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Abstract

The aim of the thesis is to develop an efficient hardware implementation of the PCA
(Principal Component Analysis) algorithm for dimensionality reduction in hyperspectral
imaging. PCA includes the calculation stages as normalization, covariance matrix calcu-
lation and eigenvalue decomposition. An efficient hardware implementation of covariance
matrix calculation has been designed in the specialisation project (Karimova, 2017) which
uses high parallelism. The main focus is performing eigenpair decomposition on the co-
variance matrix and using BRAM (block RAM) as intermediate storage such that a large
covariance matrix can be decomposed in a compact module. Fully parameterized FPGA
implementation of eigen decomposition is developed and performed on the covariance
matrix. Cyclic-by-row Jacobi method is used to find all the eigenvalues and eigenvectors
concurrently. CORDIC algorithm is used with Jacobi for more efficient implementation.
The Jacobi is designed in such a way that it can adapt to any FPGA regardless of the
amount of available resources. This allows finding solutions to huge dimensional matri-
ces in even small-sized FPGAs, e.g 100× 100 by sacrificing a small amount of execution
speed. The whole synthesizable PCA design is modelled using VHDL attempting to op-
timize the design. Zedboard Zynq-7000 series is used as the FPGA. The design is tested
on MATLAB. All hardware modules are synthesized using Xilinx Vivado-2017.3 tool. In
addition to this, the proposed design is compared to previous works done.
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Chapter 1
INTRODUCTION

1.1 Motivation

PCA (principal component analysis) algorithm, which is known as the oldest and quite
popular multivariate analysis technique, is widely used in many applications to extract
crucial information from a given inter-correlated dataset matrix. PCA is a very practical
signal processing algorithm for dimensionality reduction and data compression. The key
idea in PCA is to look for a lower dimensional representation for the given data. It de-
duces the most useful information from huge datasets. The more useful information, the
more variance in the data. This, in turn, reduces the dimensionality of the input dataset.
In order to achieve this, it generates new dataset variables through linear combination of
the initial dataset. These variables are called principal components. The process is called
the projection of the dataset variables onto principal components. There are several meth-
ods to deduce the principal components (also called eigenvectors). The first eigenvector
is defined as the direction with the biggest variance. The mathematical operation, which
computes a series of eigenvalues and eigenvectors, is called eigenanalysis. Eigenanalysis
is performed on a square, symmetric matrix. There are several popular numerical tech-
niques for eigenanalysis. Jacobi method is one of the earliest matrix algorithms and in
recent decades it is still considered as one of the most powerful techniques. This tech-
nique is of current interest because it is amenable to parallel computation and because
under certain circumstances it has superior accuracy according to (Golub and Van Loan
(1996)). Only a few of the research works done until now reported hardware implemen-
tation of Jacobi algorithm. In this thesis, an efficient hardware implementation of Jacobi
algorithm is achieved. To make it more efficient, CORDIC algorithm is used which utilises
inexpensive operations to calculate complicated functions.

The application of the proposed design of Jacobi method in this thesis may not only be
limited with PCA. Being fully parameterizable, it can also be used in various signal pro-
cessing applications such as radio detection and ranging, other dimensionality reduction
algorithms, machine learning algorithms, target detection, face recognition algorithms and
in sparse linear systems or to solve linear system equations to name a few.
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Chapter 1. INTRODUCTION

Figure 1.1 Visualisation of a data cube. Examples for plane, vector, component (pixel) are
indicated. The vectors highlighted with black color are chosen randomly for covariance
matrix computation.

1.2 Background
This thesis work is a possible contribution to a cubesat design: SmallSat proposed in
(Mariusz, E. Grøtte. et al) by NTNU. The work consists of the design of a small satellite
(SmallSat) with a small push-broom HSI (Hyper-Spectral Imager). The HSI and Small-
Sat are under development and several versions of the cubesat and multi-agent system are
expected to be operational in coming years. The main focus of the HSI is for both oceano-
graphic measurements and synoptic in-situ field measurements. This is a novel approach
and has a remarkable potential for reducing cost and improving data quality in oceanogra-
phy. The mission objectives are given below as in the design documentation (Mariusz, E.
Grøtte. et al):

1. Primary: To provide and support oceanography mapping through Hyper-Spectral
Imager (HSI) payload and on-demand autonomous communications in an concert
of robotic agents at higher latitudes in vicinity of the Arctic/Norwegian coast.

2. Secondary: To collect statistical data and to detect and characterise spatial extant
extent of algal blooms, measure primary productivity using emittance from fluo-
rescence generating micro-organisms, and other substances resulting from aquatic

2



1.2 Background

Figure 1.2 Renders of V1R1 (Version 1, Revision 1) electronics design of the hyperspec-
tral imager, fall 2017.

habitats and pollution to support environmental monitoring, climate research and
marine resource management.

3. Tertiary: Investigate analytical reduced-order sizing relationships between identi-
fied performance characteristics and constituent SmallSat properties as related to
oceanography.

4. Quaternary: Build strong competence on and strengthen prospect of nano- and
micro-satellite systems as supporting intelligent agents in integrated autonomous
robotic systems for dedicated marine and maritime applications.

5. Quinary: Describe the scientific methodology that will be adopted for the research,
and coordinate the project plans with other ongoing research activities and NTNU
and with engineering and scientific collaborators.

The role of the thesis on this project is dimensionality reduction of hyperspectral im-
ages captured by the push-broom hyperspectral camera. Minimised transmission and pro-
cessing time and high throughput are important for better performance. The following
information is retrieved from (Veisdal, 2018). The first prototype of the hyperspectral
imager is shown in Fig. 1.2.

The image sensor used is a CMOSIS CMV2000. Additionally, the industrial version
of the Avnet PicoZed board is used for the Smallsat project as the FPGA, its manufacturer
number is AES-Z7PZ-7Z030-SOM-I-G and shown in Fig. 1.3.

For testing purposes, Xilinx ZedBoard is provided.
An example of a cubesat is visualised in Fig.1.1. Each pixel is given by a vector and

each vector has 100 components. Each component belongs to one corresponding band or
image plane (to be called "plane" throughout the report). All the components on one plane
define the image size. The number of the planes correspond to the size of the matrix. It can
be deduced that, the more planes, the bigger the module. Besides, from the perspective
of the hyperspectral camera, the number of channels in the camera is equivalent to the
number of the planes in the data cube. In the case of SmallSat, there are 100 planes in the
data cube. One vector consists of the single components of each plane. In the hardware,
the data is streamed through plane by plane.

3



Chapter 1. INTRODUCTION

Figure 1.3 Full assembly of the PCB, January 2018.

1.3 Organisation of the Thesis
This section describes the organisation of the rest of the thesis. Chapter 2 describes the
state-of-the-art of PCA algorithm and computation steps by giving a brief overview of the
covariance implementation. Previously reported related works are also mentioned. Chap-
ter 3 describes the Jacobi Method used for the eigen decomposition along some historical
and mathematical background. A fast and area-efficient method called CORDIC for cal-
culation of trigonometric functions is also explained in this chapter. Chapter 4 presents the
proposed hardware architecture of all the modules used in Jacobi implementation from a
simple initial design to more efficient final design. Chapter 5 explains how Block RAM
is used as an intermediate storage between covariance design and eigen decomposition
design. Chapter 6 shows the synthesis results and metrics of the final design. Discussion
and concluding remarks are also given in this chapter. Appendix consists of VHDL codes
for the proposed final design.
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Chapter 2
PCA ALGORITHM

2.1 Main Steps of computation
There are several steps in calculating PCA algorithm. They are summarized in Fig. 2.1.
Before doing PCA, two assumptions should be made:

1. Mean centering: Mean is the average across each direction in the data. "Centering
the data" means subtraction of the mean from every attribute. Although this step is
not necessary, it can help to avoid difficulties. If mean subtraction is not performed,
the first principal component might correspond similar to the mean of the data in-
stead of the biggest variance. Even without the mean centering, the final result will
be the same.

2. Division by standard deviation: If the variables have different units or weights in
the data, it is necessary to normalise data to get a reasonable covariance analysis
among all such variables. In order to make the data "unit-free", this assumption
should be made. "Unit-free" data guarantees that the variance of the data in every
dimension is 1. To normalize the data, every dimension in the data is divided by
the corresponding standard deviation. The formula for standard deviation and mean
centering applied together:

sd =

√√√√∑n

i=1
(xi − x)2

n− 1
(2.1)

The thesis work concerns the implementation of the main steps of PCA in hardware, which
are:

1. Calculation of the covariance matrix: Covariance is the measure of the correlation
between two or more variables. It indicates if the variables change together or in

5



Chapter 2. PCA ALGORITHM

Figure 2.1 The figure shows all possible steps of PCA algorithm. pre-treatment and post-
treatment steps are not necessary to perform, but they might avoid difficulties. Red boxes
are implemented/used in the thesis. Covariance matrix multiplication has been imple-
mented before the thesis, its eigenvalues and eigenvectors are found using two BRAMs
(Block RAM) as storage in the thesis work.

the opposite directions. Covariance is always calculated between two variables, so
covariance matrix for n-dimensional data is made up of the covariances between
every two variables. A visualisation of a covariance matrix for n dimensions can be
shown as: 

cov(0,0) cov(0,1) cov(0,2) . . . cov(0,n-1)
cov(1,0) cov(1,1) cov(1,2) . . . cov(1,n-1)
cov(2,0) cov(2,1) cov(2,2) . . . cov(2,n-1)
. . . . . . . . . . . . . . .

cov(n-1,0) cov(n-1,1) cov(n-1,2) . . . cov(n-1,n-1)


Besides, as the covariance matrix is a square symmetric matrix, the entries on the
diagonal of the covariance matrix consists of the covariance between a variable and
itself, which is called variance. Variances are highlighted in the matrix above. Co-
variance calculation is done with the formula below assuming the data is already
normalized:

cov(xi, xj) =

∑n

i=1
xixj

n− 1
(2.2)

2. Calculation of the eigenvectors and eigenvalues: PCA is a procedure that uses
an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of linearly uncorrelated variables called principal components.
PCA can be done by eigenvalue decomposition of a data covariance matrix. It finds
a lower number of dimensions which explains the variance in the data best. If it is

6



2.2 A brief overview of the specialisation project: Covariance Matrix Calculation

applied to an object, PCA finds the projection of that object from the most informa-
tive viewpoint. It aims to reduce the dimensionality of the data, that is, to describe
it with lower number of dimensions. These new dimensions are called principal
components (PC in PCA). It follows that PCA aims to find the Principal Compo-
nents. The first principal component corresponds to the first eigenvector which has
the largest eigenvalue. The first eigenvector is the direction of the biggest variance
from the covariance matrix in the data. All eigenvectors have their corresponding
eigenvalues. Eigenvalues are the magnitude of the variance of a projection.

The next step could be sorting eigenvectors by their decreasing eigenvalues.

2.2 A brief overview of the specialisation project: Covari-
ance Matrix Calculation

Specialisation project (Karimova, 2017) has been done before the master thesis and in-
volves a detailed research prior to the PCA algorithm and the implementation of the first
vital step of PCA: covariance matrix calculation. This section includes a general overview
of what has been done as well as the functionality of the covariance matrix calculation on
hardware. In the specialisation project, highly parallelised, optimised and fully parame-
terisable hardware design of covariance matrix calculation has been achieved. The thesis
project performs eigen decomposition on this resulting matrix.

One of the main optimisations on covariance matrix calculation is subsampling which
is proposed in Qian (2008) to reduce computational complexity of PCA. The paper proves
that for the compression of the data, encoding only a subset of PCs is enough rather than
full complement. This is called subsampling. It can be explained as follows: Instead of
using all M pixels, a small subset of pixels of size M

′
is used where M

′
<< M . The

heuristic in Makhoul and Gish (1985) dictates that M
′

should be at least 10N:

M
′
' 10N

Besides, subsampling results in a transform which is just approximately the spectral PCA
of the original image. The data size of the cube for the project is [500,500,100]. Therefore,
these values are M = 5002 = 250000 and N = 100. Consequently, taking M

′
greater

than 10N , we get M
′
' 1000 and hence, finding 1% of subsampling, M

′
= 2500 is the

sufficient number of pixels in one plane. These pixels are chosen randomly.
For the 100 plane inputs, the target is to obtain the following covariance matrix:


cov(0,0) cov(0,1) cov(0,2) . . . cov(0,98) cov(0,99)
cov(1,0) cov(1,1) cov(1,2) . . . cov(1,98) cov(1,99)
cov(2,0) cov(2,1) cov(2,2) . . . cov(2,98) cov(2,99)
. . . . . . . . . . . . . . . . . .

cov(98,0) cov(98,1) cov(98,2) . . . cov(98,98) cov(98,99)
cov(99,0) cov(99,1) cov(99,2) . . . cov(99,98) cov(99,99)
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Figure 2.2 The parallel computation of the covariances. m is the number of buffers which
can be defined by the user.
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2.3 Previous work

Another optimisation is calculating only upper-triangle and duplicating the results
around the main diagonal to the lower-diagonal. This reduces the calculation overhead
significantly.

A novelty in this project is that the design is highly parallelised. The proposed design is
shown in Fig. 2.2. Any number of buffers can be used for storing and streaming the input
data while holding a condition that the number of the buffers divide the number of the
planes for the best performance. Each buffer reduces the computation time significantly.
One buffer is as big as one plane. All elements of one plane is streamed through to the
first buffer while calculating the covariance of the first diagonal element of the matrix,
cov(0,0). When the first buffer is full, the ctrl signal for the first buffer is de-asserted
and the next buffer is asserted. While the second plane is streamed through to the second
buffer, it calculates the second diagonal element cov(1,1). Simultaneously, the first buffer
and the second buffer calculate the element cov(0,1) = cov(1,0). All parallel calculations
finish at the same time in spite of various starting times because each time there is one
less calculation on upper-diagonal. The enable_driver signal, in turn, enables a number
of buffers to work in parallel by asserting the corresponding bits. The input to the MAC
unit is handled by a signal: retention. The retention_driver signal is assigned to 1 only
if the first component is input to the buffer, it is set to 0 elsewhere. In this case, MAC
performs a product of the input either by itself or with the last element of the buffer which
has been rotated around. In all other cases, MAC has its typical functionality as multiply-
accumulate.

A formula for the computation time of covariance module was generated in the spe-
cialisation project:

computation time =

c ∗ (p+ (p− 1×m) + (p− 2×m) + (p− 3×m) + . . .

· · ·+ (p− (
p

m
− 1)×m))

(2.3)

or

computation time = c ∗
( p

m−1∑
i=0

p− i×m
)

(2.4)

where m represents the number of buffers, c for components and p indicates the num-
ber of planes. Hence, for instance, the computation time for 100×100 matrix with 2500
components using 4 buffers can be calculated as:

computation time =

= 2500× (100 + (100− 4) + (100− 2× 4) + (100− 3× 4) + . . .

· · ·+ (100− 24× 4)) = 2500× 1300 =

= 3 250 000 clock cycles

(2.5)

2.3 Previous work
Until today, much research has been done concerning the use of PCA algorithm in signal
processing, although only a few of them have implemented it on hardware. Although the
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proposed high-throughput PCA architecture in a master thesis by (Uday, 2016) is quite
practical for 4x4, 8x8, 16x16 matrices, it is not efficient for larger matrices. The de-
sign uses QR decomposition method which is similar to Jacobi, but QR does not have
an advantage of being parallelized. The biggest size for input matrix shown in this work
is 16x30 matrix which uses 56% of LUTs, 19% of the memory blocks and 88% (3250
DSP48 Slices) of the DSP48 modules on a Xilinx Virtex-7 while operating at 183 MHz.
Additionally, the design implements matrix multiplication which uses 512 DSP48 blocks
itself. The maximum input size can be 32x32 on the same FPGA due to limitations of the
resource usage.

As Jacobi algorithm has a broad range of usage, it has been proposed to solve many
other problems for various algorithms as well. In the master thesis project proposed by
Jin (2014), MUSIC (Multiple Signal Classification) algorithm is implemented in ClaSH
(CAES (Computer Architecture and Embedded Systems) Language for Synchronous Hard-
ware). MUSIC algorithm is a classic subspace-based Direction of Arrival (DOA) esti-
mation method which has similar computation principle as PCA such that implement-
ing eigen-decomposition on the covariance matrix. The work uses Jacobi together with
CORDIC for eigenvalue decomposition. The design is using Systolic array to implement a
Parallel Jacobi. Another related work is proposed in Gonzales (2015). The work proposes
the first FPGA implementation of HySime algorithm to estimate the number of endmem-
bers in remotely sensed hyperspectral data. The FPGA used is Virtex-7 XC7VC690T. The
algorithm has two stages in which in second stage eigenvectors of the correlation matrix
have to be found for the signal subspace estimation.

