
Model predictive control of an LNG
liquefaction process using Jmodelica.org

Oliver Sale Haugberg

Chemical Engineering and Biotechnology

Supervisor: Johannes Jäschke, IKP
Co-supervisor: Adriaen Verheyleweghen, IKP

Department of Chemical Engineering

Submission date: June 2018

Norwegian University of Science and Technology

Preface

This thesis is written as the final part of my Master of Science Degree in Chemical Engi-
neering at the Norwegian University of Science and Technology during the Spring of 2018.

I would like to thank my supervisors Johannes Jäschke and Adriaen Verheyleweghen for
the opportunity to work on this exciting project and guiding me along the way. Their
continuous support and feedback along the way has been very important for all the work I
have done here.

Declaration of Compliance

I hereby declare that this thesis is an independent work in agreement with the exam rules
and regulations of the Norwegian University of Science and Technology (NTNU).

Trondheim, June 15, 2018
Oliver Sale Haugberg

ii

Abstract

In this thesis Model Predictive Control (MPC) theory has been used to develop a con-
troller for a Liquefied Natural Gas (LNG) liquefaction process using the Jmodelica.org
framework. Jmodelica.org is an open source platform that combines Modelica models
with the possibility of running dynamic optimization problems directly on these models.
The model used is a cascade liquefaction process model written in Modelica, with the cor-
responding Optimal Control Problem (OCP) used by the MPC written in Optimica, where
Optimica is an extension to the base Modelica language. The possibilities of using Jmod-
elica.org for the implementation of a Robust MPC are also briefly looked into.

During initial simulations the MPC is found to control the process to an optimal op-
erating point under a given set of constraints on the inputs and system variables. The
controllers objective is mainly to minimize the energy used by the three compressors for
a given natural gas load. The MPC controls the process to this point, which is previously
known optimal point, both with and without measurement noise on the dynamic states
of the model. The MPC’s performance is tested and compared to a Proportional Integral
(PI) controller for different changes to environmental variables. For these tests the MPC
controller performs better with regards to minimizing the total energy used, especially for
changes that require new set-points to be used by the PI controller. However due to the
PI controller not being fully optimized, and as there are clear improvements that can be
made to the PI controller, no final decision can be made on the actual improvements intro-
duced by the MPC. The robust MPC variant is also tested and compared to the standard
MPC for a small unnoticed change. The robust controllers ability to withstand expected
disturbances built in to its implementation, is shown at the cost of operating in a more con-
servative manner, with regards to total energy used by the three compressors in the process.

The nature of the Jmodelica.org platform lends itself in a practical manner to the devel-
opment and implementation of MPC control structures. The benefits introduced by doing
the process modeling work in Modelica, are combined with the wide range of options for
solving dynamic optimization problems in Jmodelica. These problems can then be solved
using efficient numerical solvers and algorithms already embedded within the platform.
Some specific areas where more work can be done to improving the model and improve
the MPC’s performance are also discussed. These areas are most notably by either modify-
ing the model, or adding more accurate process model units to better describe the dynamics
present in each refrigeration cycles. As for the MPC controller itself, some changes that
can be made to the transcription process are also discussed, which can potentially help
further reduce the computational time of the controller.

iii

iv

Sammendrag
I denne masteroppgaven har Model Prediktiv Kontroll (MPC) teori blitt brukt for å utvikle
en kontroller for en naturgass kondenserings prosess. Dette ble gjort i Jmodelica.org,
som en åpen kildekode plattform hvor programmeringsspråket Modelica blir kombinert
med innebygde muligheter for å løse dynamiske optimaliseringsproblemer. Kondensering
prosessen som er modellert er en kaskade prosess og er skrevet direkte i Modelica. En vik-
tig del av kontrolleren er beskrivelsen av det dynamiske problemet som da har blitt skrevet
i Optimica, en utvidelse av Modelica språket som blir brukt av Jmodelica.org. Muligheten
for å bruke rammeverket for implementering av robust MPC har også blitt utforsket.

I de første simuleringene ble det vist at MPCen kontrollerer prosessen til et optimalt
punkt for diverse begrensninger på manipulerte og kontrollerte variabler. Kontrolleren
gjør dette når målet dens er hovedsakelig å minimalisere energiforbruket til de tre kom-
pressorene i prosessen. Kontrolleren når dette punktet både med og uten støy på målingene
som blir gjort mellom steg. MPC kontrolleren har også blitt testet og sammenlignet med en
Proporsjonel Integrasjon (PI) kontroller for diverse prosess forandringer. For testene som
har blitt gjort kontrollerer MPCen bedre med tanke på å minimalisere det totale energi for-
bruket. Forskjellene er størst når det er nødvendig med nye settpunkter for PI kontrolleren.
Ettersom det ikke er blitt gjort mye arbeid på å optimalisere PI kontrolleren, og det er noen
tydelige forbedringer som kan gjøres, kan ikke en endelig beslutning tas på hvor mye bedre
MPCen er. Den robuste MPC kontrolleren har også blitt sammenlignet med den vanlige
implementasjonen for en ikke observert forandring av prosessens variabler. Den robuste
kontrollerens evne til å håndtere forventede forandringer har blitt vist, på bekostning av
at den opererer på en mer konservativ måte som fører til et høyere energiforbruk av kom-
pressorene.

Jmodelica.org rammeverket fungerer meget godt for implementering av MPC kon-
trolleren. Fordelene med å gjøre modellerings arbeidet i Modelica er kombinert med
Jmodelica.org rammeverkets muligheter for å spesifisere og løse diverse dynamiske opti-
maliseringsproblemer. For å gjøre dette blir effektive numeriske løsere, som er innebygget
i rammeverket brukt. Noen forbedringer områder har blitt diskutert, både forbedringer av
modellen og forbedringer av MPC algoritmen. Modellen kan forbedres spesielt ved å også
beskrive dynamikken som er tilstede i de forskjellige varmeveksler enhetene. Forbedringer
som er mulige for MPC algoritmene handler hovedsakelig om å effektivisere den for å
forbedre kjøretid.

v

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

Table of Contents viii

List of Tables ix

List of Figures xii

Nomenclature xii

1 Introduction 3
1.1 Introduction . 3

2 Model predictive control theory 7
2.1 MPC overview . 7
2.2 Optimal control problem . 9
2.3 Transcription to Nonlinear optimization problem 10

2.3.1 Direct collocation . 12
2.4 Robust Model predictive control . 15
2.5 Optimal control in Jmodelica.org . 17
2.6 PI control . 18

3 Process description 21
3.1 Refrigeration cycles . 21
3.2 LNG liquefaction process . 24
3.3 Implementation in Modelica . 26

3.3.1 Process units . 26
3.3.2 Other equations . 31

vii

3.3.3 Compressibility . 31
3.3.4 Thermodynamics . 32

4 Setup and implementation 35
4.1 Optimal control problem . 35
4.2 MPC . 44
4.3 Robust MPC . 50
4.4 PI controller . 52

5 Controller comparison and discussion 55
5.1 Comparison between MPC and PI controller 55
5.2 Robust MPC compared with Standard MPC 60
5.3 General discussion . 62

6 Conclusion 67

Bibliography 68

Appendix 71
A Constants . 71
B Code . 75

viii

List of Tables

4.1 Constraints for input and state variables in the optimal control problem . 37
4.2 Environmental variables that can change independently of other variables 38
4.3 Inputs for acquiring initial trajectory of the system variable. Compressor

rotation values are dimensionless, and cooling water flows are 104[kgmol/h]. 40
4.4 Value of different variables at optimal steady state during operation 47
4.5 Value of different heat transfer rates for the process units and the compres-

sor duties at optimal operation. All units are in [MJ/h] 47

6.1 Compressor efficiency constants . 71
6.2 Poly-tropic head calculation constants 71
6.3 Heat transfer coefficients for heat exchanger units 71
6.4 Valve constants . 72
6.5 Receiver sizes . 72
6.6 Constants used for heat capacity calculations 72
6.7 Constants used for saturation temperatures 72
6.8 Constants used for liquid saturation enthalpy 72
6.9 Constants used for vapour saturation enthalpy 73
6.10 Critical temperature and critical pressure for the refrigerants 73
6.11 Constants used for compressibility calculations 73

ix

x

List of Figures

2.1 A general illustration of how an MPC works at a given time step. Using the
past measurements and a prediction model of the process a set of optimized
inputs are computed with a goal of the output reaching a certain objective. 8

2.2 Multiple shooting method and simultaneous or collocation method for ap-
proximation a function. The shooting method simulates each segment
from an initial point, whilst the collocation method builds a polynomial
based on collocation points in each element. 12

2.3 Scenario tree for different permutations of the disturbance with corre-
sponding input, where k indicates a discretization step 16

2.4 Feedback block diagram showing idea behind feedback control. For the PI
controller used the feedback block acts as a delay, with no measurement
errors on the outputs. 18

3.1 Example of a simple refrigeration cycle and the corresponding pressure
enthalpy diagram . 22

3.2 Two different designs for the evaporator section. In design a) the plug flow
evaporator allows for super heating, whilst in design b) the vapour phase
leaves at the saturation point. For design a) receivers can be introduces
between the compressor and the heat exchanger to eliminate super heating. 23

3.3 Flow diagram for LNG liquefaction process used 25

4.1 Example of how blocking factors can be used to keep inputs piece-wise
constant for different lengths of time . 39

4.2 Changes to dynamic variables in the receivers after input changes shown
in figure 4.3 . 40

4.3 Optimized compressor speeds for each cycle as computed by optimal con-
trol problem, together with total compressor work 41

4.4 Ethane condenser cooling water flow and outlet temperatures 42
4.5 Refrigerant flow rate in each cycle as estimated in the optimal control

problem . 43

xi

4.6 Opening position of the three JT-valves and outlet temperature of the LNG 44
4.7 Values of dynamic states in receivers for MPC simulation with no distur-

bances or changes . 45
4.8 Optimal inputs used for each compressor during simulation of model con-

trolled by MPC . 46
4.9 Optimal inputs used by compressors in simulation with MPC controller

with measurement noise on states . 48
4.10 Dynamic state values for MPC simulation with noise 49
4.11 Valve opening positions for MPC simulation with noise 50
4.12 Optimal input trajectories for the compressors for the three different cool-

ing water temperature cases estimated in robust MPC 52
4.13 LNG outlet temperature during simulation 53

5.1 Temperature change of cooling water temperature with temperature in the
simulation model and values sampled by the MPC shown 56

5.2 Total compressor work and the LNG outlet temperature for cooling water
temperature change . 57

5.3 Total compressor work for the MPC controller and the PI controller as they
approach the new steady state . 58

5.4 Total compressor work and LNG outlet temperature for natural gas inlet
temperature change . 59

5.5 Compressor inputs for change to LNG inlet temperature 60
5.6 Total work and LNG outlet temperature for unnoticed change in cooling

temperature . 61
5.7 Compressor inputs for unnoticed change to cooling water temperature tem-

perature . 62

xii

Nomenclature

Symbols

αi Compressibility constants

η Polytropic efficiency

γ Average adiabatic heat capacity ratio

p Approximation polynomial

τ Normalized time unit

Cp Heat capacity

cchoke Valve constant

d Disturbance

e Error of control variable

f Differential functions

g Algebraic functions

g Gravitational constant

H Enthalpy

hi Discretization element length

hpoly,scaled Scaled polytropic head

hpoly Polytropic head

J Objective function

k PI tuning parameter

xiii

l Lagrange basis polynomial

m Molar flow rate

Mm Molar mass

mcond Cooling water molar flow

mrec Receiver holdup

Nc Collocation points

Ne Discretization elements

Ncomp Rotational speed of compressor

P Pressure

qsuction Volumetric flow rate

Qunit Heat transfer in process unit

R Gas constant

T Temperature

t Time

u Input functions

uvalve Valve opening position

UAunits Specific overall heat transfer coefficient

V Volume

Wcomp Compressor work

x Differential states

y Output variable

Z Slack variable

z Algebraic states

Zi Compressibility factor

Subscripts

i Discretization element

k Collocation point

L Lower limit

xiv

LIST OF FIGURES

U Upper limit

E Ethane

L LNG

M Methane

P Propane

Abbreviations

CV Control Variable

DAE Differential Algebraic Equations

JT Joule-Thompson

LNG Liquefied Natural Gas

MPC Model Predictive Control

MV Manipulated Variable

NLP Nonlinear Problem

OCP Optimal Control Problem

PI Proportional Integral

1

LIST OF FIGURES

2

Chapter 1
Introduction

1.1 Introduction

Production of natural gas and its use as an energy source has continued to grow in recent
years. As natural gas is mainly made up of methane gas, it is a relatively cleaner and more
environmentally friendly alternative to its main competitors, oil and coal. There are a
wide range of different uses of natural gas, including power production, domestic heating,
transportation, and as a raw material for many industrial and petrochemical processes. As
a result of this the demand for natural gas is expected to grow in the following decades.

Whereas coal and oil can easily be loaded on to freighters and transported over very
large distances, transportation of natural gas is more complicated. This is due to the
very low density of natural gas, when compared to its competitors other competitors. For
medium distance transportation pipelines are used for natural gas, but these become un-
feasible over long distances. As a result, the gas markets are often disjointed with large
geographical differences in price.

A solution to the problem of transportation is to instead transport it as liquefied natural
gas (LNG). Because the density of LNG is significantly higher that of the natural gas itself,
when cooled down to a liquid state it can be transported in a cost effective and safe man-
ner over very large distances. Compared to simply pressurizing the gas, when liquefied
and kept at a low temperature the liquid can be stored at relatively low pressures. LNG is
produced by adding a liquefaction step in the treatment process of natural gas. The liquid
product is then loaded onto purpose built transportation vessels which can ship the LNG
globally. After arriving to a terminal the liquid it can be regasified and further transported
within the local gas infrastructure.

LNG liquefaction processes are however quite energy intensive and add to the cost of
production. As the demand for natural gas has steadily increased there certainly are many
commercially competitive LNG plants. But due to small margins and many competitors/

3

Chapter 1. Introduction

alternative sources of energy, minimizing the costs of operations is very important. Not
only is it important that the design of the plant is optimal, but also that operations are.
Because of the large amount of energy required by the liquefaction processes, there are
various process designs that have been studied, optimized, and developed over the last few
decades. Optimal operation can also significantly affect the feasibility of different plant
due to their scale, meaning small increases in efficiency can have large impact on eco-
nomic performance.

One source of information related to the optimal operation of refrigeration cycles,
which are at the core of all LNG liquefaction processes, is found in Jensen [2008], where
the problem is studied in depth. The main topics are finding the relevant steady state de-
grees of freedom in the process that can be used for optimal operation. These degrees of
freedom are then used to control a set of variables at optimal set-points. An alternative to
this constant set-point control approach is Model Predictive Control (MPC). When using
a model predictive controller, computers are used to calculate the optimal input for a pro-
cess. These calculations are then redone at each step, as new information is sampled from
the process.

For any MPC framework to give acceptable control performance, detailed dynamic
process models are required. The process models need to capture the complex nature and
dynamics which are in the process to be controlled. Properly expressing and laying out
these dynamics models can be time consuming and quite challenging. It is therefore impor-
tant that the choice of modeling environment is chosen to fulfill all requirements needed,
but also not be too overtly complex. Low level programming languages are often used, as
they offer speed and capability to be extremely efficient for specific problems. However, a
major challenge with low level languages, is often the re usability and opportunity of sep-
arating code into different units. The architecture of the language might not always be a
natural fit to the architecture of the model being developed. As a result of this, several high
level and purpose built languages have been developed to fill these more specific needs.
One of these languages is Modelica, a language purpose built for technical modeling of
different systems. By using a high level programming environment instead, where the ar-
chitecture is more component oriented, the modeling work can be greatly eased. There are
of course downsides such as computation efficiency and the ability to tailor fit models to
specific needs.

As opposed to other programming languages, assignment statements are not used in
Modelica. Instead, algebraic equations and differential equations are directly described
without any inherent causation. Equations do not need to be written for specific variables,
they are instead written down to signal how variables relate to each other. Modelicas ob-
ject oriented approach to process units and blocks greatly eases the possibility of reusing
model components. The vast array of open source libraries can also reduce the time spent
modeling all sorts of different physical systems or control layers. As Modelica is an open
source project, the language and several different modeling libraries are continuously de-
veloped and open for all [Modelica]. However, the main focus of Modelica is not dynamic
optimization, a key requirement for model predictive control. Its main focus is rather

4

1.1 Introduction

the development and simulation of models. Different simulation environments, both open
source and commercial, are available that use Modelica. There is for example the commer-
cial software Dymola, or the open source tool OpenModelica which will be used in this
thesis. Although there are some optimization tools available in environments such as Dy-
mola, these capabilities are mainly focused on design optimization, or analyzing dynamic
systems. Like most other programs their focus is simulation and development of models.

For dynamic optimization, detailed numerical algorithms are required to solve prob-
lems reliably and within reasonable time frames. As a result of this, these numerical
algorithms are often written in low level languages with specific requirements for how
problems are to be formulated. Interfacing dynamic models with these numerical solvers
can then be very challenging, depending on what computer language the models are writ-
ten in. For the solvers to work, models could then be required to be written in the same
low level language in very specific ordinary differential equation syntax. As previously
explained, this can cause great challenges to the modeling phase. To summarize, a major
problem is then often interfacing the desired high level environment for process modeling,
with the necessary low level environments used by numerical solver algorithms.

