
Message Service

Authors
Manuel Jesús Bravo García
Tom Roar Furunes
Tomasz Rudowski

Bachelor in Software Engineering
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

16.05.2018

Supervisor Frode Haug

Message Service

Sammendrag av Bacheloroppgaven

Tittel: Meldingstjeneste

Dato: 16.05.2018

Deltakere: Manuel Jesús Bravo García
Tom Roar Furunes
Tomasz Rudowski

Veiledere: Frode Haug

Oppdragsgiver: Headit AS

Kontaktperson: Rune Kollstrøm, rune.kollstrom@headit.no, 62510052

Nøkkelord: Bachelor, Message, API, Java, Spring, Angular
Antall sider: 146
Antall vedlegg: 11
Tilgjengelighet: Åpen

Sammendrag: Siden menneskets opprinnelse har utveksling av infor-
masjon vært tilgjengelig. Nye kommunikasjonsmetoder
oppsto samtidig med teknologisk fremgang, for å svare på
den stadig økende etterspørselen. Selv om mange forskjel-
lige kommunikasjonskanaler er tilgjengelige, er lever-
ingstid fortsatt en bekymring. Hvordan øke effektiviteten
for levering av meldinger mellom en sender og mottaker?
Dette prosjektet er dedikert til å løse problemet med å
sende meldinger ved å tilby en Internett-tjeneste for reg-
istrerte applikasjoner. Tjenesten kan integreres med alle
applikasjoner som er koblet til Internett; den tilbyr konfig-
urasjon av både sender og mottaker, og inkluderer støtte
for programmerbar automatisk sending uten interaksjon
fra brukeren av applikasjonen, dette kan føre til at di-
rektemeldinger sendes uten forsinkelse når en bestemt
betingelse blir oppfylt i mottaker-applikasjonen.

i

Message Service

Summary of Graduate Project

Title: Message Service

Date: 16.05.2018

Authors: Manuel Jesús Bravo García
Tom Roar Furunes
Tomasz Rudowski

Supervisor: Frode Haug

Employer: Headit AS

Contact Person: Rune Kollstrøm, rune.kollstrom@headit.no, 62510052

Keywords: Thesis, Bachelor, Message, API, Java, Spring, Angular
Pages: 146
Attachments: 11
Availability: Open

Abstract: Exchanging of information has been present in human
history since the very beginning. New communication
methods emerged along the technology progress to re-
spond the growing demands. Although many different
communication channels are available, there is still a con-
cern of the delivery time. How to increase efficiency in
delivering of a message from a sender to a recipient? This
project is dedicated to solving a problem of automatic
sending of a message by providing an Internet service for
registered applications. The service could be integrated
into all applications connected to Internet; it provides the
configuration of both sender and receiver and includes a
support for programmable automatic sending without an
interaction from the user of the application, which could
allow an instant message sending without delay when cer-
tain conditions occur in the sender application.

ii

Message Service

Preface

This project has been developed for the IT-consulting company Headit AS (Hamar, Nor-
way). We would like to thank the entire company for the resources they provided us.

We would like to thank Bjørn Tore Wiken and Ronny Kristiansen (Headit representa-
tives) for their support, inspiring ideas and the feedback they gave us. They have guided
us along the project kindly and with patience.

Finally, a big thanks to our project supervisor Frode Haug for the help, orientation
and good feedback we got from him to develop this project.

iii

Message Service

Contents

Preface . iii

Contents . iv

List of Figures . x

Listings . xi

1 Introduction . 1

1.1 Scope . 1

1.1.1 Field of Study . 1

1.1.2 Delimitation . 1

1.1.3 Project Description . 1

1.2 Project choice . 2

1.3 Audience Target . 2

1.3.1 Application Target . 2

1.3.2 Report Target . 3

1.4 Background and Experience . 3

1.5 Methodology and Project Organisation . 3

1.6 Report Organisation . 3

2 Requirements . 5

2.1 Requirements Elicitation Process . 5

2.2 Actors . 5

2.3 System Functional Requirements . 6

2.4 System Non-functional Requirements . 6

2.4.1 Non-functional Product Requirements 6

2.4.2 Organisational Requirements . 6

2.5 Stories and Scenarios . 7

2.6 Detailed Requirements Specification . 7

2.6.1 User and System Requirements . 7

2.6.2 Use case . 8

2.6.3 Software Requirements Document 10

2.7 Requirements Validation . 10

2.8 Requirements Change . 10

2.8.1 Requirements Management Planning 11

2.8.2 Requirements Change Management 11

2.9 Product Backlog . 11

3 Technical Design . 12

3.1 Modelling of System Components . 12

iv

Message Service

3.2 Database Modelling . 13

3.2.1 Conceptual Database Design . 13

3.2.2 Logical Database Design . 14

3.2.3 Physical Database Design . 14

3.3 Architecture and Design Patterns . 15

3.3.1 Client-Server . 15

3.3.2 Backend . 15

3.4 Details of Backend Layers . 17

3.4.1 Controllers Layer . 17

3.4.2 Services Layer . 17

3.4.3 Database Management Layer . 18

3.4.4 Database Layer . 19

3.5 Frontend . 19

3.5.1 TypeScript . 20

3.5.2 Components . 20

3.5.3 Services . 20

4 Development Process . 21

4.1 Methodology . 21

4.1.1 Roles and Responsibilities . 21

4.1.2 Methodology in Practice . 21

4.2 Work Progress . 22

4.2.1 Sprint 1, 10.01.2018 - 23.01.2018 22

4.2.2 Sprint 2, 24.01.2018 - 06.02.2018 22

4.2.3 Sprint 3, 07.02.2018 - 20.02.2018 22

4.2.4 Sprint 4, 21.02.2018 - 06.03.2018 22

4.2.5 Sprint 5, 07.03.2018 - 20.03.2018 22

4.2.6 Sprint 6, 21.03.2018 - 10.04.2018 23

4.2.7 Sprint 7, 11.04.2018 - 22.04.2018 23

4.2.8 Sprint 8, 25.04.2018 - 08.05.2018 23

4.2.9 Sprint 9, 09.05.2018 - 22.05.2018 23

4.3 Tools . 23

4.3.1 Project Management . 23

4.3.2 Version Control . 24

4.3.3 Communication . 24

4.3.4 Development Environment . 24

4.3.5 Resource Storage . 24

4.3.6 Report and Documentation . 25

5 Implementation . 26

5.1 Integrated Services . 26

5.1.1 Keycloak . 26

v

Message Service

5.2 Files and Package Structure . 27

5.2.1 Backend . 27

5.2.2 Frontend . 28

5.3 Application Management - Admin Panel 29

5.3.1 Login . 33

5.3.2 Add Application . 33

5.3.3 Add Configuration . 34

5.3.4 Error Handling . 34

5.4 Backend API for Application Management 35

5.4.1 Admin Controller . 36

5.4.2 Actor Service . 37

5.4.3 Actor Entity . 38

5.4.4 Actor Repository . 39

5.4.5 Database Representation . 40

5.4.6 Error handling . 40

5.4.7 Documentation . 41

5.5 Message Flow for Internal Messages . 41

5.5.1 Application . 41

5.5.2 Request Handling . 42

5.5.3 Application Verification . 43

5.5.4 Message Handling . 44

5.5.5 Response to Application . 48

5.6 Additional Steps for External Messages . 49

5.6.1 External Message Handling . 49

5.6.2 Message Converting . 49

5.6.3 Response to Application . 51

6 Deployment . 52

6.1 Docker . 52

6.1.1 Docker Toolbox . 52

6.1.2 Docker Compose . 52

6.1.3 Dockerfile . 53

6.2 Reused Docker Images . 53

6.3 New Docker Images . 54

6.3.1 Keycloak Dockerfile . 54

6.3.2 Backend . 55

6.3.3 Frontend . 55

7 Testing . 57

7.1 Static Testing . 57

7.2 Unit Testing . 57

7.3 Integration Testing . 59

vi

Message Service

7.3.1 White Box Testing . 59

7.3.2 Black Box Testing . 60

7.4 System Testing . 60

7.5 Validation and Verification . 60

7.6 User Testing . 61

8 Discussions and Conclusions . 63

8.1 Choices . 63

8.1.1 HTPP vs HTTPS . 63

8.1.2 Securing API with Keycloak . 63

8.1.3 Development Methodology . 64

8.1.4 Backend Framework . 64

8.1.5 Database . 65

8.1.6 Frontend Framework . 65

8.1.7 Channels . 65

8.2 Work Evaluation . 66

8.2.1 Scrum . 66

8.2.2 New Technologies . 66

8.2.3 Risk Management . 66

8.2.4 Comparison of Plan and Realisation 66

8.3 Critique of Bachelor Thesis . 67

8.3.1 Database Technology . 67

8.3.2 Test on Frontend . 67

8.3.3 Time Estimation . 68

8.3.4 Tasks Order . 68

8.4 Future Work . 68

8.5 Results . 69

8.5.1 Message Service . 69

8.5.2 Efficiency and Performance Targets 69

8.5.3 Learning Goals . 69

Bibliography . 70

A Definitions . 72

B Gantt Diagram . 73

B.1 Milestones and Deadlines . 73

C User Stories and Scenarios . 74

C.1 Business case - My Custom Suit . 74

C.1.1 Actors involved . 74

C.1.2 Goals . 74

D Code Examples . 76

E REST API Documentation . 81

F Project Plan . 115

vii

Message Service

F.1 Goals and boundaries . 115

F.1.1 Background . 115

F.1.2 Goals . 115

F.1.3 Boundaries . 116

F.2 Scope . 116

F.2.1 Field of study . 116

F.2.2 Delimitation . 116

F.2.3 Project Description . 117

F.3 Project Organisation . 117

F.3.1 Responsibility and Roles . 117

F.3.2 Routines and Rules . 118

F.3.3 Tools . 118

F.4 Planning, Follow-up, Documentation . 119

F.4.1 Division of the project . 119

F.4.2 Plan for status meetings and decision points 119

F.5 Organising and quality assurance . 120

F.5.1 Documentation, standards and source code 120

F.5.2 Configuration . 120

F.5.3 Risk assessment . 120

F.6 Plan for Implementation . 121

F.6.1 Gantt-diagram . 121

F.6.2 Milestones and Deadlines . 121

F.6.3 Activity List . 122

F.6.4 Time and Resource Plan . 123

G Contract . 125

H Status Report 1 . 129

H.1 Status for: . 129

H.2 Totalstatus for punktene over . 129

H.3 Muligheter Trusler/Problemer . 129

H.4 Hva er avsluttet . 129

H.5 Hva er under arbeid . 129

H.6 Tidsfristene . 130

H.7 Hva med motivasjon . 130

H.8 Hvordan oppleves veilederkontakt . 130

I Status Report 2 . 131

I.1 Status for: . 131

I.2 Totalstatus for punktene over . 131

I.3 Muligheter Trusler/Problemer . 131

I.4 Hva er avsluttet . 131

I.5 Hva er under arbeid . 131

viii

Message Service

I.6 Tidsfristene . 132

I.7 Hva med motivasjon . 132

I.8 Hvordan oppleves veilederkontakt . 132

J Meeting Logs . 133

J.1 12.01.2018 (11:00-11.30) Supervisor, Sprint 1 133

J.2 19.01.2018 (09:00-11.00). Headit, Sprint 1 133

J.3 19.01.2018 (14:00-14.30). Supervisor, Sprint 1 134

J.4 24.01.2018 Headit, Sprint 2 . 135

J.4.1 Sprint Review of Sprint 1 . 135

J.4.2 Sprint Planning of Sprint 2 . 135

J.5 26.01.2018 (14.15-14.30) Supervisor, Sprint 2 136

J.6 31.01.2018 (12-14) Headit, Sprint 2 . 136

J.7 07.02.2018 (12-14) Headit, Sprint 3 . 137

J.8 21.02.2018 (9-11.15) Headit, Sprint 4 . 138

J.9 07.03.2018 (09-11) Headit, Sprint 5 . 139

J.9.1 Sprint Review of Sprint 4 . 139

J.9.2 Sprint Planning of Sprint 5 . 139

J.10 21.03.2018 (09-11) Headit, Sprint 6 . 140

J.10.1 Sprint Review of Sprint 5 . 140

J.10.2 Sprint Planning of Sprint 6 . 140

J.11 05.04.2018, Supervisor, Sprint 6 . 141

J.12 11.04.2018 (09-11) Headit, Sprint 7 . 141

J.12.1 Sprint Review of Sprint 6 . 141

J.12.2 Sprint Planning of Sprint 7 . 141

J.13 13.04.2018, Supervisor, Sprint 7 . 142

J.14 20.04.2018, Supervisor, Sprint 7 . 142

J.15 25.04.2018 (09-11) Headit, Sprint 8 . 142

J.15.1 Sprint Review of Sprint 7 . 142

J.15.2 Sprint Planning of Sprint 8 . 142

J.16 03.05.2018, Supervisor, Sprint 8 . 143

J.17 09.05.2018 (09-11) Headit, Sprint 9 . 143

K Worklog . 144

ix

Message Service

List of Figures

1 MaaS service overview . 2

2 System functionality . 6

3 Use case from the perspective of different user types 9

4 Sequence diagram for registration of App 10

5 Sequence diagram for sending a message from App User to Recipient . . . 10

6 System model (step 1) . 12

7 System model (step 2) . 12

8 System model (step 3) . 13

9 Entity-Relationship model for message sending 14

10 Client-server architecture . 15

11 Layered architecture model for backend 16

12 Message processing model for outgoing channels 16

13 Example of class diagram for one controller and services related to it, IntelliJ 18

14 Data Access Object pattern . 19

15 Relations between components and services in frontend model 20

16 Packages and classes organisation on backend 28

17 Files and components organisation on frontend 29

18 Screenshot from Admin Panel . 29

19 Toast on error in Admin Panel . 35

20 Sequence diagram for adding an Actor . 35

21 Database structure, phpMyAdmin . 40

22 Sequence diagram for message sending, first steps 42

23 Sequence diagram for message sending, final steps 45

24 Incoming messages from MaaS, screenshot from a Slack desktop application 51

25 Test coverage, IntelliJ . 59

26 API changes after Alpha Testing . 61

27 Gannt diagram for project progress, MS Project 73

28 The MaaS (Message as a Service), receives messages from the applications
and it forwards them to the final recipient. At the same time a copy fo the
messages is kept. The service will have a web application where it will be
possible to configure which applications will have permission to use the
system . 117

29 Gantt-diagram with basic activities, MS Project 121

30 Schedule for a sprint, time dedicated to the project in grey 124

x

Message Service

Listings

5.1 Extract of the KeyCloakUser Service . 27

5.2 Extract of Actor class . 30

5.3 Extract of the Routing Module . 30

5.4 Extract of the .ts file of the Actor component. 31

5.5 Extract of the Message Box html file . 32

5.6 Extract of Maas Service . 32

5.7 Extract of App-init.ts. Integration of Keycloak and Angular. 33

5.8 Extract of the actor-create-edit-modal.component.html file used to create
and edit actors. 33

5.9 Extract of the actor-create-edit-modal.component.ts file used to create and
edit actors. 34

5.10 Extract from alert.component.ts for displaying toasts. 34

5.11 A constructor from AdminController class 36

5.12 Adding Actor from Admin Controller . 36

5.13 Add new Actor function . 37

5.14 Actor Entity “id” definition . 38

5.15 Actor Entity “admins” definition . 38

5.16 Admin Entity relation with Actor Entity . 38

5.17 Actor get domain with ignore . 39

5.18 ActorRepository interface and an example of query method definitions . . 39

5.19 ConfigSetRepository ConfigSet by id and Actor 39

5.20 Handler for wrong payload exceptions . 40

5.21 Sending a message from MessageController 42

5.22 MessagePayload class, header and fields 43

5.23 OutboxMessagePayload, header and fields 43

5.24 Get validated Actor functions from PermissionService class 43

5.25 Get an active Actor (using custom defined query) from ActorRepository . . 44

5.26 Extract from “send” function from MessageService class 44

5.27 Extract from “send” function from MessageService class 46

5.28 Extract from MessageWithMetadata class, consrtuctor, getters and setters
omitted . 46

5.29 Extract from “send” function from MessageService class 46

5.30 Extract from Log class, constructors, getters and setters omitted 47

5.31 Function “sendMessageToProcessing” from MessageService class 47

5.32 ChannelFactory class . 47

5.33 Channel interface . 48

xi

Message Service

5.34 InternalChannel class . 48

5.35 SendMessageResponsePayload and inner class ReceiverDetails, headers
and fields . 48

5.36 Extract from SlackChannel class . 49

5.37 Function “getUrls” from SlackChannel class 49

5.38 Function “sendToSlack” from SlackChannel class 50

5.39 SlackRequestPayload class . 51

6.1 Extract from Docker Compose file . 53

6.2 Extract from a file used to import SQL data 54

6.3 Dockerfile.keycloak . 54

6.4 docker-compose.yml Keycloak . 54

6.5 Dockerfile for backend . 55

7.1 Extract of Utils PostConstruct . 58

7.2 Extract of ActorServiceTest . 58

7.3 Testing send message API . 59

D.1 Send message function from MessageService class 76

D.2 Function “getReceivers” from MessageService class 77

D.3 Function “getMetadata” from MessageService class 77

D.4 Function “setDefaultDataFromMetadata” from MessageService class 78

D.5 ActorRepository interface . 79

xii

Message Service

1 Introduction

The scope, boundaries and target audience of the Message Service project are introduced
first. The second part of this chapter briefly describes the realisation of the project and
the structure of this report.

1.1 Scope

1.1.1 Field of Study

Along history, humans have had the need for sharing with others thoughts, feelings or
what have happened around us. The way this need of communication is fulfilled varies
depending on the kind of information, whom this information is transmitted to, where is
the receiver and the technology that is available at the moment; sometimes we can just
speak directly with another person to transmit the information. In some cases, we need
that the information is received by people that are far away from us physically and/or in
time; then it is important that the message remains unchanged regardless of time. Time
itself might also be a concern; some messages may need immediate, or at least quick,
delivery.

Over time we have developed many different communication systems: cave paint-
ings, hieroglyphs, smoke signals, messenger pigeons... And more recently we use phones,
emails, SMS or social networks to exchange information with others.

1.1.2 Delimitation

The exchange of information is not exclusive to human beings; machines can also ex-
change information between themselves or with humans.

The information is very valuable for companies in order to know and serve the needs
of theirs customers in an efficient way. If a company has access to the right information
at the right time and is able to understand it, then the company will be able to use its
resources effectively and this can constitute a competitive advantage.

In this project, we will develop a system that makes possible to exchange informa-
tion between different applications, systems and users that are part of a company. This
information will be sent using different channels e.g. SMS or email and a copy of this
communication must be kept. The system must be able to add new communication chan-
nels in the future and in addition it must offer a communication interface so it can be
used by many different systems/applications.

1.1.3 Project Description

Headit AS is an IT-consulting company located in Hamar. They want to develop a mes-
saging hub (MaaS, Message as a Service) that collects, interprets and reacts to the in-
formation that is generated within a company. The service will work as a stand-alone
application and it must be possible to adapt the service to the concrete needs of each of
their customers. It should be possible to install it on customers infrastructure or using
Cloud technology (SaaS).

1

Message Service

The system will:

• Receive and interpret the messages and route them via different channels,
• Save all the messages in such a way that every message is linked with the applica-

tion and person (role or username) that sent it.
• Offer a dashboard where the users have the messages (they have sent before)

overview, and where they can define: which applications can use the messaging
service and which channels will be available for them. It will be possible to send
messages to other users using this dashboard.

• Be possible to configure against external services.

Figure 1 presents an overview of the requested functionality. MaaS receives messages
from the applications and it forwards them to the final recipient; a web application will
be used to configure which applications will have permission to use the system.

Figure 1: MaaS service overview

1.2 Project choice

When we discussed the choice of the subject for our bachelor thesis we noticed how
MaaS could be useful as an integrated component of many service systems; regardless of
actors involved a messaging hub could be opened for communication between applica-
tion, services, system components or in a wider perspective IoT (Internet of Things). The
expanding potential of the system convinced us that it would be valuable experience for
us to work on it; although complexity and dependency on external service indicated that
significant amount of time would be consumed by research, learning new technology and
integration issues.

1.3 Audience Target

The MaaS is an application which aims to collect, interpret and react to the events that
may occur in the different business processes of a company.

1.3.1 Application Target

The main target of this application are organisations that want to make their processes
more effective. The MaaS will allow these companies to manage the information that is
generated in their business processes in an efficient way. At the same time these organi-

2

Message Service

sations will be able to react faster to certain events; as a result, they could save time,
money and improve the customer experience.

1.3.2 Report Target

The person who reads this document should have a certain background and knowledge
in software development e.g. any person that studies or teaches software engineering.
That is why some terms and definitions will be omitted.

1.4 Background and Experience

We are software engineering students with experience in development of components
that could become parts of the system, but this has been the first time we have been
supposed to put all of them together; from planning and design to implementation and
production. Additionally to working with creating of a complete system we would get
experience with new technologies and integration of the components of the system, both
between each other and with external services we would use.

1.5 Methodology and Project Organisation

Manuel Bravo, Tom Roar Furunes and Tomasz Rudowski have been working on the ba-
chelor thesis during a spring semester 2018. Supervisor of the project is Frode Haug.

Already during the first meeting with Headit we agreed to use an agile Scrum metho-
dology (details in section 8.1.3). Stakeholders representatives are Ronny Kristiansen
(Product Owner) and Bjørn Tore Wiken.

We took into account that disagreements could occur during the project. We made
and signed a document with group rules we could use in case that any disagreement or
dissatisfaction occurred.

Realisation of the project includes following activities:

• Planning. Dedicated to create a Project Plan (appendix F), define and confirm sys-
tem context, boundaries, interaction and behavioral models.

• Research. Focused on new technologies and integration possibilities between inter-
nal and external systems, noticed both while planning and during development.

• Architecture and Design. Creation of a model of the system (including noticed pat-
terns) as a base for implementation and adjusting it when necessary for new tech-
nologies/solutions implemented later.

• Programming. Implementation and testing of planned system architecture.

1.6 Report Organisation

The report is divided into eight chapters (chapters following this one are listed below)
that describe work progress on the project and explain choices made. In appendix to the
report it is possible to find additional data concerning work progress; those documents
are project plan, meeting logs, API specification, user stories and scenarios. Report has
been written using LATEX in ShareLaTeX 1. Diagrams were created using an online appli-
cation draw.io 2

1https://www.sharelatex.com/
2https://www.draw.io/

3

Message Service

• The second chapter of this report presents requirements of the system and the
elicitation process.

• The third chapter presents the model of the system along with the presentation of
the process towards establishing it.

• The fourth chapter describes the development process from the chosen methodo-
logy perspective; it includes work overview and tools used for development.

• The fifth chapter is focused on programming tasks and challenges during imple-
mentation.

• The sixth chapter is dedicated to preparations made for the deployment of the
system.

• The seventh chapter presents how the system has been tested.
• In last chapter choices made during development process are discussed with fo-

cus on what have been developed. It contains also the evaluation of the project
and the proposal for the potential expanding of system functionality. The report is
concluded with the summary of the results of the project.

There are two types of references in this report:

• Footnotes - those are used when a technology or a concept is named, usually refer to
online resources, that might contain additional information (for the report reader)
about the concept (URLs have been validated by the submission date - 16.05.2018)

• Bibliography - resources that have been used during the development of the project.

4

Message Service

2 Requirements

In this chapter we present the requirements elicitation process, which has been carried
out in order to discover the requisites that our application must fulfil. The last part of the
chapter is dedicated to the initial product backlog that was created according to Scrum
methodology.

2.1 Requirements Elicitation Process

To elicit the different requirements, we used an iterative process described by Som-
merville [1]. Initially we started extracting requisites from an introductory project de-
scription we got from Headit. Then we continued discovering more requirements through
the questions to the stakeholders representatives and the discussions we had with them.
We used stories and scenarios to get a better understanding about the application we
were going to develop. Finally all the requirements, gathered during a planning phase,
were formally written down and validated. Since we decided to use Scrum methodology,
we created an initial Product Backlog based on those requirements; additional requisites,
that appeared later as we developed the system were discussed and included in it.

Here we will further discuss the outcomes of the elicitation process as it follows:

• Actors that have interaction with MaaS.
• General system functional requirements. They describe what is expected that the

system should do.
• Non-functional requirements that further define system constraints and stakehol-

ders expectations that don’t affect functionality directly.
• Stories and scenarios overview, based on created business case.
• Detailed requirements specification that includes both user requirements and sys-

tem requirements.
• Use case diagram from a perspective of different actors.
• Sequence diagrams that show process flow in two cases: registering an application

and sending a message.

2.2 Actors

We identified following actors that could interact with the system:

• MaaS Admin - a superuser that administrates MaaS.
• App Admin - an administrator for a group of applications using MaaS.
• App - an application registered at MaaS, eligible to use the service.
• App User - an user of an application connected to MaaS.
• Receiver - an application, hardware (e.g. mobile phone) or other interface the out-

going message is send to, from the MaaS server.
• Recipient - an user of a Receiver.

5

Message Service

Those names will be referred to in this report; in this chapter for presenting require-
ments, use cases and system sequence diagrams.

Figure 2: System functionality

2.3 System Functional Requirements

MaaS will work as a message hub; its primary functionality is to receive and forward
messages from authorised sources. It is expected that those authorised sources could
be added, removed and configured by an user, who has an admin role in this context.
Additional control should be given through message log.

2.4 System Non-functional Requirements

2.4.1 Non-functional Product Requirements

Although it has been decided, that changes that need to be done to an App registered at
MaaS are out of scope for the project (appendix J.2) and will be fulfilled by a third part
we should address some of them; concerning automatic sending of message to Recipients
integrated in the registered application, support should be considered and realised in
form of API specification to help integration with MaaS. API specification can be found
in appendix E.

2.4.2 Organisational Requirements

Development requirements

Since the source code is expected to be maintained, integrated and enhanced by stake-
holders there have been named development requirements to ensure fluent transition.

• Make system easy to maintain and expand to potentially new receiver channels.
• Use of well known frameworks currently used by stakeholders. As examples: Spring1

for backend, and Angular2 for frontend.
• Chosen database technology should be wide used and well supported.
• Design system as a stand-alone application concerning cloud deployment using

1https://spring.io
2https://angular.io

6

Message Service

Docker3 technology.
• Integrate system with existing OAuth4 service, like e.g. Keycloak5.

2.5 Stories and Scenarios

A My Custom Suit business case (appendix C.1) has been created in cooperation with
stakeholders to present a possible usage of the MaaS system in practice. My Custom Suit
is a hypothetical company, that owns a chain of shops and cooperate with independent
tailors to provide custom-made suits to the customers. MaaS system would potentially
increase effectiveness of information flow between shops and tailors and between shops
and customers; and reduce storage costs for ready parts of the suit.

2.6 Detailed Requirements Specification

2.6.1 User and System Requirements

Headit expectations and technical limitations, gather during meetings and presented by
them in initial task description were used to create a list of User Requirements; by further
analysis of those requirements we have classified and organised them. Our goal was to
find detailed System Requirements, that could be prioritise through negotiations with
Headit during development process.

1. App User can send a message to another application (from App)

• Implement outgoing channel that can send a message to an App (registered
application).

• Receivers (applications) registered as an App can read incoming messages
through REST API.

• An application shares both Sender and Receiver properties to support two-way
communication.

