHDL CODE

v.flag prev_row_ i at odd_row = 17
end if;
end if;
end if;
end if;
case r.elimination write state is
when ODD_j WRITE =>

if r.flag_waiting for bram _ update = 0’ then
v.flag write to_ even row := ’0’;
v.flag write to_odd_row := ’'17;

— row_j is outputted from odd BRAMs(located at
higher end of output)
for i in 0 to P_BANDS-1 loop
v.row_j(1i) := signed (data_out brams M(ix
PIXEL DATA WIDTH+2 + PIXEL DATA WIDTH#2 -+
EVEN ROW_TOP INDEX downto i*PIXEL DATA WIDTH
*2 4EVEN ROW_ TOP INDEX+1)) ;
v.inv_row_j(i) := signed(data_out brams M inv(i=x
PIXEL, DATA_ WIDTH+2 -+ PIXEL DATA WIDTHs2 -+
EVEN ROW_TOP INDEX downto i*PIXEL DATA WIDTH
*2 +EVEN ROW_ TOP INDEX+1));

end loop;
v.write enable even := ’07;
v.write enable odd := ’17;
v.index j := r.index_j —1;
if r.index j >= 1 the
v.write address _odd := r.write address_ odd -—1;
v.write address even := r.write address even —1;
end if;
end if;
— do not really understand how the —2 got in this
if ... check

if v.index j <= 1 and r.index i two_cycles ahead—-2 —
v.index j < B_RAM WAIT CLK CYCLES and r.
wait counter < B RAM WAIT CLK CYCLES—(r.
index i two_cycles ahead—2 —v.index j) then
— Need to wait for the row to update before
reading it .

v.wait_counter := r.wait_ counter
+1;
v.flag waiting for bram update := ’17;
else
v.flag waiting for bram _ update := ’0’;
v.wait_counter = 0;
if (v.index j >= 1) then
—v.index j := r.index j —1;

v.elimination write state := EVEN j WRITE;
elsif v.index_ j < 1 then

—v.index i := r.index i —1;

—v.index j := r.index i —2;

881

882

884

885

886

887

888

889

891

892

893

894

895

897

898

900

902

903

904

905

907

908

909

910

912

913

C.6. ACAD INVERSE

if (r.flag wr row i at odd row = ’0’) then

v.elimination write_ state := ODD_i START;

else

185

v.elimination write state := EVEN i START;

end if;
end if;

— read new data. Data need to be read two

cycles in advance
if (r.read address _odd >= 1 and r.
index j two_cycles ahead >= 2) then
— mneed to read an odd row

clock

v.read address odd := r.read address_odd

—1;
v.read address even = r.
read address even —1;
v.index j two_cycles ahead := r.
index j two_ cycles ahead —1;
elsif v.index j < 2 then
— new i, update

if r.index i two_ cycles ahead >= 2 then

v.index i two_cycles ahead := r.
index i _two_cycles ahead —1;

v.index j two_ cycles ahead := r.
index i two_cycles ahead —2;

if r.flag prev_row_i_at_odd_row = ’'1’ then

— mnext row i will be located in an

indexed row
v.read address_even

address _row i;
v.read address odd

address_row_i—1;

v.read address row i two cycles ahead

read address _row i two_cycles
v.flag prev_row i at odd_ row
70) ;
else

ahead;

even

— next row i will be located in an odd

indexed row
v.read address odd

read address _row_ i two_ cycles ahead —1;

v.read address even

read address _row i two_cycles ahead —1;

v.read address_row_i two_cycles ahead

read address _row i two_cycles
v.flag prev_row i at odd_row
) 1) ;
end if;
end if;
end if;

end if;

ahead

T.

Tr.

918

919

921

922

923

924

926

927

928

930

931

932

933

935

936

937

938

940

941

942

944

945

946

947

948

949

186 APPENDIX C. VHDL CODE

when EVEN j WRITE =>
if r.flag_waiting for bram _ update = 0’ then
for i in 0 to P_BANDS-1 loop
— data is located in the even
output from BRAM
v.row_j(1) := signed (data_out brams M(ix
PIXEL DATA WIDTH+2 + PIXEL DATA WIDTH*2—-1
downto i+PIXEL DATA WIDTH=%2)) ;
v.inv_row_j(i) := signed(data_out brams M inv(i=x
PIXEL DATA WIDTH+2 + PIXEL DATA WIDTHx2—1
downto i+PIXEL DATA WIDTH%2)) ;
end loop;
v.flag write to_ even row :=
v.flag write to odd row :=
v.write address even =
v.write address odd =
v.write enable even =
v
v
v
d

part of the

) .

17

) I,

07;

r.write address even;
r.write address_odd;
) I,

7

)).

07
r.index_j
r.index i;

.write enable odd =

.index_j

.index i
if;

en

if v.index j <= 1 and r.index j two_cycles ahead—1-
v.index j < B_RAM WAIT CLK CYCLES and r.
wait counter < B RAM WAIT CLK CYCLES—(r.
index j two_ cycles ahead—1 —v.index j) then
v.wait counter = r.wait_ counter

+1;
v.flag waiting for bram update := ’'17;
else
v.wait counter = 0;
v.flag waiting for bram update := '07;
if (v.index j >= 2) then
v.elimination write state := ODD_j WRITE;
elsif v.index j < 2 then
if(r.flag_wr row i at _odd row = ’0’) then
v.elimination write_ state := ODD_i START;
else
v.elimination write state := EVEN i START;
end if;
end if;
— read new data
—if(r.read address odd >= 1 and v.index j >= 1)
then
if r.flag last read backward elimination = ’0’
then
if (r.read address odd >= 0 and r.
index j two_cycles ahead >= 1) then
— mneed to read an even row("two clock cycles

ahead")

951

953

954

955

956

958

959

961

962

963

964

965

966

967

968

969

970

971

973

975

976

978

979

C.6. ACAD INVERSE 187

— Even and odd read addresses will be equal
in backward

— elimination except for when reading the
first read for a even

— indexed i.

v.read address odd = T.
read address odd;

—v.read address even = r.
read address even;

v.read address_even = r.
read address odd;

v.index j two_cycles ahead := r

index j two_cycles ahead —1;
elsif v.index_ j < 2 then
— new i or finished all necessary reads,

update
if v.index_ i >= 2 then
v.index i two_cycles ahead := r.
index i two_cycles ahead —1;
v.index j two_ cycles ahead := r.
index i two_cycles ahead —2;
if r.flag prev_row_i_at_odd_row = ’'1’ then

— mnext row i will be located in an even
indexed row

v.read address_even =T
.read address _row i two_ cycles ahead;

v.read address odd =T
.read address _row_i_ two_cycles ahead —1;

v.read address row i two cycles ahead := r

.read address _row i two_cycles ahead;
v.flag prev_row i at odd_ row =

707;
else
— next row i will be located in an odd
indexed row
v.read address odd =T
.read address_row_ i two_cycles ahead
—1;
v.read address_even =T
.read address_row_ i two_cycles ahead
—1;
v.read address _row i two cycles ahead := r
.read address _row i two_cycles ahead —1;
v.flag prev_row i at odd_ row =
717;
end if;
end if;
end if;
end if;
end if;

