
Simulation of water self-diffusion in
breast tissue

Brynjar Larssen Bakken

Master of Science in Physics and Mathematics

Supervisor: Pål Erik Goa, IFY
Co-supervisor: Igor Vidic, IFY

Liv Egnell, IFY

Department of Physics

Submission date: June 2018

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Simulation of water self-diffusion in
breast tissue

by

Brynjar Larssen Bakken

A thesis submitted in fulfilment for the
degree of Master of Science

in the
Faculty of Natural Sciences

Department of Physics

June 2018

http://www.ntnu.no

Norwegian University of Science and Technology

Abstract
Faculty of Natural Sciences

Department of Physics

Master of Science

by Brynjar Larssen Bakken

Diffusion weighted magnetic resonance imaging (DW-MRI) can be used to distinguish

malignant tumour tissue from benign lesions and healthy tissue. Although this is a well

established clinical method, the detailed relationship between the tissue microstructure

and the measured diffusion properties like the Apparent Diffusion Coefficient (ADC)

are still under debate. During winter of 2016/2017 Ane Nordlie Johansen developed

a simulation toolbox for water self-diffusion in closed geometries, and Brynjar Larssen

Bakken extended this to include diffusion in the presence of solid cylinders as his project

thesis during spring 2017. The main aim of this thesis is to simulate the water self

diffusion in different geometrical arrangements of collagen fibres as typically found in

healthy fibroglandular breast tissue (FGT), and to compare the resulting ADC with

experimentally obtained values.

Sammendrag

Diffusjonsvekta magnetisk resonansavbilding kan brukes til å skilne ondarta tumorvev

fra godarta lesjoner og friskt vev. Sjøl om dette er en veletablert klinisk metode, blir

den detaljerte sammenhengen mellom vevets mikrostruktur og de målte diffusjonsegen-

skapene som den tilsynelatende diffusjonskoeffisienten fortsatt debattert. I løpet av vin-

teren 2016/2017 utvikla Ane Nordlie Johansen en verktøykasse for simulering av vanns

selvdiffusion i lukka geometrier, og Brynjar Larssen Bakken utvida denne til å inklud-

ere diffusion i nærhet av massive sylindre i hans prosjektoppgave i løpet av våren 2017.

Hovedmålet til denne oppgava er å simulere vanns selvdiffusion i forskjellige geometriske

oppsetninger av kollagenfibre som typisk finnes i friskt brystvev og sammenligne de re-

sulterende diffusjonskoeffisientene med eksperimentell data.

http://www.ntnu.no

Acknowledgements

Big thanks to Ane Nordlie Johansen for writing a solid master’s thesis and very under-

standable code, and to Pål Erik Goa for being present, understanding and helpful, and for

leading the DW-MRI group with insight and care. The rest of the group have my thanks

as well for being helpful, cheerful and knowledgeable. This includes my co-supervisors,

Igor and Liv, and Ingrid, my thesis writing partner from the blinds free copy room. You

have all made my two DW-MRI focused semesters very much enjoyable.

However, as I soon leave NTNU and Applied Physics and Mathematics behind, there are

greater affiliations to be thankful for. The social, cultural, applicable and professional

rewards of the extracurricular student life is what makes Trondheim a place like no

other. NTNUI Orienteering and the Student society’s Internal Theatre has my sincere

gratitude, and my warmest regards go to my student organisation Nabla.

Lastly I want to thank my supportive, reasonable and caring Rebekka for always bright-

ening my day.

iii

Contents

Abstract ii
Sammendrag ii

Acknowledgements iii

Abbreviations ix

1 Introduction 1

2 Theory 3
2.1 Diffusion . 3

2.1.1 Free diffusion . 3
2.1.2 Non-free diffusion . 4
2.1.3 Combined diffusion . 6
2.1.4 Simulating diffusion . 6

2.2 MRI . 7
2.2.1 Diffusion weighted MRI . 8
2.2.2 Signals . 10

2.3 The female breast . 12
2.3.1 Collagen . 13
2.3.2 Microscopy . 13

2.4 Geometric attributes . 13
2.4.1 Tortuosity . 14
2.4.2 Porosity . 15

2.5 Reflection and surface detection . 15
2.6 Runtime . 16

2.6.1 Copying large sets . 16
2.6.2 Logical short-circuiting . 18
2.6.3 Repetition avoidance . 19
2.6.4 Replacement of demanding parts 19
2.6.5 Example . 19

2.7 Writing pseudocode . 21

3 Method 23
3.1 Determining parameters . 24

v

Contents vi

3.1.1 True diffusion coefficient . 24
3.1.2 Fibre size . 24
3.1.3 Nucleus size . 24
3.1.4 Diffusion times and time steps . 25
3.1.5 Time parameters . 25

3.2 Generating fibres . 25
3.2.1 Random generation . 25
3.2.2 Fibrils in fibre . 26
3.2.3 Predetermination . 27

3.3 Collecting fibres . 27
3.3.1 Method 1 — The box . 27
3.3.2 Optimisation A — Tighter box . 27
3.3.3 Optimisation B — Sorting fibres 28
3.3.4 Newer efficiency improvements . 28

3.4 Finding EDCs . 29
3.5 Finding ADCs . 29

4 Results 31
4.1 Geometries . 31
4.2 Runtime . 31
4.3 Random walk in unit cell . 33
4.4 Expected Diffusion Coefficient . 35

4.4.1 Project thesis . 35
4.4.2 Geometries . 36
4.4.3 Normalised step sizes . 36
4.4.4 Geometric attributes . 37
4.4.5 Motion averaging . 37
4.4.6 Ballistic regime . 38

4.5 Signals . 39
4.5.1 Pulsed gradient . 39
4.5.2 Constant gradient . 40

5 Discussion 41
5.1 Runtime . 41
5.2 Normalised step sizes . 41
5.3 Ballistic regime . 42
5.4 Geometries . 42

5.4.1 Geometry 0 – voxel . 43
5.4.2 Geometry 1 – scattered . 43
5.4.3 Geometry 2 – tight . 43
5.4.4 Geometry 3 – semi tight . 43
5.4.5 Geometry 4 – square lattice . 44
5.4.6 Geometry 5 – triangular lattice . 44

5.5 Geometrical attributes . 44
5.6 Signals . 45

5.6.1 PulsedGradient.m . 45
5.6.2 ConstantGradient.m . 45

Contents vii

5.7 Assumptions and possible sources of error 45
5.7.1 Interpretation of microscopy images 45
5.7.2 Pseudodiffusion and flow between compartments 46

6 Conclusion 47
6.1 Further work . 47

A Code and pseudocode 49
A.1 RestrictedReplacement.m . 49
A.2 Fibres.m . 55
A.3 Fibres2.m . 59
A.4 Fibres3.m . 60
A.5 Fibres4.m . 63
A.6 Fibres5.m . 65
A.7 PulsedGradient.m . 66
A.8 ConstantGradient.m . 84
A.9 DiffusionTest.m . 85
A.10 WalkInFibre.m . 87

Bibliography 97

Abbreviations

MRI Magnetic Resonance Imaging

ADC Apparent Diffusion Coefficient

RF Radio Frequency

DW Diffusion Weighted

FGT Fibroglandular breast Tissue

HES Hematoxylin-Eosin-Saffron

ICF Intracellular Fluid

ECF Extracellular Fluid

EDC Expected Diffusion Coefficient

ix

Chapter 1

Introduction

MRI is a widely used imaging technique in clinical setting. MRI has the advantage of

being suitable for differentiating between soft tissues, and unlike many other imaging

techniques, it does not require exposure of high energy radiation [1]. MRI has been

researched since the 1970s, and diffusion MRI specifically was first proposed as a method

of differentiation tissue with varying degrees of diffusivity in 1984. It relies on self-

diffusion of water in the sample to map the geometrical structure. This is possible

because the geometrical structure influences the mobility of the particles, and therefore

the apparent diffusion coefficient, which influences the MRI-signal.

To benefit from diffusion MRI, one needs to know the relationship between the diffusive

behaviour and the resulting signal. This relationship is non-trivial, and much research

has been done regarding this. A method for doing this is simulating the diffusion and

MRI-sequence for a wide range of different environments and analysing the resulting

signal. This may be done using Monte Carlo methods, in which statistical phenomenons

using random numbers are simulated.

The purpose of this thesis is to further establish an environment appropriate for this

kind of simulations and use it to compare simulated results with experimental data.

The simulation is run using Monte Carlo methods to implement a diffusion process, and

adding hindering or restricting obstacles to disrupt free diffusion. The sequences needed

for generating the MRI signal is available in the thesis this work is based on [2].

1

Chapter 2

Theory

2.1 Diffusion

2.1.1 Free diffusion

Diffusion is the microscopic and seemingly random movement of particles, and is present

in all fluids, both when equalising chemical potential and in equilibrium. The movement

itself is called Brownian motion, and comes from the many collisions between the particles

in the fluid. Brownian motion is often replicated by a random walk. This can be a series

of equally long steps with random directions. This motion is described by the diffusion

equation, which may be derived using the probability distribution of a particle after a

one-dimensional random walk from x = 0 given by [3]:

P (x, t) =
√

4πDt ex
2/4Dt, (2.1)

where D is a constant called the diffusion coefficient. D describes the degree of mobility

for the particles. P (x, t) is a symmetric function, so the expectation value is zero. The

second moment then reduces to

〈x2(t)〉 =

∫ ∞
x2P (x, t)dx = 2Dt. (2.2)

The variance is positively proportional with time, meaning the probability of finding

a particle far away from its starting position increases over time. We can expand the

particles degrees of freedom from one to n, and define a concentration of particles

3

Chapter 2: THEORY 4

C(r , t) =

∫ ∞
−∞

dr ′C0(r ′)P (r − r ′, t), (2.3)

given the initial concentration C0(r). Using Fick’s law[4] to define the current j as

j = −D∇C(r , t), (2.4)

and substituting this into the continuity equation[5]

∂C

∂t
+∇ · j = 0, (2.5)

the diffusion equation is reached:

∂C

∂t
= D∇2C. (2.6)

This partial differential equation can be solved as in [6] to result in the Green function[7]

G(r , r0, t) =
exp(−|r − r0|2/4Dt)

(4πDt)n/2
, (2.7)

where r is the n-dimensional position vector, and r0 its initial state. Comparing this

to (2.1) tells us that diffusion happens independently in all n dimensions — a result of

the separability of the partial differential equation (2.5). G(r , r0, t) is also, as expected,

symmetrical about r0, but the second momentum

〈r2(t)〉 = r2
0 + 2nDt (2.8)

show that (2.2) simply was a specific case for n = 1, r0 = 0. The mean square displace-

ment for a particle after time t is then

〈(r − r0)2〉 = 〈r2〉+ r2
0 − 2r0〈r〉 = 2nDt. (2.9)

2.1.2 Non-free diffusion

For non-free diffusion, where the particles are in some way obstructed in its movement,

the diffusion coefficient will generally differ from the one discussed in the previous section

5 2.1 Diffusion

(a) free (b) hindered (c) restricted

Figure 2.1: Illustration of the three kinds of diffusion evolving over time.

and have a time dependence. The expected length of a particle’s single movement over

a time t is derived from the true diffusion coefficient:

r =
√

6Dt, (2.10)

for diffusion in n = 3 dimensions. The length of many particles’ total diffusion movement

give rise to the apparent diffusion coefficient (ADC). The particles’ movement is called

non-free when it’s restricted — the particles are trapped inside an object — and/or

when it’s hindered — the particles are surrounded by obstacles with which to collide.

The three types of diffusion is illustrated in figure 2.1. By investigating this new diffusion

coefficient D(t) one can find characteristics for the environment the particle is located

in, such as shape and characteristic lengths [8].

Analytic results for D(t) varies with respect to the diffusion length relative to the di-

mensions of the surroundings, the size of the obstacles. For particles enclosed in a voxel,

meaning the diffusion is restricted, the time dependency varies in the different cases of

short or long time behaviour. In the first case particles will not diffuse for long enough

time for them to be notably restricted from the surrounding wall, that is D(t) ∼ 1 as

in free diffusion. In the second case most of the particles will have collided many times

with the walls, and the particle distribution will no longer develop over time, meaning

D(t) ∼ 1
t . There is, of course, an intermediate state where some particles diffuse seem-

ingly freely, and others don’t, resulting in a bend in the D(t)-curve between the two

aforementioned cases. Displacements of particles in free and restricted diffusion is seen

illustrated in subfigures 2.2a and 2.2c, where ADC is in this case equivalent to D(t).

If the particles are placed in between hindering objects, the same effect of particles

initially moving freely, and later become more suppressed in their movement, is present.

Once most of the particle has experienced hindrance and collided with an object, the

ADC will expectedly not vary as much over time, but rather flatten out to a lower than

true diffusion coefficient. The displacement of hindered particles can be seen in subfigure

2.2b.

Chapter 2: THEORY 6

t t

va
r(
r)

A
D
C D

(a) free
t t

va
r(
r)

A
D
C D

D*

(b) hindered
t t

va
r(
r)

A
D
C D

(c) restricted

Figure 2.2: Illustrating graphs of displacement for the three kinds of displacement.
For the free case, the ADC equals the true diffusion coefficient. For the hindered case,
the ADC flattens out to a lower diffusion coefficient after enough time for most particles
to have collided with the obstacles. For the restricted case, the ADC flattens out to
zero, as no particles move longer than what the enclosing obstacles allow for any amount

of time.

(a) Brownian motion (b) Microscopic movement (c) Diffusion result

Figure 2.3: Illustration of diffusion simulation for steps of different orders of magni-
tude. It can be shown that for free diffusion, it bears no difference how long each step

is, as long as the number of steps are large.

2.1.3 Combined diffusion

By combined diffusion, a combination of the two types of non-free diffusion is meant. In

cases where both hindered and restricted particles diffuse, D(t) will only provide limited

information about the diffusion, as it only states an average of the particles’ freedom of

movement. For short diffusion times are particles, as earlier mentioned, not necessarily

obstructed, and the diffusion coefficient starts out as the true one. When time passes

both hindered and restricted particles contribute to a decreasing displacement. For

long diffusion times, restricted particles are no longer spreading out, and the hindered

particles’ displacement flattens out. If a fraction f of particles are hindered, then the

final diffusion coefficient will turn out as Dcom = fD∗.

2.1.4 Simulating diffusion

The motion of free can be simulated with computers, either the resulting position is

calculated, every single Brownian motion is mapped, or a series of intermediate steps are

added together, all of which are illustrated in figure 2.3.

A central size in Brownian motion is the mean free path λ which for liquid water has

an order of magnitude of an Ångström. To simulate every Brownian motion, the steps

could have a length of the λ and a random angle. The time each step would take is

7 2.2 MRI

the tλ. The mean square displacement for a particle after a total diffusion time T , and

therefore K = T
tλ

steps is given by

〈(r − r0)2〉 =
K∑
k=1

〈(r i − r i−1)2〉 = K · 2nDtλ, (2.11)

which matches the result from (2.9) of 2nDT . This simple correlation between step

by step Brownian motion and diffusion over macroscopic time opens up possibilities

to simulate a particle’s movement both from calculating its mean free path and from

measuring its diffusivity. It also suggests that simulating diffusion with — in contrast to

the mean free path — large step sizes is unproblematic.

When simulating combined diffusion, there lacks mathematical derivation that step sizes

other than those of Brownian motion give unbiased results.

2.2 MRI

MRI is a tomographic technique used to obtain information about the internal structure

of an object. It differs from other tomographic techniques in that it uses the intrin-

sic properties of the protons, its 1/2-spin, rather than using ionising radiation. MRI

measures the magnetisation caused by the protons’ magnetic moment µp in the object

being scanned. A proton in an external magnetic field B0 has two available energy

states ±µpB0. The spins will favour the lower energy state, making it slightly more

occupied, and thus leading to a non-zero magnetisation vector M . The spins precess

with a frequency called the Larmor frequency given by

ω = −γB0, (2.12)

where γ is the gyromagnetic ratio. Spins in a uniform magnetic field will precess with the

same frequency, but with arbitrary phase, meaning there will be no oscillating orthogonal

to B in M . The spins’ phase can be synchronised by emitting a radio frequency (RF)

signal with the Larmor frequency. With the spins in phase M will now tilt away from

B0 and rotate around it — meaning the spins are distributed equally between their up

and down states — They will then create a signal we call the MR signal, which naturally

will have a frequency ω. The time the spins need for M to become aligned with B0

again defines T1, an intrinsic property of the object being scanned. The magnetisation

vector realigning with the outer field is called spin-lattice relaxation. Another intrinsic

property is T ∗2 , describing the time it takes for the spins to dephase in the plane, which is

Chapter 2: THEORY 8

z

y

x

|M|

(a) Spins in phase after RF signal.
z

y

x

|M|

(b) T1 relaxation. Spins return to their origi-
nal state in the direction of the outer magnetic

field.

z

y

x

|M|

(c) T ∗
2 relaxation. Spins dephase due to lo-

cal magnetic field variations and atomic inter-
actions within the tissue.

Figure 2.4: Magnetisation relaxation. Spins precess around the axis of the outer
magnetic field. Right after the RF signal, spins are in phase and the magnetisation
signal is at its strongest. These effects take place at the same time, but are separated

here for illustration.

called spin-spin relaxation. T2 is the time constant for decay of transverse magnetisation

arising from natural interactions at the atomic level, while T ∗2 also includes dephasing

caused by local variations in the magnetic field[1]. All three of these properties is used

as contrast in MR images, and is illustrated in figure 2.4.

2.2.1 Diffusion weighted MRI

Diffusion weighted MRI (DW-MRI) relies on the movement of water and water’s re-

laxation times inside tissue. Water molecules are relatively small and light, and will

therefore easily diffuse — and with that be affected by the tissue’s diffusivity. Mapping

of the diffusion process of water in biological tissues helps understand the microscopic

details of the tissue. Diffusion in any tissue is not free, but reflects interactions with

many obstacles, such as fibres and membranes.

