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Problem Description

To increase the rating of low voltage drives, as well as increasing the redundancy of
such drives, multi-phase machines are interesting alternatives. In this case a 6-phase
induction machine shall be investigated.

To be able to control these drives without a position- and speed-sensor, sensorless
control shall be implemented. This will require an accurate flux-model for the ma-
chine.

In the project thesis at the fall semester 2017 the candidate developed a simula-
tion model for sensorless control of the 6-phase Induction Motor. This simulation
model shall be used to analyze and possibly improve the behavior in the lower speed
region. Using the voltage model for estimation of the stator flux linkage vector a cor-
rection algorithm is necessary, but combination of other models shall be investigated
as well for low speed operation. The performance of the control system depends on
the accuracy of the parameters of the flux model. The main focus shall be:

1. Sensorless control at low speed operation

2. Parameter sensitivity of the flux model

3. Combination of flux models

In this Master project Simulink with the Power System Library shall be used.
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Abstract

The topic in this master thesis is regarding parameter sensitivity analysis for a six-
phase induction motor using speed-sensorless control. Using the voltage model the
inputs of the flux model are voltage and current measurements from the inverters.
The flux model estimates the stator and rotor flux linkage space vectors to control the
motor and follow the torque reference. The parameter sensitivity analysis is presented
both for the stationary and dynamic operation in the voltage model and only for the
stationary operation in the current model. The current model is not used in sensorless
control, but to improve the reliability of the flux model a combination of the voltage
and current model was investigated. To still operate sensorless the estimated rotor
flux linkage angle was an input in the current model. It was revealed that the voltage
model operates unreliably in low-speed operation if the stator resistance was estimated
wrongly. This is verified in both the stationary and dynamic parameter sensitivity
analysis. In the dynamic analysis, the drifting phenomenon of the flux estimations
was investigated. A correction method presented first by Niemelä in his doctor thesis
[5] used on a synchronous machine was explained and experimented under simulation
for the six-phase induction motor. It was evident that the correction method was an
improvement for the flux model, but some drawbacks were revealed. Under perfect
estimated parameters the correction method functioned as a disturbance for the flux
model and small stationary errors in flux amplitude and angle estimation were present
when the estimated stator resistance was not correct. In addition, two improved
methods for estimating the rotor flux linkage amplitude were presented, and finally,
an alternative method for correcting the voltage model was developed using a closed
loop observer feedback in the flux model.
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1 Introduction

In 1972 Blasche introduced the idea of field-oriented vector control and the applica-
tions used for AC machines increased rapidly after this discovery. Earlier, due to its
straightforward control strategy, DC machines were favored in most applications. Now
with the field-oriented vector control one could in principle control the AC machine
like the DC machine. Some decades later the performance of power electronic con-
verters and the development of microelectronics and digital signal processing reached
new higher standards. Then one started investigating the possibility to remove the
speed sensor for the rotor and rely on speed estimators instead. This control strat-
egy has been the standard the last decades and is referred sensorless control in the
literature. The sensorless control’s benefits compared to its counterpart speed sensor
control are reduced cost due to the lack of a speed sensor, increased reliability, fewer
maintenance requirements and a possibility to work in a hostile environment where
speed sensor cannot[6].

Despite all its advantages, sensorless control experience some challenges that have
been difficult to solve for the engineers worldwide. The problems referred to as drift-
ing and DC offset in the open integration of Faraday’s law as a result of parameter
deviations and measurement errors, is still a big problem in the estimation of the flux
linkages. Besides, running at low speed and especially driving through zero speed is
considered an enormous challenge, and much attention is given to improve the oper-
ation at low speed. Today there exists a tremendous amount of strategies to improve
this operation which is categorized in [14]: model reference adaptive-control system
(MRAS) method, dynamic speed estimation (DSE) method, artificial neural networks
(ANMs), adaptive speed observer (ASO) method, proportional-integral (PI) regula-
tor method, high frequency injection (HFI) method, and rotor slot harmonic (RSH)
method.

In some applications, multi-phase machines are interesting alternatives compared
to the more conventional 3-phase machines. The multi-phase machines offer ad-
vantages like reduced rotor harmonic currents, improved reliability, reduced cur-
rent stress for the converters without a reduction in power (the principle of power
splitting)[10][11][13].

This master thesis introduces the modelling of the six-phase induction machine in
section 2, the control strategy in section 3, the flux models in section 4 and the de-
viation in parameters in section 5. The main topic of this master thesis continues
in section 6 and 7 with the parameter sensitivity analysis of the two most basic flux
models: the voltage model and the current model. The sensitivity analysis is both
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in steady state and during dynamics, but with extra attention on the voltage model
and its parameter sensitivity to the stator resistance at low speed. The stationary pa-
rameter sensitivity analysis is investigated in section 6 and the dynamic in section 7.
The simulations in sensorless operation are done using a machine model in MATLAB
Simulink and presented in section 8. Also, improvements in the control performance
and the flux model are investigated in this section. My supervisor Prof. Roy Nilsen
developed the machine model, and it was adjusted by myself. Two drifting correction
methods are presented and analyzed. The correction method, based on a filter solu-
tion from the square of the stator flux linkage amplitude estimation, presented first
by Niemelä[5], is analyzed and simulated. Finally, a model based on a combination
of the voltage model and current model with a closed loop feedback correction term
in the voltage model, developed by the author, is analyzed and simulated.
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2 Modeling of a Six-Phase Induction Machine

The induction motor is an AC machine fed by alternating current to the stator wind-
ings producing a rotating magnetic field that forces the rotor to rotate by electro-
magnetic induction. The rotor can be a wound-rotor type where the rotor is made
up of windings or a squirrel cage rotor with short-circuited conducting bars.

The full modeling was presented in the project thesis of the author[15] and done
in the master thesis of Nebrom[10], and only the final results are presented here. If
the reader is interested, the modeling is added in the Appendix E. To summarize the
physical modeling is done in a double synchronous reference frame with the stator
consisting of two three-phase pairs separated by 30 electrical degrees and the phases
separated by 120 electrical degrees. Figure 2.1 shows this. The transformation to the
synchronously rotating d-q-0 reference frame is done by Clarke’s and Park’s trans-
formation to make the inductance’s value independent of rotor position and hence
make the control more manageable. The assumptions done in the modeling can be
summarized as[15][10][8]:

1. The stator windings produce a sinusoidally distributed magnetic field around
the air-gap in the machine. Hence only the fundamental component of the field
is modeled.

2. The stator windings are equal but oriented in different directions of winding
axes.

3. Resistances and inductances are independent of temperature and frequency and
are known.

4. Magnetic saturation, hysteresis and eddy currents are neglected.

5. It is possible to model the rotor as a wound rotor type.

The final model of the six-phase induction motor in d-q-0 synchronously rotating
reference frame in per unit is described by these equations:

usd1 = rsisd1 +
1

ωn

dψsd1
dt
− fkψsq1, usq1 = rsisq1 +

1

ωn

dψsq1
dt

+ fkψsd1

usd2 = rsisd2 +
1

ωn

dψsd2
dt
− fkψsq2, usq2 = rsisq2 +

1

ωn

dψsq2
dt

+ fkψsd2

0 = rrird +
1

ωn

dψrd
dt
− frψrq, 0 = rrirq +

1

ωn

dψrq
dt

+ frψrd

(2.1)
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Figure 2.1: Double Synchronous Frame Modeling[15]

ψsd1 = xsisd1 + xhisd2 + xhird, ψsq1 = xsisq1 + xhisq2 + xhirq

ψsd2 = xhisd1 + xsisd2 + xhird, ψsq2 = xhisq1 + xsisq2 + xhirq (2.2)

ψrd = xhisd1 + xhisd2 + xrird, ψrq = xhisq1 + xhisq2 + xrirq

me =
ψrqird − ψrdirq

2
, Tm

dn

dt
= me −mL, Tm =

JΩ2
N

SN

fr = fk − n, fk =
ωk
ωn
, fr =

ωr
ωn

(2.3)
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3 Control Strategy and Simulation Method

3.1 Field-Oriented Control

The idea behind field-oriented control is to control the motor torque and the motor
flux separately as for the DC machine. By field-oriented control, the controlling
axis system is fixed to some of the machine’s flux linkages. When controlling an
induction machine, the rotor flux linkage is usually the preferred flux linkage as the
rotor flux linkage does not change quickly due to transients[4]. For the six-phase
induction motor one ends up with the following basic control equations in the rotor
field-oriented control:

ψRd = ψR, ψRq = 0,
dψRq
dt

= 0 (3.1)

ψR = xH · (isd1 + isd2) (3.2)

me = ψR · (isq1 + isq2) (3.3)

The rotor flux linkage is preferred constant just below 1 pu to control the torque
by varying the quadrature component of the currents. The direct component of the
current controls the rotor flux linkage and hence is held constant(if one neglect the
DC magnetization and field-weakening operation). Figure 3.1 shows the principle.

The motor control is speed or torque controlled, but in this thesis, the focus is the
torque control. With the torque control, the electrical torque reference gives the
quadrature component reference of the current by equation 3.3. The direct com-
ponent reference of the current is calculated from a flux controller. The reference
current is the input in the current controller that is the inner control of the control
structure. The current controller controls the real current in the machine to follow
the reference current. The output of the current controller gives a voltage reference
for the PWM modulator which enables the best duty ratio according to this refer-
ence. This signal is sent to the inverters that supply the motor with the stator voltage.

It is expensive and not practical to measure the rotor flux linkage and its position, and
hence the performance of the motor control highly depends on the estimation of these
variables. For estimating the rotor flux linkage SV one uses different models which are
sensitive to various parameters. The models discussed in the sensitivity analysis here
are the voltage model and the current model. Section 6 and 7 present the parameter
sensitivity analysis both stationary and dynamic for the voltage model. The current
model is analyzed only in the steady state case as the dynamics of the voltage model
and the phenomenon of drifting is more interesting. The current model is generally
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Figure 3.1: The principle of field oriented control

not speed-sensorless, but later when the sensorless operation is discussed, a solution
with a combination of the voltage and the current model shows great promise. In
this combination the operation is still speed-sensorless since the estimated rotor flux
linkage position from the voltage model is the input in the current model.

The choice of d-q-0 reference frame following the rotor flux linkage space vector has
an impact on the flux equations in equation 2.2:

ψsd1 = xσisd1 + (xσ − xsσ)isd2 + ψR, ψsq1 = xσisq1 + (xσ − xsσ)isq2

ψsd2 = xσisd2 + (xσ − xsσ)isd1 + ψR, ψsq2 = xσisq2 + (xσ − xsσ)isq2 (3.4)

ψr = xhisd1 + xhisd2 + xrird, 0 = xhisq1 + xhisq2 + xrirq

Where:

xσ = xs −
x2h
xr
, xsσ = xh − xs, ψR =

xh
xr
ψr =

ψr
1 + σr

(3.5)
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3.2 Decouple Equations for a Six-Phase Induction Motor

It can be shown that [10]:

dψR
dt

= −ψR
Tr

+
xH
Tr

(isd1 + isd2), fr =
xH(isq1 + isq2)

TrωnψR
(3.6)

Where
xH =

xh
1 + σr

, Tr =
xr
ωnrr

, σr =
xr
xh

(3.7)

Then modifying the stator voltage equations (equation 2.1) one can divide them in one
part used as the control equations for the current controller, and one decouple part
(feed-forward) that is used to improve the calculation of the voltage reference.[10][15]
The decouple equations for a 6-phase induction motor are written[15]:

usd1,ff =
usd2

1 + σ′s
− r′′s

1 + σ′s
isd2 −

σ′s
1 + σ′s

ψR
ωnTr

− fkx′sisq1

usq1,ff =
usq2

1 + σ′s
− r′′s

1 + σ′s
isq2 +

σ′s
1 + σ′s

nψR + fkx
′
sisd1

usd2,ff =
usd1

1 + σ′s
− r′′s

1 + σ′s
isd1 −

σ′s
1 + σ′s

ψR
ωnTr

− fkx′sisq2

usq2,ff =
usq1

1 + σ′s
− r′′s

1 + σ′s
isq1 +

σ′s
1 + σ′s

nψR + fkx
′
sisd2

(3.8)

Here subscript ff means feed-forward and in equation 3.8 the parameters are ex-
plained as:

σ′s =
xsσ

xσ − xsσ
x′s = xσ(1− (

xσ − xsσ
xσ

)2) = xσ(1− 1

(1 + σ′s)
2
)

r′s = rs +
xsσ
xσ

rR = rs +
σ′s

1 + σ′s
rR

r′′s = rs −
xsσ

xσ − xsσ
rR = rs − σ′srR

rR =
xH
ωnTr

=
rr

(1 + σr)2

(3.9)

3.3 Simulation Model

The simulations done in this thesis is done in MATLAB Simulink with the ode23tb
solver with a maximum step time of 100µs, and the solver reset method set to robust.
The power system library is used. My supervisor, Prof. Roy Nilsen, implemented the
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machine model, converters, PWM modulator, load model and some controllers before
the project thesis started the fall semester of 2017. In the project thesis, modifications
were done by the author. Also, in work for this master thesis, some new adjustments
were made to improve the motor control performance.
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4 Flux Models

4.1 The Voltage Model

In the voltage model, the input variables are an estimation of the stator voltage from
the measured dc link voltage in the inverter or a direct measurement of the voltages
and the measured current in the inverter. In this thesis, it is assumed that the voltage
is directly measured. Using the Faraday’s law one can obtain an estimation of the
stator flux linkage SV:

ψ̂
s1

=

∫ t

t0

(us1 − r̂s1is1)dt (4.1)

As seen from equation 4.1 the stator resistance needs to be estimated, and if this
estimation is wrong, one ends up with a wrong stator flux linkage SV. Generally, the
voltage SV and the current SV are not in phase in an induction machine because
of slip. Hence an error in the stator resistance estimation gives both errors in the
estimated amplitude and angle of the stator flux linkage SV

After one has estimated the stator flux linkage SV, one can estimate the position
or angle of the rotor flux linkage SV by a trigonometric identity. First one finds the
angle between the current SV and the stator flux linkage SV:

ε̂ψs1

s1 = εs1s1 − ξ̂s1s1 (4.2)

Where εs1s1 is the angle of the current SV projected on the stator a1 axis and this
value is measured. ξ̂s1s1 is the estimated angle of the stator flux linkage SV projected
on the stator a1 axis.

In equation 4.2 one sees that an error in the estimation of the stator flux linkage
angle also produces an error in the angle between the current SV and the stator flux
linkage SV.

Then one finds the angle between the stator flux linkage SV and the rotor flux linkage
SV[11][15]. (Derivation of the equation in Appendix F)

ξ̂Rs1 = tan−1(
x̂σis1 sin(ε̂ψs1

s1 ) + (x̂σ − x̂sσ)is2 sin(ε̂ψs1

s2 )

ψ̂s1 − x̂σis1 cos(ε̂ψs1

s1 )− (x̂σ − x̂sσ)is2 cos(ε̂ψs1

s2 )
) (4.3)

In equation 4.3 the leakage reactance, x̂σ, and the stator leakage reactance, x̂sσ are all
estimated, and if they are estimated wrong, the estimated angle will be wrong. On the
other hand, the reactance is usually found by a hysteresis curve, and this estimation
is more precise than the estimation of the stator resistance. Since the angle between

9



the current SV and the stator flux linkage SV is a function of the estimation of the
stator resistance, an error in this estimation also produces an estimation error in the
rotor flux linkage angle. Now one can find the angle between the rotor flux linkage
SV and the stationary a1 axis.

θ̂s1R = ξ̂s1s1 − ξ̂Rs1 (4.4)

As assumed, errors in the recent estimations of ξ̂s1s1 and ξ̂Rs1 will give an erroneous θ̂s1R .

Now as one has estimated the rotor flux linkage angle projected on the stator a1
axis, one can project the current SV and the stator flux linkage SV on the syn-
chronous rotating d-q-axis following the rotor flux linkage SV. Hence the estimated
rotor flux linkage amplitude is given by:

ψ̂R = ψ̂sd1 − x̂σ îsd1 − (x̂σ − x̂sσ )̂isd2 (4.5)

In equation 4.5 the estimation depends on the estimated leakage and stator leakage
reactance, and the estimations of the direct components of the currents. Also, the
estimated rotor flux linkage amplitude depends on the estimation of the stator flux
linkage amplitude.

To summarize the voltage model depends on the estimation of three parameters:
the stator resistance, rs, the leakage reactance, xσ, and the stator leakage reactance,
xsσ. However, the most critical parameter is the stator resistance since it is a part
of the open integration in equation 4.1. As will be shown later, a wrongly estimated
stator resistance can produce significant errors both stationary and dynamic in the
voltage model.

4.2 The Current Model

In the current model, the input variables are the speed or the position of the rotor and
the current measurement. By knowing the angle and frequency of the stator current
SV and the speed of the motor, one estimates the rotor frequency and the rotor flux
linkage amplitude by the equations:

dψ̂R
dt

= − ψ̂R
T̂r

+
x̂H

T̂r
(̂isd1 + îsd2) (4.6)

f̂r =
r̂R(̂isq1 + îsq2)

ψ̂R
(4.7)
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θ̂s1R = 2π

∫ t

t0

(f̂r + n) dt+ θ̂s1R0 (4.8)

T̂r =
x̂H
ωnr̂R

(4.9)

n = fψ − fr (4.10)

The precision of the model depends on the estimation of the rotor resistance, rR
and the main(magnetizing) reactance xH . Again, the resistance is the most critical
parameter to estimate correctly since the magnetizing reactance is generally known
from a hysteresis curve. Besides, the rotor resistance is integrated, and hence of extra
importance to estimate correctly.