188 APPENDIX C. VHDL CODE

980 when ODD i START =>

981 if(r.
flag finished sending data to BRAM one cycle ago
= ’0’) then

982 for i in 0 to P_BANDS-1 loop

983 v.row_j(1) := signed (data_out brams M(ix

PIXEL, DATA WIDTH#2 -+ PIXEL DATA WIDTH#2—1
downto i+PIXEL DATA WIDTH=%2)) ;

984 v.row_i(1) := signed (data_out brams M(ix
PIXEL, DATA WIDTH#2 + PIXEL DATA WIDTHs2 +
EVEN ROW_TOP_INDEX downto i*PIXEL DATA WIDTH
*2 +EVEN ROW_ TOP INDEX+1));

985 — the odd row

986 v.inv_row j(i) := signed(data out brams M inv(ix
PIXEL_DATA_ WIDTH*2 + PIXEL DATA WIDTH*2—1
downto i+PIXEL DATA WIDTHx*2)) ;

087 v.inv_row i(i) := signed(data out brams M inv(ix
PIXEL_DATA_ WIDTH*2 + PIXEL DATA WIDTH+2 +
EVEN ROW_TOP INDEX downto i*PIXEL DATA WIDTH
x2 +EVEN ROW TOP INDEX+1)) ;

988 end loop;

989 v.flag _write_ to_even_row = 17

990 v.flag wr row i at odd row := ’'17;

991 v.flag write _to_odd_ row = 07,

992 v.index i := r.index i-1;

993 v.index j = r.index i-—2;

994 v.address _row i := r.address_row_i-—1;

995 v.write address_even := r.address_row_i—1;

996 v.write address odd := r.address_row_ i-—1;

997 v.write enable even = 17

998 v.write enable odd = 07

999 if (v.index j > 1) then — the first two indexes
are contained

1000 — within address 0

1001 —v.index j := r.index j —1;

1002 v.elimination write state := ODD_j WRITE;

1003 elsif v.index_j = 0 and v.index_i = 1 then

1004 — In two clock cycles the data will be written
to B_RAM.

1005 — and it is possible to change state to
TOP_ LAST DIVISON.

1006 V.
flag finished sending data to BRAM omne cycle ago
= 17

1007 end if;

1008

1009 if r.flag last read backward elimination = ’0’

then
1010 if (r.read address_odd >= 0 and r.

index j two_cycles ahead >= 1) then

C.6. ACAD INVERSE 189

1011 —if (r.read address _odd >= 1 and r.
index j two_ cycles ahead >= 2) then
1012 — need to read an even row
1013 v.read address odd = r.
read address odd;
1014 v.read address_even = T.
read address_even;
1015 v.index_ j two_cycles ahead := r.
index j two_cycles ahead—1;
1016 elsif r.index j two_cycles ahead < 1 then
1017 — mnew i or finished , update
1018 if r.index i two_cycles ahead >= 2 then
1019 v.index_ i_two_cycles ahead := r.
index i two cycles ahead —1;
1020 v.index j two_cycles ahead := v.
index i two_cycles ahead —2;
1021 if r.flag prev_row i at odd row = ’1’ then
1022 — mnext row i will be located in an even
indexed row
1023 v.read address even =T
.read address _row i two_cycles ahead;
1024 v.read address odd =T
.read address _row i two cycles ahead—1;
1025 v.read address _row i two cycles ahead := r
.read address_row_i two_cycles ahead;
1026 v.flag _prev_row i at odd row =
707;
1027 else
1028 — mnext row_ i will be located in an odd
indexed row
1029 v.read address odd = r
.read address _row i two_ cycles ahead
—1;
1030 v.read address even = r
.read address row i two_ cycles ahead
—1;
1031 v.read address_row i two_ cycles ahead := r
.read address _row i two cycles ahead—1;
1032 v.flag prev_row i at odd_row 1=
71 7;
1033 end if;
1034 end if;
1035 end if;
1036 end if;
1087 else
1038 v.read address even
1039 v.read address_ odd

1040 V.

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1056

1057

1058

1059

1060

1061

1062

1063

190 APPENDIX C. VHDL CODE

flag finished sending data _to BRAM two_cycles ago

= 17
end if;
if(r.
flag finished sending data to BRAM two_cycles ago
= ’1’) then
v.read address even
v.read address odd
V.
flag finished sending data to BRAM three cycles ago
= 17
end if;
if r.
flag_finished _sending_ data_to_ BRAM _three_ cycles_ago
= 1’ then

v.state reg.state

STATE LAST DIVISION;
v.last division write state

v.valid data

70 7;
v.index i two_cycles ahead
v.flag first memory request
== ’1’; — used to

indicate that the
— mnext cycle the first
write
— will happen from
STATE LAST DIVISION
v.read address_even

= 0
v.read address odd
= 0;
v.flag finished sending data to BRAM one cycle ago
= 70 9 ;
V.
flag finished sending data to BRAM two_cycles ago
= 70) ;
V.
flag finished sending data to BRAM three cycles ago
=)0 9 ;
end if;

when EVEN i START —-

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

C.6. ACAD INVERSE 191

for i in 0 to P_BANDS-1 loop

v.row_i(1i) := signed (data_out_brams M(ix
PIXEL_DATA_ WIDTH*2 + PIXEL DATA WIDTHx2—1
downto i+PIXEL DATA WIDTHx*2)) ;

v.row_j(1i) := signed (data_out brams M(ix
PIXEL_DATA WIDTH+2 + PIXEL DATA WIDTHx2 +
EVEN ROW_TOP_ INDEX downto i*PIXEL DATA WIDTHx*2
+EVEN ROW_TOP INDEX+1)) ;

— the odd row

v.inv_row_i(i) := signed(data_out brams M inv(ix
PIXEL_DATA WIDTHx+2 -+ PIXEL DATA WIDTHx2—1
downto i+PIXEL DATA WIDTHx%2)) ;

v.inv_row_ j(i) := signed(data_out brams M inv(ix
PIXEL_DATA WIDTH+2 -+ PIXEL DATA WIDTH#2 +
EVEN ROW TOP INDEX downto i+PIXEL DATA WIDTHx#2
JEVEN ROW TOP INDEX}1));

end loop;

v.flag_wr _row_i at odd_row := ’07;

v.flag write to_even row = 07

v.flag write to odd row = 17

v.index i := r.index i-1;
v.index j := r.index i-2;
v.address row i := r.address_row _i;
v.write address even := r.address_row i —1;
v.write_address_odd := r.address_row_i —1;
v.write enable even = 07

v.write enable odd = 17

if (v.index j >= 1) then

v.elimination write state := EVEN j WRITE;

end if;

— read new data.

i

f r.flag last read backward elimination = ’0’ then
if (r.read address_odd >= 1 and r.
index j two_cycles ahead >= 2) then
— need to read an odd row

v.read address_odd := r.read address_odd
—1;

v.read address even = Tr.
read address even —1;

v.index j two_cycles ahead := r.