As a result of the points explained above the Jmodelica.org framework will be used
for the implementation of model predictive control in this thesis. Jmodelica.org is an open
source project focusing on dynamic optimization and simulation of models described by
the Modelica language. The platform works by combining several open source tools and
standards together with its built in compilers and algorithms, to solve various different
problems. For dynamic optimization the platform combines the Modelica language with
Optimica, an extension to the base Modelica language explained in Åkesson [2008]. The
Optimica extension allows for high level formulations of dynamic optimization problems,
in syntax very similar to Modelica. This allows for the required problem formulation pa-
rameters such as objective functions, variable constraints, and the optimization horizons to
easily be expressed using already built in Modelica units. Together with Modelica/Optim-
ica models, the platform compilers then transform the models and optimization problems
expressions into flattened C and XML code, to increase efficiency. These lower level
model representations can then be interfaced with the numerical solver algorithms which
are used for solving the specified problems in an efficient manner. In Åkesson et al. [2010]
a thorough explanation of the rational behind the development of the Jmodelica.org frame-
work, and its intended uses, are laid out in detail.

Since Jmodelica.org’s initial release the platform has seen steady development with
new capabilities and features added. It is currently maintained by Modelon AB together
with academia. There are various examples where the platform has been successfully im-
plemented for various problems. Some examples related to the implementation of MPC
include, Larsson et al. [2013] where Jmodelica.org was successfully used to set up a frame-
work and implementation of an MPC for the start up phase of a power plant model. In
Cavey et al. [2014] an MPC with moving horizon estimation is implemented to control the
heating of a building. Modelica is also widely used for modeling of non thermo fluid pro-
cesses, which can also be interfaces with Jmodelica.org. One example of this is shown in

5

Chapter 1. Introduction

Berntorp and Magnusson [2015], where the framework is used for lane control of a vehicle.

In this thesis an MPC will be implemented using Modelica and Jmodelica.org to con-
trol a LNG liquefaction process. To do this a liquefaction model which was originally laid
out in Verheyleweghen and Jäschke [2018] will be used. The model will first be rewritten
in Modelica, as it is originally written in Matlab, and not used for MPC. After this the nec-
essary Optimica code will be written to specify the dynamic optimization problems used
by the controller, together with various Python scripts handling the interfacing. The possi-
bilities of using the Jmodelica.org platform for implementation of a robust MPC will also
be investigated. Robust MPC being an variant of the standard MPC where disturbances
on variables are build into the controller itself, with the aim of having the control action
being optimal with disturbances in mind. A standard proportional integral (PI) feedback
controller will also be developed as an alternative to the model based controllers. It will
mainly be used for comparison purpose to showcase a different control method.

The layout of the thesis described the necessary background knowledge and theory
first before moving on to the actual implementation and findings. In the first chapter,
which covers control theory, the theory of how the MPC works, and is implemented, is
given together with a rational and explanation of robust MPC. Subsequently the process
theory chapter lays out the process model, together with a brief overview of refrigeration
cycles in general. In Chapter 4 the specific implementation of the control for the process
is explained and the controllers behavior showcased. The penultimate chapter covers a
few tests that are done on the controllers together with some general discussion. Finally, a
conclusion is presented on the thesis.

6

Chapter 2
Model predictive control theory

In this chapter the general theory behind Model predictive control will be given. Firstly, a
brief overview of the MPC algorithm itself, and the logic of how it usually is implemented
is given. Following this, a mathematical explanation of how the optimal control problems
(OCP), which are the problem formulation within the MPC, are transcribed into nonlinear
problems (NLP) is given. This transcription of the problem prepares it for a structure that
can be used and solved by the numerical solvers.

Further, the basics of how the robust MPC works is given, together with an explanation
of why this variant can be very beneficial for systems containing model variable uncertain-
ties. The architecture of the Jmodelica.org framework and how it specifically handles this
process is also briefly explained. Lastly, the alternative basic feedback PI controller is
explained with the equations and theory behind it.

2.1 MPC overview
Model predictive control is an advanced control tool generally used to control multivari-
able control problems. It’s objective to control a process or system to a desired state where
it minimizes a certain objective function, whilst also satisfying inequality constraints on
input or output variables Seborg et al. [2010]. To do this different tools are required, most
notably a model of the process itself, a problem formulation including constraints and an
objective function, and a general controller algorithm. The process model is used to pre-
dict the dynamics and the future behaviour of the system. Using this process model, an
informed choice can be made as to what should be done to steer the system in the desired
direction.

For real life applications, models can be obtained in a few different ways. Sometimes
by inducing a step response to the process and analyzing the response. Alternatives are
models built using transfer functions or state-space representations. In this thesis Model-
ica is used to express the non linear model, so the model is therefore defined by a set of

7

Chapter 2. Model predictive control theory

differential algebraic equations (DAE’s).

Together with the process model a dynamic optimization problem, or in this case more
specifically an optimal control problem, has to be formulated. This formulation includes
the objective function, inequality/equality constraints on variables, and an optimization
horizon. As the optimization problems naturally include constraints in their definition,
MPC has the advantage of naturally including these within the controller. Many of the
benefits of using MPC can be seen in the formulation of the optimal control problem. De-
pending on the problem to be solved, the objective functions formulation can vary greatly.
Some problems might focus on minimizing deviations of certain variables from predefined
set-points or trajectories. In other applications the goal could be maximizing or minimiz-
ing certain variables. This could be either maximizing the profit or production rate, or
minimization of energy consumption. The objective functions can also include penalties
on rapid changes to input variables. This can be done to prevent situations where the op-
timal solutions require very erratic changes to valves positions. Too rapid changes can
lead to damage, or simply be unfeasible to actually perform. In general the formulation is
very flexible allowing for many different possibilities, including the multiple interactions
between different inputs and outputs in complex systems.

FuturePast

Sampling time

k+1 k+2 k+p

Prediction horizon

Predicted output

Measured output

Optimized input

Past input

Output objective

Figure 2.1: A general illustration of how an MPC works at a given time step. Using the past
measurements and a prediction model of the process a set of optimized inputs are computed with a
goal of the output reaching a certain objective.

The general idea for the MPC controller is shown in figure 2.1. At time t, given the
current known state of the system, an optimal control problem is formulated and then
solved. This is done for a predefined finite time horizon, known as the prediction horizon.
This prediction should ideally last until the system has reached a new steady state, thereby

8

2.2 Optimal control problem

including all dynamics present in the process. The solution to the optimization problem
is then the optimal input trajectory u(t) for the input variables, given the stated objective
function. In the figure, this optimized input is shown by the blue line. This is in other
words the best set of inputs for the system, based on how the system model expects the
system to behave over the prediction horizon. The first set of the optimal input is then
applied to the system for a small time frame from k to k+ 1, usually the process sampling
rate. The input is often held constant during the sampling duration, as the figure shows.
At the next sampling instance, point k + 1, new measurements are taken of the process
state and the whole algorithms starts over again. The changes for the new instance being
that a new set of initial conditions are used based on the sampling of the system states, or
output. The predictions horizon is also shifted forward in time to account for the change
in time. As a result of this, if certain changes can be predicted to happen, the controller
can act ahead of time to minimize their future impact. This feed forward capability is a
major benefit when compared to other pure feedback controllers. Depending on the model
accuracy, MPC can also help control larger time delays or higher order dynamics, which
can be harder for more basic controllers.

2.2 Optimal control problem
Although the model equations are described in Modelica, the model that is actually han-
dled within Jmodelica.org is a transcribed and flattened version. In the resulting MPC
algorithm, the model is represented by a system of differential algebraic equations (DAE-
s). These equations differ from normal systems of ordinary differential equations in that
not all variable derivatives are explicitly stated. Instead, some of the variables are ex-
pressed using algebraic equations. A general expression of a DAE system can be given
by

ẋ = f(x(t), z(t), u(t), p)

0 = g(x(t), z(t), u(t), p)
(2.1)

For this system, x(t) and z(t) are the differential and algebraic states respectively.
They are given by the differential functions f(x(t), z(t), u(t), p), and the algebraic func-
tions g(x(t), z(t), u(t), p). In the system to be used, the input variables are described by
u(t), and system parameters which are not a function of time are denoted by p. The initial
conditions on the differential states of the system are given by x0. For DAE-s it is critical
that these initial conditions are consistent with the system at whole. In other words, if the
initial conditions are consistent, they can be used to find a solution for the system at the
initial state.

x(t0) = x0 (2.2)

The constraints imposed on the system will vary depending on how the model is formu-
lated and what the optimal control problem formulation is trying to do. There are different
types of constraints such as variable bounds, where there can be upper or lower limits for
certain variables. This could be due to physical limitations, such as for a valve opening
variable where only values between 0 and 1 make physical sense. Variable bounds can

9

Chapter 2. Model predictive control theory

also be imposed from a safety point of view by imposing limits on pressures, temperature,
or liquid levels. Another type of constraint is a point constraints that is only imposed at
a certain time point. Most notably are terminal or initial constraints that which are only
applied at the initial time or the end time of the optimization horizon.

xL ≤ x(t) ≤ xU
zL ≤ z(t) ≤ zU
uL ≤ u(t) ≤ uU

(2.3)

Here L denotes the lower bound and U the upper bound of the different variable types.
How the objective function, or cost function, is expressed will depend on the goal of the
optimization problem. The function is a minimization function, meaning the solver will
look for a solution resulting in a minimal value of the function. If the goal is tracking
some desired output trajectory, quadratic penalties can be expressed on output variables
deviation from these desired values. Other problem formulations can simply be minimiza-
tion of certain values such as energy usage or maximization of product throughput. In 2.4
a general optimal control problem formulation is given for a system of DAE-s. The cost
function to be minimized over the optimization horizon is given by J being a function of
the differential, algebraic and input variables. The optimization is done from the initial
time point t0 to the final time point tf .

min
u(t)

∫ tf

t0

J(x(t), z(t), u(t), p)dt

s.t ẋ = f(x(t), z(t), u(t), p)

x(t0) = x0

0 = g(x(t), z(t), u(t), p)

xL ≤ x(t) ≤ xU
zL ≤ z(t) ≤ zU
uL ≤ u(t) ≤ uU
∀t ∈ [t0, tf]

(2.4)

In the context of the MPC formulation, this is the optimization problem that is solved
at every step of the controller. The optimization time tf − t0 is then the prediction horizon.
The optimal input trajectory, the solution to the problem, u(t) is then applied to the system
for the sampling duration. When a new sampling can be taken, the new initial states x0
are applied, the horizon shifted and the problem is solved again.

2.3 Transcription to Nonlinear optimization problem
As the optimal control problem is solved using a direct method, it must first be discretized
to some degree before it can be solved. By discretizing of the problem over time the prob-
lem is instead solved at a specific number of time points, not continuously. The problem

10

2.3 Transcription to Nonlinear optimization problem

is instead reduced to a finite dimensional problem, from an infinite dimensional problem
which it originally is. The optimal control problem, with its constraints and objectives
as described by 2.4, must then be rewritten for these discrete time points instead. The
objective function, the model equations themselves and the constraints are then solved at
each discretion point. New equations and constraints are also imposed to keep the prob-
lem consistent between the different points, and still reflect a solution true to the original
continuous problem. An explanation of how this process is done is therefore given below
based on Magnusson and Åkesson [2015], where a more detailed explanation of how dy-
namic optimization in the Jmodelica.org framework is done.

There are different ways of solving optimization problems, with two main methods for
higher order systems known as direct and indirect methods. One way of looking at the
difference is the order of how things are done. For indirect methods, conditions for the op-
timal solution are first found. This can be thought of as the solution for the minimum of the
objective function or its root. This area is where ∆J is close enough or equal to zero for
the point to be considered an optimal solution. The problem is then transcribed together
with these optimally conditions and then solved. Direct methods instead first transcribe
the problem, then by iteration look for the optimal solution. Making sure that after each
iteration the solution of the objective functions continuous to be smaller and smaller. This
is reiterated until an optimal solution is found.

Both indirect and direct methods use transcription methods to discretization the prob-
lem. There are also for this step different methods that can be used, with the two main
methods being the shooting methods, and the simultaneous methods. For shooting meth-
ods, the dynamics of the system are applied by simulation using the original equations. In
the simplest method, known as the single shooting method, only one simulation is done
with the only condition being that the final state is close enough to the desired solution.
The more complex variant is the multiple shooting method, where the optimization hori-
zon is split into different segments. Within each segment the trajectory is simulated until
the next segment with an initial guess. In multiple shooting methods, new variables are
introduced as the initial state at the beginning of each segment, new constraints are also
applied to the problem requiring that the error between the different segments it not to
large. These constraints are known as the defect constraints. The dynamics are thereby
explicitly stated along the trajectory, but due to the defect constraint systems states are not
perfect continuous between different elements.

11

Chapter 2. Model predictive control theory

t1 t2 ti1 ti

Defect constraint

Simulation

t1 t2 ti1 ti

Collocation point Collocation
polynomial

Direct collocationMultiple shooting

Figure 2.2: Multiple shooting method and simultaneous or collocation method for approximation a
function. The shooting method simulates each segment from an initial point, whilst the collocation
method builds a polynomial based on collocation points in each element.

The other transcription method is the simultaneous method. Which is also known as
the collocation method, where instead of simulation, the system trajectory is approximated
between different points. Instead of the system dynamics and equation being applied by
simulating from the beginning of one element to the next, they are instead explicitly ap-
plied at certain time points. These points are known as the collocation points and can
be at any point in each element. The trajectory is then approximated between the points
using approximation polynomials, also known as splines. In figure 2.2 the two methods
are shown approximating a function displayed as the red dashed line. For the collocation
polynomial in this figure there are three points, one at the beginning, one at the end, and
one in the middle. The polynomial is equal to the true function in these points and other-
wise approximated. In Jmodelica, direct collocation is the main method used to transcribe
the problem into the final NLP formulation. Therefore a more detailed overview of how
this is done is given in the section bellow.

2.3.1 Direct collocation

In this section a more in depth explanation of direct collocation is given. The goal of this
transcription is to transform the optimal control problem, which is infinitely dimensional,
into a finite dimensional nonlinear problem which then can be solved by the numerical
solvers in Jmodelica. A more thorough explanation of the theory behind the algorithms and
the transcription process in Jmodelica can be found in Magnusson [2016], or in Lennernäs
[2013] which is more focused on the actual implementation of the collocation algorithms
in Jmodelica.org themselves.

Firstly, the time frame for the optimization problem [t0, tf] is separated into Ne ele-
ments. These elements are then treated separately with the system dynamics being approx-
imated using Lagrange basis polynomials. These polynomials and the different elements
are in figure 2.2 separated by t1, t2 etc. These approximation polynomials are constructed
by interpolation between different interpolation points within each element. By using the
value of the system states, equations, and parameters at these points the polynomials are

12

2.3 Transcription to Nonlinear optimization problem

constructed. Each collocation element Ni which has a length of hi is then also given Nc

collocation points. For each element a normalized time unit τi is also used. The rela-
tionship between this new normalized time unit, and the old non normalized prediction
horizon time unit is then given by.

ti(τ) := ti−1 + hi(tf − t0)τ ∀τ ∈ [0; 1]∀i ∈ [1, Ne] (2.5)

Where ti are the time points of the beginning and end of each collocation elementNi. The
length units hi are also normalized so that their sum is equal to 1. The value of τi will
therefore go from 0 to 1 from the start to the end of each discretization element.

The differential, algebraic and input functions from the system of DAE-s are replaced
by their corresponding series of Lagrange polynomials. There is then one set of polyno-
mials for each discretization element instead of a set of equations.

ẋ(t)→ [ẋ0, ẋ1, ẋ2, ..., ẋn]

x(t)→ [x0, x1, x2, ..., xn]

z(t)→ [z0, z1, z2, ..., zn]

u(t)→ [u0, u1, u2, ..., un]

(2.6)

Where n is the number of collocation elements Nc, and each number denotes one set of
polynomials. These time dependent variable polynomials can then be grouped together
and denoted with pi.

pi = [ẋi, xi, zi, ui] (2.7)

If there then are k collocation points in each element in [1..Nc], then the notation τk is
the local normalized time at an elements collocation point k. Further, the values of the
polynomials at this time point τk , can be denoted as pi(τk). The values at these points
then become a part of the decision variables in the NLP that will have to be determined by
the solver.

pi(τk) = pi,k = [ẋi,k, xi,k, zi,k, ui,k] (2.8)

The collocation polynomials can then themselves be defined. They are given by the
following equations and are defined as functions of the basis polynomials and the system
values at the different collocation points.

xi(τ) =

Nc∑
k=0

xi,k · l̃k(τ) (2.9)

zi(τ) =

Nc∑
k=1

zi,k · lk(τ) (2.10)

ui(τ) =

Nc∑
k=1

ui,k · lk(τ) (2.11)

13

Chapter 2. Model predictive control theory

As the differential states polynomials xi have to be continuous between the discretiza-
tion elements, they are slightly different. For this to be implemented successfully an extra
collocation point is added at the beginning of each element. It can thereby be specified
to be equal to the end value of the previous element. The Lagrange basis polynomials
denoted by l̃k and lk are equal for all elements as a result of the normalized time used in
each element. The basis polynomials themselves are defined by

l̃k(τ) :=

Nc∏
l=0,l 6=k

τ − τl
τk − τl

(2.12)

lk(τ) :=

Nc∏
l=1,l 6=k

τ − τl
τk − τl

(2.13)

These basis polynomials have the property that they are equal to 1 when j = k and zero
for j 6= k. Because each basis polynomial k is multiplied by the corresponding system
variable value at point k, the polynomial will have the correct value at this point. Each
basis polynomial makes sure the value is correct for it’s point, without interfering with the
other points.

lk(tj) =

{
1 if j = k

0 if j 6= k
(2.14)

For the polynomials replacing the differential variable derivatives ẋi, the state variable
polynomials are differentiated with respect to time. This is done by combining equation
2.9 and 2.5 and then using the chain rule. The corresponding approximation polynomial
is then expressed by

ẋi(τ) =
dxi
dti

(τ) =
dτ

dti

dxi
dτ

(τ) =
1

hi(tf − t0)

nc∑
k=0

xi,k ·
dl̃k
dτ

(τ) (2.15)

The properties and accuracy of these constructed polynomials can be changed, by
changing where in the discretization elements the collocation points are placed. Differ-
ent placements can cause instability, longer convergence rates, or worse approximations.
Algorithms in Jmodelica.org have the possibility to use a few different methods, however
for this thesis only Radau quadrature rules will be used. There are other resources that give
a more detailed overview of polynomial interpolation and numerical integration in general.
A more detailed explanation behind the rational for the Lagrange basis polynomials and
the point placements can be found in Süli and Mayers [2003].