In the current model, it is not necessary to estimate the stator flux linkage SV. On the
other hand, there is a possibility that one can estimate the stator flux linkage from
both the models and then compare these two signals to estimate the resistances for
example, and hence improve the models. Another possibility is to compare the signals
and use the difference as an error signal to improve one of the models. This possi-
bility is analyzed later. To estimate the stator flux linkage in the current model one
estimate first the stator flux linkage equations in direct and quadrature component
to estimate the amplitude.

ψ̂sd1 = ψ̂R + x̂σ îsd1 + (x̂σ − x̂sσ )̂isd2

ψ̂sq1 = x̂σ îsq1 + (x̂σ − x̂sσ )̂isq2
(4.11)

ψ̂s1 =
√
ψ̂2
sd1 + ψ̂2

sq1 (4.12)

The angle is estimated by turning equation 4.4:

ξ̂s1s1 = arctan
ψ̂sq1

ψ̂sd1
+ θ̂s1R (4.13)

Using the current model, it is evident that the estimation of the stator flux linkage
SV is parameter sensitive to the leakage reactance, the main reactance and the rotor
resistance.
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5 Deviation in Parameters and Measurement Er-

rors

5.1 Resistance Deviation

There are mainly three reasons for the deviation in the resistance estimation. Firstly
the measurement obtains some error. Secondly, under high stator and rotor frequen-
cies, the skin effect takes part. This only occurs under AC operation, and hence the
resistance under DC magnetization and rotating operation are not the same. Thirdly
and the most important reason is the temperature dependency of the resistance. The
windings in the stator are usually made of copper and the conductivity of copper is
σ = 57 · 106 S/m at a temperature of 20◦C. The resistivity of copper varies with tem-
perature coefficient α = 3.81 · 10−31/K[4]. The DC resistance and the AC resistance
are generally different following the equations[4]:

RDC =
l

σA
RAC = RDC(T ) +Rskin(f, T )

(5.1)

The temperature is by far the most crucial reason for variations in the resistance, and
in a temperature range from 20◦ to 150◦ the resistivity of copper increases by 50%[2].

In the induction motor, there are a stator resistance and a rotor resistance. As
the resistances are both dependent of temperature, they are usually varying at the
same scale.

5.2 Reactance Deviation

The reactance varies mainly due to the saturation phenomena in the magnetic mate-
rial. Also, the temperature can be a factor, but usually this factor is neglected due to
its small value. Most often the reactances are saturated at rated operation and hence
increase in the field-weakening operation[2]. Klaes[1] says that the main reactance
(magnetizing reactance) can vary by 20% in each direction and the leakage reactance
can vary by 10% in each direction.

5.3 Error in Measurements

The voltage is usually not measured directly due to technical and economic reasons
but measured indirectly in the DC-link, and then the stator voltage is estimated[2].
Using this technique, one has to estimate the nonlinear voltage drop in the inverters
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which is complicated to model. Hence due to its complicated nature one usually ex-
periences an error in the measurement of the voltage. Nestli assumes in his doctoral
thesis from 1995 on page 28 a voltage measurement error of ±0.015 pu[2].

The current can also experience measurement errors. Inaccurate resistance sens-
ing and saturation in the measurement device are some of the reasons that cause
measurement errors for the current[2]. The errors may deviate in different machines,
but Nestli assumed a measurement error of ±0.015 pu in his doctoral thesis from 1995.

On the other hand, in this thesis, measurement errors are not analyzed. In this
thesis, the focus is on the deviation in the parameters with extra attention to the
resistances due to its variation with temperature, which can be difficult to estimate
correctly.
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Figure 6.1: Stator Flux linkage estimation with r̂s = 1.2rs

6 Stationary Parameter Sensitivity Analysis

6.1 Voltage Model

6.1.1 Stator Flux Linkage Estimation

As one can see in figure 6.1 when estimating the stator flux linkage, the voltage
model is highly sensitive to errors in the estimation of the stator resistance around
zero speed. Hence the estimated value of stator flux linkage amplitude and angle are
erroneous.

The reason for the high sensitivity around zero speed is seen by using phasor analysis
and investigate equation 4.1 stationary:

Ψ̄s1
s1 = −j 1

fψ
(Ū s1

s1 − r̂sĪs1s1 ) (6.1)

Here fψ is the synchronous frequency and is known from the measurement of the
voltage.

One sees in the equation 6.1 that when fψ is close to zero, and the resistance is
estimated wrong, fψ amplifies the error. At low speed, the voltage SV amplitude
decreases to its minimum and hence the relative error of the voltage minus the stator
resistance voltage drop is more prominent. At high speed, the resistive voltage drop
term is relatively small compared to the magnitude of the voltage SV, and hence
an error in the estimation is not a significant concern. Besides, at high speed, the
synchronous frequency, fψ, is high and will not amplify the error. From figure 6.2
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Figure 6.2: ψ̂s1s1 and ψs1s1 for high speed with r̂s = 1.5rs

and figure 6.3 one can observe why the error increases at low speed by the phasor
diagram. As the stator voltage SV, us1s1, goes down at low speed, the resistive voltage
drop estimation, r̂si

s1
s1, becomes significant and the estimation of the stator flux link-

age, ψ̂s1s1, will be more erroneous.

A notable observation from equation 6.1 is if one distinguishes the errors of the stator
flux linkage estimation in amplitude and angle error, the angle error is not amplified
by a low fψ at low speed. The angle error depends only on the measured voltage
SV and the estimated resistive voltage drop SV. In figure 6.1 it is observed that the
estimation is most erroneous when fψ is low but this occurs because the measured
voltage SV magnitude decreases at low speed and hence the relative error increases
at low speed.

On the other hand, the amplitude error of the stator flux linkage estimation is ampli-
fied by a low fψ. The most sensitive operational point occurs when fψ = 0. At this
point, the machine works in DC, and hence the measured voltage should be equal to
the resistive voltage drop by Ohm’s law. If this does not occur because of wrongly es-
timated stator resistance, the error is amplified to infinity. This fact becomes clearer
later when the error functions are investigated.

15



Figure 6.3: ψ̂s1s1 and ψs1s1 for low speed with r̂s = 1.5rs

As long as the electrical torque is not zero in the motor, the synchronous frequency
is not equal to zero when the speed of the motor is zero. This occurs because of the
existence of the slip frequency in the rotor. From equation 4.10 it is evident that the
synchronous frequency reaches zero whenever n = −fr. Hence, this will be the most
sensitive operational point for the estimation of the stator flux amplitude as an error
is amplified to infinity. This is observed in figure 6.4 where the estimation of the
stator flux linkage, both amplitude and angle, gets more erroneous as n approaches
−fr.

An important consideration is that as long as there only exist a slightly error in the
resistance estimation the amplitude error is amplified to infinity at the most sensitive
operational point; when n = −fr. On the other hand, the rate of the error depends on
the size of the estimation error of the resistance. This can be seen in figure 6.5 where
r̂s that is 1.5 times the real rs has a higher rate than a r̂s that is 1.2 times the real rs.

It is shown (Appendix D.1.1) that the error in the stator flux linkage amplitude
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Figure 6.4: How the error evolves as n is approaching −fr

Figure 6.5: The amplitude error increases as f̂ψ goes towards zero
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estimation is given by:

ψ̂s1 − ψs1 =
1

fψ
(
√
u2s1 + r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

−
√
u2s1 + r2si

2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1))

(6.2)

In equation 6.2 one sees that when r̂s 6= rs there is a nonzero error in the expression
and when fψ is close to zero this error is amplified. One can also observe that the
equation depends on the amplitude of the stator current and at low torque levels the
current magnitude will be at its lowest. Hence, the estimated error depends on the
electrical torque produced by the motor. Figure 6.6 shows this where the speed of
the motor is fixed. It is evident that the error variate as a function of the electrical
torque produced in the motor, and the slope is different at each speed level. Besides,
it is clear that as n is , the variation increases. An observation is that at low torque
levels the estimation error is relatively small compared to at high torque levels. This
is because at lower torque levels the stator current amplitude is at its lowest. Another
notable observation from figure 6.6 is that the error is zero at different torque levels
for different speeds. For example, for n = −0.03 pu the error function crosses zero
error at a torque level below zero, and at n = 0.05 pu the error function crosses zero
at a torque level above zero. The reason for this is seen in equation 6.2 where it is
evident that the expression is a function of the difference between the angles of the
stator voltage and the stator current. These angles deviate at the different speed and
torque levels. It is shown in the Appendix D.1.1 that the error is zero when rs = r̂s
or:

if is1 =
2us1 cos(γs1s1 − εs1s1)

r̂s + rs
⇒ ψ̂s1 − ψs1 = 0 (6.3)

In equation 6.3 is1 and its angle, εs1s1, vary with torque and us1 and its angle, γs1s1 , vary
with both torque and speed.

As the phase of the current and the voltage generally are not the same in an induction
machine, the angle is also misestimated, in contrast to a synchronous machine, where
the voltage and current are in phase, and only the amplitude is estimated wrongly.
(If one distinguish the dynamical drifting phenomenon which causes the angle to be
misestimated in both synchronous and induction motors.)
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Figure 6.6: How the ψ̂s1s1 error variate with electrical torque for different speeds

The estimated stator flux linkage’s angle error can be written like(Appendix D.1.2):

ξ̂s1s1,error =



arctan y
x
− arctan ψsq1

ψsd1
, if x > 0

arctan y
x

+ π − arctan ψsq1

ψsd1
, if x < 0 and y ≥ 0

arctan y
x
− π − arctan ψsq1

ψsd1
, if x < 0 and y < 0

π
2
− arctan ψsq1

ψsd1
, if x = 0 and y > 0

−π
2
− arctan ψsq1

ψsd1
, if x = 0 and y < 0

undefined, if x = 0 and y = 0

(6.4)

where
y = r̂sis1 cos (εs1s1)− us1 cos (γs1s1)

x = us1 sin (γs1s1)− r̂sis1 sin (εs1s1)
(6.5)

As long as the stator resistance estimation is wrong, there will be an error in the
estimated stator flux linkage’s angle. If r̂s = rs, equation 6.4 is zero since arctan y

x
=

arctan ψsq1

ψsd1
. In figure 6.7 it is evident that a more wrongly estimated stator resistance

produces more error. In the figure, the result is shown for four different estimated
stator resistances, and the error rises steeper to the maximum point the more wrongly
the estimated stator resistance is. The most sensitive operational point is the same
for all the scenarios. It occurs when fψ = 0 and n = −fr. At this point, one must
remember that us1 = rsis1, and hence the voltage and the current will be in phase
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and the machine operates in DC. If the voltage and the current are in phase it im-
plies that εs1s1 = γs1s1 , and if the resistance is estimated wrong then us1 6= r̂sis1. The
estimated stator flux linkage lags 90 degrees from the result of us1 − r̂sis1, and when
they are in phase the estimated angle of the stator flux linkage depends on if the
estimated stator resistance is too big or too small. At the operational point fψ = 0,
both the estimated and the real stator flux linkage SV is not observable since the
principle of lagging/leading needs a positive or negative frequency. However, if the
synchronous frequency is slightly positive or slightly negative and the estimated sta-
tor resistance is estimated too big or too small, one can analyze and observe the limit
of the error function. This is seen in figure 6.8, and the resulting estimated stator flux
linkage’s angle lags 90 degrees on the result of us1 − r̂sis1. Hence, for an estimated
stator resistance too low, an estimated stator flux linkage SV leads 90 degrees on the
current vector for a slightly negative frequency and lags 90 degrees for a somewhat
positive frequency. For an estimated stator resistance too high the opposite is the
result. This is the reason why the graphs are mirrored depending on the size of the
estimated stator resistance relative to the real stator resistance in figure 6.7. Since
the estimated stator flux linkage SV leads or lags 90 degrees on the current vector,
the error at the most sensitive operational point depends on the angle of the current
vector. The angle of the current vector depends on the torque level of the machine
and hence varies as a function of torque. Besides, the operational point fψ = 0 occurs
when n = −fr, and fr is a function of the torque level in the machine. Then the speed
of the rotor at the most sensitive operational point changes depending on the torque
level in the machine, but will always be close to zero since fr has a low value. On the
other hand, the torque dependency is just where the most sensitive operational point
is located at the speed axis and the value at this point, but the wrongly estimated
stator resistance is the factor that creates the error of the estimated angle at every
operational point.

6.1.2 Rotor Flux Linkage Estimation

By applying equations 4.3, 4.4 and 4.5, one estimates the rotor flux linkage, both
amplitude, and angle. By examining the equation 4.3, one sees that the expression is
a function of the estimation of the leakage reactances, x̂σ and x̂sσ, and the estimated
stator flux linkage’s amplitude, ψ̂s1. Since a wrongly estimated stator resistance, r̂s,
gives an erroneously estimated magnitude of the stator flux linkage, equation 4.3 is
also sensitive to the stator resistance estimation. The final estimation of the rotor
flux linkage angle is given by equation 4.4, and one observes that the estimation of
the stator flux linkage angle is a term in the equation. As investigated in section 6.1.1
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Figure 6.7: Error in the angle stator flux linkage estimation for different values of r̂s
at me = 0.75 pu

Figure 6.8: The estimated stator flux linkage around fψ = 0
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Figure 6.9: Rotor Flux linkage estimation with r̂s = 1.2rs

the angle is highly sensitive to errors in the estimation of the stator resistance. Hence
the conclusion is that the rotor flux linkage’s estimated angle is parameter sensitive to
both the estimation of the leakage reactances and the stator resistance. By the same
logic, examining equation 4.5, it is evident that the rotor flux linkage’s estimated
amplitude is also parameter sensitive of the estimation of the leakage reactances and
the stator resistance.

In the figures 6.9, 6.10, 6.11 and 6.12, one observes the parameter sensitivity to
the stator resistance and the leakage reactances. It is clear that the maximum er-
ror produced by a wrongly estimated stator resistance is higher than the maximum
error created by the improperly estimated leakage reactances. And again, the er-
ror is at most during low-speed operation. On the other hand, the error produced
by a wrongly estimated stator resistance is low when the speed is high, but for the
improperly estimated leakage reactances, the dependency of speed is not that clear.
Examining figures 6.10, 6.11 and 6.12, even though the error for the amplitude is
relatively small, the error is stable in the normal operating area and decreases in the
field-weakening area. The angle error seems to be a function of the electrical torque
generated in the motor in the normal operating area. In the field-weakening area,
where the error increases, the estimated angle error seems to be a function of both the
speed and the electrical torque. Besides, the error produced by a wrongly estimated
stator leakage reactance, x̂sσ, is less critical than an improperly estimated leakage
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Figure 6.10: Rotor Flux linkage estimation with x̂σ = 1.1xσ

Figure 6.11: Rotor Flux linkage estimation with x̂sσ = 1.1xsσ
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Figure 6.12: Rotor Flux linkage estimation with x̂σ = 1.1xσ and x̂sσ = 1.1xsσ

reactance, x̂σ. This is evident by comparing figure 6.10 and 6.11. Another important
observation is that an error in the estimation of the leakage reactance, x̂σ, produces
an error oppositely as an error from a wrongly estimated stator leakage reactance,
x̂sσ. Hence, as observed in figure 6.12, it is better to estimate wrongly in both leakage
reactance, x̂σ, and stator leakage reactance, x̂sσ, than only in the leakage reactance,
x̂σ. The error of the rotor flux linkage’s angle estimation is given by:

θ̂s1R,err = θ̂s1R − θs1R = (ξ̂s1s1 − ξ̂Rs1)− (ξs1s1 − ξRs1) = ξ̂s1s1,err − ξ̂Rs1,err
= ξ̂s1s1,err − (arctan

a

b
− ξRs1)

(6.6)

where ξ̂s1s1,err is given by equation 6.4 and 6.5 and

a = is1 sin(ε̂ψs1

s1 )(2x̂σ − x̂sσ), b = ψ̂s1 − is1 cos(ε̂ψs1

s1 )(2x̂σ − x̂sσ)

Where

is1 = is2, ε̂ψs1

s1 = ε̂ψs1

s2 = εs1s1 − ξ̂s1s1

(6.7)

By examining equation 6.6, one observes that one term in the equation is the stator
flux linkage’s angle estimation. As discussed in section 6.1.1, this expression is highly
sensitive for a wrongly estimated stator resistance at low-speed operation. Hence
an error in the estimation of the stator flux linkage angle creates an error in the
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Figure 6.13: Sensitivity to the stator resistance, rs, for the rotor flux linkage angle
estimate, θ̂s1R , at low speed

rotor flux linkage’s angle estimation, and as seen in figure 6.13 the error increases
at low-speed operation. Besides, by looking at equation 6.7, it is evident that the
estimation of the stator flux linkage angle is a term to estimate the angle between
the current SV and the stator flux linkage SV. Also, the estimate of the stator flux
linkage amplitude is a part of the arctan term in equation 6.6. As discussed in section
6.1.1, this estimated amplitude is also very sensitive for the stator resistance estimate.