Stopping criterion used is the comparison of the largest off-diagonal element with a
provided value in each iteration which requires complex off-diagonal search. In order
to get eigenvector matrix the product of each step matrices are used to reach eigenvalue
matrix. Their way of obtaining eigenvector matrix is as follows:

Pk = Q1 ·Q2 ·Q3 · · · · ·Qk (2.6)

Their procedure consists of the following: a parallel processing for Jacobi preselects
the rotation with the largest off-diagonal element. Then the concerned rows and columns
are zeroed out. Then the next biggest element is picked and all the others are zeroed out.
All calculations are done in parallel. Then all the results are applied to the matrix in the
order given. However, this method would be efficient only for really small matrices as
it requires off-diagonal search in for each rotation. To carry out the operations of Jacobi
method, a multiplicator, a trigonometry module, a generator and a control unit are used
and for storing eigenvector and eigenvalue matrices Block RAMs are used to implement
two FIFOs. However, trigonometry functions are implemented using Sym-Schur formulas
as they are, which require expensive square root and division operations. The generator
module is later modified to use round-robin algorithm which is a different naming for the
parallel Jacobi method. Total hardware utilisation of 36.61% for this stage of the algorithm
is reported. The number of BRAMs used is 650.

Another work is proposed in (Bravo, 2006) for solving eigenvalue problem according
to the Jacobi’s method and the work is applied in the PCA algorithm of artificial vision.
The main contribution of their work is low execution time and minimal internal FPGA
usage due to CORDIC. The drawback of their design is that the maximum size of the
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matrix is limited to FPGA resources. The accuracy of the design results in 1.4% data error
in worst case. Their tested maximum matrix size is 16×16 with 18 bits elements showing
the results with 0.43% error and 19 iterations.

To the best knowledge of the author, most works done until now propose solutions for
eigenanalysis are limited to the resource usage of the FPGAs. Therefore, the maximum
possible matrix size can be performed on an FPGA is around 32x32.

This thesis work proposes a solution to this issue. The amount of resource usage
in any FPGA is customisable in the design. The design can take any large matrix sizes
while still using the similar amount of FPGA resources as small matrix sizes. Especially,
for the SmallSat project, the size of the input matrix is 100x100 while the FPGA used
for testing (ZedBoard Zynq-7000) has small number of available resources (220 DSP48s,
53116 LUTs, etc). That is why, the design is adapted to be used in small-sized FPGAs. If
the design is used in FPGAs with more available resources, it will be faster by adjusting
the parameter n. n defines how many computational slices will be used in the computation
of two modules in the design: off.vhd and eigenanalysis.vhd.
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Chapter 3
EIGENANALYSIS

This chapter first answers the questions "What is Jacobi method?" and "Why it is chosen?"
before going into detail of how it works. It also introduces the terms "parallelisation"
and "diagonalisation" and giving a short historical background. After that, the-state-of-
the-art idea of Jacobi method and its types are presented followed by the mathematical
background of CORDIC algorithm.

3.1 Preferred method
In the specialisation project (Karimova (2017)), various methods for eigenvalue problem
have been analysed. After careful overview of iterative numerical methods namely, Gauss-
Siedel (GS), Successive-over-Relaxation (SOR), QR-decomposion and Jacobi methods, it
is proposed that the last method is the best starting point for implementation on this prob-
lem. In numerical linear algebra, Jacobi transformation method of matrix diagonalization
(also known as Jacobi iterative algorithm) is used for finding eigenpairs. The work done
by Demmel (1992) proves in the their work that "Jacobi’s method (with a proper stopping
criterion) computes small eigenvalues of symmetric positive definite matrices with a uni-
formly better accuracy bound than QR, divide and conquer, traditional bisection, or any
algorithm which first involves tridiagonalizing the matrix". This work is supported by the
research done by Mathias (1995). Jacobi method calculates not only eigenvalues, but also
the corresponding eigenvectors. The method applies to only symmetric matrices (in which
the matrix output from the covariance calculation in the first step of PCA is symmetric
(Karimova (2017))). The main reason is that Jacobi methods for symmetric eigenvalue
problem is amenable to parallel calculation since each rotation affects only two rows and
two columns of the matrix. Parallelism is known as a powerful feature of hardware im-
plementations which can significantly reduce the execution time by performing indepen-
dent operations simultaneously. Besides, under certain circumstances Jacobi’s methods
has superior accuracy, thus they can be considered state-of-the-art methods for solving
eigenvalue decomposition problems. As the resulting covariance matrix in this work has
dimensions of 100×100, it is advantageous if the next step of PCA is fast enough to finish
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the dimensionality reduction quickly. The other reason is that the Jacobi method is con-
sidered as the base for some other methods such as GS and SOR. Its implementation can
easily be modified to aforementioned methods.

The calculation process of the eigenvalues and eigenvectors of a real symmetric matrix
is known as diagonalization. A diagonal matrix is a matrix that all of its nonzero entries
are on its diagonal. Note that it does not state that the entries on the diagonal are nonzero.

This algorithm is named after Carl Gustav Jacob Jacobi. He first proposed the method
in 1846, whereas, it only became popular after 1950 with the development of computers
(Wikipedia, 2017). The working principle of Jacobi algorithms consists of performing a
sequence of orthogonal updates to a matrix A such as A ← RTAR provided that when
each time A is updated, it will be "more diagonal" than its forerunner. Here, R is rotation
operation. A number of iterations will eventually make the off-diagonal elements become
zero or small enough so that they can be considered zero. It is worth to note that each step
can undo some of the previously made zeros, but eventually the magnitude of the nonzero
elements will be reduced. This is discussed more in the following sections.

3.2 The main idea of Jacobi
The Jacobi method aims to reduce the norm of the off-diagonal entries (Golub and Van Loan,
1996):

off(A) = sqrt(

n∑
i=1

n∑
j=1,j 6=i

a2ij) (3.1)

where off(A) is called Frobenius norm.

In an N-dimensional space, this is achieved by the rotations of the form:

R(p, q, θ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0
...

...
. . .

...
...

0 . . . −s . . . c . . . 0
...

...
. . .

...
0 . . . 0 . . . 0 . . . 1



Here, c and s represents cos θ and sin θ respectively, where θ is the rotation angle. The
rotation happens by an angle θ around the direction of the cross-product of the ith column
and the jth column. This rotation form is called Jacobi rotations, also known as Givens
rotations. The matrix R is an identical matrix, except its four elements c,s,c and -s.
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For instance, in 3-D space, rotations for the three principal axes can be carried out with
the following matrices:

Rx =

1 0 0
0 c −s
0 s c

 Ry =

 c 0 s
0 1 0
−s 0 c

 Rz =

c −s 0
s c 0
0 0 1


The simplified stages of Jacobi can be described as:

1. choosing an index pair (i,j) such that 1 ≤ i <j ≤ n

2. calculating a (c,s) pair for the rotation matrix R such that the following matrix is
diagonal:

[
a′pp a′pq
a′qp a′qq

]
=

[
c s
−s c

]T [
app apq
aqp aqq

] [
c s
−s c

]

3. updating A withA′ = RTAR where R = R(p, q, θ).

After k iterations have been performed, the result is:

Ak = RT1 · · · · ·RTk ·A ·Rk · · · · ·R1 (3.2)

where Ri are successive Jacobi rotations and the resulting matrix Ak is the eigenvalue
matrix in which eigenvalues are in its diagonal.

After the eigenvalues are found, associating eigenvectors can be calculated by multi-
plying all the rotation matrices used to obtain matrixA:

Vk = R1 ·R ·R · · · · ·Rk (3.3)

To recapitulate, applying rotation matrix R(p, q, θ) to symmetric matrixA means per-
forming pre and post multiplications of R and RT toA respectively. BecauseA is diago-
nal, transposing A yields exactly the same matrix A = AT. If the rotation is applied, the
resulting A′ will be as follows:

A′ = RART =



a′11 . . . a′1p . . . a′1q . . . a′1n
...

...
...

...
a′p1 . . . a′pp . . . a′pq . . . a′pn

...
...

...
...

a′q1 . . . a′qp . . . a′qq . . . a′qn
...

...
...

...
a′n1 . . . a′np . . . a′nq . . . a′nn
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It is worth to note that A′T = (RART)T = RATRT = RART = A′ yields that A′ is
also symmetric (Wang, 2017).

In order to diagonalize the matrix, the rotation angle, which eliminates the off-diagonal
element apq , must be found. apq is made zero while increasing the values of the elements
in the diagonal. That is, the equation 3.4 is equal to zero:

0 = apq = (c2 − s2)apq + cs(app − aqq) (3.4)

In case apq = 0, then (c,s)=(1,0) can be set. In all other cases, the above equation yields:

aqq − app
apq

=
c2 − s2

cs
=

1− (s/c)2

s/c
=

1− t2

t
= 2τ (3.5)

The transitions used in above equation are as following:

t = tan θ =
s

c
=

sin

cos
(3.6)

τ =
aqq − app

2apq
=
c2 − s2

2cs
=

cos 2θ

sin 2θ
= cot 2θ (3.7)

The obtained quadratic equation is solved for t:

1− t2 − 2τt = 0, i.e. t2 + 2τt− 1 = 0, t1,2 = −τ ±
√
τ2 + 1 (3.8)

Now, it is crucial to choose the smaller absolute value of the two roots, because the
values of both sin θ and cos θ can not go over 1. Moreover, using the root t, results for s
and c can now be further found:

c = cos θ =
1√

1 + tan2
=

1√
1 + t2

and s = sin θ =
tan√

1 + tan2
=

t√
1 + t2

= tc

(3.9)
This way of decomposition is called 2-by-2 Symmetric Schur Decomposition (Golub

and Van Loan, 1996).
One of the most efficient optimisations in this project consists of algorithmic modifi-

cation. As mentioned before, Jacobi rotations are pre and post multiplications of rotation
matrix and its transpose to the main matrix. The visualisation of it has been given on a
5×5 matrix in (Wang, 2017) along its mathematical derivations:

RART =
1 0 0 0 0
0 c 0 −s 0
0 0 1 0 0
0 s 0 c 0
0 0 0 0 1



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55



1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1
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= 1a11 ca12−sa14 a13 sa12+ca14 a15
ca21−sa41 c2a22−cs(a24+a42)+sa44 ca23−sa43 c

2a24+cs(a22−a44)−s2a42 ca25−sa45
a31 ca32−sa34 a33 sa32+ca34 a35

sa21+ca41 c
2a42+cs(a22+a44)−sa24 sa23+ca43 s

2a22+cs(a24+a42)+c
2a44 sa25+ca45

a51 ca52−sa54 a53 sa52+ca54 a55


It would be not so useful to perform multiplications on the elements which one of them

is zero, since the result will always give zero. Therefore, the elements on the rows and
columns other than the row p and column q do not change after an iteration. Hence, it is
an efficient way just to update the altered elements only. This method will be implemented
in hardware as well.

a′pq = a′qp = c2apq − cs(apq + aqp)− s2aqp = (c2 − s2)apq + cs(app − aqq) (p 6= q) (3.10)

a′pp = c2app − cs(apq + aqp) + s2aqq = c2app − 2csapq + s2aqq (3.11)

a′qq = s2app + cs(apq + aqp) + c2aqq = s2app + 2csapq + c2aqq (3.12)
a′pi = a′ip = capi − saqi (i 6= p, i 6= q) (3.13)
a′qi = a′iq = sapi + caqi (i 6= p, i 6= q) (3.14)

a′ij = aij (i, j 6= p, q) (3.15)

To the best of author’s knowledge, this simplified method given on Wang (2017) has
not been implemented many times on hardware before. Most of the previous works done
on the hardware implementation of Jacobi usually uses matrix multiplication in each iter-
ation.

To summarise: when performing Jacobi rotations around (p,q), only rows and columns
p and q are altered. It is not necessary to access and update the entire matrix.

This way of doing the calculations is also more efficient in terms of area and power on
a hardware implementation when compared to matrix multiplication. It is also expected to
get a reduced computational requirements by utilising this way.

Once a sufficient accuracy is reached in eigenvalue calculations, similar way has been
later applied to finding eigenvectors of the matrix as well. This would, actually, make a
huge improvement in the speed of the calculation. Eigenvector matrix calculation is made
concurrent with eigenvalue matrix calculation. In the standard way, as eigenvector calcu-
lation is basically the multiplication of each new rotation matrix to the previous product.
Thus, the new resulting matrix updates the previous product saved in each iteration. The
calculation of eigenvectors in the work proposed in (Gonzales (2015)) is discussed in the
Related work section. In this thesis, however, a simpler way of calculating eigenvector
matrix is proposed. It is the same way as eigenvalue matrix calculation, that is updating
the altered elements only. Roughly speaking, the main difference between the derivation
of eigenvalue and eigenvector formulas is that the matrix to be rotated in the eigenvec-
tor calculation is the identity matrix. Updated elements can be obtained by two simple
formulas:

vi,p = cvi,p − svi,q (3.16)
vi,q = svi,p + cvi,q (3.17)
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where i is the row number, thus, only the two corresponding columns change while all the
other elements stay the same. An interesting point here is that if the identity matrix is post-
multiplied by the rotation matrix, the resulting eigenvectors will be ordered in columns,
otherwise, if it is pre-multiplied by the transpose of the rotation matrix, the eigenvectors
will be ordered in the rows of the resulting matrix.

When it comes to choosing the p and q indices in successive iterations, it varies for
each form of Jacobi method. These forms are introduced in the following subsections.

3.2.1 Classical Jacobi Idea
From the standpoint of maximising the reduction of off(A) in Eq. 3.1, it would make sense
to choose (p,q) pair so that a2pq is maximal. That is exactly how Classical Jacobi chooses
(p,q). It follows that all off-diagonal elements must be sorted and compared in order to
find the largest apq . Thus Classical Jacobi requires access to whole matrix. Then the found
largest element is zeroed. Moreover, classical Jacobi converges in a linear rate. The key
limitation with this algorithm is that the search for the optimal (p,q) has the complexity
of O(n2). Hence, needed off-diagonal search makes it inefficient method to implement in
hardware, although it might be preferable in software.

3.2.2 Cyclic Jacobi Idea
Cyclic Jacobi ignores the benefits of choosing the largest apq and rather cycles through
each off-diagonal element. In other words, it does not require off-diagonal search. By
picking apq sequentially, Cyclic Jacobi avoids time spent searching for the largest apq .
That is why it is considerably faster than Jacobi’s original algorithm. Cyclic Jacobi can be
done in either row-by-row or column-by-column fashions. For instance, if n = 4, cycling
for cyclic-by-row is as follows:

(p, q) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2), . . . (3.18)

Cyclic Jacobi converges quadratically (Wilkinson (1962) and van Kempen (1966). To
test this algorithm before implementing it in hardware, the following MATLAB code was
written:

function [ A,V ] = jacobi_cyclic( A, tol )
n = size(A,1);
V = eye(n);
p = 1; q = 1;
%epsilon = tolerance*error_function
eps = tol*sqrt(sum(sum(A.^2)));
%initialise error variable for plotting later
error = zeros(1,1000);
i = 1;
%off_A is goal for error function
while (off_A(A) > eps)
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%choosing (p,q) for row-by-row cyclic
[p,q] = next_pq( A,p,q );
%calculation of sin and cos
[ c,s ] = sym_schur_alt( A, p,q );
%Construction of Rotation matrix
R = eye(n);
R(p,p) = c; R(p,q) = s;
R(q,p) = -s; R(q,q) = c;
%eigenvalues and eigenvectors matrix
A = R' * A * R;
V = V * R;
%for plotting
error(i) = off_A(A);
i = i+1;

end
plot(error)
end

This code is for an initial general test of Jacobi function. As the stopping criterion,
Frobenius form is used in Eq. 3.1. Indices are chosen based on the order in Cyclic-
Jacobi and trigonometric calculations are done using symmetric-schur algorithm. Rotation
matrices are created explicitly and then used in matrix multiplication to obtain eigenvalue
and eigenvector matrices.

3.3 CORDIC

3.3.1 What is CORDIC?

This section introduces CORDIC and represents the step-by-step mathematical way of
getting to the trigonometric functions needed in digital design of Jacobi algorithm.