The final nonlinear problem formulation is then possible to construct. It is essentially
the same optimal control problem as stated in 2.4, but expressed for discreet time points
over the prediction horizon as opposed to for continuous time. The dynamics are no longer
expressed by the original state equations, but by the collocation polynomials. The inequal-
ity constraints are replaced with new constraints of the decision variables at the collocation
time points. The objective function is also changed from continuous integral function to a

14

2.4 Robust Model predictive control

function minimizing the sum of the target variables, at the different collocation points. A
general expression for a NLP is then given by

min J(pi,k)

s.t ge(pi,k) = 0

fi(pi,k) ≤ 0

∀i ∈ [1..Ne]

∀k ∈ [0..Nk]

(2.16)

Where pi,k are then the decision variables of the NLP problem. The model equations and
constraints are now either equality constraints expressed by ge, or inequality constraints
expressed by fi. The model equations and initial conditions are now instead expressed
as equality constraints at the collocation points. As the differential states have to be con-
tinuous between elements, new sets of constraints also have to be expressed. These are
expressed as xi,Nc

= xi+1,0, and are expressed within the ge constraints in 2.16.

2.4 Robust Model predictive control
Advanced control methods, such as an MPC, introduce many benefits to the controller
such as the ability to deal with coupled multiple inputs and outputs, different constraints
and an explicit controller objective. The downside however, is that due to the heavy use of
models, the accuracy or quality of the models become very important. If the model is not
accurate enough due to plant model mismatch, or if there are significant parameter value
uncertainties, measurement errors, or noise, the controller could have difficulties working
correctly. Optimal operation, in regards to the objective function, is most often at the limit
of certain inequality constraints. Disturbances to the process or unreliable parameter val-
ues can therefore easily cause the constraint to be violated, if the controller cannot react
quickly enough.

The presence of model-plant mismatch or uncertainties will cause the predicted future
behavior to not properly reflect the plant itself. The then sub optimal input can cause either
constraint violations, or non optimal performance. Due to this, robust control implementa-
tions therefore include variable uncertainties explicitly in the design of the controller. The
robustness of the controller is said to be its ability to keep the process stable or properly
controlled with accepted performance for a given set of uncertainties. An in depth look
into robust model predictive control can be found in Lucia [2014].

There are different approaches of how to implement robust MPC, with one of the ear-
lier formulations being min-max MPC, as described by Campo and Morari [1987]. In
this variant the optimization problem is solved for the worst case scenario of the expected
disturbance, whilst also including new constraints that all other scenarios values of the
uncertainty be satisfied. This causes the solution to be very conservative considering it
does not take into account that any new information could occur in the future. Multi-stage
MPC, which is the robust MPC variant that will be explored here, is another type of robust

15

Chapter 2. Model predictive control theory

MPC, where new information is taken into account. Here it is assumed that the value of the
uncertain parameter can change at each sampling instance which is then taken into account.

In multi-stage MPC certain variables are assumed to have disturbances or uncertainties
that can change between sampling instances. To take this into account a scenario tree is
used for the given variable possibilities. Different value scenarios for a variable are then
simulated in parallel. This can be represented with a scenario tree branching out together
with the corresponding optimal input. Then at the next instance each different scenarios
again branches out with new possibilities.

d2,u2

d1,u1

d0,u0

x0

d8,u8

d7,u7

d6,u6

x1,2

x2,6

x2,7

x2,8

d2,u2

d1,u1

d0,u0

x1,0

x2,0

x2,1

x2,2

d5,u5

d4,u4

d3,u3

x1,1

x2,3

x2,4

x2,5

k k+1

Figure 2.3: Scenario tree for different permutations of the disturbance with corresponding input,
where k indicates a discretization step

In figure 2.3 a scenario tree is shown for a case where three permutations of one distur-
bance d are taken into account and simulated. From the initial state x0, three permutations
of the disturbances d0, d1, and d2 and their corresponding optimal inputs u0, u1, and u2
are shown leading to three new states. From these three new states, each scenario will
result in three new scenarios, each again with their own new optimal input. This is what
causes the multi-stage variant to be a less conservative approach than the min-max vari-
ant. Disturbances are not assumed to be either at the worst or the best case scenario. As
only one set of input values can actually be used from the optimization, a new set of con-
straints are introduced. These constraints requiring that all input solutions from one node
have to be equal, u0 = u1 = u2 . The solution must be the optimal first input when all
three possibilities are possible, but where they can also be different at the following steps.
The total problem formulation then includes the constraints for all the three disturbances.
The different scenarios can then be though of as an expected value, an upper, and a lower
bound. As long as the effect of the disturbance is convex , the optimized input should not
violate any constraint within the range of the disturbance.

16

2.5 Optimal control in Jmodelica.org

A problem with this successive branching is that if it is done rigorously for each pos-
sibility, the problem very quickly becomes way to large to be solvable. If branching of the
problem is done over the whole prediction horizon at each sampling step, or if branching
is done for not only one variable but for multiple, the problem will scale exponentially in
size. The continuous branching allows for optimizing that assumes the disturbance can
could change between every sample. This is however not necessarily the case, and by
instead assuming that it is constant after a given point, known as the the robust horizon,
the problem size is significantly reduced. The problem size can also be significantly re-
duced if only one uncertain variable is taken into account. If branching is then only done
at the first step, the scheme becomes what is known as a two stage robust MPC. Also as
only the first step of the solution is implemented by the controller anyway, this approach
will often give results close to more rigorous variants as shown in Lucia and Engell [2012].

As the implementation of robust MPC is not the focus of this thesis, the implementa-
tions done are of the two-stage variant looking at three different cases for a single distur-
bance at a time. As the model is already relatively large, and because of the number of
discretization points done, anything of a larger scale would become to big for the tools used
to be solvable. This is another general disadvantage of the implementation of robust MPC
algorithms. As the problems become exponentially larger, the required computational time
can very quickly become too big, or even the problem too large for NLP solvers. The more
thorough one wished the controller to be, the quicker the problem size increases.

2.5 Optimal control in Jmodelica.org
The process model itself is written in OpenModelica, an open source simulation environ-
ment for Modelica model development. The resulting model together with the Optimica
code specifying the Optimal control problem is then handled by the Jmodelica.org built
in compilers. These compilers then flatten the model, removing unnecessary information
and transforms the model and problem into C and XML code. The C code expressing the
model equations themselves, and XML the meta data for the model, such as parameter val-
ues names etc. After a flattened version of the model has been made CasADi, Andersson
et al. [2018], is used to create a symbolic representation of the model.

CasADi is used as it can quickly perform algorithmic differentiation obtaining the
derivatives of the different variables. The original integration of Jmodelica.org and CasADi
was largely based on mapping of the XML code as described in Andersson et al. [2011].
With the current implementation, which further combines CasADi within the collocation
algorithms is explained in more detail in Lennernäs [2013]. The reason the CasADi is
useful is because when actually solving the NLP, the iterative methods used by the solver
require the first and/or second order derivatives of the cost and constraint functions with
respect to other NLP decision variables. As CasADi uses algorithmic differentiation on
the symbolic representation, these required derivatives can be calculated very efficiently
and quickly. For a more detailed overview of how different software is used, Magnusson
[2016] Chapter 3 has a detailed explanation. After the collocation algorithms, working

17

Chapter 2. Model predictive control theory

with the CasADi representation, has finished transcribing the problem into the final NLP
representation, the problem can be solved. In Jmodelica.org the default solvers is IPOPT,
Wächter and Biegler [2006], which is used for all computation in this thesis.

All interfacing with Jmodelica.org is done using python scripts written by the user.
This is where the different tools and packages are brought together. Specified parameters
for the optimization problems, initial guesses, and initial trajectories are also given here.
After an optimal control problem has been for an MPC step, and an optimal set of inputs
has been computed, the optimal set of inputs can be used to run simulations. Simulation
of Modelica models is handled through python, using the Functional Mock-up Interface
standard. This standard interface allows for model exchange, simulation etc. After then
transferring the model into a Functional Mock-up Unit object, simulations can be done on
this object.

2.6 PI control
An alternative control structure to compare with the MPC implementation is a PI controller
which is also implemented and used to control the process. Being a non model based con-
troller, proportional integral (PI) control uses feedback to control certain control variables
(CV’s) by adjusting the input value of other manipulated variables (MV’s). This is done
by measuring the error of the control variables e(t) from their predetermined set-points.
The corresponding input is then adjusted in a way to try minimizing the deviation from the
set-point. The added control action input for a manipulated variable can be represented by
the equation

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ ′ (2.17)

Where the error is given as a deviation from a predetermined set-point ys(t)

e(t) = ys(t)− y(t) (2.18)

A block diagram for the feedback controller is shown in figure 2.4. For the PI controller
used a feedback block is added to introduce some time delay on the measurements.

Feedback

Controller Process
y(t)ys(t) e(t) u(t)

+

Figure 2.4: Feedback block diagram showing idea behind feedback control. For the PI controller
used the feedback block acts as a delay, with no measurement errors on the outputs.

18

2.6 PI control

The first term is the proportional action tuned with kp, where the control action is
simply a function of the current value of the error. Large deviations from the set-point
thereby cause greater control action. The second term is the integral control action and is
tuned with ki. The integral control action looks at the history of the error from the start,
until the current time. This term removes the steady state error which is often present
for pure proportional controllers. As long as there is an error present from the set-point,
the integral term of the equation will continue to grow until the new control action has
removed the error. A third term can also be included, known as the derivative term, which
would cause it to be a PID controller. The derivative term looks at the current slope, or
rate of change of the error. If the current value of the CV is approaching its set-point too
quickly, it is very possible that it could overshoot the set-point. The derivative term will
try to minimize too rapid changes and cause the value to settle quicker to its set-point.
Derivative control action is however not used in this thesis, as it is generally not required.

19

Chapter 2. Model predictive control theory

20

Chapter 3
Process description

In this section the type of LNG liquefaction process used, and the corresponding process
model will be described. Starting with a brief introduction to refrigeration cycles in gen-
eral, which are at the core of any liquefaction process, before moving on to the specific
cascade liquefaction process used. The design principles behind this model are explained,
together with the implementation of the model in Modelica. The equations that make up
the different process units are explained together with the thermodynamic equations and
state equations used by the model.

3.1 Refrigeration cycles
Refrigeration cycles are used in a wide range of applications, from areas such as household
air conditioning to large scale heat transfer in industrial process plants. The underlying
principles of using pressure, evaporation and condensation to move energy are however
always the same. In this section a brief introduction to refrigeration cycles and how dif-
ferent design choices can affect how they operate is given. A thorough investigation into
different designs and optimal operation of refrigeration cycles can be found in Jensen
[2008].

In a refrigerant cycle a refrigerant is continuously cycled in a closed loop from a con-
denser section to an evaporator section. This is done so that the working fluid in the cycle
can move energy from a heat source to a heat sink. Whether the goal of the process is
cooling the heat source, or heating the heat sink will depend on the actual process. In the
case of LNG liquefaction, the goal is cooling and condensation of the natural gas stream
to a pure liquid state. The final heat sink of the process is the cooling water present in
the condensers, and the heat source the natural gas stream. In figure 3.1 a basic refriger-
ation cycle and a possible corresponding pressure enthalpy diagram is shown. The curve
in the pressure enthalpy diagram is the saturation line showing the boundary between the
different phase regions. Inside of the curve, the system is in the two phase area where it
contains both liquid and vapour phase. The left of the curve is the pure liquid phase, and

21

Chapter 3. Process description

the right side is the pure vapour phase. The numbers on the figure reference the outlets of
the different cycle units.

In the refrigeration cycle, the refrigerant first enters the compressor in a pure gas phase.
The gas leaving the compressor, point 1 in figure 3.1 will then be a high temperature, high
pressure gas. This gas is then cooled down to its condensation temperature, where it will
cross the saturation curve. It will then be further condensed from vapour until it is all in a
liquid state. In figure 3.1 point 2, the exit point of the condenser, is exactly on the saturation
line. This indicates that the refrigerant is fully condensed, but not cooled any further. If
the point where to be shifted to the left, there would be sub-cooling present which is when
the temperature of the liquid is cooled from the saturation temperature. This cooled but
still high pressure liquid fluid is then sent through a Joule-Thompson valve. In this valve
an isenthalpic process causes the pressure, and temperature with it, to significantly fall to
point 3. Isenthalpic meaning that there is no heat loss or work done by the fluid through
the valve, which causes the enthalpy to be equal on both sides. The then low pressure,
low temperature two phase fluid is then sent to the evaporator section where it is fully
evaporated to point 4. It is also here possible for the exit point to be shifted to the right,
which would indicate super heating in the cycle. Super heating being when the exiting gas
phase is heated from its saturation temperature. After being fully evaporated, the then pure
vapour phase is sent back to the compressor.

Compressor

Expansion valve

EvaporatorCondenser

1

2

3

4

(a) Refrigeration cycle

Enthalpy

Pressure

12

3 4

Vapour phaseLiquid phase Two phase

(b) Pressure enthalpy diagram

Figure 3.1: Example of a simple refrigeration cycle and the corresponding pressure enthalpy dia-
gram

By further cooling the liquid out of the condenser, or further heating the vapour out
of the evaporator, sub-cooling or super-heating can be introduced. In real application of
refrigeration cycles, some degree of super heating is always required. This is because if
liquid droplets enter the compressor, it can be very damaging to the equipment. It is how-
ever generally agreed that no super heating in the cycle is optimal with regards to energy
usage. The issue of sub-cooling however is slightly different, as in Jensen [2008] it is show
that some degree of sub-cooling can be optimal for certain operations.

By using different designs for the condenser or evaporator, sub-cooling and super-

22

3.1 Refrigeration cycles

heating can be included or removed from the process by design if desired. For example
by using flooding tanks for the condenser, sub cooling can be eliminated for the cycle
by letting the liquefied fluid drain out of the bottom. In this way the liquid phase is not
in contact with the heat exchanging element. In the same manner super-heating can be
removed by letting the vapour phase evaporate out the top of a tank. The heat exchanging
area is fully submerged in the fluid thereby not affecting the gas phase. If instead plug flow
type heat exchanger designs are used, the refrigerant can experience both sub-cooled and
super-heated when exiting the heat exchanger. But again for these designs both phenomena
can be removed at whole by first sending the outgoing fluids through receiver tanks. These
receiver tanks then act as buffers where their outlets only contain either vapour or liquid
phase by design.

Hot side

a) Plugflow evaporator

Heating
b) Flooded evaporator

ΔTsup

Figure 3.2: Two different designs for the evaporator section. In design a) the plug flow evaporator
allows for super heating, whilst in design b) the vapour phase leaves at the saturation point. For
design a) receivers can be introduces between the compressor and the heat exchanger to eliminate
super heating.

23

Chapter 3. Process description

For simple refrigeration cycles, as the one that has been described so far, there are
generally five degrees of freedom Jensen [2008]. This is the case if one allows for both
sub-cooling and super-heating in the cycle. These five degrees come from the following
variables

1. Heat transferred in the condenser

2. Heat transferred in the evaporator

3. Power to the compressor

4. Valve opening position

5. Active charge in cycle

These five variables can be adjusted to change how the cycle operates. They relate to
the five design degrees of freedom that can be adjusted when designing the process. Those
being the load, the two pressure leves Ph and Pl and the the amount of sub-cooling and
super-heating ∆Tsub and ∆Tsup.

3.2 LNG liquefaction process
There are a few different LNG liquefaction process designs used today. The majority of
these either being based on AP-C3MR or cascade technology N. Usama et al. [2011]. The
first of these two AP-C3MR, uses two refrigeration cycles where pure propane is used
in a precooling cycle and the main cycle containing a mixed refrigerant doing the main
cooling. The other cascade based technology uses three cycles each of which containing a
pure refrigerant in a cascade setup between the cycles. There are also other designs used in
various applications where the differences generally come down to the refrigerant makeup,
or the setup of the refrigeration cycles.

The process model to be used in this thesis is an adaption of a cascade based lique-
faction process originally modeled and laid out in [Verheyleweghen and Jäschke, 2018].
In this paper the process model was written in MATLAB with the main goal of imple-
menting a self optimizing control structure for the process. The focus of the paper was to
look at how a self optimizing control structures would compare to other more direct tem-
perature control structures, when trying to minimize the average steady state loss during
disturbances. In this thesis however, as the Jmodelica.org framework is used for devel-
opment of the MPC framework, the model has been rewritten in Modelica. Due to the
different structure of these languages the model setup is quite different and some changes
have been made. But as the model units are made up of the same equations with the same
thermodynamics the process behaves in the same way.