index j two_cycles ahead—1;
elsif r.index j two_cycles ahead < 1 then
— new i, update
if r.index i two_ cycles ahead >= 2 then

v.index i two_cycles ahead := r.

index i two_cycles ahead —1;
v.index j two_ cycles ahead := r.

index i two_cycles ahead —2;
if r.flag prev_row_i_at_odd_row = ’'1’ then

— mnext row i will be located in an even

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

192 APPENDIX C. VHDL CODE

indexed row

v.read address even = r.
read address _row i two_ cycles ahead;
v.read address odd = r.

read address row i two_cycles ahead —1;
v.read address _row i two_cycles ahead := r.
read address_row i two_cycles ahead;
v.flag prev_row i at odd_ row =
0 7;
else
— mnext row i will be located in an odd
indexed row
v.read address odd =r.

read address row i two cycles ahead —1;
v.read address_even :
read address_row_ i two_cycles ahead —1;
v.read address _row i two_ cycles ahead := r.
read address _row i two_ cycles ahead—1;
v.flag prev_row i at odd_row =
?1 7;
end if;
end if;
if v.index i two_ cycles ahead = 1 then
— Finished reading data for backward
elimination
v.flag last read backward elimination := ’'17;
end if;
end if;
end if;
when others =>
end case;
when STATE LAST DIVISION =>
case r.last division write state is
when EVEN_ i WRITE —=>

= I.

if (r.flag first memory request = ’'1’) then

— First write is to a even row

v.index i = 0;

v.flag first memory request := ’07;
v.write address even = 0;

v.write address odd = 0;

v.write address even = 0;

v.write address odd = 0;

v.valid _data = 17

else
v.index i r.index i+1;
v.write address even := write address even +1;
v.write address odd write address odd+1;
end if;
v.flag _write to_even_row 17
v.flag write _to _odd row := ’07;

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

C.6. ACAD INVERSE 193

if r.read address_even < P_BANDS/2—1 then

v.read address even := r.read address even+1;
v.read address _odd := r.read address even+1;
end if;

for i in 0 to P_BANDS-1 loop
— data is located in the even part of the output
from BRAM
v.row_i(1) := signed (data_out brams M(ix
PIXEL_DATA_ WIDTH%2 + PIXEL_DATA WIDTH*2—1
downto i+PIXEL DATA WIDTHx*2)) ;
v.inv_row_ i(i) := signed(data out brams M inv(ix
PIXEL_DATA WIDTH%2 + PIXEL_DATA WIDTH*2—1
downto i+PIXEL DATA WIDTHx*2)) ;
end loop;
if v.index i <= P_BANDS-2 then
v.last division write state := ODD_i WRITE;

end if;
when ODD_i WRITE =>
v.index i := r.index i +1;

if v.index i >= P_BANDS-1 then
— top_last division is finished written
v.state reg.state =
STATE_OUTPUT_INVERSE MATRIX;

v.read address odd = 0;

v.read address even = 0;

v.read enable = 17

v.counter output inverse matrix := 0;
else

— row_1i is outputted from odd BRAMs(located at
higher end of output)
for i in 0 to P_BANDS-1 loop
v.row_i(1) := signed (data_out brams M(ix
PIXEL_DATA_ WIDTH+2 + PIXEL_DATA_ WIDTH*2 +
EVEN ROW_TOP INDEX downto i*PIXEL DATA WIDTH
x2 +EVEN ROW TOP INDEX+1)) ;
v.inv_row_ i(i) := signed(data_out brams M inv(i=x
PIXEL, DATA WIDTH+2 -+ PIXEL DATA WIDTHs2 -+
EVEN ROW_ TOP_ INDEX downto i*PIXEL DATA WIDTH
*2 +EVEN ROW_TOP INDEX+1));

end loop;
v.read address even := r.read address_even;
v.read address odd := r.read address_odd;
v.flag _write_to_even_row := ’0’;
v.flag write to _odd row := ’17;

end if;

if v.index i <= P_BANDS-3 then
v.last division write state := EVEN i WRITE;
end if;
when others =>
v.read address even = 03

194 APPENDIX C. VHDL CODE

1174 v.read address odd = 0;

1175 v.flag _write_to_even_row := ’0’;

1176 v.flag write _to_odd row := ’07;

1177 end case;

1178 when STATE OUTPUT INVERSE MATRIX =>

1179 — Read all BRAMs to output data

1180 — Already read the first two addresses?

1181 if r.counter output_ inverse matrix < P_BANDS/2—1 then

1182 v.read address_even := r.read address_even
+1;

1183 v.read _address_odd := r.read address odd
+1;

1184 v.counter output_inverse_ matrix := r.
counter output inverse matrix+1;

1185 v.valid data = 17

1186 else

1187 — Finished! Signal, then go to STATE IDLE

1188 end if;

1189

1190 when others =>

1191 v.read enable = 07,

1192 v.write enable_ even = 07

1193 v.write enable odd = 07

1194 v.elimination write state = STATE IDLE;

1195 v.state reg.state := STATE IDLE;

1196 v.last division write state := STATE IDLE;

1197 v.valid data = 07

1198

1199 end case;

1200 if(reset_n = ’0’) then

1201 v.read _enable = 07,

1202 v.write enable even = 07,

1203 v.write enable odd = 07,

1204 v.elimination write_state := STATE IDLE;

1205 v.state reg.state := STATE IDLE;

1206 v.last division write state := STATE IDLE;

1207 v.valid data = 07,

1208 end if;

1209 r_in <= v;

1210 end process;

1211

1212

1213 regs : process(clk, reset_n, clk en)

1214 begin

1215 if rising edge(clk) and clk_en = ’1’ then

1216 if (reset_n = ’0’) then

1217 else

1218 r <= r_in;

1219 end if;

1220 end if;

1221

1222

1223

1224

© 0 N o w A W N e

11

12

13

14

15

16

18

19

20

21

22

23

24

26

27

28

29

30

31

C.7. SHIFTREGISTER 195

end process;

end Behavioral;

C.7 Shiftregister

Listing C.7: Shiftregister

library IEEE;
use IEEE.std logic 1164. all;
use ieee.numeric_std.all;

library work;
use work.Common_types_ and_functions. all;

— A serial(n bit at a time) in parallell out shift register
— Inputes four bands at a time, until a whole pixel is shifted

in
entity shiftregister four pixels is
port (din ¢ in std logic vector (PIXEL DATA WIDTH
+«ELEMENTS SHIFTED IN FROM CUBE DMA-1 downto 0);
valid :in std _logic;
clk : in std _logic;
clk en ¢ in std logic;
reset_n ¢ in std logic;

shift counter : out std logic_vector(log2 (P_BANDSx
PIXEL DATA WIDTH/ (PIXEL DATA WIDTHx4)) downto 0);
— Assuming PIXEL DATA WIDTH%4 (maximum 64) bit per input cycle,
4 pixel components at max 16 bit. Important to
— know delay of first input pixel in clock cycles
valid _out : out std _logic;
dout : inout std logic vector (P_BANDSk
PIXEL DATA WIDTH —1 downto 0)
)

end shiftregister four pixels;

architecture Behavioral of shiftregister four pixels is

signal r, r in : std_logic_vector(
P BANDS#PIXEL DATA WIDTH —1 downto 0);
signal r_shift counter in, r shift counter : std logic_ vector(

log2 (P_ BANDS+PIXEL, DATA WIDTH/ (PIXEL DATA WIDTHx
ELEMENTS_SHIFTED IN FROM CUBE DMA)) downto 0) := (others —>