In order to reduce the complexity of Givens Rotations, CORDIC algorithm is widely
used. CORDIC is an acronym for COordinate Rotation Digital Computer. It is an iter-
ative algorithm to rotate vectors. The usage of CORDIC helps to avoid computationally
complex or expensive operations i.e, square root, division in the formulas 3.9. It is an
algorithm to convert between polar and cartesian coordinates using shift, add and subtract
operations. Using only mentioned operations, it can perform rotations by any given angle.
It was proposed by Jack Volder in an article published in 1959. The aim for developing this
algorithm, which can be implemented with digital logic, was to make complex calculations
such as sine, cosine, arctangent, hyperbolic, linear, logarithmic, etc. more quickly and ac-
curately. Later, the formula has been expanded, thus the use of it became more popular.
CORDIC is an irreplaceable part of calculators especially for finding the value of trigono-
metric functions, square root and even division operations which are directly computable
by CORDIC (Alan, 2008). CORDIC performs a rotation by a sequence of micro-rotations
of an elementary angle where the original rotation angle θ can be expressed by the sum of
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Figure 3.1 The figure is to support Eq. 3.19 showing how CORDIC uses micro-rotations
to reach the original angle

all elementary angles φi:

θ =

∞∑
i=0

φi (3.19)

An example for micro-rotations is visualised in Fig. 3.1.

3.3.2 Mathematical derivation of CORDIC
The flow of this section is made as a general summary of CORDIC based mainly on the
survey by (Andraka, Copyright 1998), a master thesis by Uday (2016) and video tuto-
rial by (Weedman, 2013). The goal here is to explain how to produce the equations for
CORDIC that uses simple operations such as addition, subtraction and shifts instead of the
trigonometric functions and square roots. In order words, recreating sin and cos functions
without multiplications or some sort of trigonometric functions.

Fig. 3.2 presents two vectors of the same magnitude. The second vector is obtained by
rotating the first one by an angle called φ. When rotating the one located at V0 = [X0Y0],
new coordinates Vn = [XnYn] are obtained.

The new coordinates relative to initial point and the angle is computed using the for-
mulas as below:

Xn = X0 cos(φ)− Y0 sin(φ) (3.20)
Yn = Y0 cos(φ) +X0 sin(φ) (3.21)

By simplifying this formula, the next one can be obtained, which still involves some
trigonometry:

Xn = cos(φ)[X0 − Y0 tan(φ)] (3.22)
Yn = cos(φ)[Y0 +X0 tan(φ)] (3.23)

(3.24)
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Figure 3.2 Rotation angle

Table 3.1: Table for the given example showing arctan values for specific tan(φ) functions.

i tan(φ) = 2−i φ = arctan(2−i)
0 1 45
1 1/2 26.565
2 1/4 14.036
3 1/8 7.125
4 1/16 3.576
5 1/32 1.79
6 1/64 0.895
7 1/128 0.448
8 1/256 0.224
9 1/512 0.112

However, now an assumption can be made; the rotation angle is restricted to tan(φ) =
±2−i where 0 < i < ∞. Furthermore, the multiplication by the tangent term can
be reduced to simple shift operation. Then, corresponding values will be tan(φ) =
±20, 2−1, 2−2, 2−3, · · · = ±1, 12 ,

1
4 . . .

Table 3.1 is created based on these values with their corresponding angles.
Because of the angle restriction assumption of tangent in the equation for cos, tan can

be substituted as below:

cos(φ) =
1√

1 + tan(φ)
=

1√
1 + (±2−i)2

= Ki (3.25)

After substituting a new variableKi in place of cos(φ), the next step is defining the formu-
las based on the direction of rotation. The formulas has been changed as below to reflect if
the rotation is made by a positive or negative angle. The value of di is plus and minus for
positive and negative angles, respectively. The maximum rotation angle in either direction
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Table 3.2: The extended table for the given example showing a series of corresponding arctan
values for tan(φ) functions. The resulting rotation and mini-rotation angles computed by CORDIC.
The example is discussed in the text.

i tan(φ) = 2−i φ = arctan(2−i) Zi Rotation φ Resulting angle
0 1 45 20 -45 -25
1 1/2 26.565 -25 26.565 1.565
2 1/4 14.036 1.565 -14.036 -12.47
3 1/8 7.125 -12.47 7.125 -5.346
4 1/16 3.576 -5.346 3.576 -1.77
5 1/32 1.79 -1.77 1.79 0.020
6 1/64 0.895 0.020 -0.895 -0.875
7 1/128 0.448 -0.875 0.448 -0.427
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
19 . . . . . . -0.000195

is assumed to be 45 degrees or less.

Xn = Ki[X0 − Y0di2−i] (3.26)
Yn = Ki[Y0 +X0di2

−i] (3.27)

Using these last two equations, an algorithm was created to compute any given rotation an-
gle, not only the fixed angles given in Table above. The algorithm implies that the desired
angle of rotation is obtainable by performing a series of successively smaller elementary
rotations. This is done in the scope of tan(φ) = 2−i where i gets the values from 1 to
n-1. An example of this algorithm in the table below is taken from (Weedman, 2013). A
desired rotation angle is taken 20 degrees in the example which is also the starting point.
The core of the algorithm can be expressed as follows:

For each iteration ifZi > 0, the current iteration angle is subtracted fromZi, otherwise
the current iteration angle is added to Zi until Zi > 0 approaches to zero or close enough
to zero. Hence, appropriate Xn and Yn calculations are made. The procedure of the
algorithm is presented in Table 3.2.

It is worth to note that the sign of the angle is not important to Ki, because cos(−φ) =
cos(φ). Thus, in each iteration, Ki will be the same value not depending on the direction
that rotation happens. Therefore, the only thing to be decided is which direction to rotate.

Ki =
1√

1 + (±2−i)2
=

1√
1 + (2−i)2

(3.28)

Furthermore, it is crucial for Ki to be a constant for each iteration and eventually, Ki term
is needed to be eliminated from these equations at some point. The index i is chosen to

22



3.3 CORDIC

represent the current value, i+1 will be the next value in the iterative process.

Xi+1 = Ki[Xi − Yidi2−i] (3.29)
Yi+1 = Ki[Yi +Xidi2

−i] (3.30)
Zi+1 = Zi − di tan−1(2−i)] (3.31)

Eliminating the scale constant from the iterative equations would, finally, yield an algo-
rithm for vector rotation with only shifts and adds. Instead, the product of the Ki’s can be
applied later in the system or can be treated as a part of a system processing gain. As the
number of iterations reaches infinity, this product approaches to a constant number 0.6073.
Consequently, the rotation has a gain, An which is approximately 1.647, omitting the Ki

term. The exact value of gain is computed with the following equation which depends on
the number of equations:

An =

n−1∏
i=0

1

Ki
=

n−1∏
i=0

√
1 + 2−2i (3.32)

Cases of Ki term for first three iterations are calculated and approximation for infinite
number of iteration becomes close to 1:

K0 = 0.7071 (3.33)
K1 = 0.8944 (3.34)
K2 = 0.9412 (3.35)

K∞ ∼= 1 (3.36)

Not depending on the starting angle, Ki is always constant, hence, it can be removed from
the final formulas of CORDIC. Finally, the following equations require only subtraction,
addition and shift along with arctangent term. For this term, a Look-up table can be gen-
erated.

Xi+1 = [Xi − Yidi2−i] (3.37)
Yi+1 = [Yi +Xidi2

−i] (3.38)
Zi+1 = Zi − di arctan(2−i)] (3.39)

Whereas, leaving out the Ki term, each result in the iteration is larger than it should be
by a factor of

√
1 + 2−2i. It is for this reason that the An term for the system gain is

included.
The CORDIC rotator has 2 modes of operation. The first mode is called rotation

mode by (Deprettere and Udo, 1984), which rotates the input vector by a user-specified
angle (Uday, 2016). For rotation mode, the CORDIC equations for i-th iteration is:

Xi+1 = [Xi − Yidi2−i] (3.40)
Yi+1 = [Yi +Xidi2

−i] (3.41)
Zi+1 = Zi − di arctan(2−i)] (3.42)
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where

di =

{
−1, if zi < 0.

+1, otherwise.
(3.43)

The resulting equations after a number of iterations become:

Xn = An[X0 cos(Z0)− Y0 sin(Z0)] (3.44)
Yn = An[Y0 cos(Z0)−X0 sin(Z0)] (3.45)

Zn ≈ 0 (3.46)

This algorithm can be created in digital logic to calculate vector rotation. Additionally, by
setting Y0 = 0 and X0 = 1

An
, a function can be obtained which produces the following:

Xn = cos(Z0) (3.47)
Yn = sin(Z0) (3.48)

This is the way that can produce sine and cosine functions in digital hardware or software.
The other one is called vectoring mode which rotates the input vector to the x axis while
recording the angle required to make the rotation (Uday, 2016). The CORDIC equations
for this mode is as follows:

Xi+1 = [Xi − Yidi2−i] (3.49)
Yi+1 = [Yi +Xidi2

−i] (3.50)
Zi+1 = Zi − di arctan(2−i)] (3.51)

where

di =

{
−1, if yi < 0.

+1, otherwise.
(3.52)

The resulting equations after a certain number of iterations will be:

Xn = An ×
√
X2

0 + Y 2
0 (3.53)

Yn = 0 (3.54)

Zn = Z0 + tan−1
( Y0
X0

)
(3.55)

Additionally, if the input Z0 is initialised to zero, then Zn = tan−1( Y0

X0
), that is, arctan

function can be obtained in Zn after a fixed number of iterations.
The equations that are discussed until this point are limited to the rotations in

(
− π

2 ,
π
2

)
.

In other words, the maximum value for rotation angle can be θ ≈ 99.88◦ ≈ 1.7433 radian.
Thus, it requires pre-rotation or correction iteration:

X ′0 = −dY0 (3.56)
Y ′0 = dX0 (3.57)

Z ′0 = Z0 − d
π

2
(3.58)
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where

di =

{
−1, if yi < 0.

+1, otherwise.
(3.59)

It is worth to note that there is no growth or gain for initial rotation.

Based on the formulas 3.10-3.15 and 3.16-3.17, the algorithm was then improved to
only update affected elements. The algorithm is written in MATLAB. For the CORDIC,
MATLAB’s built-in functions are used in the code. Explanations of each formula are
provided as commented lines in the code.

%a function prints the final results for eigenvalue matrix
%eigenvector matrix and iteration number
function [A_out, V_out, count ] = cyclicjacobi2( A )
count = 0;
%n is the size of the matrix
n = size(A);
%initial eigenvector matrix is identity matrix
V = eye(n);
%initial indices - fixed for p and q
p = 1; q = 2;
%assigning to the outputs
A_out = A;
V_out = V;
%until the norm - error function is small enough, do:
while off_A( A ) > 0.00001

% x is numerator, y is denominator for arctan(y/x)
x = A(q,q)-A(p,p);
y = 2*A(p,q);
%built-in cordic function to calculate arctan
theta = cordicatan2(y, x);
%the value of angle equals half arctan
angle = theta /2;
%built-in cordic function for generating sin and cos
[s,c] = cordicsincos(angle, 32);
%update formulas for diagonal App, Aqq, and off-diag Apq
A_out(p,p)=(c^2)*A(p,p)-2*c*s*A(p,q)+(s^2)*A(q,q);
A_out(q,q)=(s^2)*A(p,p)+2*c*s*A(p,q)+(c^2)*A(q,q);
A_out(p,q)=(c^2-s^2)*A(p,q)+c*s*(A(p,p)-A(q,q));
A_out(q,p)=(c^2-s^2)*A(p,q)+c*s*(A(p,p)-A(q,q));
%for all elements in columns p and q:
for i = 1:n

%eigenvectors ordered in columns
V_out(i,p)=c*V(i,p)-s*V(i,q);
V_out(i,q)=s*V(i,p)+c*V(i,q);
%updates for eigenvalues
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if(i ~= p && i ~= q)
A_out(p,i)=c*A(p,i)-s*A(q,i);
A_out(q,i)=s*A(p,i)+c*A(q,i);
A_out(i,p)=c*A(i,p)-s*A(i,q);
A_out(i,q)=s*A(i,p)+c*A(i,q);

end
end
A = A_out;
V = V_out;
%choosing next indices after each iteration
[p,q] = next_pq( A,p,q );
%iteration increment
count = count + 1;
%print current eigenvalue and eigenvector matrices
%for each iteration
disp('current eigenvalue matrix is = '), disp(A_out);
disp('current eigenvector matrix is = '), disp(V_out);

end
end
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Chapter 4
HARDWARE
IMPLEMENTATION

This chapter presents the steps taken in the hardware implementation of Jacobi method
starting from a simple implementation with the goal to make it work accurately to an
improved and more efficient design implementation with a number of optimisation tech-
niques implemented. Each design is discussed in detail and compared with previous ap-
proach. Developed MATLAB code and block figures are given throughout the explanation
of each submodule and VHDL code for the final design with all the modules are given in
the Appendix. A random 3×3 example matrix used in most examples for simpler expla-
nations of Jacobi modules:

A =

4000 2000 3000
2000 10000 2000
2000 3000 6000


4.1 Cyclic Jacobi Implementation on VHDL
The block diagram for the initial implementation of the design is shown in Figure 4.1. The
block diagram is updated through the report when there are significant new changes in the
architecture.

The design consists of several modules. Their objectives are explained below:

The module off.vhd:

This module calculates the stopping criterion for the convergence. It computes the error
function in Eq. 3.1. A problem with the Jacobi’s algorithm is that it can get stuck in an
infinite loop if all the off-diagonal entries are expected to become exactly zero. That is
why, a margin of error has to be set. It is defined as a stopping point for when the matrix
is close enough to being diagonal. The stopping rule used is called Frobenius norm which
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Figure 4.1 Block diagram for a simple Jacobi Method. This is the initial working design
that calculates only eigenvalues. Because sym-schur algorithm uses real_math library in
order to do sqrt operations, this design is not synthesizable. Indices p and q are chosen by
cyclic-by-row order.

is given in Chapter 3. Its working principle is given as follows: when the program reaches
a point where the square of all the off-diagonal entries added up is less than the given
tolerance, it will stop and publish the final output. The signal named tolerance can be
either given as a fixed input or as a parameter that can be changed by the user. In the initial
design, this number is given as an input which can be set to any desired precision of the
user wants their zero to be. The initial module takes the input matrix A and a predefined tol
- tolerance value and calculates the result of the Frobenius norm formula named as S_off.
Figure 4.2 shows an example with a random 3×3 matrix input. For the sake of simplicity,
the square root function is eliminated and the error function is calculated as the sums of
squares of off-diagonal elements as it does not affect the flow of the program.

The code for the error function written in MATLAB is as below:

function [ sqrt_S ] = off_A( A )
n = size(A,1);
S = 0.0;
for i=1:n

for j=1:n
if (j ~= i)
S=S+A(i,j)^2;
end

end
end
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sqrt_S = sqrt(S);
end

Figure 4.2 Simulation waveforms present the change in error value. It is implemented
in combinatorial logic. When enable is set, the error function for the current matrix is
calculated and its value is assigned in the following cycle.

Although this stopping criterion results in high accuracy, from the efficiency point of view
it has pitfalls. As discussed, it needs to process the whole upper-diagonal matrix each time
it is calculated. This creates problem in resource usage and input access for huge matrices.
After having a working design, new ways are researched. One of the methods found leads
to a similar consequences which has the inequality as follows:

if |aij | ≤ tol ·max
kl
|akl| , set aij = 0 (4.1)

As seen, this is not much different than the previous method although it has been used
in many related works before. (Gonzales, 2015) uses this method in a slightly different
way. The stopping criterion used in their work consists of comparing the largest off-
diagonal element to a provided value. However, (Veselic, 1990), (Stewart, 1983) have
suggested a new method, also (Demmel, 1992) has given an explanation of its benefits.
This method is as below:

if |aij | ≤ tol · (aiiajj)
1
2 , set aij = 0 (4.2)

This method needs only two particular diagonal elements. The functionality of the
method is first tested in MATLAB before implementing on hardware. The while loop in
the MATLAB code given in Section 3.3 is replaced by the following loop in order to obtain
the expected functionality:

while A(p,q)^2 > (0.00001)^2 *(A(p,p)*A(q,q))
...
end

As squaring both sides of an inequality does not affect the result, square root calcula-
tion is avoided by squaring both sides. Although this method looks promising for Classical
Jacobi, it can be proved to be not efficient at all for Cyclic Jacobi. Because Cyclic Jacobi
selects elements in a predefined order, while this error function requires that the largest
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Figure 4.3 The designed block diagram for the calculation of the error function. The figure
illustrates the inputs and outputs with the names as inside the module as well as in the top
level.

Aij is picked. Therefore, it can be assumed that if the first off-diagonal element is zero,
the stopping criterion will terminate the calculation before it is done. So this formula does
not work well with Cyclic Jacobi.

One of the main novelties in this thesis is a new method for calculating the error func-
tion in a more efficient way. This could be the simplest method, whereas, to the best of
author’s knowledge, it has not been discovered in previous works. The method calculates
the error function as in Eq. 3.1 but using only the off-diagonal elements in two rows: p
and q (it can also be the same columns or the sum of rows and columns) instead of the
off-diagonal elements in whole matrix. The tolerance value is included to the design as
a variable parameter for flexibility. The block diagram showing inputs and outputs of the
final module is given in Fig. 4.3.