In section 6.1.1 it is shown that a wrongly estimated stator resistance produces sig-
nificant errors in low-speed operation for the stator flux linkage angle. Hence, it is
interesting to see how decisive the stator flux linkage’s angle estimation is for the
rotor flux linkage’s angle estimation. In figure 6.14 it is shown how the rotor flux
linkage’s angle estimation error becomes assuming that the stator flux linkage’s angle
estimation is correct. An interesting observation is that the maximum error for the
estimated angle is way less than for the stator flux linkage’s angle estimation. Hence
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one can conclude that an improvement in the estimation of the stator flux linkage’s
angle estimation also improves the rotor flux linkage’s angle estimation.

If one assumes that the estimation of the stator resistance is correct, the stator flux
linkage estimation of both angle and amplitude is right, and the only erroneous source
in the estimation of the rotor flux linkage angle is the angle between the stator and
the rotor flux linkage SVs. The stator flux linkage equations in the d-q rotating ref-
erence frame were presented in section 2 and the equation 2.2. From this equation, it
is clear that the q-component of the stator flux linkage varies with the q-component
of the current linearly. This q-component of the current is proportional to the elec-
trical torque generated in the motor, and hence an error in the stator flux linkage
q-component varies linearly with the electrical torque level in the machine. This is
observed in figure 6.15, where one sees clearly that the error in the rotor flux linkage’s
angle estimation varies linearly with the torque level with an error in the estimated
leakage reactance, x̂σ. On the other hand, the error in the estimated rotor flux link-
age angle caused by a wrongly estimated leakage reactance is very low, and hence not
significant relative to the error caused by the improperly estimated stator resistance.

As mentioned earlier, the d-component of the current will decrease in the field-
weakening area, and hence the error depends both on speed and torque. Also, it
is clear from equation 6.7, that the expression is more sensitive to the leakage reac-
tance, xσ, than the stator leakage reactance, xsσ because of factor 2 in the leakage
reactance term.

It is shown(Appendix D.1.3)that the error in the rotor flux linkage’s amplitude esti-
mation is given by:

ψ̂R,err = (ψs1 cos ξRs1 − ψ̂s1 cos ξ̂Rs1)− is1(cos εRs1(2xσ − xsσ)− cos ε̂Rs1(2x̂σ − x̂sσ)) (6.8)

Where:
εRs1 = εs1s1 − θs1R , ε̂Rs1 = εs1s1 − θ̂s1R (6.9)

In equation 6.8 and 6.9 one sees that the error in the estimation of the rotor flux
linkage amplitude depends on the estimate of the stator flux linkage amplitude and
angle, the rotor flux linkage angle and the leakage reactances, x̂σ and x̂sσ. Since the
stator flux linkage’s amplitude estimation goes theoretically towards infinity at zero
frequency when the stator resistance is estimated wrong, the rotor flux linkage’s am-
plitude estimation does the same. This can be seen in figure 6.16 where the sensitivity
on the parameters is shown at low-speed operation. In the figure, it is evident that
the rotor flux linkage’s amplitude estimation is more sensitive for an error in the esti-
mated stator resistance than the leakage reactances, and especially at low speed. On
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Figure 6.14: Sensitivity to the stator resistance, rs, for the rotor flux linkage angle
estimate, θ̂s1R , at low speed when ξ̂s1s1 = ξs1s1 and me = 0.75 pu

Figure 6.15: Sensitivity to the leakage reactance, xσ, for the rotor flux linkage angle
estimate, θ̂s1R , and dependency of electrical torque.
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Figure 6.16: Sensitivity of ψ̂R for the parameters at low speed

the other hand, since the term of the error from the leakage reactances are invariant
of the speed, these errors will not decrease in a high-speed operation. By examining
equation 6.8, it is evident that the error in the estimated amplitude is more sensitive
to the leakage reactance, xσ, than for the stator leakage reactance, xsσ, since the term
gets multiplied by 2. Besides, the value of the leakage reactance is generally higher
than for the stator leakage reactance. Hence a 10% increase/decrease in the leakage
reactance, xσ, will produce a more inaccurate estimation for the rotor flux linkage
amplitude than a 10% increase/decrease in the stator leakage reactance, xsσ.

In the field-weakening area, as the speed increases above 1 pu, the rotor flux linkage
amplitude will decrease. By equation 3.2 it is evident that the d-component current
will then lower and then also the current magnitude, is1. By observing again equation
6.8, one sees that if the magnitude of the current decreases the error of the estima-
tion will also decrease. This is observed in figure 6.17 where it is clear that in the
field-weakening area the error lowers.
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Figure 6.17: Sensitivity of ψ̂R by wrong estimation of xσ. Here is r̂s = rs

6.1.3 Torque Estimation

By looking at equation 3.3 and realizing that the two q-component currents con-
tribute the same for the generated torque( isq1 = isq2), one can write the error in the
estimation of the torque as:

m̂e −me = ψ̂R(̂isq1 + îsq2)− ψR(isq1 + isq2) = 2is1(ψ̂R sin(ε̂Rs1)− ψr sin(εRs1)) (6.10)

As known from the previous analysis, the rotor flux linkage estimate of both am-
plitude and angle are most sensitive for a wrongly estimated stator resistance. The
error caused by improperly estimated leakage reactances is relatively insignificant.
The estimation of the generated electrical torque with a wrongly estimated stator
resistance can be seen in figure 6.18. Here, it is clear that the estimation has errors
at the low-speed operation which is a consequence of the estimation of both the rotor
flux linkage amplitude and angle.

In figure 6.19 it is shown the estimation error of the torque for different estima-
tions of the stator resistance. As assumed the more wrongly the stator resistance is
estimated, the more wrong does the estimation of the torque gets.
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Figure 6.18: Estimation of torque with r̂s = 1.2rs

Figure 6.19: Estimation of torque with different stator resistance estimation at low
speed using the voltage model 30



It is also worth noting that at higher torque levels the error increases. This can
also be seen in figure 6.18 where at low speed it is clear that at higher torque the
estimated torque is more erroneous than at low torque levels. This is because at high
torque levels the amplitude of the current is higher.

6.2 The Current Model

6.2.1 Rotor Flux Linkage Estimation

Rotor flux linkage estimation in the current model is ,unlike the voltage model, pa-
rameter sensitive to the rotor resistance, rR, and the main reactance, xH . This is seen
in figure 6.20 and 6.21. Unlike the voltage model, the error of the rotor flux linkage
estimation of amplitude and angle is not speed dependent in the normal operation
area but torque dependent. In the flux-weakening area, it is observed in the figures
that the errors are both speed and torque dependent.

Figure 6.20: Estimation of rotor flux linkage amplitude and angle with r̂R = 1.2rR
using the current model

It is shown (Appendix D.2.1) that the estimated error for the rotor flux linkage
angle is:

θ̂s1R,err = arctan(
isq1
isd1

)− arctan(
x̂HrRisq1
r̂RxHisd1

) (6.11)
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Figure 6.21: Estimation of rotor flux linkage amplitude and angle with x̂H = 1.2xH
using the current model

From equation 6.11, it is evident the dependency of both the estimation of the rotor
resistance and the main reactance. If x̂H = xH and r̂R = rR there is no error as
assumed, but if x̂HrR

r̂RxH
there is also no error. This is not suspected, but just a random

and lucky estimation gives this scenario, and as long as this does not occur there is
an error in the estimate. Besides, one observes from the equation the dependency of
the q-component of the current. Since this component of the current is proportional
to the electrical torque produced by the motor, one understands that the error varies
with the torque level and one observes from figure 6.22 that at zero torque level there
is no error. Hence at low torque levels, the error estimated is relatively small. An-
other observation from figure 6.22, which is not that clear from equation 6.11, is that
the most sensitive operational point does not imply maximum torque produced in the
motor. This is observed by noting that the maximum of the angle estimation error
with r̂R = 0.5rR occurs at a torque level of me ≈ ±0.67. It can be shown by finding
the derivative of equation 6.11 (Appendix D.2.1) with respect to electrical torque,
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Figure 6.22: θ̂s1R error with different values of r̂R vs electrical torque in motor

that the most sensitive operational point in the normal operation area is when:

me = ±4xHi
2
sd1

√
r̂RxH
rRx̂H

(6.12)

Another interesting observation from figure 6.22 is that the error is worse for a rotor
resistance estimation below the real one than an estimation higher than the real ro-
tor resistance. This will become clear by observing the equation 6.11, where one sees
that it is the relationship between the parameter estimations that produce the error.
Hence a division of for example r̂R = 0.5rR gives a higher increase in x̂HrR

xH r̂R
than the

decrease if r̂R = 1.5rR. Then by our assumed deviation levels of the rotor resistance
and the main reactance from section 5, the worst scenario happens when x̂H = 1.2xH
and r̂R = 0.5rR.

On the other hand in the flux-weakening area the d-component of the current de-
creases and hence the error is also speed dependent in this area.

To estimate the rotor flux linkage amplitude stationary the derivative term in equation
4.6 gets zero and the result is:

ψ̂R = x̂H · (̂isd1 + îsd2) = 2 · x̂H · îsd1 (6.13)
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The error of the amplitude estimation will hence be:

ψ̂R − ψR = ψ̂R,err = 2is1(
x̂H√

( x̂HrRisq1
r̂RxH isd1

)2 + 1
− xH√

( isq1
isd1

)2 + 1
) (6.14)

From equation 6.15, it is evident that the rotor flux linkage’s amplitude estimation is
parameter sensitive to both the rotor resistance and the main reactance. As long as
x̂H = xH and r̂R = rR there is an error in the estimate. One interesting observation is
when the torque is zero, and hence isq1 = 0, the only parameter that matters for the
error function is the estimation of the main reactance. The explanation to this is that
the error in the estimation of the rotor flux linkage angle is zero at these operational
points.

In the flux-weakening area, the d-component of the current varies also. Higher speed
in the flux-weakening area gives a decrease in the d-component of the current. This
is because isd1 is proportional to the rotor flux linkage in the machine and hence a
drop in rotor flux linkage gives a reduction in the d-current.

6.2.2 Torque Estimation

The equation for the error in the torque estimation is the same as equation 6.10 from
the voltage model. On the other hand, the torque estimation in the current model
is not parameter sensitive to the same parameters as in the voltage model. In the
current model, the estimated torque is parameter sensitive to the rotor resistance and
the main reactance. In figure 6.23 one sees the torque estimation with deviations in
both the rotor resistance and the main reactance. If one compares these two figures
with figure 6.18, it is evident that the current model has not the same problems as
the voltage model around zero speed. The torque estimation of the current model is
not dependent on speed in normal operation, but only dependent on the torque level
in the machine. In the field-weakening operation, the torque estimation is dependent
on both speed and torque in the machine.

6.2.3 Stator Flux Linkage Estimation

The stator flux linkage estimation is not necessary for the current model, but it is
interesting to compare the estimation precision of the models. As discussed in section
6.1.1, the stator flux linkage estimation is highly dependent on the estimate of the
stator resistance at low-speed operation in the voltage model. In the current model,
the estimation is not dependent on the stator resistance but the rotor resistance. Be-
sides, the sensitivity dependency of speed in the current model does not exist in the

34



Figure 6.23: Error in estimation of torque using the current model with deviation in
rotor resistance and main reactance

normal operation area. Also, the estimation of the stator flux linkage SV is parameter
sensitive to the main reactance and also the leakage reactances, but a correct estimate
of the main reactance is more vital than the leakage reactances.

The error in the estimation of the stator flux linkage amplitude is written as:

ψ̂s1,err =
√
ψ̂2
sd1 + ψ̂2

sq1 − ψs1 (6.15)

Where
ψ̂sd1 = ψ̂R + x̂σ îsd1 + (x̂σ − x̂sσ )̂isd2

ψ̂sq1 = x̂σ îsq1 + (x̂σ − x̂sσ )̂isq2
(6.16)

As seen in equation 6.15 and 6.16 the error of the stator flux linkage’s amplitude
estimation depends on the rotor flux linkage’s amplitude estimation, the direct and
quadrature components of the current (which implies the rotor flux linkage’s angle
estimation) and the leakage reactances. By comparing figure 6.20 and 6.24, it is ob-
served that the shape of the figures looks alike. This indicates that the estimation
of the rotor flux linkage amplitude is significant for estimating the stator flux linkage
amplitude. In addition, the figures 6.21 and 6.25 are very similar and it confirms the
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Figure 6.24: Error in estimation of stator flux linkage using the current model with
r̂R = 1.2rR

Figure 6.25: Error in estimation of stator flux linkage using the current model with
x̂H = 1.1xH
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same.

The error in the estimation of the stator flux linkage angle is written as:

ξ̂s1s1,err = arctan
ˆψsq1

ψ̂sd1
+ θ̂s1R − ξs1s1 (6.17)

Hence, the estimation error is given by equation 6.11 and 6.16 and is parameter
sensitive to the rotor resistance, main inductance and the leakage reactances. The
error from a wrongly estimated rotor resistance and main reactance is seen in figure
6.24 and 6.25.
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7 Dynamic Parameter Sensitivity Analysis and Drift-

ing

In the voltage model, the method to obtain the estimation of the stator flux linkage
is done by an open integration. In this open integration, non-linear voltage losses,
time delays, and a wrongly estimated stator resistance cause a phenomenon called
drifting[11]. The name drifting motivates from the fact that the origo of the stator
flux linkage estimated SV seems to drift away from the real origo. Vector addition
explains the phenomenon and the most obvious way to understand it is by imagining
a DC offset in the measurement of the voltage or the current. This DC offset causes
the estimated SV to move away from the correct position at every instant. Then the
origo drifts away more and more for every time instant the DC offset is present. The
drifting phenomenon is drawn in figure 7.1 where the origo of the estimated stator
flux linkage SV is drifted to the right, which can be a result of a DC offset under
magnetization.

ψ̂s1,α[k] = ψ̂s1,α[k − 1] + ωnTsamp(us1,α − r̂sis1,α[k − 1])

ψ̂s1,β[k] = ψ̂s1,β[k − 1] + ωnTsamp(us1,β − r̂sis1,β[k − 1])
(7.1)

By examining the discrete equation of the stator flux linkage estimation (equation 7.1)
one clearly understands that the error in an earlier time instant does not disappear
and is a part of the estimation for all future. This means that if drifting has already
happened, the origo is misplaced for all future if not some correction is done. In
some cases the cause of drifting is symmetrical in steady state(for example a wrongly
estimated stator resistance) that creates an error function with a sum of zero over
one period. Hence, a filter can be a solution against the drifting phenomenon. In the
literature, there exist different solutions against drifting. Hu and Wu investigated
different methods for modifying the pure integrator and make it behave like a low
pass filter[3]. Later in this section, a correction method presented by Niemelä in his
doctoral thesis from 1999[5] is analyzed.

Figure 7.2 shows the principle of drifting. It is imagined that the estimated sta-
tor resistance is wrong and the reference of the electrical torque changes its value,
and hence the current changes its q component value. Then rotation of the stator flux
linkage SV, voltage SV, and current SV start rotating, all with the same rotational
speed. However, as the integral of the estimated stator flux equation is wrong since
the stator resistance is estimated wrong, the estimated stator flux linkage SV follows
a different path than the original stator flux linkage SV. This is seen by following the
dashed blue vectors in the figure. As the voltage generally is proportional to the speed
of the motor, the voltage SV is not stationary until the speed is constant. Then when
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Figure 7.1: Stator flux linkage vector measured vs estimated and drifted[15]

the voltage SV is stationary, the stator flux linkage integral is also stationary. Then
at each new time step, the magnitude of the vectors in the integral (second term of
equation 7.1) is the same as before. Hence, the estimated stator flux linkage rotates
along a circular path again which in the figure corresponds to the red dashed circle.
On the other hand, the time between the electrical torque reference changed until
the speed was stationary (during the dynamics), the origo of the estimated stator
flux linkage drifted away from its original origo, and like that drifting occurs. The
estimated rotor flux linkage SV experiences also drifting since it is a function of the
estimated stator flux linkage SV.

In this thesis, the measurement errors in the voltage and current measurements are
not analyzed. Hence, the error analyzed is how a wrong estimation of the stator
resistance produces drifting. The error is explained mathematically by the following
equations:

ψ̂s1,err = ψs1 − ψ̂s1 =

∫
us1dt− rs

∫
is1dt−

∫
us1 + r̂s

∫
is1dt

= ∆rs

∫
is1dt

= ∆rs

∫
is1,peak(t)e

jω(t)tdt

(7.2)

39



Figure 7.2: The principle of drifting as consequence of a wrongly estimated stator
resistance

is1,peak(t) =
√
isd1(t)2 + isq1(t)2 (7.3)

ω(t) = 2πfs = 2π
1

J

∫
me(t)−mL(t)dt− fr(t) (7.4)

As observed, this set of equations sum up to a nonlinear system that is complicated
to analyze. However, some observations are possible. For example, if the electrical
reference torque changes, the q component of the current alters its value to change
the electrical torque level to the reference. This dynamic happens almost instantly
compared to the change in speed. The difference between the electrical torque gen-
erated in the motor and the load torque produces the change in speed. Hence, the
characteristics of the load torque are significant for the dynamics. In the simulations
done in this thesis, the load torque had pump characteristics. The rate of the speed
change is a function of the moment of inertia in the machine. Since drifting occurs
during dynamics in the machine, and the speed changes slower than the generated
electrical torque, the time the speed changes is vital for the magnitude of drifting.
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This is understood intuitively by the more time in dynamics before steady-state oper-
ation with a wrongly estimated stator resistance, the more drifting magnitude. Also,
in equation 7.4 the rotor frequency as it is a function of the q component of the
current and the rotor flux in the machine have an impact dynamically. Especially
around zero speed, the rotor frequency has an impact as its magnitude is relatively
significant for the equation. At the high-speed level, it can be neglected. On the
other hand, the rotor frequency changes relatively instant compared to the change
in speed, and it can be assumed constant at each electrical torque level. In equation
7.3 the d component, which controls the rotor flux of the machine, is present. The
rotor flux of the machine is generally constant during operation (if flux-weakening
operation and DC magnetization are neglected) and hence the d component of the
current is assumed constant.