2. App Admin has an application overview and possibility to configure App that can
use the messaging system

• Store configured applications in database.
• Create new application.
• View a list of applications.
• Edit application.
• Delete application.

3. App Admin wants the configuration of the Apps permanently recorded.

• Store configuration of the Apps in database.

4. App Admin can configure each App separately

• Edit App properties in admin panel (web-application).
• Edit App properties in App.

5. App Admin has sent messages overview for Apps that are under his/her adminis-
tration. Log view.

3https://www.docker.com
4https://oauth.net
5https://www.keycloak.org

7

Message Service

• Store messages in database.
• View a list of messages.

6. App Admin can send a message to one or more Apps/App Users (from admin panel)

• Interface for crafting messages and sending in admin panel (For App Admins).

7. Only App registered by App Admin can send a message to MaaS using a sett of
defined channels.

• API that can receive messages.
• Able to send messages.
• Control permissions of the App sending the message.
• Generate API key for each registered app.
• Generated API key should be tied to App Admin and App.

8. Messages received from App will be forwarded to different channels defined by
App Admin

• Receive messages formatted to a standard that fits log.
• Log all messages that are forwarded.
• Receive messages formatted to a standard that fits interface of outgoing chan-

nel component.
• Implement different outgoing channels for sending.

9. App is allowed to view own configuration at MaaS.

• API that can send stored configuration of an App.

10. MaaS Admin can configure access of App Admin users of MaaS.

• Create new App Admin.
• View list av App Admins.
• Edit App Admin profile.
• Delete App Admin.
• Store App Admins in database.

11. Recipient wants to receive a message delivered by preferred method. (external
channels like email, mobile application etc)

• Implement outgoing channel for sending email.
• Implement outgoing channel for sending via webhook.

2.6.2 Use case

Use case diagram (figure 3) presents usage of the system from a perspective of different
user types. Here only human actors are represented to show interaction with system
functionality without (omitted in the picture) middle-ware i.e. App for App User and
Receiver for Recipient.

8

Message Service

Figure 3: Use case from the perspective of different user types

Additionally sequence diagrams present the usage of the system in two cases. One of
them shows an example of usage in application configuration context, here (figure 4)
adding a new application that will be allowed to use MaaS system; notice that obtained
access key is generated by MaaS but need to be registered (stored) in the App. Primary
MaaS functionality i.e. sending a message is shown on figure 5. The access key is used
to verify that App is allowed to send a message through MaaS; log entry is created and
message is forwarded towards recipient.

9

Message Service

Figure 4: Sequence diagram for registration of App

Figure 5: Sequence diagram for sending a message from App User to Recipient

2.6.3 Software Requirements Document

Requirements presented in section 2.6.1 have been published in Confluence space be-
longing to Headit.

2.7 Requirements Validation

Requirements were validated after initial (planning) phase of the project. Changes have
been accepted after each modification with concern to the system as a whole, i.e. how
changes influence the final form of MaaS.

2.8 Requirements Change

Considering project deadline and complexity, requirements changes were discussed and
expected to come already in the beginning. Using agile methodology it has been possible
to manage changes during sprint meetings.

10

Message Service

2.8.1 Requirements Management Planning

Confluence has been used to manage changes in requirements. Using version control
mechanisms the previous states of requirement list have been checked and referred to.

2.8.2 Requirements Change Management

There have been room for discussion about current project progress on every sprint meet-
ing. If problems have been noticed, they have been analysed and changes have been
applied if possible.

2.9 Product Backlog

We used Jira to manage the Product Backlog and Sprints. We started with organising
group of requirements into Epics. Each Epic has included Stories based on User Require-
ments and smaller Tasks based on System Requirements, all those were presented previ-
ously in section 2.6.1.

Later we divided each Task into smaller sub-tasks which could be handled within a day
of work, more about the Product Backlog and Sprints during development in chapter 4.

11

Message Service

3 Technical Design

In this chapter we present a technical design of the project. In the beginning the system
is considered as one element placed in environment as in the initial project description;
models presented after the first, general view are more detailed and concern functionality
derived from requirements presented in previous chapter. After the final, most detailed
model of system architecture was established, we considered patterns that could be ap-
plied; those patterns are presented in a section following general system modelling. Next
section is dedicated to database design and shows the model as a result of the analysis of
the data needed to be stored in the system. Following sections describe in details compo-
nents of the system based on chosen technology and patterns; technologies not known
previously are explained along with practical application of them in order to prepare a
base for implementation.

3.1 Modelling of System Components

The model of the system was created based on requirements analysis. Starting from the
most general approach to show the context of the system from an external perspective
(figure 6), through more detailed view to extract basic system components (figure 7),
towards the final model in the third step with detailed components dependencies (in-
cluding integrated OAuth service - Keycloak, described in details in section 5.1.1) and
system boundaries (figure 8). Goal for this analysis was to confirm understanding of the
system as the whole, without going into details about implementation; the model was
accepted by stakeholders.

Figure 6: System model (step 1)

Figure 7: System model (step 2)

12

Message Service

Figure 8: System model (step 3)

3.2 Database Modelling

We used database design methodology described by Connolly and Begg [2]. We started
with a conceptual database design to create representation of data appearing in the
MaaS system. The next step was to build a logical design, on that step it was necessary to
decide which data model would be implemented. The last step, physical design, concerns
a concrete implementation of database.

3.2.1 Conceptual Database Design

This section presents the first phase of the methodology; on that point no assumptions
regarding implementation constraints were made. We used a top-down approach to build
a database model by identifying first main entities and relationships between them and
then including more details in a similar way to presented previously approach to model-
ling of system components. The first main entities were Message and Actor (in sender
role); later the model was extended to include required Log and various Channels for
Messages and a Recipient that could be an internal or external actor. Finally Actor and
Recipient entities were enhanced using specialisation, to represent distinct variants of
entities, and Message Postbox was introduced to note one, special, outgoing channel i.e.
internal message. Results are presented using Entity-Relationship diagram (figure 9); this
is a general first-cut view without attributes associated with entities; sender and internal
receiver of a message represented here as a separate entities for clear view would be
implemented as a one, Actor entity. We defined simple and composite attributes along
with their domains and decided on primary keys for each entity and confirm the model
with stakeholders (details of the tables presented later in section 5.4.5).

13

Message Service

Figure 9: Entity-Relationship model for message sending

3.2.2 Logical Database Design

We decided to use relational database model, mainly based on previous experience; we
evaluated new technologies we needed to used in the entire project and concluded that
we might not had enough time to additional research in this field. We created the logical
data model based on the choice. Superclass/subclass relations for Actor and Recipient
entities were defined as mandatory and disjoint. Relations were validated using normal-
isation and integrity constraints included. More details about relations in section 5.4.3.

3.2.3 Physical Database Design

The third phase of database design process describes how to implement the database in a
concrete chosen technology. We decided to use MariaDB1 server as a relational database.
The reason for it was that it is an open-source and well documented technology as re-
quested by stakeholders (section 2.4.2).

To manage and communicate with the database, Java Persistence API (JPA)2 is used,
which is implemented by Hibernate3. JPA facilitates relational databases through Java
code and every table is a Java class with corresponding fields and relations [3].

A class annotated with @Entity4 represents a table in the database; each property in
1https://mariadb.org
2https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
3http://hibernate.org/orm/
4https://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html

14

Message Service

this class that is annotated with @Column is a column in this table (that allows customi-
sation of tables). It is also possible to create Many-to-Many and One-to-Many relations
using annotations.

We wanted to get familiar with the new technologies while implementing backend
in Java, and the ones chosen allow to implement Java classes that represent underlying
physical database realisation; the benefit of using this technology is that it is possible to
replace the database server if required, without changes in Java code.

3.3 Architecture and Design Patterns

After confirmation of the model of the system (figure 8), following patterns were noticed
and decided to implement.

3.3.1 Client-Server

Two main features of MaaS i.e sending a message and configuration of access to mes-
sage server are supposed to be done remotely through REST API or/and browser (web-
application). Application processing in configuration context consists of user rights check
(i.e. control if operation is allowed for the user requesting it), interaction with database
and authorisation server. Application processing in message sending context consists also
of access control (based on rights of the requesting application) and forwarding message
toward outgoing channel. Presentation functionality could be implemented on the client
side.

Based on foregoing description choice was made to propose a client-server architec-
ture (figure 10) with a thin-client [1].

Figure 10: Client-server architecture

3.3.2 Backend

General Layered Model

Figure 11 presents layered architecture model of MaaS backend [4]. The top layer are
controllers awaiting HTTP requests and responding accordingly to the results of further
request processing. The second layer are services that implement MaaS application busi-
ness logic. The third layer consist of functionality that allows access to the database layer
that lies at the bottom. Layers are described later in details in section 3.4.

15

Message Service

Figure 11: Layered architecture model for backend

Channel Factory

Factory Method Design pattern [5] has been proposed to be used to implement pro-
cessing of accepted messages. A Message Service creates Message object based on HTTP
Requests. Channel Factory creates a concrete object based on message type. The Message
object is forwarded to it. Each implementation of Channel interface corresponds with one
defined message type and is responsible for converting and sending message (also to an
external system). Message processing model that includes a Factory Method pattern is
presented on figure 12.

Figure 12: Message processing model for outgoing channels

16

Message Service

3.4 Details of Backend Layers

3.4.1 Controllers Layer

Controllers in the application are classes which consist of methods (handlers) that rep-
resent each API endpoint (See figure 8 on page 13).

The backend was developed using the Spring Framework5 to help creating the con-
trollers, such that only the controllers itself needs to be implemented, not the underlying
technology.

Spring Boot6 was used further to achieve this. Spring Boot creates a stand-alone
Spring application with a Tomcat web-server7 which is automatically configured.

Java annotations8 are used to configure the Spring application and communicate with
the Spring framework; these annotations provide data to the Spring framework which
can be used to configure and serve the application; annotations are pre-fixed with @.

To create controllers, classes with the @RestController annotation are used to inform
the Spring Framework that the class should act as a Rest controller, which means that
every public function annotated with @RequestMapping (or equivalent) in this class is a
handler for an API endpoint. @RequestMapping is an annotation telling which endpoint
(requests) this function should handle. [6].

MaaS application has two classes that are Rest controllers:

• AdminController - for handling requests to /admin/api endpoint (e.g. admin web-
application).

• MessageController - for handling requests to /msg/api endpoint (e.g. message
sending, fetching inbox etc).

Figure 13 presents an example of class diagram for one controller and services related
to it (two first layers of backend architecture). More on how this is implemented in the
application later in section 5.4.1.

3.4.2 Services Layer

The services in the application are classes where the business logic is handled. These
classes are annotated with @Service 9.

A service class is (by default) a Singleton class that holds all the functionality for
business logic. A service could be used by other services or the controllers. To access a
service it is added to the class trough Auto-wiring with the @Autowired annotation which
is a Dependency Injection to inject this object into the desired class (in MaaS context - the
controllers or other services) [6, 7]. Figure 13 presents an example of a class diagram for
one controller and services related to it (two first layers of backend architecture). More
on how this is implemented in MaaS later in section 5.4.2.

There are nine services, that handle CRUD operations for:

• Actor
• Actor Type

5https://spring.io
6https://projects.spring.io/spring-boot/
7http://tomcat.apache.org
8https://docs.oracle.com/javase/tutorial/java/annotations/
9https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Service.html

17

Message Service

• Channel
• Domain
• User
• Log
• Message
• Message Type
• Permission

Figure 13: Example of class diagram for one controller and services related to it, IntelliJ

3.4.3 Database Management Layer

For database management the Data Access Object Pattern [8] is used.

Data Access Object Pattern

Services contact Repositories that implements CrudRepository10 interface from Spring
framework; the interface provides CRUD functionality on a repository of a specific Entity
type. Transfer Object (as described by Oracle [8]) is represented on a figure 14 by an
Entity object, that is used here as an abstract representation of the underlying database
structure.

10https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

18

Message Service

Figure 14: Data Access Object pattern

Entities with corresponding repositories in our application are:

• Actor (Sender and Recipient)
• Actor Type
• Admin
• Channel Rights (Channel an Actor is allowed to use)
• Config Set
• Delivery
• Domain
• External Recipient
• Log
• Message
• Message Type

This is described in details in implementation chapter (section 5.4.3).

3.4.4 Database Layer

This layer would be implemented using a MariaDB server integrated with the other com-
ponents of the system (integration details in chapter 6).

3.5 Frontend

Based on requirements from stakeholders (section 2.4.2) it was decided to use Angular
511 to develop the frontend, i.e. a web-application to be used as an admin panel (for App
Admins) to administrate Apps as described in requirements chapter 2.

Angular 5 is a framework for developing client side web-applications using Type-
Script12 and HTML. The framework provides a set of TypeScript libraries that are im-
ported into the application and allow creation of Components and Services [9].

11https://angular.io
12https://www.typescriptlang.org

19

Message Service

In addition we used Bootstrap13 to simplify creation of HTML.

3.5.1 TypeScript

TypeScript is similar to JavaScript concerning the syntax and semantics, except that it
doesn’t run directly in a browser, but it compiles to JavaScript so the browsers can run
the code.

3.5.2 Components

Components do typically consists of a HTML document, CSS and a TypeScript file. The
TypeScript file consists of a class decorated with @Component, in this class all logic for
that specific component is handled. The HTML and CSS files include only the code for
that specific component, but it is posible to create more complex structures (one com-
ponent can include another component). The web-application consists of components
created for each layout element that has a specific purpose, such as top navigation bar,
different forms, lists etc. More on how this was implemented is described in chapter 5.

3.5.3 Services

A service is a class that holds specific functions and variables that other components
can use. The services are included in the components by using Dependency Injection,
defining the variable in the components constructor; then this service is available in
that component, similar to auto wiring used by Spring described earlier. There are three
services in MaaS web-application:

• MaasService - controls all communication with the backend API.
• DataService - holds data needed by components.
• AlertService - handles error responses from backend API.

Figure 15: Relations between components and services in frontend model

Figure 15 shows relations between components (two example components) and ser-
vices. Detailed implementation of services described in section 5.3.

13https://getbootstrap.com

20

Message Service

4 Development Process

Details of the development process will be explained in this chapter. First, we will de-
scribe how we decided to share the tasks and the responsibilities along the project. So
we will go into details about what has be done during every of the nine sprints, the
project was divided into. Finally we will present the different tools that have been used
in this project.

4.1 Methodology

Due to the complexity of the project, our experience and the project deadline, we decided
to nine sprints with a duration of two weeks each (60 working hours per sprint for each
of us).

4.1.1 Roles and Responsibilities

All group members; Manuel Jesús Bravo García, Tom Roar Furunes and Tomasz Rudowski
are part of the development team and share other roles related to Scrum methodology.
Since we had similar experience and our goal was to learn, we decided to share a Scrum
Master responsibilities by using a combination of “Rotating Scrum Master” and “Part
Time Scrum Master” [10]. Each group member had to continue to work as a part of
development team (with lower workload) when it was his time to take a Scrum Master
role.

In addition to the roles that arise from the chosen methodology, we decided to give the
additional responsibilities to group members considering project progress management
and reporting (more details in the Project Plan - appendix F.3.1). These responsibilities
were meant to ensure that all the tasks were done and all requirements fulfilled. We
wanted to learn as much as it was possible and all the group members have helped each
other and have contributed in the different parts and tasks of the project.

4.1.2 Methodology in Practice

We started each working day with a Scrum meeting at the campus, where most of the
work was done; during that meeting we discussed tasks that were recently done and to
do in the upcoming working day. After we chose the tasks and evaluated time needed, we
assigned them to group members (depending on task the work could be done alone or
by two group members together - pair programming). At the end of the day we discussed
progress and current status; if some task were too time consuming or difficult we could
decide on some extra individual work later at home.

Every Sprint started with a Planning Meeting and ended with Review Meeting with
the representatives of the stakeholders in Hamar.

Due to practical reasons both Review (of previous Sprint) and Planning (of the next
one) Meetings took place at the same day. Therefor stakeholders representatives were
present when we discussed and evaluated the previous Sprint (Retrospective Meeting);
this gave us opportunity to share not only results but also working methods with them.

21

Message Service

4.2 Work Progress

4.2.1 Sprint 1, 10.01.2018 - 23.01.2018

The first sprint was mainly dedicated to creation of the Project Plan (appendix F) and
requirements elicitation process. We additionally conducted research concerning new
technologies like Spring and Keycloak. Headit provided us an access to Jira, Confluence
and Bitbucket space.

4.2.2 Sprint 2, 24.01.2018 - 06.02.2018

Initial set of requirements was created and validated. Architecture and Design proposals
(general model and patterns) were accepted and included in the Project Plan. Project
Plan was approved by supervisor and submitted. We followed tutorials for chosen tech-
nologies (Spring, Keycloak), and run code examples to get more familiar with them.

4.2.3 Sprint 3, 07.02.2018 - 20.02.2018

We created Product Backlog in Jira. Discussed details concerning interpretation of re-
quirements. Main programming activity was Keycloak integration. We started with set-
ting up Docker environment for Keycloak and database instances. Later we created
Spring project and implemented controllers that fetched data from the Keycloak instance.
We started an Angular project (basic frontend web-interface connected to backend API).
Access to admin API was secured by Keycloak. We created controllers for message send-
ing API and secured them with Access Keys generated in database (UUID). Proposed
solutions were accepted and integration level satisfactory on that point.

4.2.4 Sprint 4, 21.02.2018 - 06.03.2018

In the beginning of the fourth sprint we worked with refactoring of code base; request
from stakeholders included splitting the project into two smaller modules keeping them
in separate repositories (developed independently). We rebuilt the project structure and
transferred the code base into two repositories; one for Angular project (frontend), and
the second one for Spring project (backend) which included also additional configuration
files for integrated services (Keycloak, database).
Programming tasks:

• Backend. Added CRUD functionality for Actor and supporting ActorType. Decided
and implemented Actor removal as deactivation to keep data consistence and pos-
sibility to activate/deactivate access for defined periods of time. Added Log func-
tionality to the first step of message handling.

• Frontend. Created following views in Admin Panel: Log, Actor List, Actor Details;
added functionality of sending message and create Actor as modal components.

4.2.5 Sprint 5, 07.03.2018 - 20.03.2018

Main focus in this sprint was to implement exchanging of internal messages between
registered applications. It was realised in two steps:

• The first one included implementation of API and support for data flow on backend
and message inbox interface on frontend (new page on Admin Panel).

• The second step extended configuration functionality, so application could be de-
fined based on channel access rights and individual configuration of messages. Ad-

22

Message Service

ditionally we introduced a Current Actor concept to Admin Panel to keep context
in all available views and added delivery status to Log view.

4.2.6 Sprint 6, 21.03.2018 - 10.04.2018

During this sprint we implemented error and exception handling common for entire
backend and refactored controllers and services to keep clear separation between layers
and by this allowing easier unit tests for business logic. Additionally we started to create
an API specification document and reviewed all code base to ensure code quality.
Another achievement for the sprint was to follow message send to another channel (Slack
webhook) all the way through the system from sender to recipient; this feature was tested
against mobile and desktop receiver.

4.2.7 Sprint 7, 11.04.2018 - 22.04.2018

Main focus in this sprint was on writing the final report from the project. Changes to
code base included handling of issues noticed during tests and Review Meeting; as for
new features an email channel was implemented according to newest requirements, the
second enhancement was adding App and App Admins domains.

4.2.8 Sprint 8, 25.04.2018 - 08.05.2018

As in the previous Sprint, the main work was put into the project report. Programming
tasks concerned code quality and enhancing the way the error responses from backend
API are presented in Admin Panel.

4.2.9 Sprint 9, 09.05.2018 - 22.05.2018

Development work focused mainly on code quality and additional testing. Last correc-
tions to the final report was made.

The final submission of this report is in the middle of this Sprint. We decided, that
all Sprints should have the same workload (as presented in the Gantt diagram for the
project work progress in appendix B); therefor the remaining week after the report sub-
mission will be dedicated to additional work around the project. We plan to prepare the
presentation of the project for both NTNU and stakeholders (demonstration date hasn’t
been decided yet); concerning practical issues, we need to manage resources used dur-
ing development, among them data storage, accounts, software licences etc. We are also
prepared that this time might also be used for potential issues considering source code
(transition, maintenance) not noticed before submission.

4.3 Tools

Different tools have been used during the project. Here we will review how they have
been used.

4.3.1 Project Management

Both Confluence1 and Jira2 access were provided by Headit. Confluence is a communi-
cation platform we used to share information related with the project. We use it e.g. to
share business cases, meeting and decision logs, and sprint review retrospectives. Jira

1https://www.atlassian.com/software/confluence
2https://www.atlassian.com/software/jira

23

Message Service

is a project managing tool. It was utilised to manage the Product Backlog, organise the
tasks in epics and stories. In every sprint planning meeting we assigned which tasks we
were going to develop during that sprint by moving them into the Sprint Backlog.

4.3.2 Version Control

Git is an open source version control system developed by Linus Torvalds [11]. We used
GitBash3 daily e.g. when tasks got done or when we fixed bugs. We made use of branches
when we developed new features, in case of refactoring and when we wanted to try
out new technologies and solutions preserving the master branch. Stable and accepted
versions were merged with the master branch in both backend and frontend repositories.

4.3.3 Communication

Slack4 is a communication tool that the development group used daily to share practi-
cal information, ask and resolve questions in a fast and effective way. Confluence and
Jira were used as communication tools as well. We employed them to share “formal
information” related to the project status and progress e.g. meeting and decision logs
(Confluence) or task assignments (Jira). Emails and Skype have been used as well.

4.3.4 Development Environment

Regarding software development, we set up and made use of an environment composed
of the following tools:

• IntelliJ IDEA5: An Integrated Development Environment (IDE). The frontend and
the backend were developed as separated projects. We imported the frontend project
(as a module in the backend project) in order to be able to work with both projects
simultaneously.

• Docker6: Under the development process, we made use of docker; several contain-
ers where we run the applications and servers we needed: MariaDB, PhpMyAdmin,
Keycloak.

• Maven7: Is an open source tool that simplifies the building process of an applica-
tion. We used it to integrate libraries such as Spring, Keycloak and JPA.

• Npm8: Package manager for the libraries used by the frontend.
• AngularCli9: Was employed to simplify the creation of the frontend project, creating

components and services. It was used as well to test the application.
• Postman10: Used to send HTTP requests to MaaS under development, replacement

for a custom mock sender application.

4.3.5 Resource Storage

The frontend and backend projects were developed separately and stored in two different
repositories. GoogleDrive were use in order to share and save documents and pictures
from group meetings.

3https://git-scm.com/
4https://slack.com/
5https://www.jetbrains.com/idea/
6https://www.docker.com/what-docker
7https://maven.apache.org/
8https://docs.npmjs.com/getting-started/what-is-npm
9https://cli.angular.io/

10https://www.getpostman.com

24

Message Service

4.3.6 Report and Documentation

The project’s report has been written using LATEX, Latex Table Generator and BibTeX
Editor. Diagrams like class diagrams, system diagrams were created using draw.io. MS
Project were utilised to create the Gantt diagram for the project.

25

Message Service

5 Implementation

In this chapter we present a practical implementation of the MaaS system. The first
section of the chapter is dedicated to integrated services that were used along the whole
implementation process. The next section consists of files and packages overview for both
backend and frontend. The implementation process and details for applied solutions are
presented using two process flows.

The first of them is a registration of a new application in MaaS. Application man-
agement is presented starting from an Admin Panel (frontend implementation) through
backend API towards changes in the database.

The second process, chosen to present the implementation solutions, is sending a
message through MaaS. The process is followed from an App perspective (including as-
sumptions necessary to use MaaS); later the message is processed through all stages,
i.e. receiving a request, App verification, creating a Message object (the representation
of a message in MaaS), finding a correct outgoing channel, sending a message to it and
finally creating a response to the sender.

5.1 Integrated Services

MaaS includes three integrated services. One of them is MariaDB server running in a
Docker instance (implementation details described later in chapter 6); the second one
is phpMyAdmin, that we used only during implementation for database management
purposes (data control); the third one is Keycloak. All those services were running inside
Docker containers on each developer’s machine.

5.1.1 Keycloak

Keycloak is an open source identity and access management system. It offers a single
sign-on system i.e. once the users are logged in Keycloak, they will be logged in all
applications that use this instance of Keycloak avoiding several logins. Keycloak offers an
Admin Console where it is possible to manage users and applications [12]. It is in this
Admin Console where an administrator of MaaS (Maas Admin) can add users; then the
users can be assigned to one of the domains (this functionality is implemented in Admin
Panel frontend); an user with an assigned domain (App Admin) can manage applications
(App).

Keycloak can have several realms; one of them is Master, which is the default one,
with access to this realm, a user has all rights to manage this Keycloak instance (e.g.
create new and manage other realms, add users, etc.). Since it is recommended to use
another (than Master) realm to manage users, applications etc, a “MaaS” realm is created
[13].

MaaS system must be able to authenticate users through Keycloak, to achieve that, a
“client” (a representation of an application secured with Keycloak) called “maas-app” is
created in Keycloak Admin Console. There are also two pre-defined roles created; “user”

26

Message Service

and “maas_admin”. The “user” role represents a App Admin, and the “maas_admin” role
represents a MaaS Admin.

In order to secure applications, Keycloak offers “client adapters” (libraries) for se-
veral and well known platforms and programming languages, among then Spring Boot
[14]. The backend of the MaaS System makes use of the Keycloak library through the
KeyCloakUser service. This service uses the Keycloak adapter for Spring Boot; it is able
to identify the user that is trying to access MaaS and find out if the user is logged in or
not.

1 @Service
2 public class KeyCloakUserService implements UserService {
3 ...
4 Keycloak keycloak;
5 @Value("MaaS")
6 private String realm;
7 private HttpServletRequest request;
8 ...
9 @Override

10 public CurrentUser getCurrentUser () {
11 if (! isLoggedIn ()) {
12 return null;
13 }
14

15 KeycloakPrincipal <KeycloakSecurityContext > kp =
16 (KeycloakPrincipal <KeycloakSecurityContext >) request.getUserPrincipal ();
17 String userId = kp.getName ();
18 final AccessToken token = kp.getKeycloakSecurityContext (). getToken ();
19 String username = token.getPreferredUsername ();
20 String firstname = token.getGivenName ();
21 String lastname = token.getFamilyName ();
22 String email = token.getEmail ();
23 Set <String > roles = token.getRealmAccess (). getRoles ();
24 return new CurrentUser(userId , username , firstname , lastname , email , roles);
25 }
26 @Override
27 public boolean isLoggedIn () {
28 Principal principal = request.getUserPrincipal ();
29 return principal != null && principal instanceof KeycloakPrincipal;
30 }
31 ...
32 }

Listing 5.1: Extract of the KeyCloakUser Service

In listing 5.1 we use the KeycloakPrincipal object to get information about the logged
in user from Keycloak, such as “username”, “email” and “roles”.

5.2 Files and Package Structure

In this section the organisation and the structure of the source code is presented. Fron-
tend and backend are placed in two separate repositories; project configuration files are
omitted.

5.2.1 Backend

Package structure for backend is presented on fig. 16. Controllers, Services and Database
Management layers has been placed in separate packages. Each channel is to be imple-
mented as a sub-package, which should contain all necessary information to interpret
message metadata and convert it to a format acceptable by an external (receiver) ser-
vice. The “payload” package consists of classes that help to format JSON payload in the
context of HTTP Requests and Responses; except for those channel specific payloads,
which would be implemented in a channel sub-package. The “error” package contains
classes responsible for the exception and error handling.