This can be proved to be correct by the fact that in each iteration altered off-diagonal
elements are only in the rows and columns under calculation. The assumption is first
verified to work as expected in MATLAB as below:

function [ stop_crit ] = off_new( A, p, q )
x = A(p,:);
n = size(x,2);
y = A(q,:);
m = size(y,2);
S = 0.0;
for i=1:n

for j=1:m
if (j ~= i)
S=S+A(i,j)^2;
end

end
end
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stop_crit = sqrt(S);
end

This method decreases the input-output overhead significantly along with the compu-
tation overhead. It can also be noted that, there is no need to pull additional elements as
the two rows are already pulled for using on update formulas. The same rows are used to
calculate error function, too.

However, the resource usage is still an issue for big matrices, e.g. 100×100. Consid-
ering that, in Zedboard FPGA where the number of available resources is small and off
submodule uses a great deal of hardware in each iteration, it should be pipelined. The
submodule is pipelined and the number or computational slices is made parameterizable.
The modified submodule consists of two states, namely: st_busy and st_idle. This al-
lows the module to use user-defined number of computational slices for the calculations
of the MACs (Multiply-Accumulates). Computational slices, ideally, synthesize into DSP
blocks. Thus, increased speed of the computation and reuse of DSP blocks are the effec-
tive outcomes from this pipelining. More information is given and the compared synthesis
results are reported in Results section.

The module choose_pq.vhd:

This module is made for cyclic-by-row Jacobi algorithm. The basic idea here is that in
each clock cycle, the indices p and q are updated and the next element of the matrix is
chosen. When the calculation of all the elements in the row finished, indices are updated
to start from the upcoming upper-diagonal element. Fig. 4.4 presents its functionality on
an example.

Figure 4.4 Simulation waveforms show an example of index transition in a 3×3 matrix.
Here, two buffers are used. p_out is the row, q_out is the column number. Each time the
submodule is enabled, next element is taken. The order of the indices for the elements to
be calculated is circled and emphasised in the figure.

The working fashion was explained in the Chapter 3 in more detail. The implemented
block diagram in hardware for this module is provided in Fig. 4.5. The MATLAB function
for choosing (p,q) pair in cyclic mode is written:

function [p,q] = next_pq( A,p,q )
n=size(A,1);
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Figure 4.5 The block diagram for choose_pq module is shown with its inputs and outputs.
The module is triggered in the top level by the enable_pq signal.

if(p == n-1 && q == n)
p = 1;
q = 2;

else
if(q < n)

q = q+1;
else

if(q == n)
p = p+1;
q = p+1;

end
end

end
end

The modules for calculating trigonometry:

The initial implementation of this submodule is symmetric Schur algorithm, the module
name is sym_schur.vhd. The derivation of the formulas for Symmetric Schur Decompo-
sition (SSD) are given in Eq. 3.4 - Eq. 3.9. Since this module is intended to be replaced by
CORDIC for the calculation of trigonometric functions which Jacobi requires, it is made
only to begin with, that is why the efficiency is not taken into account. As formulas for
SSD suggest, this method requires square root calculations, thus in the design sqrt function
of the math_real library is used. However, this library is not always synthesis-friendly.
MATLAB code for testing has been written and the implemented VHDL code is given in
Appendix:

function [ c,s ] = sym_schur( A, p,q )
if(A(p,q) ~= 0)

tau = (A(q,q)-A(p,p))/(2*A(p,q));
if (tau >= 0)
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t = -tau+(sqrt(tau^2+1));
else

t = -tau-(sqrt(tau^2+1));
end
c = 1/sqrt(1 + t^2);
s = t*c;

else
c = 1;
s = 0;

end

The module takes the indices p and q from the previous module for choosing the indices
which are going to be rotated and the input matrix, consequently produces cosine and sine
trigonometric functions.

4.1.1 Use of CORDIC to accomplish a more efficient Jacobi
First of all, the question is: Why to use CORDIC in hardware implementation? The
recapitulation of the reasons provided below answers this question:

• Commonly used for FPGAs

• Complexity comparable to division

• Execution time comparable to division operation

• Low number of gates required, thus, cost effective

• Requires only shifter, adder/subtractor and a small lookup table all of which are
considered to be cheap components

Although it is complex to grasp the idea of CORDIC as well as to implement, it makes
the computations much faster and more efficient. In the proposed design of main CORDIC
module, obviously, the goal is the same as in symmetric Schur algorithm. It is considered
to use the CORDIC modules as calculators, then based on the plugged coordinates, the
CORDIC with the vectoring mode must generate arctangent of the input values. Starting
with the same formulas given in equations 3.4, then 3.5, 3.7 which are intended to make the
off-diagonal elements zero and using the condition 3.6 the relation between the arctangent
function and the rotation angle can be obtained by changing the direction of the derivations
slightly:

τ =
aqq − app

2apq
=
c2 − s2

2cs
=

cos 2θ

sin 2θ
=

1

tan 2θ
(4.3)

tan 2θ =
2apq

aqq − app
(4.4)

2θ = tan−1
( 2apq
aqq − app

)
= arctan

( 2apq
aqq − app

)
(4.5)
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θ =
1

2
arctan

( 2apq
aqq − app

)
(4.6)

Eq. 4.6 which shows the relationship between the angle and arctan is used as a tran-
sition between the vectoring mode and the rotation mode of CORDIC. It can be seen that
the numerator corresponds to Y = 2 ∗ apq and denominator is X = aqq − app where X
and Y are the inputs to the vectoring mode block. The output arctan is divided by two, in
other words, shifted one bit to right to acquire the angle θ. The obtained angle is plugged
into the rotation mode and used in the calculation of sin(θ) and cos(θ) functions.

The proposed CORDIC design for this thesis is presented in Figure 4.6. The CORDIC
modules for arctan and sin-cos used in this work is made by (Thibedeau, 2014) and freely
available for use with the permission. The testbenches have been created for both mod-
ules. After careful testing, these modules are verified to be functioning in expected way,
both separately and together. The results in the hardware are the same as the results
with MATLAB built-in functions: theta = cordicatan2(y,x,niters) and [y, x] = cordicsin-
cos(theta,niters). As a next step, sym_schur module is substituted by CORDIC modules.

Figure 4.6 Proposed CORDIC design.

The block diagram of the CORDIC architecture used in VHDL is given in Fig. 4.7. The
first module called cordic_sequential is for the vectoring mode and the rotation mode is
called sincos_sequential. These iterative modules are designed to use minimal hardware.
The output signal Z_result is called arctan in the top-level and after the division by 2, the
result of it is assigned to an intermediate signal called theta. In turn, the input signal to
the sincos module called Angle takes takes the value of theta which is the rotation angle
needed.

Additionally, the scaling methods used in CORDIC modules must be taken into ac-
count. It is worth to note that the provided unit for the angle parameter should be in brads
(binary-radians): 2 ∗ π radians = 2size brads for "size" number of bits, 32 bits in this case.
Hence, to see the exact angle generated, the output should be "de-scaled". sin(θ) and
cos(θ) are scaled by multiplying by 2fractional_bits. The fraction bits are parameterizable
that can be defined by the user. The number of fractional bits should be as high as pos-
sible. The more precision, the higher resolution. In order to see the actual values of the
trigonometric functions, the outputs can be "de-scaled" by dividing by 2fractional_bits.
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Figure 4.7 CORDIC blocks used in hardware.

The module cycjacobi.vhd:

In this module, the Eqs. 3.10 - 3.15 have been implemented in VHDL. The reasons why
this method looks more promising than matrix multiplication have been discussed in Chap-
ter 3. The module takes the input matrix, the indices from choose_pq and cosine and sine
from CORDIC (initially from sym_schur), thus forms the output matrix with the new el-
ements for one iteration. The method is equivalent to performing a matrix multiplication,
but more efficient in hardware. The formulas are applied to the inputs and the outcomes
are assigned to temporary signals. The temporary signal is continuously assigned to the
output matrix. As cos and sin are scaled in top-level module before input into this module,
they need to be scaled back. In hardware, in the equations for App and Aqq , the overflow
must be taken into account carefully while "de-scaling". The reason is that these equations
contain multiplication of three numbers where the bit size can not fit to the size of integer
data type. The corresponding formulas are written in MATLAB as:

A_out(p,p)=(c^2)*A(p,p)-2*c*s*A(p,q)+(s^2)*A(q,q);
A_out(q,q)=(s^2)*A(p,p)+2*c*s*A(p,q)+(c^2)*A(q,q);
A_out(p,q)=(c^2-s^2)*A(p,q)+c*s*(A(p,p)-A(q,q));
A_out(q,p)=(c^2-s^2)*A(p,q)+c*s*(A(p,p)-A(q,q));
for i = 1:n

if(i ~= p && i ~= q)
A_out(p,i)=c*A(p,i)-s*A(q,i);
A_out(q,i)=s*A(p,i)+c*A(q,i);
A_out(i,p)=c*A(i,p)-s*A(i,q);
A_out(i,q)=s*A(i,p)+c*A(i,q);

end
end

Fig. 4.8 indicates the working behaviour of the cycjacobi module and Fig. 4.9 shows the
resulting eigenvalue matrix. A 3×3 matrix is given as an example. Initially, when reset is
low, A_in input matrix is assigned to an intermediate signal called A_out_temp which is a
temporary signal keeping the value of the output. Then the formulas make modifications
on the value of output matrix. In the top level, the output matrix from the previous iteration
A_out is stored back to A_in. As new input matrix A_in is updated, it can be used for the
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Figure 4.8 The provided simulation waveforms show an example of a circulation of eigen-
value calculation. The general flow is: A_out_temp signal takes the value of A_in, applies
the updates formulas on it. A_out_temp is assigned to output signal A_out in combinational
logic. Explicitly, in the top level, A_out takes the value of A_in for the next iteration.

Figure 4.9 The waves provide an example of the final result for a random matrix. The
result is compared to be the same with MATLAB results of the same matrix. The inputs
e.g trigonometric functions and indices are used to do the calculations.

following iteration.
The module is modified after the Block RAM is set up to read and write the elements.

Instead of all the elements in the matrix, only the concerning two rows are read from the
BRAM and updated results are written back to the corresponding rows and columns. For
this functionality, A_in signal is substituted with evalue_p_in and evalue_q_in for reading
the columns p and q. Similarly, A_out is replaced by evalue_p_out and evalue_q_out.
Hence, the update formulas are performed on two particular rows in each iteration.

The module eigvector.vhd:

After getting sufficient accuracy in eigenvalues by using the similar method of matrix
updating, new formulas for eigenvectors have been made as discussed in Chapter 3. These
formulas for eigenvector matrix calculation have been tested in MATLAB as in Section
3.2.2. The equations 3.16 and 3.17 are added to MATLAB code:

for i = 1:n
V_out(i,p)=c*V(i,p)-s*V(i,q);
V_out(i,q)=s*V(i,p)+c*V(i,q);
...
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end

After that, they are implemented in hardware in a very similar way. A separate module
is created for eigenvector computation and it has been added to the design after testing
with a separate testbench. As shown in Fig. 4.10, the initial matrix is identity matrix
which is updated to the product of the corresponding rotation matrices in each iteration.
The resulting eigenvector matrix is presented in Fig. 4.11.

Figure 4.10 The simulation result given is for calculation of the eigenvectors for a 3×3
matrix. Initial identity matrix and the first rotation are highlighted in the figure. Identity
matrix (I) is scaled and then updated to the first rotation matrix (R1) when enable is set.
For the calculation, input signals for cos and sin and indices are used as in the formulas
3.16 and 3.17.

Figure 4.11 Simulation waves for a full calculation of eigenvectors. The resulting eigen-
vector matrix is highlighted on the figure and is verified with MATLAB results to be as
expected.

The same changes as eigenvalue calculations have been made to eigenvector calcula-
tions as well. Instead of performing the calculations on whole matrix, they are updating
only two concerning rows in each iteration. Additionally, the Identity matrix is scaled by
10000 for simplicity instead of 1024.

After functionality was confirmed on the individual submodules, they were integrated
into a single module called eigenanalysis.
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Figure 4.12 The implemented hardware design for eigenanalysis.

The module eigenanalysis.vhd:

This module performs the eigenvalue and eigenvector calculations. As it is the main part of
the Jacobi, it requires so much hardware. In order to control this, the module is pipelined.
Two states are created: st_busy and st_idle. In reset, state is in st_idle. In st_busy, up-
date formulas are performed on two input rows for the eigenvalue and two rows for the
eigenvectors. Two separate BRAMs are used to store the eigenvalue matrix and eigen-
vector matrix. Initially, identity matrix is created in one of the BRAMs, the other BRAM
contains the covariance matrix. The corresponding two rows from each BRAM are read to
the eigenanalysis module in each iteration. They are updated, then they are written back
to BRAM. Pipelining also allows to define the number of the computational slices that are
intended to be used. Similarly to off module, a new variable is included: n. Hence, the
number of computational slices are to be used is highly parameterizable. The block dia-
gram showing the inputs and outputs of the module is presented in Fig. 4.12. Besides, Fig.
4.14 shows the connections of the module with other modules in the design. The synthesis
results for different values of n are compared in Results section.

4.1.2 Initial design
Using sym-Schur:

The top level module is used to instantiate and declare the connections among all four
modules. Beside encapsulating of all module connections, it also includes a state machine
to control the transitions by the use of enables signals created for each module. The state
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machine illustration is given in Figure 4.13.

Figure 4.13 The implemented state machine for cyclic-by-row Jacobi in top level of the
design.

The state is initially in the reset state which is called st_finished. When there is data
coming in, the valid_input signal is triggered and gets the new data A_in and transition
to the state st_1 happens. In this state, the enable_off and enable_cs signals trigger the
computation of the error function and cosine and sine functions. The second transition
occurs to st_2 where cycjacobi module is enabled by enable_jac and, in turn, Jacobi
formulas update the matrix for the current iteration. Finally, st_3 chooses the next indices
for the next iteration. The code snippet of these continuous assignments from the design
is as follows:

enable_pq <= '1' when (state = st_3) else '0';
enable_cs <= '1' when (state = st_1) else '0';
enable_jac <= '1' when (state = st_2) else '0';
enable_off <= '1' when (state = st_1) else '0';

4.1.3 Final design
Using CORDIC

The block diagram for the proposed design cyclic-by-row Jacobi after including CORDIC
is shown in Figure 4.14. The top-level module of the design is modified after substituting
CORDIC in place of symmetric-Schur. The components instantiation of the Symmetric
Schur transformation have been replaced with CORDIC. The flow of the state machine
have been altered as in Fig.4.15. The state transitions are indicated with directional arrows.
The conditions that make the transitions happen are noted above the arrows.
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states operations
st_idle State is in idle in the beginning until there is a valid input. Read data

signals from outside world (BRAM) are assigned to the intermediate
signals of the Jacobi module.

st_arctan An iteration starts here. CORDIC performs vectoring mode and pro-
duces arctan value. The rotation angle θ is calculated in a combinatorial
logic.

st_error The submodule is triggered by valid_input_off. Error function is calcu-
lated. When there is a valid output: valid_output_off, the state changes.
enable_off stays asserted until one iteration finishes. This state also
provides the required delay between two CORDIC modules.

st_sincos CORDIC performs rotation mode. sin θ and cos θ are calculated. The
next state is triggered by valid_input_jac.

st_update Formulas for eigenvalues and eigenvectors are performed and the input
rows are updated. When valid_output_jac is asserted, the state transi-
tions.

st_pq An iteration finishes here. New indices are chosen for the next itera-
tion by asserting enable_pq. Error function is compared with the given
tolerance. If error is small enough, computation finishes here.

st_delay Updated intermediate signals are assigned to outputs for write operation
back to BRAM.

Table 4.1: Cyclic Jacobi state machine with explanation of the functionality of each state.