7.1 DC Magnetization

To start the machine DC magnetization is done before the machine starts rotating,
giving the rotor flux linkage vector an appropriate value (1 pu), and hence the elec-
trical torque can be controlled up to 1 pu. At DC magnetization one cannot use the
voltage model since the frequency is zero, and hence the stator flux linkage is not
observable in the stator flux equation. The stator flux equation is simply Ohm’s law:

us1 = rsis1 (7.5)

To magnetize the machine one uses the current model at zero speed and project the
current in the α axis. Hence the direct axis is equal to the α axis, and the machine
is magnetized following the expression:

dψ̂R
dt

= − 1

T̂r
ψ̂R +

x̂H

T̂r
(isα1 + isα2) (7.6)

In a discrete representation:

ψ̂R[k] =
x̂HTsamp

T̂r + Tsamp
(isα1 + isα2)[k − 1] +

T̂r

T̂r + Tsamp
ψ̂R[k − 1] (7.7)

The direction of the rotor flux linkage SV is the same as the current SV, hence the
direct component of the rotating axis corresponds the α axis under magnetization.

One can see from equation 7.7 that if the main inductance is estimated wrong, the
rotor flux linkage is also estimated wrong. This gives further a wrongly estimated
stator flux linkage.
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Figure 7.3: DC magnetization with a wrongly estimated main reactance.

To estimate the stator flux linkage under magnetization one uses the expression:

ψ̂s1 = ψ̂sd1 = ψ̂sα1 = x̂σisα1 + (x̂σ − x̂sσ)isα2 + ψ̂R (7.8)

Which in a discrete representation is written:

ψ̂s1[k] = x̂σisα1[k] + (x̂σ − x̂sσ)isα2[k] + ψ̂R[k − 1] (7.9)

In equation 7.9 one sees that the stator flux linkage estimate is a function of both the
estimated leakage reactance and the estimated stator leakage reactance, as well as
the estimated rotor flux linkage magnitude. Hence when the machine starts rotating
and the voltage model is used for estimating the stator flux linkage, both the stator
flux linkage estimate and the rotor flux estimate would have experienced a drifting
in the direction of the current vector, if some of the reactances are estimated wrong.
In figure 7.3, it is shown two examples of DC offsets under magnetization caused by
a wrongly estimated main reactance. If the estimated main reactance has a lower
value than the real one, the estimated flux origo drifts to the left and oppositely if
the estimated main reactance has a higher value than the real main reactance.

7.2 Torque/Speed Reference Change

As the machine is torque or speed regulated, a change in the reference of these val-
ues creates a dynamic situation where the current and voltage change. If the stator
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resistance is estimated wrong in a dynamic situation, the open integration integrates
an error, and the integrated error varies until the torque and speed are fixed, and
the machine operates in steady-state. When the machine operates stationary (fixed
speed and torque) the error still gets integrated, but since the current and voltage
SV rotate and have a constant amplitude, the error function is integrated to zero in
one period, and there is no more drifting.

In figure 7.4, it is simulated torque steps which generate speed change and change
in the error of the estimated stator flux linkage amplitude. It is shown that even
though the speed is not low a dynamic situation, which occurd as a consequence of
the steps in the electrical torque reference, creates a change in drifting. As assumed
the change in drifting (change in error of the stator flux linkage amplitude) is at most
when the speed is at lowest (around 0.5 pu). The change in drifting is also a function
of the direction of the current vector, and hence for some steps, the error of the esti-
mated stator flux linkage amplitude decreases. This occurs because the direction of
the drifting is in the opposite direction of the drifting that already had happened.

7.3 Frequency Dependency

In figure 7.5 it is observed the frequency dependency of the drifting. In time t=1.8s
there is a sudden change in the estimated resistance and the estimated stator flux
linkage SV starts drifting. This is simulated for different frequencies and observed
that the error oscillates with a different amplitude for both amplitude and angle error
for the stator flux linkage estimate. From the figure 7.5’s cursor points it is observed
that the amplitude error is approximately inversely proportional to the frequency at
the time the drifting starts. The blue frequency is 2.14078 times the frequency of the
green line. The peak-to-peak error in amplitude estimation of the blue line is 1.98855
times the green line, and the peak-to-peak error in angle estimation is 2.0528 times
the green line.

Investigating equation 7.2 again and assuming constant peak current and speed:

ψ̂s1,err = ∆rs

∫
is1,peake

jωtdt

=
∆rsis1,peak

ω
[−jejωt]

=
∆rsis1,peak

2πfs
[−jejωt]

(7.10)

As seen in equation 7.10 the error is inversely proportional to frequency if one assumes
a constant speed and peak current. In figure 7.5 the speed is close to constant, and
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Figure 7.4: Step change in electrical torque reference which produces changes in the
drifting of the stator flux linkage estimation
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the peak current is assumed constant. Hence, the equation 7.10 can serve as an
approximation of a mathematical expression for drifting.

7.4 Crossing Zero Speed and Low-Speed Operation

As discussed in the stationary parameter sensitivity analysis, when the speed de-
creases the voltage also drops which implies a more critical resistance estimation. Sta-
tionary the integral of the error caused by the wrongly estimated resistance(equation
7.5), is a sinusoidal function with an amplitude inversely proportional to the frequency
of the stator flux linkage. Hence at low frequencies this amplitude is high.

In figure 7.6 and 7.7, it is clear that the error of the estimated stator flux linkage
amplitude and angle changes because of drifting when the motor crosses zero speed.
This is natural because at a motor speed close to or at zero the voltage SV decreases
to a minimum value and the current SV multiplied with the estimated resistance has
a significant impact. Hence, if the estimated resistance is wrong (as it is in figure 7.6
and 7.7) it is natural that drifting occurs. It is also clear after comparing the dashed
black circle (measured values) to the blue (estimated circle after magnetization) in
figure 7.6, that there is a drift problem starting after the magnetization period of the
machine because of a wrongly estimated stator resistance. This fact is also clear in
figure 7.7, where one sees that after the motor starts rotating the error of both the
amplitude and angle is nonzero. The drifting from the blue circle to the red, which is
seen in the first figure in figure 7.6, occurs the first time the motor speed crosses zero.
This is seen in figure 7.7 and occurs around Time= 1.4[sec], and the error increases
for both amplitude and angle because of the estimated circle drifts away from the
real measured circle of the stator flux linkage SV. In the second figure in figure 7.6,
the next crossing through zero speed occurs, and as seen in figure 7.7, this occurs
approximately when Time= 2.3[sec] and again the error increases due to the direc-
tion of the drifting is away from the original and real circle. Then in the third and
last figure of figure 7.6, another crossing through zero speed takes place and now the
error decreases since the drifting direction is towards the original and real stator flux
linkage SV circle. From figure 7.7 it is observed that this occurs at Time= 2.7[sec]
and indeed the error of both amplitude and angle drops.

Like discussed earlier in this section, drifting is a dynamical phenomenon, and during
the dynamics, the error gets integrated, and the origo of the estimated flux linkage is
misplaced. This is seen in figure 7.8 and 7.9 where the speed decreases for a longer
period. Here the estimated stator resistance is simulated with a 50% value of the real
stator resistance. It is observed that from the start after the DC magnetization, the
estimated fluxes drift away from the real origo. This is because, in the same way as in
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Figure 7.5: Frequency dependency at the dynamic start
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Figure 7.6: Drifting of the ψ̂s1 space vector at zeros speed crossing with r̂s = 0.5rs.
The black circle is from the measured stator flux linkage space vector

Figure 7.7: Estimated stator flux linkage amplitude and angle error changes for every
crossing over zero speed
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(a) ψs1 est and measured (b) ψR est and measured

Figure 7.8: Drifting of ψ̂s1 and ψ̂R as a consequence of a wrongly estimated stator
resistance. At around zero speed the error gets integrated for a long time in the same
direction and the estimated stator flux linkage becomes unstable

figure 7.6 and 7.7, that after DC magnetization is done, the machine starts rotating
which implies a dynamical situation. Since the wrongly estimated stator resistance
is multiplied by the current in the voltage model, the error is integrated and drifting
of the origo has started. The origo drifts away until the speed is constant and hence
the voltage in the stator flux linkage integral is fixed. Then the estimated stator
flux linkage’s origo is fixed until a new dynamic situation takes place(change in the
current or voltage). A new dynamic situation starts when the speed drops just before
1 second has passed, which can be seen in figure 7.9. Then the speed decreases and
passes zero for two times, and as expected the estimation for both the stator and
the rotor flux cannot be trusted in this region. It is seen in figure 7.8 that the error
gets integrated over some time, and hence increases. In figure 7.9 it is seen that the
amplitude error of both stator and rotor fluxes is estimated wrong by nearly 1.5 pu at
maximum and the angles are estimated wrong by around 100 degrees at maximum.
This confirms the stationary parameter sensitivity analysis which stated that the volt-
age model is highly sensitive to stator resistance estimation errors around zero speed.

In figure 7.10 and 7.11, it is evident that different speeds give different drifting mag-
nitudes. It is seen that if the speed is low for a more extended period (turquoise line),
the drifting magnitude becomes larger. Like discussed before, this is a consequence
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Figure 7.9: Figure 7.8 shown with referenced time and speed
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Figure 7.10: Drifting of estimated stator and rotor flux linkage space vectors as a
consequence of wrongly estimated stator resistance and a change in speed

of that the estimated resistance multiplied with the current space vector is more sig-
nificant in equation 7.1 at lower speeds. If one increases the speed (red and blue line)
drifting lowers in magnitude.

7.5 Moment of Inertia

As seen in equation 7.2 and 7.4, the moment of inertia has an impact on drifting.
Intuitively this is understood by a higher moment of inertia implies a slower speed
change, and hence the dynamics occur for a more extended period. Since drifting is
a dynamical phenomenon, it is clear that if the dynamics occur for a longer period of
time, the drifting will also occur for a more extended period. Especially, as discussed
earlier, when the speed is low, and the estimate of the stator resistance is wrong, then
drifting is problematic. Hence if the speed is low for a long time because the speed
changes very slowly due to a high moment of inertia, the estimated stator flux linkage
drifts from its origo. It can be seen in figure 7.12 that drifting is more problematic
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Figure 7.11: Speed change and causes drifting. The colors match with figure 7.10 and
it is observed that a slower rise in speed causes more drifting.

Figure 7.12: Drifting with different values of moment of inertia. Here r̂s = 0.5rs.

for a machine with a high moment of inertia. As seen in the figure as the value of the
moment of inertia goes down, drifting is less critical.

7.6 Correction Method Against Drifting

The correction method against the drifting phenomenon used in this thesis was pre-
sented by Niemelä in his doctoral thesis in 1999[5]. This method was presented as
an alternative for the more traditional filter solutions and was tested with direct flux
linkage control and direct torque control then. Later, this correction method was
investigated for a six-phase symmetrical synchronous PM machine by Fossen with
field- oriented control (Indirect flux linkage control) in his project thesis in 2016[11].
Now it is investigated with simulations for a six-phase induction motor in this thesis
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using field-oriented control.

The principle of the correction method is based on that the square of the estimated
stator flux linkage subtracted by the square of a low pass filtered value of the es-
timated stator flux linkage has a maximum in approximately the same direction as
the eccentricity(direction) of the drifting flux component. Hence, this is used as a
scalar factor in a correction function. Besides, the estimated stator flux linkage minus
a low pass filtered value gives a good indication of how much the estimated stator
flux linkage has drifted. For example, if the estimation has drifted relatively much,
the estimated stator flux linkage minus the low pass filtered value gives a high value
and contribute a lot to the correction function. On the other hand, if the estimated
stator flux linkage has not drifted much the low pass filtered value is approximately
the same, and the subtraction is nearly zero. The correction factor is calculated by
the following function[5]:

ψsα1,corr = kcorr(ψ̂
2
s1,filt − ψ̂2

s1)ψ̂sα1

ψsβ1,corr = kcorr(ψ̂
2
s1,filt − ψ̂2

s1)ψ̂sβ1
(7.11)

The time constant in the low pass filter is suggested by Fossen[11]:

Tfilter = min{1.75,
2

fsfN
} (7.12)

Hence, the filter is frequency dependent which gives better performance at low fre-
quencies. A notable improvement made by Fossen of the filter is to introduce a zero
point to prevent that a change in the current is corrected as drifting in the low pass
filter. The ratio of the time constant of the zero point and the filter time constant is
called kt, and this ratio is tuned as a gain to prevent drifting correction during torque
steps in the machine.

kt =
Tzero
Tfilter

(7.13)

kcorr in equation 7.11 is a correction coefficient that shall depend on the stator flux
linkage frequency. After the correction factor is calculated, the new and corrected
estimation of the stator flux linkage is hence:

ψ̂sα1[k] = ψ̂sα1[k − 1] + ψsα1,corr

ψ̂sβ1[k] = ψ̂sβ1[k − 1] + ψsβ1,corr
(7.14)

The block diagram of the process is seen in figure 7.13. The expression for the
correction coefficient, kcorr, is suggested adaptive in an IEEE paper from Luukko,
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Figure 7.13: Block diagram correction method against drifting[15]

Figure 7.14: Adaptive calculation of kT

Niemelä and Pyrhönen[7] and also worked on by Fossen in his project thesis[11]:

kcorr = (1− kT )kcorr,0 (7.15)

Here kcorr has an adaptive value that is dependent on torque steps in the machine.
If a torque step occurs the estimated stator flux linkage should not be corrected.
The estimated torque gets filtered through a low pass filter which is not fast enough
to filter a step. Hence after a step in torque one exploits the difference between
the estimated torque and the filtered as a signal to indicate torque steps. This is
multiplied with kt which can be tuned and in the end, limited to be maximum 1. kt is
suggested chosen of how big response kT should have for a given torque step[7]. For
example if one wants kT = 1 for a torque step of 0.5 one chooses kt = 2. The whole
process of calculating kT is seen in figure 7.14. If kT = 1 one sees in equation 7.15
that the correction coefficient, kcorr is then zero and no correction on the estimated
stator flux linkage is done. kcorr,0 is used as a base value in equation 7.15 and can be
tuned. In the end the discrete filtered value can be calculated by the function:

ψ̂2
s1,filt[k] = ψ̂2

s1,filt[k − 1](1− Tsamp
Tfilt

) + ψ̂2
s1[k]

Tsamp
Tfilt

+ (ψ̂2
s1[k]− ψ̂2

s1[k − 1])kT (7.16)
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Figure 8.1: XY plot of the drifting of estimated stator flux linkage and correction.
r̂s = 1.5rs.

8 Speed-Sensorless Operation Performance

8.1 Corrector block

From figure 8.1 and 8.2, it is evident that the corrector block improves the estimation
of the stator flux linkage SV. In this simulation, the estimated stator resistance is
150% of the real value, and hence this can be considered as an extreme scenario.
To the left of the figures, it is evident that the drifting is a critical problem for the
estimation and the error varies in a sinusoidal way and increases for each dynamical
situation that occurs in the motor. The error is increasing for both amplitude and
angle because the drifting is in a direction away from the real origo. On the right
side of the figure, there is a blue circle (estimated stator flux linkage) that nearly
corresponds to the real and measured stator flux linkage SV. It is observed in figure
8.2 that at each dynamical situation (change in torque reference) the corrector block
removes the drifting adequately.

8.1.1 Disturbance When Estimated Stator Resistance Is Correct

In figure 8.3, it is demonstrated a drawback with the correction method. In this
simulation, the estimated stator resistance is the same as the real resistance. Hence,
no estimation errors. On the other hand, it can be seen that when there is a step in
torque the correction method corrects this for a short period, acting as a disturbance
on the flux model. Without the correction method, the estimation is without error for
both the angle and amplitude estimation of the stator flux linkage. Usually there are
some errors in either the measurements of the voltage and current or the resistance
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Figure 8.2: Amplitude and angle error vs time with and without correction. r̂s =
1.5rs.

Figure 8.3: With and without correction block for r̂s = rs
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estimation, and hence the correction method is better when this occurs, and the
drawback with the disturbance in change of a torque reference is acceptable.