27

Message Service

Figure 16: Packages and classes organisation on backend

5.2.2 Frontend

Files and components organisation on frontend is shown on fig. 17. The main “app”
component and all the others placed in “components” folder are marked with a light blue
colour (files they consist of are omitted here). All the files in “classes” folder define objects
that store data on the frontend side. One additional module responsible for routing is
placed in the “module” folder. A function used to initialise the application is in “utils”.
The implementations of all services are in “services” folder.

28

Message Service

Figure 17: Files and components organisation on frontend

5.3 Application Management - Admin Panel

The MaaS application has a web interface that can be used to:

• Add/Administrate/Delete Applications
• Send/Read messages or check delivery status (log).

Figure 18: Screenshot from Admin Panel

The web interface (fig. 18 presents a UI example - an application management view)
has been developed using Angular 5 (TypeScript and HTML) and Bootstrap for Angular.
The view example includes components (details later in this section):

29

Message Service

• navbar - presents navigation links, status (current logged user, his/her assigned
domain, “current context” i.e. currently selected App) and “logout” button.

• actor.list - left panel, shows a list (separate lists for active and inactive Apps) of App
under control of current user; here also possibility to add a new App

• actor.details - right panel, App details and channels access configuration; on the
example view (fig. 18) a configuration of a Slack webhook for the selected App.

• actor.log - bottom panel, shows log entries created during processing of messages
send by the selected App (default sorting - latest first); here also a link to a message
preview with delivery status for each recipient.

The web application consists of following elements, developed according to Angular
documentation [9]:

• Thirteen classes: They represents different objects like an application, a message,
or a log. This objects can be used by the the components (views) using their me-
thods or injecting some or their data in the views. Objects from these classes can
as well be sent to the backend converting them into a JSON payload.

1 export class Actor extends Serializable {
2 id: string;
3 name: string;
4 description: string;
5 expire: Date;
6 type: ActorType;
7 keyAdmins: Object [];
8 channelRights: ChannelRights [];
9 availableTypes: string [];

10 ...
11 setChannelRightsAllowed(channelType:string , allowed: boolean) : boolean {
12 let needNewCr = true;
13 this.channelRights.forEach(cr => {
14 if (cr.messageType == channelType) {
15 cr.allowed = allowed;
16 needNewCr = false;
17 }
18 });
19 return needNewCr;
20 }
21 ...
22 }

Listing 5.2: Extract of Actor class

• Two Modules: The main module “app.module.ts” provides a compilation context
for all components while the module “app-routing.module.ts” has the responsibil-
ity for changing the components that are shown according to the web address that
has been requested i.e. if the address “/profile” is introduced, the application will
show detail information about currently logged user.

1 const routes: Routes = [
2 {path: ’’, component: HomeComponent},
3 {path: ’users’, component: UserListComponent},
4 {path: ’profile ’, component: UserProfileComponent},
5 ...
6]

Listing 5.3: Extract of the Routing Module

• Fourteen Components: A component represents a single element of the appli-
cation such as the home page, or the view used to show the message box of an
application. Every component consist of four files:

30

Message Service

1. (.scss) file: In Angular it is possible to define individual css style to a single
component.

2. (.spec.ts) file: This is a unit tests file
3. TypeScript file (.ts): This file is the data logic of a component and it is writ-

ten in TypeScript. The variables declared in this file can be injected in the
view (HTML file) using Dependency Injection pattern [9]. A constructor and
other methods are defined as well. They can be called and used by the view if
necessary. Two methods: ngOnInit() and ngOnDestroy() are executed when a
component is opened or closed.

1 export class MessageBoxComponent implements OnInit , OnDestroy {
2

3 inboxMessages: InboxMessage [];
4 actors: Actor [];
5 currentActor: Actor;
6

7 private currentActorSubscription: ISubscription;
8 private actorsSubscription: ISubscription;
9 private inboxMessagesSubscription: ISubscription;

10 private routeSubscription: ISubscription;
11

12 constructor(
13 public dataService: DataService ,
14 private maasService: MaasService ,
15 private modalService: NgbModal ,
16 private route: ActivatedRoute
17) { }
18

19 ngOnInit () {
20 this.routeSubscription = this.route.params
21 .subscribe(params => {
22 console.log("route change");
23 if(params.id) {
24 this.dataService.setActorById(params.id);
25 }
26 });
27

28 this.currentActorSubscription = this.dataService.currentActor
29 .subscribe(actor => {
30 this.currentActor = actor;
31 if(actor != null) {
32 console.log("udating current actor inbox");
33 this.dataService.updateInboxMessages(actor.id);
34 }
35 });
36

37 this.getAllInboxMessages ();
38 this.actorsSubscription = this.dataService.getActors ()
39 .subscribe(actors => this.actors = actors);
40 }
41 ...
42 }

Listing 5.4: Extract of the .ts file of the Actor component.

4. HTML file: This file is the view that will be shown; it is possible to bind
some data logic (from a .ts file). An example of this bind is in listing 5.5;
message headers shown in the view have different font style and text content
depending on inboxMessage object attributes.

31

Message Service

1 <ngb -accordion [closeOthers]="true" activeIds="static -1">
2 <ngb -panel *ngFor="let inboxMessage of inboxMessages">
3 <ng-template ngbPanelTitle >
4 <div class="row">
5

6 <div class="col -2 text -left text -info"
7 [class.font -weight -bold]="!inboxMessage.delivered">
8
9 {{ inboxMessage.subject }}

10 </div >
11

12 <div class="col -2 text -left text -dark"
13 [class.font -weight -bold]="!inboxMessage.delivered">
14 {{ inboxMessage.senderName }}
15 </div >
16

17 <div class="col -4 text -left text -truncate text -muted"
18 [class.font -weight -bold]="!inboxMessage.delivered">
19 {{ inboxMessage.content }}
20 </div >
21

22 <div class="col -4 text -right text -dark"
23 [class.font -weight -bold]="!inboxMessage.delivered">
24 {{ inboxMessage.time | date: ’medium ’}}
25 </div >
26

27 </div >
28 </ng-template >
29 <ng-template ngbPanelContent >
30 {{ inboxMessage.content }}
31 </ng-template >
32 </ngb -panel >
33 </ngb -accordion >

Listing 5.5: Extract of the Message Box html file

• Three Services: Services are used to implement a data logic that are not directly re-
lated with an specific component. The data from the services is shared by the com-
ponents. This data can be e.g. injected in the views of the components or used to
carry out some logic operations. In this application DataService class (“data.service.
ts” file) is used to share data of the selected current actor between all the compo-
nents. MaasService class (“Maas.service.ts” file) is used to make the necessary API
requests to the backend. In listing 5.4 it is shown how the MessageBox component
uses the DataService to fetch a message inbox of a Current Actor. In listing 5.6 it
is shown how the MaasService creates a HTTP GET Request to the Backend API
and expects response as an array of InboxMessage objects as JSON (httpOptions
contains HTTP Header information) in order to get the message inbox of a certain
actor. In case of an error response from API the third one, AlertService is responsi-
ble to present the error message to the user.

1 @Injectable ()
2 export class MaasService {
3 const httpOptions = {
4 headers: new HttpHeaders ({
5 ’Content -Type’: ’application/json’,
6 })
7 };
8 ...
9 getInboxMessages(actorId:string):Observable <InboxMessage []>{

10 return this.http.get <InboxMessage []>(
11 this.serviceURL + "/db/actors/"+actorId+"/inbox", httpOptions
12).catch(err => this.errorHandler(err));;
13 }
14 ...
15 }

Listing 5.6: Extract of Maas Service

32

Message Service

5.3.1 Login

The Admin Panel is protected by Keycloak. It means that an admin that is not logged,
will be redirected to the Keycloak service; this is realised by KeycloakService.init method
from the “keycloak-angular” [15] library. The method is called during frontend initiali-
sation (listing 5.7). This library has an HttpClient Interceptor that adds an authorisation
header to the HttpClient requests. If an user introduces a right username and password
combination an authorisation token from Keycloak will be received. This token will iden-
tify the user as an authenticated and authorised user in the Admin Panel. Once a user is
authorised by Keycloak it will not be necessary to make a new login as long as the token
is valid (token expiration time can be adjusted in Keycloak Admin Console) or in case
the user logs out of the Admin Panel. The token that identifies the user is stored in the
web browser.

1 ...
2 await keycloak.init({
3 initOptions: {
4 onLoad: ’login -required ’,
5 checkLoginIframe: false
6 }
7 });
8 ...

Listing 5.7: Extract of App-init.ts. Integration of Keycloak and Angular.

5.3.2 Add Application

An App Admin can register a new application (App) in MaaS through the web interface.
The component “actor-create-edit-modal” will display a modal where it is necessary to
introduce some information like the name of the application, how long the application
will have access to MaaS and which channels the application can use. If all the necessary
information is validated (see listing 5.8), the component will make a new Actor object
and it will call to the MaasService (see listing 5.9). This service will invoke the necessary
REST API call to create and save a new actor. Due this API call is protected by Keycloak,
the service will send a HTTP Request that will contain the authorisation token and the
new Actor Object as JSON payload.

1 ...
2 <div class="modal -body">
3 <ngb -alert *ngIf="f.invalid" [dismissible]="false" type="danger">
4 Error Missing input!
5 </ngb -alert >
6 <form #f="ngForm" (ngSubmit)="onSubmit(f)">
7 <div class="form -group">
8 <label for="inputName">Name </label >
9 <input ngModel required name="name" type="text" class="form -control"

10 id="inputName" placeholder="Name your application">
11 </div >
12 ...
13 </form >
14 ...

Listing 5.8: Extract of the actor-create-edit-modal.component.html file used to create and edit
actors.

33

Message Service

1

2 ...
3 private onUpdate(actor: Actor , next: (actor: Actor) => any) {
4 this.maasService.updateActor(actor , this.actor.id). subscribe(next);
5 }
6

7 ...
8

9 private onCreate(actor: Actor , next: (actor: Actor) => any) {
10 this.maasService.addActor(actor). subscribe(next);
11 }
12

13 ...

Listing 5.9: Extract of the actor-create-edit-modal.component.ts file used to create and edit actors.

5.3.3 Add Configuration

Once App Admin has created an App, it is possible to add configurations to it. A con-
figuration is a set of instructions that contains predefined, additional information about
how a message should be sent e.g. using a certain sender address, message subject or
receiver email. Configurations can be added, edited and removed. They consist of a set
of properties defined for every kind of implemented channel. The “actor-details” com-
ponent shows information about a certain application, its channel access rights and the
configurations associated for each available channel.

When adding a new configuration, the “channel-config-modal” component will dis-
play a modal that will require the necessary properties to create a new configuration for
the specific channel. When the necessary data is validated, the component will create a
ConfigSet object that will contain the predefined properties and theirs values. So it will
call the MaasService function to send a HTTP POST Request to the backend. This request
contains an Actor object, with adjusted ChannelRight and ConfigSet, parsed to JSON.

5.3.4 Error Handling

When sending a HTTP Request to the backend (in MaasService), we catch all errors and
send them to an error handler function (See listing 5.6).

1 private sendToast(alert: Alert) {
2 switch (alert.type) {
3 case AlertType.Error:
4 this.toastr.error(alert.message , AlertType[alert.type], {disableTimeOut: true });
5 break;
6 case AlertType.Info:
7 this.toastr.info(alert.message , AlertType[alert.type], {disableTimeOut: true });
8 break;
9 case AlertType.Success:

10 this.toastr.success(alert.message , AlertType[alert.type], {disableTimeOut: true });
11 break;
12 case AlertType.Warning:
13 this.toastr.warning(alert.message , AlertType[alert.type], {disableTimeOut: true });
14 break;
15 }
16 }

Listing 5.10: Extract from alert.component.ts for displaying toasts.

The “errorHandler” function invokes the AlertService which adds this error to a Sub-
ject1. A Subject is an Observable that a component can subscribe to. The AlertComponent
subscribes to this subject and displays a “toast” when it receives an alert. For sending

1http://reactivex.io/rxjs/class/es6/Subject.js Subject.html

34

Message Service

“toasts” we use ngx-toastr2 (see listing 5.10 and fig. 19).

Toasts are also sent when an user tries to send an incomplete form.

Figure 19: Toast on error in Admin Panel

5.4 Backend API for Application Management

In this subsection we will describe how the process of administrating an Actor is done
from backend perspective (CRUD operations). An Actor in this context is an object that
represents an application registered in MaaS.

Figure 20: Sequence diagram for adding an Actor

As described earlier in section 3.4, the backend is developed using Spring Framework.

The application consists of 6 packages (details later in this section):

• Controllers: consist of every controller class handling the requests.
• Services: handle the business logic of the application.
• Database: all database models and repositories.

2https://github.com/scttcper/ngx-toastr

35

Message Service

• Channels: the Channel Factory and every implemented channel in a separate sub-
package.

• Payload: POJO classes for representation of JSON objects.
• Error: error exceptions and handlers.

A request to the system with the “/admin/api/actors” endpoint is processed by the
Admin Controller, and then Actor Service, Actor Repository, Actor Entity; finally data is
stored in the database. This process flow (fig. 20) will be explained next.

5.4.1 Admin Controller

Before reaching this controller, the request needs to be authenticated with Keycloak.
To achieve this the Spring Boot Adapter for Keycloak3 has been used. This needed to be
configured in the application.properties file by setting the Keycloak URL, realm, resource,
and which endpoint to secure (“/admin/api”).

The AdminController class is annotated with @RestController and @RequestMap-
ping(“/admin/api”) to handle all request from this endpoint with this class.

This controller (listing 5.11) is using several Services by Dependency Injection in the
class constructor.

1 @RestController
2 @RequestMapping("/admin/api")
3 @Api(value = "Admin Panel Service", description = "Description Admin Panel Service")
4 public class AdminController {
5 ...
6 @Autowired
7 AdminController(
8 UserService userService ,
9 ActorService actorService ,

10 ActorTypeService actorTypeService ,
11 LogService logService ,
12 MessageService messageService ,
13 MessageTypeService messageTypeService ,
14 ChannelService channelService ,
15 PermissionService permissionService) {
16 this.userService = userService;
17 this.actorService = actorService;
18 this.actorTypeService = actorTypeService;
19 this.logService = logService;
20 this.messageService = messageService;
21 this.messageTypeService = messageTypeService;
22 this.channelService = channelService;
23 this.permissionService = permissionService;
24 }
25 ...
26 }

Listing 5.11: A constructor from AdminController class

Each function in this class is also annotated with @RequestMapping or similar anno-
tation to narrow down the scope of requests the function should handle. For example for
adding a new Actor to the database:

1 @PostMapping("/db/actors")
2 @ApiOperation(value = "An admin adds a new actor")
3 public Actor addNewActor(@RequestBody ActorPayload payload) {
4 this.userService.loggedInOrThrow ();
5 return actorService.add(this.userService.getCurrentUser (). getUserId (), payload);
6 }

Listing 5.12: Adding Actor from Admin Controller

3https://www.keycloak.org/docs/3.2/securing_apps/topics/oidc/java/spring-boot-adapter.html

36

Message Service

Listing 5.12 shows how the function handles requests on the “/admin/api/db/actors”
endpoint (narrowed down from “/admin/api’). It is also using the @RequestBody4 anno-
tation on the payload parameter, by doing this the received JSON request body is bound
to this parameter and automatically marshalled to an ActorPayload object by Spring,
which is using the Jackson library5. This ActorPayload object is a POJO with attributes
representing the JSON object; name, description, expire, type and channel rights. After
this, the business logic (Actor Service explained in the next section) process the request.

Similar to “addNewActor” shown in listing 5.12, every function in the AdminCon-
troller class is using the “loggedInOrThrow” function in the UserService class, which
checks if the user is logged in, if not, it throws an exception. Error handling is explained
later in section 5.4.6.

5.4.2 Actor Service

The Actor Service is a service class as explained in section 3.4.2 which takes care of
business logic for CRUD operations on an Actor.

This service, and all other services are using Dependency Injection, to autowire database
repositories (explained later in section 5.4.4) and other services, similar to how it’s done
in Admin Controller (listing 5.11).

Listing 5.13 presents an example of how a new actor is created and added.

1 public Actor add(String userId , ActorPayload payload) {
2 ActorType actorType = actorTypeRepository.findById(payload.getType (). getId ());
3 if (actorType == null) {
4 throw new WrongPayloadException("You didn’t specify the kind of Actor");
5 }
6

7 Actor actor = new Actor ();
8 actor.setDescription(payload.getDescription ());
9 actor.setExpire(payload.getExpire ());

10 actor.setType(actorType);
11 actor.setName(payload.getName ());
12

13 Admin admin = adminRepository.findById(userId);
14 actor.setDomain(admin.getDomain ());
15 actor.addAdmin(admin);
16

17 if (! channelService.set(payload.getChannelRights (), actor)) {
18 throw new WrongPayloadException("You tried to give access rights to" +
19 + " a kind of channel that doesn’t exist");
20 }
21

22 return actorRepository.save(actor);
23 }

Listing 5.13: Add new Actor function

In this function an Actor object which is an Entity class (more details in section 5.4.3)
is created based on the ActorPayload. Channel Service sets the correct channel rights,
this determines if the actor has access to the specific channel (Email, Internal etc.)

Then the ActorRepository (more in section 5.4.4) is used to save the actor to the
database.

4https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestBody.html
5https://github.com/FasterXML/jackson

37

Message Service

5.4.3 Actor Entity

Classes annotated with @Entity are the abstract representations of database tables as
explained in section 3.2.3, all these entities are placed in the “database.model” package.

The Actor entity contains several variables that represents columns in a table, for ex-
ample the “id” column (listing 5.14)

1 @Id
2 @GeneratedValue(generator = "uuid")
3 @GenericGenerator(name = "uuid", strategy = "uuid2")
4 @Column(
5 name = "id",
6 length = 36
7)
8 private String id;

Listing 5.14: Actor Entity “id” definition

Here the @Id annotation defines this property as an identifier for the entity. This is
the primary key in the database. The identifier will be auto-generated using a generator
defined by @GeneratedValue and @GenericGenerator, which in this case is a UUID. This
unique identifier is used by MaaS in the App authorisation process as an API Key (choice
discussion later in section 8.1.2). @Column annotation allows to define different pro-
perties, e.g. name (here a column name set to “id”), length (here maximum size of “id”
String), unique and nullable constraints [16].

For relations with other entities we use @ManyToMany, @OneToMany and @Many-
ToOne annotations. For example the set of admins in the Actor entity is defined with a
@ManyToMany annotation, because an Actor can have many admins, and an admin can
control many Actors.

1 @ManyToMany (
2 cascade = CascadeType.ALL
3)
4 @JoinTable(
5 name = "actors_admins",
6 joinColumns = { @JoinColumn(name = "actor_id") },
7 inverseJoinColumns = { @JoinColumn(name = "admin_id") }
8)
9 private Set <Admin > admins = new HashSet <>();

Listing 5.15: Actor Entity “admins” definition

1 @ManyToMany(
2 cascade = CascadeType.ALL ,
3 mappedBy = "admins"
4)
5 private Set <Actor > actors = new HashSet <>();

Listing 5.16: Admin Entity relation with Actor Entity

This creates a Many-To-Many relation between the Actor and Admin entities. With
cascading we can make sure that any operation on the “admins” property from the Actor
entity is also applied to the Admin entity [16]. Since this is a Many-To-Many relation,
a table, which is defined here by the @JoinTable annotation, it is created automatically.
The table is named “actors_admin” and have columns “actor_id” and “admin_id” which
represent the Actor and Admin identifiers.

38

Message Service

Actor entity can also be marshalled to JSON and returned from the API, but not all in-
formation about this object should be returned, to prevent this we use the @JsonIgnore6

annotation, this excludes the “getter” function from marshalling and this “ignored” Actor
attribute will not be returned.

For example we use this in Actor class to prevent the Domain object to be returned to
the user. Instead we only want the name of the domain returned so we created a func-
tion that return String instead (listing 5.17); the JSON object created based on the Actor
object will contain an attribute “domainName” which allow to avoid a problem with a
recurrent object. The problem could appear in this case because an Actor object contains
a Domain object which contains Actor objects and so on.

1 ...
2 @JsonIgnore
3 public Domain getDomain () {
4 return this.domain;
5 }
6

7 public String getDomainName () {
8 return domain.getName ();
9 }

10 ...

Listing 5.17: Actor get domain with ignore

5.4.4 Actor Repository

To interact with the database (send queries) we are using Spring Data Repositories7. This
allows to create an interface without an implementation of e.g. queries (Spring is cre-
ating the implementation automatically).

1 public interface ActorRepository extends CrudRepository <Actor , String > {
2 Actor findById(String id);
3 Set <Actor > findAllByAdmins_Id(String adminId);
4 ...
5 }

Listing 5.18: ActorRepository interface and an example of query method definitions

This interface is a CrudRepository8 which means it has some pre-defined methods for
performing CRUD operations. The CrudRepository takes two type parameters, the Entity
class and id type (type of the primary key in the entity). Complete interface in appendix D
(listing D.5).

For a more complex “query method” definition we have an example from ConfigSe-
tRepository (listing 5.19). The name of method determines the query to find a ConfigSet
based on “configId” and “actorId”. This looks in the ConfigSet table, finds the “configId”
and looks for the ChannelRights table which has a ChannelId (@EmbeddedId that repre-
sents relation between an Actor and a ChannelType) that is linked to an Actor with given
“actorId”.

1 ConfigSet findByIdAndChannelRights_ChannelId_Actor_Id(long configId , String actorId);

Listing 5.19: ConfigSetRepository ConfigSet by id and Actor

6https://fasterxml.github.io/jackson-annotations/javadoc/2.5/com/fasterxml/jackson/annotation/JsonIgnore.html
7https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
8https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

39

Message Service

We used method names for creating queries in this interface, but it could also be done
with the @Query annotation for defining more complex queries; @Query annotation ex-
ample later in section 5.5.3 while presenting Actor verification during message sending.

5.4.5 Database Representation

All classes annotated with @Entity and relations between them are represented with the
structure of tables presented on fig. 21.

Figure 21: Database structure, phpMyAdmin

5.4.6 Error handling

All Exceptions thrown are handled by the RestExceptionHandler in the “error.handlers”
package. Other exceptions are handled by IndexController which overrides the “/error”
mapping by Spring to show a custom error message.

The RestExceptionHandler class is annotated with @RestControllerAdvice9, so that
Spring can find the methods in this class which are annotated with @ExceptionHan-
dler10. These methods are called when a certain exception is thrown.

1 @ExceptionHandler
2 @ResponseStatus(value = HttpStatus.BAD_REQUEST)
3 public ErrorResponse handleWrongPayloadException(WrongPayloadException e) {
4 return new ErrorResponse(HttpStatus.BAD_REQUEST , e);
5 }

Listing 5.20: Handler for wrong payload exceptions

9https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/
RestControllerAdvice.html

10https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/
annotation/ExceptionHandler.html

40

Message Service

This function (listing 5.20) runs when a WrongPayloadException is thrown. It returns
an ErrorResponse object which is the response to the user (in JSON format). The Error-
Response object is returned for every exception. This way we ensure that all errors get
the same JSON structure. The ErrorResponse object contains a message including the
error message.

These functions are also annotated with @ResponseStatus11. This will alter the HTTP
response to use the appropriate status code. For example “HttpStatus.BAD_REQUEST”
will result in a 400.

5.4.7 Documentation

All methods are documented using JavaDoc12. In addition an OpenAPI documentation
(created with Swagger13 framework) is created for the API.

To help to automate this process a Springfox14 library is used. This Java library offers
a support for Spring. With use of annotations it is possible to document the API.

Every method in the controllers are annotated with @ApiOperation as seen in list-
ing 5.12 (page 36). As a result, all annotated methods are added to the documentation.

An export of the documentation to a PDF format is attached to this report in ap-
pendix E.

5.5 Message Flow for Internal Messages

In this section we will present how a message is processed through the MaaS system.
An internal message will be used here as an example. The sequence diagram (fig. 22)
presents the first part of message processing, i.e. from receiving HTTP Request to accept-
ing a message for sending (as an alternative an error response is created for messages
not accepted for processing).

5.5.1 Application

Here we assume, that in order to be able to send a message, an application has been
prepared to interact with MaaS; following steps are necessary:

• An API access key (application id as described previously in section 5.4.3) that has
been stored in the application.

• JSON payload is formatted accordingly to API specification (documentation in ap-
pendix E).

• The application is connected to internet and able to send HTTP POST Requests
(with prepared JSON payload).

11https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/
annotation/ResponseStatus.html

12http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
13https://swagger.io
14http://springfox.github.io/springfox/

41

Message Service

Figure 22: Sequence diagram for message sending, first steps

5.5.2 Request Handling

The next step concerns MaaS. A HTTP Request is handled by a MessageController; which
is implemented similar to the AdminController described previously. Listing 5.21 presents
the function that handles a request; classes that are involved in parsing a JSON request
body are presented below it (listing 5.22, listing 5.23); constructors, getters and setters
omitted in listings from those classes.

1 @PostMapping(value = "/send", consumes = "application/json")
2 @ApiOperation(value = "Sends a message using a certain actor",
3 notes = "It is necessary to know the Actor Key")
4 public SendMessageResponsePayload sendMessage(@RequestBody OutboxMessagePayload payload){
5 Actor actor = permissionService
6 .getValidatedActor(payload.getApiKey (), payload.getType ());
7 return this.messageService.send(actor , payload);
8 }

Listing 5.21: Sending a message from MessageController

42

Message Service

1 public class MessagePayload {
2 private String type;
3 private List <String > receivers;
4 private List <String > recipients;
5 private String content;
6 private String subject;
7 private Timestamp time;
8 private Object meta;
9 private Long configId;

10 ...
11 }

Listing 5.22: MessagePayload class, header and fields

1 public class OutboxMessagePayload extends MessagePayload {
2 private String apiKey;
3 private Set <Delivery > deliveryStatus;
4 ...
5 }

Listing 5.23: OutboxMessagePayload, header and fields

5.5.3 Application Verification

There are some differences, specific to MessageController functionality. Message API is
intentionally not secured with Keycloak (choice discussed later in section 8.1.2).

Access Key and Channel Verification

We implemented an own verification system based on API Access Keys (App id) generated
in the Admin Panel (as described previously in section 5.4.3). The key, that represents
a message sender, and a message type (channel) are extracted from the HTTP Request
and send to the PermissionService; this service is responsible for checking permissions of
users and registered applications.

1 public Actor getValidatedActor(String apiKey , String type) {
2 Actor actor = this.getValidatedActor(apiKey);
3

4 if (!actor.getChannelRights ()
5 .stream ()
6 .filter(cr -> cr.getChannelId (). getType (). getId (). equals(type))
7 .findAny ()
8 .orElse(new ChannelRights ())
9 .isAllowed ()) {

10 throw new NotAuthorizedException("No access to channel: " + type);
11 }
12

13 return actor;
14 }
15

16 public Actor getValidatedActor(String apiKey) {
17 Actor actor = actorRepository.findActorIfActive(apiKey);
18 if (actor == null) {
19 throw new NotAuthorizedException("No access for given API KEY");
20 }
21 return actor;
22 }

Listing 5.24: Get validated Actor functions from PermissionService class

Listing 5.24 presents two functions (from PermissionService class), that run a verifi-
cation process as follows:

• The first step is to obtain an active Actor from ActorRepository (listing 5.25), an
exception will be thrown if no Actor (identified by the given API Access Key) is

43

Message Service

found. Intentionally only one common message for exception is implemented to
make probing API for inactive but registered API keys harder.