Figure 4.15 The illustration shows the state machine chart presenting the state transitions
of cyclic-by-row Jacobi algorithm using CORDIC. This state machine is implemented in
the top level, in the module called top_level_cycjacobi.vhd.
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Chapter 4. HARDWARE IMPLEMENTATION

There are 7 states in the design. Their explanations are given in detail in the table 4.1.
First of all, the state is in st_idle while reset. Here, the inputs are assigned to temporary
variables. In the final design, the inputs are the corresponding rows for the eigenvalue
matrix and columns for the eigenvector matrix calculations. The condition is checked if
the CORDIC module has not started yet, that means the calculation has not started either,
so the signals computation_done and iteration_done are reset and the state transitions to
the beginning of the first iteration which is state st_arctan. Here, CORDIC module calcu-
lates the arctan and combinational assignment calculates the rotation angle out of it. As
discussed before, the output arctan from the vectoring mode is divided by two in a com-
binatorial assignment and input to the rotation mode. Besides, the error function module
is triggered using its matching valid signal. Then the state moves to st_error. The state
st_error is put between the CORDIC modules, which allows the calculation of arctangent
by creating some delay between the CORDIC modules. In this state, error function is
computed so the valid signal can be de-asserted. When it finishes, st_sincos is the next.
This state allows the CORDIC calculate the sin and cos functions. Before going to the next
state, valid signal for the eigenpair computation module is asserted. In state st_update, the
update formulas are performed for both eigenvalue and eigenvectors. When the outputs
are ready, the corresponding module asserts valid_output signal. Finally, new indices are
chosen for the next iteration in state st_pq. The error function is also compared with the
given tolerance value here. If the error function is small enough, then computation_done
signal is assigned and the computation is completely finished. State transitions to st_de-
lay. This state is either in the end of one iteration or the whole computation, hence the
altered elements are assigned to the output signals in this state. Moreover, iteration_done
is set. In the end, state transits back to st_idle and the process restarts all over for the next
iteration or the next calculation.
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Chapter 5
BLOCK RAM AS
INTERMEDIATE STORAGE

Writing to and Reading from the Block RAM

One of the main challenges in hardware implementation of matrix operations is streaming
the data. As the real symmetric matrix is quite huge, it needs to be stored in memory
and filled into and pulled from the memory to perform operations on it. Firstly, the output
matrix from the covariance module needs to be stored in memory so that Jacobi design can
pull concerned rows and columns for the calculations. In order to read the output matrix
from the covariance design, the design made in (Karimova (2017)) needs to be modified so
that the rows and columns can be accessible in the outputs of the design. Because the rows
and columns are to used in the address mapping for the memory. The block diagram for
the proposed architecture of PCA is given in Fig. 5.1. It shows all the main connections
between covariance module and Jacobi through two BRAMs.

5.1 Block RAM design
A Single-port Block RAM is designed. Aids used are Xilinx User Guides: Libraries
(2017), 7series (2016), BRAM (2011) and Designing with IP (2018). There is one com-
mon enable signal for write and read called we. When we is asserted, BRAM performs
write operation, otherwise, it always reads. Both operations use the same clock. The block
RAM is in "read-first" mode. The RAM is defined to be an array of std_logic_vector data
type. Size, width of BRAM and width of address signals are generic constants that are
parameterisable. For simplicity, small numbers and small matrix are used for explanation.

5.1.1 Write operation from covariance design to memory
First of all, two new output signals for tracking row and column values are added to the
covariance design. The size of row and column signals depend on how many buffers are
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5.1 Block RAM design

used in the design. As the covariance is designed in a special way that it is generic for
any application and even the number of buffers can be specified by the user. In each step
the number of output elements depends on the number of parallel buffers used. Thus, size
of these signals must be as long as the buffers used in the design, e.g. row and column
numbers for each element of the output matrix. The objective is to store the matrix in the
BRAM in a column-by-column fashion. For instance, for a 8×8 matrix with 4 buffers, the
order of reading the outputs are as in Fig. 5.2. Fig. 5.3 shows how the rows are written to
BRAM with another example on 5×5 matrix.

Figure 5.2 The figure shows the order of reading covariance outputs.

Additionally, the upper-diagonal elements are duplicated to corresponding lower-diagonal.
This functionality is achieved by writing the same input to two different addresses in two
separate states. For the address mappings the following formulas are derived:

u = row ∗m+ column. (5.1)
l = column ∗m+ row. (5.2)

where m is the matrix size, u and l are the address values for upper and lower diagonals
respectively.

The output control signal valid from the covariance design announces that the output
is ready and it is reset to zero just after one cycle. Its value needs to be captured and stored
while it is high. Therefore, a valid_latched signal is included. It is worth to note that,
there is no extra time needed to write the covariance outputs to the BRAM. As soon as the
covariance elements are calculated, they are directly written to the corresponding addresses
in the BRAM. This is achieved by assigning the corresponding buffer index of the valid_-
latched signal to the we - write enable signal of the BRAM. As the valid output stays only
for one clock cycle, another signal is needed to store its value for the use by the BRAM.
So, y_latched signal is created. The same situation holds for row and column signals. The
given simulation waves in Fig. 5.4 illustrates this functionality clearly. Latched signal
transitions are highlighted with arrows. It can also be viewed from this figure that latched
element (1240 in decimal) is stored in BRAM in the address calculated (0 in this case).
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Chapter 5. BLOCK RAM AS INTERMEDIATE STORAGE

Figure 5.3 The figure shows the order of the write process of the covariance matrix to the
BRAM on another example.

Figure 5.4 Writing covariance output to RAM. The waves show how a output from the
covariance module is latched with a new signal and written to RAM in its corresponding
address.
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5.1 Block RAM design

The state machine for the top level is given in Fig. 5.5 presenting the state transitions
and the behaviour of control signals. Moreover, the Table 5.1 summarizes the functionality
of each state in the top level.

Figure 5.5 State machine for the main module of the design. The flow of writing to and
reading from BRAM operations.

The sequential design involves the first three states of the state machine for covari-
ance writing, namely st_upper_triangle, st_lower_triangle and st_idle. While enable
is asserted, each state transition occurs in every clock cycle. Initially, the process is in
the st_idle state. When there is a valid output from the covariance, that is a new element
of the matrix is computed, all required values are latched. This behaviour is indicated
with arrows in Fig. 5.4 for all four signals mentioned above. It must be noted that, the
input stream to the covariance module is randomly generated values only for easy testing
purposes.

Fig. 5.6 is given as an example of having two buffers, which means there are two
valid outputs at a time. In this case, the outputs are 3160 and 9176 which are a01 and a11,
respectively. When the output array is latched, in the next clock cycle, state transits to st_-
upper_triangle. First, address is calculated with the formula in 5.2, in this example it is 1.
The data is put to the RAM by enabling we - write enable signal for the particular index.
Then the state goes to st_lower_triangle where it puts another copy of the same data in
its corresponding address in the lower diagonal of the symmetric matrix. The address is
calculated with the formula given in Eq. 5.2 and it is 4. Before the next transition, the
index is incremented if it has not yet reached to the number of buffers. If not, then the
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Chapter 5. BLOCK RAM AS INTERMEDIATE STORAGE

state functionality
st_upper_diagonal Upper diagonal elements of the covariance matrix are written to Block

RAM. One entry is written at a time. Identity matrix is constructed in
another Block RAM at the same time.

st_lower_diagonal Lower diagonal elements of the covariance matrix are written to Block
RAM. One entry is written at a time. Identity matrix is constructed in
another Block RAM at the same time.

st_idle The outputs from the covariance matrix are captured here for writing.
When writing of covariance matrix to BRAM is finished, state is transits
to the reading states to read the corresponding rows from BRAM to
Jacobi design.

st_read_p Row p is read to Jacobi for eigenvalue matrix calculation. Column p is
read to Jacobi for eigenvector matrix calculation. When the whole row
and whole column are read, state goes to read the next row and column.

st_read_q Row q is read to Jacobi for eigenvalue matrix calculation. Column q
is read to Jacobi for eigenvector matrix calculation. Reading continues
until it finished all elements in the corresponding row and column.

st_calc Jacobi starts calculations of eigenvalues and eigenvectors. One iteration
is done and Jacobi module asserts iteration_done signal. Then BRAM
allows Jacobi to write updated rows and columns back.

st_write_row_p Updated row p is written to row p in eigenvalue matrix in BRAM.
st_write_row_q Updated row q is written to row q in eigenvalue matrix in BRAM.

st_write_column_p Updated row p is duplicated to column p in eigenvalue matrix in BRAM.
Updated column p in eigenvector matrix is written to column p in eigen-
vector matrix in BRAM.

st_write_column_q Updated row q is duplicated to column q in eigenvalue matrix in BRAM.
Updated column q in eigenvector matrix is written to the same column
in BRAM. If one iteration has finished but the whole computation still
continues, the state will switch to st_read_p and repeat the steps for
next iteration. If the Jacobi has finished the whole computation, that is
if it asserts jacobi_done signal, the state will go to st_read_outputs.

st_read_outputs The computation is done. Eigenvalue and eigenvector matrices are
in the BRAM. Depending on output_select signal, the corresponding
eigenvalue and its eigenvectors are read from BRAM to the outside
world.

Table 5.1: The states of the state machine in top level design for reading from and writing to Block
RAM.
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5.1 Block RAM design

Figure 5.6 Writing covariance output to RAM. The waves indicate how the states work
and the same value is written to two different addresses, those are the upper and lower
diagonal of a symmetric matrix.

transition happens back to st_upper_triangle again for the element in next index. These
steps repeat until all the elements are stored in their matching addresses both in upper and
lower diagonals of the matrix. As seen, the elements on the diagonal gets the same address
number.

After all the elements finish storing, state becomes idle and RAM is full. An example
of a finished process is provided in Fig. 5.7.

As the covariance matrix is fully stored in BRAM, it is ready for eigenvalue decom-
position. To optimise the timing, both eigenvalue and eigenvector matrices are calculated
concurrently. Therefore, another BRAM instantiation is created to hold eigenvector ma-
trix. As discussed before, initial matrix is Identity matrix for eigenvector calculations.
So that, while covariance matrix is being stored in BRAM, identity matrix is generated
in another BRAM. This process also happens in the first two states: st_upper_diagonal
and st_lower_diagonal. When initial matrices are constructed, a state transition happens
to st_idle. The covariance module asserts cov_done signal, so the top level checks that
covariance matrix is finished calculation and Jacobi module does not have valid output,
read operation can begin. The we signal of the BRAM is de-asserted here, so BRAM is in
reading operation mode.

There are two states for reading: st_read_p reads the row p, st_read_q reads the row
q from each eigenvalue and eigenvector matrices to Jacobi module. The simulation waves
given in Fig. 5.8 show the behaviour of the signals in st_read_p and st_read_q states. The
process of reading the correct rows from the BRAM is highlighted using different colors
for different states and arrows. Besides, the write enable signal of the BRAM: we is low,
so it allows reading.

In the figure, it is also observed that the Jacobi stays in idle while the reading is hap-
pening. After row p finishes the reading of one whole row from the particular addresses,
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Chapter 5. BLOCK RAM AS INTERMEDIATE STORAGE

Figure 5.7 Writing covariance output to RAM. The simulation waves show a finished
write operation. Here, a 4×4 matrix is used for simplification. All the elements of the
covariance matrix is located in their corresponding addresses.

row q starts. When both rows are read to Jacobi module, it starts doing Jacobi rotations
on the concerned rows. The calculations happen in st_calc. The simulation waves for this
state are shown in Fig. 5.9.

As can be seen, while the top level is in st_calc, Jacobi executes all its states in an
order. When one whole iteration finishes, Jacobi module assigns iteration_done signal,
that is in its st_delay state. In top level, the condition iteration_done = ’1’ is checked
in the st_calc state. If the iteration is finished, that is the rows are updated, top level
starts writing altered rows back to BRAM to their matching addresses. As the matrix is
a symmetric matrix, row p and row q are exactly the same as column p and column q,
respectively. Thus, redundant calculation of the addresses for the columns are eliminated
and the altered rows are written back to the same rows and also duplicated to the equivalent

Figure 5.8 The simulation waves illustrating the read operation from BRAM to Jacobi
module. There are two states to read different rows.
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Figure 5.9 The waves present the st_calc state. While Jacobi calculations are done, the
top level stays in st_calc until one iteration finishes.

columns. The write-back operation for eigenvalues is done in 4 states: st_write_row_-
p, st_write_row_q, st_write_column_p, st_write_column_q. Write enable signal we
for the BRAM goes high and stays asserted until the 4 states finish writing the updated
values back to their corresponding addresses. This behaviour of writing operation can be
observed in the waves given in Fig. 5.10.

Figure 5.10 The simulation waveforms for the write operation are shown.

After each write state finishes, state transition happens to the next one in the given
order. The write-back operation for the eigenvectors are performed at the same time as
eigenvalues when they are written back to columns, e.g. in states st_write_column_p and
st_write_column_q. When the whole writing operation has finished, but the computation
still continues (because the error function is not sufficiently small yet), state loops back
to st_read_p for the following iteration and the steps are repeated. If the computation
is done, Jacobi asserts computation_done (called jacobi_done in main module), the state
transitions to the last state called st_read_outputs from st_write_column_q. In st_read_-
outputs, the valid output results are read from the BRAM to the outside world. The order
number of which eigenpair is going to be read is chosen by output_select signal. Because
of the IO constraints of the FPGA, eigenvectors in one row are read out one by one.
Consequently, one row of eigenvectors and their matching eigenvalue is read out in each
selection. The clock cycles needed for each state is discussed in Chapter 6.
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Chapter 6
CONCLUSION

6.1 Results

6.1.1 Timing analysis
In order to calculate the computation time for the whole PCA design, the time used for
the covariance calculation, read and write operations and Jacobi design must be summed
up together. The computation time for the covariance module has been already calculated
in the specialization project with the formulas 2.3 and 2.4 given in Chapter 1. For the
100×100 matrix with 2500 components and using 4 buffers, the needed number of clock
cycles is 3 250 000. Obviously, it can be made faster by using more buffers. As the
covariance matrix is written to the BRAM while it is calculating, there is no additional
time needed for its write operation.

The results for each state of the Jacobi design is summarised in the Table 6.1:

states st_arctan st_error st_sincos st_update st_pq st_delay total
#cycles 37 3 35 3 1 1 80

Table 6.1: Number of clock cycles each state in the Jacobi design utilises in one iteration.

The time required for each operation for the calculations and storing is presented in
Table 6.2. The result is for one complete iteration. There are two states for reading and
four states for writing.

states of top module read calculation write
# of clock cycles 2 * (matrix_size + 3) 81 4 * (matrix_size + 1)

Table 6.2: Number of clock cycles for Jacobi (1 cycle is added because of the transition to st_calc
state) along reading and writing in one iteration.

It follows that for one iteration of 100×100 matrix, the required number of clock cycles
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is:

2 ∗ (100 + 3) + 81 + 4 ∗ (100 + 1) = 691 (6.1)

The number of iterations depends on the input data. Therefore a formula for 100×100
matrix is generated as below:

computation time = 3250000 + #iterations ∗ 691 (6.2)

Additionally, there is more time required to read the outputs and it depends on how many
eigenvectors the user wants to read out.

Optimisation: Pipelining

(Kiusalaas, 2010) mentions that the utility of Jacobi method is limited to 20×20 matri-
ces due to the rapid increase in the computational effort regards to the matrix size. This
condition holds for the hardware as well. Especially, when the utilised FPGA has a small
number of available resources, it turns out to not to fit to the hardware for bigger matrices.
The usage of the computational slices depending on the matrix size is roughly visualised in
Fig. 6.1(a). In this design, submodules off and eigenanalysis are pipelined. The number
of computational blocks is parameterizable. Ideally, these computational slices synthe-
size to DSPs. In this case, the intended number of computations use the same DSP. Fig.
6.1(b) illustrates the novel behaviour. This, in turn, makes the design more flexible for any
FPGA. It makes it also possible to just decrease the parameter value if the other parts of
the design needs more DSPs. The slices are designed to fit in DSPs.

matrix size noff neig LUT FF DSP
4 1 1 7023 (13%) 5533 (5%) 58 (26%)
8 1 1 8331 (16%) 7610 (7%) 58 (26%)

16 1 1 10763 (20%) 11719 (11%) 58 (26%)

Table 6.3: Resource usage in Zilinx Zedboard for 1 computational slices both in off and eigenanal-
ysis submodules. For all of them, 2 buffers are used in covariance. The table proves that the matrix
size does not affect the number of DSP block utilization.

matrix size noff neig LUT FF DSP
4 4 4 7607 (13%) 5505 (5%) 130 (59%)
8 4 4 10213 (16%) 7658 (7%) 130 (59%)
16 4 4 12565 (20%) 14156 (11%) 130 (59%)

Table 6.4: Resource usage in Zilinx Zedboard for 4 computational slices both in off and eigenanal-
ysis submodules. For all of them, 2 buffers are used in covariance. The table proves that the matrix
size does not affect the number of DSP block utilization.

Along with the pipelining of both submodules, a new variable has been added to both.
This new variable n defines how many computational slices will be shared among the
computations. It is important to find the ideal value for the n. This optimum point can be
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Figure 6.1 (a) Typical behaviour of the computation. (b) Behaviour after pipelining.

#buffers LUT FF LUTRAM DSP
2 2952 (6%) 2732 (3%) 2718 (16%) 2 (1%)
4 5863 (11%) 5433 (5%) 5436 (31%) 4 (2%)

10 14626 (27%) 13560 (14%) 13590 (78%) 10 (5%)

Table 6.5: Resource usage for the covariance module with different numbers of buffers used. The
matrix size is 100×100.

defined as maximum number of available DSPs should be used. It is worth to note that
the matrix size must be divisible by n, it is crucial to make sure it scales well with the
number of planes. It can be seen from the tables 6.3 and 6.4 that DSP usage is constant for
any matrix size. The number of LUTs and FFs increase slightly because of the rest of the
design with larger matrices. To summarize, choosing a bigger n yields faster computation,
while a smaller n results in lower DPS occupation.