8.1.2 Stationary Error When The Stator Resistance Estimation Is Not
Correct

If one investigates the right side of figure 8.2 more closely, it is observed a stationary
error in both amplitude and angle of a small value. Hence, the corrector block does
not perform flawlessly. As a consequence of this, the rotor flux linkage SV also
experiences a stationary error in its estimate. Then the estimated d-q rotating axis is
not entirely correct. For most scenarios, the small error in the estimated d-q rotating
axis is of small consequences but if the motor operates at a low torque reference,
this may cause trouble. In figure 8.4, it is observed that the stationary error seems
to be a function of the estimated stator resistance. It is observed that the only
scenario without stationary errors is when the estimated stator resistance is equal
to the real. However, as seen in the last subsubsection, the transient error is still
there. When the estimated stator resistance is estimated at a higher value than the
real resistance the error of the amplitude is positive which is indicating a too low
estimated stator flux linkage amplitude. The opposite is a fact for an estimated
stator resistance too low. For the angle error, the estimated angle is estimated too
big when the estimated stator resistance is estimated too big, and the speed of the
motor is positive. When the speed is negative, the estimated angle is estimated too
low. For a stator resistance estimated too low the opposite is a fact. The reason for
this performance error is clear by remembering the stationary parameter sensitivity
analysis for the stator flux linkage in the voltage model in section 6.1.1. It was shown
that both the stator flux linkage amplitude and angle had estimation errors if the
estimated stator resistance was wrong. Hence when the correction method uses the
square of the estimated stator flux amplitude as input to correct the drifting, only
the amplitude is corrected. The fixed angle error because of a wrongly estimated
stator resistance is still present. In Niemelä’s work [5] the machined used was the
synchronous motor and a standard control strategy for this machine is keeping the
voltage and current in phase, producing a stator flux linkage lagging 90 degrees.
Hence an error in the estimation of the stator resistance does not create errors to the
angle estimation. The same was experienced by my colleague Magnus Bolstad in his
thesis, where he analyzed the correction method for a synchronous machine[16].

8.1.3 Tuning of The Corrector Block

The corrector block for the stator flux linkage estimate is tuned to give improved
characteristics. The results of the tuning of both kt and kcorr,0 is seen in figure
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Figure 8.4: Stationary error from the corrector block as a function of the estimated
stator resistance
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8.5 and a more thoroughly tuning of kcorr,0 is seen in figure 8.6. In figure 8.5 it
is observed that the changing kt produces few changes but if kcorr,0 is changed the
oscillation of the error function of both amplitude and angle is changing. Especially
the oscillation of the error function of the angle is essential since this angle is a
term for calculating the rotor flux linkage position and hence the estimated d-q-axis.
A wrongly estimated direct and quadrature axis gives a wrongly estimated d and
q components of the current. This again gives wrongly estimated electric torque
since the q component of the current generates torque. Besides, a wrongly estimated
d component of the current produces errors in the estimated rotor flux amplitude
which again is proportional to the electrical torque in the machine. As one sees from
the figures, the stationary error is not removed by tuning and is the same as in figure
8.5. In figure 8.6 the estimated error in the rotor flux linkage amplitude and position,
torque and the measured electrical torque in the motor and speed. It is observed that
a lower kcorr,0 produces more oscillation in the electrical torque of the motor and that
a higher kcorr,0 makes the correction of the rotor flux linkage amplitude and position
slower. Here the preferred result is kcorr,0 = 0.0020. On the other hand, the tuning is
here done in MATLAB Simulink but is done easier and faster in a laboratory.
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Figure 8.5: Tuning of corrector block
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Figure 8.6: Tuning of kcorr,0 in corrector block
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Figure 8.7: Using a filter solution to improve estimate of rotor flux linkage amplitude,
here referred to as the filter method

8.2 Improving Rotor Flux Linkage Amplitude Estimation

The estimation of the rotor flux linkage amplitude will be used to calculate the direct
component reference of the current in the flux controller by a PI regulator. Unfortu-
nately, the amplitude estimation contains some ripple which acts as disturbances to
the flux controller. On the other hand, the ripple observed in the estimation is not a
physical phenomenon, since the rotor flux linkage amplitude has inertia and does not
change value instantly like the ripple. Hence a proposed solution is to filter the rotor
flux linkage’s amplitude estimation to improve the performance of the flux controller.
This is evaluated and performed. The block diagram of the process is seen in figure
8.7. In addition to a more stable flux regulator, the filtered estimated amplitude
produces a better flux linkage amplitude value. This improved method will here in
this thesis be called the filter method. The expression for a discrete low pass filter
can be written like:

G(z) = K
(Ts/T )z−1

1 + (Ts/T − 1)z−1
(8.1)

Where K is the filter gain and is here 1, T is the filter time constant and is here
chosen to be Tr from equation 4.9 and Ts is the sample time.

Another suggestion to improve the estimate of the rotor flux linkage amplitude is
to use a combination of the voltage model and the current model to remove the ripple
caused by the estimation of the rotor flux linkage amplitude in the voltage model.
The reason to the reduction in ripple is that the equation 4.6 is a dynamic equa-
tion where the rotor flux linkage amplitude has inertia and cannot change instantly.
When using the current model to estimate the rotor flux linkage the equation used is
equation 4.6, but now the d component of the current is estimated from the voltage

61



Figure 8.8: Combination of the voltage model and current model for improving rotor
flux linkage estimate, here referred to as the combination method

model. The principle is shown in figure 8.8. The equation 4.6 is here repeated for
clearness:

dψ̂R
dt

= − ψ̂R
T̂r

+
x̂H

T̂r
(̂isd1 + îsd2) (8.2)

In equation 8.2 the estimation of the direct components of the current is different than
for the current model discussed in section 4. This is because in the standard current
model one measure the rotor position or speed and then estimates the rotor flux link-
age SV position. In the combination method, one uses the estimation of the rotor
flux linkage angle from the voltage model as input in the current model. This input
comes from the voltage model and hence is sensitive for errors in the estimation of
the stator resistance, especially at low-speed operation. The standard current model
using the measurement of the rotor position is not sensitive for the stator resistance.

Here using equation 8.2(or the current model) the parameter sensitivity which was
discussed in section 6 is still valid. Hence, the model will now also be parameter
sensitive to the estimated rotor resistance and main inductance as well as the stator
resistance.

In figure 8.9 it is observed that the combined model is the best model to estimate
the rotor flux linkage amplitude. Both the filtered model and the combined model
improves the estimation and the ripple from the voltage model estimation. On the
other hand, there is a stationary error in all the models which is probably a conse-
quence of the stationary error in the stator flux linkage estimation from the drifting
corrector block, but the improvement from the normal voltage model is clear.

A simulation with correctly estimated parameters is done in figure 8.10. In this
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Figure 8.9: Three different estimation models for the rotor flux linkage amplitude:
normal voltage model, filtered voltage model and a combined model
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simulation, it is clear that the combination method is better than the filter method.
Both the rotor flux linkage amplitude and angle is estimated better in the combination
method than the filter method. On the other hand, all the estimated parameters are
correct. Hence one should assume zero error for both methods. As shown in section
8.1, the corrector block can act as a disturbance when the estimated stator resistance
is correct and worsen the flux model. As both the filter method and the combination
method use the corrector block to decrease drifting, this disturbance also the rotor
flux linkage estimation.

In figure 8.11 it is shown a simulation with wrongly estimated resistances. In this
simulation both the stator resistance and the rotor resistance estimation is 1.2 times
the correct values. As both the resistances are temperature dependent it is assumed
that both the stator and rotor resistance variate with the same relative amount. At
first when the DC magnetization occurs from 0-0.6 seconds it is clear that there is
a problem with the estimation of the rotor flux linkage amplitude in both methods.
This is because that one uses the current model at DC magnetization and the current
model is parameter sensitive for the rotor resistance. On the other hand after the
machine starts rotating at 0.6 seconds the error in the rotor flux linkage amplitude es-
timation decreases in both models, but a more smoothly decrease in the combination
method. The rotor flux angle estimation will be correct during the DC magnetization
period and then when the machine start rotating the corrector block will be enabled
and try to filter away the drifting that occurred during magnetization. Hence it is
observed a maximum in the error estimation of the rotor flux linkage angle, where
the maximum for the filter method is higher than the maximum of the combination
method. The next maximum occurs when the motor drives through zero speed at
approximately 1.35 seconds in the filter method and 1.4 seconds in the combination
method. Again the maximum is higher for the filter method. Then the motor gets a
new torque reference at 2.2 seconds but is not able to follow this reference. For the
combination method one seems to experience a stationary error of approximately 7
degrees in the rotor flux linkage angle estimation which makes it impossible to follow
the torque reference producing a stationary error of approximately 0.05 pu. For the
filter method it is difficult to conclude if there will be stationary error or not since
it has a more oscillating nature than the combination method. On the other hand it
is clear that it is also experiences difficulties following the given torque reference.The
reason for these difficulties is the that the machine is running at low speed and in
addition but not shown in this figure at a low torque level. Hence small errors in the
rotor flux linkage angle estimation and the direct and quadrature current components
can produce torque generating currents which opposes the torque reference.
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Figure 8.10: Combination model vs filter solution with r̂s = rs and r̂R = rR
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Figure 8.11: Combination model vs filter solution with r̂s = 1.2rs and r̂R = 1.2rR
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Figure 8.12: Alternative method for correcting drifting using a closed loop observer
feedback method

8.3 Closed Loop Observer

The correction block does not work flawlessly and as seen earlier stationary errors in
both stator flux linkage amplitude and angle estimation occur when the estimated
stator resistance is not correct. This brings motivation to find a new alternative
solution for removing the drifting in the voltage model. Inspired by the less oscillating
rotor flux linkage estimation using the current model one can exploit this value to
estimate a new stator flux linkage (with less oscillation than the original) that can be
used to correct the error caused by a wrongly estimated stator resistance. Actually the
time constant, Tr, used for estimating the rotor flux linkage amplitude in the current
model will act like a low pass filter, and can filter away some of the oscillation caused
by drifting. Hence it can be assumed that the new stator flux linkage estimate is more
correct than the estimate from the voltage model. Then using the new estimate as a
closed loop observer one corrects the voltage model and the drifting will be decreased.
The alternative method is shown in a block diagram in figure 8.12. The correction
block explained in section 7.6 is not used while using this method. The closed loop
observer feedback method (as it will be referred to here) will work as an alternative
method for the correction block explained in section 7.6. The equations used for
estimating the stator flux linkage from the current model were explained in section
4.2 and by the equations 4.11-4.13. Here repeated with the correct subscripts(MC
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indicates current model and MV indicated voltage model):

ψ̂sd1,MC = ψ̂R,MC + x̂σ îsd1,MV + (x̂σ − x̂sσ )̂isd2,MV

ψ̂sq1,MC = x̂σ îsq1,MV + (x̂σ − x̂sσ )̂isq2,MV

(8.3)

ξ̂s1s1,MC = arctan
ψ̂sq1,MC

ψ̂sd1,MC

+ θ̂s1R,MV (8.4)

Where θ̂s1R,MV is given by equation 4.4.

The difference between the stator flux linkage estimation from the current model
and the voltage model will be amplified by a gain K and then used as feedback for
the voltage model. The new expression for estimating the stator flux linkage in the
voltage model is given by:

ψ̂
s1,MV

=

∫ t

t0

(us1 − r̂s1is1 +K(ψ̂
s1,MV

− ψ̂
s1,MC

)dt (8.5)

The best value of K was found to be 0.1 by tuning in the model in MATLAB Simulink
with correct estimation of the parameters.

8.3.1 Comparing The Combination Method With Correction and The
Closed Loop Observer Method

In figure 8.13 the different methods are compared with correct estimation of the pa-
rameters. From the figure it is observed that the combination method is better at
estimating both the rotor flux linkage amplitude and the angle stationary. For the
combination method the error in angle seems to be approximately zero at stationary
operation, which is assumed if the estimated parameters are correct. Since both the
rotor flux linkage amplitude and the angle is estimated better using the combination
method the torque is also estimated better. On the other hand, when the machine
drives through zero speed the closed loop observer feedback method experiences a
smaller amplitude in the oscillation of the rotor flux linkage angle estimate. This im-
plies that using the closed loop observer feedback method the control model is more
reliable crossing zero speed.

The performance of the closed loop observer feedback method compared to the combi-
nation method at wrongly estimated resistances is shown in figure 8.14. Investigating
the figure it is clear that the closed loop observer feedback method performs better
than the combination method. Because the rotor resistance is estimated wrongly the
DC magnetization of the machine will be estimated wrongly. This is evident from
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investigating the rotor flux linkage amplitude estimation error in the starting time.
After the machine starts rotating at 0.6 seconds the estimation of rotor flux linkage
angle experience a transient but stabilizes at approximately zero error for both the
closed loop observer feedback method and the combination method before next tran-
sient starts at time = 1 second. The same occurs again under this transient but it
is clear from the figure that using the closed loop observer feedback method driving
through zero speed is more reliable. This is evident from observing that the maxi-
mum error of the torque and angle estimation is lower for the closed loop observer
feedback method compared to the combination method. The last change of torque
reference occur at time = 2.6 seconds. Another time the model is challenged to drive
through zero speed. It is observed that only the closed loop observer method is able
to succeed following the reference. The combination method experience stationary
angle error of approximately 8 degrees which is a significant amount and following
the torque reference seems impossible.
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Figure 8.13: Closed loop feedback observer method vs Combination method with
correct parameter estimation
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Figure 8.14: Closed loop feedback observer method vs Combination method with
r̂s = 1.2rs and r̂R = 1.2rR

8.3.2 Problems With The Closed Loop Observer Method

The stationary error in the estimated rotor flux linkage angle was the motivation for
developing the closed loop observer feedback method but seems to be a more difficult
challenge than expected. As seen in the simulations, the method experiences many of
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the same problems as the correction method by Niemelä. In figure 8.13 it is observed
that even though when the parameters are estimated correctly the model experiences
disturbance during a change in the torque reference. In addition, as for the correction
method, there are stationary errors in the estimated stator and rotor flux linkage’s
angle error. However, for some scenarios, like in figure 8.14, the stationary error
in rotor flux linkage angle estimation is less using the closed loop observer feedback
method. Besides, it was clear that the method was better for driving through zero
speed.

A drawback with the method, compared to the classical voltage model with drift-
ing correction, is that the model is sensitive to more parameters. In the voltage
model, the critical parameter is the stator resistance. In the closed loop observer
feedback method, one uses both the voltage model and the current model. Hence in
addition to the parameters from the voltage model, the method is parameter sensitive
to the rotor resistance and the main reactance. Then a possible scenario is correctly
estimated resitances and a wrongly estimated main reactance. Then the standard
voltage model estimates correctly, and the feedback serves only as an additional dis-
turbance. Besides, since the closed loop observer feedback method is sensitive to
more parameters, it is more technically demanding to estimate these. Hence, due to
its more advanced structure, it is fair to assume that using the closed loop observer
feedback method, the drive costs more.

8.4 Possible Improvements Not Investigated

There exist a lot of different strategies that can be used to improve the standard
voltage model. As discussed earlier, the closed loop observer method works well. In
addition to the feedback from the stator fluxes in the different models, one can use
the rotor flux linkage or a current estimation. Another possibility is to estimate the
current from the rotor flux linkage in the voltage model. Besides, it is possible to
develop more advanced observers such as the sliding mode observer, adaptive gain for
observer or use a PI as closed loop feedback control.[12][9]

In addition using a PLL (Phase-lock loop) slow enough to not follow the oscilla-
tions the estimated rotor flux linkage angle experiences driving through zero speed
was proposed by supervisor Prof. Roy Nilsen, but simulating showed no success.
Hence it was omitted in this thesis.
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9 Summary

In section 6 the stationary parameter sensitivity of both the voltage model and the
current model were analyzed. From the voltage model, it is clear that the low-speed
operation is problematic if there is an estimation error in the stator resistance. The
amplitude error of the stator flux linkage is in theory infinity at zero frequency be-
cause of a division by zero in equation 6.2. The estimation of the stator flux linkage
angle is also problematic at low-speed operation because the voltage magnitude de-
creased at low speed that implies a more dominant stator resistance voltage drop in
the equation 6.4. If the stator resistance was estimated wrong the estimated stator
flux linkage SV is located 90 degrees lagging or leading of the current SV at the pos-
itive or negative limit of zero frequency depending if the estimated stator resistance
is bigger or smaller than the real value. This was seen in figure 6.8. The estimation
of the rotor flux linkage experiences the same problems as the stator flux linkage at
low-speed operation with a wrongly estimated stator resistance. This occurs because
the estimation of the rotor flux linkage is a function of the estimation of the stator
flux linkage. Hence, both the estimation of angle and amplitude experiences problems
in the low-speed region and likewise the estimated torque is also not reliable in this
region.

For the current model, the critical parameters are the rotor resistance and the main
reactance. The model does not experience the same problems during low-speed op-
eration as the voltage model and hence is more reliable in this operational region.
On the other hand, the model depends on the torque level in the machine for both
angle and amplitude for the estimation of the rotor flux linkage. The problems with
torque dependency would be the same for the estimated torque. In summary it can
be concluded that the voltage model is a more reliable model without at low-speed
operation where the current model is more reliable.