• When an Actor is found its channel rights are controlled. An exception is thrown if
the Actor is not allowed to use the given channel.

The function from ActorRepository class presented in (listing 5.25) is an example of a
custom query; @Query annotation is used to extend the query creation mechanism from
JPA to more advanced queries.

1 @Query("SELECT a FROM Actor a
2 WHERE a.id = :id
3 AND (a.expire > current_timestamp OR a.expire IS NULL)")
4 Actor findActorIfActive(@Param("id") String actorId);

Listing 5.25: Get an active Actor (using custom defined query) from ActorRepository

Verification Completed

The verification of an Actor can end with two possible results:

• Verification failed (not existing or inactive actor, channel not allowed to use by an
active actor). In this case the exception that was thrown is handled by a common,
for the whole system, error mechanism described previously in section 5.4.6.

• Positive verification, i.e. the Actor is active and can use the requested channel;
in this case the request payload can be passed to MessageService and the HTTP
Response is based on results returned from the service.

5.5.4 Message Handling

Messages sent through MaaS are handled by MessageService. The “send” method re-
ceives a validated Actor (an application that is allowed to use MaaS) and a HTTP Request
body marshalled into an OutboxMessagePayload object. This method is presented as a
whole in appendix D (listing D.1).

Two initial checks (listing 5.26) are done before a message is processed:

• Content not empty. Throws a WrongPayloadException if the message payload doesn’t
have a “content” field or the field is empty.

• Message type (requested channel) not found. Throws a WrongPayloadException if
the requested message type is not defined in the database.

1 public SendMessageResponsePayload send(Actor actor , OutboxMessagePayload payload) {
2

3 String content = payload.getContent ();
4 if (content == null || content.isEmpty ()) {
5 throw new WrongPayloadException("Empty message content is not allowed");
6 }
7

8 MessageType type = messageTypeService.get(payload.getType ());
9 if (type == null) {

10 throw new WrongPayloadException("Message type not found");
11 }
12 ...
13 }

Listing 5.26: Extract from “send” function from MessageService class

44

Message Service

Message Object

The second part of processing a message (presented on a sequence diagram fig. 23)
involves ChannelFactory and a specific Channel object for message forwarding.

Figure 23: Sequence diagram for message sending, final steps

When a message passes the initial check it is possible to create a Message object
based on the payload (listing 5.27). First, the objects of SendMessageResponsePayload
(details about a HTTP Response to the message sender in section 5.5.5) and Message
classes are created. In case of internal messages, a valid receiver is an Actor which is
in the same Domain as the sender (cross-domain messages are not allowed), has access
to “Internal” channel and is active (not expired access rights). A “getReceiver” function
finds (in the request payload) all valid receivers based on the sender domain and an
array of Actor names (intentionally used unique names instead of id which could allow
sending a message using an API Key of another App); later it updates the response object
with a status for each requested receiver (see listing D.2 in appendix D); if the set of
Actor objects returned from the function is not empty, it means that at least one receiver
is valid. In this case the set of Actor object and additional data are bound to the Message
object:

• Channel type (MessageType object).
• Message content (String).
• Message subject (String).

45

Message Service

• Sender (Actor object).
• External recipients (set of strings, optional if requested to identify App Users i.e.

additional information that can be interpreted by App only, MaaS only forwards it
along with a message)

1 ...
2 SendMessageResponsePayload customResponse = new SendMessageResponsePayload ();
3 Message message = new Message ();
4

5 if (type.getId (). equals("Internal")) {
6 Set <Actor > receivers = getReceivers(
7 actor.getDomain (). getId(),
8 payload.getReceivers (),
9 customResponse);

10

11 if (receivers.isEmpty ()) {
12 throw new WrongPayloadException(
13 "Empty receivers list is not allowed for type:" + type.getId ());
14 }
15

16 message.addReceivers(receivers);
17 ...
18 }
19 ...

Listing 5.27: Extract from “send” function from MessageService class

Additional Message Metadata

A message sent to MaaS can contain additional information, as e.g. a predefined con-
figuration or channel specific data. A class MessageWithMetadata (listing 5.28) was in-
troduced to handle also custom metadata that may not correspond with the database
structure (for Message); the metadata for currently implemented channels (but also in
future extensions of available channels) is handled by Channel implementations (ex-
plained later in Message Processing section).

1 public class MessageWithMetadata {
2 private Message message;
3 private Object payloadExtras;
4 private ConfigSet configSet;
5 ...
6 }

Listing 5.28: Extract from MessageWithMetadata class, consrtuctor, getters and setters omitted

The “getMetadata” (listing D.3 in appendix D) function creates a MessageWithMeta-
data object based on the request payload and a configuration found in the database;
so the Message object is bound to it. The function “setDefaultDataFromMetadata” (list-
ing D.4 in appendix D) is used to set basic message information like e.g. a subject, if not
defined in the Message object itself, but found in the fetched ConfigSet.

1 ...
2 MessageWithMetadata messageWithMetadata = getMetadata(
3 payload.getConfigId (), payload.getMeta(), actor.getId ());
4 messageWithMetadata.setMessage(message);
5 setDefaultDataFromMetadata(messageWithMetadata);
6

7 message.addLog(new Log(message , "Message received by MaaS API"));
8

9 sendMessageToProcessing(messageWithMetadata);
10

11 return customResponse;
12 }

Listing 5.29: Extract from “send” function from MessageService class

46

Message Service

On this stage the first log entry is created for the accepted message. The Log class
(listing 5.30) has an @Entity annotation and represents log data stored in the database
related to a message. More log entries examples, concerning different stages of a mes-
sage processing, in the next section.

1 @Entity
2 public class Log {
3 @Id
4 @GeneratedValue(strategy = GenerationType.AUTO)
5 private long id;
6

7 @ManyToOne
8 @JoinColumn(name = "message_fk")
9 private Message message;

10

11 private String description;
12

13 @Column(
14 columnDefinition = "TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP"
15)
16 private Timestamp time;
17 ...
18 }

Listing 5.30: Extract from Log class, constructors, getters and setters omitted

Message Processing

A “sendMessageToProcessing” function (listing 5.31) from MessageService class gets first
a concrete Channel object from ChannelFactory (listing 5.32).

1 private void sendMessageToProcessing(MessageWithMetadata messageWithMetadata) {
2 Message message = messageWithMetadata.getMessage ();
3 String channelType = message.getType (). getId ();
4

5 Channel channel = this.channelFactory.getChannel(channelType);
6 if (channel == null) {
7 throw new WrongPayloadException("Channel not found for type " + channelType);
8 }
9

10 message.addLog(new Log(message , "Message sent to channel " + channelType));
11 try {
12 channel.send(messageWithMetadata);
13 message.addLog(new Log(message , "Message successfully sent out"));
14 } catch (RuntimeException e) {
15 message.addLog(new Log(message , "Error sending message: " + e.getMessage ()));
16 messageRepository.save(message);
17 throw e;
18 }
19 messageRepository.save(message);
20 }

Listing 5.31: Function “sendMessageToProcessing” from MessageService class

1 public class ChannelFactory {
2 public Channel getChannel(String type) {
3 switch (type) {
4 ...
5 case "Internal": return new InternalChannel ();
6 default: return null;
7 }
8 }
9 }

Listing 5.32: ChannelFactory class

47

Message Service

In the case of sending an internal message there is no need for a complex implementa-
tion of Channel interface (listing 5.33), that is why an InternalChannel class (listing 5.34)
can implement “send” as an empty function, i.e. no additional processing is required. Ex-
ternal messages need to contact external services, that will take over sending after a
message leaves MaaS, so “send” function implementation differs for each channel.

1 public interface Channel {
2 void send(MessageWithMetadata message);
3 }

Listing 5.33: Channel interface

1 public class InternalChannel implements Channel {
2 @Override
3 public void send(MessageWithMetadata message) { }
4 }

Listing 5.34: InternalChannel class

If the requested Channel is not found a WrongPayloadException will be thrown. Oth-
erwise a new log entry, informing that a message was sent to a channel, is created and a
MessageWithMetadata object is sent to the correct Channel by calling its “send” method.
The next log entry depends on results of the message processing by a “send” function
which will throw en exception if something went wrong. Since different channel may
implement throwing of different exceptions, they are caught as a general RuntimeExcep-
tion and thrown forward to exception handler (as described in section 5.4.6); to store
both message and logs in database, also in case of errors during sending, a message need
to be saved using MessageRepository.

5.5.5 Response to Application

If no exception has been thrown until “sendMessageToProcessing” has returned, the
HTTP Response is generated based on the SendMessageResponsePayload (listing 5.35)
object created (by “send” function from MessageService) during the whole process of
sending a message. As mentioned before (in section 5.4.6) exceptions are handled by
RestExceptionHandler.

1 public class SendMessageResponsePayload {
2 private List <ReceiverDetails > receivers;
3 private String message;
4 private int code;
5

6 ...
7

8 public static class ReceiverDetails {
9 private int code;

10 private String actor;
11 private String message;
12 ...
13 }
14 }

Listing 5.35: SendMessageResponsePayload and inner class ReceiverDetails, headers and fields

48

Message Service

5.6 Additional Steps for External Messages

The initial steps in a message processing are similar to those described in section 5.5,
but the differences, concerning external messages, are presented in this section on a
webhook example. The chosen provider of the webhook is Slack15. When the message
has reached the Slack webhook it is available for a Recipient e.g. in a Slack desktop
application; screenshot from the application presented later in this section.

5.6.1 External Message Handling

The “receivers” attribute from a request payload (representing internal receivers of the
message) is expected to be “null”; on the other hand “recipients” attribute is the one that
contains information about where to send the message, i.e. webhook URLs (in context of
different channels it could be e.g. a set of emails, phone numbers etc.). The creation of a
Message object, the fetching of additional metadata and the Channel object creation are
processed as for internal messages.

5.6.2 Message Converting

The external channel implementation must extract data, that is necessary for conver-
ting, from a MessageWithMetadata object. In SlackChannel class (listing 5.36) example,
a “send” function expects, that the list of valid URLs is available.

1 public class SlackChannel implements Channel {
2 @Override
3 public void send(MessageWithMetadata message) {
4 List <URL > urls = getUrls(message);
5

6 if (urls.size() == 0) {
7 throw new WrongPayloadException("No valid url");
8 }
9

10 for (URL url : urls) {
11 sendToSlack(url , message.getMessage ());
12 }
13 }
14 ...
15 }

Listing 5.36: Extract from SlackChannel class

1 private List <URL > getUrls(MessageWithMetadata message) {
2 Set <ExternalRecipient > toSet = message.getMessage (). getRecipients ();
3 List <URL > urls = new ArrayList <>();
4 for (ExternalRecipient to : toSet) {
5 try {
6 urls.add(new URL(to.getRecipient ()));
7 } catch (MalformedURLException e) { }
8 }
9

10 ConfigSet configSet = message.getConfigSet ();
11 if (configSet != null) {
12 String url = configSet.getAttributes (). get(ATTR_URL);
13 if (url != null) {
14 try {
15 urls.add(new URL(url));
16 } catch (MalformedURLException e) {
17 throw new WrongPayloadException("Wrong url format in config: " + url);
18 }
19 }
20 }
21 return urls;
22 }

Listing 5.37: Function “getUrls” from SlackChannel class

15https://api.slack.com/incoming-webhooks

49

Message Service

Data is extracted by a “getUrls” function (listing 5.37). First, for each recipient found
in Message object, a new URL object is created. The first MalformedURLException is ig-
nored, since it is possible that one of the other strings (from recipients list) could be
converted into a valid URL, and the “send” function would throw WrongPayloadExcep-
tion, indicating missing valid URL, if none of the given recipients is approved. Here we
apply the same policy as with an internal message, i.e. send forward if at least one recip-
ient is valid (issue discussed during the Review Meeting after the fourth sprint, see ap-
pendix J.9.1). Different situation concerns the second MalformedURLException in case
of fetching a webhook URL from a predefined configuration, here if an App (sender)
uses a ConfigSet prepared by its App Admin and of some reason this configuration is not
valid, the message will not be sent but saved in the database with an error log (log view
available in e.g. admin panel) to allow future troubleshooting of App configuration.

When all the webhook URLs have been created, each of them is sent to a “send-
ToSlack” function (listing 5.38). This function will prepare a HTTP POST Request using
packages from Spring framework and send it to a given URL; as in the case of internal
messages an eventual exception will be caught by MessageService and and re-thrown
after creating a log entry. An URISyntaxException could be caused by an invalid URL
format, which has been already checked before, but Java requires to catch an exception
here while converting it to URI; the other exception will be thrown if a response from
Slack webhook doesn’t have a 200 code (the response with a code 200 means that the
webhook exists and the message has a correct format).

1 private void sendToSlack(URL url , Message message) {
2 HttpHeaders headers = new HttpHeaders ();
3 headers.setContentType(MediaType.APPLICATION_JSON);
4

5 SlackRequestPayload payload = new SlackRequestPayload(message.getContent ());
6 payload.setUsername(message.getSender (). getName ());
7

8 String subject = message.getSubject ();
9 if (subject != null && !subject.isEmpty ()) {

10 payload.setSubject(subject);
11 }
12

13

14 HttpEntity <SlackRequestPayload > entity = new HttpEntity <>(payload , headers);
15

16

17 RestTemplate restTemplate = new RestTemplate ();
18 try {
19 ResponseEntity <String > response = restTemplate.postForEntity(
20 url.toURI(), entity , String.class);
21 if (response.getStatusCode (). value () != HttpStatus.OK.value ()) {
22 throw new WrongPayloadException(
23 "Error response from Slack(" + response.getStatusCode ()
24 + "): " + response.getBody ());
25 }
26 } catch (URISyntaxException e) {
27 throw new WrongPayloadException("Wrong URL format");
28 }
29 }

Listing 5.38: Function “sendToSlack” from SlackChannel class

50

Message Service

A JSON payload (i.e. fields required by a Slack webhook16) is represented by a Slack-
RequestPayload class (listing 5.39). Message data (“content”, “from”, “subject”) is con-
verted into class attributes (“text”, “username”, “subject”); additionally a “mrkdwn” field
indicates that a Markdown is enabled for formatting a message in a receiver interface
(Slack desktop application or web-browser).

1 public class SlackRequestPayload {
2 private String text;
3 private String username;
4 private String subject;
5 private boolean mrkdwn;
6

7 public SlackRequestPayload(String text) {
8 this.text = text;
9 this.mrkdwn = true;

10 }
11 ...
12 }

Listing 5.39: SlackRequestPayload class

Below an example of messages sent through MaaS using a Slack webhook channel,
as it looks in a receiver interface (fig. 24 is a screenshot from a Slack desktop application
connected to a webhook).

Figure 24: Incoming messages from MaaS, screenshot from a Slack desktop application

5.6.3 Response to Application

A response to a message sender is similar as in the case of internal messages. If no
exceptions has been thrown along the message processing, then MessageController re-
sponds with code 200 and the response payload is a JSON structure marshalled from the
SendMessageResponsePayload object.

16https://api.slack.com/incoming-webhooks

51

Message Service

6 Deployment

In this chapter we will describe how MaaS is prepared for deployment. It hasn’t been
deployed to an actual production environment, because stakeholders are yet to decide
which cloud deployment platform to use; but they wanted the system to be dockerized
for easy deployment at a later stage. This will be realised by creating a Docker Compose
file explained in this chapter.

The Docker technology has been used during development to run Keycloak, MariaDB
and phpMyAdmin services. The phpMyAdmin service is only expected to run in the de-
velopment environment, since this is not strictly needed in production, although it might
be useful for a direct communication with the database without use of API and/or SQL
command line.

6.1 Docker

Docker1 is a software that can create and orchestrate containers. A container is a package
that contains everything the application needs to be able to run. These containers are
similar to Virtual Machines, but more lightweight because they share the same kernel
as the operating system. At the same time they have some of the benefits regarding
isolating resources and allocation. A Virtual Machine is an abstraction at the physical
layer, a container is an abstraction at the application layer [17].

6.1.1 Docker Toolbox

Docker makes it possible to create and run images (as containers) with the docker com-
mand line2; to be able to run docker commands on Windows, Docker Toolbox3 is used
because the native docker application for Windows is not compatible with VirtualBox4

[18]. Docker Toolbox creates a small Linux VM which is used to run docker features that
are not able to run native on Windows (without Hyper-V5).

6.1.2 Docker Compose

Docker Compose6 is used to efficient defining and running multiple docker containers by
creating a YAML7 file to configure different services, which can then be built and started
with a single command.

This file (usually named “docker-compose.yml”) contains a configuration of each ser-
vice. It is possible to e.g. use a pre-defined image from Docker Hub8 (which is a repository
for docker images) or build from a Dockerfile.

1https://www.docker.com
2https://docs.docker.com/engine/reference/commandline/cli/
3https://docs.docker.com/toolbox/toolbox_install_windows/
4https://www.virtualbox.org
5https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/
6https://docs.docker.com/compose/overview/
7http://yaml.org
8https://hub.docker.com

52

Message Service

6.1.3 Dockerfile

This is a text file that contains information on how to build a Docker image; such as every
command needed to build and run the image as a container.

6.2 Reused Docker Images

In this section we will explain how the MariaDB and phpMyAdmin (PMA) images were
used in the Docker Compose file.

For MariaDB and PMA we used the existing images from Docker Hub [19, 20], it was
only needed to add environment variables and volumes. That is why there was no need
to create Dockerfiles for those images.

1 ...
2 # MariaDB - SQL database
3 db:
4 image: "mariadb :10.2.12"
5 ports:
6 - "3306:3306"
7 environment:
8 - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
9 - TZ=${TZ}

10 volumes:
11 # any .sql or .sh file in the db folder will run
12 # when creating this container/volume
13 - "./db:/docker -entrypoint -initdb.d"
14 - db-data:/var/lib/mysql
15 # PHPMyAdmin - for database administration
16 pma:
17 image: "phpmyadmin/phpmyadmin :4.7.7 -1"
18 ports:
19 - "8081:80"
20 environment:
21 - PMA_HOST=db
22 depends_on:
23 - db
24 ...

Listing 6.1: Extract from Docker Compose file

In listing 6.1 the “db” and “pma” services are listed where an image from Docker Hub
is used.

In the “ports” sections the exported ports are defined; the port is exposed in such a
way that the service can be reached from the outside of the container.

The environment variables for MariaDB are set in a separate file (“.env”), which in-
cludes all variables needed in the Docker Compose file. This is a “secret” file which con-
tains information that could be different for each instance of the entire MaaS system;
this file includes information such as usernames, passwords, URLs etc. The environment
variable for PMA (“PMA_HOST” in listing 6.1) uses “db” as a value; this makes use of the
internal networking in Compose. Each service defined in the Compose file is (by default)
in one network where every container can reach each other by their name (here PMA
reaches MariaDB with “db” as a hostname) [21].

In the “volumes” section for “db” (listing 6.1), the folder “./db” is mounted to the
“/docker-entrypoint-initdb.d” folder inside the container. This is a special folder in the
MariaDB image; when the container is started for the first time it will execute all .sh,
.sql and .sql.gz files in this folder alphabetically [19]. We use this feature to initialise
the database by creating .sql files containing SQL commands to create the database, the
table structure, database users and default data (such as e.g. message types). These .sql

53

Message Service

files are based on a file, which is auto-generated by PMA; initial data has been added to
the file.

1 INSERT INTO ‘message_type ‘ (‘id‘, ‘description ‘) VALUES
2 (’Email’, ’Email ’),
3 (’Internal ’, ’Message to registered Actor’),
4 (’Slack’, ’Message to Slack webhook ’),
5 (’SMS’, ’Message to external provider ’);

Listing 6.2: Extract from a file used to import SQL data

6.3 New Docker Images

In this section we will explain how we created Docker images, using Dockerfiles, for
Keycloak, backend and frontend; and how they were included in the Docker Compose
file. These are Docker images that could be used in a production environment.

6.3.1 Keycloak Dockerfile

Keycloak has its own image on Docker Hub [22], but using this image only, it is not
possible to import a previously exported realm. Creating a small Dockerfile based on the
existing Keycloak image mitigates this.

1 FROM jboss/keycloak :3.4.2. Final
2

3 # Adding the realm -export file. consider using a env variable for this
4 COPY realm -export.json /opt/jboss/keycloak
5

6 ENTRYPOINT ["/opt/jboss/docker -entrypoint.sh"]
7 CMD ["-b", "0.0.0.0", "-Dkeycloak.import =/opt/jboss/keycloak/realm -export.json"]

Listing 6.3: Dockerfile.keycloak

Listing 6.3 is the Dockerfile created for Keycloak. The “FROM” statement says which
image to base the new image on. Then the “realm.export” file is copied to a location
inside the container, this file is an export from a Keycloak instance, containing needed
information about the realm (described in section 5.1.1). A “keycloak.import” parameter
is added to the command for running the Keycloak instance; in this way the previously
exported realm is imported to the new instance. It is possible to add existing users al-
ready to this file, or do it later from Keycloak Admin Console.

1 ...
2 kc:
3 build:
4 context: .
5 dockerfile: Dockerfile.keycloak
6 ports:
7 - "8082:8080"
8 environment:
9 - KEYCLOAK_USER=${KEYCLOAK_USER}

10 - KEYCLOAK_PASSWORD=${KEYCLOAK_PASSWORD}
11 - DB_VENDOR=h2
12 volumes:
13 - kc-data:/opt/jboss
14 ...

Listing 6.4: docker-compose.yml Keycloak

The usage of Dockerfiles in Docker Compose requires a specified build context (loca-
tion where docker commands are run from) and a Dockerfile. (listing 6.4). Everything
else is similar to how it was done for MariaDB and PMA (section 6.2).

54

Message Service

6.3.2 Backend

Since the backend is developed as a stand-alone Java application the “openjdk” image
from Docker Hub9 can be used, but using “openjdk” only will clutter the container with
unnecessary data from the building process and will be larger than needed.

To address this problem, multi-stage builds [23] are used, there are some other ways,
like creating multiple Dockerfiles, but using multi-stage builds is the best practice, ac-
cording to Docker documentation [24]. With multi-stage builds it is possible to have
multiple images in one Dockerfile by using the “FROM” statement more then once. Each
of these statements have their own base and files can be copied between them.

1 FROM maven :3.5.3 -jdk -8-alpine as builder
2

3 RUN mkdir -p /usr/src/app
4 WORKDIR /usr/src/app
5

6 COPY pom.xml /usr/src/app
7 COPY src /usr/src/app/src
8

9 RUN mvn package -DskipTests
10

11 RUN mv /usr/src/app/target/maas -app -*. jar /app.jar
12

13 FROM openjdk :8u151 -jdk -alpine3 .7
14

15 EXPOSE 8080
16

17 COPY --from=builder /app.jar .
18

19 CMD ["/usr/bin/java", "-jar", "app.jar"]

Listing 6.5: Dockerfile for backend

Listing 6.5 shows that first the “maven” image10 is used to build the application. Then
the .jar file from the builder image (based on “maven”) are copied into the image (based
on “openjdk”).

Usage of this Dockerfile in the Docker Compose file is similar to how Keycloak was
added, except that the URL to the GIT repository was used as a context, by doing this,
the Compose file is independent from the source code; Docker Compose will clone this
repository and use it as a context before running any Docker commands [25].

6.3.3 Frontend

Angular 5 is built using the Angular CLI command “ng build –prod” for production, this
creates HTML, JavaScript files etc. needed for the Frontend; a Web Server to serve these
files is also needed.

As a Web Server, NGINX11 was chosen because it was one of the recommended servers
by Angular [26]; additionally, according to a Netcraft survey from December 2017 [27],
it was one of the most used Web servers in 2017 and we have had experience with this
server.

The Dockerfile was created in a similar way to the backend, by using Node image from
Docker Hub12 to download dependencies and run the “docker build –prod” command;

9https://hub.docker.com/_/openjdk/
10https://hub.docker.com/_/maven/
11https://nginx.org
12https://hub.docker.com/_/node/

55

Message Service

and then using the NGINX image13, by copying files generated by the build command
into this image, to be served.

The usage of this Dockerfile in the Docker Compose file is similar to how the Docker-
file on backend was used.

13https://hub.docker.com/_/nginx/

56

Message Service

7 Testing

According to Sommerville [1] the testing process has two goals: to demonstrate to the
developer and the customer that the software meets its requirements and discover si-
tuations in which the behaviour of the software is incorrect. In this section we will go
through the testing process we have followed in order to achieve these goals. Firstly
the static code inspections and unit testing are presented; followed by integration and
system tests; finally acceptance testing during meetings with the representatives of the
stakeholders to validate and verify a current version of the system.

7.1 Static Testing

Static testing has been done at earlier stages of the development process. During this
kind of testing the code was not executed but analysed. As long as the software has been
developed, the development group has reviewed it in plenum. Some parts of the source
code has been reviewed during the Sprint Review Meetings with the representatives of
the stakeholders. Ideas and suggestions arose during all these reviews, that allowed us to
improve the quality of the source code. As we mentioned in section 4.3.4 we have used
IntelliJ as a development environment. IntelliJ has code analysis tools that inform about
errors and certain code inefficiencies. These analysis tools has been used while the code
has been developed; also to run bulk inspections in order to focus the analysis on certain
parts of the code.

7.2 Unit Testing

Unit testing aims to discover bugs in the software during development. It consists of
testing program components, such as e.g. methods [1].

All test classes (see listing 7.2) are annotated with @RunWith(SpringRunner.class)1

which cuases that JUnit uses the Spring test framework. They are also annotated with
@SpringBootTest2 which makes sure that all the Spring Boot features are loaded.

For the unit tests, a separate “application.properties” file is created, which is loaded
with the @TestPropertySoruce annotation; this is done to tell Spring to use a different
database (to avoid operations on the real database instance). We use a H2 in-memory
database3 for unit testing.

Since an in-memory database is used, we need to fill it with initial data every time
we create the database, to achieve this a Utils class is created with a function annotated
@PostConstruct, this annotation makes the function run right after constructing the class
object in order to initialise static variables. This function listing 7.1 adds pre-defined
message types, actor types and domain to the database.

1https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/context
/junit4/SpringRunner.html

2https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/test/context/SpringBootTest.html
3http://www.h2database.com/html/main.html

57

Message Service

1 @PostConstruct
2 private void initStatic () {
3 actorRepository = this.actorRepository0;
4 messageTypeRepository = this.messageTypeRepository0;
5 actorTypeRepository = this.actorTypeRepository0;
6 domainRepository = this.domainRepository0;
7 adminRepository = this.adminRepository0;
8

9 // Initialize database with message types
10 messageTypes.add(smsMessageType);
11 messageTypes.add(internalMessageType);
12 messageTypes.add(emailMessageType);
13 messageTypeRepository.save(messageTypes);
14

15 // Initialize db with actor types
16 actorTypes.add(appActorType);
17 actorTypes.add(userActorType);
18 actorTypeRepository.save(actorTypes);
19

20 // Initialize domain
21 domainRepository.save(domain);
22 }

Listing 7.1: Extract of Utils PostConstruct

An example of unit testing for business logic (adding an Actor) is presented in list-
ing 7.2. It uses the Utils class, created to mock different objects necessary for testing
(in this example: an ActorPayload and a currently inlogged user - App Admin). The test
checks if the object created is not null, and that the name of the actor is the same as
indicated in the payload.