70 7);
signal r_in_valid_out : std_logic;
begin
comb proc : process(din, valid, dout, r_ shift counter)
variable v _shift counter : integer := to_integer (

unsigned (r_shift counter));

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

196 APPENDIX C. VHDL CODE

variable v_temp shift data in : std logic_vector (P_BANDSx
PIXEL,L DATA WIDTH-1 —ELEMENTS SHIFTED IN FROM CUBE DMAx
PIXEL DATA WIDTH downto 0);

variable v : std_logic_vector (P_BANDS x
PIXEL DATA WIDTH —1 downto 0);
variable v_wvalid out : std_logic := ’07;
begin
if (valid = 1) then

v_shift counter

:= to_integer (unsigned(r shift counter)) + 1;

:= dout;
v_temp shift data in

:= v(P_BANDS«PIXEL DATA WIDTH-1 downto
ELEMENTS SHIFTED IN FROM CUBE DMA«PIXEL DATA WIDTH) ;
v(P_BANDS+PIXEL, DATA WIDTH-1 —
ELEMENTS_SHIFTED IN_FROM_CUBE_DMA+PIXEL DATA_ WIDTH
downto 0) =
v_temp _shift data_in;
v (P_BANDS+PIXEL DATA WIDTH-1 downto P_BANDSx
PIXEL DATA WIDTH — ELEMENTS SHIFTED IN FROM CUBE DMAx
PIXEL DATA WIDTH) := din;
if v_shift counter = P_BANDS/
ELEMENTS SHIFTED IN FROM CUBE DMA then
v_valid _out := ’'17;
else
v_valid_out := '0’;
end if;
else
v_shift counter := 0;
v := (others = ’07);
v_valid out = 07,
end if;
if (reset_n = ’0’) then
v := (others => ’07);
v_shift counter := 0;
v_valid out = 07,
end if;
r _shift counter in <= std_ logic_ vector(to unsigned(
v_shift counter, r_shift counter in ’length));

shift counter <= r_shift counter;
r_in_valid_out <= v_valid_out;
r_in <= Vv;

dout <=r1;

end process;

65

66

67

68

69

70

71

72

73

74

75

10

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

C.8. FORWARD ELIMINATION 197

sequential proc : process(clk, clk en)
begin
if (rising edge(clk) and clk_en = ’1’) then
r <= r1_in;
valid _out <= r_in_valid_out;
r_shift counter <= r_shift counter in;
end if;

end process;

end Behavioral;

C.8 Forward elimination

Listing C.8: Forward elimination
library IEEE;
use IEEE.std logic 1164.all;
use ieee.numeric_std. all;

library work;
use work.Common types and _functions. all;

—— This module controls the forward elimination stage. It issues
reads and

— writes to BRAM

entity top forward elimination is

port (clk : in std_logic;

reset _n : in std_logic;

clk en : in std_logic;
input_forward elimination : in
input_elimination_reg_type;
output forward elimination : out

output forward elimination reg type
)

end top forward elimination;

architecture Behavioral of top_ forward_ elimination is

signal r, r_in : input_elimination reg type;

signal output swap rows : output forward elimination reg type;

signal input swap rows : input elimination reg type;

signal output_ top level : output_ forward elimination reg type;
begin

—— Instance to swap the rows if needed.

swap_rows_ 1 : entity work.swap rows module

port map (

clk = clk,

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

198 APPENDIX C. VHDL CODE
reset_n => reset_n,
clk _en => clk_en,
input_swap rows => input swap_ rows,
output swap rows => output swap rows);
—process to set output to inverse top level
set _outputs : process(r, output swap_ rows, output top level)
begin

case r.forward elimination write state is

when STATE IDLE —>
output forward elimination <=

output_top level;

when CHECK DIAGONAL ELEMENT IS _ZERO —=>

output forward elimination <=
when SWAP_ROWS —=>
output forward elimination <=
when EVEN j WRITE =>
output forward elimination <=
when ODD_j WRITE =>
output forward elimination <=
when others =>
output forward elimination <=
end case;
end process;

output _top level;
output swap rows;
output_top level;
output_top level;

output top level;

set _inputs to_ swap rows : process(input_ forward elimination, r

)

begin

case r.forward elimination write state is

when STATE IDLE =>

input_swap_ rows.forward elimination write state

STATE IDLE;

input _swap rows.row i

others => (others => ’07)));

input _swap_ rows.row _j

others => (others => ’07)));

input _swap_rows.index i
input_swap_rows.index j
input swap rows.address row i
input _swap_ rows.address _row _j

input _swap_ rows.flag write to_ even row
input _swap rows.flag write to odd row
input_swap rows.flag prev_row i at_ odd_ row

when SWAP_ROWS =>

input _swap rows.forward elimination write state
forward elimination write state;
if r.flag_ start swapping rows = ’1’ then

— input from top level
input _swap_ rows.row i
input _swap_ rows.row _j
input _swap_ rows.index i

<=
<= ((
<= ((
<= 0;
<= 0;
<= 0;
<= 0;
<= 07
<= 07
<= 07
<=T.

= r.row_i;
r.row_j;
r.

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

C.8. FORWARD ELIMINATION

index 1i;

input_swap_rows.index _j

index j;

input _swap_ rows.address row i
address row _1ij;

input swap_ rows.address _row _j
address_row_j;

input _swap rows.flag write to even row

flag write

to_even row;

input_swap_rows.flag write to_odd_ row
flag write to_ odd_ row;

input_swap_rows.flag prev_row i at odd row <=
flag_prev_row_i at odd row;

else
— receive Trow

— Not been simulated and tested that this

i and row j from BRAM directly

input swap_ rows.row i

input_forw

ard elimination.row i;

input _swap_ rows.row_j

input_forw

ard elimination.row j;

input _swap_ rows.index i

input_forw

ard elimination.index 1i;

input _swap rows.index j

input_forw

ard elimination.index j;

input _swap_rows.address row i

input forw

input_forw

input_forw

ard elimination.address row i;
input _swap_rows.address _row _j

ard elimination.address_row j;
input _swap rows.flag write to even row
input_forward elimination.flag write to_ even row;
input _swap_ rows.flag write to_ odd_ row
input forward elimination.flag write to odd row;
input_swap_rows.flag prev_row i at_ odd_ row <=

ard elimination.

flag _prev_row i at odd row;

end if;
when others =>

<=T.
<= .
<=rT.
<= 1.
<= .
.
works .
<=
<=
<=
<=
<=
<=
<=

<=

input _swap rows.forward elimination write state

STATE IDLE;
input _swap_ rows.

row_i

others => (others => ’07)));

input _swap_rows.

others => (others => ’07)));

input _swap rows.
input _swap_rows.
input _swap_ rows.
input _swap rows.
input _swap_rows.
input _swap_ rows.
input _swap rows.