The dynamical parameter sensitivity analysis and the phenomenon of drifting in the
voltage model is discussed in section 7. A wrongly estimated stator resistance is seen
as the reason for the drifting of the origo for the estimated fluxes. This comes as a
consequence of the use of the open integration in the voltage model and hence an
error in the estimation is in theory a part of the estimation forever. The size of the
drifting depends on different circumstances. Likewise, for the stationary parameter
sensitivity analysis the frequency at the time when the transient occurred is impor-
tant for scaling the size of the drifting. This is seen in section 7.3. Hence changing
torque reference at low speed gives a more erroneous flux linkage estimation than
changing at high speed. In addition, driving trough zero with a wrongly estimated
stator resistance is shown very challenging.

73



Hence the drifting of the voltage model need to be corrected in some way. The
correction method based on the square of the estimated stator flux linkage amplitude
presented by Niemelä[5] and investigated by Fossen[11] is suggested as a solution.
This filter solution is explained in section 7.6. Even though it removes the oscillat-
ing errors in estimated flux linkage amplitude and angle, it did not work ideally. In
section 8.1 it is evident that the method seems noisy when the estimated stator resis-
tance is correct, and it has stationary errors in both estimated flux linkage amplitude
and angle when the estimated stator resistance is not correct. In most scenarios this
will be negligible errors.

The rotor flux linkage estimated amplitude is improved using both the filter method
and the combination method in section 8.2. This is motivated because the original
rotor flux linkage amplitude from the voltage model has oscillations and ripple that
made the flux regulator in the model unstable. The filter method uses the rotor time
constant to low pass filter the estimated amplitude, removing ripple and oscillation.
The combination method used the current model equation 8.2 but instead of mea-
suring the speed and the estimating the rotor flux linkage SV angle one used directly
the estimated rotor flux linkage angle from equation 4.4. The combination method
was shown to be the better method, but a drawback was the new dependency of the
rotor resistance and the main reactance estimation.

An alternative method to the correction method is introduced in section 8.3 using a
new estimation of the stator flux linkage from equation 8.3 and 8.4 from the estimated
rotor flux linkage from the combination method. The motivation that the combina-
tion method filtered some drifting and hence the new estimated stator flux linkage was
assumed more correct than the original from the voltage model. Then the difference
between the new estimation and the old from the voltage model was amplified by a
feedback gain and used for correcting the voltage model and removing drifting. This
was shown success full for some scenarios compared to using the correction method
with the combined method for example. On the other hand it is suggested by the au-
thor to optimize this closed loop observer feedback method. The gain K is suggested
adaptive and in addition it should be investigated if a Proportional integral feedback
could remove the stationary errors seen in the model.

74



10 Conclusion and Further Work

In this thesis the parameter sensitivity analysis of the voltage model used for speed
sensorless control of a six-phase induction machine was investigated thoroughly. Start-
ing with the stationary parameter sensitivity analysis and the voltage model it was
revealed a strong dependency on a correct estimation of the stator resistance driving
at low speed. The most sensitive operational point was running on DC(fψ = 0), where
the stator flux linkage amplitude could in theory be estimated to infinity. In addition
the stationary parameter sensitivity analysis for the current model was investigated.
The current model was more reliable at low speed operation, but was parameter sen-
sitive to the rotor resistance and the main inductance. If the parameters were not
estimated sufficiently correct, the current model became unreliable.

The next section of the thesis investigated parameter sensitivity dynamically in MAT-
LAB Simulink. The drifting phenomenon from the open integration in the voltage
model was the primary attention and it was analyzed thoroughly. It became clear
that some correction was absolutely necessary to have high performance of the con-
trol. The correction method introduced by Niemelä in 1999[5] was investigated and
tested on the simulation model. The method improved the model, but had some
drawbacks like stationary error in the angle estimation error of both the stator and
rotor flux linkage. Hence, new improvements were necessary to increase the control
performance.

Two methods to improve the rotor flux linkage amplitude estimation was tested and
investigated. One of the methods was based on a filter and the other was based on a
combination of the voltage and the current model. The combination method showed
great promise and the rotor flux linkage became more stable.

Finally, an alternative method to Niemelä’s correction block was developed and tested.
The method was also a combination of the voltage and current model and corrected
against drifting by a feedback mechanism. The voltage model was corrected by the
current model that worked like a closed loop observer. The control method was still
speed-sensorless since the input to the current model was earlier estimations from the
voltage model. This method showed great promise and especially was more reliable
driving through zero speed. A drawback with the method is that the model depends
on more parameters compared to Niemelä’s correction method.

The parameter sensitivity analysis done in this thesis was focused on the voltage
model, which is a natural choice for a speed sensorless control method. On the other
hand when the combined model was used in section 8.3 the parameter sensitivity
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analysis done earlier lacked some content. The dynamical analysis did not include
the current model and the combined model will in general be most sensitive for stator
and rotor resistance estimation errors and estimation errors in the main inductance.
A more thoroughly analysis of the combined model should be done as further work
which can simplify the optimization of the feedback control based on the closed loop
observer.

For further work the author suggest to try a proportional integral as feedback control
instead of the simple gain used in this thesis for the closed loop observer. The hope
for this adjustment is to remove the stationary error. Another suggestion is to make
the feedback gain adaptive to frequency as drifting is very depending on the frequency.

Something that was tried without luck and has not been explained in this thesis
was a PLL used for the rotor flux linkage angle estimate. The hope was to make
the PLL too slow to follow the erroneous path of the estimated angle when the ma-
chine drove through zero speed. This was tried without success and hence skipped in
this thesis. On the other hand with thoroughly analysis it can be tried in further work.

The correction method by Niemelä can hopefully be improved to give zero stationary
errors in angle and amplitude flux linkage estimation in further work. It was expe-
rienced by my colleague Magnus Bolstad in his master thesis that for a synchronous
motor there was no stationary error for the angle estimation. This may imply that the
reason for the stationary angle estimation error comes from a current and a voltage
not in phase as generally happens in an induction motor and not a synchronous motor.

Finally a topic that deserves a full thesis, is parameter estimation. There exist a
dozen method both online and offline to estimate the resistances and inductances
and improve the model. In this thesis this was not analyzed and is suggested for
further work as it will improve the model.
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A Machine Parameters

Parameter Explanation Value

UsN Nominal line to line stator voltage rms 230 V

IsN Nominal line current rms 25 A

p Number of pole pairs 2

is max Maximum current in pu 3.0

rs Stator resistance in pu 0.031

rR Rotor resistance experienced by stator in pu 0.0068

xH Magnetizing inductance in pu 0.93425

xσ Leakage inductance in pu 0.1646

xsσ Leakage inductance stator in pu 0.1117

Ttri Triangular Carrier Period pu 1
3000

Me max Maximum Electrical Torque in pu 1.4

fN Nominal frequency in Hz 50

n Nominal speed, rpm 1500

Table 1: Parameters

79



B Base values

Physical quantity Base quantity definition

AC Voltage Un =
√

2 · UN√
3

DC link voltage Udc,n = 2 ·
√

2 · UN√
3

Current In =
√

2 · IN

Impedance Zn = Un

In

Power Sn = 2 ·
√

3 · UN · IN

Frequency fn = fN

Angular speed (electrical) ωn = 2 · π · fN

Speed (mechanical) nn = 60 · fN
p

Torque Mn = p · SN

ωn

Flux linkage Ψn = Un

ωn

Table 2: Base values
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C Control parameters

Parameter Value

Ki Current controller 0.4615

Ti Current controller 0.0223

Kψ Flux controller 4.681

Tψ Flux controller 4.373

Kn Speed controller 5

Tn Speed controller 0.1

Table 3: Control Parameters
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D Derivation of Error-Equations in Sensitivity Anal-

ysis

D.1 Voltage Model

D.1.1 Amplitude Error Stator Flux Linkage Estimate

The estimation of the stator flux linkage amplitude by phasor analysis:

ψ̂
s1

s1
= − j

fψ
· (us1s1 − r̂sis1s1)

= − j

fψ
(us1 cos(γs1s1) + jus1 sin(γs1s1)− r̂s(is1 cos(εs1s1) + jis1 sin(εs1s1)))

=
1

fψ
· (us1 sin(γs1s1)− r̂sis1 sin(εs1s1) + j(r̂sis1 cos(εs1s1)− us1 cos(γs1s1)))

(D.1)

Then the estimated amplitude will hence be:

ψ̂s1 =
1

fψ

√
(us1 sin(γs1s1)− r̂sis1 sin(εs1s1))

2 + (r̂sis1 cos(εs1s1)− us1 cos(γs1s1))2

=
1

fψ

√
u2s1 + r̂2si

2
s1 − 2us1r̂sis1(sin(γs1s1) sin(εs1s1) + cos(γs1s1) cos(εs1s1))

=
1

fψ

√
u2s1 + r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

(D.2)

This means that also the real stator flux linkage amplitude will be:

ψs1 =
1

fψ

√
u2s1 + r2si

2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1) (D.3)

And the amplitude error will be:

ψ̂s1 − ψs1 =
1

fψ
(
√
u2s1 + r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

−
√
u2s1 + r2si

2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1))

(D.4)
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To get zero error r̂s = rs or:√
u2s1 + r2si

2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1) =

√
u2s1 + r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

u2s1 + r2si
2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1) = u2s1 + r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

r2si
2
s1 − 2us1rsis1 cos(γs1s1 − εs1s1) = r̂2si

2
s1 − 2us1r̂sis1 cos(γs1s1 − εs1s1)

r2sis1 − 2us1rs cos(γs1s1 − εs1s1) = r̂2sis1 − 2us1r̂s cos(γs1s1 − εs1s1)
is1(r

2
s − r̂2s) = 2us1 cos(γs1s1 − εs1s1)(rs − r̂s)

is1(rs + r̂s)(rs − r̂s) = 2us1 cos(γs1s1 − εs1s1)(rs − r̂s)
is1(rs + r̂s) = 2us1 cos(γs1s1 − εs1s1)

⇒ is1 =
2us1 cos(γs1s1 − εs1s1

rs + r̂s
(D.5)

D.1.2 Angle Error Stator Flux Linkage Estimate

From equation D.1 we can write the estimated stator flux linkage angle:

ξ̂s1s1 = arctan(
r̂sis1 cos(εs1s1)− us1 cos(γs1s1)

us1 sin(γs1s1)− r̂sis1 sin(εs1s1)
) (D.6)

Then the correct measured angle will be:

ξs1s1 = arctan(
rsis1 cos(εs1s1)− us1 cos(γs1s1)

us1 sin(γs1s1)− rsis1 sin(εs1s1)
) (D.7)

Hence the error will be:

ξ̂s1s1,err = arctan(
r̂sis1 cos(εs1s1)− us1 cos(γs1s1)

us1 sin(γs1s1)− r̂sis1 sin(εs1s1)
)− arctan(

rsis1 cos(εs1s1)− us1 cos(γs1s1)

us1 sin(γs1s1)− rsis1 sin(εs1s1)
)

(D.8)
Since the arctan-function only has a range between [−π

2
, π
2
] one has to use the arctan2-

function which gives a range between [−π, π]

ξ̂s1s1,error =



arctan y
x
− arctan

ψs1
sq1

ψs1
sd1
, if x > 0

arctan y
x

+ π − arctan
ψs1
sq1

ψs1
sd1
, if x < 0 and y ≥ 0

arctan y
x
− π − arctan

ψs1
sq1

ψs1
sd1
, if x < 0 and y < 0

π
2
− arctan

ψs1
sq1

ψs1
sd1
, if x = 0 and y > 0

−π
2
− arctan

ψs1
sq1

ψs1
sd1
, if x = 0 and y < 0

undefined, if x = 0 and y = 0

(D.9)
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where

y = r̂sis1 cos(εs1s1)− us1 cos(γs1s1), x = us1 sin(γs1s1)− r̂sis1 sin(εs1s1) (D.10)

D.1.3 Amplitude Error Rotor Flux Linkage Estimate

The estimation of the rotor flux linkage amplitude is written in the rotor flux oriented
system:

ψ̂R = ψ̂sd1 − x̂σ îsd1 − (x̂σ − x̂sσ )̂isd2 (D.11)

Here:
îsd1 = îsd2

îsd1 = is1 cos(ε̂Rs1) = is1 cos(εs1s1 − θ̂Rs1)
ψ̂sd1 = ψ̂s1 cos(ξRs1)

(D.12)

Then:

ψ̂R = ψ̂s1 · cos(ξ̂Rs1)− 2 · x̂σ · is1 · cos(ε̂Rs1) + x̂sσ · is1 · cos(ε̂Rs1) (D.13)

Hence the error function will be:

ψ̂R,err = (ψs1 cos ξRs1− ψ̂s1 cos ξ̂Rs1)− is1(cos εRs1(2xσ−xsσ)−cos ε̂Rs1(2x̂σ− x̂sσ)) (D.14)

D.2 Current Model

D.2.1 Angle Error Rotor Flux Linkage Estimate

Now the speed of the rotor is measured and we know the synchronous frequency by
measurements. Hence:

f̂s = f̂r + n, fs = fr + n (D.15)

If isq1 = isq2 and

f̂s = fs ⇒ f̂r = fr (D.16)

Hence
2r̂Rîsq1

ψ̂R
=

2rRisq1
ψR

r̂Rîsq1

x̂H îsd1
=
rRisq1
xHisd1

(D.17)

We put in

tan ε̂Rs1 =
îsq1

îsd1
(D.18)
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Hence

tan ε̂Rs1 =
x̂HrRisq1
r̂RxHisd1

ε̂Rs1 = arctan(
x̂HrRisq1
r̂RxHisd1

)

(D.19)

The error of the rotor flux linkage angle estimation can be written:

θ̂s1R − θs1R =(εs1s1 − ε̂Rs1)− (εs1s1 − εRs1) = εRs1 − ε̂Rs1

= arctan(
isq1
isd1

)− arctan(
x̂HrRisq1
r̂RxHisd1

)
(D.20)

The most sensitive torque operational point can be investigated by derivating the
equation. The generated electrical torque can be written like:

me = 2ψRisq1 = 4xHisd1isq1 ⇒ isq1 =
me

4xHisd1
(D.21)

Hence:

θ̂s1R − θs1R = θ̂s1R,err = arctan(
me

4xHi2sd1
)− arctan(

x̂HrRme

4r̂Rx2Hi
2
sd1

) (D.22)

Using the trigonometric property:

d

dx
arctanx =

1

1 + x2
(D.23)

Then:

d

dme

θ̂s1R,err =

1
4xH i

2
sd1

1 + ( me

4xH i
2
sd1

)2
−

x̂HrR
4r̂Rx

2
H i

2
sd1

1 + ( x̂HrRme

4r̂Rx
2
H i

2
sd1

)2
(D.24)

Setting this to zero and solving a second degree equation for me gives:

me = ±4xHi
2
sd1

√
r̂RxH
rRx̂H

(D.25)
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E Modelling from Project thesis [15]

E.1 Introduction

An induction machine is an AC machine where the stator windings get feeded by
alternating current. The rotor can be of two types; wound-rotor type or squirrel cage
type. A wound-rotor is a rotor made up of windings, and a squirrel cage rotor is a
rotor made up of short-circuited conducting bars formed as a squirrel cage. The AC
current in the stator produces a rotating flux linkage which rotates at synchronous
speed. By electromagnetic induction the rotor will get induced some voltage and cur-
rent will also flow in the rotor. This alternating current will again result in a rotating
rotor flux linkage space vector which will try to align itself with the rotating stator
flux linkage space vector. Though it will never completely do so, because of slacking.
Hence in steady state the rotor’s rotating flux linkage and the stator’s rotating flux
linkage will both rotate in synchronous speed.

In this thesis the focus will be at a six-phase induction motor with a non specified
rotor type. The six-phase windings consists of two groups of three-phase windings
seperated by 30 electrical degrees with isolated neutrals. The phase groups are star
connected and each phase is seperated by 120 electrical degrees. The stator phase
windings have a sinusoidal distribution and hence it is assumed that it will make
a synchronously rotating sinusoidal magnetic field around the air gap between the
stator and the rotor.

There exist different modelling approaches depending on the choice of control used for
the induction machine. One of the types is called stationary frame control and is done
in coordinates fixed to the stator. Another one, which will be used in this project is
the synchronously frame control where the reference frame is rotating synchronously.
The synchronous frame control can be divided in single and double synchronous frame
control (DSFC) and in this thesis the double synchronous frame control is used.

In the modelling some assumptions are made[10][8]:

1. The stator windings produce a sinusoidally distributed magnetic field around
the air-gap in the machine, hence only the fundamental component of the field
will be modelled.

2. The stator windings are equal, but are oriented in different directions of winding
axes.

3. Resistances and inductances are independent of temperature and frequency and
are known.
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4. Magnetic saturation, hysteresis and eddy currents are neglected.

5. The rotor can be modelled as a wound rotor.

E.2 Modelling in Double Synchronus Reference Frame

By modelling in the double synchronous reference frame the modelling of the rotor
consist of three phase windings seperated by 120 electrical degrees. This is shown
in figure E.1. At first it will be modelled physically and then the equations will be
transformed to a synchronously rotating d-q-0 reference frame. Finally the per unit
equations will be executed. This modelling was done in [10] and only some of the
results are found here. For more thoroughly investigation one should look in the ref-
erence.