The usage of DSP and other resources in the covariance module alone for 100×100
matrix is given in Table 6.5. The number of DSPs increase linearly with the number
of buffers used. Moreover, the Table 6.6 presents the resource usage for the remaining
modules. They each make up nearly 1% of the whole resource usage.
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File Name LUT FF DSP
cordic_vector 356 (1%) 104 (1%) 0

cordic_rotation 325 (1%) 204 (1%) 0
choose_pq 23 (1%) 14 (1%) 0

Table 6.6: Synthesis results - Resource usage for separate modules. The matrix size is 100×100.

6.2 Discussion
A hardware implementation of PCA based on the Jacobi method was designed and im-
plemented in FPGA. A fully parameterizable and efficient Jacobi method was designed
for eigenpair decomposition. The module calculates both eigenvalues and eigenvectors.
In the proposed design of Jacobi method, fixed point number representation is used. By
using BRAM as intermediate storage, covariance matrix modules are connected with the
Jacobi modules. The use of CORDIC for trigonometric as well as square root calculations
made the design more efficient by replacing expensive operations with inexpensive hard-
ware. The design uses minimal hardware for big matrices (e.g. 100×100). New ways of
implementation have been researched and found. Expensive matrix multiplication is elim-
inated by using update formulas for both eigenvalue and eigenvector matrix calculations.
The stopping criterion is one of the crucial parts of the design for hardware. A novel and
efficient approach for calculating error function is proposed. Another remarkable novel
optimisation in the design achieves its high flexibility of usage in various FPGA sizes.
Along with the pipelining in two biggest modules of the Jacobi, parameterizable number
of computational slice usage results in substantial improvement in resource usage as well
as the speed.

6.3 Future work
The proposed design can be used in many other signal processing and machine learning
applications. The PCA design can be used together with other compression and dimen-
sionality reduction algorithms for better performance. Cyclic Jacobi may be replaced by
Parallel Jacobi for an FPGA with more resources available where the speed is the first
priority. Parallel Jacobi would use more hardware resources, but it would be much faster
than other methods of Jacobi. If the data variables are in different units, normalization step
must be done to eliminate the difficulties: mean centering and division by standard devia-
tion. More optimisations can be made to increase the throughput and decrease the power
consumption. The design may be made to use less clock cycles for the calculation. Al-
though the implemented design is efficient, there is still more room for the paralellisation
and improvements.

56



Bibliography

7series, X., 2016. 7 series FPGAs Memory Resources User Guide. Xilinx All Pro-
grammable.

Alan, S., 2008. Cordic: How hand calculators calculate.

Andraka, R. A. C. G. I., Copyright 1998. "a survey of cordic algortihms for fpga based
computers".

BRAM, X., 2011. Spartan-6 FPGA Block RAM Resources. Xilinx All Programmable.

Bravo, Ignacio. Jimenez, P. e. a., 2006. Implementation in fpgas of jacobi method to solve
the eigenvalue and eigenvector problem.

Demmel, J. Veselic, K., 1992. Jacobi’s method is more accurate than QR.). SIAM J. Matrix
Anal. Appl. 13(4).

Deprettere, E., Udo, R., 1984. Pipelined cordic architecture for fast vlsi filtering and array
processing, 41.A.6.1 – 41.A.6.4.

Designing with IP, X., 2018. Vivado Design Suite User Guide. Xilinx All Programmable.

Golub, G. H., Van Loan, C. F., 1996. Matrix Computations (3rd ed.). The Johns Hopkins
University press.

Gonzales, C. Lopez, S. M. D. S. R., 2015. "fpga implementation of the hysime algorithm
for the determination of the number of endmembers in hyperspectral data".

Jin, X., 2014. Implementation of the music algorithm in clash.

Karimova, A., 2017. Spealisation project: High-throughput fpga implementation of pca al-
gorithm for dimensionality reduction in hyperspectral imaging, covariance calculation.

Kiusalaas, J., 2010. Numerical Methods in Engineering with Python. Cambridge Univer-
sity Press.

57



Libraries, X., 2017. Vivado Design Suite 7 series FPGA and Zynq-7000 all programmable
SoC Libraries Guide. Xilinx All Programmable.

Makhoul, J., S. R., Gish, H., 1985. Vector quantization in speech coding, 1551–1588.

Mathias, R., 1995. Accurate eigensystem computations by Jacobi methods.). SIMAX, Vol
16, No 3.

Qian, Du. James Fowler, E., 2008. "low-complexity principal component analysis for hy-
perspectral image compression".

Stewart, G. W., 1983. "a method for computing for computing the generalzed singular
value decomposition.".

Thibedeau, K., 2014. Vhdl extras.
URL http://github.com/kevinpt/vhdl-work

Uday, A. K., 2016. "reconfigurable hardware implementation for the principal component
analysis".

Veisdal, J., 2018. Hardware hsi design.
URL https://www.ntnu.no/wiki/display/NSSL/Electronics+
Design

Veselic, K. Hari, V., 1990. "a note on a one-sided jacobi algorithm.".

Wang, R., 2017. Jacobi eigenvalue algorithm for symmetric real matrices, 1–5.
URL http://fourier.eng.hmc.edu/e176/lectures/ch1/node1.
html

Weedman, K., 2013. The tutorial: Cordic design & simulation in verilog.
URL https://www.youtube.com/watch?v=TJe4RUYiOIg&t=1676s

Wikipedia, C., 2017. Jacobi eigenvalue algorithm.
URL https://en.wikipedia.org/w/index.php?title=Jacobi_
eigenvalue_algorithm&oldid=778088775

58

http://github.com/kevinpt/vhdl-work
https://www.ntnu.no/wiki/display/NSSL/Electronics+Design
https://www.ntnu.no/wiki/display/NSSL/Electronics+Design
http://fourier.eng.hmc.edu/e176/lectures/ch1/node1.html
http://fourier.eng.hmc.edu/e176/lectures/ch1/node1.html
https://www.youtube.com/watch?v=TJe4RUYiOIg&t=1676s
https://en.wikipedia.org/w/index.php?title=Jacobi_eigenvalue_algorithm&oldid=778088775
https://en.wikipedia.org/w/index.php?title=Jacobi_eigenvalue_algorithm&oldid=778088775


Appendix

Top level design for the proposed PCA architecture.

Covariance module and Jacobi module connected through two Block RAMs. File
name: toplevel_cov_bram_jac.vhd
------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Top level for PCA algorithm --
------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use ieee.std_logic_unsigned.all;
use work.covariance_pkg.all;
use work.array_pkg.all;

entity toplevel_cov_bram_jac is
generic(

matrix_size : integer := 100;
BRAM_size : integer := 10000;
BRAM_width : integer := 32;
ADDR_width : integer := 14;
data_width : positive:= 16;
buffers : positive:= 4

);
port(

clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
cube_data : in std_logic_vector(data_width - 1 downto 0);
valid_input_cov : in std_logic;
output_select : in natural range 0 to matrix_size - 1;
select_valid : in std_logic;
valid_output : out std_logic;
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eigenvalue : out signed(31 downto 0);
eigenvectors : out signed(31 downto 0)

);
end toplevel_cov_bram_jac;

architecture behav_top of toplevel_cov_bram_jac is

type state_type is (st_upper_diagonal, st_lower_diagonal, st_idle,
st_read_p, st_read_q, st_calc, st_write_row_p,
st_write_row_q, st_write_column_p,
st_write_column_q, st_read_outputs);

signal state : state_type;

component covariance_optimised is
generic(

data_width : positive := 16; --size of one component
depth_array : positive := 2500;--number of components in 1 plane
planes : positive := 100; --number of planes, e.g. 100
buffers : positive := 4 --number of buffers

);
port(

x : in std_logic_vector(data_width - 1 downto 0);
clock, reset : in std_logic;
enable : in std_logic;
done : out std_logic;
valid_input : in std_logic;
valid : out std_logic_vector(buffers - 1 downto 0);
column, row : out output_row_column(buffers - 1 downto 0);
y : out output_t(buffers - 1 downto 0)

);
end component;

component Block_RAM is
generic(
BRAM_size : integer := 10000;
BRAM_width : integer := 32;
ADDR_width : integer := 14

);
port(

clock : in std_logic;
din : in std_logic_vector(BRAM_width-1 downto 0);
we : in std_logic; -- write enable
address : in std_logic_vector(ADDR_width-1 downto 0);
dout : out std_logic_vector(BRAM_width-1 downto 0)

);
end component;
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component top_level_cycjacobi is
generic(
constant matrix_size : positive := 100;
constant tolerance : integer := 100 --1000000
);
port(
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
--input data declarations: eigenvalue
evalue_p_read : in row_column_array;
evalue_q_read : in row_column_array;
--input data for eigenvectors
evector_p_read : in row_column_array;
evector_q_read : in row_column_array;
--control signal declarations
valid_input : in std_logic;
iteration_done : out std_logic;
computation_done: out std_logic;
--output data declarations: eigenvalue
evalue_p_write : out row_column_array;
evalue_q_write : out row_column_array;
--output data eigenvectors
evector_p_write : out row_column_array;
evector_q_write : out row_column_array;
--output indices
--old indices for write operations
p_latched : out natural range 0 to matrix_size - 1;
q_latched : out natural range 0 to matrix_size - 1;
--new indices for read operations
p_new : out natural range 0 to matrix_size - 1;
q_new : out natural range 0 to matrix_size - 1
);

end component;

--intermediate signal declarations
signal column, row : output_row_column(buffers-1 downto 0);
signal column_latched : output_row_column(buffers-1 downto 0);
signal row_latched : output_row_column(buffers-1 downto 0);
signal data_in_evalue : std_logic_vector(BRAM_width-1 downto 0);
signal data_in_evector : std_logic_vector(BRAM_width-1 downto 0);
signal address_evalue : std_logic_vector(ADDR_width-1 downto 0);
signal address_evector : std_logic_vector(ADDR_width-1 downto 0);
signal index, counter : integer;
signal we : std_logic;
signal cov_done : std_logic;
signal enable_jac : std_logic;
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signal valid_in_jac : std_logic;
signal jacobi_done : std_logic;
signal iteration_done : std_logic;
signal evalue_p_write : row_column_array;
signal evalue_p_read : row_column_array;
signal evalue_q_read : row_column_array;
signal evalue_q_write : row_column_array;
signal evector_q_read : row_column_array;
signal evector_p_read : row_column_array;
signal evector_p_write : row_column_array;
signal evector_q_write : row_column_array;
signal p, q, p_new, q_new : natural range 0 to matrix_size-1;
signal p_latched, q_latched: natural range 0 to matrix_size-1;
signal y, y_latched : output_t(buffers-1 downto 0);
signal valid, valid_latched: std_logic_vector(buffers-1 downto 0);
signal data_out_evalue : std_logic_vector(BRAM_width-1 downto 0);
signal data_out_evector : std_logic_vector(BRAM_width-1 downto 0);

begin
--port mappings
cov_ins : covariance_optimised

port map(
x => cube_data,
clock => clock,
reset => reset,
enable => enable,
done => cov_done,
valid_input => valid_input_cov,
valid => valid,
column => column,
row => row,
y => y

);

--BRAM instantiation for eigenvalue matrix
bram_ins_evalue : Block_RAM

generic map(
BRAM_size => 10000,
BRAM_width => 32,
ADDR_width => 14

)
port map(

clock => clock,
din => data_in_evalue,
we => we,
address => address_evalue,
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dout => data_out_evalue
);

--BRAM instantiation for eigenvector matrix
bram_ins_evector : Block_RAM

generic map(
BRAM_size => 10000,
BRAM_width => 32,
ADDR_width => 14

)
port map(

clock => clock,
din => data_in_evector,
we => we,
address => address_evector,
dout => data_out_evector

);

jac_ins : top_level_cycjacobi
generic map(
matrix_size => 100,
tolerance => 100

)
port map(

clock => clock,
reset => reset,
enable => enable_jac,
evalue_p_read => evalue_p_read,
evalue_q_read => evalue_q_read,
evector_p_read => evector_p_read,
evector_q_read => evector_q_read,
valid_input => valid_in_jac,
iteration_done => iteration_done,
computation_done=> jacobi_done,
evalue_p_write => evalue_p_write,
evalue_q_write => evalue_q_write,
evector_p_write => evector_p_write,
evector_q_write => evector_q_write,
p_latched => p_latched,
q_latched => q_latched,
p_new => p_new,
q_new => q_new

);

-- combinational logic
enable_jac <= '1' when (state = st_calc) else '0';
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valid_in_jac <= '1' when (state = st_calc) else '0';

--sequential logic
process(clock, reset)
begin
if reset = '1' then

state <= st_idle; --default state is st_idle
index <= 0;
data_in_evalue <= (others => '0');
data_in_evector<= (others => '0');
address_evalue <= (others => '0');
address_evector<= (others => '0');
eigenvalue <= (others => '0');
eigenvectors <= (others => '0');
valid_output <= '0';
we <= '0';
counter <= 0;
valid_latched <= (others => '0');
y_latched <= (others => (others => '0'));
column_latched <= (others => 0);
row_latched <= (others => 0);

elsif clock'event and clock = '1' then
if enable = '1' then

case state is

--write upper diagonal elements of
--the covariance matrix to memory
when st_upper_diagonal =>
--calculation of the corresponding address in upper diagonal

address_evalue <=
std_logic_vector(to_unsigned(
(row_latched(index) * matrix_size +
column_latched(index)), address_evalue'length));

address_evector <=
std_logic_vector(to_unsigned(
(row_latched(index) * matrix_size +
column_latched(index)), address_evector'length));

--getting the data into the memory
data_in_evalue <= std_logic_vector(y_latched(index));
--creating an identity matrix for eigenvectors
if (row_latched(index) = column_latched(index)) then

data_in_evector <= "00000000000000000010011100010000";
else

data_in_evector <= "00000000000000000000000000000000";
end if;
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we <= valid_latched(index);

state <= st_lower_diagonal;

--duplicate the elements from upper diagonal
--to lower diagonal in the symmetric matrix
when st_lower_diagonal =>
--calculation of the corresponding address in lower diagonal

address_evalue <=
std_logic_vector(to_unsigned(
(column_latched(index) * matrix_size +
row_latched(index)), address_evalue'length));

address_evector <=
std_logic_vector(to_unsigned(
(column_latched(index) * matrix_size +
row_latched(index)), address_evector'length));

--getting the data into the memory
data_in_evalue <= std_logic_vector(y_latched(index));

--creating an identity matrix for eigenvectors
if (row_latched(index) = column_latched(index)) then

data_in_evector <= "00000000000000000010011100010000";
else

data_in_evector <= "00000000000000000000000000000000";
end if;
we <= valid_latched(index);

if (index < buffers-1) then
index <= index + 1;
state <= st_upper_diagonal;

else
state <= st_idle;

end if;