24

3.2 LNG liquefaction process

T

T

Compressor

Compressor

Cooling water

Cooling water

Natural gas feed LNG

Cooling water

JT-valve

JT-valve

Receiver

Receiver

Receiver

Compressor

Evaporator

P-E

P-M E-M

P-L E-L M-L

Propane cycle

Ethane cycle

Methane Cycle

JT-valve

Evaporator

Evaporator

Figure 3.3: Flow diagram for LNG liquefaction process used

A flow diagram for the cascade process modeled is shown in figure 3.3. In a cascade
process of this kind, the natural gas feed is sent through successively colder heat exchang-
ers that cool and condense the gas until it is in a liquid state. The cold side of the three
different heat exchangers each use three different refrigerants from the three cycles. The
three refrigerants used are propane, ethane and methane, each in their own cycle. Meaning
that the refrigerant cycles only contain one refrigerant each, as opposed to a mixed refrig-
erant system. Due to the different phase change characteristics of the three refrigerants,
the LNG can be fully cooled to its liquid state. The cascade characteristics of the process
come from the fact that the cycles exchange heat with each other in order to increase the
thermodynamic efficiency of the process.

In the model the evaporator and condenser sections are models as a series of counter
current heat exchangers. In real life implementation of cascade liquefaction processes,
such as the ”Optimized Cascade Process” by [ConocoPhilips], the evaporator and con-
denser sections are large multi-stream heat exchangers. Because these complex heat ex-

25

Chapter 3. Process description

changer designs are significantly more complicated to model due to the added geometry, a
series of counter current heat exchanger models are instead used. As figure 3.3 shows the
three refrigeration cycles interact not only with the LNG steam, but also with each other.
For example in the condenser section of the methane cycle, the three heat exchangers each
interacts with a different stream on their cold side. The first one with the cooling water,
followed by one with the propane cycle, and then with the ethane cycle. This can also be
seen in the evaporator section of the propane cycle, where the propane is first evaporated
by the methane stream, then ethane, followed by the natural gas itself. This is done to min-
imize the mean temperature difference, which increases the efficiency of the liquefaction
process at a whole.

3.3 Implementation in Modelica
In Modelica models are expressed algebraic equations, differential equations, and func-
tions that when put together make up a process unit or class. These classes which can also
be thought of as smaller models, which are then connected together depending on their
relation to make up the process model at a whole. The sub-models are connected together
using a different Modelica component known as a connector, which is an important feature
of the language. Connectors are added to the different sub units, so they can be connected
together using special connect function, which then creates a new set of balance and equal-
ity equations over the connection. For example by connecting the outlet of one tank to the
inlet of another, new equations are made for the flow and potential variables of those in-
lets and outlets. For flow variables, such as mass flow or energy flow, balance equations
are made. For potential variables, such as temperature or pressure, equality equations are
made.

f1 + f2 = 0

p1 = p2
(3.1)

The new equations are shown in 3.1 where f is a flow variable and p a potential variable.
This feature allows for different units of a process model to be constructed independently,
and later connected when expressing the process at a whole. This of course assumes that
all units are made with the same standards in mind and use the same connectors. The inlet
and outlet connectors must be of the same class, both having the same variables. In the
following sections the equations used in the different process units are described, followed
by the thermodynamic equations and state equations used in the model.

3.3.1 Process units
Each of the process units that can be seen in the process flow diagram, figure 3.3 have their
own set of equations. They are built up as independent units with equations describing their
function in the process, with Modelica connectors binding them together as described. The
equations laid out are originally formulated in Verheyleweghen and Jäschke [2018]. Not
all units have specific equations for all variables as they might not have an effect on these
variables. One example of this is the model for the heat exchanger where there is no effect
the pressure of the fluid. The units describing the heat exchangers therefore have equations

26

3.3 Implementation in Modelica

that specify that the inlet pressure has to be equal to the outlet pressure. These equations
are however not written out in this section.

Compressors

For the compressor unit a polytropic compressor model is used. These processes have in
common that they all follow the relation.

PinnV
n
inn = PoutV

n
out (3.2)

Where P and V are the pressure and volume for the inlet and outlet flows. The exponent n
indicates the the polytropic exponent, which will vary depending on the type of polytropic
process.

In the model used the following relation is valid for the temperature and pressure of
both the inlet and the outlet.

Tout
Tinn

=
Pout

Pinn

1
k

(3.3)

Where T is temperature for the inlet and outlet of the compressor. The exponent k is the
polytropic coefficient, and defined by the following relation

k =
n

n− 1
= η

γ

γ − 1
(3.4)

Here η is the polytropic efficiency of the compressor, γ the average adiabatic heat capacity
ratios from the inlet and outlet of the compressor. It is given by the following equation.

γ =
1

2

(Cp,inn

Cp,inn −R
+

Cp,out

Cp,out −R

)
(3.5)

Where R is the universal gas constant, and Cp the heat capacity at the inlet and outlet.

The polytropic head for the process is given by the equation

hpoly =
kZinnR

gMm
(Tout − Tinn) (3.6)

Where Zinn is the compressibility of the refrigerant at the inlet of the compressor, Mm its
molar mass and g the universal gravitational constant.

Because the model uses compressor maps, the efficiency η and the polytropic head
hpoly are are found from curves defined by empirical data. They are therefore defined by
the following equations

η = e1hpoly,scaled + e2 − 2 ∗ 10(e3hpoly,scaled−e4) (3.7)

qsuction

Ncomp
C
4

=
C1hpoly,scaled − C2

C3
(3.8)

27

Chapter 3. Process description

The constants ei and Ci are constants specific to the different compressors and can
be found in appendix [A]. The speed of the compressor, which is the input variable used
to operate the compressor is given by Ncomp. The volumetric flow rate at the inlet is
denoted with qsuction. The volumetric flow rate is also then be expressed by the following
equation-.

qsuction =
ninnRTinn

Pinn
(3.9)

Where ni is the molar flow rate at on the compressor inlet side. The scaled compressor
head hpoly,scaled is given by the equation

hpoly,scaled =
hpoly

ucomp
C5

(3.10)

whereC5 is also a constant specific to the compressor and found in appendix [A]. All three
cycles use the same compressors equations, but as the compressor maps are different for
the three refrigerants the constants are different.

Condensers and evaporators

For the condensers and evaporator sections, counter current heat exchanger models are
used. In each heat exchanger units, the logarithmic mean temperature difference is used to
calculate the heat transfer rate.

Qunit = UAunit∆Tlm (3.11a)

∆Tlm =
∆T1 −∆T2

log(∆T1)− log(∆T2)
(3.11b)

∆T1 = Tcold,out − Thot,inn (3.11c)
∆T2 = Tcold,in − Thot,out (3.11d)

Where Qunit is the heat transferred in each different condenser or heat exchange unit.
∆Tlm, the logarithmic mean temperature difference is calculated from the inlet and outlet
temperatures of the cold and hot side. It is the average logarithmic difference of these
temperature values. The specific overall heat transfer coefficient UA is constant and spe-
cific to each heat exchanger unit. The values used for these coefficients can be found in
appendix [A].

For the condenser section of each refrigeration cycle, the first heat exchanges cold side
is cooling water. For these units the energy transfer is also a function of the temperature
change for the cooling water. It is therby given by the function

Qcondenser = mcondCp,water(Tamb − Tcond) (3.12)

For this equation mcond, the molar flow rate of the cooling water also acts as an input that
can be adjusted for the process. Tamb and Tcond are respectively the temperatures of the
cooling water at the inlet, the ambient temperature, and at the outlet from the condenser.

28

3.3 Implementation in Modelica

The constant heat capacity of the water is denoted by Cp,water.

For the hot side of these, and for the heat exchangers not using cooling water, the
change in enthalpy for the streams is set to be equal to the heat transferred Qunit. The
relation between the enthalpy of the streams and their temperature or pressure is found in
the thermodynamic section.

Qunit = Hhot,out −Hhot,inn (3.13a)
Qunit = Hcold,out −Hcold,inn (3.13b)

One issue with these equations are that they do not allow for any dynamics to in the
condenser and evaporator sections. The temperatures out of the units are instantaneously
set by the inlet temperatures and their flow rates. The logarithmic mean temperature dif-
ference concept is based on the heat exchange being at steady state. The equations also
assume that the overall heat transfer coefficient is constant, which is is not the case as the
refrigerants undergo phase change through the units. These simplification are however
done as proper dynamic heat exchanger models for systems that undergo phase change are
surprisingly difficult to actually implement. In the case of these condensers and evapora-
tors, it is due to the fact that the gas entering the condensers is heated beyond its saturation
temperature. And it is due to the fluids leaving the sections can experience both sub-
cooling or super-heating. The points in the heat exchangers where the streams go from
one phase area to another are very very difficult to model with dynamics.

By allowing for sub-cooling and super-heating in a dynamic model new challenges are
faced in the formulation of the model. Ideally the model for the heat exchangers should be
robust enough to handle all refrigerant phase possibilities, at any point in the exchanger.
Those three possibilities being pure liquid or vapour phase, or a mixture of both as shown
in the pressure enthalpy diagram figure 3.1. The model equations would need to describe
the dynamics of all three possible phase regions, and be able to handle the points where
the transitions between these regions can occur. The main difference for the regions being
that while in the single phase region, heat transfer causes temperature change for the re-
frigerant, whilst in the two phase region it causes either evaporation or condensation.

Because it is not possible to determine when and where the transitions between phase
regions can occur, the model must be able to handle these points online during simulation
and act accordingly on the fly. For example, the vapour that enters the condenser section
will first experience a drop in temperature. It will cool down until it reaches the saturation
temperature, where it will start to condense into a liquid instead. Rapid changes to the sys-
tem parameters can cause sudden drops in the heat transfer rate resulting in vapour leaving
the condenser. If these possibilities are allowed for in the process model, the resulting heat
exchanger model would be required to handle all such possibilities.

These issues related to dynamic heat exchangers models are therefore ignored by in-
stead using the steady state model described. In the overall model is the level of sub-
cooling and super-heating is also controlled to zero. The enthalpies out of the condenser
and evaporator sections are set to be equal equal to the corresponding saturation tem-

29

Chapter 3. Process description

peratures. By doing this two degrees of freedom are however lost for each cycle as the
enthalpies have to be controlled to these respective values. For example the valve opening
levels can not be used as a free input as it must be able to fulfill one of these requirements.
The system model cant be over specified.

Receivers

In the condensers section the working fluid refrigerants enter the receivers which introduce
dynamics into the cycles. The volume of the different receiver act as a buffers in each
cycles. This will then cause changes in the condenser section to not have an immediate
effect on the evaporator section. The outlet streams are set to be equal to the conditions
in the tanks, not the inlet to the tank. The energy balance equation for the methane and
ethane receivers are as follows

dHrec,M

dt
= Hout,M −Hin,M (3.14a)

dHrec,E

dt
= Hout,E −Hin,E (3.14b)

Where Hrec is the enthalpy in the receiver and HM , HE the enthalpy flow in and
out of the different units. It is also assumed that for the receivers there is perfect level
control causing no flow dynamics, only energy dynamics. This causes the inlet and outlet
molar flows to be equal. The dynamics in the different cycles then instead comes from
the enthalpies of the flows. The dynamics can be rewritten for specific enthalpy in the
following way

dhrec,M
dt

=
hout,M − hin,M

mrec
(3.15a)

dhrec,E
dt

=
hout,E − hin,E

mrec
(3.15b)

(3.15c)

For the propane receiver, the dynamic equation is for the temperature instead. It is also
here assumed the inlet and outlet molar flows are equal, results in the following differential
equation

dTrec,P
dt

=
min

mrec
(Tout − Tin) (3.16)

In this equations, and for the two others mrec denotes the molar holdup in each receiver.
Higher values causing larger receiver thereby causing slower dynamics.

Valves

After the receiver, the refrigerant which is then a saturated liquid passes through the isen-
thalpic Joule-Thompson valve. Here the refrigerant is expanded down into the two phase

30

3.3 Implementation in Modelica

region, as the pressure is significantly lowered. The molar flow rate of the cycle is also
here related to the pressure drop by the following valve equation

m = uvalvecchoke
√
Pinn − Pout (3.17)

Where uvalve, is the valve opening, mi the molar flow rate through the valve, and cchoke
the valve constant which can be found in appendix [A].

3.3.2 Other equations

When later optimizing the operation of the process model, one of they key characteristics
of its behaviour is how the task of cooling the LNG stream is spread over the different
cycles. In other words how much energy is actually transferred in the three heat exchang-
ers. The cycles also interact with each other so how the evaporation of propane is spread
through its three evaporator heat exchangers is also of interest. Theses different modes of
operation are a key factor in determining what setup will cause minimum energy usage by
the compressors, which is the optimal mode of operation. There are therefore no specific
constraints or equations specifying the exact duty in each heat exchanger. What must be
specified however is the total energy transferred in and out of each refrigeration cycle. Be-
cause the refrigerants are in a closed loop, they must return to their initial state for the loop
to be consistent. The energy added to the refrigerant in the evaporator and the compressor,
must equal the energy leaving it in its condenser section. The equations specifying this are
as follows

Qcomp,M +Qhex,M,L = Qcond,M +Qhex,E,M +Qhex,P,M (3.18a)
Qcomp,E +Qhex,E,L +Qhex,E,M = Qcond,E +Qhex,P,E (3.18b)
Qcomp,P +Qhex,P,L +Qhex,P,M +Qhex,P,E = Qcond,P (3.18c)

Where Q indicates the change in energy for the refrigerant over the different process
units.

The receivers after the evaporator sections are implemented without any dynamic equa-
tions. This was done as any attempts to implement them would cause the system to not
initiate properly. In the current implementation they simply state that the inlet has to be
equal to the outlet. In the actual model all variables are also scaled down to be of the
same magnitudes. This is done to minimize the risk of solvers having issues with extreme
differences in variable values. For example all temperatures are multiplied with 0.01, and
all pressures are scaled down by on magnitude. Theses change are however always taken
into account in the equations and scaled back when presented in plots and tables.

3.3.3 Compressibility

Because the compressibility factors of the gases are needed for the equations for the com-
pressors, the Dranchuk and Abou-Kassems equation of state is used Dranchuk and Kassem

31

Chapter 3. Process description

[1975]. The equation uses a generalized starling equation and is fitted to data. The com-
pressibility factor is then given by the equation

Zi = 1 +
(
a1 +

a2
Tr,i

+
a3
T 3
r,i

+
a4
T 4
r,i

+
a5
T 5
r,i

)
B

+
(
a6 +

a7
Tr,i

+
a9
T 2
r,i

)
B2

−
(a7
Tr,i

+
a8
T 2
r,i

)
a9B

5

+ a10(1 + a11B
2)
(B2

T 3
r,i

)
exp(−a11B2)

B =
0.27Pr,i

ZiTr,i

(3.19)

Here the ax parameters are constants and can be found in appendix[ref to appendix]. Tr,i
and Pr,i are reduced temperature and pressure for the different refrigerants respectively,
and are given by

Tr,i =
Ti
Tc,i

(3.20a)

Pr,i =
Pi

Pc,i
(3.20b)

Where Tc,i and Pc,i are the critical temperature and pressure values for the refrigerants.
These can be found in appendix[A].

3.3.4 Thermodynamics
As the energy usage of the compressors, or the heat transferred in the different heat ex-
changers units is calculated as a change in enthalpy, equations relating the enthalpy to the
refrigerants states are required. Equations for the saturation temperatures are also needed
and are calculated as a function of the pressure. These values are calculated from mod-
els made from data calculated in AllProps, Lemmon et al. [1994]. AllProps is a software
that uses the Helmholtz equation to calculated the required thermodynamic data. For the
saturation temperature the equations are then

Tsat =

2∑
i=0

csat,i log(P)i (3.21)

And the equations for the saturation enthalpies for the liquid and vapour phases are

Hliq =

6∑
i=0

cliq,iP
i (3.22a)

Hvap =

6∑
i=0

cvap,iP
i (3.22b)

32

3.3 Implementation in Modelica

The coefficients ci used in these polynomials are specific to the different refrigerants and
can be found in appendix [A]. All three functions are polynomials and also functions of
the refrigerant pressure. Heat capacities for the gas phase are calculated as a function of
the temperature. These coefficients are also found in appendix [A].

CP =
(
cCp,1 + cCp,2 ∗ T + cCp,3T

2
)
R (3.23)

33

Chapter 3. Process description

34

Chapter 4
Setup and implementation

In this chapter, an overview of how the MPC is implemented for the process model outlined
in chapter 3 is explained. First the setup and implementation of what is required for the
optimal control problem is shown. After this the solution to a specific OCP is shown and
explained. The the same is then done for the actual algorithm for the standard and robust
implementation of the MPC together with their solutions. Towards the end of the chapter
the implementation of the PI controller is also briefly discussed.

4.1 Optimal control problem
In chapter 2 the formulation of an optimal control problem and its requirements such as
the objective function, a set of equations describing the model, a prediction horizon and
constraints was explained. As the equations making up the process model have already
been laid out in chapter 3, this section will focus on explaining the rest of the problem
formulation in relation to the specific model. Some other parameters for the discretization
and collocation steps of the problem are also explained, such as blocking factors on the
inputs or the prediction horizon itself.

Constraint softening
When systems are operated at their optimum point when constraints are present, they of-
ten end up at the boundary of one or more of these constraints. Meaning that the optimum
value of one or more variables is at its maximum or minimum allowed value. If this is
the case, the constraint is said to be an active constraint. One problem that can then arise
is that the solver could be faced with an unfeasible problem due to it being to close to
an unfeasible area. The problem is running so close to an edge, that any disturbance or
unexpected behavior can cause the system to have no feasible solution that won’t violate
the constraint. This could occur from both environmental variables changing unexpect-
edly or measurements errors on the states causing no possible change in input to uphold
feasibility. This problem can be solved by changing the constraint from a hard constraint

35

Chapter 4. Setup and implementation

to a soft constraint.