Figure E.1: Double Synchronous Frame Modelling

Starting with the equations:[3]

USR = RSR · ISR +
dΨSR

dt
(E.1)

ΨSR = LSR · ISR (E.2)
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Here the vectors will be described as:

USR =



Usa1
Usb1
Usc1
Usa2
Usb2
Usc2
Ura
Urb
Urc


ISR =



Isa1
Isb1
Isc1
Isa2
Isb2
Isc2
Ira
Irb
Irc


ΨSR =



Ψsa1

Ψsb1

Ψsc1

Ψsa2

Ψsb2

Ψsc2

Ψra

Ψrb

Ψrc


(E.3)

The resistance matrix is described as:

RSR = diag[Rs Rs Rs Rs Rs Rs Rr Rr Rr]
T (E.4)

The inductance matrix is described as:

LSR =

[
LS
ss LS

sr(θ)
LR
rs(θ) LR

rr

]
(E.5)

where:

LS
ss =


Lsa1 Lsa1,sb1 Lsa1,sc1 Lsa1,sa2 Lsa1,sb2 Lsa1,sc2
Lsb1,sa1 Lsb1 Lsb1,sc1 Lsb1,sa2 Lsb1,sb2 Lsb1,sc2
Lsc1,sa1 Lsc1,sb1 Lsc1 Lsc1,sa2 Lsc1,sb2 Lsc1,sc2
Lsa2,sa1 Lsa2,sb1 Lsa2,sc1 Lsa2 Lsa2,sb2 Lsa2,sc2
Lsb2,sa1 Lsb2,sb1 Lsb2,sc1 Lsb2,sa2 Lsb2 Lsb2,sc2
Lsc2,sa1 Lsc2,sb1 Lsc2,sc1 Lsc2,sa2 Lsc2,sb2 Lsc2

 = Lsσ · I + LS
sh (E.6)

LS
sh = Lsh ·



1 −1
2
−1

2

√
3
2
−
√
3
2

0

−1
2

1 1
2

0
√
3
2
−
√
3
2

−1
2
−1

2
1 −

√
3
2

0
√
3
2√

3
2

0 −
√
3
2

1 −1
2
−1

2

−
√
3
2

√
3
2

0 −1
2

1 −1
2

0 −
√
3
2

√
3
2

−1
2
−1

2
1


(E.7)

LR
rr =

 Lra Lra,rb Lra,rc
Lrb,ra Lrb Lrb,rc
Lrc,ra Lrc,rb Lrc

 = Lrσ · I + LR
rh (E.8)
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LR
rh = Lrh ·

 1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1

 (E.9)

LS
sr(θ) = (LR

rs(θ))
T =


Lsa1,ra Lsa1,rb Lsa1,rc
Lsb1,ra Lsb1,rb Lsb1,rc
Lsc1,ra Lsc1,rb Lsc1,rc
Lsa2,ra Lsa2,rb Lsa2,rc
Lsb2,ra Lsb2,rb Lsb2,rc
Lsc2,ra Lsc2,rb Lsc2,rc



= Lsrh ·


cosθ cos(θ + 2π

3
) cos(θ + 4π

3
)

cos(θ − 2π
3

) cosθ cos(θ + 2π
3

)
cos(θ − 4π

3
) cos(θ − 2π

3
) cosθ

cos(θ − π
6
) cos(θ + π

2
) cos(θ + 7π

6
)

cos(θ − 5π
6

) cos(θ − π
6
) cos(θ − 2π

3
)

cos(θ − 3π
2

) cos(θ − 5π
6

) cos(θ − π
6
)



(E.10)

The equations for the mechanical system:

J · dΩ

dt
= Me −ML,

dθmech
dt

= Ω, θ = p · θmech (E.11)

Me =
p

2
(IS)T · ∂LS

ss(θ)

∂θ
· IS (E.12)

One of the motivations for making use of the transformation to the d-q-0 reference
frame is to remove the dependency of angle for the inductances. Hence the expres-
sions for the mutual inductances will not depend on the angle. In addition the AC
qunatities will be described as stationary DC quantities which make the control less
complex. The stator quantities will be transformed into the coordinate sets, (d1, q1,
01) and (d2, q2, 02). The rotor quantities will be transformed into the coordinate set
(d, q, 0).

The transformation matrix is described as:

Tk =

[
Tk
SS 0
0 Tk

RR

]
(E.13)
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Where:

Tk
SS =

2

3
·


cosθk cos(θk − 2π

3 ) cos(θk − 4π
3 ) 0 0 0

−sinθk −sin(θk − 2π
3 ) −sin(θk − 4π

3 ) 0 0 0
1
2

1
2

1
2 0 0 0

0 0 0 cos(θk − π
6 ) cos(θk − 5π

6 ) cos(θk − 3π
2 )

0 0 0 −sin(θk − π
6 ) −sin(θk − 5π

6 ) −sin(θk − 3π
2 )

0 0 0 1
2

1
2

1
2


(E.14)

Tk
RR =

2

3
·

 cosθr cos(θr − 2π
3

) cos(θr − 4π
3

)
−sinθr −sin(θr − 2π

3
) −sin(θr − 4π

3
)

1
2

1
2

1
2

 (E.15)

θk is the angle between the synchronously rotating d-axis and the a1 stator axis. θr
is the angle between the synchronoulsy rotating d-axis and the rotor a axis. Their
correlation is given by:

θk = θ + θr (E.16)

Figure E.2: Transforming to the d-q-0 rotating reference frame

Applying eq. (E.13) to eq. (E.1) yields:

Uk = Rk · Ik +
dΨk

dt
+ ωn · fx · J ·Ψk (E.17)
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Where:

J =



0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0


(E.18)

Rk = diag[Rs Rs Rs Rs Rs Rs Rr Rr Rr] (E.19)

And regarding the fx, x is k in stator terms and r in rotor terms.

Applying eq. (E.13) to eq. (E.2) yields:

Ψk = Lk · Ik (E.20)

Where

Lk =



Ls 0 0 Lh 0 0 Lh 0 0
0 Ls 0 0 Lh 0 0 Lh 0
0 0 Lsσ 0 0 0 0 0 0
Lh 0 0 Ls 0 0 Lh 0 0
0 Lh 0 0 Ls 0 0 Lh 0
0 0 0 0 0 Lsσ 0 0 0
Lh 0 0 Lh 0 0 Lrd 0 0
0 Lh 0 0 Lh 0 0 Lrq 0
0 0 0 0 0 0 0 0 Lrσ


(E.21)

and

Ls = Lsσ +
3

2
Lsh, Lr = Lrσ +

3

2
Lsrh Lh =

3

2
Lsrh =

3

2
Lsh (E.22)

Applying eq. (E.13) to eq. (E.12) yields:

Me =
p

2
· 3 · (Ψrq · Ird −Ψrd · Irq) (E.23)

Now the scaling to the per unit system will be done. The equations will be divided
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by the base quantities defined in the appendix. Here only the result will be showed:

usd1 = rs · isd1 +
1

ωn
· dψsd1

dt
− fk · ψsq1, usq1 = rs · isq1 +

1

ωn
· dψsq1

dt
+ fk · ψsd1

usd2 = rs · isd2 +
1

ωn
· dψsd2

dt
− fk · ψsq2, usq2 = rs · isq2 +

1

ωn
· dψsq2

dt
+ fk · ψsd2

(E.24)

0 = rr · ird +
1

ωn
· dψrd
dt
− fr · ψrq, 0 = rr · irq +

1

ωn
· dψrq
dt

+ fr · ψrd

ψsd1 = xs · isd1 + xh · isd2 + xh · ird, ψsq1 = xs · isq1 + xh · isq2 + xh · irq
ψsd2 = xh · isd1 + xs · isd2 + xh · ird, ψsq2 = xh · isq1 + xs · isq2 + xh · irq (E.25)

ψrd = xh · isd1 + xh · isd2 + xr · ird, ψrq = xh · isq1 + xh · isq2 + xr · irq

me =
ψrq · ird − ψrd · irq

2
, Tm ·

dn

dt
= me −mL, Tm =

J · Ω2
N

SN

fr = fk − n, fk =
ωk
ωn
, fr =

ωr
ωn

(E.26)

The zero subspace will not be excited in this model and hence is omitted from the
equations[10].

The equivalent circuit of the d- and the q-axis can be seen in fig. E.3 and E.4.

Figure E.3: d axis equivalent circuit in per unit
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Figure E.4: q axis equivalent circuit in per unit
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F Estimating the Rotor Flux Linkage Angle θ

Figure F.1: Obtaining the rotor flux linkage space vector

There exists different method for obtaining the angle θ. One of them is by first
calculating the angle between the stator flux linkage space vector and the rotor flux
linkage space vector. This angle is referred here as ξrs1. The strategy is to first find
this angle and then calculate the θ from the fact that:

θ = ξs1s1 − ξrs1 (F.1)

Using eq. (3.4) and by trigonometry from figure F.1 one can see that:

ψs1 · sinξrs1 = xσ · isq1 + (xσ − xsσ) · isq2 (F.2)

The task now is to find expressions for the isq1 and isq2. By looking at the figure F.1
it can be seen that:

isq1 = is1 · sin(ξrs1 + εψs1

s1 ), isq2 = is2 · sin(ξrs2 + εψs1

s2 ) (F.3)

Where εψr

s1 is equal to the angle between the stator flux linkage space vector and the
stator 1 current space vector and εψr

s2 is the angle between the stator flux linkage space
vector and the stator 2 current space vector.

Using the trigonometric identity:

sin(x± y) = sinx · cosy ± cosx · siny (F.4)
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One obtain the equation for obtaining the angle:

tanξrs1 =
xσ · is1 · sinεψs1

s1 + (xσ − xsσ) · is2 · sinεψs1

s2

ψs1 − xσ · is1 · cosεψs1

s1 − (xσ − xsσ) · is2 · cosεψs1

s2

(F.5)
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G Additional Simulations

Figure G.1: Closed loop feedback observer method with r̂s = 0.8rs and r̂R = 0.8rR
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Figure G.2: Closed loop feedback observer method with r̂s = 1.5rs and r̂R = 1.5rR
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H Matlab Code Stationary Parameter Sensitivity

Analysis

1 %% MATLAB CODE STATIONARY PARAMETER SENSITIVITY ANALYSIS %%
2

3 %% CALCULATING REAL VALUES %%%%%%%%%%%%%%%%
4

5 % I n i t i a l
6 t e = [ −1 : 0 . 005 : 1 ] ;
7 n=transpose ( [ − 2 : 0 . 0 0 2 : 2 ] ) ;
8 omega n = 2∗ pi ∗50 ;
9 Psi R0 = 0 . 9 5 ;

10 u max = 1 . 0 ;
11 i max = 1 . 0 ;
12 n max = 1 . 0 ; % without f i e l d weakening
13 m = 401 ; % f o r loop help
14 l = 2001 ; % f o r loop help
15

16 % parameters
17 x H = 1 . 8 6 8 5∗0 . 5 ;
18 r R = 0 . 0 0 6 8∗0 . 5 ;
19 r s = 0 . 0 3 1 ;
20 x sigma = 0.756595484∗0 .2175 ;
21 x ss igma = 0 . 1 1 1 7 ;
22

23 % c a l c u l a t i n g time cons tant s
24

25 T r = x H /( r R∗omega n ) ;
26

27 f o r k=1: l
28

29 f o r i =1:m
30

31 Psi R (k , i ) = 0 . 9 5 ;
32

33 % c a l c u l a t i n g cu r r en t s
34

35 e p s i l o n s 1 s 1 (k , i )= atan2 ( t e (1 , i )∗x H , Psi R (k , i ) ˆ2) ;
36 e p s i l o n s 2 s 1 (k , i ) = e p s i l o n s 1 s 1 (k , i ) ;
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37 i s amp (k , i ) = s q r t ( ( t e (1 , i ) / Psi R (k , i ) ) ˆ2+(Psi R (k , i ) /
x H ) ˆ2) /2 ;

38

39 [ i s d 1 (k , i ) i s q 1 (k , i ) ] = po l 2 ca r t ( e p s i l o n s 1 s 1 (k , i ) ,
i s amp (k , i ) ) ;

40 i s 1 (k , i ) = i s d 1 (k , i ) + 1 j ∗ i s q 1 (k , i ) ;
41

42 [ i s d 2 (k , i ) i s q 2 (k , i ) ] = po l 2 ca r t ( e p s i l o n s 2 s 1 (k , i ) ,
i s amp (k , i ) ) ;

43 i s 2 (k , i ) = i s d 2 (k , i ) + 1 j ∗ i s q 2 (k , i ) ;
44

45 % c a l c u l a t i n g s t a t o r f l u x l i n k ag e
46

47 Ps i sd1 = x sigma∗ r e a l ( i s 1 (k , i ) )+(x sigma−x ss igma )∗ r e a l
( i s 2 (k , i ) )+Psi R (k , i ) ;

48 Ps i sq1 = x sigma∗ imag ( i s 1 (k , i ) )+(x sigma−x ss igma )∗ imag
( i s 2 (k , i ) ) ;

49 P s i s 1 (k , i ) = Ps i sd1 + 1 j ∗Ps i sq1 ;
50

51

52 x i s 1 s 1 (k , i ) = ang le ( P s i s 1 (k , i ) ) ;
53 Psi s1 amp (k , i ) = s q r t ( Ps i sd1ˆ2+Ps i sq1 ˆ2) ;
54

55

56

57 % c a l c u l a t i n g ang l e s
58

59 e p s i l o n s 1 P s i S 1 (k , i ) = e p s i l o n s 1 s 1 (k , i ) − x i s 1 s 1 (k , i
) ;

60 e p s i l o n s 2 P s i S 1 (k , i ) = e p s i l o n s 2 s 1 (k , i ) − x i s 1 s 1 (k , i
) ;

61

62

63 % c a l c u l a t i n g s l i p
64

65 f r (k , i ) = r R ∗( imag ( i s 1 (k , i ) )+imag ( i s 2 (k , i ) ) ) / Psi R (k ,
i ) ;

66

67 % speed ro to r f l u x l i n k ag e space vec to r
68
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69 f p s i (k , i ) = n(k , 1 ) + f r (k , i ) ;
70

71 % c a l c u l a t i n g v o l t a g e s :
72

73 u sd1 = r s ∗ r e a l ( i s 1 (k , i ) )− f p s i (k , i )∗Ps i sq1 ;
74 u sq1 = r s ∗ imag ( i s 1 (k , i ) )+f p s i (k , i )∗Ps i sd1 ;
75 u s1 (k , i ) = u sd1 + 1 j ∗u sq1 ;
76

77 u amp(k , i ) = abs ( u s1 (k , i ) ) ;
78 gamma(k , i ) = atan2 ( u sq1 , u sd1 ) ;
79 % enab l ing theta
80

81 theta (k , i ) = 0 ;
82

83 % Fie ld weakening r eg i on
84

85 i f abs (n(k , 1 ) ) > n max
86

87 Psi R (k , i ) = abs ( Psi R0 /(n(k , 1 ) ) ) ;
88

89 % Calcu l a t ing cu r r en t s
90

91 e p s i l o n s 1 s 1 (k , i )= atan2 ( t e (1 , i )∗x H , Psi R (k , i ) ˆ2) ;
92 e p s i l o n s 2 s 1 (k , i ) = e p s i l o n s 1 s 1 (k , i ) ;
93 i s amp (k , i ) = s q r t ( ( t e (1 , i ) / Psi R (k , i ) ) ˆ2+(Psi R (k ,

i ) /x H ) ˆ2) /2 ;
94

95 [ i s d 1 (k , i ) i s q 1 (k , i ) ] = po l 2 ca r t ( e p s i l o n s 1 s 1 (k , i )
, i s amp (k , i ) ) ;

96 i s 1 (k , i ) = i s d 1 (k , i ) + 1 j ∗ i s q 1 (k , i ) ;
97

98 [ i s d 2 (k , i ) i s q 2 (k , i ) ] = po l 2 ca r t ( e p s i l o n s 2 s 1 (k , i )
, i s amp (k , i ) ) ;

99 i s 2 (k , i ) = i s d 2 (k , i ) + 1 j ∗ i s q 2 (k , i ) ;
100

101 % c a l c u l a t i n g s t a t o r f l u x l i n k ag e
102

103 Ps i sd1 = x sigma∗ r e a l ( i s 1 (k , i ) )+(x sigma−x ss igma )∗
r e a l ( i s 2 (k , i ) )+Psi R (k , i ) ;
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104 Ps i sq1 = x sigma∗ imag ( i s 1 (k , i ) )+(x sigma−x ss igma )∗
imag ( i s 2 (k , i ) ) ;

105 P s i s 1 (k , i ) = Ps i sd1 + 1 j ∗Ps i sq1 ;
106

107 x i s 1 s 1 (k , i ) = ang le ( P s i s 1 (k , i ) ) ;
108 Psi s1 amp (k , i ) = s q r t ( Ps i sd1ˆ2+Ps i sq1 ˆ2) ;
109

110 % c a l c u l a t i n g ang l e s
111

112 e p s i l o n s 1 P s i S 1 (k , i ) = e p s i l o n s 1 s 1 (k , i ) − x i s 1 s 1
(k , i ) ;

113 e p s i l o n s 2 P s i S 1 (k , i ) = e p s i l o n s 2 s 1 (k , i ) − x i s 1 s 1
(k , i ) ;

114

115 theta (k , i ) = 0 ;
116

117 % c a l c u l a t i n g s l i p
118

119 f r (k , i ) = r R ∗( imag ( i s 1 (k , i ) )+imag ( i s 2 (k , i ) ) ) /
Psi R (k , i ) ;