9 2.2 MRI

A spin precessing with frequency ω will have a phase at time t given by φ = ω+φ0, where

φ0 is the phase at time t = 0. The moment the RF signal is turned off, this will be same

for all spins. If then a gradient magnetic field Gx increasing in strength perpendicular to

the field lines, is applied to the spins, they begin to precess at different frequencies. The

total magnetic field is now B = B0 +Gxxẑ . The change in phase over an infinitesimal

stretch of time is given by

dφ(x) = −ω(x)dt = −γ(B0 +Gxx)dt. (2.13)

If this gradient is applied for a finite time δ, but still short enough that the spins’

movement during the gradients effect still can be neglected, the equation is still valid.

Given that a time ∆ passes for the spins to diffuse is short enough to assume there are

no relaxation of the magnetisation vector, an equally strong, but opposite gradient can

be applied to find an exact relationship between phase and displacement:

φ2 − φ1 = γδ(B0 +Gxx1 −B0 −Gxx2)

= −γδGx(x2 − x1),
(2.14)

where x1 = x(t) and x2 = x(t+∆) for any time t between the gradients. In an actual MR

sequence, which is illustrated in figure 2.5, a 180◦ RF pulse is applied at time t180 to invert

the magnetisation vectors followed by a gradient of the same sign, but the calculation still

stands. Now, if δ is deemed too large to neglect the spin’s movement during gradient

application, and the two gradients are still applied ∆ apart, the x-positions must be

integrated over time:

φ2 − φ1 = −γGx
(∫ ∆+δ

∆
x(t)dt−

∫ δ

0
x(t)dt

)
, (2.15)

or — if we divide the total sequence time into K equal parts tK in which it is reasonable

to say that the spins do not diffuse significantly — expressed in sums:

φ2 − φ1 = −γGx

 kδ∑
k=1

x(t)tK −
K∑

k=k∆

x(t)tK


= −γGx

(
kδ∑
k=1

x2(t)− x1(t)

)
tK ,

(2.16)

with x(t) = x(ktK), kδ = K TE
δ the number of steps the gradients last, and k∆ = K TE

∆

the number of steps between the start of the two gradients. For simplicity we define the

Chapter 2: THEORY 10

t

Gx

90 180 SE

Δ

δ δ

Figure 2.5: An illustration of a typical MR spin echo sequence. The time TE = 2t180
is the time from the initial RF pulse (90) to the spin echo is captured (SE).

total diffusion and sequence time TE = δ + ∆ = 2δ + T180, where T180 is the duration

of the 180◦ signal, even though the figure 2.5 shows the more realistic picture of gaps

between pulses, gradients and echo capturing.

In a clinical application, the time between the gradients ∆ and the duration of the

gradient δ are usually determined by the time it takes for the spin echo to be captured,

and forces the other two time variables to be in the same order of magnitude. An MRI

machine needs some time tsample before the spin echo occurs, to ensure the sampling of

a full echo signal. Between the gradients there also needs to be a small time gap T180,

as the 180◦ signal is applied. The total diffusion time is then

TE = Tsample + δ + T180 + δ + T
sample.(2.17)

This gives a gradient duration of δ = TE/2− Tsample − T180/2 and a diffusion time of

∆ = δ + T180. (2.18)

2.2.2 Signals

A central number of MRI is the signal attenuation S(δ,∆, Gx)/S(δ,∆, 0), the fraction of

the original signal S(0) — at the spin echo for no gradients — that can be measured in

the echo after the application of gradients. For a short δ, freely diffusing particles with

initial position distribution ρ(x1), time between gradients ∆, a propagator P (x2, x1,∆)

from 2.7, signal attenuation for a single particle exp i(φ2 − φ1) and phase shift as in 2.14

the total signal attenuation can be calculated:

11 2.2 MRI

S(δ,∆, Gx)

S(δ,∆, 0)
=

∫ ∫
ρ(x1)P (x2, x1,∆)e−iγδGx(x2−x1)dx1dx2

=

∫
P (x, 0,∆)e−iγδGxxdx

= exp(−γ2δ2G2
xD∆),

(2.19)

We can here introduce the diffusion sensitising b-value as b = (γδGx)2∆, which gives

S(b)

S(0)
= e−bD. (2.20)

The b-value is derived from

b = γ2

∫ TE

0

(∫ t

0
Gx(t′)dt′

)2

dt, (2.21)

and if we increase δ and simplify the imaging sequence — instead of including the 180◦-

signal — to two gradients of opposite sign, this resolves to

b = γ2G2
xδ

2

(
∆− δ

3

)
, (2.22)

which is in agreement with 2.20 for small δ[9]. The signal attenuation does not have a

sine wave of frequency ω as a carrier function, since the oscillating factors in S(b) and

S(0) cancel each other out. If no other RF pulse or gradient is applied, a tapering signal

could be measured over time. The decay of this signal — caused by T ∗2 relaxation — is

called the free induction decay, and has the shape of a negative exponential, with the

steepness determined by T ∗2 in the specific volume of the tissue[10].

T ∗2 , like the other relaxation times, do not develop over time. This means that all the

spins re-phase an equal amount per time after the 180◦ signal, given that they do not

move. If we ignore diffusion, there will appear a signal peak when the local variations

have re-phased every dephased spin, exactly t180 after the 180◦ pulse. This signal is, with

gradients applied, called the spin echo and has the highest intensity when no spins are

diffusing. Every spin that moves during the diffusion time will not re-phase the exact

amount it was dephased, and therefore contribute less to the resulting signal echo.

It should be mentioned that there are several ways of performing a spin echo sequence,

all in which the magnetisation vectors are flipped and inverted in a way that the applied

gradients ultimately would cancel out any dephasing, either caused by T1, T2 or T ∗2

Chapter 2: THEORY 12

relaxation. The sequence here in focus concerns T ∗2 relaxation, a single 180◦ RF pulse,

and two gradients of equal strength and duration.

When varying the diffusion sensitising b-value, different spin echo signals will be captured.

The highest intensity of the spin echo will decrease for greater b-values, as the diffused

spins are more dephased. A logarithmic plot of the signal attenuation is generally linearly

decreasing with b, and the curve’s steepness is interpreted as the ADC. This is called the

monoexponential representation:

S(b) = S(0) · e−bD∗
. (2.23)

If, however, the tissue contains both hindering and restricting obstacles, a linear loga-

rithmic relationship between S(b)/S(0) and b are no longer as apparent. Especially for

large b-values, the signal attenuation has a tendency to curve upwards and flatten to a

less, but still, decreasing line[11]. This gives rise to the biexponential representation:

S(b) = S(0) ·
[
f1 · e−bD1 + f2 · e−bD2

]
, (2.24)

where f1 and f2 = 1−f1 are the fractions of hindered and restricted particles, respectively,

and D1 and D2 are their respective apparent diffusion coefficients. The fraction of

hindered and restricted particles should not affect the steepness of the curves in the

parts of where one type of particle dominate, but rather determine where the transition

lies.

2.3 The female breast

The female breast is a secretory gland composed of; glandular tissue, which makes and

transports milk; connective tissue, which provides support; blood, which nourishes the

tissue and provides the nutrients necessary to make milk; lymph, which removes waste;

nerves, which allows stimulation for the release of hormones that trigger the milk ejection

reflex and the production of milk; and adipose tissue, which offers protection from injury.

Water is an essential element in every part mentioned, and it’s present both inside and

outside the different cells found in the breast.

The intracellular fluid (ICF) is enclosed within the cell walls — and some of that within

the nucleus walls — and self-diffuses with restriction, whereas the extracellular fluid

(ECF) self-diffuses with hindrance. The cells in question are amongst others fibroblasts,

large collagen producing cells with irregular shapes. For water diffusion in breast tissue

13 2.4 Geometric attributes

the signal attenuation may be found by inserting f1 = fECF = 1− fICF, D1 = DICF and

D2 = DECF in 2.24.

2.3.1 Collagen

Collagen is the main component in connective tissues, and therefore the most abundant

protein in mammalian bodies. The structure of a female breast is not trivial. The

collagen fibres themselves can be straightforward to model, but the arrangement of fibres

is one thing making the MRI signal of a breast difficult to predict. Except for cases of

straightened and aligned tumoral collagen, collagen fibres are both curved and divergent

to neighbouring fibres, as stated in [12].

A single collagen molecule is approximately 300 nm long and 1.5 nm wide. Three and

three of these molecules create a helix called tropocollagen. Microfibrils are bundles of

five tropocollagen helices, but arbitrarily long, with a gap in the joint between molecules.

Microfibrils assemble in order of magnitude 10 nm wide fibrils. Fibre diameters range

from 1–12 µm. Collagen fibres can be seen as cylindrical in shape, and consist of smaller

cylindrical fibrils, although the microstructure may reveal a more complex picture than

this.

2.3.2 Microscopy

To distinct the various elements of a breast when studying a sample slice under the mi-

croscope, the sample may be stained with Hematoxylin-eosin-saffron, abbreviated HES.

HE is commonly used for tissue staining, but HES may be more useful when investigating

FGT and other collagen rich tissues, as the saffron marks collagen fibres in yellow. HES

also marks erythrocytes in pink, cell nuclei in blue and muscle and elastic fibres in pink,

as can be seen in figure 2.6.

2.4 Geometric attributes

There are many ways of describing a structure, and many single numbers that may be

useful in some situations and unsatisfactory in others. Fibre density says something

about the whole environment, but not about local variations, and in a simulation it

may be useful to know how tight the fibre thickets are to make sure to long step sizes

are used. It is also worth mentioning the area-to-volume ratio A/V , which can found

experimentally as the tangent of the beginning of D(t)-curves[13].

Chapter 2: THEORY 14

Figure 2.6: Example of a HES stained sample of breast tissue. Collagen in yellow,
erythrocytes in pink and nuclei in purple. The big white voids are adipose cell, the
purple cell cluster is a milk duct, the pink dots may indicate capillaries. The collagen

forms a very swirly pattern, which represents healthy tissue.

2.4.1 Tortuosity

The tortuosity α of a structure is number describing the openness or diffusivity of said

structure. In some definitions[14][15] it represents the fraction between the shortest

possible trajectory S∗ and the distance S between two arbitrary points:

αS =
S

S∗
, (2.25)

This indicates that the geometry must be somewhat homogeneous for the tortuosity to

bear any value. In this sense, tortuosity can describe how curvy a meandering river is, or

how runnable a wooded area is. Others[16][15] have defined the tortuosity as the fraction

of the ADC over the true diffusion coefficient, or

αD =
D∗

D
, (2.26)

for long diffusion times. Without further thought it may seems natural that these two

numbers are equal for the same structure, but the derivation is not only trivial.

15 2.5 Reflection and surface detection

2.4.2 Porosity

Another value that says a lot about a structure or geometry is the porosity, also called

the void fraction, simply defined as

β =
V ∗

V
, (2.27)

where V ∗ is the hollow, populated or "diffusable" volume and V is the total volume.

2.5 Reflection and surface detection

Given a particle with a position r and a constant velocity v , its trajectory is described

by r ′ = r + v t. If a particle is placed in an infinitely long cylinder of radius R with

its centre along ẑ , v z is irrelevant for finding the time of collision with the cylinder

wall. The particle will collide at a time where r ′z=0 lies R from ẑ , meaning |r ′|2 = R2.

Substituting this into the equation for the particle trajectory and solving for t gives the

following equation for collision time:

tc =
−r · v ±

√
(r · v)2 − v2(r2 −R2)

v2
, (2.28)

which will give two possible solutions for tc. Since the particle’s inside the cylinder, one

solution will be negative and one solution will be positive — representing the time it

takes to move from the wall behind the particle and the time it takes to move to the wall

in front of the particle, respectively.

If a particle is placed outside a similar cylinder and moves towards it with a constant

velocity v , it will still take a tc fulfilled by equation (2.28), only this time both tcs will

be positive — the latter representing collision from the inside as if ignoring the first wall.

If this cylinder’s centre is moved to a position r cyl, collision will occur when

|r ′ − r cyl| = R

r ′2 − 2r ′r cyl + r2
cyl = R2,

(2.29)

which can be solved for tc:

tc =
1

v2

[
r cyl · v − r · v ±

√
(r − r cyl)2 − v2(r2 − 2r · r cyl + r2

cyl −R2)

]
. (2.30)

Chapter 2: THEORY 16

This, too, gives rise to two positive tc, of which the negative solution is the correct time

of collision for hindered diffusion and the positive for restricted.

When a particle bounces off the surface of the cylinder, the part of the velocity parallel to

the wall at the impact, v‖, will remain the same. The normal component of the velocity,

v⊥, will change sign in the reflection. This can be expressed as

v = v0 − 2(v0 · n)n . (2.31)

2.6 Runtime

Runtime, or program cycle phase, is the period during which a computer program is

executing. Simplified, the runtime of a program is given by the number of operations

per unit of time the working processors can handle and the number of operations needed

to complete the program. The size of the source code does not necessarily correlate to

runtime, as both none and many operations can be executed by a line of code.

a = a + b;

is in some branches of computer science regarded as one single operation all though even

here several things are happening in rapid succession. Firstly the script collects the value

of variable a and b. Then it calculates the result of the mathematical operation a + b

before it applies that value to a and stores it. Now, if a and b turned out to be arrays or

matrices, the number of operations would equal the number of elements in the sets. A

dot product of two three-dimensional vectors would therefore demand three operations.

2.6.1 Copying large sets

Array or matrix resizing, such as in the following example, is a source of long runtimes.

pot_col_fibres = [];

for i=1:N_fibres

pot_col_fibres = [pot_col_fibres i];

end

This is because when an n-dimensional array is created in a MATLAB environment,

only n spaces of potential values is reserved. In the next iteration, there is no way of

knowing if the next space, the n+1th element, is being used by another variable, and an

17 2.6 Runtime

entirely new array has to be created to avoid memory loss. This means that there aren’t

N_fibres operations in the for loop above, but rather 1 + 2 + 3 + · · ·+Nfibres ∼ N2
fibres,

as in the ith iteration i values must reallocate. This script has order of N2
fibres time

complexity, and is written in terms of order O — a proportionality of runtime often as

a function of array size — like O(N2
fibres). To lower the order to O(Nfibres), the size can

be set before the loop, like so:

pot_col_fibres = zeros(1,N_fibres); %or ones(1,N_fibres) of course

for i=1:N_fibres

pot_col_fibres(i) = i;

end

This is called preallocation. However, if the size of the array is not known on beforehand,

a compromise must be found, as shown in the lower example.

pot_col_fibres = zeros(1,estimated_N_fibres);

for i=1:estimated_N_fibres

if fibre_inside_cell(i) == true

pot_col_fibres(i) = i;

end

end

A too small estimated_N_fibres causes the time consuming copying of arrays, and

a too large estimated_N_fibres increases runtime initially by creating a larger array

than necessary. Which case afflicts the largest runtime penalty depends on how much

the array is copied later in the script.

x = L*rand - l;

y = L*rand - l;

collide = false;

tooTight = false

tooLoose = true;

for n=1:N_fibres

for i = -L:L:L

for j = -L:L:L

if (x-fibre_xpos(n) + i)^2 + ...

(y-fibre_ypos(n) + j)^2 < ...

(2*R_fibre+tightness)^2

Chapter 2: THEORY 18

tooLoose = false;

end

if (x-fibre_xpos(n) + i)^2 + ...

(y-fibre_ypos(n) + j)^2 < ...

(2*R_fibre+looseness)^2

tooTight = true;

end

if (x-fibre_xpos(n) + i)^2 + ...

(y-fibre_ypos(n) + j)^2 < ...

(2*R_fibre)^2

collide = true;

end

end

In this code snippet both fibre_xpos and fibre_ypos is called three times, and should

be replaced fx and fy with the variables declared in the beginning of the outer for-loop.

[...]

for n=1:N_fibres

fx = fibre_xpos(n);

fy = fibre_ypos(n);

[...]

end

2.6.2 Logical short-circuiting

In a logical statement with several conditions, it is most efficient to set the conditions

more likely to break off the evaluation of remaining conditions early.

% often_false is not evaluated when often_true is true

if often_true || often_false

% often_true is not evaluated when often_false is false

if often_false && often_true

use_valuable_time();

end

end

This is called short-circuiting logical operators, and has most effect when the later con-

ditions include time consuming evaluations.

19 2.6 Runtime

2.6.3 Repetition avoidance

Iteration-independent operations should be placed outside loops. If code does not eval-

uate differently with each iteration in a loop, it can be moved outside the loop, bringing

that part of code from order O(i) to O(1), where i is the number of iterations in the

loop.

It may also save time to split the script into several parts, for example if one part of the

script generates data that remains constant for the rest of the script and can be used in

several runs. One script can generate the data, and another one can be run several times

loading the same data and executing the rest of the script.

2.6.4 Replacement of demanding parts

There are surely examples of vastly different codes giving the equivalent output. The

same reason simulating restricted diffusion for long diffusion times is processor heavy is

the same reason it can be simplified. For a diffusion where almost every particle has

collided with the voxel wall at least once, the particles has no ’memory’ of its starting

point in the sense that an end position has equal chance to have started wherever. In

this case the entire stepwise diffusion simulation can be replaced with a random starting

and end point. This is called motion averaging, and will be a feasible substitute for

stepwise diffusion simulation for a given relationship between the diffusion time and the

characteristic size of the voxels.