When a constraint is softened the variable can cross the boundary if necessary, but
it will be heavily penalized in the objective function if if does so. For the liquefaction
process model the most important constraint that is always active is the final outlet tem-
perature of the LNG stream. This is because its temperature is directly linked to what is
considered optimal, it will always be as close as possible to its limit which is where is
fully liquefied. This constraint can also be softened, as opposed to some other hard con-
straint. The temperature output constraint will usually have some pullback from the actual
saturation temperature. This is different from some absolute physical constraints such as a
valve opening. It is acceptable that the temperature is slightly above its limit for a limited
period, but a valve opening cant be more than fully opened or have a negative value.

The constraint is softened by introducing a new slack variable Z(t). As it is only the
constraint on the LNG temperature that is softened, only one slack variable is introduced
for this problem. The slack variable is included with the other constraint so the new upper
limit is the set value plus the slack variables value. A constraint restricting only positive
values on the slack variable is also included as negative values don’t make sense. The
slack variable value is also heavily penalized in the objective function to keep constraint
violations at a minimum.

Objective function

The objective function decides what optimal operation is for the model. Depending on how
the model structure and how it is laid out, what is considered optimal operation can vary.
For the LNG liquefaction process, one could say that maximizing throughput of liquefied
LNG is one way of looking at optimally. For this problem however the flow of the LNG
is constant and is said to be set at a value. The goal of the problem is then to successfully
cool all of the gas down to the required temperature, whilst trying to minimizing the total
energy used by the compressors.

Minimizing the energy used by the compressors Wcomp,i, is the main focus of the
objective function. The first set of heat exchanges in the condensers sections use cooling
water, where the cooling water flow together with the compressor rotation speeds, is a
control input. Depending on the location of the LNG plant, the cost of cooling water can
either be trivial, or something that must be taken into account. In the objective function
there is therefore a very small penalty added to the flow mcond,i of the cooling water. This
is mainly done as otherwise all these flows would constantly be at their maximum allowed
values, even if the extra effect of doing this is extremely low. The slack variable for the
outlet temperature is also included in the objective function, so constraint violations are
kept as small and as few as possible. The objective function is then

J = Wcomp,M +Wcomp,E +Wcomp,P

+ 0.001
(
mcond,M +mcond,E +mcond,P

)
+ 25(Z)

(4.1)

36

4.1 Optimal control problem

Constraints

Although Modelica allows for some constraints such as min/max values on variables, to be
built into the definition of variable types themselves, all constraints are put in the Optimica
formulation of the dynamic problem for consistency. There are both constraints on the
input variables, and on certain state variables. The slack variable is also included in the
constraints. The constraints used with a brief explanation are given in table 4.1.

Table 4.1: Constraints for input and state variables in the optimal control problem

Mathematical constraint Justification

TLNG ≤ −150[◦C] + Z(t) Maximum temperature allowed at LNG outlet

0.6 ≤ ucomp ≤ 1.1 Compressor operating range

0 ≤ mcond ≤ 1 * 104 [kgmol/h] Cooling water flow operating range

0 ≤ xvalve ≤ 1 JT-Valve opening range

Pi ≥ 0.4 [bar] Minimum pressure level allowed in cycles

Z(t) ≥ 0 Slack variable has to be positive

Other more basic constraints such as temperatures not being negative, or flow variables
not suddenly changing signs are not explicitly stated. They are not included as there are
several parts of the model that would break down way before they could occur. As long
as the model is properly initiated the model and its variables will stay in the same solution
space, meaning variables wont suddenly jump to some completely different solution even
if it somehow where to be mathematically possible.

Disturbances variable

The disturbances variables are the variables that are not controlled or adjustable, and they
cant be predicted. They are implemented as a set of exogenous inputs where the value
can change independently of the other process variables. To properly implement this the
variables are then actually implemented as dynamic states variable. This is done because
in the Jmodelica.org transcription process of the Modelica model into the dynamic prob-
lem, parameters and dynamic variables are handles quite differently. Parameters cant be
changed after transcription, meaning they would have to be constant for the entire control
period. Dynamic states however can of course be changed by defining the derivative of
the variable. Disturbance variables can therefore be adjusted by defining their derivative
which is implemented as

dx

dt
= α(xset − x) (4.2)

37

Chapter 4. Setup and implementation

The variables can be initiated at a steady state by having its initial x0 value equal to
the xset value. If can also then be changed at a given time point by changing xset to the
new desired value. The parameter will then change as a first order response where the time
constant of its change is adjusted with the constant α. This is done to look at how the
controllers deal with different changes to environment variables.

Table 4.2: Environmental variables that can change independently of other variables

Variable Description

Tamb Temperature of cooling water

TLNG,in Temperature of natural gas at the inlet

UAM Heat transfer coefficient for methane condenser

UAE Heat transfer coefficient for ethane condenser

UAP Heat transfer coefficient for propane condenser

In table 4.2 the variables that are implemented in this fashion, where they can be sub-
jected to unnoticed changes are listed.

Blocking factors
Within each discretization element the solver will try to find the optimal input values at
each collocation point. This means that the input will be able to change during a single
sampling instance. This possibility of change within each element can be removed by
using blocking factors on the inputs, which will causes them to be piece-wise constant.
Firstly there is a computational advantage to this as there then only is one input value that
must be found per discretization element. Blocking factors can also be used to set for how
long inputs must be constant. The control horizon, which is the final value of the input can
then also be set. It can for example be half of the prediction horizon, meaning that for the
last half of the prediction horizon all inputs are held at a constant value.

38

4.1 Optimal control problem

0 5 10 15 20 25

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
p
u
t

Blocking factors

No input constraints

Blocking factors

Blocking with control horizon set

Figure 4.1: Example of how blocking factors can be used to keep inputs piece-wise constant for
different lengths of time

In figure 4.1, how blocking factors can be used to control the inputs values is illus-
trated. For the blue line there are no blocking factors meaning the input can change freely
within each element. For the red line however each input value must be held constant over
the different elements, in this case of length 2 seconds. The dashed line is an example of
when the blocking factors are used to adjust the the control horizon, as after 11 seconds
the input value must be held constant.

Another reason control inputs are often help constant between samples, is that within
each element exactly how the changes affect the model are not always known. Changing
the input between samples might not be the most optimal way of controlling the process,
and it ads more complexity which is not desired. As the process states are only measured
in intervals, not continuously, it makes sense to hold the inputs constant until new mea-
surements can be taken. However as the control input is then discreet and not continuous,
some non continuous behaviour is introduced to the model. Because the valve opening
positions also then need to change between elements, discreet behaviour is introduced on
the outlet temperature. This is due to the model itself and not a feature of refrigeration
cycles in general. This will be explained further bellow.

Initial guess and prediction horizon
The model is first initialized by using a certain set of inputs values, and using special initial
equations that require the derivatives of the state variables to be zero. Internal Modelica
functions then find a consistent set of initial conditions for all variables in the system model
that are then given as start values. By then changing the inputs values and simulating for
a certain time horizon the system will react to the new inputs and after a certain time

39

Chapter 4. Setup and implementation

stabilize at a new steady state solution. The initialization input values and the simulation
input values are shown in table 4.3 with the behaviour of the state variables of the receiver
tanks shown in figure 4.2.

Table 4.3: Inputs for acquiring initial trajectory of the system variable. Compressor rotation values
are dimensionless, and cooling water flows are 104[kgmol/h].

Input Initialization value Simulation value
compM u1 0.94 0.93
compE u2 0.89 0.87
compP u3 0.86 0.82
mcondM u4 0.1 0.05
mcondE u5 0.1 0.03
mcondP u6 0.3 0.25

0 100 200 300 400 500 600 700 800
0.269
0.270
0.271
0.272
0.273
0.274
0.275

H
re
c
M

J
m
ol

Dynamic states

0 100 200 300 400 500 600 700 800
−1.048

−1.046

−1.044

−1.042

−1.040

−1.038

H
re
c
E

J
m
ol

0 100 200 300 400 500 600 700 800
time [s]

13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8

T
re
c
P
 [

◦ C
]

Figure 4.2: Changes to dynamic variables in the receivers after input changes shown in figure 4.3

Because the simulation values are lower than the initialization values, the three tanks
can be see to all go to higher values in figure 4.2. For the methane and ethane receiver
the specific enthalpies are shown and for the propane tank the temperature. Higher values
in this case indicating less potential to cool the LNG stream. The main use of this initial
simulation is to use it as an initial trajectory guess for the dynamic optimization problem,
as it will be so solved significantly quicker when there are valid values for all decision

40

4.1 Optimal control problem

variables in the NLP. What it also shows is that the new steady state is reached after ap-
proximately 500 seconds with sight differences between the receivers due to them having
different holdups. The predictions horizon of the OCP should be long enough so that it
captures all of the dynamics in the system and is therefore set to 750 seconds. This is
slightly longer than what might be necessary, but due to undesired solutions towards the
end of the optimization is is implemented this way. To get a high enough resolution for
quicker dynamics in the system, the number of discretization elements is set to be 50 ele-
ments with 3 collocation points each. Each element will then have a length of 15 second
causing this to be being the sampling time, or duration where the inputs are held constant
in the MPC implementation.

Optimal control problem
With the settings explained then used, the optimal control problem can be solved. It is
initialized with the same initial conditions as those used for the previous simulation. The
solution for the three compressor inputs NM , NE , and NP which are the main inputs are
then

0 100 200 300 400 500 600 700 800
0.910
0.915
0.920
0.925
0.930
0.935
0.940

N
M

Compressors rotation speed inputs, and total work

0 100 200 300 400 500 600 700 800
0.860
0.865
0.870
0.875
0.880
0.885
0.890

N
E

0 100 200 300 400 500 600 700 800
0.820
0.825
0.830
0.835
0.840
0.845
0.850

N
P

0 100 200 300 400 500 600 700 800
time [s]

73.8
74.0
74.2
74.4
74.6
74.8
75.0

T
o
ta
l
w
o
rk
 [
M
J/
h
]

Figure 4.3: Optimized compressor speeds for each cycle as computed by optimal control problem,
together with total compressor work

From figure 4.3 it is clear the system is initialized in a state where to much work is
done as the total work required is low in the beginning, when the cooling potential in the
reservoirs is used. Compared to the initialized values shown in table 4.3, each compressors

41

Chapter 4. Setup and implementation

inputs have a lower input value which corresponds to a lower duty required. As the times
moves towards 500 second mark, the inputs are quite stable as the total works starts to
plateau at a steady rate in this area. After 500 seconds however the inputs all start to
quickly divert from their optimal values, which is why the extra 250 seconds were added
to the prediction horizon. In a proper and ideal solution for the system, the inputs would
drive the system to an optimal state and then stabilize. Then for as long as there are no
disturbances or change in conditions it would try to keep it there. The reason the calculated
inputs don’t do this and start to change towards the end, is due to the objective function
not including anything beyond the prediction horizon. It is only trying to optimize within
the 750 seconds, so it starts to utilize built up cooling potential in the receivers. In other
words, the system can for a short term use less total energy whilst still not violating any
constraints. It can do this in the short term as long as it does not have to get back to the
long term optimal state. This is easier to visualize by looking at the behaviour of some
of the other variables. For example the same can seen in the ethane condenser where the
cooling water flow is significantly increased.

0 100 200 300 400 500 600 700 800
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26

m
co

n
d
E

Ethane condenser cooling water flow, and outlet temperatures

0 100 200 300 400 500 600 700 800
time [s]

5
6
7
8
9

10
11
12
13
14

T
e
m
p
 [

◦ C
]

Ethane outlet temp
Water outlet temp

Figure 4.4: Ethane condenser cooling water flow and outlet temperatures

The increase in flow rate is much larger as the flow rate of the cooling water is sig-
nificantly less penalized in the objective function. The positive effects of this increase on
the cycle is however quite small as it only decreases the outlet temperature of the water,
and thereby decreases the outlet temperature of the ethane slightly. The same behaviour is
also clear from the flow rates in all the cycles. It can be see to increased towards the end
as shown in figure 4.5 due to the valves opening up. The potential of the cold refrigerant
stored in each receiver is used by increasing the flow rate from them. The system having
been initiated at a to conservative state is also clear from the flow rates, which can be seen

42

4.1 Optimal control problem

to be quite low initially.

0 100 200 300 400 500 600 700 800
3.20

3.25

3.30

3.35

3.40

M
e
th
a
n
e

Flow rates in each cycle kmol
h

∗ 104

0 100 200 300 400 500 600 700 800
3.62
3.63
3.64
3.65
3.66
3.67
3.68

E
th
a
n
e

0 100 200 300 400 500 600 700 800
time [s]

5.22
5.23
5.24
5.25
5.26
5.27
5.28

P
ro
p
a
n
e

Figure 4.5: Refrigerant flow rate in each cycle as estimated in the optimal control problem

The main point of this is that the extra 250 seconds are added to the prediction horizon
because what the solver find to be optimal towards the end, is not what actually is optimal
in the long term. The real optimization horizon of the MPC is not only the prediction
horizon, but for however long it is intended to run. Expect for adding some extra compu-
tational time as the problem is larger, this added time should however not be a problem.
This is due to the fact that the solution can be seen to first go towards the desired steady
state solution, meaning the initial desired response is not linked to the undesired response
towards the end. And as only the first input is actually used from the solution , the later re-
sponses should have minimum effect on controller inputs used. As the prediction horizon
is shifted at every step, the undesired inputs are also always shifted away.

Another thing of note for the process model is the behaviour from having no receivers
after the evaporator section. Because the input variables in the compressor and condenser
are discreet due to the blocking factors, the valve position also need to move in a discreet
behavior between elements to fulfill other process conditions. Such as controlling the
level of super heating or not violating the LNG temperature constraint. In figure 4.6 this
is sort of seen for the first few valve samples. Through each samples the positions drifts
to fulfill process conditions, but when the input variables change, is must jump to the new
value before drifting again. This will also be visible later when plotting the LNG outlet

43

Chapter 4. Setup and implementation

temperature during larger changes to the inputs. In figure 4.6, the temperature of the LNG
outlet temperature is also plotted and it is clear the optimal solution is for it to be as close
to its limit as possible as it is an active constraint.

0 100 200 300 400 500
0.532
0.534
0.536
0.538
0.540

M
e
th
a
n
e

Valve opening po ition

0 100 200 300 400 500
0.5000
0.5005
0.5010
0.5015
0.5020
0.5025
0.5030
0.5035
0.5040

E
th
a
n
e

0 100 200 300 400 500
0.515
0.516
0.517
0.518
0.519
0.520
0.521
0.522
0.523

P
ro
p
a
n
e

0 100 200 300 400 500
time []

−150.6
−150.4
−150.2
−150.0
−149.8
−149.6
−149.4LN

G
 t
e
m
p
 [

◦ C
]

Figure 4.6: Opening position of the three JT-valves and outlet temperature of the LNG

4.2 MPC
The initialization and solution of the OCP can then be included in an MPC algorithm to
actually control the process online. The main sett-up is similar to that for only the optimal
control problem with some added extra steps. After a solution is found the first set of in-
puts for the six input variables are extracted and logged. A separate simulation model with
the same initial conditions and initialization is then used to simulate for the duration of the
sampling time using the logged set of optimal inputs. The final values of the state variables
after the simulation is done can then be taken out and used as new initial conditions for
the next optimal control problem to be solved. The optimization horizon is also shifted
forward by one sampling duration, in this case 15 seconds.

The computation time used for the transcribing and initialization of the problem into
an NLP is a significant part of the total time used by each step. But as each successive
problem is identical in structure to the previous one, meaning it is made up of the exact
same variables and equations, the discretization can be reused. The same initialized dis-
cretization of the problem is then used in each optimization step by changing the initial

44

4.2 MPC

conditions and parameter, and by shifting the prediction horizon. By doing this the only
significant part of the computation time left is the actual solving of the NLP by the solver
IPOPT. New initial guesses between steps are then also given by using the warm start ca-
pabilities of IPOPT. When a warm start is used, the solver object uses a previous solution
with different parameters values as initial guesses for the decision variables. Alternatives
to this would be to explicitly give the previous optimization new trajectories as a given ini-
tial guess, but as the warm start option is found to be the quicker option it is used instead.

For the first simulation there are no changes to any environment variables or any mea-
surement noise on the states. This causes the estimated model behaviour to be very similar
to how the controlled model actually behaves, due to them being the same model. The
only difference between them stemming from the discretization occurring for the NLP.
The controller will then simply controls the model until it reaches a state where it is in a
state considered optimal. This can be seen from figure 4.7 where the value of the dynamic
variables can be seen to stabilizing at their respective optimal values.

0 100 200 300 400 500 600 700 800
0.269
0.270
0.271
0.272
0.273
0.274
0.275

H
re
c
M

J
m
ol

Dynamic states

0 100 200 300 400 500 600 700 800
−0.007
−0.006
−0.005
−0.004
−0.003
−0.002
−0.001

H
re
c
E

J
m
ol

−1.038

0 100 200 300 400 500 600 700 800
time [s]

13.0
13.1
13.2
13.3
13.4
13.5
13.6

T
re
c
P

Figure 4.7: Values of dynamic states in receivers for MPC simulation with no disturbances or
changes

The same can be seen for the input values for the compressors used which are shown
in figure 4.8. Here each step shown is the first optimal input computed in each successive
optimal control problem, which are the inputs actually used

45

Chapter 4. Setup and implementation

0 100 200 300 400 500 600 700 800
0.912

0.914

0.916

0.918

0.920

0.922
N
M

Compressor inputs

0 100 200 300 400 500 600 700 800
0.878

0.880

0.882

0.884

0.886

0.888

N
E

0 100 200 300 400 500 600 700 800
time [s]

0.826

0.828

0.830

0.832

0.834

0.836

N
P

Figure 4.8: Optimal inputs used for each compressor during simulation of model controlled by MPC

By simulating the system with the MPC controlling it for a long time, the system will
reach its the optimal operating point. At least what is considered the optimal solution
according to the objective function. The values of different variables at this point give
an indication of how the system is then operating. In table 4.4 values for the different
variables of the refrigerant streams are shown. These are the low and high pressure levels,
the different temperatures, and the flow rate in each cycle. The different temperature
values, are for the condenser section where the refrigerant will have a different temperature
after each successive heat exchanger unit as shown in figure 3.3.