--all the output values from the covariance module are kept
-- in new values

--the reason is the outputs are gone after one clock cycle,
--thus they must be captured
when st_idle =>

index <= 0;
if (unsigned(valid) > 0) then

y_latched <= y; --capturing the output
valid_latched <= valid; --capturing the valid signal
column_latched <= column; --capturing the column number
row_latched <= row; --capturing the row number
state <= st_upper_diagonal;
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--if covariance is finished and
--jacobi has not ended the computation, then
--start reading the concerning rows.
elsif ((cov_done = '1') and (jacobi_done <= '0')) then

we <= '0';
state <= st_read_p;

else
state <= st_idle;

end if;

when st_read_p =>
--reading row p for eigenvalue and eigenvector calc.s

if (counter < matrix_size) then
address_evalue <= std_logic_vector(to_unsigned(

(p_new * matrix_size + counter),
address_evalue'length ));

address_evector <= std_logic_vector(to_unsigned((p_new +
counter * matrix_size), address_evalue'length ));

counter <= counter + 1;
--evalue_p_read(counter) <= signed(data_out_evalue);

elsif (counter < matrix_size+2) then
counter <= counter + 1;

else
counter <= 0;
state <= st_read_q;

end if;

if (counter < matrix_size + 2) then
if (counter >= 2) then

--reading row p for eigenvector calc
evalue_p_read(counter-2) <= signed(data_out_evalue);
--reading column p for eigenvector calc
evector_p_read(counter-2) <= signed(data_out_evector);

end if;
end if;

when st_read_q =>
if (counter < matrix_size) then

address_evalue <= std_logic_vector(to_unsigned(
(q_new*matrix_size + counter),address_evalue'length));
address_evector <= std_logic_vector(to_unsigned(
(q_new + counter*matrix_size),address_evector'length));
counter <= counter + 1;

elsif (counter < matrix_size + 2) then
counter <= counter + 1;
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else
counter <= 0;
state <= st_calc;

end if;

if (counter < matrix_size + 2) then
if (counter >= 2) then

--reading row p for eigenvector calc
evalue_q_read(counter-2) <= signed(data_out_evalue);
--reading column p for eigenvector calc
evector_q_read(counter-2) <= signed(data_out_evector);

end if;
end if;

when st_calc => --Jacobi calculates the eigenvalue
if (iteration_done = '1') then --and eigenvectors

state <= st_write_row_p;
else

state <= st_calc;
end if;

when st_write_row_p =>
if (counter < matrix_size) then
--writes the updated row p back to bram

address_evalue <= std_logic_vector(to_unsigned(
(p_latched*matrix_size + counter),address_evalue'length));

data_in_evalue <=
std_logic_vector(evalue_p_write(counter));

we <= '1';
counter <= counter + 1;

else
counter <= 0;
state <= st_write_row_q;

end if;

when st_write_row_q =>
if (counter < matrix_size) then
--writes the updated row q back to bram

address_evalue <= std_logic_vector(to_unsigned(
(q_latched*matrix_size + counter),address_evalue'length));
data_in_evalue <=

std_logic_vector(evalue_q_write(counter));
we <= '1';
counter <= counter + 1;

else
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counter <= 0;
state <= st_write_column_p;

end if;

when st_write_column_p =>
if (counter < matrix_size) then
--writes the updated row p back to bram

address_evalue <= std_logic_vector(to_unsigned(
(p_latched + counter*matrix_size),address_evalue'length));
address_evector <= std_logic_vector(to_unsigned(
(p_latched + counter*matrix_size),address_evector'length));
data_in_evalue <=

std_logic_vector(evalue_p_write(counter));
data_in_evector <=

std_logic_vector(evector_p_write(counter));
we <= '1';
counter <= counter + 1;

else
counter <= 0;
state <= st_write_column_q;

end if;

when st_write_column_q =>
if (counter < matrix_size) then
--writes the updated row q back to bram

address_evalue <= std_logic_vector(to_unsigned(
(q_latched + counter*matrix_size),address_evalue'length));

address_evector <= std_logic_vector(to_unsigned(
(q_latched + counter*matrix_size),address_evector'length));

we <= '1';
data_in_evalue <=

std_logic_vector(evalue_q_write(counter));
data_in_evector <=

std_logic_vector(evector_q_write(counter));
counter <= counter + 1;

else
we <= '0';
counter <= 0;
if (jacobi_done = '1') then

state <= st_read_outputs;
else

state <= st_read_p;
end if;

end if;
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--reading the results out
when st_read_outputs =>

if (counter < matrix_size) then
if (select_valid = '1') then

address_evalue <= std_logic_vector(to_unsigned(
(output_select*(matrix_size+1)),address_evalue'length));

address_evector <=
std_logic_vector(to_unsigned(
(output_select + counter * matrix_size),
address_evector'length));

eigenvalue <= signed(data_out_evalue);
eigenvectors <= signed(data_out_evector);
--when the first element is read, set valid_output
valid_output <= '1';

end if;
counter <= counter + 1;

elsif (counter < matrix_size + 2) then
counter <= counter + 1;

else
valid_output <= '0';
counter <= 0;
state <= st_idle;

end if;

end case;
end if;

end if;
end process;

end behav_top;

The testbench module designed for 4×4 matrix. Module name: toplevel_cov_-
bram_jac_tb.vhd.

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Testbench for PCA algorithm --
-- This testbench is designed for 4x4 matrix --
------------------------------------------------------

library IEEE;
use IEEE.Std_logic_1164.all;
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use IEEE.Numeric_Std.all;
use work.covariance_pkg.all;
use work.array_pkg.all;

entity toplevel_cov_bram_jac_tb is
end toplevel_cov_bram_jac_tb;

architecture sim_top of toplevel_cov_bram_jac_tb is
constant matrix_size : integer := 4; --100
constant BRAM_size : integer := 16; --10000
constant BRAM_width : integer := 32; --32
constant ADDR_width : integer := 5; --14
constant data_width : positive := 16; --16
constant buffers : positive := 2; --4

component toplevel_cov_bram_jac
port(

clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
cube_data : in std_logic_vector(data_width - 1 downto 0);
valid_input_cov: in std_logic;
output_select : in natural range 0 to matrix_size - 1;
select_valid : in std_logic;
valid_output : out std_logic;
eigenvalue : out signed(31 downto 0);
eigenvectors : out signed(31 downto 0)

);
end component;

signal clock : std_logic := '0';
signal reset : std_logic := '1';
signal enable : std_logic := '0';
signal valid_input_cov: std_logic := '0';
signal cube_data : std_logic_vector(data_width-1 downto 0) :=

"0000000000000000";
signal output_select : natural range 0 to matrix_size-1;
signal select_valid : std_logic := '0';
signal valid_output : std_logic;
signal eigenvalue : signed(31 downto 0);
signal eigenvectors : signed(31 downto 0);

begin

top : toplevel_cov_bram_jac
port map(

clock => clock,
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reset => reset,
enable => enable,
valid_input_cov => valid_input_cov,
cube_data => cube_data,
output_select => output_select,
select_valid => select_valid,
valid_output => valid_output,
eigenvalue => eigenvalue,
eigenvectors => eigenvectors

);

clock <= not clock after 10 ns;

testing : process
begin

wait for 10 ns;
reset <= '0';
wait for 20 ns;
enable <= '1';
cube_data <= "0000000000000000";

enable <= '0';
wait until clock = '1';
cube_data <= "0000000000000010";
enable <= '1';

valid_input_cov <= '1';

for i in 0 to 64 loop
wait until clock = '1';
cube_data <= std_logic_vector(to_unsigned(i, 16));

end loop;

wait for 200 ns;
valid_input_cov <= '0';

wait for 200 ns;
output_select <= 0;
select_valid <= '1';

if (valid_output = '1') then
select_valid <= '0';

end if;

wait for 200 ns;
output_select <= 1;
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select_valid <= '1';

if (valid_output = '1') then
select_valid <= '0';

end if;

assert false report "test ended" severity note;
wait;
end process testing;

end sim_top;

Proposed Jacobi design and its submodules.

Top level design for Cyclic Jacobi method. File name: top_level_cycjacobi.vhd
------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Top level module for Jacobi --
------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

library work;
use work.array_pkg.all;
use work.cordic.all;

entity top_level_cycjacobi is
generic(

constant matrix_size : positive := 100;
constant tolerance : integer := 100 --1000000

);
port(

clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
--input data declarations: eigenvalue
evalue_p_read : in row_column_array;
evalue_q_read : in row_column_array;
--input data for eigenvectors
evector_p_read : in row_column_array;
evector_q_read : in row_column_array;
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--control signal declarations
valid_input : in std_logic;
iteration_done : out std_logic;
computation_done: out std_logic;
--output data declarations: eigenvalue
evalue_p_write : out row_column_array;
evalue_q_write : out row_column_array;
--output data eigenvectors
evector_p_write : out row_column_array;
evector_q_write : out row_column_array;
--old p to calculate the write data
p_latched : out natural range 0 to matrix_size - 1;
q_latched : out natural range 0 to matrix_size - 1;
--output updated indexes for reading operation
p_new : out natural range 0 to matrix_size - 1;
q_new : out natural range 0 to matrix_size - 1

);
end top_level_cycjacobi;

architecture Behavioral of top_level_cycjacobi is

type state_type is (st_error, st_update, st_pq, st_delay, st_idle,
st_arctan, st_sincos);

signal state : state_type;

--component instantiations
component off
port(

valid_input : in std_logic;
row_p : in row_column_array;
row_q : in row_column_array;
p : in natural range 0 to matrix_size - 1;
q : in natural range 0 to matrix_size - 1;
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
error : out signed(71 downto 0);
valid_output : out std_logic

);
end component;

component cordic_sequential is
generic(
SIZE : positive := 32; --# Width of operands
ITERATIONS : positive := 32; --# Number of iterations
RESET_ACTIVE_LEVEL : std_ulogic := '1' --# Asynch. reset control

);
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port(
--# {{clocks|}}
Clock : in std_ulogic; --# System clock
Reset : in std_ulogic; --# Asynchronous reset

--# {{control|}}
Data_valid : in std_ulogic; --# Load new input data
Busy : out std_ulogic; --# Generating new result
Result_valid : out std_ulogic; --# Flag when result is valid
Mode : in cordic_mode; --# Rotation or vector mode sel.

--# {{data|}}
X : in signed(SIZE - 1 downto 0); --# X coordinate
Y : in signed(SIZE - 1 downto 0); --# Y coordinate
Z : in signed(SIZE - 1 downto 0); --# Z coordinate

--(angle in brads)

X_result : out signed(SIZE - 1 downto 0); --# X result
Y_result : out signed(SIZE - 1 downto 0); --# Y result
Z_result : out signed(SIZE - 1 downto 0) --# Z result

);
end component;

component sincos_sequential is
generic(
SIZE : positive := 32; --# Width of operands
ITERATIONS : positive := 32; --# Number of iterations
FRAC_BITS : positive := 30; --# Total fractional bits
MAGNITUDE : real := 1.0;--# Scale factor
RESET_ACTIVE_LEVEL : std_ulogic := '1' --# Asynch. reset control

);
port(

--# {{clocks|}}
Clock : in std_ulogic; --# System clock
Reset : in std_ulogic; --# Asynchronous reset

--# {{control|}}
Data_valid : in std_ulogic; --# Load new input data
Busy : out std_ulogic; --# Generating new result
Result_valid : out std_ulogic; --# Flag when result is valid

Angle : in signed(SIZE - 1 downto 0); --# Angle in brads
--(2**SIZE brads = 2*pi radians)

--# {{data|}}
Sin : out signed(SIZE - 1 downto 0); --# Sine of Angle
Cos : out signed(SIZE - 1 downto 0) --# Cosine of Angle
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);
end component;

component choose_pq
port(
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
p_out : out natural range 0 to matrix_size - 1;
q_out : out natural range 0 to matrix_size - 1

);
end component;

component eigenanalysis
port(

clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
valid_input : in std_logic;
evalue_p_in : in row_column_array;
evalue_q_in : in row_column_array;
evector_p_in : in row_column_array;
evector_q_in : in row_column_array;
cos : in signed(31 downto 0);
sin : in signed(31 downto 0);
p : in natural range 0 to matrix_size-1;
q : in natural range 0 to matrix_size-1;
evalue_p_out : out row_column_array;
evalue_q_out : out row_column_array;
evector_p_out : out row_column_array;
evector_q_out : out row_column_array;
valid_output : out std_logic
);

end component;

--intermediate signals
signal error : signed(71 downto 0);
signal arctan_valid_in, sincos_valid_in : std_logic;
signal enable_jac, enable_pq, enable_off : std_logic;
signal valid_input_jac, valid_output_jac : std_logic;
signal valid_input_off, valid_output_off : std_logic;
signal evalue_in_p_temp, evalue_in_q_temp : row_column_array;
signal evector_in_p_temp, evector_in_q_temp : row_column_array;
signal evalue_out_p_temp, evalue_out_q_temp : row_column_array;
signal evector_out_p_temp, evector_out_q_temp : row_column_array;
signal arctan_valid_out, sincos_valid_out : std_ulogic;
signal denominator, numerator : signed(31 downto 0);
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signal theta, arctan : signed(31 downto 0);
signal cos_cordic, sin_cordic, cos, sin : signed(31 downto 0);
signal X_result, Y_result : signed(31 downto 0);
signal sincos_busy, arctan_busy : std_ulogic;
signal p, q : natural range 0 to matrix_size-1;

begin

--module instantiations

off_instance : off
port map(

valid_input => valid_input_off,
row_p => evalue_in_p_temp,
row_q => evalue_in_q_temp,
p => p,
q => q,
clock => clock,
reset => reset,
enable => enable_off,
error => error,
valid_output => valid_output_off

);

cordicvector_instance : cordic_sequential
generic map(
SIZE => 32,
ITERATIONS => 32

)
port map(

Clock => clock,
Reset => reset,
Data_valid => arctan_valid_in,
Busy => arctan_busy,
Result_valid => arctan_valid_out,
Mode => cordic_vector,
X => denominator,
Y => numerator,
Z => (others => '0'),
X_result => X_result,
Y_result => Y_result,
Z_result => arctan

);

cordicrotate_instance : sincos_sequential
generic map(

SIZE => 32,
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ITERATIONS => 32,
FRAC_BITS => 30

)
port map(
Clock => clock,
Reset => reset,
Data_valid => sincos_valid_in,
Busy => sincos_busy,
Result_valid => sincos_valid_out,
Angle => theta,
Sin => sin_cordic,
Cos => cos_cordic

);

choose_pq_instance : choose_pq
port map(

clock => clock,
reset => reset,
enable => enable_pq,
p_out => p,
q_out => q

);

eigenanalysis_instance : eigenanalysis
port map(

clock => clock,
reset => reset,
enable => enable_jac,
valid_input => valid_input_jac,
evalue_p_in => evalue_in_p_temp,
evalue_q_in => evalue_in_q_temp,
evector_p_in => evector_in_p_temp,
evector_q_in => evector_in_q_temp,
cos => cos,
sin => sin,
p => p,
q => q,
evalue_p_out => evalue_out_p_temp,
evalue_q_out => evalue_out_q_temp,
evector_p_out => evector_out_p_temp,
evector_q_out => evector_out_q_temp,
valid_output => valid_output_jac

);

--combinational logic

p_new <= p;
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q_new <= q;

enable_pq <= '1' when (state = st_pq) else '0';
enable_jac <= '1'; -- when (state = st_update) else '0';
enable_off <= '1';-- when (state = st_error) else '0';

--the inputs for cordic vectoring:
--the values are the inputs for arctan to calculate the angle
--formula is angle = 1/2 * arctan (2*Apq / (Aqq - App))
denominator <= (evalue_in_q_temp(q)-evalue_in_p_temp(p));
numerator <= (evalue_in_p_temp(q)(30 downto 0) & '0');--2*A(p,q)
theta <= (arctan(31) & arctan(31 downto 1)); -- divide by 2

--sequential logic
process(clock, reset)
begin
if reset = '1' then

state <= st_idle;
arctan_valid_in <= '0';
sincos_valid_in <= '0';
computation_done <= '0';
iteration_done <= '0';
valid_input_off <= '0';
valid_input_jac <= '0';
cos <= "00000000000000000000000000000000";
sin <= "00000000000000000000000000000000";
evalue_p_write <=(others=>"00000000000000000000000000000000");
evalue_q_write <=(others=>"00000000000000000000000000000000");
evector_p_write <=(others=>"00000000000000000000000000000000");
evector_q_write <=(others=>"00000000000000000000000000000000");
evalue_in_p_temp <=(others=>"00000000000000000000000000000000");
evalue_in_q_temp <=(others=>"00000000000000000000000000000000");
evector_in_p_temp<=(others=>"00000000000000000000000000000000");
evector_in_q_temp<=(others=>"00000000000000000000000000000000");

elsif clock'event and clock = '1' then
if enable = '1' then

case state is

when st_arctan => -- calculate cordic arctan
arctan_valid_in <= '0';
if (arctan_valid_out = '1') then

sincos_valid_in <= '1';
if (sincos_valid_out = '0') then
valid_input_off <= '1';
state <= st_error;

end if;
end if;
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when st_error => -- calculate error function
valid_input_off <= '0';
if (valid_output_off = '1') then

state <= st_sincos;
end if;

when st_sincos => -- calculate (sin(theta), cos(theta))
sincos_valid_in <= '0';
if (sincos_valid_out = '1') then

valid_input_jac <= '1';
sin <= sin_cordic;
cos <= cos_cordic;
state <= st_update;

else
state <= st_sincos;

end if;

when st_update => -- calculate jacobi formulas
valid_input_jac <= '0';
if (valid_output_jac = '1') then

state <= st_pq;
end if;

when st_pq => -- choose new p and q and update the input
iteration_done <= '1';
if (error < tolerance) then

computation_done <= '1';
end if;
state <= st_delay;

when st_delay => -- delay
evalue_p_write <= evalue_out_p_temp;
evalue_q_write <= evalue_out_q_temp;
evector_p_write <= evector_out_p_temp;
evector_q_write <= evector_out_q_temp;
iteration_done <= '0';
arctan_valid_in <= '1';
state <= st_idle;

when st_idle =>
if valid_input = '1' then

p_latched <= p;
q_latched <= q;
evalue_in_p_temp <= evalue_p_read;
evalue_in_q_temp <= evalue_q_read;
evector_in_p_temp <= evector_p_read;
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evector_in_q_temp <= evector_q_read;
arctan_valid_in <= '1';
if (arctan_valid_out = '0') then
computation_done <= '0';
iteration_done <= '0';
state <= st_arctan;

end if;
else

state <= st_idle;
end if;

end case;
end if;

end if;
end process;

end Behavioral;