2.6.5 Example

If an operation is time consuming, it’s undesirable to have it run more than it needs. If

the operation is finding the shortest distance from a given point p in a given direction and

range d to circles in two dimensions, knowing the circles’ different x-position, y-position

and radius r, finding each individual distance is a second degree problem. The geometric

setup for this can be seen in figure 2.7, where the blue circle is over-sized as the point p,

the blue arrow is d , and the orange arrows are all r long. It would be a waste of time to

measure the distance from the given point to all circles, as we are interested in only the

circles that crosses the line of direction.

Firstly, if there was a maximum distance dmax of interest, we could discard every circle

farther away than this. To simplify, every circle farther away from p than dmax in the

x and y direction separately is crossed out, as it is less demanding to check min(x1, x2)

and min(y1, y2) than min
(√

(x1 − x2)2 + (y1 − y2)2
)
. This limit is illustrated with the

Chapter 2: THEORY 20

Figure 2.7: Collecting circles (orange) from a point (blue) within a certain range
along a certain direction (blue arrow). The orange arrows are as long as the circles’
radius.The point in question is here shown as a circle for legibility. The circles outside
the range both horizontally and vertically are brighter coloured. The only circle in

range along the direction is darker coloured.

dashed square, and discarded circles are lighter in colour. After this, every circle "behind"

p can be discarded, meaning every circle with a negative d‖- component in a {d‖,d⊥}
coordinate system. Note that the circle’s radius is here irrelevant, since a circle with

its centre behind a line cannot intersect with another, perpendicular line in front of the

first line (unless the lines intersects within the circle, which we assume is not the case

here). In the same way, all circles i farther away than dmax + ri is discarded. These two

constraints is seen in the figure as the dash-dotted lines. Lastly, we can eliminate all

circles farther away from p in the d⊥-direction than their radii. This is illustrated with

the dotted lines.

If the radii are somewhat similar and retrieving the values for the individual radii is de-

manding, each separate can be exchanged with a rmax = max(ri) for all circles i, found on

beforehand. By doing this we have possibly shaven off a remarkable fraction of the time

consumed. By performing many small operations to narrow down the possibilities, one

can make sure that the time consuming operation isn’t performed more than necessary.

The single circle in reach for p is coloured slightly darker in the figure.

21 2.7 Runtime

parfor n = 1:N_h

if 100*n/N_h == round(100*n/N_h)
string = [’ParticleNr: ’, ...
num2str(n),’ of ’,num2str(N_h)];

if 10*n/N_h == round(10*n/N_h)
string = [’ParticleNr: ’, ...
num2str(n), ’ of ’, ...
num2str(N_h), ...
’, additional 10% complete’];

end
disp(string)

end

x_pos = zeros(1,K); %Initialising
y_pos = x_pos; % arrays to save
z_pos = x_pos; % all positions.

x_pos(1) = x0(n); %Adds the
y_pos(1) = y0(n); % initial
z_pos(1) = z0(n); % position.

[...]

end

(a) Code

for every hindered particle n in parallel

if n divisible by 100
string = ’Particle n of N_h’

if n also divisible by 1000
add ’10% complete’ to string

end
show string ;)

end

position vectors of length K for x,
y
and z

add starting position to x_pos,
y_pos
and z_pos

[rest of loop]

end

(b) Pseudocode

Figure 2.8: Example of a code snippet and its pseudo code counterpart. The code is
part of the script PulsedGradient.m

2.7 Writing pseudocode

To efficiently clarify the function of a script – more in-depth than just explaining its

essence and more concise than presenting the entire code – a pseudo code, which combines

code and words, may be a useful tool. Figure 2.8 shows an example of a code snippet and

its pseudo code counterpart. Some parts of the code can be expressed more efficiently

with words, while other needs to be expanded to make them easily readable. An overall

property of the pseudocode is that it is more self-explanatory.

Chapter 3

Method

A script DiffusionTest.m was written to test if the simulated diffusion behaves as

expected for a wide range of diffusion times and time step, for whether the step size

is constant or normalised, and for the three kinds of diffusion. After the limitation of

the simulation are established, the main goal of the thesis — simulating diffusion and

calculating the particles’ ADC to compare with experimental data — can be executed

with confidence that the results are trustworthy.

A fibre environment generating script, like Fibres.m, randomly generates and exports x,

y, and r values for a number of fibres. A signal calculating script, say PulsedGradient.m,

imports the fibre values already generated and stores them in the three vectors fibre_xpos,

fibre_ypos and fibre_radii, with a certain element number referring to the same fi-

bre in all arrays. These values are used in each time step when finding which fibres the

particle may collide into and reflect off of. There are two ways of narrowing the search

down to fewer fibres presented later in this section. The list of selected fibres will then

be iterated over for a calculation of collision time, always coming in pairs. Hindered

and restriction make use of different solutions to the second degree problem. After a

collision, the same list of potentially colliding fibre can be used as the particle has no

way of moving out of the group of fibres with its total movement adding up to dr for

each step. The resulting movement in every dimension of every particle is saved and the

resulting signal for different diffusion times and gradient strengths are exported.

Note that the time steps are referred to as dt and step sizes as dr, although they are not

infinitesimal.

23

Chapter 3: METHOD 24

3.1 Determining parameters

A big portion of this thesis has been running DiffusionTest.m in order to find fitting

parametres with which to run the later scripts. Firstly a critical number of particles was

found to make sure the remaining results are trustworthy.

3.1.1 True diffusion coefficient

There is literature that states that the true diffusion coefficient is linear to the temper-

ature and presents a quite exact relationship as well. However, as the temperature of

a breast is far from constant, varying both from breast to breast as well as within each

breast, there is no need for an exact coefficient. D = 3µm2/ms was chosen for simplic-

ity and represents a temperature of about 36 deg C, probable for an organ outside the

ribcage.

3.1.2 Fibre size

The microscopy images such as in figure 2.6 shows a variety of fibre structures. Parts of

the fibrous regions in the image seen in figure 2.6 shows a diffuse orange colour, while

other parts shows a more distinct zebra pattern. As the optical refraction resolution

prevents the further revelation of the microstructure. It may therefore be difficult to

choose one fitting fibre size for all experiments onward.

It is simplest for the generation of fibre environments that the fibre have an equal radius.

Another alternative would be normally distributed radii. Every fibre could also consist

of several smaller cylinders of varying size representing fibrils. For some simulations,

whose results are not presented as they didn’t seem to bear significance, both varying

fibre size as well as fibril bundles were used. Code for generating fibres and fibril bundles

for different geometries can be found in the appendix.

A standard radius of 2 µm was used for all simulations were else is specified.

3.1.3 Nucleus size

In the restricted case microscopy images was used to determine a characteristic size for

the voxels. As fibroblast cells are large, irregularly shaped and has hard to spot walls,

the fibroblast cell nuclei were deemed a better candidate for restricting water particles.

Henceforth, intranuclear fluid rather is meant by ICF. The nuclei varied somewhat in

size and shape, but to simplify spherical shapes were used to describe the enclosing cell

25 3.2 Generating fibres

nuclei when calculating restricted diffusion, all with a radius R = 5µm — a typical size

for the nuclei investigated.

3.1.4 Diffusion times and time steps

The script DiffusionTest.m was central in determining how long and how many steps

each simulation should have. By varying the total diffusion time T and the duration of

the time steps dt — and with that the number of steps K = T/dt — anomalies could

be found in the output, and the combinations of T and dt for which the simulation

behaves differently were discarded as invalid in later runs. There were several attempts

to autogenerate a number describing how dense the geometry generated was, and with

with that number deciding what step sizes produce expected results.

3.1.5 Time parameters

In the simulations Tsample was ignored both before and after the gradients, as they were

thought to not affect the calculation of the signal. The gap between gradients was set to

T180 = 2 ms after investigating typical values. The remaining parameters was the found

with 2.17 and 2.18 for the several different TE in each run.

3.2 Generating fibres

There are many ways to make models of fibre microstructure, but they can be separated

into two main methods — random generation and predetermination. The two meth-

ods are suited for making the two kinds of microstructure — random generation for

environments with locally varying density and predetermination for lattice structures.

3.2.1 Random generation

As in the project thesis, the idea of a unit cell of fibres, and a particle’s experience of an

endless field of fibres, are continued. A unit cell is created, then duplicated. The cell is a

square of width Lx and length Ly. The same rules for overlapping fibrils applies, but in

this case overlapping the cell boundary is permitted. To avoid an unnatural gap between

the cells, the fibrils can be placed in −Lx < x < Lx,−Ly < y < Ly. When checking for

overlap with earlier placed fibrils, positions x±Lx, y±Ly must also be checked, see figure

3.1. The script terminates as before. When initially placing water particles at position

(x, y) in the unit cell, one must check for fibres both in (x, y) as well as in x±Lx, y±Ly).

Chapter 3: METHOD 26

l

l

l

2 2'

4

1

3

Figure 3.1: Attempted placed fibre. 1) No hinder — successful. 2) Legally over-
lapping the unit cell’s outside — successful. 3) Overlapping already placed fibre 1 —
unsuccessful. 4) Overlapping fibre 2’, the neighbouring unit cell’s already placed fibre

2 — unsuccessful. The scale is distorted for legibility.

Geometry 1 is a type of fibre environment that relies only on the random placement of

fibres, where geometry 2 and 3 have more restrictions. Geometry 2 has a condition that

every fibre should at most a distance dmax away from another fibre, ensuring a more

populous environment. Geometry 3 has a restriction in both tightness and looseness,

and will only place a fibre if it fulfils geometry 2’s condition as well as being at least

another distance dmin away from every other fibre.

3.2.2 Fibrils in fibre

For all three geometries mentioned, fibril bundles as fibres is a possibility. When simulat-

ing the structure of fibrils in a fibre, cylindrical fibrils are placed tightly, but randomly in

a bigger enveloping cylinder representing the fibre. A random number between −R and

R for x and y is chosen. If the position r = [x, y] is out of bounds, it is discarded, other-

wise stored in the arrays of fibril values. The script terminates when a number threshold

of discarded positions for a single fibril placement is reached. The length from the origin

r must be less than R−Rfibril, and the fibril cannot overlap with any earlier placed fibril.

For equal Rfibrils, this means |r− ri| > 2Rfibril for all ri. The fibrils can also vary in size,

with a mean value and a standard deviation for r. In that case |r− ri| > Rfibril +Rfibril,i

for all ri must be satisfied. For a tighter fit than what random number generation and

human patience allows, every fibril can be increased in size until they touched one of

their neighbours (do not try this yourself).

27 3.3 Collecting fibres

3.2.3 Predetermination

Two kinds of lattice unit cells were constructed — square and triangular lattices — with

fibre radius R and distance between fibres gap or g as the two parameters. The size of

the unit cells follows from the parameters.

3.3 Collecting fibres

Collecting fibres means the process of finding the fibres in the range of a particle for a

time step and narrowing down the search until one potential fibre is found to be in the

particle’s collision course. This includes calculation and comparing of collision times,

which are second degree problems. There is lot of processing power demanded when

simulating many thousand particles’ movement in many thousand time steps, and the

by streamlining the collection of fibres, one can save much time.

As was developed and proven the fastest of the tested ways of collecting fibres (then

fibrils) in [17] — method 1: The box with optimisation A: tighter box and B: sorting

fibres — is used. The method and optimisations are explained in the next subsections.

3.3.1 Method 1 — The box

For every time step, the script loops over all fibres, saving the ones whose x- and y-

position lies within reach of the particle. The longest a particle can reach in any move-

ment, also counting for reflection of fibres, is dr + Rmax, where dr is the particles’ step

size and Rmax is the largest radius of all fibres. For small differences in the fibres’ radii,

it is suggested that the use of maximum radius rather rather than the specific one found

in the vector improves the runtime. The search for potentially colliding fibres, however,

goes through the xy plane, and fibres never reflect in the ẑ -direction, meaning that one

can confine all potentially colliding fibres within a box of size dr sin dθ + rmax, where dθ

is this step’s angle from the xy plane.

3.3.2 Optimisation A — Tighter box

The optimisation is performed for every direction change, either at a new time step, after

collision or transmission. One may save time by only calculating the collision time of

fibres actually in collision course with the particle. Four limits are set — 1: fibre must

be in front of particle, 2: fibre cannot be further left than its radius of the particles

trajectory, 3: fibre cannot be further away than its radius plus movement in remainder

Chapter 3: METHOD 28

Figure 3.2: Example of the four boundaries that constitute the tighter box in Opti-
misation A. Particle’s position and trajectory (green) among potentially colliding fibres
(blue) seen in the xy plane. Boundaries 1 (yellow), 2 (orange), 3 (red) and 4 (dark red)
shown forming a box of length dl v + rmax and width 2 rmax. Only fibres with centers

within the boundaries can be collided into, and demands calculation of tc.

of the time step, and 4: fibre cannot be further right than its radius of the particles

trajectory. These four boundaries for a particle and its immediate trajectory is shown

in figure 3.2. This will usually shave off every or all but one fibre, saving the script from

solving dot products and second degree equations. There is still a small possibility for

a fibre to remain as the only fibre in the group of potentially colliding fibres without

actually colliding. This could be solved with a parabola instead of a line for the third

boundary, but is not expected to save time.

3.3.3 Optimisation B — Sorting fibres

Before simulating the particles’ movements, the fibres’ x positions vector is sorted from

lowest to highest. The other vectors are also sorted so the same element number repre-

sents the same fibre in all vectors. An example of this can be seen in 3.1 This allows the

search through assorted values to be confined to the y-range only. This will not speed

up Method 2’s runtime, as that does not make use of the three original fibre vectors in

the simulation.

3.3.4 Newer efficiency improvements

The collecting and evaluating of fibres for potential water particle collision is a time

consuming chore that must be done for every particle at least once for every time step.

29 3.5 Finding EDCs

Table 3.1: Example of optimisation B’s effect on three five-dimensional arrays con-
taining x, y and r values for five fibres.

(a) This is the order the fibres
were generated — assorted and

arbitrary.

x -4 5 -2 -1 4
y 0 5 -4 -3 -1
r 0.4 0.5 0.5 0.7 0.3

(b) The same fibres sorted after x
positions from lowest to highest.

y and r in arbitrary order.

x -4 -2 -1 4 5
y 0 -4 -3 -1 5
r 0.4 0.5 0.7 0.3 0.5

When in DiffusionTest.m this was to be done for restricted diffusion, not just hin-

dered, measures were made to cut unnecessary calculation from the script. The array of

potentially colliding fibres pot_fib_col was moved up to the scope of the parfor n =

1:N-loop and set to contain just the fibre restricting the water particle and its possible

equivalent fibres on the other side of the unit cell.

A collision counter was implemented in the scripts to help the debugging process when

unexpected behaviour was encountered.

3.4 Finding EDCs

Before the gradient, phase and signal is implemented in PulsedGradient.m or ConstantGradient.m,

it was still useful to have a number to describe the particles’ displacement, comparable to

the ADC. I introduced the Expected Diffusion Coefficient (EDC), which just is the vari-

ance of the displacement over the diffusion time. Therefore it should be the same number

as the ADC is everything goes as we want, but it is a shortcut worthy a mention. This

was what was done in the project as well, when the script MakeHistogram_xyz generated

a plot and calculated based off of the displacement values and overlayed in the histogram.

It was found by regression, fitting the histogram values to the form f(r) = exp(r2/4D∆).

3.5 Finding ADCs

After a simulation run of PulsedGradient.m or ConstantGradient.m with data from

the matrix can be plotted to show signal attenuation as a a function of b-value. Either

by reading directly off the plot, or by calculating the numbers behind it, the steepness of

the curve in a logarithmic plot will give the value of the ADC. If there are two distinct

flat parts of the curve, then two ADCs can be extracted from the data, hopefully one

DIDF and one DEDF.

Chapter 4

Results

In all runs true diffusion coefficient of D = 3µm2/ms were used. Unless other is noted

have every EDC and ADC the same unit, and all times are in ms. Signal attenuations

are unitless.

4.1 Geometries

Figure 4.1 shows how the different geometries look like in the MATLAB client. Geometry

1 with fibril bundles for fibres can be seen in figure 4.2.

4.2 Runtime

The different parts of the time consuming script DiffusionTest.m turns out to demand

a very skewed distribution of processing power. The script calculates free, hindered

and restricted movement for a number of time steps for both constant and normally

distributed step sizes, all in a row. The runtimes for all combinations of these parametres

is seen in table 4.1 for N = 1000 particles, a total diffusion time T = 10 ms. It is clear

that simulating restricted diffusion – where reflections are nearly unavoidable – is more

intensive than hindered, which again is more intensive than the free case. As for the step

lengths the processor heavier case is of normally distributions, where more calculations

are needed. The biggest discrepancy is the runtimes between using regular for-loops and

parallel parfor-loops for already time consuming scripts. Using parallel loops may cut

the runtime to a fifth. Scripts only taking seconds to complete do not show this effect.

31

Chapter 4: RESULTS 32

(a) Geometry 1 (b) Geometry 2 (c) Geometry 3

-10 -5 0 5 10
-10

-5

0

5

10

(d) Geometry 4

-10 -5 0 5 10
-10

-5

0

5

10

(e) Geometry 5

Figure 4.1: Examples of fibre environments. For G2 dmin = 0.1R was used. G3:
dmin = 0.2R, dmax = 0.3R. G4 and G5: d = 0.2R.

(a) The entire unit cell of fibril bundles. (b) A closer look the fibril bundle. Evidently,
entire fibrils may be placed outside its unit cell.

Figure 4.2: Geometry 1 with fibril bundles as replacements for the solid fibres. All
bundles are identical. Solid fibrils are original, hollow are copies.

33 4.4 Random walk in unit cell

Table 4.1: Runtimes in seconds for N = 1000 and T = 10 ms; different time steps
dt; constant (c) and normally distributed (nd) step sizes; free, hindered and restricted

diffusion.