1 @RunWith(SpringRunner.class)
2 @SpringBootTest
3 @TestPropertySource(locations = "classpath:application -integrationtest.properties")
4 public class ActorServiceTests {
5 ...
6 @Test
7 @Transactional
8 public void addActorTest () {
9 ActorPayload actorPayload = Utils.createMockActorPayload ();

10 Actor actor = actorService.add(Utils.createMockUser (). getUserId(), actorPayload);
11 assertNotNull(actor);
12 assertThat(actor.getName ()). isEqualTo(actorPayload.getName ());
13 }
14 ...
15 }

Listing 7.2: Extract of ActorServiceTest

The business logic of MaaS is implemented by services, therefor the main focus, con-
sidering test coverage, has been on classes from the service package. Following the re-
quirements (appendix J.12.1) the test coverage on main functionality should be over
75% or explained if below that level; as presented below (fig. 25) all services except for
KeyCloakUserService are over the expected level; that service is responsible for fetching
data from external API (Keycloak) and extracting data from HTTP Request to MaaS API
(authorisation token as described in section 5.3.1), therefor we used integration testing
(section 7.3.2) instead of unit test for this service.

58

Message Service

Figure 25: Test coverage, IntelliJ

7.3 Integration Testing

In addition to testing of a single unit we run tests of integration of multiply units working
together.

There are tests for querying the API directly through HTTP requests (see listing 7.3).
This creates a mock sender and receiver, and uses TestRestTemplate4 to send the HTTP
request.

7.3.1 White Box Testing

Knowing how the data for the API response is created (described previously in sec-
tion 5.5.5) it has been possible to prepare an expected payload and compare it with
the one generated by a POST Request. In the following example of sending a message
(listing 7.3) two actors (App), having access to an Internal channel, are created in the
test environment. Based on the Internal message flow in the system (as presented pre-
viously in section 5.5) a confirmation of a successfully sent message should have the
JSON format that can be compared with the expected payload.

1 @Test
2 public void sendInternalMessageOneOkTest () {
3 Actor senderActor = Utils.createMockActor ();
4 Actor receiverActor = Utils.createMockActor ();
5

6 SendMessageResponsePayload expextedPayload = new SendMessageResponsePayload(
7 Arrays.asList(new SendMessageResponsePayload.ReceiverDetails(
8 200,
9 receiverActor.getName(),

10 "OK"
11)),
12 "Found all receivers",
13 200
14);
15 OutboxMessagePayload outboxMessagePayload = Utils
16 .createMockInternalOutboxMessagePayload(senderActor , receiverActor);
17

18 SendMessageResponsePayload payload = this.restTemplate.postForObject(
19 "/msg/api/send", outboxMessagePayload , SendMessageResponsePayload.class
20);
21

22 assertThat(payload). isEqualTo(expextedPayload);
23 }

Listing 7.3: Testing send message API

4https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/test/web/client/TestRestTemplate.html

59

Message Service

7.3.2 Black Box Testing

As described previously by using an ActorRepository example (section 5.4.4), Spring Data
Repositories are utilised in the system. It has been unknown for us how the specific SQL
queries were created and if their results are as expected; to ensure the correctness of
@Entity class definition (including SQL constraints) and query methods, phpMyAdmin
was used to inspect the results of different API calls during other tests. The main goal for
those tests in the project has been to establish a database structure that corresponds with
the design model and confirm that services (that call query methods) are able to store
expected data in the database.

Another tool that was used to perform integration tests of backend API was Postman.
In the development environment (with both Keycloak and database instances running, or
not in test cases of unavailable services) we simulated different API calls and inspected
responses; also in those cases it was possible to extend those tests with database inspec-
tions using phpMyAdmin. To test the integration of Keycloak and a proper behaviour of
the KeyCloakUserService we extracted authorisation token from the HTTP Request from
Admin Panel in-logging screen and reused it (in both original and altered forms). Ad-
ditionally we could operate directly on the Keycloak instance using its Admin Console;
altering user’s (App Admin) rights and force logging out are some of the examples.

7.4 System Testing

After the previous tests were conducted it was possible to implement new functionality
into frontend and test the current version of the entire MaaS system through the Admin
Panel web interface.

7.5 Validation and Verification

During the Sprint Review Meetings, the Product Owner could check the functionality on
different stages of the development process. The aim of these tests were not to find code
bugs, but to check if the right product and functionality were developed; additionally the
code quality could be verified. [1].

The Review Meeting after the fifth Sprint (appendix J.10.1) is an example of the Va-
lidation and Verification process that was present during development. When the current
stage of the MaaS system (following requirements in the Sprint Backlog) was demon-
strated we confirmed that it is the right product, but new ideas, suggestions and require-
ments arose. Below some of the adjustments that have been done to follow the new and
more precise requirements:

• Timestamp for log of messages: We presented a graphical interface that showed if
a message had been delivered or not. The Product Owner discovered that it would
be useful for inspections purposes to have a timestamp, indicating when a message
was received and delivered. During planning of the sixth sprint (appendix J.10.2)
those suggestions were considered in the Sprint Backlog.

• Admin inspection functionlity: According to requirements, both the App Users
and the App Admins have access to App message inbox. Whenever a message is
delivered to an actor it should be marked as delivered. However when we showed
and tested this functionality with the stakeholders, we found out the following: If

60

Message Service

an App Admin inspects the message inbox of an App, then those messages were
marked as delivered since the admin panel used the same API endpoint as an App.
This could led to the uncertainty of who has fetched the App inbox, an App User
or an App Admin. A new requirement from Product Owner was added after that
testing: an “inspection mode” that allows App Admin to inspect the inbox of an
App, but at the same time the messages are not marked as delivered. To fulfil this
requirement a new API endpoint was implemented; this new API, would detect if
the request came from the App or from the App Admin. In the last case the messages
are not marked as delivered.

A picture from Development Team meeting (fig. 26) shows how that issue was han-
dled.

Figure 26: API changes after Alpha Testing

As mentioned previously (section 7.1) we inspected the source code during Review
Meetings. When the system functionality was demonstrated and validated after the fifth
Sprint, we wanted to present concrete implementation choices and validate the code re-
garding its quality and chosen technology. Our concern at that point was the difficulty to
write good unit tests that could check business logic without unnecessary dependencies.
Following the advice to keep Controllers as small as possible, we decided to refactor the
structure of the code as follows:

• Firstly, we extracted all remaining functionality from all methods annotated with
@RequestMapping; those were supposed to receive a HTTP Request, delegate work,
and send HTTP Respond base on results of that delegated work.

• Secondly, the entire business logic of the system was gathered and a Service layer
(with defined boundaries towards both Controllers and Database Management lay-
ers) was established.

• Finally the business logic was divided into several entities with a common concern,
those became the concrete service classes.

On the following Review Meeting we presented both new structure and new unit tests,
that corresponded with it.

7.6 User Testing

The purpose of this project was to develop a REST API service that would be integrated
with various client systems (Headit customers); those system are supposed to be inte-
grated later by a third part. Deployment infrastructure was not available during deve-

61

Message Service

lopment, so the tests were limited to the development environment. The project hasn’t
reached the stage for wider use of User Testing.

“Alpha Test” and “Beta Test” were not relevant in the context of the project maturity.

62

Message Service

8 Discussions and Conclusions

In previous chapters we have presented the solutions that have been chosen, in this one
we want to present reasons for the final decisions and discuss alternative solutions that
were considered during the development process. Later we evaluate our work during the
project and how the work progress differs from the one we planned in the beginning.
The chapter is concluded with the presentation of a potential future development and
integration of the system; the final section of this chapter presents the summarised results
of the project, concerning the product, how it answers requirements and what we have
learnt.

8.1 Choices

In this section we discuss choices made during the whole development process; this
includes both technology and organisational choices.

8.1.1 HTPP vs HTTPS

Already during the first meeting with the representatives of the stakeholders we dis-
cussed the confidentiality of sent messages (appendix J.2). One of the issues was use of
HTTPS. We agreed with Product Owner’s proposal to start development using HTTP. It
has been decided that before the system is to be put into production the SSL certificate
need to be acquired, HTTP ports closed and only HTTPS access to API allowed.

8.1.2 Securing API with Keycloak

As it was mentioned in section 5.3.1 the frontend is secured with Keycloak. The same
policy is applied to backend as it was described in section 5.4.1. If an App Admin wants
to create, administrate or delete an App, he or she must be authenticated by Keycloak.
Several solutions were considered to secure this part of the API offered by MaaS, among
them Spring Security. On the Sprint Review Meeting, after the third sprint (appendix J.8),
we presented Keycloak integration with Spring and it was accepted without need to
change security model to the one including Spring Security framework. The Spring Se-
curity framework allows to secure an existing application, so it could be applied in the
future if required; during the discussions with the Product Owner it was decided that we
should focus on the main functionality of the system.

API endpoints used by an App to access MaaS resources (send a message, fetch own
inbox) are not secured with Keycloak. In the beginning of implementation (the first sprint
dedicated to programming) we met problems with obtaining from Keycloak the “offline
token”, that was supposed to identify an App Admin, and an application that could utilise
it and connect to MaaS. Instead of creating a mock application that could be used as a
sender (App) we started the development of the core MaaS functionality based on an
open API endpoint for message sending and available tools for sending HTTP Requests
(Postman). After that sprint we presented and discussed a proposal to use UUID as API
access keys, this was accepted (appendix J.8) and used since then, App verification pro-

63

Message Service

cess is described previously in section 5.5.3. The reason to not securing a message API
with Keycloak is that an application would have to store additional App Admin creden-
tials (e.g. in form of an offline token, that represents a Keycloak registered user, without
need to store username and password). Those credentials could be potentially misused
to get access to the API protected by Keycloak (by an App pretending to be an App Ad-
min). Additionally, in the case of an application that is administrated by more than one
App Admin, it would have to store multiply (or selected) credentials and send a message
as one of administrators not as an application itself, so additional identification of sender
would also be necessary.

8.1.3 Development Methodology

Already at the first meeting with the representatives of the stakeholders (during the
project presentation at NTNU) it was clear that the scope, the priority focus, require-
ments etc. might be changed during the time dedicated to the project. Due to the lack
of experience in some of the technologies, that were planned to be used (Spring, Key-
cloak, Angular among them) and integration between all components (both developed
and reused), it would be difficult to present a reliable project plan that would guaran-
tee the delivery of the expected product. We decided to hold regular (at least once in
two weeks) meetings with the representatives of the stakeholders to discuss a current
progress, test solutions we found since the last meeting and plan the next period of
work; the presented (partial) solutions were to be developed incrementally (including
code improvement) considering potential requirements change or problems blocking the
progress. The representatives of the stakeholders were supposed to be involved in the
progress although the final decisions on chosen technology or solution were left to us.

Based on the following description of the work progress we decided to use an Agile
methodology for the development process. The Scrum methodology was known for both
parts and we decided that it would fit the project. Following the methodology a Product
Owner was chosen and we focused on creating an initial Product Backlog.

Evaluation of the chosen methodology later in section 8.2

8.1.4 Backend Framework

Regarding the choice of framework or technology to develop the backend, the only re-
quirement from the Product Owner was to use well known and open source technologies
(organisational requirements described previously in section 2.4.2). The Product Owner
suggested Spring Boot but we had the possibility to choose another framework. We de-
cided that Spring Boot could be a good choice based on:

• Java: we wanted to work with a framework that uses a programming language we
had learnt and worked with before.

• New technology: during this project we had to learn new technologies, and we
found convenient to choose a Java framework as one of them.

• Easy start: we found that Spring Boot is well documented, has a lot of tutorials
and support for starting a new project.

• Keycloak integration: another positive aspect of Spring Boot was the fact that
it could be integrated with Keycloak (Keycloak offers an adapter for Spring Boot
[14]).

64

Message Service

8.1.5 Database

Concerning the election of database technology, we evaluated the advantages and con-
straints of SQL and NoSQL databases. We discussed this with Product Owner (appendix J.7)
and he suggested to study the example of a “blog entry” in case we wanted to use a
NoSQL database. We appreciated the flexibility that NoSQL offers, but we decided to use
a relational database due to the following reasons:

• Experience: courses we took during the studies concerned mostly SQL databases.
• Time: to get more familiar with the NoSQL technology and integration of it into the

project would take time and effort that we decided to put into the other aspects.
• Integration: we chose a Spring framework and found more resources, that ex-

plained how it could be integrated with SQL database by using JPA.

8.1.6 Frontend Framework

We had experience with plain HTML, CSS, JavaScript from courses, but wanted to learn
a framework that would bind all those together. The only framework we had experience
with is Polymer1, but we wanted to learn a new one. As for the backend, a consideration
of a known and open source technology was requested. The Product Owner suggested
Angular 5 (organisational requirements described previously in section 2.4.2) and we
decided to try it. We found that Angular framework provided a clear separation between
the logic (TypeScript) and the view (HTML) which helped us to hold control; it was
straight forward and intuitive to build an Angular project thanks to the component based
structure. As for the negative sides of Angular, it was not so easy to implement the testing
functionality.

8.1.7 Channels

The first model of MaaS, based on the initial project description, presumed that messages
will be forwarded to all channels in a similar way, and additional messages might be sent
between two users through the Admin Panel. During the meetings with Product Owner
we discussed priorities and it has been decided, that the extended interpretation of in-
ternal messages (can be exchanged between two or more Apps) should be implemented
first; the complexity of the system increased due to the necessity of handling new func-
tionality (e.g. a message inbox stored and accessed beyond presumed log only, delivery
status etc.).

The effort put into internal message exchange caused that the time dedicated to other
channels was reduced, but we decided that we wanted to implement at least two outgo-
ing channels that would support:

• a possibility of sending a message to an mobile/desktop application that the Recipi-
ent may use (PUSH to mobile realised using a webhook as described in section 5.6)

• a common channel that doesn’t require any additional software (implemented
email sending).

After we have made research regarding SMS channel, it turns out that both binding
to the chosen provider and a significant cost is required in order to use the provider
API. We discussed our findings with Product Owner and decided not to implement this

1https://www.polymer-project.org

65

Message Service

channel as bound to a specific provider, but instead we added a handler for an exception
(ChannelNotImplementedException) thrown by a “send” method in SmsChannel class;
this is to be changed when a provider will be chosen.

8.2 Work Evaluation

In this section we will describe the impressions we have about the work and the conse-
quences of choices made during the project realisation.

8.2.1 Scrum

First of all, we think that is has been positive to use the Scrum methodology for the
following reasons:

• Sprints: on every Sprint we presented the solutions to all the tasks that were pre-
viously agreed with the Product Owner during the Sprint Planning Meeting. The
fact of having milestones every two weeks helped us to have control over the project
and motivated us to work towards the goal.

• Feedback: we found out that it was motivating to get a frequent feedback from the
Product Owner; it helped us to remain on track and gave inspiration and ideas too.

• New Requirements: some new requirements arose during the project. We think
that the methodology helped us to deal with them.

8.2.2 New Technologies

One of the goals we had when we started the project was to learn and get as much
experience as possible. We think we have achieved this goal and all group members have
worked with all aspects of the project. We have gained experience with Spring Boot to
develop the REST API. We have used JPA and Hibernate to work with the database.
Angular 5 was used to develop a Single-Page Application (Admin Panel). Additionally
we have used Maven and Docker, for build and deployment.

8.2.3 Risk Management

During the project we have experienced some problems that were identified already
when we created the project plan (appendix F.5.3); those risks were described and ad-
dressed.

• Time needed to learn new technologies: To overcome this problem we assigned
the “specialist” (in the specific technology) role to one group member. A “specialist”
had responsibility to research and learn a tool/technology and share his knowledge
with the others. The idea was to speed up the learning process during the project.

• Some task needed more time than expected: We had god communication about
eventual delays and good will to make efforts to get the different tasks done.

8.2.4 Comparison of Plan and Realisation

The initial plan for implementation (appendix F.6) and the actual work progress (ap-
pendix B) differs. The following tasks were realised differently according to changing
requirements and difficulties that occurred during development:

• Sender/Receiver mock application were not implemented separately; the function-
ality of sending/receiving messages in Admin Panel and existing tools (Postman)

66

Message Service

were used.
• Web-app development took one extra sprint due to extended functionality (replace-

ment of Sender/Receiver mock application) and additional work with REST API.
• REST API service was developed separately from Web-app Angular project; there-

for in the Gantt diagram that represents the actual progress (appendix B) time
dedicated to REST API (Message, Admin) is presented separately, not as a part of
Admin Web-app that we planned in the beginning.

• Admin mobile application was not realised; already during the first meeting (ap-
pendix J.2) we discussed necessity of a mobile version of Admin Panel and followed
required focus on a web-application for PC.

• Cloud Deployment task has been partially realised (described previously in chap-
ter 6); we have used Docker technology from the beginning of the development and
prepared the project for potential future deployment, but since the Cloud provider
hasn’t been chosen and the deployment infrastructure not available we could not
test (and potentially adjust) MaaS outside of the development environment.

• Report - we started to work with the final report earlier than expected and therefor
an implementation report were not written as a separate task. Additionally the third
status report was replaced with the submission of the main part of this report.

• Outgoing Channels - we have dedicated an additional sprint for work with the
outgoing messages; internal messages we focused on in the fifth sprint required
more effort than expected, so additional work on Slack and Email channels was
delayed.

8.3 Critique of Bachelor Thesis

In this section we would like to present alternatives to the methods and solutions cho-
sen during the work on the project, considering those we could realise differently (and
better) then we initially assumed.

8.3.1 Database Technology

As described previously (section 8.1.5) we chose a relational database model. It was con-
venient to use in the early stage of the project, but when we reached the point when
details about implementation of concrete outgoing channels were discovered we could
benefit more from the flexibility of the NoSQL technology. At this point it was more effi-
cient to remodel the existing database structure than introduce changes in both Database
Management and Database layers on backend; we think that following the initial choice
was a right thing to do, although it could have been better to work with NoSQL from the
beginning.

8.3.2 Test on Frontend

As long as we developed the frontend, we tested it using the browser console and in
addition we did functional testing as it is described in section 7.5. However we decided
to run unit tests in the frontend when we already had developed a part of its functionality.
We studied Jasmine2 (a testing framework that supports Behaviour Driven Development)
and Karma3 (a tool that allows to run the test in different browsers) [28]. When we

2https://jasmine.github.io/
3https://karma-runner.github.io/2.0/index.html

67

Message Service

started to implement them into the Angular project, the results were not easy to interpret
and we weren’t able to solved those issues within the time we could dedicate to. Since
we didn’t get the expected results with Jasmine and Karma, we decided not to put more
efforts to it. We continued testing the frontend using the console and doing functional
testing.

8.3.3 Time Estimation

We believe that the lack of experience caused underestimating of both complexity and
time needed to perform various tasks during development. Estimations during daily
Scrum meetings were not precise enough and often additional overtime needed to fulfil
the tasks we decided to be done for the Sprint; regardless of the time it would take.
Although some of the tasks were completed earlier than evaluated, the total workload
for each Sprint was not balanced; we should rather put more issues back to the Product
Backlog after each Review Meeting and prepare the development plan more carefully.

8.3.4 Tasks Order

Additionally to the time estimation on the daily work basis, we could have also done
a better long time work evaluation. From the final product perspective it might have
been better to focus on REST API service on backend and when it would become mature
enough start with the frontend project to create a web interface for administration using
already implemented APIs. The choice we made at the beginning caused that we had to
handle all unknown technologies (Angular, Spring, Keycloak) at once; one of the effects
was the time loss due to refactoring and integration issues. On the other hand it might
have been difficult to present and validate a current progress to the Product Owner based
on code reviews and development tools like Postman.

8.4 Future Work

We believe that the system is mature enough to demonstrate it to end-users and the func-
tionality it provides could result in the integration of MaaS in the systems they already
use or planning to order. However to go over to the production it is necessary to address
all security issues (e.g. those discussed in section 8.1).

Another technical challenge might be a deployment; although we prepared the sys-
tem so it should be possible to deploy it using Docker technology supported by current
providers of Cloud services, some additional adjustments might be necessary when the
provider will be chosen.

To allow better integration with the current system (e.g. the one presented in the
business case in appendix C.1) it is recommended to decide on SMS provider and imple-
ment the provider specific payload into SmsChannel class. Adding a possibility to receive
a message through another common channel (besides implemented email channel) like
SMS would significantly increase attractiveness of the system for potential customers.

It is possible to build a wider system based on MaaS; e.g. a client application (desktop
or/and mobile) that could be used as App for sending and receiving messages; and po-
tentially configure own settings through API requests to MaaS (similar to Admin Panel,
but considering limited rights).

The system has been designed and implemented so it should be easy to add new out-

68

Message Service

going channels. Since the only limitation is an Internet connection it is actually possible
to exchange messages between any devices one could imagine; so the IoT is available to
integrate with MaaS.

8.5 Results

In this section we present our interpretations of the results and the development process.

8.5.1 Message Service

We manage to develop a service that provides API for message sending and access con-
figuration. Messages are forwarded and logged on all stages of processing. The messages
processed by MaaS can be received by three types of channels:

• Internal messages - support for communication between registered applications
within a domain.

• Receiver dependent - a webhook provided by Slack, that allows to receive a mes-
sage in an application already used by Recipient.

• Common - a channel that does not require registration in MaaS or a specific appli-
cation to receive a message. Email is an example of this channel.

We developed a simple web interface, to contact MaaS and administrate Apps, but it is
possible also to call API directly; this could allow integration into an external adminis-
tration interface.

8.5.2 Efficiency and Performance Targets

Since the system hasn’t been in production, it is difficult to evaluate, if it would reach
expected goals. It works as a stand-alone application and REST API that the system
provides is possible to integrate with external services; so performance targets, as named
in the project plan (appendix F.1.2), are fulfilled. Considering efficiency goals the system
hasn’t been yet integrated or presented to Headit customers, so it is too soon to evaluate
benefits they gain.

8.5.3 Learning Goals

The main goal, to experience a full-stack developer work, as named in the project plan
(appendix F.1.2), was achieved, as we have worked with all aspects of a complete system.
We had an opportunity to try and learn new technologies. Not all of them were easy to
implement, but fails and integration issues allowed us also to learn what to avoid.

We became more familiar with Agile methodology (Scrum) in both overview aspect
during process management, and daily work with Scrum meetings etc.

Our programming skills have been improved as we implemented the designed system
model; we could measure a constant progress during development by evaluating discus-
sions considering design and implementation improvement along the entire process, as
we discovered new possibilities. The main technologies that we could name are Spring,
Angular 5 frameworks and database integration using JPA.

69

Message Service

Bibliography

[1] Sommerville I. Software Engineering. Pearson Education Limited; 2016.

[2] Connolly T, Begg C. Database Systems. Pearson Education Limited; 2015.

[3] Jendrock E, Ball J, Carson D, Evans I, Fordin S, Haase K. The Java EE 5 Tutorial.
Oracle; 2010.

[4] Richards M. Software Architecture Patterns: Understanding Common Architecture
Patterns and when to Use Them. O’Reilly Media, Incorporated; 2015.

[5] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable
object-oriented software. Addison-Wesley; 1994.

[6] Baeldung. Build your API with Spring [Internet]. Baeldung; [cited May 2018].
Available from: http://www.baeldung.com.

[7] Fowler M. Inversion of control containers and the dependency injection pattern
[Internet]. Martin Fowler; 2004 [cited May 2018]. Available from: https:
//martinfowler.com/articles/injection.html.

[8] Oracle. Core J2EE Patterns - Data Access Object [Internet]. Oracle; 2018. Available
from: http://www.oracle.com/technetwork/java/dataaccessobject-138824.
html.

[9] Google Inc. Angular Docs [Internet]; [cited May 2018]. Available from: https:
//angular.io/docs.

[10] Agile Alliance. Scrum Master [Internet]. Agile Alliance; [cited May 2018]. Available
from: https://www.agilealliance.org/glossary/scrum-master.

[11] Atlassian. What is Git [Internet]. Atlassian; [cited May 2018]. Available from:
https://www.atlassian.com/git/tutorials/what-is-git.

[12] Keycloak. About Keycloak [Internet]. Keycloak; [cited May 2018]. Available from:
https://www.keycloak.org/about.html.

[13] Keycloak. Keycloak Documentation [Internet]. Keycloak; [cited May 2018]. Avail-
able from: https://www.keycloak.org/docs/3.0/index.html.

[14] Keycloak. Securing Apps [Internet]. Keycloak; 2018. Available from: https://
www.keycloak.org/docs/latest/securing_apps/index.html.

[15] Vigolo MG. Keycloak for Angular [Internet]. NPM Inc; [cited May 2018]. Available
from: https://www.npmjs.com/package/keycloak-angular.

70

http://www.baeldung.com
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
https://angular.io/docs
https://angular.io/docs
https://www.agilealliance.org/glossary/scrum-master
https://www.atlassian.com/git/tutorials/what-is-git
https://www.keycloak.org/about.html
https://www.keycloak.org/docs/3.0/index.html
https://www.keycloak.org/docs/latest/securing_apps/index.html
https://www.keycloak.org/docs/latest/securing_apps/index.html
https://www.npmjs.com/package/keycloak-angular

Message Service

[16] Bernard E. Hibernate Annotations [Internet]. JBoss; [cited May 2018]. Available
from: https://docs.jboss.org/hibernate/stable/annotations/reference/
en/html_single/.

[17] Docker Inc. What is a container [Internet]. Docker Inc; [cited May 2018]. Available
from: https://www.docker.com/what-container.

[18] aplatypus. Ticket #16801 Running a Virtual Machine when Windows Hyper-V is
enabled should NOT Crash Windows [Internet]. Virtualbox; [cited May 2018].
Available from: https://www.virtualbox.org/ticket/16801.

[19] Docker Hub. mariadb - Docker Hub [Internet]. Docker Inc; [cited May 2018].
Available from: https://hub.docker.com/_/mariadb/.

[20] phpMyAdmin. phpmyadmin - Docker Hub [Internet]. Docker Inc; [cited May
2018]. Available from: https://hub.docker.com/r/phpmyadmin/phpmyadmin/.

[21] Docker Inc. Networking in Compose [Internet]. Docker Inc; [cited May 2018].
Available from: https://docs.docker.com/compose/networking/.

[22] JBoss. keycloak - Docker Hub [Internet]. Docker Inc; [cited May 2018]. Available
from: https://hub.docker.com/r/jboss/keycloak/.

[23] Docker Inc. Use multi-stage builds [Internet]. Docker Inc; [cited May
2018]. Available from: https://docs.docker.com/develop/develop-images/
multistage-build/.

[24] Docker Inc. Best practices for writing Dockerfiles [Internet]. Docker Inc; [cited May
2018]. Available from: https://docs.docker.com/develop/develop-images/
dockerfile_best-practices/.

[25] Docker Inc. Compose file version 3 reference [Internet]. Docker Inc; [cited May
2018]. Available from: https://docs.docker.com/compose/compose-file/.

[26] Google Inc. Angular 5 - Deployment [Internet]. Google Inc; [cited May 2018].
Available from: https://angular.io/guide/deployment.

[27] Netcraft. Angular 5 - Deployment [Internet]. Netcraft; [cited May 2018].
Available from: https://news.netcraft.com/archives/2017/12/26/
december-2017-web-server-survey.html.

[28] Murray N, Coury F, Lerner A, Taborda C. Ng-Book. The complete guide to Angular.
Fullstack.io; 2018.

[29] Oracle. Code Conventions for the Java TM Programming Language [Internet]. Or-
acle; [cited May 2018]. http://www.oracle.com/technetwork/java/javase/
documentation/codeconvtoc-136057.html.