Submodule for eigenvector and eigenvalue matrices calculation. File name: eige-
nanalysis.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Eigenpair decomposition for Jacobi --
------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library work;
use work.array_pkg.all;

entity eigenanalysis is
generic(
constant matrix_size : positive := 100;
constant n : positive := 4

);
port(

clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
valid_input : in std_logic;
evalue_p_in : in row_column_array;
evalue_q_in : in row_column_array;
evector_p_in : in row_column_array;
evector_q_in : in row_column_array;
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cos : in signed(31 downto 0);
sin : in signed(31 downto 0);
p : in natural range 0 to matrix_size-1;
q : in natural range 0 to matrix_size-1;
evalue_p_out : out row_column_array;
evalue_q_out : out row_column_array;
evector_p_out: out row_column_array;
evector_q_out: out row_column_array;
valid_output : out std_logic

);
end eigenanalysis;

architecture Behavioral of eigenanalysis is

type state_type is (st_idle, st_busy);
signal state : state_type;

--intermediate signals for storing the outputs
signal evalue_p_temp : row_column_array;
signal evalue_q_temp : row_column_array;
signal evector_p_temp : row_column_array;
signal evector_q_temp : row_column_array;
signal counter : integer;

begin
--output assignments
evalue_p_out <= evalue_p_temp;
evalue_q_out <= evalue_q_temp;
evector_p_out <= evector_p_temp;
evector_q_out <= evector_q_temp;

jacobi : process(clock, reset)
--variable declarations
variable var1, var2, var3, var4 : signed(47 downto 0);
variable var5, var6 : signed(79 downto 0);
variable var7, var8 : signed(63 downto 0);
variable vara, varb : signed(47 downto 0);

begin

if reset = '1' then
evalue_p_temp <= (others => "00000000000000000000000000000000");
evalue_q_temp <= (others => "00000000000000000000000000000000");
evector_p_temp<= (others => "00000000000000000000000000000000");
evector_q_temp<= (others => "00000000000000000000000000000000");
valid_output <= '0';
state <= st_idle;
counter <= 0;
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elsif(clock'event and clock = '1') then
if enable = '1' then

case state is
when st_busy =>

for i in 0 to n-1 loop
--update formulas for eigenvector matrix
var1 := cos(31 downto 16) * evector_p_in(n*counter+i) -

sin(31 downto 16) * evector_q_in(n*counter+i);
evector_p_temp(n*counter+i) <= var1(45 downto 14);

var2 := sin(31 downto 16) * evector_p_in(n*counter+i) +
cos(31 downto 16) * evector_q_in(n*counter+i);

evector_q_temp(n*counter+i) <= var2(45 downto 14);
--update formulas for eigenvalue matrix
if (n*counter+i /= p) and (n*counter+i /= q) then
vara := cos(31 downto 16) * evalue_p_in(n*counter+i) -

sin(31 downto 16) * evalue_q_in(n*counter+i);
evalue_p_temp(n*counter+i) <= vara(45 downto 14);

varb := sin(31 downto 16) * evalue_p_in(n*counter+i) +
cos(31 downto 16) * evalue_q_in(n*counter+i);

evalue_q_temp(n*counter+i) <= varb(45 downto 14);
end if;

end loop;

if (counter < (matrix_size/n)-1) then
counter <= counter + 1;
state <= st_busy;

else
--eigenvalue formulas for App, Aqq and Apq

var5 :=
cos(31 downto 16)*cos(31 downto 16)*evalue_p_in(p)-
2*cos(31 downto 16)*sin(31 downto 16)*evalue_p_in(q)
+ sin(31 downto 16)*sin(31 downto 16)*evalue_q_in(q);

evalue_p_temp(p) <= var5(59 downto 28);

--out(q,q) = sin*sin*A(p,p)+2*cos*sin*A(p,q)+cos*cos*A(q,q);
var6 :=

sin(31 downto 16)*sin(31 downto 16)*evalue_p_in(p) +
2*cos(31 downto 16)*sin(31 downto 16)*evalue_p_in(q)
+ cos(31 downto 16)*cos(31 downto 16)*evalue_q_in(q);

evalue_q_temp(q) <= var6(59 downto 28);

--out(p,q) = (cos*cos-sin*sin)*A(p,q)+cos*sin*(A(p,p)-A(q,q));
var7 :=

(cos(31 downto 16)*cos(31 downto 16) -
sin(31 downto 16)*sin(31 downto 16))*evalue_p_in(q)+
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cos(31 downto 16)*sin(31 downto 16)*(evalue_p_in(p)-
evalue_q_in(q));

evalue_q_temp(p) <= var7(59 downto 28);

--out(q,p) = (cos*cos-sin*sin)*A(p,q)+cos*sin*(A(p,p)-A(q,q));
var8 :=

(cos(31 downto 16)*cos(31 downto 16) -
sin(31 downto 16)*sin(31 downto 16))*evalue_p_in(q)+
cos(31 downto 16)*sin(31 downto 16)*(evalue_p_in(p)-
evalue_q_in(q));

evalue_p_temp(q) <= var8(59 downto 28);

counter <= 0;
valid_output <= '1';
state <= st_idle;

end if;

when st_idle =>
if valid_input = '1' then

valid_output <= '0';
state <= st_busy;

else
state <= st_idle;

end if;
end case;

end if;
end if;

end process;
end Behavioral;

Calculation of the error function. File name: off.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Error function calculation for Jacobi --
------------------------------------------------------

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
library work;
use work.array_pkg.all;
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entity off is
generic(
constant matrix_size : positive := 100;
--n is the number of computational slices
constant n : positive := 4

);
port(

valid_input : in std_logic;
row_p : in row_column_array;
row_q : in row_column_array;
p : in natural range 0 to matrix_size-1;
q : in natural range 0 to matrix_size-1;
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
error : out signed(71 downto 0);
valid_output: out std_logic

);
end entity;

architecture rtl_err of off is

type state_type is (st_idle, st_busy);
signal state : state_type;

signal counter : integer;
signal error_signal : signed(71 downto 0);

begin
--output assignment

error <= error_signal;

accum: process(clock, reset)
variable error_variable : signed(71 downto 0);
begin

if reset = '1' then
error_signal <= (others => '0');
valid_output <= '0';
state <= st_idle;
counter <= 0;

else
if clock'event and clock = '1' then
if enable = '1' then

case state is
--pipelined calculation

when st_busy =>
error_variable := error_signal;
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for i in 0 to n-1 loop
if (n*counter+i /= p) then
--multiply accumulate in Frobenius formula

error_variable := error_variable +
row_p(n*counter + i) * row_p(n*counter + i);

end if;
if (n*counter+i /= q) then

error_variable := error_variable +
row_q(n*counter + i) * row_q(n*counter + i);

end if;
end loop;
error_signal <= error_variable;
if (counter < (matrix_size/n)-1) then

counter <= counter + 1;
state <= st_busy;

else
counter <= 0;
valid_output <= '1';
state <= st_idle;

end if;

when st_idle =>
if valid_input = '1' then

valid_output <= '0';
error_signal <= (others => '0');
state <= st_busy;

else
state <= st_idle;

end if;

end case;

end if;
end if;

end if;
end process;

end architecture rtl_err;

Choosing the following indices for the Jacobi module. File name: choose_pq.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS 2018 --
-- Choosing (p,q) for cyclic Jacobi --
------------------------------------------------------
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library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity choose_pq is

generic (
constant matrix_size : positive := 100

);
port (

clock : in std_logic;
reset : in std_logic;
enable: in std_logic;
p_out : out natural range 0 to matrix_size-1;
q_out : out natural range 0 to matrix_size-1

);
end choose_pq;

architecture rtl_pq of choose_pq is

signal p_temp : natural range 0 to matrix_size-1;
signal q_temp : natural range 0 to matrix_size-1;

begin

p_out <= p_temp;
q_out <= q_temp;

path: process(reset, clock)
begin

if reset = '1' then
p_temp <= 0;
q_temp <= 1;

else
if clock'event and clock = '1' then

if enable = '1' then
if((p_temp = matrix_size-2)and(q_temp = matrix_size-1))then

p_temp <= 0;
q_temp <= 1;

elsif(q_temp < matrix_size-1) then
q_temp <= q_temp + 1;

elsif(q_temp = matrix_size-1) then
p_temp <= p_temp + 1;
q_temp <= p_temp + 2;

end if;
end if;

end if;
end if;
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end process path;
end rtl_pq;

Inferred Block RAM. File name: Block_RAM.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- Block RAM inference for Jacobi --
------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.std_logic_unsigned.all;

entity Block_RAM is
generic(
BRAM_size : integer := 10000;
BRAM_width : integer := 32;
ADDR_width : integer := 14

);
port(

clock : in std_logic;
din : in std_logic_vector(BRAM_width-1 downto 0);
we : in std_logic; -- write enable
address : in std_logic_vector(ADDR_width-1 downto 0);
dout : out std_logic_vector(BRAM_width-1 downto 0)

);
end Block_RAM;

architecture behav of Block_RAM is
--RAM declaration
type ram_type is array (0 to BRAM_size-1) of

std_logic_vector(BRAM_width-1 downto 0);
signal RAM : ram_type;

--Block RAM attribute
attribute ram_style : string;
attribute ram_style of RAM : signal is "block";

begin
process(clock)
begin
if rising_edge(clock) then

if we = '1' then

87



--write operation
RAM(conv_integer(address)) <= din;

else
--read operation otherwise
dout <= RAM(conv_integer(address));

end if;
end if;

end process;
end behav;

Package for the input-output array declaration for the Jacobi. File name: array_-
pkg.vhd
------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT master thesis-PCA Jacobi --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS-2018 --
-- package for IO matrices for Jacobi --
------------------------------------------------------

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

package array_pkg is

type row_column_array is array(99 downto 0) of signed(31 downto 0);

end package;

Covariance modules. Implemented in the specialization Project, mod-
ified for the thesis project.

Datapath for the covariance calculation. File name: cov_datapath.vhd
------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT specialisation project-PCA covariance --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS Dec, 2017 --
-- Updated for the master thesis, 2018 --
-- Covariance calculation - the datapath --
------------------------------------------------------

library ieee;
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use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cov_datapath is
generic(
constant width_array : positive := 16;
constant depth_array : positive := 2500; --components, pixels
constant planes : positive := 100; --equals to matrix size
constant buffers : positive := 4 --number of buffers

);
port(

x : in std_logic_vector(width_array-1 downto 0);
clock, reset : in std_logic;
retention : in std_logic;
ctrl, enable : in std_logic;
y : out signed(31 downto 0));

end cov_datapath;

architecture behav of cov_datapath is
type buffer_array is array (depth_array - 1 downto 0) of

std_logic_vector(width_array-1 downto 0);
signal buffers_m : buffer_array;

signal y_driver : signed(31 downto 0);
signal mac_in : signed(width_array-1 downto 0);

begin
--continuous assignment
mac_in <= signed(x) when ctrl = '1' else

signed(buffers_m(depth_array - 1));
y <= y_driver;
-- Clocked
data_path : process(reset, clock)
begin

if reset = '1' then
y_driver <= (others => '0');
buffers_m <= (others => (others => '0'));

else
if clock'event and clock = '1' then

if enable = '1' then
buffers_m <=
buffers_m(depth_array-2 downto 0) & std_logic_vector(mac_in);
if (retention = '1') then
y_driver <= y_driver + signed(x)*mac_in;

else
y_driver <= signed(x)*mac_in;

end if;
end if;
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end if;
end if;

end process data_path;
end behav;

Covariance top level-control path. File name: covariance_optimized.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT specialisation project-PCA covariance --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS Dec, 2017 --
-- Updated for the master thesis, 2018 --
-- Covariance module calculation - top level --
------------------------------------------------------

--Control path with the instantiation of data path
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
use work.covariance_pkg.all;

entity covariance_optimised is
generic(
constant data_width : positive := 16; --size of 1 input component
constant depth_array : positive := 2500;--# of components 1 plane
constant planes : positive := 100; --# of planes, e.g.100
constant buffers : positive := 4 --# of buffers

);
port(

x : in std_logic_vector(data_width - 1 downto 0);
clock, reset : in std_logic;
enable : in std_logic;
valid_input : in std_logic;
done : out std_logic;
valid : out std_logic_vector(buffers - 1 downto 0);
column, row : out output_row_column(buffers - 1 downto 0);
y : out output_t(buffers - 1 downto 0));

end covariance_optimised;

architecture behav of covariance_optimised is

type state_type is (st_busy, st_idle);
signal state : state_type;

--intermediate signal declarations
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--components on each plane
signal count_values : natural range 0 to depth_array;
--# of input planes; each = one row in the cov matrix
signal count_rows : natural range 0 to planes-1;
signal valid_driver : std_logic_vector(buffers - 1 downto 0);
signal count_columns : natural range 0 to planes-1;

signal column_temp : output_row_column(buffers - 1 downto 0);
signal row_temp : output_row_column(buffers - 1 downto 0);
signal enable_driver : std_logic_vector(buffers - 1 downto 0);
signal ctrl_driver : std_logic_vector(buffers - 1 downto 0);
signal retention_driver: std_logic;

component cov_datapath
port(

x : in std_logic_vector(15 downto 0);
clock, reset : in std_logic;
retention : in std_logic;
ctrl, enable : in std_logic;
y : out signed(31 downto 0));

end component;

begin

Datapath_generator : for i in 0 to buffers - 1 generate
begin

datapath_inst : cov_datapath
port map(

x => x,
clock => clock,
ctrl => ctrl_driver(i),
enable => enable_driver(i),
retention => retention_driver,
reset => reset,
y => y(i));

end generate Datapath_generator;

retention_driver <= '1' when (count_values /= 0) else '0';
valid <= valid_driver;

column <= column_temp;
row <= row_temp;

--sequential logic

control_path : process(reset, clock)
begin
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if reset = '1' then
state <= st_idle;
count_values <= 0;
count_rows <= 0;
count_columns <= 0;
done <= '0';
column_temp <= (others => 0);
row_temp <= (others => 0);
valid_driver <= (others => '0');
enable_driver <= (others => '0');
ctrl_driver <= (others => '0');

elsif clock'event and clock = '1' then
if enable = '1' then

case state is
when st_busy =>

count_values <= count_values + 1;
valid_driver <= (others => '0');
if (count_values = depth_array - 1) then

--shift ctrl one left
ctrl_driver <=

(ctrl_driver(buffers - 2 downto 0) & '0');
--shift enable one left
enable_driver <=

(enable_driver(buffers - 2 downto 0) & '1');
-- All enabled data paths in previous plane
--have now finished computation
valid_driver <= enable_driver;
count_values <= 0;
-- to output rows and columns to use in bram
for i in 0 to buffers - 1 loop

if (enable_driver(i) = '1') then
column_temp(i) <= count_columns;
row_temp(i) <= count_rows + i;

else
column_temp(i) <= 0;
row_temp(i) <= 0;

end if;
end loop;
if (count_rows < planes-buffers and

count_columns=(planes-1)) then
ctrl_driver <=

std_logic_vector(to_unsigned(1, buffers));
enable_driver <=

std_logic_vector(to_unsigned(1, buffers));
count_columns <= count_rows + buffers;
count_rows <= count_rows + buffers;

elsif (count_rows = planes-buffers and
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count_columns=(planes-1)) then
done <= '1';
state <= st_idle;

else
count_columns <= count_columns + 1;

end if;
end if;

when st_idle =>
--finished! Get ready for next computation

count_values <= 0;
count_rows <= 0;
count_columns <= 0;
enable_driver <= (others => '0');
ctrl_driver <= (others => '0');
valid_driver <= (others => '0');
if valid_input = '1' then

done <= '0';
enable_driver<= std_logic_vector(to_unsigned(1,buffers));
ctrl_driver <= std_logic_vector(to_unsigned(1,buffers));
state <= st_busy;

else
state <= st_idle;

end if;

end case;
end if;

end if;
end process control_path;

end behav;

Package for the covariance module. File name: covariance_pkg.vhd

------------------------------------------------------
-- Aysel Karimova --
-- SMALLSAT specialisation project-PCA covariance --
-- Supervisors: Kjetil Svarstad, Milica Orlandic --
-- NTNU-EMECS Dec, 2017 --
-- Updated for the master thesis, 2018 --
-- covariance module - package --
------------------------------------------------------

library ieee;
use ieee.numeric_std.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

package covariance_pkg is
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type output_t is array (natural range <>) of signed(31 downto 0);
type output_row_column is array (natural range <>) of integer;

end package;
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