Free Hindered Restricted
dt (ms) c nd c nd c nd

for 0.1 0.19 1.97 2.34 4.10 9.89 12.23
0.01 1.3 18.6 10.0 36.3 74.7 99.6
0.001 13 186 74 275 675 913

parfor 0.1 0.79 1.11 2.41 2.57 3.37 4.09
0.01 0.9 3.4 3.4 8.9 15.3 21.5
0.001 2 27 11 63 123 189

(a) Trajectory among equally sized fibrils. (b) Trajectory among fibrils with varying radii.

Figure 4.3: Trajectory of water particle moving between fibrils and bouncing into
them. Orange trace plots particle’s position time step by time step. Blue trace plots

same particle’s every direction change.

4.3 Random walk in unit cell

The trajectory of a single water particle in a scarcely populated fibril environment from

the project thesis can be seen in figure 4.3. Figure 4.4 shows a 2 µm sized square unit

cell filled with fibrils of size Rfibril = 0.05 µm. The cell is duplicated to every side and

corner.

A particle that reaches the unit cell wall is transmitted to the other side of the cell.

The particles ’sees’ an endless grid of unit cells. A particle trajectory is shown twice in

figure 4.5, without and with showing transmission at boundary. To the left the particle

still interacts with the fibrils to the lower right of a unit cell when it here seems out of

bounds. To the right the number of lines count the number of transmissions during the

walk.

The z value of any run is of the form as seen in figure 4.6.

Chapter 4: RESULTS 34

(a) Nine unit cells in total, original in centre. (b) Zoomed in on one of the original cell’s cor-
ner. Cell boundary in grey.

Figure 4.4: Generated fibrils in unit cell (filled) and duplicated (hollow) on all sides.
Generated with legal boundary overlap.

(a) True trajectory.
(b) Trajectory with shifted positions at wall

transmission.

Figure 4.5: One particles movement with time step dt = 0.001 ms among fibrils of
radius r = 0.05 µm in a grid of square unit cells of side length l = 4 µm. Only one cell

is displayed. The two trajectories shown represent the same movement.

Figure 4.6: The z value over 100 time steps.

35 4.4 Expected Diffusion Coefficient

Figure 4.7: Histogram visualising x, y, and z values as well as regression curves to
fit from a run with N = 10000 particles moving in ∆ = 100 ms with time steps of

dt = 0.0001 ms.

Table 4.2: EDCs found by regression of N = 1000 water particles in endless fibrils and
runtimes of script for different time steps dt. The true diffusion coefficient is D = 1.65

m2/s, and is expected for Dz.

N=1000
dt (ms) Dx Dy Dz τ (s)
1 0.13 0.14 1.31 219
0.3 0.22 0.20 1.67 289
0.1 0.30 0.31 1.68 288
0.03 0.31 0.37 1.65 338
0.01 0.55 0.45 1.50 425
0.003 0.78 0.72 1.67 631
0.001 0.70 0.81 1.58 1 024
0.0003 0.91 0.90 1.39 2 016
0.0001 0.92 0.93 1.31 4 032
0.00003 0.91 1.10 1.58 8 796
0.00001 0.88 0.97 1.44 19 347

4.4 Expected Diffusion Coefficient

4.4.1 Project thesis

Several runs of water particles in endless fibrils were run in the project, and EDCs were

found. An example of a histogram showing the experimental data as well as the regression

curves can be seen in figure 4.7. The EDCs as well as runtimes for the specific runs is

shown in tables 4.2. Note that these numbers are results from the project thesis, with

another D, than earlier stated. Without the runtimes the same data is plotted in figure

4.9. Additionally, the true diffusion coefficient is shown.

Chapter 4: RESULTS 36

Figure 4.8: N=1000

Figure 4.9: D-values for all dimensions found by regression. Expected Dz shown in
a dashed line.

-4 -2 0 2 4 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

G0
G1
G2
G3
G4
G5

Figure 4.10: EDCs for all geometries as a function of log(T).

4.4.2 Geometries

Calculated EDCs for every geometry can be compared in figure 4.10. Note that these

diffusion times greatly exceed what bear clinical relevance.

4.4.3 Normalised step sizes

In DiffusionTest.m one of the properties whose results were investigated was the distri-

bution of steps sizes. The EDCs of constant step sizes and those of normally distributed

step sizes, can be seen in figure 4.11 for all three kinds of diffusion and a given T = 100

ms and dts in the range of [10−9, 102] ms.

37 4.4 Expected Diffusion Coefficient

-8 -6 -4 -2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

free
hindered
restricted
nd darker

Figure 4.11: EDCs of diffusion in geometry 1 for a range of dts, a given diffusion time
T , all three types of freedom, and both kinds of steps size distribution.

Figure 4.12: Average number of collisions per
√
TK for a range of diffusion times.

4.4.4 Geometric attributes

From the collision counter — originally for debugging purposes — a recurring number can

be extracted. The average number of collisions for a particle divided by the square root

of the diffusion time and the number of time step, N∗col = Ncol/
√
TK, behaves almost

like constant for each geometry. In figure 4.12, this number is shown for all geometries

for a range of diffusion times. The unit for N∗col is 1/
√

ms.

Table 4.3 shows an overview over miscellaneous geometric attributes for every geometry.

4.4.5 Motion averaging

Before motional averaging was implemented in the simulations, it was tested for three

different sized spheres. The EDC of stepwise restricted diffusion superimposed on the

equivalents of motional averaging can be seen in the three cases in figure 4.13. As we

Chapter 4: RESULTS 38

G1 G2 G3 G4g0.2 G4g0.4 G5g0.2 G5g0.4
EDC 2.59 2.05 2.33 2.06 2.23 2.11 2.19
αD 0.86 0.68 0.78 0.69 0.74 0.70 0.73
A/V 0.38 1.48 0.98 1.85 1.20 2.99 1.70
β 0.73 0.40 0.51 0.35 0.45 0.25 0.37
N∗col 0.49 1.61 1.06 4.71 3.22 3.75 2.23

Table 4.3: Miscellaneous geometric attributes for all geometries. G stand for geome-
try, and g stands for gap between neighbouring fibres in numbers of R. The N∗

col and
EDC (and by that the tortuosity) is collected from a run with T = 10 and K = 10000.

The other values are intrinsic of the particular geometry.

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

motion averaging
stepwise

(a) R = 2µm

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

motion averaging
stepwise

(b) R = 5µm. Plausible nu-
cleus size.

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

motion averaging
stepwise

(c) R = 10µm

Figure 4.13: Every plot shows EDCs of stepwise diffusion and motion averaging for a
range of diffusion times. The restricting voxel for the three plots is a sphere of 2, 5 and
10 µm respectively and affects the critical diffusion time for when motional averaging

is representable.

Table 4.4: Stepwise versus wholewise diffusion

T (ms) 10 3.33 1 0.33 0.1 0.03 0.01

stepwise EDC 0.10 0.30 0.94 1.76 2.33 2.62 2.80
wholewise EDC 0.10 0.30 1.00 2.99 10.99 30.11 100.14

fraction 0.99 1.00 0.93 0.59 0.23 0.09 0.03

see, the diffusion time from which the two ways of calculating EDCs coincide vary with

the size of the spheres, becoming larger for larger voxels.

4.4.6 Ballistic regime

When single time steps grow too large for a certain geometry, an interesting effect take

place, where the seemingly convergent D∗ starts to taper. After an even larger increase

in time it may seem to converge again, this time on a lower D∗. This effect is visible in

the figure 4.14, and illustrate where the particles’ movement goes from being diffusive to

ballistic, meaning that for a single time step a particle is will collide with several fibres.

39 4.5 Signals

-10 -5 0 5 10 15
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

100k
10k
1k
100

Figure 4.14: Geometry 5 with gap g = 0.05R between neighbouring fibres. EDCs as
a function of total diffusion time log(T) for different number of time steps K.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 ms
50 ms
200 ms

(a) f1 = 0.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 ms
50 ms
200 ms

(b) f1 = 0.8.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 ms
50 ms
200 ms

(c) f1 = 1.

0 500 1000 1500 2000

-1

-0.8

-0.6

-0.4

-0.2

0

10 ms
50 ms
200 ms

(d) f1 = 0.

0 500 1000 1500 2000

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

10 ms
50 ms
200 ms

(e) f1 = 0.8.

0 500 1000 1500 2000

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

10 ms
50 ms
200 ms

(f) f1 = 1.

Figure 4.15: Signal attenuations after a pulsed gradient spin echo sequence. All
restricted left, f1 = 0.8 middle, and all hindered right. Linear upper and logarithmic

lower.

4.5 Signals

4.5.1 Pulsed gradient

In the simulations with pulsed gradient, gradient duration δ = 0.001ms was used. In

figure 4.15 signal attenuations from a simulated pulsed gradient spin echo sequence with

different fractions f1 of hindered particles can be seen.

Chapter 4: RESULTS 40

0 500 1000 1500 2000

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

10 ms
50 ms
200 ms

(a) f1 = 0.

0 500 1000 1500 2000

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

10 ms
50 ms
200 ms

(b) f1 = 0.8.

0 500 1000 1500 2000

-0.25

-0.2

-0.15

-0.1

-0.05

0

10 ms
50 ms
200 ms

(c) f1 = 1.

0 500 1000 1500 2000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 ms
50 ms
200 ms

(d) f1 = 0.

0 500 1000 1500 2000

0.75

0.8

0.85

0.9

0.95

1

10 ms
50 ms
200 ms

(e) f1 = 0.8.

0 500 1000 1500 2000

0.75

0.8

0.85

0.9

0.95

1

10 ms
50 ms
200 ms

(f) f1 = 1.

Figure 4.16: Signal attenuations after a constant gradient spin echo sequence. All
restricted left, f1 = 0.8 middle, and all hindered right. Linear upper and logarithmic

lower.

4.5.2 Constant gradient

In figure 4.16 signal attenuations from a simulated constant gradient spin echo sequence

can be seen. The same values for f1 as for the pulsed gradient case is used.

Chapter 5

Discussion

In general during simulations, the particles seem well behaved when being initially placed,

finding directions for every time step, and reflecting off of both fibril and fibre walls. Both

results and debugging during the project and master’s thesis indicate no errors or bias.

5.1 Runtime

Note that experience suggests runtimes can vary as much as 10 % off the named results

based on composition of fibre and positioning of water particles. The runtime greatly

depends on number of reflections, and each run presents great variability in to which

degree particles find pockets of free space or get stuck in a tight cluster of fibrils. This is

the case both several runs on same set of fibrils as well as runs on different sets of fibrils.

Different measures were initiated for lowering the runtime which we may assume was

successful, interpreting the table 4.1.

5.2 Normalised step sizes

As figure 4.11 clearly shows, there are no greater difference between the EDCs of diffusion

with constant step sizes and those of normally distributed step sizes than the variations

in the EDCs for each individual case. Table ?? shows that including the extra step of

changing the step length dr for every step consumes a lot of time. When the outcome

is indistinguishable from those of constant step sizes, it is only reasonable to discard the

normally distributed step sizes in further simulations.

41

Chapter 5: DISCUSSION 42

5.3 Ballistic regime

As seen in figure refballistic there needs to be at least to be K = 1000 time steps when

simulating diffusion in geometry 5 with a gap of g = 0.05R. When the diffusion time

exceeds 10 ms, and therefore exceeds the order of magnitude for T2∗ relaxation time and

spin echo sequences, = 100 can already be deemed too small for accurate calculation of

EDCs. For a higher K, the EDC drops off at a higher T . Surprisingly all EDCs seem

to flatten out for an even higher T than the drop off diffusion time. The plot is not

prioritised completed for all T s and Ks, because of the time it consumed. Interestingly,

all diffusion coefficients seem to converge again at the highest diffusion times. Reading

out what should be the correct D∗ is not hard, as all curves show sign of convergence at

a horizontal line near 1.8 µm2/ms.

Unknowingly, this is the effect seen in figure ?? and table 4.2 from the project thesis.

This is when diffusion was simulated in a fibril environment, not a fibre environment.

Therefore, much lower diffusion times and step sizes are needed for reaching the ballistic

regime.

A result that does not drop for large values of T is the recorded number of collisions

divided by the square root of TK. The number of collision recorded does not include

direction changes due to a new time step. As the number of steps increases, we have

more diffusive and less ballistic behaviour. It’s not clear whether this plays into the

fact that the number of collisions are a constant for every geometry, even for very long

diffusion times.

It should be noted that these diffusion times in no way are applicable for clinical uses for

at least two reasons. A normal magnetic field gradient strength does not allow T1 and T2

relaxation over an order of magnitude of a second. Also, water in the two compartments

are interchangeable — meaning hindered particles can become restricted and vice versa

— which would influence the interpretation of the biexponential representation.

5.4 Geometries

For all geometries the fibre radius is fixed at r = 2µm. In the figure 4.10, we see EDCs

for a range of diffusion times on a logarithmic scale. All of them start at about D = 3

and quickly fall for longer diffusion times. With the exception of G0 and G2, the EDCs

flattens out, giving a way of defining D∗ for those geometries. When listing the EDCs

in rising or falling order, G0 and G2 are also the only geometries that keeps that order

from being the same for all diffusion times.

43 5.4 Geometries

5.4.1 Geometry 0 – voxel

This geometry does not contain fibres, but rather a single hollow sphere of radius rvox =

5µm, in which water diffuses. The EDCs follow a restricted diffusion pattern for the

different diffusion times, as one would expect. This curve has deemed harder to replicate

with a function of the form D(T) = D/[1 + (T/T ′)a] than expected.

5.4.2 Geometry 1 – scattered

This geometry reveals its way of random generation, as it varies a lot in local fibre density.

Some clusters are spreads over the unit cell, but most of the fibres are scattered in a way

that opens up of almost unhindered movement for the water particles. Firstly we see the

EDCs lower than D, but still generally high. True random generation is an inefficient

way of packing fibres, and probably far away from how we could expect collagen mass

in both healthy and unhealthy FGT.

It is much to consider when determining how long the smallest time step should be,

seeing as at the tightest cluster fibres are placed more than a order of magnitude closer

than for the most part of the environment.

5.4.3 Geometry 2 – tight

Seeing as this geometry only demands a certain tightness — every new fibre has to

be placed with a gap to the closest fibre smaller than a given dG2. This opens up

for the possibilities of creating almost closed compartments in the xy-plane, revealing

ADCs similar to those of restricting environments. This geometry alone was tested for

K = 10000 as the EDCs for a lower number of steps never really flattened out.

Although it may be solved with a higher number of time steps, the EDC curve never

flattens out for these diffusion times, indicating that restricted diffusion behaviour may

be achieved without actual enclosement in an environment of fibres of this size.

5.4.4 Geometry 3 – semi tight

This geometry does not have the restricting properties G2 has, due to the requirement

of not generating fibres within a radius of another fibre. It is certainly tighter than G1,

which is reflected in its EDC. The geometry naturally has fewer variations and clusters,

and its minimum step size is therefore easier to determine.

Chapter 5: DISCUSSION 44

The EDC of this geometry flattens out to a lower D∗ than the one of G1, which is

expected, as G3 is more populated than G1.

5.4.5 Geometry 4 – square lattice

The square lattice is quite efficiently packed, with a relatively low porosity. However,

in comparison to the triangular lattice, the same porosity does not mean the same A/V

ratio or the same gap between fibres. This comes of every fibre having only four equally

distant neighbours, and the four next are
√

2 further away. The pocket between four

fibres are relatively big compared to the gap between two, at least for an effectively

packed structure. This could be thought to give the EDCs for G4 restricting properties,

but as we see from figure 4.10 that is not the case.

5.4.6 Geometry 5 – triangular lattice

The triangular lattice is the most volume efficient way of packing equal sized circular

particles in two dimensions, and as such may be most similar to how collagen are stacked

in breast tissue.

5.5 Geometrical attributes

Given a series of NT = 3 diffusion times T = [10, 20, 30] and a fixed number of steps

K = 1000, the simulation would have to calculate a total of KTOT = K = NTK = 3000

steps. If rather the duration dt of the time step was fixed at a value, the shortest diffusion

time K = 1000 steps would give dt = 0.01. This opens up for continuing the run for T =

[20, 30] after T = 10 is done and still calculate a total ofKTOT = K = max(T)/dt = 3000

steps. If the distributions of diffusion times weren’t linear, but increasingly geometrical,

a fixed number of steps would the be the most runtime efficient.

What else needs considering is how long you can make every time step before the sim-

ulation enters the ballistic regime, and the results start behaving differently. It would

be of use to assign a number drmax to every geometry to ensure diffusive behaviour, but

it’s not easy to describe a geometry or structure with a set of numbers, especially not

a single number. None of the attempts to automatically calculate a number to indicate

how long the shortest step should be has been successful. There are also few intuitive

links between the different values of the geometrical attributes shown in table 4.3 and

the geometry’s equivalent EDCs.

45 5.7 Signals

5.6 Signals

5.6.1 PulsedGradient.m

In the figure 4.15 we see a signal attenuation as a function of b-values curving downward

both in the linear and logarithmic plot. This may be an artefact of the simulation, and is

not expected to appear in an experimental case. As stated and shortly explained in [2],

poles may appear for high b-values when calculating the signal from phases. However,

b-values far higher than b = 2000 shows anomalous behaviour, which is not the case here.

Also the poles appear in very different b regimes for the different values of T , while these

results show a rather uniform curvature for every T , meaning other reasons could be

behind the dip in the signal. The phenomenon probably is a result of the simulation’s

unrealistic simplicity.

The ADCs from this script do not vary much for the differing f1s. While the EDCs in

general seem to fit experimental data for specifically healthy breast tissue[18], the signal

equivalent may have some flaws in its calculation.

5.6.2 ConstantGradient.m

The signal attenuation curves downward in the linear plot in figure 4.16, but, in contrast

to PulsedGradient.m, it curves upward in the logarithmic plot. This is in agreement

with the shape of the curves for the equivalent simulations in [2]. It is, however, difficult

from the plot to determine the two Ds if we were to fit the signal to a biexponential

representation, as the graphs curve very slightly all over and has no flat parts.