71

https://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/
https://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/
https://www.docker.com/what-container
https://www.virtualbox.org/ticket/16801
https://hub.docker.com/_/mariadb/
https://hub.docker.com/r/phpmyadmin/phpmyadmin/
https://docs.docker.com/compose/networking/
https://hub.docker.com/r/jboss/keycloak/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/compose/compose-file/
https://angular.io/guide/deployment
https://news.netcraft.com/archives/2017/12/26/december-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/12/26/december-2017-web-server-survey.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

Message Service

A Definitions

Text Description
MaaS Message as a Service
CRUD Create, Read, Update, Delete
UUID Universally Unique Identifier
POJO Plain Old Java Object
MaaS Admin A superuser that administrates the MaaS server.
App Admin An administrator for a group of applications using the MaaS system.
Actor Represents a Receiver or a Sender using our API (App).
App An application registered at MaaS, eligible to use the service.
App User An user of an application connected to the MaaS service.

Receiver An application, hardware (e.g. mobile phone) or other interface the
out-going message is send to, from the MaaS server

Recipient An user of a Receiver
PMA phpMyAdmin
IoT Internet of Things
API Application Programming Interface

72

Message Service

B Gantt Diagram

The Gantt diagram presented below on figure 27 shows how the development process
was realised.

Figure 27: Gannt diagram for project progress, MS Project

B.1 Milestones and Deadlines

• Project Plan - 01.02.2018
• First status report - 20.02.2018
• Second status report - 01.04.2018
• Final submission - 16.05.2018

Additionally we have chosen two deadlines to insure the completion of both working
software and final report.

• Infrastructure - 06.02.2018 - to ensure that by the start of the third sprint we would
have all necessary tools and resources to start with programming activities.

• No more major requirement changes - 10.04.2018 - We agreed to not accept major
changes beyond that point (start of seventh sprint) in order to reliably deliver the
software defined so far.

73

Message Service

C User Stories and Scenarios

C.1 Business case - My Custom Suit

My Custom Suit delivers custom-made suits. It controls a chain of shops and each of them
offers tailoring services self and (or) has an agreement with tailors working in their own
studios.

Currently ordering customer service has access to a web-application where the tailors
and accounting office can register and check the order status.

The order flow in the system works as follows:

• A customer visits a shop and chooses a suit model.
• Measurements are taken and a delivery date is set.
• The order is sent to the tailors.
• The tailor informs when the work is done.
• When all components are ready, the customer is informed that the suit is ready to

be tried.
• All the components are adjusted and sewed together.
• The customer picks up the suit.
• The tailors receive the payment for the components they sewed.

My Custom Suit noticed that more orders come in some periods of the year. It is impor-
tant for them to address them all and inform the customer quickly, regardless of number
of orders. This would build the company’s reliability. It is important that punctuality is
supported on all the stages of the order realisation.

C.1.1 Actors involved

• Customer Service. Works in the shop, registers measurements, registers an order
in the system, edits the order in the system after a suit is tried and completes the
order.

• Customer. Orders a suit.
• Tailor. Sews part(s) for a suit.
• Accounting Office. Sends payment to tailors.

C.1.2 Goals

Automatic information to customer

The current process is manual. The customer service checks an order and if all the com-
ponents are ready contacts the customer via email or sms. Automation of the process
could let the customer service work with other tasks.

• More effective communication with customers.
• Avoid waiting too long to try a suit when all components are ready.

74

Message Service

Effectiveness in completing the order

Currently all the information about the suit components is gathered manually. It can hap-
pen that the components must wait even if they are ready due to the information didn’t
come or wasn’t fetched. This process can be enhanced by automatic warning when a com-
ponent is ready. This automation can also increase the production. When all components
are ready the customer should be informed to come to try the suit.

• Reduce storing time of ready components.
• More effective production of complete suits.

Assumption: A tailor has access to a computer or mobile phone.

75

Message Service

D Code Examples

This appendix consists of code examples, that were too large to present as a whole in the
report. Parts of functions/classes in this appendix are placed previously as listings.

1 public SendMessageResponsePayload send(Actor actor , OutboxMessagePayload payload) {
2

3 String content = payload.getContent ();
4 if (content == null || content.isEmpty ()) {
5 throw new WrongPayloadException("Empty message content is not allowed");
6 }
7

8 MessageType type = messageTypeService.get(payload.getType ());
9 if (type == null) {

10 throw new WrongPayloadException("Message type not found");
11 }
12

13 SendMessageResponsePayload customResponse = new SendMessageResponsePayload ();
14

15 Message message = new Message ();
16

17 if (type.getId (). equals("Internal")) {
18 Set <Actor > receivers = getReceivers(actor.getDomain (). getId(),
19 payload.getReceivers (), customResponse);
20

21 if (receivers.isEmpty ()) {
22 throw new WrongPayloadException(
23 "Empty receivers list is not allowed for type:" + type.getId ());
24 }
25

26 message.addReceivers(receivers);
27 } else {
28 customResponse.setCode (200);
29 customResponse.setMessage("External message accepted for processing");
30 }
31

32 message.setType(type);
33 message.setContent(content);
34 message.setSender(actor);
35 message.setSubject(payload.getSubject ());
36

37 message.setRecipients(getExternalRecipients(payload.getRecipients (), message));
38

39 MessageWithMetadata messageWithMetadata =
40 getMetadata(payload.getConfigId (), payload.getMeta(), actor.getId ());
41

42 messageWithMetadata.setMessage(message);
43 setDefaultDataFromMetadata(messageWithMetadata);
44

45 message.addLog(new Log(message , "Message received by MaaS API"));
46

47 sendMessageToProcessing(messageWithMetadata);
48

49 return customResponse;
50 }

Listing D.1: Send message function from MessageService class

76

Message Service

1 private Set <Actor > getReceivers(int senderDomainId , List <String > requestedReceivers ,
2 SendMessageResponsePayload customResponse) {
3 Set <Actor > receivers = new HashSet <>();
4

5 if (requestedReceivers == null) {
6 return receivers; // Empty set.
7 }
8

9 for (String receiver : requestedReceivers) {
10 Actor actorReceiver = actorRepository.findActorIfActiveByName(receiver);
11 if (actorReceiver != null) {
12 if (actorReceiver.getDomain (). getId() == senderDomainId) {
13 if (actorReceiver.canUseInternalChannel ()) {
14 receivers.add(actorReceiver);
15 customResponse.addReceiver (200, receiver , "OK");
16 } else {
17 customResponse.addReceiver (400, receiver ,
18 "Actor cannot use Internal channel");
19 }
20 } else {
21 customResponse.addReceiver (400, receiver , "Actor not in sender domain");
22 }
23 } else {
24 customResponse.addReceiver (400, receiver , "Actor not found");
25 }
26 }
27

28 if (receivers.isEmpty ()) {
29 customResponse.setCode (400);
30 customResponse.setMessage("Haven ’t found any of " + requestedReceivers.size()
31 + " receivers");
32 } else if (receivers.size() != requestedReceivers.size ()) {
33 customResponse.setCode (200);
34 customResponse.setMessage("Found" + receivers.size() + " of "
35 + requestedReceivers.size() + " receivers");
36 } else {
37 customResponse.setCode (200);
38 customResponse.setMessage("Found all receivers");
39 }
40

41 return receivers;
42 }

Listing D.2: Function “getReceivers” from MessageService class

1 private MessageWithMetadata getMetadata(Long configId , Object extras , String actorId) {
2 MessageWithMetadata messageWithMetadata = new MessageWithMetadata ();
3 messageWithMetadata.setPayloadExtras(extras);
4

5 if (configId == null || configId == -1) {
6 return messageWithMetadata;
7 }
8

9 ConfigSet configSet = this.configSetRepository.
10 findByIdAndChannelRights_ChannelId_Actor_Id(configId , actorId);
11 if (configSet == null) {
12 throw new WrongPayloadException("Unknown config ID");
13 }
14 messageWithMetadata.setConfigSet(configSet);
15 return messageWithMetadata;
16 }

Listing D.3: Function “getMetadata” from MessageService class

77

Message Service

1 private void setDefaultDataFromMetadata(MessageWithMetadata messageWithMetadata) {
2 Message message = messageWithMetadata.getMessage ();
3 ConfigSet configSet = messageWithMetadata.getConfigSet ();
4

5 if (configSet == null) {
6 return;
7 }
8

9 // Use subject in config if not set.
10 if (message.getSubject () == null || message.getSubject (). isEmpty ()) {
11 String subject = configSet.getAttributes (). get("subject");
12 if (subject != null) {
13 message.setSubject(subject);
14 }
15 }
16 }

Listing D.4: Function “setDefaultDataFromMetadata” from MessageService class

78

Message Service

1 @Repository
2 public interface ActorRepository extends CrudRepository <Actor , String > {
3

4

5 /**
6 * Find Actor by ID
7 *
8 * @param id of the actor.
9 * @return actor.

10 */
11 Actor findById(String id);
12

13 /**
14 * Check if actor exists and is active. (Without returning the actor)
15 *
16 * @param actorId the id of the actor to check
17 * @return true or false
18 */
19 @Query("SELECT CASE WHEN COUNT(a) > 0 THEN true ELSE false END FROM Actor a WHERE a.id = :id
20 AND (a.expire > current_timestamp OR a.expire IS NULL)")
21 boolean existsActorByIdAndIsActive(@Param("id") String actorId);
22

23

24 /**
25 * Find if an Actor is active *
26 *
27 * @param actorId actorId
28 * @return Actor
29 */
30 @Query("SELECT a FROM Actor a WHERE a.id = :id AND (a.expire > current_timestamp
31 OR a.expire IS NULL)")
32 Actor findActorIfActive(@Param("id") String actorId);
33

34

35 /**
36 * Find if an actor is active
37 *
38 * @param actorName name of the actor
39 * @return actor
40 */
41 @Query("SELECT a FROM Actor a WHERE a.name = :name AND (a.expire > current_timestamp
42 OR a.expire IS NULL)")
43 Actor findActorIfActiveByName(@Param("name") String actorName);
44

45

46 /**
47 * Deactivate an actor
48 *
49 * @param actorId
50 * @return
51 */
52 @Transactional
53 @Modifying
54 @Query("UPDATE Actor a SET a.expire = current_timestamp WHERE a.id = :id")
55 Integer deactivateActor(@Param("id") String actorId);
56

57

58 /**
59 * Find all Actors owned by an Admin.
60 *
61 * @param adminId
62 * @return List of actors owned by the admin
63 */
64 Set <Actor > findAllByAdmins_Id(String adminId);
65

66

67 /**
68 * Find Active Actors owned by an certain Admin.
69 *
70 * @param adminId
71 * @return Set of active Actors owned by the admin
72 */
73 @Query("SELECT a FROM Actor a LEFT JOIN a.admins k WHERE k.id = :id
74 AND (a.expire > current_timestamp OR a.expire IS NULL)")
75 Set <Actor > findActiveActorsByAdmin(@Param("id") String adminId);
76

77

78 /**
79 * Find Inactive Actors owned by an certain Admin

79

Message Service

80 *
81 * @param adminId
82 * @return Set of inactive actors ownned by the admin.
83 */
84 @Query("SELECT a FROM Actor a LEFT JOIN a.admins k WHERE k.id = :id
85 AND a.expire < current_timestamp")
86 Set <Actor > findInactiveActorsByAdmin(@Param("id") String adminId);
87

88 /**
89 * Finds all actor within a given domain.
90 * @param domainId int domain id.
91 * @return Set of actors within given domain.
92 */
93 @Query("SELECT a FROM Actor a WHERE a.domain.id = :id AND (a.expire > current_timestamp
94 OR a.expire IS NULL)")
95 Set <Actor > findActiveActorsByDomain(@Param("id") int domainId);
96 }

Listing D.5: ActorRepository interface

80

Message Service

E REST API Documentation

This is the documentation for how our REST API works with the different endpoints,
request payloads and response payloads.

The REST API documentation was created with Swagger and later exported to PDF
and included in this document (See next page).

(Internal links in this document does not work, due to how including PDF works with
Latex)

81

Overview
Api Documentation

Version information
Version : 1.0

License information
License : Apache 2.0
License URL : http://www.apache.org/licenses/LICENSE-2.0
Terms of service : urn:tos

URI scheme
Host : localhost:8080
BasePath : /

Tags
• admin-controller : Description Admin Panel Service

• index-controller : This handles all erros not handled by RestExceptionHandler

• message-controller : Description Message Service

Consumes
• application/json

Produces
• application/json

Paths

Returns information about all the admins registered
in KeyCloak

GET /admin/api/allusers

1

Message Service

82

Description

The user must have a rolle as Maas_Admin

Responses

HTTP
Code

Description Schema

200 OK
< CurrentUser >
array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

An admin adds a new actor

POST /admin/api/db/actors

Description

Notes

Parameters

Type Name Description Schema

Body
payload
required

payload ActorPayload

Responses

HTTP
Code

Description Schema

200 OK
Swager example
Actor

2

Message Service

83

HTTP
Code

Description Schema

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns all the actors asociated with this user

GET /admin/api/db/actors

Parameters

Type Name Description Schema Default

Query
status
optional

all, active or inactive string "all"

Responses

HTTP
Code

Description Schema

200 OK
< Swager example
Actor > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

3

Message Service

84

Adds a new kind of actor

POST /admin/api/db/actors/types

Description

You must have admin rights

Parameters

Type Name Description Schema

Body
payload
required

payload ActorTypePayload

Responses

HTTP
Code

Description Schema

200 OK ActorType

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns the different kinds of actors

GET /admin/api/db/actors/types

Description

You must have admin rights

4

Message Service

85

Responses

HTTP
Code

Description Schema

200 OK
< ActorType >
array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns information of a own actor

GET /admin/api/db/actors/{actorId}

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK
Swager example
Actor

401 Unauthorized No Content

403 Forbidden No Content

5

Message Service

86

HTTP
Code

Description Schema

404 Not Found No Content

Tags

• admin-controller

Edits information about a own actor

PUT /admin/api/db/actors/{actorId}

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Body
payload
required

payload ActorPayload

Responses

HTTP
Code

Description Schema

200 OK
Swager example
Actor

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

6

Message Service

87

Tags

• admin-controller

Removes an own actor

DELETE /admin/api/db/actors/{actorId}

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK
ResponseStatusPa
yload

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

Tags

• admin-controller

Updates a channel configuration for a certain actor

PUT /admin/api/db/actors/{actorId}/config/{configId}

Description

You must have admin rights and own the actor

7

Message Service

88

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Path
configId
optional

config ID to update integer (int64)

Body
payload
required

payload ConfigSetPayload

Responses

HTTP
Code

Description Schema

200 OK ConfigSet

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Deletes a channel configuration for a certain actor

DELETE /admin/api/db/actors/{actorId}/config/{configId}

Description

You must have admin rights and own the actor

Parameters

8

Message Service

89

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Path
configId
optional

configuration ID to be removed integer (int64)

Responses

HTTP
Code

Description Schema

200 OK
Swager example
Actor

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

Tags

• admin-controller

Configures a channel for a certain actor

POST /admin/api/db/actors/{actorId}/config/{typeId}

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Path
typeId
optional

The kind of channel that is going to be
configured. i.e. (SMS, E-mail…)

string

9

Message Service

90

Type Name Description Schema

Body
payload
required

payload ConfigSetPayload

Responses

HTTP
Code

Description Schema

200 OK
Swager example
Actor

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Gets the inbox of a certain actor

GET /admin/api/db/actors/{actorId}/inbox

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

10

Message Service

91

HTTP
Code

Description Schema

200 OK
<
InboxMessagePayl
oad > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns all the logs associated with an Actor

GET /admin/api/db/actors/{actorId}/log

Description

You must have admin rights and own the actor

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK < Log > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

11

Message Service

92

Tags

• admin-controller

See the status of message

GET /admin/api/db/actors/{actorId}/log/{messageId}

Description

You must have admin rights and own the actor that sent the message

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Path
messageId
optional

The Id of the message wanted to show log for integer (int64)

Responses

HTTP
Code

Description Schema

200 OK
OutboxMessagePa
yload

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Adds a new domain to the MaaS

POST /admin/api/db/domains

12

Message Service

93

Description

Only for admins with Maas_Admin role

Parameters

Type Name Description Schema

Body
payload
required

payload Domain

Responses

HTTP
Code

Description Schema

200 OK Domain

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Gets all the domains existing in the MaaS

GET /admin/api/db/domains

Description

Only for admins with Maas_Admin role

Responses

HTTP
Code

Description Schema

200 OK < Domain > array

13

Message Service

94

HTTP
Code

Description Schema

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

getAvailableInternalReceivers

GET /admin/api/db/domains/actors

Responses

HTTP
Code

Description Schema

200 OK
<
InternalReceiverP
ayload > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Adds a admin to a certain domain

POST /admin/api/db/domains/{domainId}/admins

Description

Only for admins with Maas_Admin role

14

Message Service

95

Parameters

Type Name Description Schema

Path
domainId
optional

ID of domain to add admins to integer (int32)

Body
payload
required

payload Admin

Responses

HTTP
Code

Description Schema

200 OK Admin

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns all the admins that belong to a certain domain

GET /admin/api/db/domains/{domainId}/admins

Description

Only for admins with Maas_Admin role

Parameters

Type Name Description Schema

Path
domainId
optional

ID of domain to get users from integer (int32)

15

Message Service

96

Responses

HTTP
Code

Description Schema

200 OK
< CurrentUser >
array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Returns the different kinds of messages (channel
types)

GET /admin/api/db/messages/types

Description

You must have admin rights

Responses

HTTP
Code

Description Schema

200 OK
< MessageType >
array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

16

Message Service

97

Returns own information of the user

GET /admin/api/user

Description

Return a user by Id

Responses

HTTP
Code

Description Schema

200 OK CurrentUser

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• admin-controller

Called on all unhandled errors

POST /error

Responses

HTTP
Code

Description Schema

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

17

Message Service

98

Tags

• index-controller

Called on all unhandled errors

GET /error

Responses

HTTP
Code

Description Schema

200 OK No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

Tags

• index-controller

Called on all unhandled errors

PUT /error

Responses

HTTP
Code

Description Schema

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

18

Message Service

99

Tags

• index-controller

Called on all unhandled errors

DELETE /error

Responses

HTTP
Code

Description Schema

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

Tags

• index-controller

Called on all unhandled errors

PATCH /error

Responses

HTTP
Code

Description Schema

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

19

Message Service

100

Tags

• index-controller

Called on all unhandled errors

HEAD /error

Responses

HTTP
Code

Description Schema

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

Tags

• index-controller

Called on all unhandled errors

OPTIONS /error

Responses

HTTP
Code

Description Schema

204 No Content No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found ErrorResponse

20

Message Service

101

Tags

• index-controller

Gets all channel rights associated with an certain
actor.

GET /msg/api/config/{actorId}

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK
< ChannelRights >
array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• message-controller

Gets the inbox of a certain actor

GET /msg/api/messagebox/{actorId}

Description

All the messages will be marked as delivered

21

Message Service

102

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK
<
InboxMessagePayl
oad > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• message-controller

Sends a message using a certain actor

POST /msg/api/send

Description

It is necessary to know the Actor Key

Parameters

Type Name Description Schema

Body
payload
required

payload
OutboxMessagePayl
oad

Responses

22

Message Service

103

HTTP
Code

Description Schema

200 OK
SendMessageResp
onsePayload

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Consumes

• application/json

Tags

• message-controller

Gets all log entries for a given message.

GET /msg/api/status/{actorId}/{messageId}

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Path
messageId
optional

ID of message wanted to get log entries for integer (int64)

Responses

HTTP
Code

Description Schema

200 OK < Log > array

401 Unauthorized No Content

23

Message Service

104

HTTP
Code

Description Schema

403 Forbidden No Content

404 Not Found No Content

Tags

• message-controller

Gets all actors in own domain, i.e. all potential
receivers of internal messages.

GET /msg/api/{actorId}/actors

Parameters

Type Name Description Schema

Path
actorId
optional

The Actor UUID string

Responses

HTTP
Code

Description Schema

200 OK
<
InternalReceiverP
ayload > array

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

Tags

• message-controller

24

Message Service

105

Definitions

Swager example Actor

Name Description Schema

admins
optional

< Admin > array

channelRights
optional

< ChannelRights >
array

description
optional

the actors description string

domainName
optional

string

expire
optional

date until this actor is valid, null for never expire string

id
optional

the actors id UUID string

inbox
optional

< Delivery > array

name
optional

string

type
optional

ActorType

ActorPayload

Name Schema

channelRights
optional

< ChannelRightsPayload > array

description
optional

string

25

Message Service

106

Name Schema

expire
optional

string

name
optional

string

type
optional

ActorTypePayload

ActorType

Name Schema

description
optional

string

id
optional

string

ActorTypePayload

Name Schema

description
optional

string

id
optional

string

Admin

Name Schema

domainName
optional

string

id
optional

string

ChannelRights

26

Message Service

107

Name Schema

allowed
optional

boolean

configSets
optional

< ConfigSet > array

messageType
optional

string

ChannelRightsPayload

Name Schema

allowed
optional

boolean

configSets
optional

< ConfigSetPayload > array

messageType
optional

string

ConfigSet

Name Schema

attributes
optional

< string, string > map

id
optional

integer (int64)

name
optional

string

ConfigSetPayload

Name Schema

attributes
optional

< string, string > map

27

Message Service

108

Name Schema

id
optional

integer (int64)

name
optional

string

CurrentUser

Name Schema

domain
optional

string

domainId
optional

integer (int32)

email
optional

string

firstname
optional

string

lastname
optional

string

maasadmin
optional

boolean

roles
optional

< string > array

userId
optional

string

username
optional

string

Delivery

28

Message Service

109

Name Schema

delivered
optional

boolean

receiverName
optional

string

Domain

Name Schema

description
optional

string

id
optional

integer (int32)

name
optional

string

ErrorResponse

Name Schema

debugMessage
optional

string

message
optional

string

status
optional

enum (100, 101, 102, 103, 200, 201, 202, 203, 204, 205,
206, 207, 208, 226, 300, 301, 302, 303, 304, 305, 307, 308,
400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411,
412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423,
424, 426, 428, 429, 431, 451, 500, 501, 502, 503, 504, 505,
506, 507, 508, 509, 510, 511)

timestamp
optional

string

InboxMessagePayload

29

Message Service

110

Name Description Schema

configId
optional

ID of config to use for this message. (created in Admin
Panel)

integer (int64)

content
required

Contents of the message string

delivered
optional

Determines if the message is already seen or not
Example : false

boolean

meta
optional

Contains metadata needed for some channels object

receivers
optional

Name of Actors to send to for internal messages < string > array

recipients
optional

External recipients < string > array

senderName
optional

Name of the sender which sent the message string

subject
optional

string

type
required

Message Type
enum (Email,
Internal, Slack)

InternalReceiverPayload

Name Schema

description
optional

string

name
optional

string

Iterable« Swager example Actor»
Type : object

30

Message Service

111

Iterable«ActorType»
Type : object

Iterable«ChannelRights»
Type : object

Iterable«CurrentUser»
Type : object

Iterable«Domain»
Type : object

Iterable«InboxMessagePayload»
Type : object

Iterable«MessageType»
Type : object

Log

Name Schema

description
optional

string

id
optional

integer (int64)

messageId
optional

integer (int64)

messageSubject
optional

string

time
optional

string

31

Message Service

112

MessageType

Name Schema

description
optional

string

id
optional

string

properties
optional

< string, boolean > map

OutboxMessagePayload

Name Description Schema

apiKey
optional

Actor UUID string

configId
optional

ID of config to use for this message. (created in Admin
Panel)

integer (int64)

content
required

Contents of the message string

meta
optional

Contains metadata needed for some channels object

receivers
optional

Name of Actors to send to for internal messages < string > array

recipients
optional

External recipients < string > array

subject
optional

string

type
required

Message Type
enum (Email,
Internal, Slack)

ReceiverDetails

32

Message Service

113

Name Schema

actor
optional

string

code
optional

integer (int32)

message
optional

string

ResponseStatusPayload

Name Schema

code
optional

integer (int32)

message
optional

string

SendMessageResponsePayload

Name Schema

code
optional

integer (int32)

message
optional

string

receivers
optional

< ReceiverDetails > array

33

Message Service

114

Message Service

F Project Plan

F.1 Goals and boundaries

F.1.1 Background

Headit is developing a lot of different IT solutions for different costumers, when doing
that they don’t want to make compromises. But messaging systems is often not focused
on, due to e.g. lack of resources and economics.

Therefore they want to offer a more general service for message handling to the end
user.

F.1.2 Goals

Efficiency targets

• To offer more quality at a cheaper cost: Customers that uses this system will be able
to focus more on their core business.

• Efficiency will be improved by removing the previously manual work of informing
customers, workers etc. about different events within a company by creating the
possibility to automate this process.

• The safety will be increased since it will be possible to track the messages and check
if they were sent.

• More control over some business activities in a simple way.

Performance targets

The goal is to create a messaging hub that should work as a stand-alone application and
could be configured against external services.

features:

• Store messages tied to application ID, role, or user ID.
• Route the messages through different channels.
• Admin interface for administration and overview of messages
• Possibility to define and send messages through a dashboard (Admin interface)

The objective is to give the customer a better solution that will solve these challenges.
They also want to offer better interaction and information flow between customers solu-
tions.

Learning goals

• Get more experience with new technology and tools.

◦ Database
◦ Java/REST/Frontend (Angular 5)
◦ IDE and build tools (Spring Boot)
◦ Open Source technology
◦ Planning and managing tools (JIRA, Confluence)

115

Message Service

• Work experience with complete project from plan to production.
• Cooperate with experienced personnel at Headit.
• Work with “real life” project.

F.1.3 Boundaries

Technical

• The application should be able to run in the customers infrastructure or be deliv-
ered as a SaaS.

• Integration could be done through API.
• Admin interface should work on mobile and work with all browsers that support

HTML5

Practical

The major difficulty while working on the project could be meetings with the product
owner in Hamar. We should be there at least once per two weeks and need to reserve
additionally two hours per meeting.

F.2 Scope

F.2.1 Field of study

Along history, we humans have had the need for share with others our thoughts, feelings
or what have happened around us. The way we fulfill this need of communication varies
depending of the kind of information, to whom this information is transmitted, where is
the receiver and the technology that is available at the moment: Sometimes we can just
speak directly with another person to transmit our information. In some cases, we need
that our information is received by persons that are far away from us physically and/or in
time. It can happen that we need that our messages are transmitted immediately. Other
times it is important that our message remains unchanged along time.

Over time we have developed many different communication systems: Cave paintings,
hieroglyphs, smoke signals, messenger pigeons... And more recently we use phones, e-
mails, SMS or social networks to exchange information with other persons.

F.2.2 Delimitation

The exchange of information is not exclusive to human beings. Information is exchanged
between machines and between humans and machines and it is very valuable for com-
panies in order to know and serve the needs of its customers in an efficient way. Having
access to the right information at the right time and being able to understand it, can a
company use its resources effectively and it can constitute a competitive advantage.

In this project, we will develop a system that makes possible to exchange information
between the different applications, systems and users that are part of a company. This
communication will can be sent using different channels e.g. SMS or email and a copy of
this communication must be kept. The system must be able to add new communication
channels in the future and in addition it must offer a communication interface so it can
be used by many different systems/applications.