Tow _j
index i
index j

address_row _i

address _row _j

flag _write to_ even row

flag write to_ odd_row
flag_prev_row_ i at odd row

199

106

107

109

110

111

120
121

122

123

124

126

127

128

130

131

132

133

135

136

137

139

140

141

142

144

145

147

200 APPENDIX C. VHDL CODE

end case;
end process;

comb_process : process (output_swap_rows,
input forward elimination, r, reset n)

variable v : input elimination reg type;
begin
v = r;
v.state reg := input_ forward elimination.state reg;

if (input forward elimination.state reg.state =
STATE FORWARD ELIMINATION and input forward elimination.
valid _data = ’1’) then
case r.forward elimination write state is
when STATE IDLE =>
v.valid data := ’0’;
— input elimination.flag first data elimination is to
be sent only
— once, by the top level inverse
if input forward elimination.
flag first data elimination = ’1’ then
v.forward _elimination_ write_ state :=
CHECK_DIAGONAL_ELEMENT _IS_ZERO;

v.flag first data_ elimination = 17
end if;
when CHECK DIAGONAL ELEMENT IS ZERO =>
if r.flag first data_ elimination = ’1’ then

— First iteration of the forward—elimination
— for the current processed pixel

v.index i = 0;
v.index _j = 03
— Has already read the first j

v.index j two_cycles ahead = 2;
v.index i two_cycles ahead = 0;
v.read address row i two cycles ahead := O0;
v.flag write to_even row = 07,
v.flag write to_ odd_ row = 17
v.write address even = 0;
v.write address odd = 0;
v.valid data = '07;
v.flag first data elimination = 07,
— First iteration row_i is located at even index=0
v.row i =
input forward elimination.row even;
V.row_j =

input_forward_elimination.row_odd;
v.inv_row i =

148

149

150

151

164
165

166

168

169

170

172

173

174

175

177

178

179

181

182

183

185

186

187

C.8. FORWARD ELIMINATION

input_forward elimination.

201

inv_row_even;

v.inv_Tow _j =
input forward elimination.inv_row odd;
v.address row i = 0;
v.flag_prev_row_i_at_odd_row = 07,
v.wait__counter = 0;
v.flag waltlng for bram update = 07
elsif r.index i >= P BANDS—2 and r.index j >= P_BANDS
—3 then
— Forward elimination is finished.
v.valid _data = 07
v.flag write _to_odd row := ’07;
v.flag write to_even row := ’07;
v.read address_even := P_BANDS/2—1;
v.read address_ even = P _BANDS/2 -1,
else
v.valid_data := ’0’;
v.index i := r.index i + 1;

— Set v.index j to be the same as v.index i as
index j gets updated in EVEN j WRITE and

ODD_j WRITE anyways

v.index j := r.index i + 1;

— flag _prev_row i at odd_ row

— or if previous index j =P _

P_BANDS-3, then
— it was set by ODD j WRITE

set by EVEN j WRITE
BANDS-1 and index i=

if r.flag prev_row_ i at odd_ row = ’1’ then
v.flag write to_odd_row := ’07;
v.flag write to even row := ’'17;
else
v.flag write to odd_ row := ’'17;
v.flag write to even row := ’'07;
end if;
v.wait_counter 0;
v.flag waiting for bram update := ’0’;
if v.flag_ write _to_even row = ’1’ then
— index i at odd row i
— address row i?
v.address _row i := r.address_row_i;
v.address _row j := r.address_row i+1;
— write address is changed in EVEN j WRITE before
writing
v.write address even := r.address row ij;
v.write address _odd := r.address row i;
v.row i := input_forward elimination.
row_odd;
v.row_j := input_ forward elimination.
row_even;
v.inv_row_i := input_forward _elimination.

inv_row_odd;

188

190

191

192

193

194

195

196

197

198

200

201

202

204

205

206

207

208

210

211

213

214

216

217

218

220

221

223

202 APPENDIX C. VHDL CODE

v.inv_row_j := input_forward elimination.
inv_row_even;
else
— index i at even row
v.address row i := r.address_row i+1;
v.write address _odd := r.write address odd +1;
v.address_row_j := r.address_row_i+1;
v.write address even := r.write address even;
v.row i := input_forward elimination.
row_even;
v.row_j := input_ forward elimination.
row_odd;
v.inv_row i := input_forward elimination.
inv_row_even;
v.inv_row _j := input_forward elimination.
inv_row_odd;
end if;
end if;
if v.row_i(v.index i) = 0 then
v.forward elimination write state := SWAP ROWS;
v.flag start swapping rows = 17
— insecure about the reading process here...
v.read address even = T.
read address even +1;
v.read address odd = r.
read address odd +1;
else
if v.flag_ write_to_even_row = ’1’ then — and data
is ready
v.forward elimination write state := EVEN j WRITE;
v.read address even = r.
read address even;
v.read address_ odd = T.
read address odd+1;
else
v.forward elimination write state := ODD_j WRITE;
v.read address even = r.
read address even+1;
v.read address_ odd = T.
read address odd+1;
end if;
end if;

when SWAP ROWS =>
— wait until received new swapped rows from swapped
row module

v.flag start swapping rows := '07;

if output swap rows.valid data = ’1’ then
— A swap of rows have happened. The forward

elimination can continue

if output swap rows.flag prev_row i at odd row = ’'1’

227

229

230

231

232

233

234

235

236

237

239

240

241

242

244

247

248

249

251

252

253

255

256

257

258

260

261

C.8. FORWARD ELIMINATION 203

then
v.forward _elimination_write_ state := EVEN_j WRITE;
— read data. Need to read an odd row
v.read address odd =
output swap rows.read address odd;
v.read address_even =
output swap_ rows.read address even;
else
v.forward elimination write state := ODD j WRITE;
—read data. Need to read an even row
v.read address odd =
output swap rows.read address odd +1;
v.read address even =
output swap rows.read address even +1;
end if;
end if;
when EVEN_j WRITE —>

— Need to check if i two cycles forward is at new

place ..
if r.flag waiting for bram update = ’0’ then

v.valid data = 17

v.flag write to_ even row := ’'17;

v.flag write to odd row := ’07;

v.valid data = 17

v.index j := r.index_j+1;
V.IOW_j =

input forward elimination.row_even;
v.inv_row_] =
input forward elimination.inv_row even;

v.address _row i := r.address_row_i;

if r.index j <= P_BANDS-2 then
v.write address even := r.write address even+1;
v.write address _odd := r.write address_odd +1;

end if;

if v.index j >= P_BANDS-2 then
v.index i two_cycles ahead := r.index i+1;
v.index j two_cycles ahead := r.index i+2;

end if;

end if;

if v.index j >= P_BANDS-2 and v.index j —v.
index i two_cycles ahead < B RAM WAIT CLK CYCLES
and r.wait counter < B RAM WAIT CLK CYCLES-(v.
index j—v.index i two_cycles ahead) then
—— Need to wait for the row to update before reading
it
v.wait_counter := r.wait_counter+1;
v.flag waiting for bram _ update := ’17;
else