5.7 Assumptions and possible sources of error

There are always assumptions made when translating a real phenomenon into something

programmable and a into a model used for simulations.

5.7.1 Interpretation of microscopy images

As earlier mentioned, it is a fairly big simplification to give the model of the cell nucleus

in the FGT an equal size and spherical shape. It is shown that adjusting the size, will

affect the runtime — as the feasibility for motion averaging is given by the diffusion time

and the square root of the sphere size. Moreover, adjusting the size will give differing

contributions to the MR signal. If we use the bi-exponential representation we would

Chapter 5: DISCUSSION 46

see that the restricted contribution, determined by ADCfast, skew the signal decay. An

increase in global nucleus size would flatten the curve for low b-values, and a decrease

would steepen it. If, however, the nuclei varied in size, as is what we see in the microscopy

images, the signal for low b-values would be a sum of steep and flat contributions, maybe

nullifying each other, making use of an average a good assumption.

We cannot determine the roughness of the fibroblast nucleus surface, nor the roughness’

affect on the signal. If, instead of spheres, the nuclei were ellipsoids, it could be argued

that the signal would only be affected in the the directions in which the nuclei are

shortened, and that the final affect on the signal would be as if the nuclei were spheres

of radii equal to the mean of the ellipsoids’ principal semi-axes.

5.7.2 Pseudodiffusion and flow between compartments

We have mainly focused on stagnant water as a source of diffusing hydrogenous matter.

While it is with a large margin the biggest contribution to the MR signal after an RF

pulse, there is a significant portion of water not hindered by collagen and not restricted

by nucleus walls, but driven through a network of capillaries by the pressure of a beating

heart. The water in blood flows in circulation to and fro the heart, within a network of

small vessels so rich and intricate, that the blood as a whole at no point can be said to

flow in any specific direction. Instead, if a collection of arbitrary blood water particles is

chosen to observe, it will seemingly diffuse, but with much higher speeds. This is called

pseudodiffusion and can only be shown on MR images with low b-values.

Chapter 6

Conclusion

MRI is a widely used tomographic technique that can diagnose many kinds of tissues.

There are also a lot of ongoing research in the field of medical physics regarding tomog-

raphy. Despite this, There are still a lot to explore regarding the microstructure of both

healthy and tumour-stricken tissue. Although there are new and precise representations

that fit certain experimental data, the step forward in a clinical sense still awaits a model

that can explain, justify and predict the same kind of results.

This thesis does not make a breakthrough in understanding the relationship between

signals and microstructure, but it may be a step forward. It explores the effects of the

ballistic regime, maps the feasibility of motion averaging, discusses the limits between

restriction and hindrance, and finds signals in agreement with experimental data. Diffu-

sion coefficients both derived from displacement and phase shift, and for three types of

diffusion, have proven themselves attainable.

6.1 Further work

Although much of the tool box that is the MATLAB environment created by Ane and

myself has been used to calculate several types of signal, there are still potential for

others to pick up the code and continue the work on these scripts. There are plenty of

more one can add to these simulations if one sees the necessity in it. Simulating other

spin echo sequences, or maybe not spin echo at all, could be done with the same core

code of diffusion of water particles in fibre environments. Generating other kinds of tissue

representation could also be done without making the diffusion part of the code obsolete.

If not writing more code, using already existing code with a purposeful focus to explore

other cases than what is touched by this thesis could reveal much with a relatively small

effort.

47

Appendix A

Code and pseudocode

Following are entire scripts written and run during project and master semesters. There

are also some pseudocode for scripts whose entire code not deemed necessary for pub-

lication. More scripts were written, however the ones presented are carrying the most

importance.

A.1 RestrictedReplacement.m

This script was written to investigate the possibilities of replacing the stepwise restricted

diffusion with motion averaging.

%**1

%*** Measures the EDC of a single random step inside a fibre or cell ***2

%*** as well as the EDC of step wise diffusion for the same time. ***3

%**4

5

tic6

7

N = 10000; %Number of particles []8

R = 5; %Voxel radius [µm]9

T = 0.01; %Total diffusion time [ms]10

D = 3; %True diffusion coefficient [µm^2/ms]11

12

K = 1000; %Number of steps []13

dt = T/K; %Time step [ms]14

dr = sqrt(6*D*dt); %Stepsize [µm]15

49

50 A.1 RestrictedReplacement.m

16

x0 = zeros(1,N);17

y0 = zeros(1,N);18

z0 = zeros(1,N);19

20

x_end = zeros(1,N);21

y_end = zeros(1,N);22

z_end = zeros(1,N);23

24

cols = zeros(1,N);25

26

n = 1;27

while n <= N28

x0(n) = 2*R*(1-2*rand());29

y0(n) = 2*R*(1-2*rand());30

z0(n) = 2*R*(1-2*rand());31

if sqrt(x0(n)*^2 + y0(n)^2 + z0(n)^2) < R32

n = n + 1;33

end34

end35

36

n = 1;37

while n <= N38

x_end(n) = 2*R*(1-2*rand());39

y_end(n) = 2*R*(1-2*rand());40

z_end(n) = 2*R*(1-2*rand());41

if sqrt(x_end(n)^2+y_end(n)^2+z_end(n)^2) < R42

n = n + 1;43

end44

end45

46

x = x_end - x0;47

y = y_end - y0;48

z = z_end - z0;49

50

avg_x = sum(x)/N;51

avg_y = sum(y)/N;52

avg_z = sum(z)/N;53

avg_ma = (avg_x+avg_y+avg_z)/3;54

Appendix A: CODE AND PSEUDOCODE 51

55

EDC_x = sum(x.*x)/(2*N*T);56

EDC_y = sum(y.*y)/(2*N*T);57

EDC_z = sum(z.*z)/(2*N*T);58

EDC_ma = (EDC_x+EDC_y+EDC_z)/3;59

60

%*******************************Loop over all particles*******************61

62

parfor n = 1:N63

64

if 100*n/N == round(100*n/N)65

string = [’ParticleNr : ’, num2str(n), ’ of ’,num2str(N)];66

if 10*n/N == round(10*n/N)67

string = [’ParticleNr : ’, num2str(n), ...68

’ of ’,num2str(N), ’, estimated additional 10% complete’];69

end70

disp(string)71

end72

73

x_pos = zeros(1,K); %Initializing arrays to74

y_pos = x_pos; %save all positions.75

z_pos = x_pos; %76

77

78

x_pos(1) = x0(n); %Adds the initial position.79

y_pos(1) = y0(n); %80

z_pos(1) = z0(n); %81

82

k = 2;83

while k <= K+184

85

pos = [x_pos(k-1) y_pos(k-1) z_pos(k-1)]; %Current position.86

87

d_cos_theta = 2*rand - 1; %Finds direction.88

d_theta = acos(d_cos_theta); %89

d_phi = 2*pi*rand; %90

91

dx = dr*cos(d_phi)*sin(d_theta); %Computes the step.92

dy = dr*sin(d_phi)*sin(d_theta); % [µm]93

52 A.1 RestrictedReplacement.m

dz = dr*d_cos_theta; %94

95

dxy = dr*sin(d_theta); %Step’s reach in xy-plane96

97

v = [dx dy dz]/dt; %Velocity [µm/ms]98

99

ddt = dt; %Remaining time of time step100

101

%(III)***** Loop in case of multiple collision **********102

%********** in same time step. **********103

104

collide = 1; %Assuming collision105

106

while collide == 1107

108

%***** Computes time until collision from current *****109

%***** position given the velocity v. *****110

111

px = pos(1); %Current x position112

py = pos(2); %Current y position113

dl = norm(v(1:2))*ddt; %Remaining step movement114

phi = atan2(v(2),v(1)); %Current direction115

116

%ABC formula used to find time of collision t_c117

A = dot(v,v);118

B = 2*dot(pos,v);119

C = dot(pos,pos)- R^2;120

SQ = sqrt(B^2 - 4*A*C);121

t_c = (-B + SQ)/(2*A);122

%**123

124

if t_c >= ddt %The step does not lead to125

collide = 0; % collision126

end127

128

if collide == 1 %Collision129

130

cols(n) = cols(n) + 1;131

132

Appendix A: CODE AND PSEUDOCODE 53

%Surface normal in collision point133

normal = pos + v*t_c; %Collision point134

normal = normal/norm(normal);135

v_new = v - 2*dot(v,normal)*normal;136

pos = pos + v*t_c; %Updates position.137

v = v_new; %Updates velocity.138

ddt = ddt-t_c; %Updates ddt in case of multiple139

% collisons in one time step.140

141

else %Not collision; assumption wrong.142

143

x_pos(k) = pos(1) + v(1)*ddt; %Finds new positions.144

y_pos(k) = pos(2) + v(2)*ddt; %145

z_pos(k) = pos(3) + v(3)*ddt; %146

147

end148

end149

150

%(III)***151

k = k + 1;152

end153

154

x_end(n) = x_pos(k-1);155

y_end(n) = y_pos(k-1);156

z_end(n) = z_pos(k-1);157

158

end159

160

x = x_end - x0;161

y = y_end - y0;162

z = z_end - z0;163

164

avg_x = sum(x)/N;165

avg_y = sum(y)/N;166

avg_z = sum(z)/N;167

avg_r = (avg_x+avg_y+avg_z)/3;168

169

EDC_x = sum(x.*x)/(2*N*T);170

EDC_y = sum(y.*y)/(2*N*T);171

54 A.1 RestrictedReplacement.m

EDC_z = sum(z.*z)/(2*N*T);172

EDC_r = (EDC_x+EDC_y+EDC_z)/3;173

174

cols = sum(cols)/N;175

176

toc177

Appendix A: CODE AND PSEUDOCODE 55

A.2 Fibres.m

The first fibre generating script written. This also includes the possibility of fibres as

fibril bundles.

%**1

%*** GEOMETRY 1 ***2

%*** Randomly generates a square unit cell filled with small massive ***3

%*** cylinders (fibres) of equal radii. Returns a matrix with all ***4

%*** fibres’ x-positions, y-positions, radii as well as information ***5

%*** about the cell, which is width, length and whether or not if this ***6

%*** geometry is a lattice structure. ***7

%**8

9

l = 20; % Half length of unit cell side [µm]10

R_fibre = 2; % Radius of massive cylinders or bundle boundaries [µm]11

R_fibril = 0.5; % Radius of massive cylinders in bundles [µm]12

N_fibril_fails = 100000;% # of max consequtive unsuccessful placements []13

N_fibre_fails = 10; % # of max consequtive unsuccessul placements []14

15

L = 2*l;16

17

fibre_xpos = L*rand - l;18

fibre_ypos = L*rand - l;19

20

N_fibres = 1;21

22

n_tries = 0;23

24

while n_tries < N_fibre_fails25

newxpos = L*rand - l;26

newypos = L*rand - l;27

collide = false;28

29

for n = 1:N_fibres30

if ∼collide31

for i = -L:L:L32

if ∼collide33

56 A.2 Fibres.m

for j = -L:L:L34

if (newxpos-fibre_xpos(n) + i)^2 + ...35

(newypos-fibre_ypos(n) + j)^2 < ...36

(2*R_fibre)^237

collide = true;38

n_tries = n_tries + 1;39

break40

end41

end42

end43

end44

end45

end46

47

if collide == false48

N_fibres = N_fibres + 1;49

fibre_xpos(N_fibres) = newxpos;50

fibre_ypos(N_fibres) = newypos;51

n_tries = 0;52

end53

end54

55

disp(N_fibres)56

57

cell_sizes = zeros(1, N_fibres);58

cell_sizes(1) = l;59

cell_sizes(2) = l;60

cell_sizes(3) = 0;61

62

fibril_xpos = 2*R_fibre*rand - R_fibre;63

fibril_ypos = 2*R_fibre*rand - R_fibre;64

while fibril_xpos^2 + fibril_ypos^2 > (R_fibre - R_fibril)^265

fibril_xpos = 2*R_fibre*rand - R_fibre;66

fibril_ypos = 2*R_fibre*rand - R_fibre;67

end68

fibril_radii = R_fibril;69

70

n_fibrils = 1;71

72

Appendix A: CODE AND PSEUDOCODE 57

n_tries = 0;73

temp_R_fibril = R_fibril;74

75

while n_tries < N_fibril_fails76

newxpos = 2*R_fibre*rand - R_fibre;77

newypos = 2*R_fibre*rand - R_fibre;78

collide = false;79

closeTo = 0;80

81

for n = 1:n_fibrils82

if ((newxpos-fibril_xpos(n))^2 + ...83

(newypos-fibril_ypos(n))^2 < (R_fibril+temp_R_fibril)^2 || ...84

(newxpos^2 + newypos^2 > (R_fibre - temp_R_fibril)^2))85

collide = true;86

n_tries = n_tries + 1;87

if (temp_R_fibril > 0.3)88

temp_R_fibril = temp_R_fibril - 0.01;89

else90

temp_R_fibril = R_fibril;91

end92

break93

end94

end95

96

if collide == false97

n_fibrils = n_fibrils + 1;98

fibril_xpos(n_fibrils) = newxpos;99

fibril_ypos(n_fibrils) = newypos;100

fibril_radii(n_fibrils) = temp_R_fibril;101

n_tries = 0;102

temp_R_fibril = R_fibril;103

end104

end105

106

disp(n_fibrils)107

108

for i = 1:n_fibrils109

minDist = Inf;110

for j = 1:n_fibrils111

58 A.2 Fibres.m

tempDist = sqrt((fibril_xpos(i)-fibril_xpos(j))^2 + ...112

(fibril_ypos(i)-fibril_ypos(j))^2) - ...113

(fibril_radii(i) + fibril_radii(j));114

if i ∼= j && tempDist < minDist115

minDist = tempDist;116

end117

end118

fibril_radii(i) = fibril_radii(i)+minDist;119

end120

121

hold on122

for i=-L:L:L123

for j=-L:L:L124

for n=1:N_fibres125

PlotCircle(fibre_xpos(n) + i, ...126

fibre_ypos(n) + j, R_fibre, false)127

end128

end129

end130

131

for n=1:n_fibres132

for o=1:n_fibrils133

PlotCircle(fibre_xpos(n) + fibril_xpos(o), ...134

fibre_ypos(n) + fibril_ypos(o), fibril_radii(o), true)135

end136

end137

138

s = 0.1; % Recommended smallest step size [µm]139

cell_sizes(4) = s;140

141

fibre_radii = R_fibre*ones(1,N_fibres);142

fibre_vals = [fibre_xpos; fibre_ypos; fibre_radii; cell_sizes];143

fibril_bundle_vals = [fibril_xpos; fibril_ypos; fibril_radii];144

save ’fibres1.mat’ fibre_vals145

save ’fibrils.mat’ fibril_bundle_vals146

Appendix A: CODE AND PSEUDOCODE 59

A.3 Fibres2.m

Fibres2.m functions very similarly as Fibres.m, the only difference being the restriction

of tightness. A parameter tightness (in units of micrometers) is chosen in the beginning

of the script, and as each fibre is placed, it needs to be at most tightness away from

another fibre. This means that one close neighbour is sufficient.

fibre radius r

tightness t

[...]

for a number of tries

random legal xpos and ypos

for all other fibres

for fibre copies L away in both x and y

if |xpos, ypos| - fibre’s |x, y| < 2r + t

if |xpos, ypos| - fibre’s |x, y| < 2r

collision: increase number of unsuccessful tries

break to outermost loop

else (for all cases)

save xpos and ypos

end

else

not tight enough: increase number of unsuccessful tries

break to outermost loop

end

end

end

save xpos and ypos

end

[...]

60 A.4 Fibres3.m

A.4 Fibres3.m

%**1

%*** Randomly generates a square unit cell filled with small massive ***2

%*** cylinders (fibres). The microstructure is denser than for Fibres.m ***3

%*** Generates positions of the fibres with equal radii. ***4

%*** Returns a matrix with all ***5

%*** fibres’ x-positions, y-positions, radii as well as information ***6

%*** about the cell, which is width, length and whether or not if this ***7

%*** geometry is a lattice structure. ***8

%**9

10

l = 20; %Half length of unit cell side [µm]11

R_fibre = 2; %Radius of massive cylinders or bundle boundaries [µm]12

R_fibril = 0.5; %Radius of massive cylinders in bundles [µm]13

N_fibril_fails = 100000;%# of max consecutive unsuccessful placements []14

N_fibre_fails = 100000; %# of max consecutive unsuccessful placements []15

tightness = 0.3*R_fibre;%Maximum distance to all neighbouring fibres [µm]16

looseness = 0.2*R_fibre;%Minimum distance to all neighbouring fibres [µm]17

18

L = 2*l;19

20

fibre_xpos = L*rand - l;21

fibre_ypos = L*rand - l;22

23

N_fibres = 1;24

25

n_tries = 0;26

27

while n_tries < N_fibre_fails28

newxpos = L*rand - l;29

newypos = L*rand - l;30

collide = false;31

tightfit = false;32

33

for n = 1:N_fibres34

if ∼collide35

for i = -L:L:L36

Appendix A: CODE AND PSEUDOCODE 61

if ∼collide37

for j = -L:L:L38

if (newxpos-fibre_xpos(n) + i)^2 + ...39

(newypos-fibre_ypos(n) + j)^2 < ...40

(2*R_fibre+tightness)^241

tightfit = true;42

if (newxpos-fibre_xpos(n) + i)^2 + ...43

(newypos-fibre_ypos(n) + j)^2 < ...44

(2*R_fibre+looseness)^245

n_tries = n_tries + 1;46

collide = true;47

break48

end49

end50

end51

end52

end53

end54

end55

56

if tightfit && ∼collide57

N_fibres = N_fibres + 1;58

fibre_xpos(N_fibres) = newxpos;59

fibre_ypos(N_fibres) = newypos;60

n_tries = 0;61

end62

end63

64

disp(N_fibres)65

66

cell_sizes = zeros(1, N_fibres);67

cell_sizes(1) = l;68

cell_sizes(2) = l;69

cell_sizes(3) = 0;70

71

hold on72

for i=-L:L:L73

for j=-L:L:L74

for n=1:N_fibres75

62 A.4 Fibres3.m

PlotCircle(fibre_xpos(n), ...76

fibre_ypos(n), R_fibre, false)77

end78

end79

end80

81

plot([-l,l,l,-l,-l],[l,l,-l,-l,l])82

83

s = 0.01;84

cell_sizes(4) = s;85

86

fibre_radii = R_fibre*ones(1,N_fibres);87

fibre_vals = [fibre_xpos; fibre_ypos; fibre_radii; cell_sizes];88

save ’fibres3.mat’ fibre_vals89

Appendix A: CODE AND PSEUDOCODE 63

A.5 Fibres4.m

Unlike the previous geometries, this one is determined by two parameters and no ran-

domness. The fourth geometry is a square lattice structure, naturally with a square unit

cell and fibres along the cell wall. Additionally, the next closest neighbours are added in

the information matrix fibre_vals and exported to be read by a diffusion script. This

is done to ensure that all potentially colliding fibres are collected even for step sizes large

enough to be comparable to the unit cell size.