116

Message Service

F.2.3 Project Description

Headit AS wants to develop a messaging hub (MaaS, Message as a Service) that collects,
interprets and reacts to this information. The service will work as stand-alone application
and it must be possible to adapt the service to the concrete needs of a every single
customer. It should be possible to install it on customers infrastructure or using Cloud
technology (SaaS).

The system will:

• Receive and interpret the messages that are received and route them via different
channels (mobil app, e-mail, SMS, IoT etc),

• Save the messages linked with the application and person(roll or username) that
sent a message.

• Offer a dashboard where the users have an overview over the messages that have
been sent before, and where they can define which applications can use the mes-
saging service and which channels will be available for them. It will be possible to
send messages to other users using this dashboard.

• Be possible to configure against external services.

Figure 28: The MaaS (Message as a Service), receives messages from the applications and it for-
wards them to the final recipient. At the same time a copy fo the messages is kept. The service
will have a web application where it will be possible to configure which applications will have
permission to use the system

F.3 Project Organisation

F.3.1 Responsibility and Roles

According to Scrum methodology (Choice of methodology is described in appendix F.4.1),
we will use the following roles: All group members i.e Manuel Jesús Bravo García, Tom
Roar Furunes and Tomasz Rudowski are part of Development team.

Since we are only three and with similar experience in the matter we decided to share
a Scrum Master responsibilities by using a combination of “Rotating Scrum Master” and

117

Message Service

“Part time scrum master”. (https://www.agilealliance.org/glossary/scrum-master)

Each group member will also continue to work as a part of development team (with
lower workload) when its his time to take a Scrum Master role. Schedule coming later
while working on project timeline.

Stakeholders (Headit) representatives are Bjørn Tore Wiken and Ronny Kristiansen.
Ronny Kristiansen will take a role of Product Owner as well.

In addition to roles that arise from chosen methodology we decided to give following
responsibilities to group members considering project progress management and report-
ing:

• Project manager - Tomasz Rudowski
• Contact with stakeholders - Manuel Bravo
• Meeting reports - Manuel Bravo
• New tools - Tom Roar Furunes
• Final report content and correctness - Tomasz Rudowski
• Cloud deployment, Maintenance - Tom Roar Furunes
• Development: Frontend - Tomasz Rudowski
• Development: Backend- Tom Roar Furunes
• Development: libraries for outgoing messages, external systems - Manuel Bravo

F.3.2 Routines and Rules

Following rules has been decided to be used during the project:

• Expected work time is set to 30 hours per week.
• Expected active collaboration and developing new skills necessary to accomplish

goal.
• Obligatory meetings with supervisor and stakeholders.
• After each meeting short report is written and added into Meeting Reports log.

Written in LATEX.
• Respect deadline for assigned tasks, inform as soon as possible if not managed to

fulfil it.
• When consensus in group cannot be reached, members are obligated to put effort

to find a solution satisfactory for all.

Following actions will be taken in case of violation of rules:

• Intern discussion concerning the problem.
• After that formal warning note, with a description of rule violation, written into

work-log.
• After the second warning an information send to supervisor.
• Finally formal apply to remove from group. Not applicable within two weeks to

project deadline.

F.3.3 Tools

We are going to use several tools to help us trough the project. Here is a list of such tools
and their area of application.

• ShareLaTeX - Tool for editing LATEX-documents. Used for every document created.

118

Message Service

• Google drive - Cloud storage. used for storing pictures figures and other files rela-
tive to the project

• JIRA - Scrum board/Issue tracker. Used for all events to preform.
• Confluence WiKi. For documentation
• BitBucket. Used for version control (GIT).
• Slack. Used for communication between team members.
• MS Project. Creation of gantt diagrams etc.
• Eclipse IDE for programming in Java.
• Draw.io to make diagrams (Architecture, Class Diagrams etc.)

F.4 Planning, Follow-up, Documentation

F.4.1 Division of the project

Already during the first meeting with Headit we agreed to use a Scrum methodology.
Due to the complexity of the project, our experience and the period of time we have, we
think that Scrum with sprints of two weeks is an appropriate methodology in order to:

• Better knowledge of the needs of the employer “Headit AS”. At the beginning there
will be many unknown requirements and technical specifications that we need to
get familiar with. We think that it will be better for us to get known with this
requirements as long as we work and get familiar with the system that is going to
be implemented.

• Minimize risks: The period of time we have to get done with our bachelor thesis is
limited. That’s why we think it’s convenience that we start to deliver some require-
ments at the beginning of this period of time. It can be risky if we invest too much
time specifying requirements that maybe we don’t have time to implement.

• Motivation. We have deadlines every two weeks. We think that this will help us to
have control of the development of the project.

• Feedback. We think it will be positive for the development of the project and for us
the fact that we will get continuous feedback about of work.

• Learning. In every sprint we will discuss what have we done right and wrong. This
will be helpful in order to do every time a better job.

F.4.2 Plan for status meetings and decision points

Project goes over 9 sprints (60 working hours spread over 2 weeks per sprint). We de-
cided on following meetings are important for project progress.

• At the beginning of sprint we will have Sprint Planning Meeting at Hamar
• Each day we will start with intern Daily Meeting to plan tasks for the day and dis-

cuss what was done the day before and any difficulty we experienced the previous
day.

• Every week we will have meetings with supervisor to confirm project progress
• At the end of the sprint we will have Sprint Review Meeting in Hamar
• After Sprint Review Meeting we will have Sprint Retrospective Meeting to evaluate

work done and introduce organisational changes if necessary for the next sprint.

The scrum methodology is flexible and is open to changes, but right now we see the
followings decision points:

119

Message Service

• 2nd February (Sprint no. 2). Decide basic Architecture to work with.
• 9th February (Sprint no. 3). Decide Design based on accepted Architecture.
• 15th February (Sprint no. 3). Infrastructure and tools must be ready in order to

start the implementation.
• 6th April (Sprint no. 6) After this date we will not start to develop new outgoing

messaging channels.
• 6th April (Sprint no. 6) Based on current progress we must decide if Mobil App will

be implemented or we stay with Web App for PC and focus on another aspects (for
example wider choice of outgoing channels).

F.5 Organising and quality assurance

F.5.1 Documentation, standards and source code

We will use the Java code convention for writing Java code [29].

F.5.2 Configuration

We will use Atlassian tools made available to us from Headit. We will use mainly JIRA
integrated with Bitbucket and Confluence.

F.5.3 Risk assessment

Below (table 1) we have a table of possible risks, with the probability and effect of
this risk. The probability can be low, moderate or high and the effect can be tolerable,
serious or catastrophic. The affect tells what part the risk affects; project, product and/or
business.

We also have a measurement for some of the worst risks (table 2).

Table 1: Possible incidents
Num Risk Affect Probability Effect Measures Description
1 AWS Not available Project, Product Low Tolerable No
2 New channel after deadline Project Low Serious No
3 Minor requirement change Project High Tolerable No Expected changes in product backlog.
4 Major requirement change Project Low Serious No New architecture
5 Change of external systemes Project, Product Low Serious No KeyCloak, etc.

6 Tool Change Project Moderate Tolerable No
IDE, plugin,
management system, etc.

7 Programming language change Project, Product Low Catastrophic Yes

8 New tech more complicated than expected Project, Business Moderate Serious Yes
Not enough time to be
familiar with new tech

9 Task takes more time than assigned Project High Serious Yes Too optimistic planning poker

10
Team member not able to work
over long time Project Low Catastrophic Yes 1/3 of the time gone!

11 Data loss Project, Product, Business Low Catastrophic Yes Loss of source code, report, etc.

Table 2: Measurements
Num Measure

7
To minimise the risk for this happening we will do research
to make sure the chosen language is compatible and well suited for the task at hand.
If the language still have to be changed we wil make a plan for how this transition is going to happen.

8
To minimise the risk for this happening we have one member of the team assigned to each part of
a project who will study this task before everyone else and implementation.
We will also use help from stakeholders, supervisor and other experts on NTNU.

9
We need to make sure to communicate that the task takes longer time and if necessary
change priorities and/or resources around.

10
We are going to have regular meetings where we inform every team member of what we are
working on and how it’s working such that everyone have a common understanding of
everything. This will minimise the risk for lost work if someone stop working on something.

11
To prevent data loss, we are using cloud services like bitbucket, sharelatex and Google drive
to store data. As well as local backups on each team members PC.

120

Message Service

F.6 Plan for Implementation

F.6.1 Gantt-diagram

Figure 29: Gantt-diagram with basic activities, MS Project

F.6.2 Milestones and Deadlines

Following deadline have been decided when the project started; all of them concerns
report submissions:

• Project Plan - 01.02.2018
• First status report - 20.02.2018
• Second status report - 01.04.2018
• Third status report - 01.05.2018
• Final submission - 16.05.2018

Additionally we have chosen two deadlines to insure completion of both working soft-
ware and final report.

• Infrastructure - 05.02.2018
• No more major requirement changes - 06.04.2018

The first one is a start of the third sprint when we need to have all necessary tools
and resources to start with programming activities. The second one is the end of the
sixth sprint, after which we should not accept requirement concerning additional outgo-
ing messages channels in order to reliably deliver the software according to requirements
sent until that date; we also consider that this could be a starting point for Cloud Deploy-
ment (details will come later in requirements, currently consideration: Docker compose
for entire system)

121

Message Service

F.6.3 Activity List

Planning

First two sprints are mainly dedicated to create a Project Plan, but after we manage to
define and confirm system context, boundaries, interaction and behavioral models we
would like to start with next activities i.e. Architecture and Design details.

Architecture

We will create a proposal to an Architecture Design based on initial project description
and meetings with stakeholders. Initial Architecture must be created at least at the end
of the second sprint, but we are aware and prepared for changes while becoming more
familiar with new technology and requirements or external systems change. We would
like to employ Architecture Patterns if applicable in defined context.

Design

We will start as soon as significant part of Architecture Design would be confirmed.
Since an important part is interaction with external systems we need to focus on details
concerning systems confirmed and locked for changes and internal cooperation of main
components i.e Message Hub Server - Admin App and Message Hub Server - Client App.
We consider use of Design Patterns like for example Adapter to ensure cooperation of
components in case of change. We accept that detailed design of parts of the system will
need to be updated later.

Programming

This activity may be divided into main groups:

• User authentication. Parallel work on Backend (Server integrated with external au-
thentication system - KeyCloak) and Frontend (Web App for Admin user to interact
with server)

• Registration of Client App that may use Message Service. This part may include
creating of Mock App instances that may be registered on the Server using Admin
App.

• Client App Authentication. Messages send by registered App accepted by Server.
• Implementation of Outgoing Channels. Number and complexity of channels to be

decided based on project progress. Must reserve sufficient time for research and
integration tasks.

• Mobile Admin App. Potential project enhancement that allows to mobile applica-
tion instead of desktop version of Admin App.

• Cloud Deployment. Current state of discussion about deployment is that service
is supposed to available as "Message as a Service" and technology considered is
Docker.

Research

There are many new technologies and tools we need to be familiar with to efficiently
work with a project. Most of the time we need to use them at the beginning to support
choices made during planning of system design. Additionally it is important to use tools
all the way from the beginning; that saves us time for resource migration. Already at this
stage we are aware that we need to put an extra effort to familiarise us with state of art

122

Message Service

concerning Output Channels therefore will reserve time for it at the beginning of the fifth
sprint

Report

During the first three sprints most of time dedicated to work with the report will be
used to describe planning process and outcomes from requirements, architecture, design
and technology choices. We want to work with elements important for the Final Report
parallel with implementation, but reserve time during two last sprints to focus on it. Ad-
ditionally we have decided to reserve some time before each of three partial submission
to generate a status report.

F.6.4 Time and Resource Plan

Total time effort to the Project

Based on that each group member will work 30 hours per week, 18 working weeks means
we estimate that our effort to the project will be around 1600 working hours. We decided
to assign following amounts to main aspects of the project:

• Research and Planning - 300 hours
• Implementation and Deployment - 1000 hours
• Report and Documentation - 300 hours

Sprint plan

We decided to divide work on the project into 9 sprints, each sprint goes over two weeks,
which means around 180 working hours each. Dates for all sprints together with main
activity planned for each of them are listed below. Sprint no. 6 goes over three weeks, but
should have the same amount of working hours considering Easter holidays; we accept
that not all engaged parts may be available and active and therefore planned one week
off. At least two last days of the last sprint (after final report submission) we need to use
for eventual issues concerning infrastructure, accounts, backups, resources.

• Sprint 1 (08.01.2018 - 21.01.2018), Planning, Research
• Sprint 2 (22.01.2018 - 04.02.2018), Architecture, Design, Tools
• Sprint 3 (05.02.2018 - 18.02.2018), Programming
• Sprint 4 (19.02.2018 - 04.03.2018), Programming
• Sprint 5 (05.03.2018 - 18.03.2018), Programming
• Sprint 6 (19.03.2018 - 08.04.2018), Programming
• Sprint 7 (09.04.2018 - 22.04.2018), Deployment, Report
• Sprint 8 (23.04.2018 - 06.05.2018), Report,
• Sprint 9 (07.05.2018 - 20.05.2018), Report, Maintenance

Sprint details

We decided to divide this into three places, where each place contains what we do there.

• Group work at School

◦ discuss
◦ teach
◦ program
◦ report overview

123

Message Service

• Individual work at home

◦ research
◦ study
◦ program
◦ report

• Work at Headit

◦ discuss
◦ programming
◦ work experience.

We have considered following schedule (Picture 30) for each sprint

Figure 30: Schedule for a sprint, time dedicated to the project in grey

124

Message Service

G Contract

The contract between Headit and the group members is attached below.

125

Message Service

126

Message Service

127

Message Service

128

Message Service

H Status Report 1

16.02.2018

H.1 Status for:

• Planlegging (jfr. fremtidsplan): Vi er på riktig spor, ingen bekymringer.
• Organisering av gruppens arbeid og ansavarsområder: Foreløpig utfører vi ar-

beidet som gruppearbeid.
• Klargjøring av problemstilling: Vi har en klar idé om de som vi skal utvikle.

Endringer har blitt håndtert.
• Løsningsmetode Evolusjonær utvikling, rammeverk og teknologi bestemt, jobber

med integrasjonsdetaljer.
• Rapportskriving: Noterer (log) underveis.

H.2 Totalstatus for punktene over

Vi har en ferdig fremdriftsplan, som vi foreløpig holder oss til. Organisering av gruppens
arbeid og ansvarsområder ble definert i prosjektplanen og det har ikke oppstått behov
for å endre dem. Når det gjelder problemstillinger har vi hatt flere diskusjoner både
sammen og med oppdragsgiveren. Vi har blitt enige med oppdragsgiveren om å utvide
omfanget av prosjektet: Den opprinnelige meldingsflyten skal nå også inkludere en intern
postboks. Dette har medført noen endringer i konseptuelt design, men vi regner med at
vi skal levere alt vi har blitt bedt om innen fristen. Når det gjelder rapportskriving tar vi
notater og bilder underveis som skal utnyttes senere.

H.3 Muligheter Trusler/Problemer

Bruk av rammeverk og gjenbrukte komponenter som for eksampel autoriserings-tjeneste
(Keycloak) gir oss mulighet å ikke fokusere på sikkerhetsdetaljer og forenkler utvikling,
men samtidig forårsaker det en rekke integrasjonsproblemer som vi må vurdere under-
veis.

H.4 Hva er avsluttet

Vi er ferdige med prosjektplanen, generell arkitektur av systemet (detaljer kan endres un-
derveis da vi blir mer kjent med teknologi som brukes), valg av rammeverk og teknologi
vi skal bruke.

H.5 Hva er under arbeid

På grunn av bruk integrasjon av utvalgte teknologi og rammeverk er forsatt under arbeid
det klassediagrammet for systemet. Vi jobber nå med første versjon av systemet som
inkluderer autoriserings-tjeneste (Keycloak instans i docker) integrert med admin side
(server side Spring Boot - Java) og visuell fremvisning (Angular, Bootstrap).

129

Message Service

H.6 Tidsfristene

• Overholdt: Prosjektplan, Arkitektur, Systemkrav, basis-infrastruktur
• Overskredet: Design er ikke ferdig i den grad vi forventet.
• Kritiske: Ingen.

H.7 Hva med motivasjon

Vi synes det er motiverende med “daily scrum meetings” der hvor vi bestemmer de ulike
oppgavene vi skal jobbe med i løpet av dagen og estimerer tidsbruk. Dagens estimater gir
motivasjon til å utføre arbeid i planlagt tid. Gruppearbeid fungerer fint og vi kan støtte
hverandre, diskutere og finne løsning.

H.8 Hvordan oppleves veilederkontakt

Vi er fornøyde med veilderkontakten vi hatt til nå.

130

Message Service

I Status Report 2

01.04.2018

I.1 Status for:

• Planlegging (jfr. fremtidsplan): Vi er på riktig spor, ingen bekymringer.
• Organisering av gruppens arbeid og ansavarsområder: Foreløpig utfører vi ar-

beidet som gruppearbeid.
• Klargjøring av problemstilling: Fokus-endring i problemstilling ble akseptert til

utvikling.
• Løsningsmetode Evolusjonær utvikling, rammeverk og teknologi bestemt, Tilfredsstil-

lende integrasjonsnivå.
• Rapportskriving: Noterer (log) underveis, bilder fra tavle/whiteboard.

I.2 Totalstatus for punktene over

Når det gjelder problemstillinger har vi hatt flere diskusjoner både sammen og med op-
pdragsgiveren. Vi har blitt enige med oppdragsgiveren om å utvide omfanget av pros-
jektet: Den opprinnelige meldingsflyten skal nå også inkludere en intern postboks. Dette
har medført noen endringer i konseptuelt design. I løpet av tredje sprint implementerte
vi intern meldingsboks og den ble akseptert, vi planlegger å jobbe med en bestemt kanal,
slik at vi kan sende en kanal ut. Når det gjelder rapportskriving tar vi notater og bilder
underveis som skal utnyttes senere.

I.3 Muligheter Trusler/Problemer

Ekstern authoriserings-tjeneste konfigurasjon er fortsatt ikke utnyttet som planlagt. Blir
sannsynligvis helt utenfor omfang. Nåværende integrasjonsnivå tilfredsstillende.

Avhengighet av eksterne API som skal motta de meldingene vi sender ut, kan skape
ekstra problemer/jobb, for eksempel vi blir nødt til å brke multi-tråd (async task) for å
bruke disse kanalene. Problemene ble diskutert med oppdragsgiver.

I.4 Hva er avsluttet

Arkitektur av systemet ble justert i forhold til fokus endring (Interne meldinger). Teknologi-
rammeverk er tatt i bruk og skal ikke endres. Vi har utviklet en tjeneste for å utveksle
interne meldinger, tilgjengelig gjennom en web-app. Dette innebærer at databaseløsning
er for det meste ferdig.

I.5 Hva er under arbeid

Refaktorering av kode (finpussing, patterns, dokmentasjon) slik at vi får en stabil versjon
som er enkel å jobbe videre med. Vi supplerer kildekode med tester. Samler informasjon
om første kanal vi skal implementere.

131

Message Service

I.6 Tidsfristene

• Overholdt: Admin web-app, sender/receiver mock-apps (Erstattet med admin web-
app).

• Overskredet: Kanal ut ble utsatt pga. fokus-endring (Intern melding).
I følge prosjektplan skulle vi ha skrevet deler av slutt-rapport (arkitektur/design/s-
cope/tech choice). pga endringer og fokus på implementering, ble dette ikke gjort
(Vi skal jobbe med dette i påsken etter refaktorering).

• Kritiske: Ingen.

I.7 Hva med motivasjon

Vår motivasjon er den samme som før. Fornøyd med gruppearbeidet.

I.8 Hvordan oppleves veilederkontakt

Vi er fornøyde med veilderkontakten vi hatt til nå.

132

Message Service

J Meeting Logs

J.1 12.01.2018 (11:00-11.30) Supervisor, Sprint 1

Frode Haug, Tom Roar Furunes, Tomasz Rudowski
The first meeting with supervisor at NTNU Gjøvik.

It’s been mentioned that 3 partial (current work status) reports are required. Dates
and content requirements coming later. For now dates are: 20.02, 01.04, 01.05

Discussed key points concerning first submission, i.e. Project Plan. Main suggestions
to consider (using paragraph numbers according to pdf from first course meeting):

1.3. consider following aspects:

• practical (where we work, work at campus, etc)
• technical (infrastructure, etc.)

2. most important part, suggested coping to final report – it will become chapter one
of final submission

3.2. include also handling of unwanted behavior and ways to force a group member
to follow work-flow, rules etc.

4. don’t put too much effort to this part

6. Gantt diagram. Finally we need two of them. First created now (planned work-
flow) and the second at the end (how work-flow actually looked like). Some of the
milestones suggested: Project Plan, 3 status reports. Set deadlines (beslutningspunkter)
like for example “we need to decide programming language latest at ...” Proposal: hold
timelist in form of xls table for each group member with all dates until project deadline
in May. Keep comments short, max 2 sentences to each point to describe what was done.
Proposal: regular meetings on Fridays at 11:00 - to consider change of time if we are on
meetings in Hamar

J.2 19.01.2018 (09:00-11.00). Headit, Sprint 1

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski
Today we had the first meeting with Headit. The goal of this meeting was to share with
them our perception of the system, ask some questions and show them the planning we
have made.

Following points were clarified:

• Automation and efficiency: The purpose of the messaging system is to help Hea-
dit’s customers to make automatic and improve the efficiency of their business sys-
tems. However this is out of the scope of the system we are going to develop. Our
focus will be a system that receives messages and forwards them through different
channels.

• Interface: Headit made us concerned about that the messaging service is intended
to be used by many different systems. It was discussed the need of an API.

133

Message Service

• Interface, functionality: The MaaS must be able to tell to a system which channels
are available for this system.

• Design, new features: It’s important that the design facilitates that new features
can be added in the future. E.g. To give feedback about a message. (If it was re-
ceived or not etc).

• Design, new channels: It must be possible and easy to add new channels in the
future.

• Design, several users: The messaging service must be able to work with several
users at the same time.

• KeyCloack: Headit thinks that KeyCloak can be out of scope.
• Log: The system must be able to save every message that is send through it.
• Logg meldingene???
• Privacy law: Before this system is put in production, it is necessary to accomplish

the law requirements that apply. However Headit says that we will not work on it
right now. Of course this must be mentioned in the documentation.

• Requirement, limit of messages Begrensing av antall meldinger som kan sendes.
• Requirement, Security: It its discussed that we can make use of HTTPS in order

to take care of the confidentiality of the messages. However Headit proposes that
we can start working with HTTP at a first stage and so change into HTTPS when
we already know that some functionality of the system works.

• Dictionary: Headit asked us to make a dictionary where we describe the different
parts of our system. E.g. Maas (Message as a Service).

• Design, Communication Channels:Probably it will not be possible to implement
all kind of communication channel during the semester. Headit tells us that we can
focus in those channels we are more interested in.

• ? Access Rights to send messages Will it be by app-level or by user-level.
• Database, storage: Headit asks for an openSource technology that is widely used.
• Database, Encryption: If it is not implemented it should be taken care in the de-

sign.
• User requirement, superAdmin: The system will have a super administrator with

right to read all the messages.
• User Requirement, Key for the applications: The Maas will make the key for an

application on demand. The user can get this key by "copy-paste" or by SMS.
• User Requirement, new usuers: It must be possible to add new users and add a

new superAdmin for every customer.
• User Requirement, UserID: Assume that an user has the same ID in every appli-

cation of a customer.
• User requirement, System messages: It must be possible to send messages to

"just" one APP.
• Coding: Standard format
• Developing, Admin App:Ha focus one Admin Web. Obs! med mobilAPP. Er det

hensiktsmessige?

J.3 19.01.2018 (14:00-14.30). Supervisor, Sprint 1

Frode Haug, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski
We met our supervisor and we reported him about our first meeting we had with Headit.

134

Message Service

So, we reviewed and we got feedback about the draft of the Project Plan we delivered
some days ago. Supervisor pointed out some mistakes and gave us some comments.

J.4 24.01.2018 Headit, Sprint 2

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

J.4.1 Sprint Review of Sprint 1

We reviewed the work we did during the first sprint:

• Requirements: We have impression that the list of requirements is OK. However
we still have not validate it.

• Project Plan: The project plan is done.
• Technology Research: We have researched the followings technologies:

◦ Spring (Websites through Java):
◦ Keycloack (Open Source Identity Access Mananger): Right now difficult. Hea-

dit told us during the meeting that probably it might not be used)

• Architecture: We have a already a good understanding of the main components
that will be part of the architecture: REST API, DB User, DB App, DB MsgLog,
Adapters for the outgoing messaging channels and a authorisation component.

• Tool Setup: Headit provided us an account in Jira, Confluence and BitBucket. In
Confluence we have worked with list of requirements. In Jira we haven’t set up
a backlog yet and we need to connect it with list of requirements. Repository on
Bitbucket is alredy set up, but still is not integrated with the other tools.

J.4.2 Sprint Planning of Sprint 2

1. (!) Validate Requirements.
2. (3) Create a System Specification Document.
3. (!) Project Plan: Validate Project Plan with supervisor (We will have a meeting

with him on Friday the 26th january).
4. (2) Spring:All group memebers should run a Hello World example.
5. (2) KeyCloack: We have to wait for a more detailed technology specification of the

system, but we can get more familiar with it.
6. (3) IDE: We have not taken a decision yet about the IDE we will use. We need to

confirm if we are going to use Eclipse or another IDE:
7. Confluence: (3)Summaries of the meetings with Headit must be added . (!)We

have to close the initial Requirement List. (3)We are not sure if we will create a
detail diagramas for all the requirements.

8. (!, Depends on requirements validation) JIRA: Create Backlog linked to Conflu-
ence.

9. (3) BitBucket:Init repo on all local machines and run a test.
10. (1, Depends on Validate Requirements) Architecture Design: Research current

state of the art solutions. Break Components into smaller pieces. Research Archi-
tectural patterns. Create Architectural document

11. (1, Depends on Arquitecture Design) Design and Implementation: Class Di-
agram. DB Model. User Interface (Admin Panel, API). Research Design Patterns.

135

Message Service

Research libs and state of the art technology. State Diagram, Sequence Diagram
(Class perspective).

After we did the spring meeting, we started to work with Architecture Design. We
drew a schema with of the messaging system and its modules. We identified as well
some possible patterns, that we can use.

• Facade
• MVC
• Broker

We must check if these patterns can be a good choice for us.

We need to clarify with Headit the roles that will have access to the system and their
functions.

J.5 26.01.2018 (14.15-14.30) Supervisor, Sprint 2

Frode Haug, Tom Roar Furunes, Tomasz Rudowski, Manuel Bravo

Reviewed the last changes we did to the document.

J.6 31.01.2018 (12-14) Headit, Sprint 2

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

Additional meeting during Sprint 2.

MaasAdmin: can control own apps inside own domain, one user account many roles
(e.g: MaasAdmin og AppAdmin).

MaasAdmin: will be able to configure the applications of all the AppAdmins and in all
domains. MaaSadmin is the only one who is allowed to create new domains.

MaasAdmin: MaasAdmin has access to the message log (all the messages). However
the AppAdmin can encrypt the messages of its own domain. (Out of Scope).

Maas: It is expected that MaaS can diferentiate users of applications that use the
MaaS.

AppAdmin: It must be registered in Maas. AppAdmin are managed in the internal
KeyCloack. Appadmin creates keys for applications.