262

263

265

266

267

268

269

270

271

272

274

275

276

277

278

279

280

281

282

283

284

286

288

289

290

291

292

294

295

204 APPENDIX C. VHDL CODE

v.wait_counter = 0;

v.flag _waiting for bram _ update := ’0’;

if v.index j <= P_BANDS-2 then
v.forward elimination write state := ODD_j WRITE;

end if;

— read new data. Data need to be read two clock
cycles in advance

if (r.read address_even <= P _BANDS/2—1 and r.
index j two_cycles ahead <= P_BANDS-3) then

— need to read an even row

v.read address even := r.read address even
+1;

v.read address odd := r.read address odd
+1;

v.index j two_ cycles ahead := r

index j two_cycles ahead +1;
elsif v.index_j >= P_BANDS-3 then
— mnew i, update
if r.index_ i_two_cycles_ahead <= P_BANDS-3 then

—v.index i two_ cycles ahead := r.
index i two_cycles ahead+1;
—v.index j two_ cycles ahead := r.
index i two cycles ahead+2;
if r.flag prev_row_ i at odd row = ’1’ then

—next row i will be located in an even
indexed row

v.read address_even = T.
address_row _i+1;

v.read address odd = r.
address _row i+1;

v.read address_row i two_ cycles ahead := r.

read address _row i two cycles ahead+1;
v.flag prev_row i at odd_row 1=
else
— mnext row i will be located in an odd

707;

indexed row
— Row even will be located at an address one
increment ahead

v.read address_odd = T.
read address _row i two_ cycles ahead;

v.read address even = r.
read address_row i two_cycles ahead+1;

v.read address_row i two_ cycles ahead := r.
read address _row i two_ cycles ahead;

v.flag prev_row i at odd_ row = 17

end if;
end if;
end if;
end if;

296

297

299

300

301

302

303

304

306

307

308

309

310

311

312

313

315

316

317

319

320

321

322

324

325

326

327

328

329

330

331

C.8. FORWARD ELIMINATION 205

when ODD j WRITE =>
— Need to check if i two cycles forward is at new

place ..
if r.flag_waiting for_ bram _ update = 0’ then
v.valid data = 17
v.flag write to_even row := ’07;
v.flag write to odd row := ’'17;
v.valid data = 17
V.row_j =
input forward elimination.row_ odd;
v.inv_row _j =

input_forward_elimination.inv_row_odd;
v.index j := r.index j+1;
v.address _row i := r.address_row i;
v.write address_even := r.write_address_even;
v
d

= =R

.write address odd := r.write address odd;
end if;
if v.index j >= P _BANDS-1 and v.index j-—r.
index i two_cycles ahead < B RAM WAIT CLK CYCLES
and r.wait counter < B_RAM WAIT CLK CYCLES-(v.
index j-r.index i two cycles ahead) then
—— Need to wait for the row to update before reading

it
v.wait counter = r.wait counter+1;
v.flag waiting for bram update := ’17;
else
v.wait counter = 0;
v.flag waiting for bram update := ’0’;
— Set next state
if v.index j <= P_BANDS-3 then
v.forward elimination write state := EVEN j WRITE;
else

—New iteration of the outermost loop
if v.index j = P_BANDS-1 and v.index i = P_BANDS-3
then
— The last row i of the forward elimination is
located at an
— even indexed row.
v.flag prev_row i at odd row := ’'07;
end if;
v.forward elimination write state :=
CHECK DIAGONAL ELEMENT IS ZERO;
end if;
— read new data. Data need to be read two clock
cycles in advance
if (r.read address odd <= P_BANDS/2—1 and r.
index j two_cycles ahead <= P_BANDS-1 and v.
index j < P_BANDS-1) then

333

334

336

337

338

339

340

341

342

343

344

345

346

348

349

350

206 APPENDIX C. VHDL CODE
— need to read an odd row
v.read address even := r.read address even;
v.read address odd := r.read address_odd;
v.index j two_cycles ahead := r.
index j two_cycles ahead +1;
elsif v.index j >= P_BANDS-1 then
— In the previous clock cycle a new index i was
read
v.read address_even := r.read address_even;
v.read address odd := r.read address_odd;
v.index_ j two_cycles ahead := r.
index j two_cycles ahead +1;
— if r.flag prev_row i at odd row = ’1’ then
— v.read address even = T.
read address even;
— v.read address odd = T,
read address even;
— v.index j two_ cycles ahead := r.
index j two cycles ahead +1;
— else
— v.read address_ even = T.
read address even;
— v.read address odd = T.
read address odd;
— v.index j two_ cycles ahead := r.
index j two_cycles ahead +1;
— end if;
end if;
end if;
when others =>
v.forward _elimination_write_ state := STATE IDLE;
v.flag write_to_odd_row = 07
v.flag write to_even row = 07
end case;
end if;
if (reset_n = ’0’) then
v.index i = 0;
v.index j = 1
v.valid data = 07
v.address row i = 0;
v.flag write to_even row = 07
v.flag write to odd row = 07
v.forward elimination write state := STATE IDLE;
end if;
r_in <= Vv;

—“data

output_top level.row j
output top level.row i

374

376

377

378

379

381

382

383

384

385

386

388

389

391

392

393

394

396

397

398

C.9. LAST DIVISION

output_top level.inv_row j
inv_row_j;

output top level.inv_row i
inv_row i;

——control

output top level.index i

index 1i;
output_top level.index j
index j;

output_top level.read address even
read address_even;
output top level.read address odd
read address odd;
output top level.write address even
write address even;
output_top level.write address_ odd
write address odd;
output top level.valid data
valid _data;
output top level.forward elimination write state
forward elimination write state;
output_top level.flag write to_ odd_ row
flag write to odd row;
output top level.flag write to even row
flag _write _to_even_ row;
output top level.state reg
state reg;

end process;

sequential process : process(clk, clk en)
begin
if (rising edge(clk) and clk_en = ’1’) then
r <= r_in;
end if;
end process;

end Behavioral;

C.9 Last division

Listing C.9: Last division

library IEEE;
use IEEE.std logic_1164. all;
use ieee.numeric_std.all;

library work;

207

22

23

24

26

27

28

29

30

31

32

208 APPENDIX C. VHDL CODE

use work.Common types and _functions. all;

entity top last division is

port (clk : in std_logic;
reset n : in std_logic;
clk _en : in std_logic;
input_last division : in input_last division reg type;

output last division : out output last division reg type)
>
end top_last_division;

architecture Behavioral of top last division is

signal r, r_ in : input last division reg type;
— number of shifts required to approximate the division
signal divisor is_ mnegative : std_logic;