%**1

%*** Generates a square unit cell filled with a single small massive ***2

%*** cylinder (fibre). This represents a square lattice. ***3

%*** ***4

%*** o o o Square unit cell ***5

%*** o|ø|o l_y = sqrt(3)/2 * l_x ***6

%*** o o o ***7

%*** ***8

%**9

10

R = 2; % Radius of massive cylinders [µm]11

gap = 0.2*R; % Distance between fibres [µm]12

13

l = R + gap/2; % Implied half length of unit cell side [µm]14

L = 2*l; % Whole length of unit cell [µm]15

16

disp(’Number of fibres in cell’)17

disp(1)18

disp(’Number of fibres exported’)19

disp(9)20

21

hold on22

for i=-L:L:L23

for j=-L:L:L24

PlotCircle(0+i, 0+j, R, false)25

end26

end27

28

plot([-l,l,l,-l,-l],[l,l,-l,-l,l])29

64 A.5 Fibres4.m

30

s = gap/10;31

32

fibre_vals = [[-L,-L,-L, 0, 0, 0, L, L, L]; ...33

[-L, 0, L,-L, 0, L,-L, 0, L]; ...34

[R, R, R, R, R, R, R, R, R]; ...35

[l, l, 1, s, 0, 0, 0, 0, 0]];36

37

save ’fibres4.mat’ fibre_vals38

Appendix A: CODE AND PSEUDOCODE 65

0

ly

Ly

-ly

-Ly

0 lx Lx
3Lx/4lx/2

-Lx
-3Lx/4

-lx
-lx/2

Figure A.1: A fibre (red) has six neighbouring fibres (orange) equally far away that
all half-intersects the rectangular unit cell (blue) of width Lx and length Ly. Exported

are also the next closest fibres (yellow), making the total number of fibres 19.

A.6 Fibres5.m

In the fifth geometry, a triangular lattice geometry, every fibre has six neighbours of equal

distance. This means that the unit cell cannot be square. Once again, gap determines

the distance between fibres, making lx the same as in the square lattice. When every

neighbouring fibres is placed on the unit cell wall, the length is
√

3/2 greater than the

width. There are seven fibres in the unit cell, and 19 if we include one more layer. As in

geometry 4, the extra layer is exported to ’fibres5.mat’. The positions then becomes:

66 A.7 PulsedGradient.m

A.7 PulsedGradient.m

%**1

%*** Computes the final signal of a spin echo sequence with an ***2

%*** infinitesimal gradient duration for N particles diffusing in a ***3

%*** certain fibre environment. ***4

%**5

6

tic7

8

%*** Parametres ***9

N = 10000; %Number of particles10

Gs = 0:50:1700; %Magnetic field gradient strength [T/m]11

delta = 0.001; %Duration of gradient application [ms]12

f = 0.8; %Fraction of hindered particles13

Ts = [10,50,200]; %Diffusion times [ms]14

%******************15

16

%*** Constants ***17

D = 3; %True diffusion coefficient [µm^2/ms]18

gamma = 2.675*10^8; %Gyromagnetic ratio rad/(T*s)19

K_min = 1000; %Number of hindered minimum time steps20

R_r = 5; %Radius of spherical nuclei [µm]21

K_r = 100; %Good assumption for R_r = 5 µm22

%*****************23

24

%*** Initialisations ***25

N_h = f*N; %Number of hindered particles26

N_r = N-N_h; %Number of restricted particles27

N_T = length(Ts); %Number of diffusion times28

N_G = length(Gs); %Number fof gradient strengths29

Ks = K_min*ones(1,N_T); %Number of time steps for each diff. time30

dts_r = Ts/K_r; %Time steps for each diffusion time31

32

avg_xyz_h = zeros(N_T,3); %Average displacements33

avg_h = zeros(N_T,1); %34

avg_xyz_r = zeros(N_T,3); %35

avg_r = zeros(N_T,1); %36

Appendix A: CODE AND PSEUDOCODE 67

avg = zeros(N_T,1); %37

38

EDC_xyz_h = zeros(N_T,3); %Expected diffusion coefficient (var/T)39

EDC_h = zeros(N_T,1); %40

EDC_xyz_r = zeros(N_T,3); %41

EDC_r = zeros(N_T,1); %42

EDC = zeros(N_T,1);43

44

ADC_xyz_h = zeros(N_T,3); %Apparent diffusion coefficient45

ADC_h = zeros(N_T,1); %46

ADC_xyz_r = zeros(N_T,3); %47

ADC_r = zeros(N_T,1); %48

ADC = zeros(N_T,1); %49

50

cols_h = zeros(N_T,1); %Number of hindered collisions51

52

d_phase_h = zeros(N_h,N_G);53

d_phase_r = zeros(N_r,N_G);54

55

signal_matrix = zeros(N_T*N_G,5); %Matrix for results56

%Adding the diffusion times in ms and the b-values in s/mm^2 for every G57

for n_T = 1:N_T58

signal_matrix((n_T-1)*N_G+(1:N_G), 1) = Ts(n_T);59

bs = (Gs*delta*gamma).^2*Ts(n_T)*10^-15;60

signal_matrix((n_T-1)*N_G+(1:N_G),2) = bs;61

end62

%***********************63

64

%*** Begin: Fibre composition ***65

geometry = load(’fibres5.mat’); %Fibre structure (1-5)66

fibre_xpos = geometry.fibre_vals(1,:);67

fibre_ypos = geometry.fibre_vals(2,:);68

fibre_radii = geometry.fibre_vals(3,:);69

N_fibres = length(fibre_radii); %Number of fibres70

71

l_x = geometry.fibre_vals(4,1); %Half width unit cell size [µm]72

l_y = geometry.fibre_vals(4,2); %Half length unit cell size [µm]73

L_x = 2*l_x; %Whole width of unit cell [µm]74

L_y = 2*l_y; %Whole length of unit cell [µm]75

68 A.7 PulsedGradient.m

lattice = geometry.fibre_vals(4,3); %76

77

equal_radii = true;78

R = fibre_radii(1); %Radius of cylindrical fibres79

for i=2:N_fibres %Open up for varying fibre radii80

if fibre_radii(i) > R %81

R = fibre_radii(i); %In this case maximum radius of cyl. fibres82

equal_radii = false; %83

end %84

end %85

86

dts = geometry.fibre_vals(4,4)*ones(1,N_T);87

for n_T = 1:N_T88

if Ts(n_T)/dts(n_T) < K_min %If T is too short for K_min steps,89

dts(n_T) = Ts(n_T)/K_min; % make sure the time step is shortened.90

end91

Ks(n_T) = floor(Ts(n_T)/dts(n_T)); %Adjusting number of time steps92

end93

%**** End: Fibre composition ****94

95

if lattice == 096

%*** Begin: Add the fibres near cell edges on the opposite side ***97

for i = 1:n_fibres98

if fibre_xpos(i) < -l + fibre_radii(i)99

n_fibres = n_fibres + 1;100

fibre_xpos(n_fibres) = fibre_xpos(i) + L;101

fibre_ypos(n_fibres) = fibre_ypos(i);102

fibre_radii(n_fibres) = fibre_radii(i);103

if fibre_ypos(i) < -l + fibre_radii(i)104

n_fibres = n_fibres + 1;105

fibre_xpos(n_fibres) = fibre_xpos(i) + L;106

fibre_ypos(n_fibres) = fibre_ypos(i) + L;107

fibre_radii(n_fibres) = fibre_radii(i);108

elseif fibre_ypos(i) > l - fibre_radii(i)109

n_fibres = n_fibres + 1;110

fibre_xpos(n_fibres) = fibre_xpos(i) + L;111

fibre_ypos(n_fibres) = fibre_ypos(i) - L;112

fibre_radii(n_fibres) = fibre_radii(i);113

end114

Appendix A: CODE AND PSEUDOCODE 69

elseif fibre_xpos(i) > l - fibre_radii(i)115

n_fibres = n_fibres + 1;116

fibre_xpos(n_fibres) = fibre_xpos(i) - L;117

fibre_ypos(n_fibres) = fibre_ypos(i);118

fibre_radii(n_fibres) = fibre_radii(i);119

if fibre_ypos(i) < -l + fibre_radii(i)120

n_fibres = n_fibres + 1;121

fibre_xpos(n_fibres) = fibre_xpos(i) - L;122

fibre_ypos(n_fibres) = fibre_ypos(i) + L;123

fibre_radii(n_fibres) = fibre_radii(i);124

elseif fibre_ypos(i) > l - fibre_radii(i)125

n_fibres = n_fibres + 1;126

fibre_xpos(n_fibres) = fibre_xpos(i) - L;127

fibre_ypos(n_fibres) = fibre_ypos(i) - L;128

fibre_radii(n_fibres) = fibre_radii(i);129

end130

end131

if fibre_ypos(i) < -l + fibre_radii(i)132

n_fibres = n_fibres + 1;133

fibre_ypos(n_fibres) = fibre_ypos(i) + L;134

fibre_xpos(n_fibres) = fibre_xpos(i);135

fibre_radii(n_fibres) = fibre_radii(i);136

end137

if fibre_ypos(i) > l - fibre_radii(i)138

n_fibres = n_fibres + 1;139

fibre_ypos(n_fibres) = fibre_ypos(i) - L;140

fibre_xpos(n_fibres) = fibre_xpos(i);141

fibre_radii(n_fibres) = fibre_radii(i);142

end143

end144

%**** End: Add the fibres near cell edges on the opposite side ****145

146

%*** Begin: Sort every array to fibre_xpos’ rising order ***147

tempfib_xpos = fibre_xpos(1);148

tempfib_ypos = fibre_ypos(1);149

tempfib_radii = fibre_radii(1);150

151

for fibit=2:N_fibres152

for tempit = 1:fibit153

70 A.7 PulsedGradient.m

if tempit == fibit154

tempfib_xpos = [tempfib_xpos, fibre_xpos(fibit)];155

tempfib_ypos = [tempfib_ypos, fibre_ypos(fibit)];156

tempfib_radii = [tempfib_radii, fibre_radii(fibit)];157

break158

end159

if fibre_xpos(fibit) < tempfib_xpos(tempit)160

tempfib_xpos = [tempfib_xpos(1:tempit - 1), ...161

fibre_xpos(fibit), ...162

tempfib_xpos(tempit:fibit - 1)];163

tempfib_ypos = [tempfib_ypos(1:tempit - 1), ...164

fibre_ypos(fibit), ...165

tempfib_ypos(tempit:fibit - 1)];166

tempfib_radii = [tempfib_radii(1:tempit - 1), ...167

fibre_radii(fibit), ...168

tempfib_radii(tempit:fibit - 1)];169

break170

end171

end172

end173

174

fibre_xpos = tempfib_xpos;175

fibre_ypos = tempfib_ypos;176

fibre_radii = tempfib_radii;177

%**** End: Sort every array to fibre_xpos’ rising order ****178

end179

180

disp(’Fibrils in order’)181

182

%****************** BEGIN: LOOP OVER ALL DIFFUSION TIMES ******************183

184

for n_T = 1:N_T185

186

T = Ts(n_T);187

dt = dts(n_T);188

K = Ks(n_T);189

190

disp(’ ’)191

string = [’Diffusion time: ’, num2str(T), ’ ms, time ’, ...192

Appendix A: CODE AND PSEUDOCODE 71

num2str(n_T), ’ of ’,num2str(N_T)];193

disp(string)194

195

dr = sqrt(6*D*dt); %Stepsize [µm]196

197

198

cols = zeros(1,N_h); %Number of collisions199

200

%*** Finding initial positions for all N hindered particles ***201

x0 = zeros(1,N_h);202

y0 = zeros(1,N_h);203

z0 = zeros(1,N_h);204

n = 0;205

206

while n < N_h207

x = L_x*rand - l_x;208

y = L_y*rand - l_y;209

inside_fibre = false;210

for i=1:N_fibres211

if equal_radii && norm([x, y] - [fibre_xpos(i), fibre_ypos(i)]) < R || ...212

norm([x, y] - [fibre_xpos(i), fibre_ypos(i)]) < fibre_radii(i)213

inside_fibre = true;214

break215

end216

end217

if inside_fibre == false218

n = n + 1;219

x0(n) = x;220

y0(n) = y;221

if 10*n/N_h == round(10*n/N_h)222

string = [num2str(n), ’ of ’,num2str(N_h), ’ hindered particles placed’];223

disp(string)224

end225

end226

end227

%**228

229

x_end = zeros(1,N_h); %*****Initialising final positions and230

y_end = zeros(1,N_h); %***** out-of-bounds-counter for all N particles231

72 A.7 PulsedGradient.m

z_end = zeros(1,N_h); %232

%233

x_oob = zeros(1,N_h); %234

y_oob = zeros(1,N_h); %235

236

%*** Begin: Loop over all particles ***237

238

parfor n = 1:N_h239

240

if 100*n/N_h == round(100*n/N_h)241

string = [’ParticleNr: ’, num2str(n), ’ of ’,num2str(N_h)];242

if 10*n/N_h == round(10*n/N_h)243

string = [’ParticleNr: ’, num2str(n), ’ of ’, ...244

num2str(N_h), ’, estimated additional 10% complete’];245

end246

disp(string)247

end248

249

x_pos = zeros(1,K); %Initializing arrays to250

y_pos = x_pos; %save all positions.251

z_pos = x_pos; %252

253

x_pos(1) = x0(n); %Adds the initial position.254

y_pos(1) = y0(n); %255

z_pos(1) = z0(n); %256

257

%*** Begin: Loop over all steps ***258

259

k = 2;260

while k <= K+1261

262

pos = [x_pos(k-1) y_pos(k-1) z_pos(k-1)]; %Current position.263

264

d_cos_theta = 2*rand - 1; %Finds direction.265

d_theta = acos(d_cos_theta); %266

d_phi = 2*pi*rand; %267

268

dx = dr*cos(d_phi)*sin(d_theta); %Computes the step.269

dy = dr*sin(d_phi)*sin(d_theta); % [µm]270

Appendix A: CODE AND PSEUDOCODE 73

dz = dr*d_cos_theta; %271

272

dxy = dr*sin(d_theta); %Step’s reach in xy-plane273

274

v = [dx dy dz]/dt; %Velocity [µm/ms]275

276

ddt = dt; %Remaining time of time step277

278

%Minimum distance to every outer border279

dist = min(abs(abs(x_pos(k-1))-l_x), abs(abs(y_pos(k-1))-l_y));280

pot_outer_trans = (dist < dxy); %Possible outer transmission281

282

283

%*** Begin: Loop in case of several collisions in one step ***284

285

collide = 1; %Assuming collision286

287

while collide == 1288

289

%***** Computes time until collision from current *****290

%***** position given the velocity v. *****291

292

t_c = inf; %Time until collision.293

pos_fc = inf; %Position of colliding fibre.294

295

%First calculate a t_c for the outer limit, if needed.296

% Actually not a collision, but a transmission.297

% t_c used on both for simplicity.298

if pot_outer_trans299

if v(1) > 0300

t_c = (l_x - pos(1))/v(1);301

wall_trans = 1; %Right limit302

end303

if (l_y - pos(2))/v(2) < t_c && v(2) > 0304

t_c = (l_y - pos(2))/v(2);305

wall_trans = 2; %Upper limit306

end307

if (l_x + pos(1))/-v(1) < t_c && -v(1) > 0308

t_c = (l_x + pos(1))/-v(1);309

74 A.7 PulsedGradient.m

wall_trans = 3; %Left limit310

end311

if (l_y + pos(2))/-v(2) < t_c && -v(2) > 0312

t_c = (l_y + pos(2))/-v(2);313

wall_trans = 4; %Lower limit314

end315

end316

317

px = pos(1); %Current x position318

py = pos(2); %Current y position319

ds = norm(v(1:2))*ddt; %Remaining step movement320

phi = atan2(v(2),v(1)); %Current direction321

322

%Then evaluate the potential fibre collisions323

for i=1:N_fibres324

325

%Position of fibre to collide into326

pos_f = [fibre_xpos(i), fibre_ypos(i)];327

328

%Eliminates every fibre outside a smaller box,329

% 2*R wide and dl*ddt+R long.330

fx = pos_f(1);331

fy = pos_f(2);332

333

bound1 = py - cot(phi)*(fx-px);334

bound2 = py + sec(phi)*R + tan(phi)*(fx-px);335

bound3 = py + csc(phi)*(ds+R) - cot(phi)*(fx-px);336

bound4 = py - sec(phi)*R + tan(phi)*(fx-px);337

338

if v(1) < 0339

tempbound = bound4;340

bound4 = bound2;341

bound2 = tempbound;342

end343

if v(2) < 0344

tempbound = bound1;345

bound1 = bound3;346

bound3 = tempbound;347

end348

Appendix A: CODE AND PSEUDOCODE 75

349

if fy > bound1 && fy < bound2 && fy < bound3 && fy > bound4350

351

%ABC formula used to find time of collision t_c352

A = dot(v(1:2),v(1:2));353

B = 2*dot(pos(1:2),v(1:2)) - 2*dot(v(1:2),pos_f);354

C = dot(pos(1:2),pos(1:2)) + dot(pos_f,pos_f) - ...355

2*dot(pos(1:2),pos_f) - R^2;356

SQ = sqrt(B^2 - 4*A*C);357

%Negative solution used in (2) since358

%particle is reflecting on fibre’s outside359

new_t_c = (-B - SQ)/(2*A);360

%Non-real new_t_c: fibre outside trajectory361

%Negative new_t_c: fibre behind particle362

%Larger new_t_c than t_c: fibre behind another fibre363

%None of the above: Colliding fibre364

if isreal(new_t_c) && new_t_c >= 0 && new_t_c < t_c365

t_c = new_t_c;366

pos_fc = pos_f; %Current fibre is reflecting.367

end368

end369

end370

%**371

372

if t_c >= ddt %The step does not lead to373

collide = 0; % collision or transmission374

end375

376

if collide == 1 %Collision377

378

cols(n) = cols(n) + 1;379

380

if pos_fc ∼= inf381

%Surface normal in collision point382

normal = pos + v*t_c; %Collision point383

normal(3) = 0; %No reflection in z-direction384

normal = normal - [pos_fc(1), pos_fc(2), 0];385

normal = normal/norm(normal);386

v_new = v - 2*dot(v,normal)*normal;387

76 A.7 PulsedGradient.m

pos = pos + v*t_c; %Updates position.388

v = v_new; %Updates velocity.389

else390

%Updates position including unit cell movement391

% and saves it in the out-of-bounds-vector392

if wall_trans == 1393

pos = pos + v*t_c - [L_x,0,0];394

x_oob(n) = x_oob(n) + 1;395

elseif wall_trans == 2396

pos = pos + v*t_c - [0,L_y,0];397

y_oob(n) = y_oob(n) + 1;398

elseif wall_trans == 3399

pos = pos + v*t_c + [L_x,0,0];400

x_oob(n) = x_oob(n) - 1;401

elseif wall_trans == 4402

pos = pos + v*t_c + [0,L_y,0];403

y_oob(n) = y_oob(n) - 1;404

end405

end406

ddt = ddt-t_c; %Updates ddt in case of multiple407

% collisons in one time step.408

409

else %Not collision; assumption wrong.410

411

x_pos(k) = pos(1) + v(1)*ddt; %Finds new positions.412

y_pos(k) = pos(2) + v(2)*ddt; %413

z_pos(k) = pos(3) + v(3)*ddt; %414

415

end416

end417

418

%**** End: Loop in case of several collisions in one step ****419

k = k + 1;420

end421

422

%**** End: Loop over all steps ****423

424

x_end(n) = x_pos(k-1);425

y_end(n) = y_pos(k-1);426

Appendix A: CODE AND PSEUDOCODE 77

z_end(n) = z_pos(k-1);427

428

%Phase displacement, 10^-9 is to make up for prefixes429

for n_G = 1:N_G430

d_phase_h(n,n_G) = ...431

Gs(n_G)*delta*gamma*(x_pos(1) - x_pos(k-1))*10^-9;432

end433

434

end435

436

%**** End: Loop over all particles ****437

438

%Adding the signal for every G439

for n_G = 1:N_G440

signal_matrix((n_T-1)*N_G + n_G,3) = sum(exp(1i*d_phase_h(:,n_G)))/N_h;441

end442

443

%Reads the subtracted movement out of bounds.444

x_end = x_end - x0 + L_x*x_oob;445

y_end = y_end - y0 + L_y*y_oob;446

z_end = z_end - z0;447

448

r_end = sqrt(y_end.^2 + y_end.^2 + z_end.^2);449

450

avg_xyz_h(n_T,:) = [sum(x_end),sum(y_end),sum(z_end)]/N_h;451

avg_h(n_T) = sum(avg_xyz_h(n_T,:))/3;452

453

EDC_xyz_h(n_T,:) = [sum(x_end.*x_end), ...454

sum(y_end.*y_end),sum(z_end.*z_end)]/(2*N_h*T);455

EDC_h(n_T,:) = sum(EDC_xyz_h(n_T,:))/3;456

457

cols_h(n_T) = sum(cols)/N_h;458

459

%************* END: HINDERED DIFFUSION *************460

%************ BEGIN: RESTRICTED DIFFUSION **********461

462

if sqrt(2*T) < R_r463

464

string = [’T = ’, num2str(T), ...465

78 A.7 PulsedGradient.m

’ ms too small for representable motion averaging’];466

disp(string)467

disp(’Calculating stepwise restricted diffusion’)468

469

x0_r = zeros(1,N_r);470

y0_r = zeros(1,N_r);471

z0_r = zeros(1,N_r);472

473

x_end_r = zeros(1,N_r);474

y_end_r = zeros(1,N_r);475

z_end_r = zeros(1,N_r);476

477

n_r = 1;478

while n_r <= N_r479

x0_r(n_r) = 2*R_r*(1-2*rand());480

y0_r(n_r) = 2*R_r*(1-2*rand());481

z0_r(n_r) = 2*R_r*(1-2*rand());482

if sqrt(x0_r(n_r)^2 + y0_r(n_r)^2 + z0_r(n_r)^2) < R_r483

n_r = n_r + 1;484

end485

end486

487

parfor n_r = 1:N_r488

489

if 100*n_r/N_r == round(100*n_r/N_r)490

string = [’ParticleNr : ’,num2str(n_r),’ of ’,num2str(N_r)];491

if 10*n_r/N_r == round(10*n_r/N_r)492

string = [’ParticleNr : ’,num2str(n_r),’ of ’,num2str(...493

N_r),’, estimated additional 10% complete’];494

end495

disp(string)496

end497

498

x_pos_r = zeros(1,K_r); %Initializing arrays to499

y_pos_r = x_pos_r; %save all positions.500

z_pos_r = x_pos_r; %501

502

503

x_pos_r(1) = x0_r(n_r); %Adds the initial position.504

Appendix A: CODE AND PSEUDOCODE 79

y_pos_r(1) = y0_r(n_r); %505

z_pos_r(1) = z0_r(n_r); %506

507

k = 2;508

while k <= K_r+1509

510

pos = [x_pos_r(k-1) y_pos_r(k-1) z_pos_r(k-1)]; %Current position.511

512

d_cos_theta = 2*rand - 1; %Finds direction.513

d_theta = acos(d_cos_theta); %514

d_phi = 2*pi*rand; %515

516

dt = T/K_r; %Restricted time step [ms]517

dr = sqrt(6*D*dt); %Restricted step size [µm]518

519

dx = dr*cos(d_phi)*sin(d_theta); %Computes the step.520

dy = dr*sin(d_phi)*sin(d_theta); % [µm]521

dz = dr*d_cos_theta; %522

523

dxy = dr*sin(d_theta); %Step’s reach in xy-plane524

525

v = [dx dy dz]/dt; %Velocity [µm/ms]526

527

ddt = dt; %Remaining time of time step528

529

%*** Begin: Loop in case of multiple collisions in time step. ***530

531

collide = 1; %Assuming collision532

533

while collide == 1534

535

%***** Computes time until collision from current *****536

%***** position given the velocity v. *****537

px = pos(1); %Current x position538

py = pos(2); %Current y position539

dl = norm(v(1:2))*ddt; %Remaining step movement540

phi = atan2(v(2),v(1)); %Current direction541

542

%ABC formula used to find time of collision t_c543

80 A.7 PulsedGradient.m

A = dot(v,v);544

B = 2*dot(pos,v);545

C = dot(pos,pos)- R_r^2;546

SQ = sqrt(B^2 - 4*A*C);547

t_c = (-B + SQ)/(2*A);548

%**549

550

if t_c >= ddt %The step does not lead to551

collide = 0; % collision552

end553

554

if collide == 1 %Collision555

556

%Surface normal in collision point557

normal = pos + v*t_c; %Collision point558

normal = normal/norm(normal);559

v_new = v - 2*dot(v,normal)*normal;560

pos = pos + v*t_c; %Updates position.561

v = v_new; %Updates velocity.562

ddt = ddt-t_c; %Updates remaining time step.563

564

else %Not collision; assumption wrong.565

566

x_pos_r(k) = pos(1) + v(1)*ddt; %Finds new positions.567

y_pos_r(k) = pos(2) + v(2)*ddt; %568

z_pos_r(k) = pos(3) + v(3)*ddt; %569

570

end571

end572

573

%**** End: Loop in case of multiple collisions in time step. ****574

k = k + 1;575

end576

577

x_end_r(n_r) = x_pos_r(k-1);578

y_end_r(n_r) = y_pos_r(k-1);579

z_end_r(n_r) = z_pos_r(k-1);580

581

%Phase displacement, 10^-9 is to make up for prefixes582

Appendix A: CODE AND PSEUDOCODE 81

for n_G = 1:N_G583

d_phase_r(n_r,n_G) = Gs(n_G)*delta*gamma* ...584

(x_pos_r(1) - x_pos_r(k-1))*10^-9;585

end586

587

end588

589

x_r = x_end_r - x0_r;590

y_r = y_end_r - y0_r;591

z_r = z_end_r - z0_r;592

593

avg_xyz_r(n_T,:) = [sum(x_r),sum(y_r),sum(z_r)]/N_r;594

avg_r(n_T) = sum(avg_xyz_r(n_T,:))/3;595

596

EDC_xyz_r(n_T,:) = [sum(x_r.*x_r), ...597

sum(y_r.*y_r),sum(z_r.*z_r)]/(2*N_r*T);598

EDC_r(n_T) = sum(EDC_xyz_r(n_T,:))/3;599

600

%Adding the signal for every G601

for n_G = 1:N_G602

signal_matrix((n_T-1)*N_G + n_G, 4) = ...603

sum(exp(1i*d_phase_r(:,n_G)))/N_r;604

end605

606

else607

608

disp(’Starting motion averaging’)609

610

x0_r = zeros(1,N_r);611

y0_r = zeros(1,N_r);612

z0_r = zeros(1,N_r);613

614

x_end_r = zeros(1,N_r);615

y_end_r = zeros(1,N_r);616

z_end_r = zeros(1,N_r);617

618

n_ma = 1;619

while n_ma <= N_r620

x0_r(n_ma) = 2*R_r*(1-2*rand());621

82 A.7 PulsedGradient.m

y0_r(n_ma) = 2*R_r*(1-2*rand());622

z0_r(n_ma) = 2*R_r*(1-2*rand());623

if sqrt(x0_r(n_ma)^2+y0_r(n_ma)^2+z0_r(n_ma)^2) < R_r624

n_ma = n_ma + 1;625

end626

end627

628

n_ma = 1;629

while n_ma <= N_r630

x_end_r(n_ma) = 2*R_r*(1-2*rand());631

y_end_r(n_ma) = 2*R_r*(1-2*rand());632

z_end_r(n_ma) = 2*R_r*(1-2*rand());633

if sqrt(x_end_r(n_ma)^2+y_end_r(n_ma)^2+z_end_r(n_ma)^2) < R_r634

n_ma = n_ma + 1;635

end636

end637

638

x_r = x_end_r - x0_r;639

y_r = y_end_r - y0_r;640

z_r = z_end_r - y0_r;641

642

avg_xyz_r(n_T,:) = [sum(x_r),sum(y_r),sum(z_r)]/N_r;643

avg_r(n_T) = sum(avg_xyz_r(n_T,:))/3;644

645

EDC_xyz_r(n_T,:) = ...646

[sum(x_r.*x_r),sum(y_r.*y_r),sum(z_r.*z_r)]/(2*N_r*T);647

EDC_r(n_T) = sum(EDC_xyz_r(n_T,:))/3;648

649

disp(’Motion averaging complete’)650

651

%Adding the signal for every G, 10^-9 is to make up for prefixes652

for n_G = 1:N_G653

d_phase_r(:,n_G) = Gs(n_G)*delta*gamma*x_r*10^-9;654

signal_matrix((n_T-1)*N_G+n_G,4) = ...655

sum(exp(1i*d_phase_r(:,n_G)))/N_r;656

end657

658

end659

660

Appendix A: CODE AND PSEUDOCODE 83

%**** End: Motion averaging ****661

662

end663

%******************* END: LOOP OVER ALL DIFFUSION TIMES *******************664

665

signal_matrix(:,5) = signal_matrix(:,3)*f+signal_matrix(:,4)*(1-f);666

signal_matrix = abs(signal_matrix);667

668

save ’pulsed_f08.mat’ signal_matrix669

670

toc671

84 A.8 ConstantGradient.m

A.8 ConstantGradient.m

Like in PulsedGradient.m water particles self-diffuses with both hindrance and restric-

tion for a number of particles, diffusion times and magnetic gradient strengths. The

difference lies in the calculation of the signal. Where the last script only took into ac-

count the first and last position of every particle, ConstantGradient.m calculates the

signal from every time step a gradient is applied. Therefore motion averaging is not

performable.

Only the last lines of the code is included, showing the calculation of the signal for

restricted diffusion. This is also done for the hindered case, but not shown here.

[...]

T = Ts(n_T); % Total diffusion time

T_180 = 2 ms; % Time between gradients

delta = T - T_180/2; % Gradient duration

[...]

%Adding the signal for every G, 10^-9 is to make up for prefixes

for n_G = 1:N_G

d_phase_r(:,n_G) = Gs(n_G)*delta*gamma*mean(...

x_pos(1:(T-T_180)*K/(2*T)) - ...

x-pos((T+T_180)*K/(2*T):K))*10^-9;

signal_matrix((n_T-1)*N_G+n_G,4) = ...

sum(exp(1i*d_phase_r(:,n_G)))/N_r;

end

end

end

%******************* END: LOOP OVER ALL DIFFUSION TIMES *******************

signal_matrix(:,5) = signal_matrix(:,3)*f+signal_matrix(:,4)*(1-f);

signal_matrix = abs(signal_matrix);

save ’pulsed_f08.mat’ signal_matrix

toc

Appendix A: CODE AND PSEUDOCODE 85

A.9 DiffusionTest.m

This script was written before the signal generating scripts to ensure that assumptions

made, such as constant step sizes longer than the Brownian motion, didn’t affect the

results for any of the three types of diffusion.

D = 3

Specifying parameters: Ts, dt, N

N_T = length(Ts)

types of diffusion: 3

types of step length distribution: 2

number of dimensions: 3

Initialising output arrays of length N_T*3*2*3: avg, EDC

Specifying geometry

Copying cell wall intersecting fibres

for n_T=1:N_T

T = Ts(n_T);

K = T/dt;

dr = sqrt(6*D*dt);

for freedom_type=1:3

for step_type=1:2 1: c, 2: nd

placing particles in environment

(freedom_type

1: wherever

2: outside fibres

3: inside fibres)

parfor n=1:N

if freedom_type == 3

collect one fibre and its copies

end

for k=1:K

if step_type == 2

dr = nrmrnd(dr,dr*0.3);

end

perform diffusion as otherwise presented

(freedom_type

86 A.9 DiffusionTest.m

1: no fibres collected

2: fibres collected, outside reflection

3: already collected)

end

end

save the final position of all particles in x, y and z

avg((n_T-1)*18+(freedom_type-1)*6+(step_type-1)*3+(1:3)) ...

= [sum(x), sum(y), sum(z)]/N;

EDC((n_T-1)*18+(freedom_type-1)*6+(step_type-1)*3+(1:3)) ...

= [sum(x.^2), sum(y.^2), sum(z.^2)]/(N^2*2*T);

end

end

end

save avg and EDC

Appendix A: CODE AND PSEUDOCODE 87

A.10 WalkInFibre.m

The following script WalkInFibre.m was the most executed one during the work on the

project thesis on beforehand, as well as the one into which the most time had then gone.

The name lingers from when it originally only handled fibrils in a fibre. This script was

the starting point from which many of the other scripts were developed. Consistently

ADC terminology were used as EDC is a newer expression.