Extra Functionality (?) Registering: We discussed that it could be desirable to import
users from an external keykloack in order to change the identification model. (From
app-based to user based)

Functionality: Maas Admin can send a link to the new AppAdmin in order to register
in the Maas.

Functionality: Maas must have an interface where the App admins can create their
access keys for apps.

Functionality: Apps will have access to all or just certain channels. It will be the
AppAdmin who decides it.

PUSH: No constraints about the way that PUSH messages will be sent. We will find
the best solution (Url, Webhook, Google...)

136

Message Service

Messages: There are two kind of messages (internal and external). Both will have
a timestamp. It must be possible to know who has received/read an internal message.
Every message will be logged on every step. E.g When it was received by the Maas, and
when it was sent by a "channel". It is desirable to track the messages in order to discover
possible fails. As well is desired to logg all the activites that take place in the Maas (e.g.
inlogging, change in App configurations etc.) Be aware that scope can be adjusted. (Log
in a file or in a DB).

Functionality: It must be possible how many messages are sent on a channel. (The
just mentioned SMS). Anyway this is already registered in the log.

Functionality: The same API for request/send messages.

MVC: Considering Admin panel GUI, use MVC modell based on Spring Web, angular
and BootStrap.

OpenSource: It is desirable with open source components that are well known and
widely used to make easy its maintain. Eventual license issues will be solved later.

Efficiency Goal: It was mentioned the following goals: To offer more quality at a lower
cost. Possibility to focus on the core business instead of support systems like messaging.
Security and assurance that messages were sent. Tracking possibilities.

It is expected that the system will work as cloud service. So it will be nice if we could
deliver it with docker compose file.

Architecture: It was discussed use App based indentification with keys that are created
by the AppAdmin.

New features: We must adjust the system in order that it will be possible to add new
channels in the future.

Database: We will decide which kind of DB we will use

J.7 07.02.2018 (12-14) Headit, Sprint 3

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

We presented our solutions to the requirements from last meeting and it was accepted.
We presented a Database E-R Model. Probably more details will be added lately. (Sql,
noSQL not decided yet).

Following points were decided during the meeting

• Consider Messages as blog entry if using NoSQL. (See Doc).
• Documentation of correct use of MaaS system. End user documentation.
• Possibility of decorate messages with tags/flags in order to use expire dates in

different situations / different ways. (e.g. Pop up message om å change password).
• MaaS should not interprete the content of the messages
• Possibility to use access filters to outgoing channels. (Apps, users,..)
• Possibility to send a message to a group of users. Details of this must be described

in system specification for end users.
• Maas will support delivery confirmation but no read confirmation (Apps IDE must

take care of this if relevant)
• We can make use of Keycloack’s settings and stylesheets of our admin page.
• Extend posssible recipients users, roles, groups

137

Message Service

• We presented our proposal of backlog. Headit’s comment are: Some epics are too
big, consider epic as a complete solution for one problem. Current epics looks
like components. Examples of epics are: User Configuration, Message Box solution.
Some User Stories are too big. Consider make them epics.

• Use a wider perspective of the system. Even if we don’t implement them, we can
point them. However we will focus on essential functionality. It should be possible
to show the routing of messaging in order to present the value of the software in a
complete form.

• The original Keycloack panel should be allowed to just MaaS Admin.
• Consider use of Spring Security.
• Scope: If we don’t manage to make Keycloack work as a authrorization service in a

short time, we should skip it and focus on functionality that lies behind KeyCload
like MaaS Admin and message handler.

• Nice to have is not a requirement.
• Order issues list in backlog by priority.
• Estimate task in relation to each other (Task 1 twice time as task 2). User story

points in the beginning or get experience in future sprints.
• We will make a sprint backlog for the next spring during the Spring Planning Meet-

ing. However the product owner will be able to accept it or change it.

J.8 21.02.2018 (9-11.15) Headit, Sprint 4

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

The KeyCloak services integration we manage until now are enough. We could pos-
sibly use it wider but do not put too much attention to this (out of scope). Alternative
solution we presented is accepted. i.e admin panel secured with keycloak login, message
api secured with intern check against token list (db)

Advanced use of keycloak settings (realms, groups, roles) can be dealt with later,
important to focus on key functionality, i.e message forwarding.

Database solution (MariaDB) is accepted. SQL config/setup file should run automati-
cally when docker started.

Separate Frontend and Backend into two projects. Run them parallel, eventually in
docker as separate services.

Advantages

• No session ID when changing from admin panel to API
• Many potential customers will have separate projects

Disadvantages

• Code refactoring (time?)

UUID we create for each sender are accepted, but should be known only by owner, i.e
app knows only its own id, admin knows his own id and all ids of his apps. We should
create some unique abstraction names that could be used as "Receiver" in all messages
instead of unknown UUID. Add e.g dropdown list of all available receivers not using

138

Message Service

UUID but abstract names

Temporary we have only Admin Panel, all MaaS Admin activity is done in Keycloak
Admin UI. It is ok for now.

Spring Security vs Keycloak-Spring: do not use too much time on changing security.
the one we have now works ok.

Deleting of tokens (UUID). Do not delete, mark inactive/expired e.g flag or expiry
date column in a table.

J.9 07.03.2018 (09-11) Headit, Sprint 5

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

J.9.1 Sprint Review of Sprint 4

We reviewed the work we did during the second sprint, following comments were made:

• Docker works fine in the way we implemented it
• Application.properties works fine to have all in one file
• rename Receiver (InternalReceiver ?) so it is more obvious that it can be null for

external messages only
• Consider removing foreign key from Log (separate tables ?) How to get message

content then?
• Proposal to keep only internal messages in database (SMS, email only in Log) How

about tracking back external messages when not possible to store message content
(no message content in Log)? We store all accepted messages until further decided.

• Log format accepted (include also list of actors involved). Do not use complex tree
structure use simple "text logfile" format. Use filters.

• Long term policy for data storage (out of scope)
• Adjust MessageController message so message is accepted if at least one receiver is

found.
• Response from message API (200, array of status objects + response message).

Status object is code (e.g 200, 400) and receiverId (ActorId or unrecognized string)
• Consider global Error handling (see Sprint libraries)
• Headit got access two repositories we are using for back- and frontend
• Frontend code: keep Angular components small with possibility to move them (UI

redesign), but do not put effort into at that could be done by users.
• OK to keep message content as a string (JSON payload parsed to string - the string

stored in database and send to converter - the converter extracts JSON from string
and finds neccesary meta data there (if fails it will be stored as an error log entry)

J.9.2 Sprint Planning of Sprint 5

In this Sprint we should focus on processing messages through more stages rather then
covering all API on first stage.

• Focus on Internal messages (send between registered Actors)
• Architecture change! Internal messages are stored in database when they arrive

and are accepted. It is no point to send them to converter and forward to another

139

Message Service

InboxDB. Message table has functionality of an InboxDB allready, messages could
be picked from there.

• Model adjustment (Delivered/Read flag in Message table)
• Model adjustment. Add Subject field to Message class (and request payload) null

for e.g SMS should be handled with default values (’no-subject’)
• Internal message Log (1 - received, 2 - delivered)
• External message Log (1 - received, 2 - converted, 3 - sendToExternalProvider, 4 -

responseFromExternalProvider)
• Accepted proposal of using Sonar for code quality, but it is better to focus on own

tests to check functionality.
• Set timezone in Docker (time-sync problem)
• Tests! Important to write good tests for system functionality. This could help with

refactoring, code quality.
• Model adjustment. Access rights for Actors (channel based, which channels are

accessible)
• Model adjustment. Channel config (individual config of meta-data for a pair Actor-

Channel, possible multiply entries for each Actor-Channel too choose)

J.10 21.03.2018 (09-11) Headit, Sprint 6

Bjørn Tore Wiken, Ronny Kristiansen, Tom Roar Furunes, Tomasz Rudowski

J.10.1 Sprint Review of Sprint 5

• Demo different access rights (Actor by Channel)
• Demo different config sets (by Actor and Channel)
• Demo Messagebox tab in Admin Panel, accepted
• Public Config in a form we proposed accepted, to adjust use only config.id, con-

fig.name on a client side, supply Message when accepted with fields store in a
config (by Id)

• discussed project plan (gannt diagram), ok
• discussed changes in GUI, do not focus on edit/save Actor in Details view, current

proposal works fine as a demo for future
• no need for complex multithread programing, evt. Async task can be added later if

outgoing channel need longtime task

J.10.2 Sprint Planning of Sprint 6

• add timestamp to Delivery and show it in Log beside Delivered flag
• different API ? for client and admin so it should not be marked as delivered if admin

views inbox that belongs to an app
• API for message status (by msg.id) for async task, but possible to use it in other

situations
• Focus on create one complete route for message (chosen proposal - Slack) - Con-

verter - Facade - ChannelOut (Log on every step)
• proposal/concept use Slack ChannelOut as an additional warning channel set by

admin on Events (e.g. msg rejected)
• tests should be run against functionality not API directly.

140

Message Service

• Consider architecture change on a backend. Controller as small as possible - Service
with Business Logic (here goes tests) ->Repositories ->DB, or Controller ->Service
->Adapter/Facade (for forwarding messages)

• tests should be integral part of all components, required (?) to set task as DONE
• do not test trivial functionality like getter/setter
• research: integrate DB in IntelliJ and use design from there instead of phpMyAdmin

J.11 05.04.2018, Supervisor, Sprint 6

Frode Haug, Tom Roar Furunes, Tomasz Rudowski

Meeting with supervisor. Rapport questions.

• Chapter 1. Introduction. Goal of the project (why we chose it ?) from our perspec-
tive.

• Report target is a censor, but use language at student level
• Treat end-user requirement as Headit requirements; and as following application

(not sorce code) as a product. Could discuss codebase requirements later in report?
• Do not describe why technology chosen when we use technology name for the first

time. Use "more about why we chose this" and discuss it later in eg. Discussion
chapter part Alternatives/Choices or Conclusion chapter.

• Scope for used technology description: new for us after five semesters can be start-
ing perspective. Angular, TypeScript, Spring, JPA, Keycloak, Docker (practical, Slack
+ webhook. (?)Jira, (?)Confluence.

• Diagrams. If many that looks similar put them in appendix and use one of them as
an example in text.

• More focus on report writing. Agreed about partial report submission every week
from now.

J.12 11.04.2018 (09-11) Headit, Sprint 7

Bjørn Tore Wiken, Ronny Kristiansen, Tom Roar Furunes, Tomasz Rudowski

J.12.1 Sprint Review of Sprint 6

We reviewed the work we did during previous sprint, following comments were made:

• Discussed refactored code, accepted.
• Presented all tasks, concerning functionality, planned for sprint - accepted with

some change proposals we agreed to adjust, see planning of next sprint
• Presented unit tests - ok, focus on main functionality (use 75% coverage as a base

but comment if decided to have less). Mockito.
• Discussed wider use of Keycloak API, decided to keep user config (MaaS Admin

role) directly through Keycloak admin site.

J.12.2 Sprint Planning of Sprint 7

• We presented alternative solutions, technology choices etc. We agreed that they
should not be implemented but would be nice if we describe them. - Place it in the
report.

• Discussed outgoing channel “email” and proposed two solutions; first internal email

141

Message Service

server; second use of external provider and store credentials in the properties file.
- we should go for the second alternative, use external email account for demo
purposes.

• Functionality adjustment. Set priority of message data, like eg. Receiver. If set in
custom message it should overwrite metadata in payload, lowest priority to config
set. But this is not final, make decisions for each channel, and document priority
policy.

• Documentation. How to setup system in development/production environment.
• Documentation. Expand documentation for what channels are available, and how

to use them (payload doc concerning end users)
• Documentation. Explain functionality from MaaS Admin perspective. (how to add

users etc)
• Functionality adjustment. Consider that API calls that result in errors could return

documentation, which describe how to use API.
• If we have time could check Swagger for documentation instead of Confluence.
• New functionality. Introduce Domain for an Actor. Receiver of message should be

only from within Domain. Check when message receive by API, choice of receiver
from admin panel now expanded to all Actors from Domain.

• Functionality adjustment. OK to keep Actor types (user) and (app) but no need to
setup an (user) Actor access key for each admin as default. Limit access to (user)
type Actor messagebox to admin panel only (not allowed through open /msg API)

J.13 13.04.2018, Supervisor, Sprint 7

Frode Haug, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

Report feedback.

J.14 20.04.2018, Supervisor, Sprint 7

Frode Haug, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

Report feedback.

J.15 25.04.2018 (09-11) Headit, Sprint 8

Bjørn Tore Wiken, Ronny Kristiansen, Tom Roar Furunes, Tomasz Rudowski

J.15.1 Sprint Review of Sprint 7

• Approved solution for domains.
• Approved e-mail channel solution.
• Approved Swagger documentation.

J.15.2 Sprint Planning of Sprint 8

• Present API errors in nice way at Admin Panel.
• Improve Swagger documentation
• Control code base for bugs, unclear documentation etc, but also enhancement pos-

142

Message Service

sibilities.

J.16 03.05.2018, Supervisor, Sprint 8

Frode Haug, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

Report feedback.

J.17 09.05.2018 (09-11) Headit, Sprint 9

Bjørn Tore Wiken, Ronny Kristiansen, Manuel Bravo, Tom Roar Furunes, Tomasz Rudowski

Presented last bug fixes and refactored alert service on frontend. Discussed presenta-
tion time/content.

143

Message Service

K Worklog

Below the worklog is presented, status on the date:

15.05.2018

144

Tom Manuel Tomasz Tom ManuelTomasz
Date Hours Note Hours Note Hours Note
12.01.2018 2,5 Group meeting, Supervisor meeting 2 Group meeting 2,5 Group meeting, Supervisor meeting
13.01.2018 1 Created this worklog and other documents 1 Forprosjekt. Field of Study
14.01.2018 1 Project plan, Organisation 3,5 3 3,5

15.01.2018 7 Group meeting, Project plan 7,5 Group meeting, Project Plan 8,5 Group meeting, Project Plan
16.01.2018 6,5 Group meeting, Project plan, latex formating 4,5 Group meeting, 4,5 Group meeting
17.01.2018 6 Project plan, Study 6 Project plan, Scenario 7 Project Plan, Scheduling, System Design
18.01.2018 3,5 Group meeting 3,5 Group meeting 3,5 Group meeting
19.01.2018 6 SPM, Supervisor meeting, group meeting 6 SPM, Supervisor meeting, group meeting 6 SPM, Supervisor meeting, group meeting
20.01.2018
21.01.2018 29 27,5 29,5

22.01.2018 8,5 Group meeting 8,5 Group meeting 8,5 Group meeting
23.01.2018 4 Requirements, Project plan, Study 3 Meeting reports, Requirements. 5 requirements, created Confluence page
24.01.2018 4 Group meeting 4 Group meeting 4,5 Group meeting
25.01.2018
26.01.2018 4,5 Group meeting, supervisor meeting 4,5 Group meeting, supervisor meeting 4,5 Group meeting, supervisor meeting
27.01.2018
28.01.2018 1,5 Keycloak/Spring 2,5 2,5 Architecture patterns 22,5 22,5 25

29.01.2018 9 Group meeting - patterns 9 Group meeting - patterns 9 Group meeting - patterns
30.01.2018 4,5 Research sping+angular+boostrap 4,5 Architecture patterns, FCM
31.01.2018 4 SPM 4 SPM 4 SPM
01.02.2018
02.02.2018 4,5 GM (meeting review, epics), SM 4,5 GM (meeting review, epics), SM 4,5 GM (meeting review, epics), SM
03.02.2018
04.02.2018 4 Spring+keycloak+angular 4 Db, Spring og angular 2 db-model, xampp 26 21,5 24

05.02.2018 7,5 GM 7,5 GM 8,5 GM, draw AD, DBM
06.02.2018 5 db, angular, docker 7,5 Spring, Angular, Db 9 GM, db, Angular, docker
07.02.2018 7 GM, SPM 7 GM, SPM 7 GM, SPM
08.02.2018 7,5 Angular, Spring, Auth
09.02.2018 9,5 GM, angular, spring, kc 4 GM 4,5 GM,
10.02.2018 4,5 Spring, kc 9 KeyCloack, Angular
11.02.2018 1 angular 2 Docker, Repo 34,5 35 38,5

12.02.2018 8 GM, angular 8 Gm, Angular 8,5 GM, keycloak
13.02.2018 11 GM, Angular Frontend 8 Gm, Spring, Backend 8 Gm, Backend
14.02.2018 8 GM, Frontend 8 GM, Frontend 8 GM, Backend
15.02.2018
16.02.2018 2 sr1 2 sr1 2 sr1
17.02.2018 1 db
18.02.2018 2 docker, test 29 26 29,5

19.02.2018 8 GM, frontend 7 GM, frontend 7 GM, db, api
20.02.2018 8 GM, frontend 8 GM, frontend 8 GM, msg auth
21.02.2018 5 SPM 5 SPM 5 SPM
22.02.2018
23.02.2018 4 GM 4 GM 4 GM
24.02.2018 5 docker 1,5 DB
25.02.2018 1 db (study) 6,5 DB 31 24 32

26.02.2018 9 GM, DB 9,5 GM, DB 9,5 GM, DB
27.02.2018 8 GM, Frontend, jpa 8,5 GM, Actors API, JPA 8,5 GM, Actors API, Angular
28.02.2018 8,5 GM, Frontend, 8,5 GM, Frontend, Backend 8,5 GM, Backend
01.03.2018
02.03.2018 4 GM, API spec 4 GM, API spec 4 GM, API spec
03.03.2018 6 Frontend 1,5 API spec
04.03.2018 5 Backend, Frontend 5 Backend, Frontend 40,5 35,5 32

05.03.2018 8 Backend 5 Frontend 8,5 Backend
06.03.2018 7 Review, Backend, Frontend 7 Review, Backend, Frontend 5 review, demo
07.03.2018 5 Hamar, review 5 Hamar, review 5 Hamar, review
08.03.2018
09.03.2018 3,5 merge v1.0 3,5 merge v1.0
10.03.2018 5 frontend, docker
11.03.2018 28,5 17 22

12.03.2018 9 frontend, msgbox 8,5 9
13.03.2018 6 frontend, msgbox 8 frontend, msgbox 8 frontend, msgbox
14.03.2018 6,5 gm, fontend, backend 6,5 gm, fontend, backend 6,5 gm, fontend, backend
15.03.2018
16.03.2018 10 unit tests 8,5 Gm, Frontend 10,5 actor config
17.03.2018
18.03.2018 31,5 31,5 34

19.03.2018 11 GM, unit tests, frontend 11 GM, Actor Config 10,5 GM, Actor config
20.03.2018 8 Gm, Actor Config 8 GM, Actor config
21.03.2018 4 Hamar, raport 4 Hamar, raport
22.03.2018 4 GM 4 GM 4 GM
23.03.2018 9 GM, backend refactor 6,5 GM, exeptions 4 GM
24.03.2018
25.03.2018 3 backend refactor 5 Exceptions 31 34,5 30,5

26.03.2018 6,5 GM 9 GM 11 GM, raport
27.03.2018 7 GM, Code Review 7 Gm, Code review 7 GM, Code review
28.03.2018
29.03.2018
30.03.2018
31.03.2018
01.04.2018 13,5 16 18

02.04.2018
03.04.2018
04.04.2018 6 Slack 7 Slack
05.04.2018 6 Raport 6 Raport 6 Report
06.04.2018 2 GM 2 GM 2 GM
07.04.2018 3 send message with config
08.04.2018 17 8 15

Message Service

145

Tom Manuel Tomasz Tom ManuelTomasz
Date Hours Note Hours Note Hours Note
09.04.2018 8,5 API Spec 8,5 Backend 8,5 report
10.04.2018 8 API Spec, Javadoc 8 Javadoc 8 report
11.04.2018 9 SPM, GM 9 SPM, GM 9 SPM, GM
12.04.2018
13.04.2018 9 GM, SVM. Docker Research 7 GM, SVM 7 GM, SVM
14.04.2018 4 docker
15.04.2018 4,5 backend 43 32,5 32,5

16.04.2018 3,5 Kommentering / Rapport
17.04.2018 8,5 Report 8,5 Report 8,5 report
18.04.2018 9,5 Report, GRATULERER MED DAGEN!!! 9,5 Report 9,5 Report
19.04.2018 7,5 Report 7,5 Report 7,5 Report
20.04.2018 7,5 7,5 7,5
21.04.2018 1 api doc
22.04.2018 2 Email channel 9,5 Domain 36 36,5 42,5

23.04.2018
24.04.2018 7 Report 7 Report 5 report
25.04.2018 10 SPM, Report 10 SPM, Report 10 SPM, Report
26.04.2018 10 Report 10 Report 10 Report
27.04.2018 6 report, SM 6 report, SM
28.04.2018
29.04.2018 5 Alert Service 27 38 31

30.04.2018
01.05.2018 7,5 report 7,5 report 7,5 report
02.05.2018 3 alert 5 report
03.05.2018
04.05.2018 7 report 7 report 7 report
05.05.2018
06.05.2018 6 Report, alert 4 report 20,5 17,5 23,5

07.05.2018 7 Report, Frontend 4,5 Report 8,5 Report
08.05.2018 7 Report 7 Report 7 Report
09.05.2018 3 Spm 3 SPM 3 SPM
10.05.2018 7,5 Gm 7,5 GM 7,5 Gm
11.05.2018 6 Frontend, Backend 6 Frontend, Backend 6 Backend tester
12.05.2018
13.05.2018 30,5 28 32

14.05.2018 8,5 Report, Frontend, Backend 8,5 Report, Frontend, Backend 8,5 Report
15.05.2018 8 Report, Frontend, Backend 8 Report, Frontend, Backend 8 Report 6
16.05.2018 16,5 16,5 16,5

511 471 511,5

1493,5 TOTAL

Message Service

146

	Preface
	Contents
	List of Figures
	Listings
	Introduction
	Scope
	Field of Study
	Delimitation
	Project Description

	Project choice
	Audience Target
	Application Target
	Report Target

	Background and Experience
	Methodology and Project Organisation
	Report Organisation

	Requirements
	Requirements Elicitation Process
	Actors
	System Functional Requirements
	System Non-functional Requirements
	Non-functional Product Requirements
	Organisational Requirements

	Stories and Scenarios
	Detailed Requirements Specification
	User and System Requirements
	Use case
	Software Requirements Document

	Requirements Validation
	Requirements Change
	Requirements Management Planning
	Requirements Change Management

	Product Backlog

	Technical Design
	Modelling of System Components
	Database Modelling
	Conceptual Database Design
	Logical Database Design
	Physical Database Design

	Architecture and Design Patterns
	Client-Server
	Backend

	Details of Backend Layers
	Controllers Layer
	Services Layer
	Database Management Layer
	Database Layer

	Frontend
	TypeScript
	Components
	Services

	Development Process
	Methodology
	Roles and Responsibilities
	Methodology in Practice

	Work Progress
	Sprint 1, 10.01.2018 - 23.01.2018
	Sprint 2, 24.01.2018 - 06.02.2018
	Sprint 3, 07.02.2018 - 20.02.2018
	Sprint 4, 21.02.2018 - 06.03.2018
	Sprint 5, 07.03.2018 - 20.03.2018
	Sprint 6, 21.03.2018 - 10.04.2018
	Sprint 7, 11.04.2018 - 22.04.2018
	Sprint 8, 25.04.2018 - 08.05.2018
	Sprint 9, 09.05.2018 - 22.05.2018

	Tools
	Project Management
	Version Control
	Communication
	Development Environment
	Resource Storage
	Report and Documentation

	Implementation
	Integrated Services
	Keycloak

	Files and Package Structure
	Backend
	Frontend

	Application Management - Admin Panel
	Login
	Add Application
	Add Configuration
	Error Handling

	Backend API for Application Management
	Admin Controller
	Actor Service
	Actor Entity
	Actor Repository
	Database Representation
	Error handling
	Documentation

	Message Flow for Internal Messages
	Application
	Request Handling
	Application Verification
	Message Handling
	Response to Application

	Additional Steps for External Messages
	External Message Handling
	Message Converting
	Response to Application

	Deployment
	Docker
	Docker Toolbox
	Docker Compose
	Dockerfile

	Reused Docker Images
	New Docker Images
	Keycloak Dockerfile
	Backend
	Frontend

	Testing
	Static Testing
	Unit Testing
	Integration Testing
	White Box Testing
	Black Box Testing

	System Testing
	Validation and Verification
	User Testing

	Discussions and Conclusions
	Choices
	HTPP vs HTTPS
	Securing API with Keycloak
	Development Methodology
	Backend Framework
	Database
	Frontend Framework
	Channels

	Work Evaluation
	Scrum
	New Technologies
	Risk Management
	Comparison of Plan and Realisation

	Critique of Bachelor Thesis
	Database Technology
	Test on Frontend
	Time Estimation
	Tasks Order

	Future Work
	Results
	Message Service
	Efficiency and Performance Targets
	Learning Goals

	Bibliography
	Definitions
	Gantt Diagram
	Milestones and Deadlines

	User Stories and Scenarios
	Business case - My Custom Suit
	Actors involved
	Goals

	Code Examples
	REST API Documentation
	Project Plan
	Goals and boundaries
	Background
	Goals
	Boundaries

	Scope
	Field of study
	Delimitation
	Project Description

	Project Organisation
	Responsibility and Roles
	Routines and Rules
	Tools

	Planning, Follow-up, Documentation
	Division of the project
	Plan for status meetings and decision points

	Organising and quality assurance
	Documentation, standards and source code
	Configuration
	Risk assessment

	Plan for Implementation
	Gantt-diagram
	Milestones and Deadlines
	Activity List
	Time and Resource Plan

	Contract
	Status Report 1
	Status for:
	Totalstatus for punktene over
	Muligheter Trusler/Problemer
	Hva er avsluttet
	Hva er under arbeid
	Tidsfristene
	Hva med motivasjon
	Hvordan oppleves veilederkontakt

	Status Report 2
	Status for:
	Totalstatus for punktene over
	Muligheter Trusler/Problemer
	Hva er avsluttet
	Hva er under arbeid
	Tidsfristene
	Hva med motivasjon
	Hvordan oppleves veilederkontakt

	Meeting Logs
	12.01.2018 (11:00-11.30) Supervisor, Sprint 1
	19.01.2018 (09:00-11.00). Headit, Sprint 1
	19.01.2018 (14:00-14.30). Supervisor, Sprint 1
	24.01.2018 Headit, Sprint 2
	Sprint Review of Sprint 1
	Sprint Planning of Sprint 2

	26.01.2018 (14.15-14.30) Supervisor, Sprint 2
	31.01.2018 (12-14) Headit, Sprint 2
	07.02.2018 (12-14) Headit, Sprint 3
	21.02.2018 (9-11.15) Headit, Sprint 4
	07.03.2018 (09-11) Headit, Sprint 5
	Sprint Review of Sprint 4
	Sprint Planning of Sprint 5

	21.03.2018 (09-11) Headit, Sprint 6
	Sprint Review of Sprint 5
	Sprint Planning of Sprint 6

	05.04.2018, Supervisor, Sprint 6
	11.04.2018 (09-11) Headit, Sprint 7
	Sprint Review of Sprint 6
	Sprint Planning of Sprint 7

	13.04.2018, Supervisor, Sprint 7
	20.04.2018, Supervisor, Sprint 7
	25.04.2018 (09-11) Headit, Sprint 8
	Sprint Review of Sprint 7
	Sprint Planning of Sprint 8

	03.05.2018, Supervisor, Sprint 8
	09.05.2018 (09-11) Headit, Sprint 9

	Worklog