— If the divisor is negative, we need to take two’s
complement of the divisor

signal divisor : std_logic_vector (PIXEL DATA WIDTH
*2 —1 downto 0);
signal divisor valid : std _logic
= 707;
signal remainder wvalid : std _logic
= 70’;

type remainders array is array (0 to PIXEL DATA WIDTH%*2-2) of
std logic vector (PIXEL DATA WIDTH*2—1 downto 0);

signal remainders : remainders array;
constant ONE : signed (PIXEL DATA WIDTHx2—1
downto 0) := (0 => ’'1’, others => '0’);
signal msb _index : integer range 0 to 31; —— msb of
the divisor (unsigned)
signal msb _valid : std _logic
= ’07;
— to be used in two’s complement .
signal divisor lut : unsigned (DIV_PRECISION—1 downto
0);
signal divisor inv : unsigned (DIV_PRECISION—1 downto
0);
begin
division_lut_1 : entity work.division lut
port map (
y => divisor _lut ,

y_inv => divisor inv);

input _to divisor lut : process(msb_valid, msb_index)
begin
if msb_ valid = ’1’ and msb_index<=DIV_ PRECISION then

45

46

47

48

49

50

51

52

53

54
55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

C.9. LAST DIVISION 209

divisor lut <= to_unsigned(to integer (unsigned(divisor)),
DIV_PRECISION) ;
else
divisor lut <= to_unsigned (0, DIV_PRECISION) ;
end if;
end process;

check if divisor is negative : process(input last division.
state reg.state, input last division.row i,
input last division.valid data, reset n)

begin
if reset_ n = 0’ or not(input last division.state reg.state
= STATE LAST DIVISION) then
divisor wvalid <= 07,
divisor is_ mnegative <= ’07;
divisor <= std _logic_vector(to_signed (1,

PIXEL DATA WIDTH%2)) ;
elsif (input_last division.row_i(input_ last division.index i)
(PIXEL_DATA WIDTH%2—1) = ’1’ and input_last division.
valid data = ’1’) then
— row|[i][i] is negative
— using the absolute value
divisor is mnegative <= ’17;
divisor <= std_logic_vector (abs(signed (
input last division.row_i(input_ last division.index 1))

)) s

divisor _valid <= 17,

elsif input last division.valid data = ’'1’ then
divisor is mnegative <= ’07;
divisor <= std_logic_vector (

input last division.row_i(input last division.index 1))

divisor _valid <= 17,
else
divisor valid <= '07;
divisor is_mnegative <= ’07;
divisor <= std _logic_vector(to_signed (1,
PIXEL DATA WIDTH%2)) ;
end if;

end process;

— generate PIXEL DATA WIDTH*2—1 number of shifters that shifts
— A[i][i] n places in order to see how many shifts yield the
best
— approximation to the division. Don’t need to shift the
— 31 bit as this is the sign bit.
generate shifters : for i in 1 to PIXEL DATA WIDTHx2—1
generate
signal remainder after approximation i

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

210 APPENDIX C. VHDL CODE

remainder after approximation_ record;
begin

process (divisor , divisor valid, reset_n, input_ last division

.state reg)
begin

if reset n = 0’ or not(input last division.state reg.

state = STATE_LAST_DIVISION) then
remainder after approximation i.remainder

<=

std _logic_vector(shift_rig_ht (signed (divisor), 1));
remainder after approximation_ i.number_ of shifts <= i;
remainder after approximation i.remainder valid <= ’0°;

elsif divisor wvalid = 1’ then
remainder after approximation i.remainder

<=

std logic vector(shift right(signed(divisor), i));
remainder after approximation i.number of shifts <= i;
remainder after approximation i.remainder valid <= ’17;

else
remainder after approximation i.remainder

<=

std _logic_vector(shift right (signed(divisor), i));
remainder after approximation i.number of shifts <= i;
remainder after approximation i.remainder valid <= ’07;

end if;
end process;

remainders (i—1) <= remainder after approximation i.remainder

)

remainder valid <= remainder after approximation i.

remainder valid;
end generate;

find _msb : process(divisor valid, input_ last division,
, divisor)
begin
if divisor_ valid = ’1’ and reset_n = ’1’ then
—For PIXEL DATA WIDTH = 16.
if divisor (30) = ’1’ then

msb_index <= 30;
msb_valid <= '17;

elsif divisor(29) = ’1’ then
msb_index <= 29;
msb_valid <= '17;

elsif divisor(28) = ’1’ then
msb_index <= 28;
msb_valid <= ’17;

elsif divisor(27) = ’1’ then
msb_index <= 27;
msb_valid <= ’17;

elsif divisor(26) = ’'1’then
msb_index <= 26;
msb_valid <= ’17;

reset n

C.9. LAST DIVISION 211

122 elsif divisor(25) = ’1’ then
123 msb_index <= 25;
124 msb_valid <= ’17;
125 elsif divisor(24) = ’1’ then
126 msb_index <= 24;
127 msb_valid <= ’17;
128 elsif divisor(23) = ’1’ then
129 msb_index <= 23;
130 msb_valid <= ’17;
131 elsif divisor(22) = ’1’ then
132 msb_index <= 22;
133 msb_valid <= ’17;
134 elsif divisor(21) = ’1’ then
135 msb_index <= 21;
136 msb_valid <= ’17;
137 elsif divisor(20) = ’1’ then
138 msb_index <= 20;
139 msb_valid <= ’17;
140 elsif divisor(19) = ’1’ then
141 msb_index <= 19;
142 msb_valid <= ’17;
143 elsif divisor(18) = ’1’ then
144 msb_index <= 18;
145 msb_valid <= ’17;
146 elsif divisor(17) = ’1’then
147 msb_index <= 17;
148 msb_valid <= ’17;
149 elsif divisor(16) = ’1’ then
150 msb_index <= 16;
151 msb_valid <= ’17;
152 elsif divisor(15) = ’1’ then
153 msb_index <= 15;
154 msb_valid <= ’17;
155 elsif divisor(14) = ’1’ then
156 msb_index <= 14;
157 msb_valid <= ’17;
158 elsif divisor(13) = ’1’ then
159 msb_index <= 13;
160 msb_valid <= ’17;
161 elsif divisor(12) = ’1’ then
162 msb_index <= 12;
163 msb_valid <= ’17;
164 elsif divisor(11) = ’1’ then
165 msb_index <= 11;
166 msb_valid <= ’17;
167 elsif divisor(10) = ’1’then
168 msb_index <= 10;
169 msb_valid <= ’17;
170 elsif divisor(9) = ’1’ then

171 msb_index <= 9;

205

212

213

212

msb_valid <= ’17;

elsif divisor(8) = ’'1’ then

msb_index <= 8§;
msb_valid <= ’17;

elsif divisor(7) = ’1’ then

msb_index <= 7;
msb_valid <= ’17;

elsif divisor(6) = 1’ then

msb_index <= 6;
msb_valid <= ’17;

elsif divisor(5) = 1’ then

msb_index <= 5;
msb_valid <= ’17;

elsif divisor(4) = ’1’ then

msb_index <= 4;
msb_valid <= ’17;

elsif divisor(3) = 1’ then

msb_index <= 3;
msb_valid <= ’17;

elsif divisor(2) = ’1’ then

msb_index <= 2;
msb_valid <= ’17;

elsif divisor(1l) = ’1’ then

msb_index <= 1;
msb_valid <= ’17;

elsif divisor(0) = ’1’ then

msb_index <= 0;
msb_valid <= ’17;
else
msb_valid <= ’07;
msb_index <= 0;
end if;
else
msb_index <= 0;
msb_valid <= '07;
end if;
end process;