46

4.2 MPC

Table 4.4: Value of different variables at optimal steady state during operation

Methane variables

Plow 1.76 bar Phigh 33.45 bar
Tcomp 83.4 ◦C Tcond,1 13.2 ◦C
Tcond,2 -39.8 ◦C Tcond,3 -92.7 ◦C
Tvalve -154.7 ◦C mflow 3.263 · 104 [kgmol/h]

Ethane variables

Plow 0.42 bar Phigh 7.95 bar
Tcomp 78.6 ◦C Tcond,1 13.4 ◦C
Tcond,2 -39.1 ◦C Tvalve -97.8 ◦C

mflow 3.672*10 · 104 [kgmol/h]

Propane variables

Plow 0.89 bar Phigh 6.90 bar
Tcomp 41.2 ◦C Tcond,1 13.1 ◦C
Tvalve -43.3 ◦C mflow 5.265 · 104 [kgmol/h]

The same can also be done for the different process units in each cycle. The power
consumption of the compressors and the heat transferred in the heat exchanger units are
also of interest at the optimal point.

Table 4.5: Value of different heat transfer rates for the process units and the compressor duties at
optimal operation. All units are in [MJ/h]

Compressor duties [MJ/h]

CompM 19.933 CompE 28.893 CompP 26.153

LNG heat exchangers [MJ/h]

hexL,P 12.048 hexL,E 20.387 hexL,M 7.746

Cooling water heat exchangers [MJ/h]

hexM 8.330 hexE 13.303 hexP 93.528

Cross cycle heat exchangers [MJ/h]

hexE,M 18.032 hexP,M 5.620 hexP,E 54.009

47

Chapter 4. Setup and implementation

What these numbers show is quite interesting for a few reasons. For example as the
propane heat exchanger is modeled as having a significantly larger heat transfer coefficient,
its total heat transfer is naturally larger than for the other two. This is also due to the fact
that for the propane cycle, it is only the cooling water that contributes to condensing it. The
other two cycle are also condensed by the other streams, for example the ethane stream
which can be seen to mostly be condensed by the propane stream in the hexP,E heat
exchanger. Otherwise most numbers are mostly spread out evenly, such as the duties of
the different compressors, or the heat transferred from each refrigerant cycle to the LNG
steam, which are all of the same magnitude.

Measurement noise
Because there is no actual plant being controlled, the model used for the simulation is
the same as the one used for the optimal control problem. Therefore what the controller
estimates to to be the plants response, is almost exactly the same as the actual response
during the simulation. There is therefore no plant-model mismatch for the controller. To
simulate some mismatch randomly generated noise is added to the measurement of the
three receiver states Hrec,M , Hrec,E and Trec,P . Randomly drawn numbers from normal
distribution with a standard deviation of 0.5% their nominal values are added to each state
during the sampling. The state which is then used to compute the next set of inputs wont
be exactly the same causing the inputs to not be perfectly optimal for the system.

0 100 200 300 400 500 600 700 800
0.910
0.912
0.914
0.916
0.918
0.920
0.922
0.924

N
M

Compressor inputs

0 100 200 300 400 500 600 700 800
0.876
0.878
0.880
0.882
0.884
0.886
0.888
0.890

N
E

0 100 200 300 400 500 600 700 800
time [s]

0.820
0.822
0.824
0.826
0.828
0.830
0.832
0.834

N
P

Figure 4.9: Optimal inputs used by compressors in simulation with MPC controller with measure-
ment noise on states

From the computed compressor inputs it is clear that although the inputs are erratic,

48

4.2 MPC

due to the the disturbances on the measured states, their averaged are however the same
as for the ideal scenario. The effect is significantly less visible on the states themselves as
they are not actually changing, only the measurement of them is wrong. The small changes
that are visible do however come from the inputs always being changed as they are trying
to keep them as close to the optimal as possible.

0 100 200 300 400 500 600 700 800
0.269
0.270
0.271
0.272
0.273
0.274
0.275

H
re
c
M

J
m
ol

Dynamic states

0 100 200 300 400 500 600 700 800
−0.007
−0.006
−0.005
−0.004
−0.003
−0.002
−0.001

H
re
c
E

J
m
ol

−1.038

0 100 200 300 400 500 600 700 800
time [s]

13.0
13.1
13.2
13.3
13.4
13.5
13.6

T
re
c
P

Figure 4.10: Dynamic state values for MPC simulation with noise

The same effect is clear on the opening position of the valves. As their position is
not set as a control input determined but determined by the model, they must constantly
changed to make up for the ”mistakes” made by the compressors and the condensers in
order to keep other process conditions intact.

49

Chapter 4. Setup and implementation

0 100 200 300 400 500 600 700 800

0.532

0.534

0.536

0.538

0.540
M
e
th
a
n
e

Valve opening positions

0 100 200 300 400 500 600 700 800
0.500

0.501

0.502

0.503

0.504

0.505

E
th
a
n
e

0 100 200 300 400 500 600 700 800
time [s]

0.516

0.518

0.520

0.522

0.524

P
ro
p
a
n
e

Figure 4.11: Valve opening positions for MPC simulation with noise

4.3 Robust MPC

For the robust MPC there are a few changes from the standard MPC formulation. In the
following example is it assumed there are uncertainties on the cooling water temperature
Tamb. For the formulation of the model itself there are then three object made of the
process class. Where they each have a different value for the parameter that specifies the
temperature of the cooling water. One of these values being the expected value which is
the same as for the previous MPC, and the other two an upper and a lower limit of expected
values. The controller should then be able to handle any value within this range. The three
temperature instances are then

Tamb = 5◦C

Tamb,l = 4◦C

Tamb,u = 6◦C

(4.3)

Each object instance then has its own full set of equations and variables in the OCP for-
mulation. As for the objective functions and the constraints described in equation 4.1 and
table 4.1, they are then also introduced to the OCP for each new instance. New constraints
are also added for requiring that the first set of input values have to be equal for all inputs

50

4.3 Robust MPC

across the three instances. These new constraints are then

u1(0) = u1,l(0) = u1,u(0)

u2(0) = u2,l(0) = u2,u(0)

u3(0) = u3,l(0) = u3,u(0)

u4(0) = u4,l(0) = u4,u(0)

u5(0) = u5,l(0) = u5,u(0)

u6(0) = u6,l(0) = u6,u(0)

(4.4)

These point constraints are applied at the initial time of the prediction horizon, and as they
are all limited by the blocking factors are then valid for the entire first sampling period.

Because the problem become significantly larger due to the three instances being com-
puted and optimized in parallel, some changes are made to the prediction horizon and the
number of discretization elements. The new prediction horizon is set at 700 seconds, with
35 elements Ne. The number number of collocation points is however unchanged. Al-
though this reduction helps with the problem size, the downside is that the new sampling
period is 20 seconds. The prediction of rapid changes is therefore less accurate and if there
are changes to environmental variables, these could go unnoticed for an extra 5 seconds as
a result of the longer sampling period. Prediction of slower dynamics and general process
behaviour should however not be affected by this decrease in resolution.

Except for changing the controller to the robust MPC variant, all other parameters are
the same for this simulation. In figure 4.12 the three different optimal trajectory paths
for the compressor inputs are shown. As required by the new constraints, they all have
the same input for the first sampling period. One thing of interest for the three different
compressors are the values they stabilize towards. For the methane and ethane compressor
they both drift towards the same value, especially the methane compressor. This is not
seen for the propane one and is probably explained by the fact that the propane cycle is
significantly more influenced by the temperature of the water as previously discussed due
to its higher total heat transferred in its condenser. As for the general trajectory paths for
the three cases they do make sense. For the lower case when the cooling water is colder,
less energy is needed by the compressor and the opposite for the upper case where more
energy is needed. If the refrigerants can be cooled lower, they wont need to be as highly
pressurized by the compressors. In figure 4.12 the trajectories plotted are the results from
the first OCP after initialization.

51

Chapter 4. Setup and implementation

0 100 200 300 400 500
0.910
0.912
0.914
0.916
0.918
0.920
0.922
0.924

N
M

Compressor inputs

0 100 200 300 400 500
0.876
0.878
0.880
0.882
0.884
0.886
0.888
0.890

N
E

test

Tamb

Tamb, l

Tamb, u

0 100 200 300 400 500
time [s]

0.820
0.822
0.824
0.826
0.828
0.830
0.832
0.834

N
P

Figure 4.12: Optimal input trajectories for the compressors for the three different cooling water
temperature cases estimated in robust MPC

It is also clear that the inputs used are slightly more conservative then what the esti-
mated middle case requires. This is quite clear for the methane and ethane inputs, as the
requirements for the higher temperature case drags the first set of inputs up. In the other
two temperature cases, the estimated case and the lower case, the ideal input is lower as
the figure shows. The effects of this when simulating is a more conservative controller
that is over cooling the natural gas beyond what is required by the constraints. This can
be seen in the temperature of the LNG at the outlet which is plotted in figure 4.13. The
constraint on the outlet temperature is still the same as before, that it must be bellow -150
◦C. But now, due to the controller taking the other cases into consideration, it is operating
at a point where the temperature is at steady state is slightly bellow the constraint.

4.4 PI controller

When implementing the feedback PI controller it is important that the controller is used
to control the correct variables for it to work well. In the same way as for the MPC there
are here also constraints that must be controlled. In Jensen [2008] the topic of optimal
operation of refrigeration cycles is discussed in detailed for a PRICO process, and for
this model in particular self optimizing control is implemented in Verheyleweghen and
Jäschke [2018]. Where Self optimizing control is a strategy for selecting control variables
that minimize loss for of objective function when there are disturbances. Where the aim is
to find a set of variables such that when controlling them to a constant set-point only leads
to an acceptable loss during any disturbances.

52

4.4 PI controller

0 100 200 300 400 500 600
time [s]

−150.6

−150.4

−150.2

−150.0

−149.8

−149.6

−149.4

T
e
m
p
 [
◦C

]

LNG outlet temperature

Figure 4.13: LNG outlet temperature during simulation

The LNG outlet temperature is of course also an active constraint for the PI controller,
meaning it must directly be controlled. The methane compressor is used to control the
outlet temperature as is is the methane cycle which decides the LNG streams final temper-
ature. For the sake of simplicity the cooling water flows are kept constant at their optimal
values when the PI controller is used. This leaves the two other compressor inputs as MV’s
that can be used to control other variables. These controllers can be used in both a MIMO
fashion meaning multiple input multiple output, or a SISO fashion for single input single
output. For a MIMO controller a combination of measurements are used to determine the
MV’s value, whilst for SISO controller only one variable is used.

As the PI controller is not the main focus of the thesis, and it’s purpose is primarily for
comparison with the MPC controller, only a simple temperature feedback strategy is used.
For this the other two PI controller for the compressors are used to keep the temperature
of the LNG stream, after the other two heat exchangers, at their nominal values. The set-
points used for this are taken from the optimal state found in 4.4, which causes the three
set-points for the temperatures to be : -37.9 ◦C, -92.2 ◦C, and -150 ◦C respectively after
each heat exchanger unit.

53

Chapter 4. Setup and implementation

54

Chapter 5
Controller comparison and
discussion

In this chapter more specific test will be done showing how the controllers behave for dis-
turbances. How the controllers decide to act when changes to environmental variables are
induced will be shown. The MPC controller will be compared to the PI controller, with
the aim of better displaying the differences between the two control strategies. A compar-
ison between the standard MPC and the robust MPC will also be shown for an unnoticed
change. Towards the end of the chapter, a more general discussion of the controllers, and
how Jmodelica.org as platform worsks for MPC development will be given.

5.1 Comparison between MPC and PI controller

Change to cooling water temperature

For the first controller comparison a change in the cooling water temperature used by the
condensers will be looked at. For all comparisons the system is initialized at the optimal
optimal point previously found in chapter 4. Then at the 75 second mark, a 5 degree
increase in the waters temperature will be induced. The time constant for this change is set
by the value of the α parameter in equation 4.2, which will for this test be set to 0.05. This
will in other words cause the time constant to be 20 seconds, meaning the change will be
95% complete complete after 60 seconds. It will then be a relatively fast change for the
system in comparison to the slower dynamics of the receiver states. For the tests the main
points of interest is minimizing the total power consumption of the three compressor. Any
constraint violations on the LNG outlet temperature during are also of interest. If there are
to many violations of the temperature constraint there is a need for a back for the constraint
limit. If the constraint is backed of, in other words lowered, it will cause more conservative
control and thereby increase the energy used by the controller. For comparison purposes
the measurement noise which was previously present for the state measurements is turned

55

Chapter 5. Controller comparison and discussion

off in these tests.

0 50 100 150 200 250 300 350 400
time [s]

4

5

6

7

8

9

10

11

T
a
m
b
 [

◦ C
]

Cooling water temperature

Actual temp
MPC sampled temp

Figure 5.1: Temperature change of cooling water temperature with temperature in the simulation
model and values sampled by the MPC shown

In figure 5.1 the temperature of the cooling water used in the simulation model is
plotted together with the temperatures which are sampled by the MPC. Due to the MPC
only sampling at 15 second intervals, it will not immediately be aware of the changes when
they are made. It can only update the information it uses when it samples the process.
Because the MPC is controlling the LNG outlet temperature as close to its constraint limit
as possible, these initial unnoticed changes will cause it to violate the constraint in small
segments. The MPC controller cant take any action before it is aware that there has been a
change to the cooling water temperature. Due to the fact that the information is correct at
the beginning of each sampling element, it will always be start of correct at the beginning
of each sample before maybe drifting away. Because there is implemented time delay for
the PI controller, there will also be a period where it will not taking any control action.

56

5.1 Comparison between MPC and PI controller

0 100 200 300 400 500 600 700 800
74
75
76
77
78
79
80
81
82
83

T
o

ta
l

W
o

rk
 [

M
J/

h
]

Tota work and LNG temperature

MPC
PI contro er

0 100 200 300 400 500 600 700 800
time [s]

−150.4

−150.2

−150.0

−149.8

−149.6

−149.4

LN
G

 t
e

m
p

 [
◦C

]

MPC
PI contro er

Figure 5.2: Total compressor work and the LNG outlet temperature for cooling water temperature
change

As for the actual responses they are surprisingly similar between the MPC and the PI
controller. Especially the total work used by the compressors as is shown in figure 5.2.
During the transient period between the initial steady state and the new steady state, the
total work done by the model controlled with the MPC is generally lower than when con-
troller by the PI controller. This is especially true for the time after the peak. This makes
sense considering the MPC is trying to find the optimal way of getting to the new steady
state. The PI controller does not know anything about the total work done, and is just
trying to minimize error for it’s set points. Minimizing the work done during the transi-
tion is also in the objective function for the MPC. This different approach is also reflected
in the temperature of the LNG outlet during this transition. The MPC is controlling in
more ”strict” fashion, trying to keep the temperature as close to the limit as possible while
minimizing work. The PI controller however slightly overshoots its set point when it is
taking control action. It is therefore operating to conservatively for a brief period. As the
controllers both reach the new steady state, the total work done by both is relatively sim-
ilar compared to the absolute change. The MPC does however find a slightly lower point
than the PI controller at the new steady state as figure 5.3 shows. This indicates that for
this disturbance in particular, choosing to control the temperature of the LNG after each
condenser, is not to bad a choice of CV’s. The set point for the PI controller are quite close
to what the MPC would consider optimal. As for the MPC’s outputs not being continuous
in the plots as the PI controllers are, is due to the blocking factors. The blocking factors
cause the control inputs for the MPC to be discreet between elements. The PI controller
has no restrictions on the inputs for the compressors, and they are therefore continuous
throughout the simulation.

57

Chapter 5. Controller comparison and discussion

580 600 620 640 660 680 700 720 740 760
78.58

78.60

78.62

78.64

78.66

78.68

78.70

T
o
ta
l
W
o
rk
 [
M
J/
h
]

Total work and LNG temperature

MPC
PI controller

Figure 5.3: Total compressor work for the MPC controller and the PI controller as they approach
the new steady state

58

5.1 Comparison between MPC and PI controller

Natural gas inlet temperature

For the next comparison the temperature of the natural gas is increased by five degrees at
it’s inlet. This change is done slightly slower than the previous one, now with a time con-
stant of 33 seconds. Otherwise the comparison is done with all conditions being the same
as for the previous test. In figure 5.4 the total compressor work and the LNG outlet tem-
perature are again shown for both controllers. Although there are practically no constraint
violations, or changes to the LNG temperature at the outlet, there are clear differences that
can be seen for the total work done by the compressors. For the same reasons previously
noted for the other test, during the transition period the MPC calculate a better and more
efficient transition in regards to the power consumption. Its path from one steady state to
the next one is more efficient.