%**1

%*** Simulates particles movement in fibre with random walks. ***2

%*** Returns the final position of all particles. ***3

%**4

%*** It takes about a second a particle with diffusion time 100 ms, ***5

%*** a little over 10000 particles in three hours. ***6

%**7

%*** NOTE: ’Colliding fibril’ terminology used even though the ***8

%*** particles are colliding into fibrils, not the other way around. ***9

%**10

11

tic12

13

%********** Parameters **********14

N = 1000; %Total number of particles []15

H = 100; %Height cylinder [µm]16

L = 2; %Half length unit cell size [µm]17

D = 1.65; %Diffusion coefficient [(µm)^2 /ms]18

diff_times = 100; %Diffusion times [ms]19

dt = 0.001; %Time step [ms]20

%********************************21

22

dr = sqrt(6*D*dt); %Step size [µm]23

s = dr/dt; %Movement speed [µm/s]24

25

%********** Fiber composition ***26

imp_vals = load (’fibrils.mat’);27

fibril_xpos = imp_vals.fibril_vals(1,:);28

fibril_ypos = imp_vals.fibril_vals(2,:);29

fibril_radii = imp_vals.fibril_vals(3,:);30

88 A.10 WalkInFibre.m

n_fibrils = length(fibril_radii);31

equal_radii = true;32

radmax = fibril_radii(1); %May save time to use maximum33

for i=2:n_fibrils % fibril radius when anticipating34

if fibril_radii(i) > radmax % collision for relatively small35

radmax = fibril_radii(i); % differences in fibril radii.36

equal_radii = false;37

end38

end39

40

%***** Sorting every array to fibril_xpos’ rising order ****41

42

tempfib_xpos = fibril_xpos(1);43

tempfib_ypos = fibril_ypos(1);44

tempfib_radii = fibril_radii(1);45

46

for fibit=2:n_fibrils47

for tempit = 1:fibit48

if tempit == fibit49

tempfib_xpos = [tempfib_xpos, fibril_xpos(fibit)];50

tempfib_ypos = [tempfib_ypos, fibril_ypos(fibit)];51

tempfib_radii = [tempfib_radii, fibril_radii(fibit)];52

break53

end54

if fibril_xpos(fibit) < tempfib_xpos(tempit)55

tempfib_xpos = [tempfib_xpos(1:tempit - 1), ...56

fibril_xpos(fibit), ...57

tempfib_xpos(tempit:fibit - 1)];58

tempfib_ypos = [tempfib_ypos(1:tempit - 1), ...59

fibril_ypos(fibit), ...60

tempfib_ypos(tempit:fibit - 1)];61

tempfib_radii = [tempfib_radii(1:tempit - 1), ...62

fibril_radii(fibit), ...63

tempfib_radii(tempit:fibit - 1)];64

break65

end66

end67

end68

69

Appendix A: CODE AND PSEUDOCODE 89

fibril_xpos = tempfib_xpos;70

fibril_ypos = tempfib_ypos;71

fibril_radii = tempfib_radii;72

73

%***************************74

75

%********************************76

77

N_time = length(diff_times); %Number of different diffusion times.78

79

limit = round(diff_times/dt); %Finds the step numbers associated80

for i = 1:N_time %with the different diffusion81

if limit(i)/2 ∼= round(limit(i)/2) %times, and forces is to be even.82

limit(i) = limit(i) + 1; %83

end84

end85

86

K = max(limit); %Total number of steps.87

88

%***** Finding initial positions for all N particles *****89

x0 = zeros(1,N);90

y0 = zeros(1,N);91

n = 0;92

while n < N93

x = 2*L*rand - L;94

y = 2*L*rand - L;95

inside_fibril = false;96

for i=1:n_fibrils97

if (equal_radii && norm([x, y] - [fibril_xpos(i), fibril_ypos(i)])) < radmax || ...98

norm([x, y] - [fibril_xpos(i), fibril_ypos(i)]) < fibril_radii(i)99

inside_fibril = true;100

break101

end102

end103

if inside_fibril == false104

n = n + 1;105

x0(n) = x;106

y0(n) = y;107

end108

90 A.10 WalkInFibre.m

end109

z0 = H*rand(1,N);110

%***111

112

%*****Initializing final positions and ***113

%***** out-of-bounds-counter for all N particles ***114

x_end = zeros(1,N);115

y_end = zeros(1,N);116

z_end = zeros(1,N);117

118

x_oob = zeros(1,N);119

y_oob = zeros(1,N);120

%***121

122

%***** Writes out total number of steps *****123

string = [’Number of steps : ’, num2str(K)];124

disp(string)125

%**126

127

%(I)******************* Loop over all the particles **********************128

parfor n = 1:N129

130

if n/100 == round(n/100)131

string = [’ParticleNr : ’, num2str(n), ’ of ’,num2str(N)];132

disp(string)133

end134

135

x_pos = zeros(1,K); %Initilizing arrays to136

y_pos = x_pos; %save all positions.137

z_pos = x_pos; %138

139

140

x_pos(1) = x0(n); %Adds the initial position.141

y_pos(1) = y0(n); %142

z_pos(1) = z0(n); %143

144

%(II)*********** Finds position 2 to K ************145

k = 2;146

while k <= K147

Appendix A: CODE AND PSEUDOCODE 91

148

if k/10000 == round(k/10000)149

string = [’MovementNr : ’, num2str(k), ’ of ’,num2str(K)];150

disp(string)151

end152

153

%Minimum distance to every outer border154

dist = min(abs(abs(x_pos(k-1))-L), abs(abs(y_pos(k-1))-L));155

pot_outer_trans = (dist < dr); %Possible outer transmission156

157

pos = [x_pos(k-1) y_pos(k-1) z_pos(k-1)]; %Current position.158

159

d_cos_theta = 2*rand - 1; %Finds direction.160

d_theta = acos(d_cos_theta); %161

d_phi = 2*pi*rand; %162

163

dx = dr*cos(d_phi)*sin(d_theta); %Computes the step.164

dy = dr*sin(d_phi)*sin(d_theta); %165

dz = dr*d_cos_theta; %166

167

dxy = dr*sin(d_theta); %Step’s reach in xy-plane168

169

v = [dx dy dz]/dt; %Velocity170

171

ddt = dt; %Remaining time of time step172

173

%********** Finds all fibrils in a **********174

%********** dxy+radmax-sized box **********175

%********** around the particle. **********176

177

pot_fib_col = zeros(1,10); %Array of potentially colliding fibrils178

n_pot_fib_col = 0; %Number of fibrils found in box179

180

%Finds the first fibril whose x position fulfills box constraint181

startit = ceil((pos(1)+L)/(2*L)*n_fibrils); %Start iterator for x182

while true183

if fibril_xpos(startit) > pos(1)-radmax-dxy && startit ∼= 1184

startit = startit - 1;185

elseif startit ∼= n_fibrils && ...186

92 A.10 WalkInFibre.m

fibril_xpos(startit + 1) < pos(1)-radmax-dxy187

startit = startit + 1;188

else189

break190

end191

end192

193

for i=startit:n_fibrils194

%If an x position is outside, the remaining fibrils are outside195

if fibril_xpos(i) > pos(1)+radmax+dxy196

break197

end198

%Checking y positions199

if fibril_ypos(i) > pos(2)-radmax-dxy && ...200

fibril_ypos(i) < pos(2)+radmax+dxy201

n_pot_fib_col = n_pot_fib_col + 1;202

pot_fib_col(n_pot_fib_col) = i;203

end204

end205

206

%***207

208

%(III)***** Loop in case of multiple collision **********209

%********** in same time step. **********210

collide = 1; %Assuming collision211

while collide == 1212

213

%***** Computes time until collision from current *****214

%***** position given the velocity v. *****215

216

t_c = inf; %Time until collision.217

pos_fc = 0; %Position of colliding fibril.218

219

%First calculate a t_c for the outer limit, if needed.220

% Actually not a collision, but a transmission.221

% t_c used on both for simplicity.222

if pot_outer_trans223

if v(1) > 0224

t_c = (L - pos(1))/v(1);225

Appendix A: CODE AND PSEUDOCODE 93

wall_trans = 1; %Right limit226

end227

if (L - pos(2))/v(2) < t_c && v(2) > 0228

t_c = (L - pos(2))/v(2);229

wall_trans = 2; %Upper limit230

end231

if (L + pos(1))/-v(1) < t_c && -v(1) > 0232

t_c = (L + pos(1))/-v(1);233

wall_trans = 3; %Left limit234

end235

if (L + pos(2))/-v(2) < t_c && -v(2) > 0236

t_c = (L + pos(2))/-v(2);237

wall_trans = 4; %Lower limit238

end239

end240

241

px = pos(1); %Current x position242

py = pos(2); %Current y position243

dl = norm(v(1:2))*ddt; %Remaining step movement244

phi = atan2(v(2),v(1)); %Current direction245

246

%Then evaluate the potential fibril collisions247

for i=1:n_pot_fib_col248

249

%Radius of fibril to collide into250

if equal_radii251

col_rad = radmax;252

else253

col_rad = fibril_radii(pot_fib_col(i));254

end255

256

%Position of fibril to collide into257

pos_f = [fibril_xpos(pot_fib_col(i)), ...258

fibril_ypos(pot_fib_col(i))];259

260

%Eliminates every fibril outside a smaller box,261

% 2*radmax wide and dl*ddt+radmax long.262

fx = pos_f(1);263

fy = pos_f(2);264

94 A.10 WalkInFibre.m

265

bound1 = py - cot(phi)*(fx-px);266

bound2 = py + sec(phi)*radmax + tan(phi)*(fx-px);267

bound3 = py + csc(phi)*(dl+radmax) - cot(phi)*(fx-px);268

bound4 = py - sec(phi)*radmax + tan(phi)*(fx-px);269

270

if v(1) < 0271

tempbound = bound4;272

bound4 = bound2;273

bound2 = tempbound;274

end275

if v(2) < 0276

tempbound = bound1;277

bound1 = bound3;278

bound3 = tempbound;279

end280

281

if fy > bound1 && fy < bound2 && fy < bound3 && fy > bound4282

283

%ABC formula used to find time of collision t_c284

A = dot(v(1:2),v(1:2));285

B = 2*dot(pos(1:2),v(1:2)) - 2*dot(v(1:2),pos_f);286

C = dot(pos(1:2),pos(1:2)) + dot(pos_f,pos_f) - ...287

2*dot(pos(1:2),pos_f) - col_rad^2;288

SQ = sqrt(B^2 - 4*A*C);289

%Negative solution used since particle is reflecting290

% on fibril’s outside291

new_t_c = (-B - SQ)/(2*A);292

%Non-real new_t_c: fibril outside trajectory293

%Negative new_t_c: fibril behind particle294

%Larger new_t_c than t_c: fibril behind another fibril295

%None of the above: Colliding fibril296

if isreal(new_t_c) && new_t_c >= 0 && new_t_c < t_c297

t_c = new_t_c;298

pos_fc = pos_f; %Current fibril is reflecting.299

end300

end301

end302

%**303

Appendix A: CODE AND PSEUDOCODE 95

304

if t_c >= ddt %The step does not lead to305

collide = 0; % collision or transmission306

end307

308

if collide == 1 %Collision309

310

if pos_fc ∼= 0311

%Surface normal in collision point312

normal = pos + v*t_c; %Collision point313

normal(3) = 0; %No reflection in z-direction314

normal = normal - [pos_fc(1), pos_fc(2), 0];315

normal = normal/norm(normal);316

v_new = v - 2*dot(v,normal)*normal;317

pos = pos + v*t_c; %Updates position.318

v = v_new; %Updates velocity.319

else320

%Updates position including unit cell movement321

% and saves it in the out-of-bounds-vector322

if wall_trans == 1323

pos = pos + v*t_c - [2*L,0,0];324

x_oob(n) = x_oob(n) + 1;325

elseif wall_trans == 2326

pos = pos + v*t_c - [0,2*L,0];327

y_oob(n) = y_oob(n) + 1;328

elseif wall_trans == 3329

pos = pos + v*t_c + [2*L,0,0];330

x_oob(n) = x_oob(n) - 1;331

elseif wall_trans == 4332

pos = pos + v*t_c + [0,2*L,0];333

y_oob(n) = y_oob(n) - 1;334

end335

end336

ddt = ddt-t_c; %Updates ddt in case of multiple337

% collisons in one time step.338

339

else %Not collision; assumption wrong.340

341

x_pos(k) = pos(1) + v(1)*ddt; %Finds new positions.342

96 A.10 WalkInFibre.m

y_pos(k) = pos(2) + v(2)*ddt; %343

z_pos(k) = pos(3) + v(3)*ddt; %344

345

end346

end347

%(III)***348

k = k + 1;349

end350

%(II)**351

352

x_end(n) = pos(1);353

y_end(n) = pos(2);354

z_end(n) = pos(3);355

356

end357

%(I)**358

359

%Reads the subtracted movement out of bounds.360

x_end = x_end - x0 + 2*L*x_oob;361

y_end = y_end - y0 + 2*L*y_oob;362

z_end = z_end - z0;363

364

r_end = sqrt(y_end.^2 + y_end.^2 + z_end.^2);365

366

save ’end_pos1000dt0001.mat’ x_end y_end z_end r_end367

368

toc369

Bibliography

[1] J. Lilley. Nuclear physics, principles and applications. 2001.

[2] A. N. Johansen. Monte Carlo simulations of diffusion MRI in restricted geometries.

March 2017.

[3] J. O. Andersen. Introduction to statistical mechanics. pages 6–12, August 2011.

[4] K. M. Bundell S. J. Bundell. Concepts in thermal physics. second edition. Oxford

University Press, 2010.

[5] A. Sparr G. Sparr. Kontinuerliga system. Studentlitteratur AB, 1999, 2000.

[6] T. S. Ursell. The diffusion equation a multi-dimensional tutorial. October 2007.

[7] T. S. Urseel. The diusion equation a multi-dimensional tutorial. California Institute

of Technology, 2007.

[8] P. N. Sen. Time-dependent diffusion coefficient as a probe of geometry. Concepts in

magnetic resonance Part A. 2004.

[9] T. E. J. Behrens P. J. Basser, E. Özarslan; red. H: Johansen-Berg. Introduction to

diusion mr, chapter 1. 2009.

[10] J. P. Hornak. The basics of mri. Rochester Institute of Technology.

[11] N. P. Jerome T. E. Sjøbakk A. Østlie H. E. Fjøsne R. Karunamuni N. S. White R.

Rakow-Penner A. M. Dale T. F. Bathen P. E. Goa I. Vidic, L. Egnell. Non-gaussian

dwi of breast lesions at high b-value. 2017.

[12] M. J. Engstrøm O. A. Haugen L. A. Dyrnes B. O. Åsvold M. B. Lilledahl A. M. Bofin

A. Brabrand, I. I. Kariuki. Alterations in collagen fibre patterns in breast cancer.

A premise for tumour invasiveness? APMIS, 2015.

[13] D. M. Hoang Y. Z. Wadghiri D. S. Novikov S. G. Kim O. Reynaud, K. V. Winters.

Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient

diffusion weighted imaging. Magn Reson Med, 2016.

97

Bibliography A.10 BIBLIOGRAPHY

[14] Z. Koza M. Matyka, A. Khalili. Tortuosity-porosity relation in porous media ow.

Physical Review, 2008.

[15] P. N. Sen. Time-dependent diffusion coefcient as a probe of geometry. Concepts

Magn Reson, 2004.

[16] P. N. Sen T. N. de Swiet. Time dependent diffusion coefficient in a disordered

medium. The Journal of Chemical Physics, 1996.

[17] B. L. Bakken. Monte carlo simulations of diffusion weighted mri in restricted ge-

ometries. 2017.

[18] S. Kan H. Hata M. Ozaki K. Wabuchi M. Kuranami M. Watanabe K. Hayakawa

R. Woodhams, K. Matsunaga. Adc mapping of benign and malignant breast tumors.

Magnetic Resonance in Medical Sciences, 2005.

	Abstract
	Sammendrag
	Acknowledgements
	Abbreviations
	1 Introduction
	2 Theory
	2.1 Diffusion
	2.1.1 Free diffusion
	2.1.2 Non-free diffusion
	2.1.3 Combined diffusion
	2.1.4 Simulating diffusion

	2.2 MRI
	2.2.1 Diffusion weighted MRI
	2.2.2 Signals

	2.3 The female breast
	2.3.1 Collagen
	2.3.2 Microscopy

	2.4 Geometric attributes
	2.4.1 Tortuosity
	2.4.2 Porosity

	2.5 Reflection and surface detection
	2.6 Runtime
	2.6.1 Copying large sets
	2.6.2 Logical short-circuiting
	2.6.3 Repetition avoidance
	2.6.4 Replacement of demanding parts
	2.6.5 Example

	2.7 Writing pseudocode

	3 Method
	3.1 Determining parameters
	3.1.1 True diffusion coefficient
	3.1.2 Fibre size
	3.1.3 Nucleus size
	3.1.4 Diffusion times and time steps
	3.1.5 Time parameters

	3.2 Generating fibres
	3.2.1 Random generation
	3.2.2 Fibrils in fibre
	3.2.3 Predetermination

	3.3 Collecting fibres
	3.3.1 Method 1 — The box
	3.3.2 Optimisation A — Tighter box
	3.3.3 Optimisation B — Sorting fibres
	3.3.4 Newer efficiency improvements

	3.4 Finding EDCs
	3.5 Finding ADCs

	4 Results
	4.1 Geometries
	4.2 Runtime
	4.3 Random walk in unit cell
	4.4 Expected Diffusion Coefficient
	4.4.1 Project thesis
	4.4.2 Geometries
	4.4.3 Normalised step sizes
	4.4.4 Geometric attributes
	4.4.5 Motion averaging
	4.4.6 Ballistic regime

	4.5 Signals
	4.5.1 Pulsed gradient
	4.5.2 Constant gradient

	5 Discussion
	5.1 Runtime
	5.2 Normalised step sizes
	5.3 Ballistic regime
	5.4 Geometries
	5.4.1 Geometry 0 – voxel
	5.4.2 Geometry 1 – scattered
	5.4.3 Geometry 2 – tight
	5.4.4 Geometry 3 – semi tight
	5.4.5 Geometry 4 – square lattice
	5.4.6 Geometry 5 – triangular lattice

	5.5 Geometrical attributes
	5.6 Signals
	5.6.1 PulsedGradient.m
	5.6.2 ConstantGradient.m

	5.7 Assumptions and possible sources of error
	5.7.1 Interpretation of microscopy images
	5.7.2 Pseudodiffusion and flow between compartments

	6 Conclusion
	6.1 Further work

	A Code and pseudocode
	A.1 RestrictedReplacement.m
	A.2 Fibres.m
	A.3 Fibres2.m
	A.4 Fibres3.m
	A.5 Fibres4.m
	A.6 Fibres5.m
	A.7 PulsedGradient.m
	A.8 ConstantGradient.m
	A.9 DiffusionTest.m
	A.10 WalkInFibre.m

	Bibliography