APPENDIX C. VHDL CODE

comb process : process(input_ last division, r, reset n,

divisor is negative,

divisor ,

remainder valid, remainders,

msb_valid, divisor, divisor inv, msb_index)

variable v

)
variable divisor inv_from lut

DIV_PRECISION := 0;
begin

vV = T;

input_last division reg type

integer range 0 to 2%x

if (input last division.state reg.state = STATE LAST DIVISION

234

235

248

C.9. LAST DIVISION 213

and input_last division.valid data = ’'1’ and
remainder_valid = 1’ and msb_valid = ’1’ and reset_n =
’1’) then

v := input_ last division;

v.best_approx := INITIAL BEST APPROX;

v.msb _index := msb_index;

if v.msb_ index <= DIV_PRECISION then

divisor inv_from lut := to integer(divisor inv);
else

—Using shifting approach

divisor inv_from lut := to integer(divisor inv);

—— The best approximation may be either the msb—shifted
division , or the
— msb+1 shifted division.

v.best approx.remainder := remainders (v.msb _index
)
v.best approx.number of shifts := v.msb _ index;

—— The best approximation to the divisor may be larger
than the divisor.

if to_ integer(signed(divisor))— to_ integer(shift left (
to signed (1, PIXEL DATA WIDTHx*2), v.best approx.
number of shifts)) > to_integer(shift left (to_ signed
(1, PIXEL_DATA WIDTH%2), v.best approx.
number of shifts+1))— to integer(signed (divisor))

then
— This is a better approximation
v.best approx.remainder := std_logic_vector(

to signed(to integer(shift left (to_ signed(1,
PIXEL DATA WIDTH%2), v.best approx.number of shifts
+1))—to_integer (signed(divisor)), PIXEL DATA WIDTH
¥2)) 5

v.best approx.number of shifts := v.best approx.
number of shifts+1;
end if;
end if;

— Doing division
if divisor is negative = ’'1’ then
for i in 0 to P_BANDS-1 loop
if v.msb index <= DIV_PRECISION then

v.inv_row_i(i) := shift right(input last_ division.
inv_row i(i)*divisor inv_ from lut, DIV PRECISION)

—v.inv_row_i(i) := shift right(input_ last division.
inv_row i(i), v.best approx.number of shifts);

— Negating the number with two’s complement

260

261

262

263

264

266

267

268

270

271

272

274

275

276

277

279

281

282

283

285

286

287

289

290

214 APPENDIX C. VHDL CODE

v.inv_row_i(i) := mnot(v.inv_row_i(i)) + ONE;
else
v.inv_row_i(i) := shift right(input last division.

inv_row i(i), v.best approx.number of shifts);
— Negating the number with two’s complement
v.inv_row_ i(i) := mnot(v.inv_row_ i(i)) + ONE;
end if;
end loop;
else
for i in 0 to P_BANDS-1 loop
if v.msb_index <= DIV_PRECISION then
v.inv_row_i(i) := shift right(input last division.
inv_row i(i)xdivisor inv_from lut, DIV_PRECISION)

I

else
v.inv_row_i(i) := shift right(input last division.
inv_row i(i), v.best approx.number of shifts);
end if;
end loop;
end if;
end if;
if (reset_n = 0’ or input last division.state reg.state /=
STATE LAST DIVISION) then
v.valid data := ’0’;
v.best approx := INITIAL BEST APPROX;
v.msb _index = 31;
end if;
r_in <= v;
end process;
output last division.new inv_row i <= r.inv_rtow_i;
output last division.valid data <= r.valid data;
output last division.index i <= r.index i;
output last division.write address even <=r.
write address even;
output last division.write address odd <=T.
write address odd;
output last_ division.flag write to_ even row <= r.
flag write to_ even row;
output last division.state reg <= r.state reg;
sequential process : process(clk)
begin
if rising edge(clk) then
if clk_en = ’1’ then
r <= r_in;
end if;
end if;

end process;

C.9. LAST DIVISION 215

291

202 end Behavioral;

	Introduction
	Motivation
	Main contributions
	Problem statement
	Master thesis overview

	Background theory
	Hyperspectral imaging
	AVIRIS
	Cuprite scene

	NTNU SmallSat project

	NTNU SmallSat's hardware platform
	AXI-Stream

	Anomaly detection
	Reed-Xiaoli algorithm
	Local RX algorithm
	Adaptive Causal anomaly detection
	Adaptive Local RX

	Inverse matrix
	Gauss-Jordan elimination
	Forward elimination
	Backward elimination
	Last division

	Review of state of the art anomaly detectors
	Experiments on synthetic images
	RX detection results
	Hsueh-mimicked image
	Sim30_30AVIRIS scene
	Sim_Aviris01 scene

	LRX detection results
	Hsueh mimicked image
	Sim30_30 AVIRIS scene
	SimAviris01

	ALRX detection results
	SIM30_30AVIRIS
	SimAviris01

	ACAD
	SIM_AVIRIS_30_30
	SimAviris01

	Testing on real image data
	RX
	LRX
	ACAD
	Choice of anomaly detector algorithm

	Proposed hardware implementation
	Memory considerations
	Storing and updating matrices in ACAD
	Using registers
	Using BRAM

	Proposed implementation
	Shiftregister
	ACAD correlation
	Normalizing with k

	Inverse computation
	Elimination core
	FSM inverse
	Forward elimination
	Backward elimination
	Last division
	Output inverse matrix
	Inverse pipeline stages
	Execution time expectations inverse computation
	Division
	Using the division operator "/"
	Adaptive shifting
	LUT approach

	Results
	Synthesis
	Shiftregister
	ACAD correlation
	Pixel_data_width = 10

	ACAD inverse
	Timing results
	WNS ACAD correlation
	WNS division operator
	Worst Negative Slack adaptive shifting approach
	Worst Negative Slack LUT approach

	Simulation
	Shiftregister
	ACAD correlation
	Inverse

	Discussion
	Resource usage
	DSP usage Pixel_data_width = 16
	Pixel_data_width = 10

	Timing results
	ACAD correlation
	ACAD inverse
	Simulation results

	Conclusion
	Future work
	Optimization

	Appendices
	MATLAB hyperspectral
	High level models of algorithms
	Gauss-Jordan elimination
	RX anomaly detector
	LRX anomaly detector
	ALRX anomaly detector
	ACAD anomaly detector

	Testing
	Hyper demo detectors
	Generating synthetic images

	VHDL Code description
	VHDL code
	ACAD correlation
	Elimination core
	BRAM SDP 18kbit
	Package Common types and functions
	Swap rows
	ACAD inverse
	Shiftregister
	Forward elimination
	Last division