0 100 200 300 400 500 600 700 800
74.9

75.0

75.1

75.2

75.3

75.4

75.5

T
o

ta
l

W
o

rk
 [

M
J/

h
]

Tota work and LNG temperature

MPC
PI contro er

0 100 200 300 400 500 600 700 800
time [s]

−150.4

−150.2

−150.0

−149.8

−149.6

−149.4

LN
G

 t
e

m
p

 [
◦C

]

MPC
PI contro er

Figure 5.4: Total compressor work and LNG outlet temperature for natural gas inlet temperature
change

What is interesting in this example however, is that the controllers clearly settle at dif-
ferent new steady states. Although the axis for the total work is smaller in scale, the MPC
is clearly bellow the PI controller in regards to the total work. What is actually occurring is
more clearly shown by instead looking at the actual compressor inputs, which are shown
in figure 5.5. Although the methane cycle compressors input barely changes for either
controller, the other two compressor inputs have very different control action. The input
for these two controllers both change but they divert in completely different directions.
The PI controller chooses to increases the propane compressor speed and decreases the
ethane speed, whilst the MPC does the opposite. The PI controller increasing the work
done by the propane compressor makes perfect sense considering what change is induced

59

Chapter 5. Controller comparison and discussion

to the process by the temperature increase. As the set point for the temperature out of the
propane/natural gas heat exchange is the same as before the change, the extra duty required
to cool it is all put on this first heat exchanger. Which is the heat exchanger mainly af-
fected by the propane compressor. Due to the cascade structure of the process, the ethane
compressor now requires slightly less work as it is now cooled even more by the propane
cycle. The effects are however mostly evened out for the methane refrigeration cycle, as
its input barley changes.

The MPC however takes a different control approach. In it’s case, it instead increases
the duty of the ethane compressor and slightly decreases the other two compressors while
still properly controlling the process. It has found that increasing the power to the ethane
cycles is a more efficient way to cool the natural gas, given the change in circumstances.
This is a good example of how the MPC’s objective function can find a new optimal op-
erating point for changing circumstance. It is not bound by constant set points that are
calculated offline. This is exactly the case for the PI controller, as they are taken from
the optimal point based on the plant under other circumstances. They are therefore not
necessarily the optimal set point for changes to the environmental variables, such as is the
case for the change to the temperature.

0 100 200 300 400 500 600 700 800
0.910
0.912
0.914
0.916
0.918
0.920
0.922
0.924

N
M

Compressor inputs

MPC
PI controller

0 100 200 300 400 500 600 700 800
0.876
0.878
0.880
0.882
0.884
0.886
0.888
0.890

N
E

0 100 200 300 400 500 600 700 800
time [s]

0.826
0.828
0.830
0.832
0.834
0.836
0.838
0.840

N
P

Figure 5.5: Compressor inputs for change to LNG inlet temperature

5.2 Robust MPC compared with Standard MPC
From the first comparison where the cooling water temperature is increase by 5 degree, it
is clear the MPC can easily adapt and control it as it finds a new optimal operating point.

60

5.2 Robust MPC compared with Standard MPC

The reason that there are constraint violation by the outlet temperature is due to the sam-
pling rate not immediately picking up the changes. This causes the MPC to operate for
brief periods of time using wrong information. However, this assumes that when the MPC
samples the process, the samples of the cooling water temperature are perfect and the MPC
then knows exactly what the temperature is. If there instead where to be a change to the
temperature the MPC did not pick up and was unaware of, there very well could be serious
violations of the constraint over time.

This is where the benefits of the robust MPC implementation come into play. When the
robust MPC is controlling the process, disturbances to the variable that was used for the
different cases should not result in any violations of constraints. This of course assumes the
disturbance is withing the range which was used in the implementation of the controller.
To test this the standard MPC and the robust MPC are both compared when the model
is induced to a small change in cooling water temperature. An increase of 0.75 ◦C is
done to the cooling water temperature, but now this information is not sampled by either
controller. They will operate not knowing that any change has been made. Except for this,
the settings used by both the standard MPC and the robust MP are the same as the previous
tests.

0 100 200 300 400 500 600 700 800
74.8

75.0

75.2

75.4

75.6

75.8

76.0

76.2

T
o
ta
l
W
o
r
 [
M
J/
h
]

Total wor and LNG temperature

Standard MPC
Robust MPC

0 100 200 300 400 500 600 700 800
time [s]

−150.6

−150.4

−150.2

−150.0

−149.8

−149.6

LN
G
 t
e
m
p
 [

◦ C
]

Standard MPC
Robust MPC

Figure 5.6: Total work and LNG outlet temperature for unnoticed change in cooling temperature

Because the robust implementation is optimizing the input under the assumption that
the cooling water could be one degree higher, it is operating more conservatively. This can
be seen from figure 5.6, where the total work is higher than the standard, and the outlet
temperature is settles at a lower point than for the standard MPC. What it considered the
better performing controller obviously depends on the nature of the constraint. If it is a
constraint that can occasionally be slightly violated, such as if there where a buffer tank

61

Chapter 5. Controller comparison and discussion

after the outlet. Then the standard implementation could be operating acceptably assum-
ing that it eventually picks up on the change and controls correctly. On the other hand,
if the constraint can not be violated at any time point then the robust implementation is
preferred. Another alternative could be the standard MPC but with a change of the con-
straint limit to be lowered further. The drawback of course being the extra work due to the
controller being more conservative all the time. The robust MPC is also giving the optimal
input when all three cases have to be taken into account. The lowered sampling rate used
by the robust implementation, and its increased computational time are also things that
must be evaluated when consideration which controller is preferred.

One thing to note is that the controller inputs do change for both controller for this
comparison, even though they are not aware of the temperature change. The unnoticed
change does however affect the other states of the process model, most notably the receiver.
The receivers for instance will find new steady state values for the dynamic variables,
which will cause the controllers to adjust themselves accordingly. The inputs used for
both controllers are shown in figure 5.7.

0 100 200 300 400 500 600 700 800
0.910
0.912
0.914
0.916
0.918
0.920
0.922
0.924

N
M

Compressor inputs

Standard MPC
Robust MPC

0 100 200 300 400 500 600 700 800
0.876
0.878
0.880
0.882
0.884
0.886
0.888
0.890

N
E

0 100 200 300 400 500 600 700 800
time [s]

0.826
0.828
0.830
0.832
0.834
0.836
0.838
0.840

N
P

Figure 5.7: Compressor inputs for unnoticed change to cooling water temperature temperature

5.3 General discussion
The different comparison tests that have been shown, have demonstrated some of the dif-
ferent control structures made in this thesis. The point of this to validate the controllers
and look at how their control behaviour differs. Not to explicitly decide which performs
better overall. If a more concrete decision where to be made, more work would have been
needed to be done optimizing the controllers, especially the PI feedback controller. By

62

5.3 General discussion

better tuning the PI controller, and using a better choice of feedback variables to control,
its performance would certainly have been improved. As it stands however, the PI con-
troller does quite well highlight the differences in behaviour between MPC controller and
traditional temperature feedback controller which was the main point.

There are also a few different areas where improvement can be made to the MPC con-
troller. Firstly, by reformulating the objective function, or using different tuning of the
control objectives, the controllers behavior can be altered. For example if it where wished
that the cooling water molar flow where to be more heavily penalized in the objective
function. With the OCP formulation used by the MPC, there is in general a lot of freedom
in how one wants to control the model. Blocking factors can for example be used to limit
controller input but this can also be done by altering the objective function. By penalizing
large changes to input, or setting an explicit constraint on the inputs rate of change it can
also be altered by the OCP. One reason one might want to limit rapid changes to control
input could be to minimize the wear and tear of it continuously changing. The MPC’s
formulation naturally allows for this, something that cant be done in the same way with a
PI controller.

For the MPC controller there is however the possibility that computational time for the
solution starts to become a real problem. Although this has not been a problem for the
test done in this thesis, as the solution times for each step have generally been 10-15 sec-
onds for the standard MPC, and roughly 20 seconds for the robust MPC. If changed where
made to include more discretization elements, or more branches and stages are added to
the robust MPC, computational time could become a problem. Many of the modeled units
that have been used, such as the heat exchangers, are also quite simplified from how they
actually behave. Updating the process model with more accurate units, and including more
dynamic states for the process could significantly increase the computational time for each
step, which would be negative for the model based MPC controller.

There are however also things that can be done do improve the computational time,
which has not been looked into in this thesis. Not only are there are many settings that can
be changed within the solvers, but different solver could also be used. IPOPT, the solver
which was used, has embedded within itself the ability to use many different linear solvers,
each having different advantages and disadvantages. However, the only linear solver that
has been used had been MUMPS. How the initial guess used by the warm start option can
also be tuned, which could maybe have decreased the solution time for each step. Higher
up in the control framework, changes can also be made to the transcription process itself.
The computational time is generally quite closely related to the size of the problem in this
case. Due to the long prediction horizon used, and the requirement for a high resolution
of the trajectory, the resulting problem size has been quite large. One way the size of the
problem could be reduced, is by adjusting the size of each discretization element to more
closely match its required size. Except for it being easier and more simple, there is no
reason the discreet elements all have to be of the same length as they have been. Improve-
ments can probably be made by increasing the length of the elements towards the end of
the prediction horizon. As previously talked about, the behaviour of the system towards

63

Chapter 5. Controller comparison and discussion

the end is not really of any interest anyway. Jmodelica.org does include the ability of
changing the length of each discretization element, in the same way the blocking factors
can be used to control inputs lengths. By using this feature, a high resolution could be
used in the beginning, with lower resolution towards the end.

One of the crucial downsides noted for the PI controller, is it’s lack of ability to change
the set points it is trying to control the process towards. If implemented in a real world ap-
plication this would probably not be a problem, as there would usually be another control
layer on top of the PI controllers. An online optimization layer, such as an MPC controller,
would usually sit on top and compute what the set points for the PI controllers should be.
Thereby not controlling the process directly, but the set point the slave controllers control
towards. The actual actuators would instead be controlled by simpler controllers such as
the PI controller, thereby utilizing the benefits from both controller strategies. If there
where to be something wrong with the behaviour of the control system, it would be eas-
ier to identify these problems if PI controller are used on the ground. It can often be a
lot harder to debug a controller such as an MPC, due to its actions not necessarily being
easy to understand or directly logical in the short term. There are no benefits gained by
implementing a complicated MPC control system, if operators are not comfortable using
it. Traditional feedback controllers are well understood and easier to operate and debug.
By using the MPC controller to instead set the set-points, the overall control structure is
still making sure the process is controlled at its optimal point for the give circumstances.

Performance of model based controller methods such as MPC are as opposed to non
model based controllers, very dependent on the quality and accuracy of the model itself.
The model used is was originally developed as a steady state model, so there are improve-
ments that can be made for the dynamic parts. As implemented now, the first sections that
should be looked for improvements the model are adding the extra receivers in the cycles,
and updating the heat exchanger models. The benefits of MPC controllers are more clear
if there are higher level dynamics, or larger time delay’s between control action and a pro-
cess response. Simple feedback controllers such as a PI controller generally struggle with
large time delays.

Changes or updates to different process units in the future is an example of why using
Modelica for the modeling work is a great advantage. Future changes to the model can
very quickly be implemented without the need for much extra interfacing work due to the
object oriented approach of Modelica. As long as the new model units are implemented
with the current input/output connectors already used, they simply need to replace the old
units in the model structure.

A major benefit of using the Jmodelica.org framework is the separation of the model-
ing work to the Modelica code section, the definition of the OCP to the Optimica code,
and the framework/ organizational of the MPC to Python scripts. By having the three areas
separate from each other, making changes can often be easy as the interfacing capabilities
of Jmodelica automatically take care of changes. For example, if new constraints are added
or changes are made to the objective functions, these changes are automatically taken care
of during the transcription process without the need to change the model or framework.

64

5.3 General discussion

By also writing different Optimica code sections for the dynamic problem formulations,
the same model can be reused for different problems. The freedom offered by handling of
the platform in Python also allows for the use of the platform for a wide range of areas,
such as the MPC.

The biggest advantage of using the Jmodelica.org platform is however the ability to
combine the benefits of doing modeling work in Modelica, and the ability to solve com-
plex dynamic problems with the numerical algorithms and tools embedded in the platform.
Once a model has been properly implemented in Modelica and made sure to work properly,
it can quite easily and quickly be used with Jmodelica.org to solve dynamic optimization
problems. The reliable and flexible interfacing between these tools is of great value when
used properly. There is off course also a slight downside to using the Jmodelica transcrip-
tion algorithms, as it might be hard to solve problems outside the scope of the platform.
Although the entire platform is open source, making changes to the already implemented
algorithms is probably more challenging and time consuming than adapting a smaller tai-
lor made program. This is not to say the Jmodelica platform is not flexible, as it clearly is
shown for example by the implementation of the robust MPC.

65

Chapter 5. Controller comparison and discussion

66

Chapter 6
Conclusion

In this thesis a dynamic model of an LNG liquefaction process was developed in the Mod-
elica programming language, with the intent to use it for control purposes. Then in the
Jmodelica.org framework an MPC controller and a robust MPC controller where devel-
oped and implemented for the process model. For these controllers the intent was to suc-
cessfully control the processes whilst mainly minimizing the energy used by the three
compressors. A simple PI temperature feedback controller was also implemented as an
alternative control structure that could be used to compare during various tests.

When run without any disturbances or changes to any environmental variables, the
MPC controlled the model to an operating point which is previously known to be an opti-
mal point. This point was controlled to both with and without measurement errors on the
dynamic states of the receivers. Two tests where done comparing the MPC’s performance
to the PI controller for changes to environmental variables. For the first test, the temper-
ature of the cooling water was increased by five degrees. In this test the most notable
improvements on total work used, was during the transition from the initialized steady
state to the next steady state. In the other comparison test the LNG inlet temperature was
increase. In this test, although the change to total work done was relatively smaller overall,
the improvements during operation at the new steady state were clearer. This was due to
the PI controllers requiring new set points for the change to the parameter. Due to the
PI controller not being optimized, no clear decision can be made as to the actual overall
benefits introduced by using an MPC controller instead.

The robust MPC was also compared to the standard MPC for a small unnoticed change
to the cooling water temperature. Because the change to the variable value was within the
range built in to the robust MPC itself, it successfully controlled the process without any
constraint violations. The standard MPC did however violate the constraint, as it is trying
to control the process as close to the allowed limit as possible. The downside for the robust
controller is however the more conservative behaviour which increases energy use, and the
increase in computational time required for each step solution.

67

Overall the Jmodelica.org framework performs very well for MPC development. The
benefits of using Modelica are combined with Jmodelica’s ability to setup and solve dy-
namic optimization problems. Some areas have been noted where improvements can be
made, such as developing better process model units for the heat exchangers, or adding the
extra receiver for each cycle. Computational time can also be improved by either making
changes to the transcription process, or better tuning the solvers used for this problem in
particular.

68

Bibliography

Jørgen Bauck Jensen. Optimal Operation of Refrigeration Cycles. PhD thesis, NTNU, 05
2008.

Modelica. The modelica association home page. https://www.modelica.org/.
2018-04-20.

Johan Åkesson. Optimica—an extension of Modelica supporting dynamic optimization.
In In 6th International Modelica Conference 2008, Bielefeld, Germany, March 2008.
Modelica Association.

J. Åkesson, K.-E. rzn, M. Gfvert, T. Bergdahl, and H. Tummescheit. Modeling and op-
timization with optimica and jmodelica.orglanguages and tools for solving large-scale
dynamic optimization problems. Computers Chemical Engineering, 34(11):1737 –
1749, 2010. ISSN 0098-1354.

P. O. Larsson, F. Casella, F. Magnusson, J. Andersson, M. Diehl, and J. kesson. A frame-
work for nonlinear model-predictive control using object-oriented modeling with a case
study in power plant start-up. In 2013 IEEE Conference on Computer Aided Control
System Design (CACSD), pages 346–351, Aug 2013.

Mats Cavey, Roel De Coninck, and L Helsen. Setting up a framework for model predictive
control with moving horizon state estimation using jmodelica. pages 1295–1303, 03
2014.

K. Berntorp and F. Magnusson. Hierarchical predictive control for ground-vehicle maneu-
vering. In 2015 American Control Conference (ACC), pages 2771–2776, July 2015.

Adriaen Verheyleweghen and Johannes Jäschke. Self-optimizing control of an lng lique-
faction plant. 2018.

D.E. Seborg, D.A. Mellichamp, T.F. Edgar, and F.J. Doyle. Process Dynamics and Control.
John Wiley & Sons, 2010.

Fredrik Magnusson and Johan Åkesson. Dynamic optimization in jmodelica.org. 3(2):
471–496, 2015. ISSN 2227-9717.

69

https://www.modelica.org/

Fredrik Magnusson. Numerical and Symbolic Methods for Dynamic Optimization. PhD
thesis, Lund University, 11 2016.

Björn Lennernäs. A casadi based toolchain for jmodelica.org, 2013. Student Paper.

E. Süli and D.F. Mayers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

Sergio Lucia. Robust Multi-stage Nonlinear Model Predictive Control. PhD thesis, TU
Dortmund, 2014.

P. J. Campo and M. Morari. Robust model predictive control. In 1987 American Control
Conference, pages 1021–1026, June 1987.

S. Lucia and S. Engell. Multi-stage and two-stage robust nonlinear model predictive con-
trol. IFAC Proceedings Volumes, 45(17):181 – 186, 2012. 4th IFAC Conference on
Nonlinear Model Predictive Control.

Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 2018.

Joel Andersson, kesson Johan, Casella Francesco, and Diehl Moritz. Integration of casadi
and jmodelica.org. pages 218–231, 06 2011.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Program-
ming, 106(1):25–57, Mar 2006.