120

121 % speed ro to r f l u x l i nk ag e space vec to r
122

123 f p s i (k , i ) = n(k , 1 ) + f r (k , i ) ;
124

125 % c a l c u l a t i n g v o l t a g e s :
126

127 u sd1 = r s ∗ r e a l ( i s 1 (k , i ) )− f p s i (k , i )∗Ps i sq1 ;
128 u sq1 = r s ∗ imag ( i s 1 (k , i ) )+f p s i (k , i )∗Ps i sd1 ;
129 u s1 (k , i ) = u sd1 + 1 j ∗u sq1 ;
130

131 u amp(k , i ) = s q r t ( u sd1ˆ2+u sq1 ˆ2) ;
132

133 i f abs (n(k , 1 ) ) > 1 && abs ( t e (1 , i ) ) > abs (1/n(k , 1 ) )
134

135 Psi R (k , i ) = 0 ;
136 e p s i l o n s 1 s 1 (k , i ) = 0 ;
137 e p s i l o n s 2 s 1 (k , i ) = e p s i l o n s 1 s 1 (k , i ) ;
138 i s amp (k , i ) = 0 ;
139 i s 1 (k , i ) = 0 ;
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140 i s 2 (k , i ) = 0 ;
141 i s d 1 (k , i ) = 0 ;
142 u s1 (k , i ) = 0 ;
143 x i s 1 s 1 (k , i ) = 0 ;
144 P s i s 1 (k , i ) = 0 ;
145 end
146

147

148

149 end
150 i = i +1;
151

152 end
153

154 k = k+1;
155

156 end
157

158 %% Changing the parameters
159 x H M = x H ∗ 1 . 0 ;
160 r R M = r R ∗ 1 . 0 ;
161 r s M = r s ∗ 1 . 0 ;
162 x sigma M = x sigma ∗ 1 . 1 ;
163 x ssigma M = x ss igma ∗ 1 . 0 ;
164 %% ESTIMATING USING THE VOLTAGE MODEL %%
165

166 f o r k=1: l
167

168 f o r i =1:m
169

170

171 Ps i s1 e s t Mv (k , i ) = −1 j ∗( u s1 (k , i )−r s M∗ i s 1 (k , i ) ) /
f p s i (k , i ) ;

172 x i s 1 s 1 e s t M v (k , i ) = ang le ( Ps i s1 e s t Mv (k , i ) ) ;
173

174 y Mv(k , i ) = abs ( i s 1 (k , i ) )∗abs ( u s1 (k , i ) )∗ s i n (
e p s i l o n s 1 s 1 (k , i )−gamma(k , i ) ) ∗( r s−r s M ) ;

175 x Mv(k , i ) = abs ( u s1 (k , i ) )ˆ2+r s M∗ r s ∗abs ( i s 1 (k , i ) )ˆ2−
abs ( i s 1 (k , i ) )∗abs ( u s1 (k , i ) )∗ cos ( e p s i l o n s 1 s 1 (k , i )−
gamma(k , i ) ) ∗( r s+r s M ) ;
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176 x i s 1 s 1 e s t M v t e s t (k , i ) = atan2 (y Mv(k , i ) ,x Mv(k , i ) ) ;
177

178 Psi s1 amp est Mv (k , i ) = abs ( Ps i s1 e s t Mv (k , i ) ) ;
179

180 e p s i l o n s 1 P s i S 1 e s t M v (k , i ) = e p s i l o n s 1 s 1 (k , i )−
x i s 1 s 1 e s t M v (k , i ) ;

181 e p s i l o n s 2 P s i S 1 e s t M v (k , i ) = e p s i l o n s 2 s 1 (k , i )−
x i s 1 s 1 e s t M v (k , i ) ;

182

183 x i s1 R est Mv (k , i )=atan2 ( x sigma M∗ i s amp (k , i )∗ s i n (
e p s i l o n s 1 P s i S 1 e s t M v (k , i ) )+(x sigma M−x ssigma M )∗
i s amp (k , i )∗ s i n ( e p s i l o n s 2 P s i S 1 e s t M v (k , i ) ) ,
Psi s1 amp est Mv (k , i )−x sigma M∗ i s amp (k , i )∗ cos (
e p s i l o n s 1 P s i S 1 e s t M v (k , i ) )−(x sigma M−x ssigma M )∗
i s amp (k , i )∗ cos ( e p s i l o n s 2 P s i S 1 e s t M v (k , i ) ) ) ;

184

185 theta est Mv (k , i ) = x i s 1 s 1 e s t M v (k , i ) − x i s1 R est Mv
(k , i ) ;

186 Psi R est Mv (k , i ) = abs ( Ps i s1 e s t Mv (k , i )∗ cos (
x i s1 R est Mv (k , i ) ) )− abs ( x sigma M∗ i s 1 (k , i )∗ cos (
e p s i l o n s 1 s 1 (k , i )−theta est Mv (k , i ) ) )−abs ( ( x sigma M−
x ssigma M )∗ i s 2 (k , i )∗ cos ( e p s i l o n s 1 s 1 (k , i )−
theta est Mv (k , i ) ) ) ;

187

188 f s l i p e s t M v (k , i ) = r R M∗( imag ( i s 1 (k , i ) )+imag ( i s 2 (k , i
) ) ) / Psi R est Mv (k , i ) ;

189

190 t e e s t Mv (k , i ) = Psi R est Mv (k , i ) ∗2∗ abs ( i s 1 (k , i ) )∗ s i n (
e p s i l o n s 1 s 1 (k , i )−theta est Mv (k , i ) ) ;

191

192

193 i = i + 1 ;
194 end
195

196 k = 1 + k ;
197

198 end
199

200 %% ESTIMATING USING THE CURRENT MODEL
201
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202 f o r k=1: l
203 f o r i =1:m
204 e p s i l o n s 1 R e s t (k , i ) = atan2 (x H M∗ r R∗ i s q 1 (k , i ) ,

r R M∗x H∗ i s d 1 (k , i ) ) ;
205 theta es t Mc (k , i ) = e p s i l o n s 1 s 1 (k , i )−

e p s i l o n s 1 R e s t (k , i ) ;
206

207 Psi R est Mc (k , i ) =2∗x H M∗abs ( i s 1 (k , i ) )∗ cos (
e p s i l o n s 1 R e s t (k , i ) ) ;

208

209 Ps i sd1 es t Mc (k , i ) = x sigma M∗abs ( i s 1 (k , i ) )∗ cos (
e p s i l o n s 1 R e s t (k , i ) )+(x sigma M−x ssigma M )∗abs (
i s 1 (k , i ) )∗ cos ( e p s i l o n s 1 R e s t (k , i ) )+Psi R est Mc
(k , i ) ;

210 Ps i sq1 e s t Mc (k , i ) = x sigma M∗abs ( i s 1 (k , i ) )∗ s i n (
e p s i l o n s 1 R e s t (k , i ) )+(x sigma M−x ssigma M )∗abs (
i s 1 (k , i ) )∗ s i n ( e p s i l o n s 1 R e s t (k , i ) ) ;

211 Ps i s1 e s t Mc (k , i ) = Ps i sd1 es t Mc (k , i ) + 1 j ∗
Ps i sq1 e s t Mc (k , i ) ;

212 Psi s1 amp est Mc (k , i ) = abs ( Ps i s 1 e s t Mc (k , i ) ) ;
213 x i s 1 s 1 e s t M c (k , i ) = ang le ( Ps i s 1 e s t Mc (k , i ) )+

theta es t Mc (k , i ) ;
214

215 t e e s t Mc (k , i ) = Psi R est Mc (k , i )∗abs ( i s 1 (k , i ) )∗
s i n ( e p s i l o n s 1 R e s t (k , i ) ) ∗2 ;

216

217 i = i + 1 ;
218 end
219 k = k +1;
220 end
221

222

223 %% FINDING ERROR MATRIX FOR VOLTAGE MODEL %%%%%
224

225 f o r k=1: l
226

227 f o r i =1:m
228

229 Psi s1 amp error Mv (k , i ) = Psi s1 amp est Mv (k , i ) −
Psi s1 amp (k , i ) ;
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230 i f abs ( Ps i s1 amp error Mv (k , i ) ) < 0 .0001
231 Psi s1 amp error Mv (k , i ) = 0 ;
232 end
233 x i s 1 s 1 e r r o r M v (k , i ) = ( x i s 1 s 1 e s t M v (k , i ) −

x i s 1 s 1 (k , i ) ) / p i ∗180 ;
234 i f abs ( x i s 1 s 1 e r r o r M v (k , i ) ) < 0 .0001
235 x i s 1 s 1 e r r o r M v (k , i ) = 0 ;
236 end
237 Ps i R es t e r ro r Mv (k , i ) = ( Psi R est Mv (k , i )−Psi R (k ,

i ) ) ;
238 i f abs ( Ps i R es t e r ro r Mv (k , i ) ) < 0 .0001
239 Ps i R es t e r ro r Mv (k , i ) = 0 ;
240 end
241 theta er ror Mv (k , i ) = ( theta est Mv (k , i )−theta (k , i ) ) /

p i ∗180 ;
242 i f abs ( theta er ror Mv (k , i ) ) < 0 .0001
243 theta er ror Mv (k , i ) = 0 ;
244 end
245 t e e s t e r r o r M v (k , i ) = t e e s t Mv (k , i )−t e (1 , i ) ;
246 i f abs ( t e e s t e r r o r M v (k , i ) ) < 0 .0001
247 t e e s t e r r o r M v (k , i ) = 0 ;
248 end
249 i f abs (n(k , 1 ) ) > 1 && abs ( t e (1 , i ) ) > abs (1/n(k , 1 ) )
250 Psi s1 amp error Mv (k , i ) = 0/0 ;
251 x i s 1 s 1 e r r o r M v (k , i ) = 0/0 ;
252 Ps i R es t e r ro r Mv (k , i ) = 0/0 ;
253 theta er ror Mv (k , i ) = 0/0 ;
254 t e e s t e r r o r M v (k , i ) = 0/0 ;
255 end
256

257 i = i + 1 ;
258 end
259 k = k + 1 ;
260 end
261

262 %% FINDING ERROR MATRIX FOR CURRENT MODEL %%%%%
263

264 f o r k=1: l
265

266 f o r i =1:m
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267

268 the ta e r ro r Mc (k , i ) = ( theta es t Mc (k , i )−theta (k , i ) ) /
p i ∗180 ;

269 Psi s1 amp error Mc (k , i ) = Psi s1 amp est Mc (k , i ) −
Psi s1 amp (k , i ) ;

270 i f abs ( Ps i s1 amp error Mc (k , i ) ) < 0 .0001
271 Psi s1 amp error Mc (k , i ) = 0 ;
272 end
273 x i s 1 s 1 e r r o r M c (k , i ) = ( x i s 1 s 1 e s t M c (k , i ) −

x i s 1 s 1 (k , i ) ) / p i ∗180 ;
274 i f abs ( x i s 1 s 1 e r r o r M c (k , i ) ) < 0 .0001
275 x i s 1 s 1 e r r o r M c (k , i ) = 0 ;
276 end
277 Ps i R es t e r r o r Mc (k , i ) = ( Psi R est Mc (k , i )−Psi R (k ,

i ) ) ;
278 i f abs ( Ps i R e s t e r r o r Mc (k , i ) ) < 0 .0001
279 Ps i R e s t e r r o r Mc (k , i ) = 0 ;
280 end
281 the ta e r ro r Mc (k , i ) = ( theta es t Mc (k , i )−theta (k , i ) ) /

p i ∗180 ;
282 i f abs ( the ta e r ro r Mc (k , i ) ) < 0 .0001
283 the ta e r ro r Mc (k , i ) = 0 ;
284 end
285 t e e s t e r r o r M c (k , i ) = t e e s t Mc (k , i )−t e (1 , i ) ;
286 i f abs ( t e e s t e r r o r M c (k , i ) ) < 0 .0001
287 t e e s t e r r o r M c (k , i ) = 0 ;
288 end
289

290 Psi s1 amp error Mc (k , i ) = Psi s1 amp est Mc (k , i ) −
Psi s1 amp (k , i ) ;

291 i f abs ( Ps i s1 amp error Mc (k , i ) ) < 0 .0001
292 Psi s1 amp error Mv (k , i ) = 0 ;
293 end
294 i f abs (n(k , 1 ) ) > 1 && abs ( t e (1 , i ) ) > abs (1/n(k , 1 ) )
295 Psi s1 amp error Mc (k , i ) = 0/0 ;
296 x i s 1 s 1 e r r o r M c (k , i ) = 0/0 ;
297 Ps i R e s t e r r o r Mc (k , i ) = 0/0 ;
298 the ta e r ro r Mc (k , i ) = 0/0 ;
299 t e e s t e r r o r M c (k , i ) = 0/0 ;
300 end
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301 i = i + 1 ;
302 end
303 k = k + 1 ;
304 end
305

306

307 %% Plot the matr ixes
308

309 X = t e ;
310 lX = length (X)
311 Y = n ;
312 lY = length (Y)
313 Z = Psi s1 amp error Mv ;
314 lZ = length (Z)
315

316 f i g u r e (1 )
317

318 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
319

320 subplot ( 1 , 2 , 1 ) ;
321 s u r f (XI , YI , ZI ) ;
322 x l a b e l ( ’ m e [ pu ] ’ ) ;
323 y l a b e l ( ’n [ pu ] ’ ) ;
324 z = z l a b e l ( ’ $\hat{\ p s i } { s1 }ˆ{ s1}$ e r r o r [ pu ] ’ ) ;
325 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
326 s e t ( z , ’ Fonts i z e ’ , 18) ;
327

328 Z = x i s 1 s 1 e r r o r M v ;
329

330 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
331 subplot ( 1 , 2 , 2 ) ;
332 s u r f (XI , YI , ZI ) ;
333

334 x l a b e l ( ’ m e [ pu ] ’ ) ;
335 y l a b e l ( ’n [ pu ] ’ ) ;
336 z = z l a b e l ( ’ $\hat{\ x i } { s1 }ˆ{ s1}$ e r r o r [ deg ] ’ ) ;
337 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
338 s e t ( z , ’ Fonts i z e ’ , 18) ;
339

340
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341 f i g u r e (2 )
342

343 Z = Ps i R es t e r ro r Mv ;
344

345 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
346 subplot ( 1 , 2 , 1 ) ;
347 s u r f (XI , YI , ZI ) ;
348

349 x l a b e l ( ’ m e [ pu ] ’ ) ;
350 y l a b e l ( ’n [ pu ] ’ ) ;
351 z = z l a b e l ( ’ $\hat{\ p s i } R$ e r r o r [ pu ] ’ ) ;
352 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
353 s e t ( z , ’ Fonts i z e ’ , 18) ;
354

355 Z = theta er ror Mv ;
356

357 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
358 subplot ( 1 , 2 , 2 ) ;
359 s u r f (XI , YI , ZI ) ;
360

361 x l a b e l ( ’ m e [ pu ] ’ ) ;
362 y l a b e l ( ’n [ pu ] ’ ) ;
363 z = z l a b e l ( ’ $\hat{\ theta } Rˆ{ s1}$ e r r o r [ deg ] ’ ) ;
364 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
365 s e t ( z , ’ Fonts i z e ’ , 18) ;
366

367

368 %f i g u r e (9 )
369 f i g u r e (3 )
370 Z = t e e s t e r r o r M c ;
371

372 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
373 s u r f (XI , YI , ZI ) ;
374

375 x l a b e l ( ’ m e [ pu ] ’ ) ;
376 y l a b e l ( ’n [ pu ] ’ ) ;
377 z = z l a b e l ( ’ $\hat{m} e$ e r r o r [ pu ] ’ ) ;
378 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
379 s e t ( z , ’ Fonts i z e ’ , 18)
380 t i t = t i t l e ( ’ $\hat{x} H=1.2x H$ ’ ) ;
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381 s e t ( t i t , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
382 s e t ( t i t , ’ Fonts i z e ’ ,15) ;
383

384 f i g u r e (4 )
385

386 Z = Psi s1 amp error Mc ;
387

388 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
389 subplot ( 1 , 2 , 1 ) ;
390 s u r f (XI , YI , ZI ) ;
391

392 x l a b e l ( ’ m e [ pu ] ’ ) ;
393 y l a b e l ( ’n [ pu ] ’ ) ;
394 z = z l a b e l ( ’ $\hat{\ p s i } { s1}$ e r r o r [ pu ] ’ ) ;
395 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
396 s e t ( z , ’ Fonts i z e ’ , 18) ;
397

398 Z = x i s 1 s 1 e r r o r M c ;
399

400 [ XI YI ZI ] = gr iddata (X,Y, Z , l i n s p a c e (−2 ,2) , l i n s p a c e (−2 ,2) ’ ) ;
401 subplot ( 1 , 2 , 2 ) ;
402 s u r f (XI , YI , ZI ) ;
403

404 x l a b e l ( ’ m e [ pu ] ’ ) ;
405 y l a b e l ( ’n [ pu ] ’ ) ;
406 z = z l a b e l ( ’ $\hat{\ x i } { s1 }ˆ{ s1}$ e r r o r [ deg ] ’ ) ;
407 s e t ( z , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
408 s e t ( z , ’ Fonts i z e ’ , 18) ;
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