M N. Usama, Sherine Awad, and M Shuhaimi. Technology review of natural gas liquefac-
tion processes. 11:3541–3546, 12 2011.

ConocoPhilips. Conocophilips liquefaction homepage. http://lnglicensing.
conocophillips.com/what-we-do/lng-technology/
optimized-cascade-process/. 2018-04-24.

P.M. Dranchuk and H Kassem. Calculation of z factors for natural gases using equations
of state. 14, 07 1975.

E. W. Lemmon, R. T. Jacobsen, S. G. Penoncello, and S. W. Beyerlein. Computer Pro-
grams for the Calculation of Thermodynamic Properties of Cryogens and other Fluids,
pages 1891–1897. Springer US, Boston, MA, 1994.

70

http://lnglicensing.conocophillips.com/what-we-do/lng-technology/optimized-cascade-process/
http://lnglicensing.conocophillips.com/what-we-do/lng-technology/optimized-cascade-process/
http://lnglicensing.conocophillips.com/what-we-do/lng-technology/optimized-cascade-process/

Appendix

A - Constants

If not otherwise noted in the main text, all constant are taken from Verheyleweghen and
Jäschke [2018].

Table 6.1: Compressor efficiency constants

Cycle e1 e2 e3 e4
Methane 0.0251571 -0.074 0.138053 6.5963
Ethane 0.03448682 -0.074 0.18925109 6.5963
Propane 0.061733 -0.074 0.338767 6.5963

Table 6.2: Poly-tropic head calculation constants

Cycle C1 C2 C3 C4 C5

Methane 0.27146 11.765 45.040 1.79 2.11
Ethane 1.9928 63.00 32.855 1.79 2.11
Propane 1.9928 35.1962 18.3546 1.79 2.11

Table 6.3: Heat transfer coefficients for heat exchanger units

Heat exchanger UAunit

hexM 0.27001
hexE 0.45
hexP 5.1
hexE,M 0.8298083
hexP,M 0.2947781
hexP,E 2.6744397
hexL,P 0.3299167
hexL,E 0.8925934
hexL,M 0.5384013

71

Table 6.4: Valve constants

cchoke,M cchoke,E cchoke,P
Values 3.4 8.4 13

Table 6.5: Receiver sizes

mrec,M mrec,E mrec,P

Size 500 350 300

Table 6.6: Constants used for heat capacity calculations

cCp,1 cCp,2 cCp,3

Methane 1.702 9.0819e-3 -2.164e-6
Ethane 1.131 19.225e-3 -5.561e-6
Propane 1.213 28.785e-3 -8.824e-6

Table 6.7: Constants used for saturation temperatures

csat,0 csat,1 csat,2
Methane 1.4966 0.51530 0.13110
Ethane 2.4141 0.77135 0.21080
Propane 1.213 0.93582 0.24817

Table 6.8: Constants used for liquid saturation enthalpy

Methane Ethane Propane
cliq,0 -15187 -9447.4 -9992.7
cliq,1 5974.2 12605 15991
cliq,2 -5488.7 -12132 -11110
cliq,3 3138.6 7061.9 4838.4
cliq,4 -943.33 -2146.5 -970.54
cliq,5 138.42 319.1 50.621
cliq,6 -7.6457 -18.124 4.8879

72

Table 6.9: Constants used for vapour saturation enthalpy

Methane Ethane Propane
cvap,0 -6622.6 5906 9036.9
cvap,1 2117.7 6200.8 11005
cvap,2 -1650.9 -7884.9 -12980
cvap,3 518.47 5412.9 9271.9
cvap,4 -59.04 -1973 -3644.6
cvap,5 0 356.06 721.52
cvap,6 0 -25.103 -56.405

Table 6.10: Critical temperature and critical pressure for the refrigerants

Tc,i [K] Pc,i [bar]
Methane 190 46.055
Ethane 305 48.813
Propane 370 42.503

Table 6.11: Constants used for compressibility calculations

Parameter Value
a1 0.3265
a2 -10.700
a3 -0.5339
a4 0.01569
a5 -0.05165
a6 0.5475
a7 -0.7361
a8 0.1844
a9 0.1056
a10 0.6134
a11 0.7210

73

74

B-Code
The code used in this thesis can be found in its entirety at at : http://folk.ntnu.no/jaschke/.
MPC simulations are run using Jmodelia.org 2.1
The first code snippet is the main Optimica code for the definition of the optimal control
problem, and the python is the main code file handling the standard MPC.

Optimica
This is the definition of the Optimal control problem which is used by the standard MPC.
This snippet of Optimica code is at the end of the main Modelica model file. The ”opt”
object is the core of the Optimica extension and includes everything required for solving
each step. The ”process” object is the model itself.

optimization opt(objectiveIntegrand=
(((25*Z)+
process.compM.Wcomp+process.compE.Wcomp+process.compP.Wcomp+
0.001*(process.condM.mcond+process.condE.mcond+process.condP.mcond))),
startTime=0,
finalTime=750)

//Model itself
Process process();

// Set inputs
input Real u1(free = true) = process.compM.N_M;
input Real u2(free = true) = process.compE.N_M;
input Real u3(free = true) = process.compP.N_M;
input Real u4(free = true) = process.condM.mcond;
input Real u5(free = true) = process.condE.mcond;
input Real u6(free = true) = process.condP.mcond;

input Real Z(free = true,nominal = 0.0001);

// Dynamic states
parameter Real HrecM;
parameter Real HrecE;
parameter Real TrecP;

parameter Real alphaM = 1;
parameter Real alphaE = 1;
parameter Real alphaP = 1;
parameter Real Tamb = 2.78;
parameter Real LNGtemp = 2.9305;
parameter Real LNGflow = 3.074;

parameter Real alphaM_set = 1;
parameter Real alphaE_set = 1;
parameter Real alphaP_set = 1;
parameter Real Tamb_set = 2.78;
parameter Real LNGtemp_set = 2.9305;
parameter Real LNGflow_set = 3.074;

75

initial equation
process.receiverM.Hrec = HrecM;
process.receiverE.Hrec = HrecE;
process.receiverP.Trec = TrecP;

process.Tamb = Tamb;
process.LNGtemp = LNGtemp;
process.LNGflow = LNGflow ;

process.alphaM = alphaM;
process.alphaE = alphaE;
process.alphaP = alphaP;

equation
// Equations used for changing environmental variables
der(process.alphaM) = 0.5*(alphaM_set-process.alphaM) ;
der(process.alphaE) = 0.5*(alphaE_set-process.alphaE);
der(process.alphaP) = alphaP_set-process.alphaP ;
der(process.Tamb) = 0.05*(Tamb_set-process.Tamb);
der(process.LNGtemp) = 0.03*(LNGtemp_set-process.LNGtemp) ;
der(process.LNGflow) = LNGflow_set-process.LNGflow ;

constraint

process.LNGsink.inlet.T <= 1.23 + Z;
Z >= 0;

process.compM.N_M >= 0.8;
process.compE.N_M >= 0.8;
process.compP.N_M >= 0.8;

process.compM.N_M <= 1.1;
process.compE.N_M <= 1.1;
process.compP.N_M <= 1.1;

process.valveM.x >= 0;
process.valveE.x >= 0;
process.valveP.x >= 0;

process.valveM.x <= 1;
process.valveE.x <= 1;
process.valveP.x <= 1;

process.condM.mcond >= 0;
process.condE.mcond >= 0;
process.condP.mcond >= 0;

process.condM.mcond <= 1;
process.condE.mcond <= 1;
process.condP.mcond <= 1;

process.valveM.outlet.P >= 0.04;
process.valveE.outlet.P >= 0.04;
process.valveP.outlet.P >= 0.04;

end opt;

76

Python

This is the main python script that handles the standard MPC. The Modelica model and
the Optimica code used are in their entirety found within the ”LNGtest.mop” file. The
various ”LNG.XXX” files opened in the script are sections of the main file used for in-
terfacing with different parts. For example ”LNG.easysim” is for interfacing with the
simulation model, while ”LNG.opt” it the optimal control problem shown in the Optimica
code section-.

import os.path
import csv
import numpy as N
import matplotlib.pyplot as plt

Import the needed JModelica.org Python methods
from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem, get_files_path
from pyjmi.optimization.casadi_collocation import BlockingFactors
from pyjmi.symbolic_elimination import BLTOptimizationProblem, EliminationOptions

def run_demo(with_plots=True):
file_path = os.path.join(get_files_path(), "LNGtest.mop")
init_fmu = compile_fmu("LNG.easy", file_path)

#Simulation model
init_model = load_fmu(init_fmu)

#Inputs used for initial simulations
#compM_A = 0.94
#compE_A = 0.89
#compP_A = 0.86
#mcondM_A = 0.1
#mcondE_A = 0.1
#mcondP_A = 0.3

#Input for stationary optimal point A
compM_A = 0.9186759
compE_A = 0.8813871
compP_A = 0.8295928
mcondM_A = 0.1219701
mcondE_A = 0.1082355
mcondP_A = 0.9999975
init_model.set('u1',compM_A)
init_model.set('u2',compE_A)
init_model.set('u3',compP_A)
init_model.set('u4',mcondM_A)
init_model.set('u5',mcondE_A)
init_model.set('u6',mcondP_A)

Solve the initialization problem A using FMI
init_model.initialize()
#Save dyanmic states at point A
[HrecM_A,HrecE_A,TrecP_A] = init_model.get(['process.receiverM.Hrec',

77

'process.receiverE.Hrec','process.receiverP.Trec'])

#simulation options
opts = init_model.simulate_options()
opts['initialize'] = False
opts['CVode_options']['atol'] = 1.0e-9
opts['CVode_options']['rtol'] = 1.0e-7

#Other random input values
compM_B = 0.93
compE_B = 0.87
compP_B = 0.82
mcondM_B = 0.05
mcondE_B = 0.03
mcondP_B = 0.25
#Set input B
init_model.set('u1',compM_B)
init_model.set('u2',compE_B)
init_model.set('u3',compP_B)
init_model.set('u4',mcondM_B)
init_model.set('u5',mcondE_B)
init_model.set('u6',mcondP_B)

#Simulate with input B for initial trajectory
init_res = init_model.simulate(start_time=0., final_time=750.,options = opts)

#Optimization problem
op = transfer_optimization_problem('LNG.opt', file_path)

#Simulation model (model controlled)
sim_fmu = compile_fmu("LNG.easysim", file_path)
sim_model = load_fmu(sim_fmu)

#Initial simulation conditions
sim_model.set('HrecM',HrecM_A)
sim_model.set('HrecE',HrecE_A)
sim_model.set('TrecP',TrecP_A)
#Simulation model options
opts_S = init_model.simulate_options()
opts_S['initialize'] = False
opts_S['CVode_options']['atol'] = 1.0e-9
opts_S['CVode_options']['rtol'] = 1.0e-7

#Discretization options
sample_time = 15
horizon = 750
n_e = horizon/sample_time
final_t = 150
num_input = final_t/sample_time

#set Initial receiver states in OCP
op.set('HrecM',float(HrecM_A))
op.set('HrecE',float(HrecE_A))
op.set('TrecP',float(TrecP_A))
#options
opts = op.optimize_options()
opts['n_e'] = n_e # Number of elements

78

opts['init_traj'] = init_res # Initial trajectory
opts['nominal_traj'] = init_res
opts['IPOPT_options']['tol'] = 1e-7

#Blockingfactors
Set blocking factors
factors = {'u1': opts['n_e'] / 1 * [1],

'u2': opts['n_e'] / 1 * [1],
'u3': opts['n_e'] / 1 * [1],
'u4': opts['n_e'] / 1 * [1],
'u5': opts['n_e'] / 1 * [1],
'u6': opts['n_e'] / 1 * [1]}

#Quadric penalties can be used (not used here)
du_quad_pen = {'u1':10,

'u2':10,
'u3':10,
'u4':10,
'u5':10,
'u6':10}

bf = BlockingFactors(factors)
opts['blocking_factors'] = bf #Use blocking factors

#Lists used for logging simulation model states
HM = []
HE = []
TP = []
compM = []
compE = []
compP = []
compW = []
waterM = []
waterE = []
waterP = []
valveM = []
valveE = []
valveP = []
tempL = []
Tamb = []
Te = []
Press = []
mm =[]
hexEL = []
hexPL = []
time = []
time_o = []
Tamb_o = []

#Control loop, each iteration is a control step
for n in range(num_input):

if n == 0:
#Initialize sim model and solver
sim_model.initialize()
solver = op.prepare_optimization(options=opts)

#Environment variables can be changed
if n == 5:

#sim_model.set('LNGtemp_set',2.9805)

79

sim_model.set('Tamb_set',2.83)
#if n == 8:

sim_model.set('Tamb_set',2.7875)
#sim_model.set('Tamb_set',2.83)

#Solve optimization problem
#Set new time for solver
solver.collocator.t0 = n*sample_time
solver.collocator.tf = n*sample_time+horizon
#Solve problem
res = solver.optimize()

#Logging time and ambient temperature used by solver
Tamb_o.extend(res['process.Tamb'][:4]*100-273)
time_o.extend(res['time'][:4]+n*sample_time)

#Get opt input from solution in res
opt_input = res.get_opt_input()

#Simulate of model using optimal inputs just calculated
sim_res = sim_model.simulate(start_time= n*sample_time, final_time=(n+1)*sample_time,

input=(opt_input), options=opts_S)

#Log changes to dynamic states inputs for plotting
HM.extend(sim_res['process.receiverM.Hrec']*10)
HE.extend(sim_res['process.receiverE.Hrec']*10)
TP.extend(sim_res['process.receiverP.Trec']*100-273)

compM.extend(sim_res['process.compM.N_M'])
compE.extend(sim_res['process.compE.N_M'])
compP.extend(sim_res['process.compP.N_M'])
compW.extend(sim_res['process.compM.Wcomp']*100+sim_res['process.compE.Wcomp']*100+sim_res['process.compP.Wcomp']*100)

#Logging random variables
waterM.extend(sim_res['process.condM.mcond'])
waterE.extend(sim_res['process.condE.mcond'])
waterP.extend(sim_res['process.condP.mcond'])
valveM.extend(sim_res['process.valveM.x'])
valveE.extend(sim_res['process.valveE.x'])
valveP.extend(sim_res['process.valveP.x'])
hexEL.extend(sim_res['process.hexEL.outlet_LNG.T'])
hexPL.extend(sim_res['process.hexPL.outlet_LNG.T'])
tempL.extend(sim_res['process.LNGsink.inlet.T']*100-273)
Tamb.extend(sim_res['process.Tamb']*100-273)
Te.extend(sim_res['process.condE.outlet.T'])
Press.extend(sim_res['process.compM.outlet.P'])
mm.extend(sim_res['process.valveM.outlet.m'])
time.extend(sim_res['time'])

#Generate random noise
num1 = N.random.normal(1,0.005)
num2 = N.random.normal(1,0.005)
num3 = N.random.normal(1,0.005)

#Extract dynamic staets at the end of the simulation

80

#If noise is wanted, multiply with these variables
HrecM = sim_res['process.receiverM.Hrec'][-1]
HrecE = sim_res['process.receiverE.Hrec'][-1]
TrecP = sim_res['process.receiverP.Trec'][-1]

#Environmental variables are extracted in the same way
Tambient = sim_res['process.Tamb'][-1]
LNGtemp = sim_res['process.LNGtemp'][-1]
LNGflow = sim_res['process.LNGflow'][-1]
alphaM = sim_res['process.alphaM'][-1]
alphaE = sim_res['process.alphaE'][-1]
alphaP = sim_res['process.alphaP'][-1]

#Set new initial conditions for solver to prepare for next step
solver.set('HrecM',float(HrecM))
solver.set('HrecE',float(HrecE))
solver.set('TrecP',float(TrecP))

#toggle these off for unknown change (Used for robust comparrison)
solver.set('Tamb_set',float(Tambient))
solver.set('Tamb',float(Tambient))

solver.set('LNGtemp_set',float(LNGtemp))
solver.set('LNGtemp',float(LNGtemp))
solver.set('LNGflow',float(LNGflow))
solver.set('alphaM',float(alphaM))
solver.set('alphaE',float(alphaE))
solver.set('alphaP',float(alphaP))

#Set warm start
solver.set_warm_start(True)
set_warm_start_options(solver)

#Plotting of random variables logged from simulation model

#Code of plotting would be here

#Warm start options
def set_warm_start_options(solver, push=1e-4, mu_init=1e-1):

solver.set_solver_option('IPOPT', 'warm_start_init_point', 'yes')
solver.set_solver_option('IPOPT', 'mu_init', mu_init)

solver.set_solver_option('IPOPT', 'warm_start_bound_push', push)
solver.set_solver_option('IPOPT', 'warm_start_mult_bound_push', push)
solver.set_solver_option('IPOPT', 'warm_start_bound_frac', push)
solver.set_solver_option('IPOPT', 'warm_start_slack_bound_frac', push)
solver.set_solver_option('IPOPT', 'warm_start_slack_bound_push', push)

if __name__=="__main__":
run_demo()

81

	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Introduction

	Model predictive control theory
	MPC overview
	Optimal control problem
	Transcription to Nonlinear optimization problem
	Direct collocation

	Robust Model predictive control
	Optimal control in Jmodelica.org
	PI control

	Process description
	Refrigeration cycles
	LNG liquefaction process
	Implementation in Modelica
	Process units
	Other equations
	Compressibility
	Thermodynamics

	Setup and implementation
	Optimal control problem
	MPC
	Robust MPC
	PI controller

	Controller comparison and discussion
	Comparison between MPC and PI controller
	Robust MPC compared with Standard MPC
	General discussion

	Conclusion
	Bibliography
	Appendix
	A Constants
	B Code

