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Summary

Rocks have memory. The characteristics measured by seismic, wireline or in laboratory tests on cores depend on the history
that brought the rock to its current state. The burial history is also a controlling factor on elements such as the maturation of
hydrocarbons and reservoir quality. Identification, quantification and characterisation of any uplift a rock has been subjected to in
order to reach its current depth is therefore an important aspect in interpretation and risking in the oil and gas industry.

Several methodologies exist to accomplish the goal of characterisation of uplift. The focus of this thesis is sandstone modelling.
Currently applied procedures for the estimation of uplift from such a strategy is based on the assumption that as the rock is
uplifted out of the cementation domain, the properties are unchanged during continued exhumation.

Experimental data from SINTEF showed that whilst the assumption of no change might be good for porosity, for a relatively
weakly cemented synthetic sandstone formed under simulated in-situ stress, there was a dramatic increase in stress dependence of
the velocity upon simulated uplift under uniaxial strain conditions. In addition to this increased stress dependence, the P-wave
anisotropy was reversed upon sufficient simulated uplift. The main goal of this work was to incorporate these observations into
an updated rock physics model for characterising the effects of uplift.

In previous work (Torset, 2017) one interpretation of the observations regarding velocity and P-wave anisotropy was the
formation of microcracks as a result of broken cement bonds, with normals preferentially oriented parallel to the axial direction.
The uplift interval has therefore been modelled with the crack model presented in Fjær (2006).

To implement a full burial history calibrated to the experimental data, models capable of recreating the experimental data down
to the onset of uplift are also needed. Before cementation, the model provided in Walton (1987) is used. Instead of using the
explicit expressions given in Walton (1987), the general equations for strain and stiffness have been solved for a particular triaxial
strain state, namely that the horizontal strains are equal.

The experimental data displayed both anisotropy and stress dependence after cementation. To account for this, a modified
version of the patchy cement model presented in Avseth et al. (2016) has been utilised. The modification came from using an
anisotropic granular media with an anisotropic formulation of the Hashin-Shtrikman bounds, as opposed to the isotropic varieties
implemented in Avseth et al. (2016).

Sowing together the three models enabled for a very good recreation of the experimental P-wave velocities as function of
the simulated burial history. After calibration to the experimental data the model is implemented in combination with a cement
estimation model (Walderhaug, 1996) to produce a model capable of taking in a real burial history.

The ability of the model to fit the data is not taken as validity of the model. The final rock physics model developed for
characterising the uplift is dependent on the assumptions of the underlying models, the method of implementation and a wide
variety of parameters that are available to facilitate fitting to the experimental data. The quantitative nature of the final model
is therefore uncertain. This statement is however not unique to the model in this work, as most rock physics models aiming to
characterise velocity as function of burial history suffer generalisations and depend on the choice of parameters such as the elastic
parameters of the grain material.

Analysis of additional experimental data suggests that the effects of the uplift might be reduced in the case of a very stiff rock
(corresponding to a lot of cement). In such a scenario, uplift modelling by assuming no change in parameters might be more
appropriate.

The effect of fluids were modelled by the isotropic Biot-Gassmann equation. The effects of increased stress dependence on
the velocities and P-wave anisotropy were reduced, but under sufficient unloading a reversal in the P-wave anisotropy was still
observed.
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Sammendrag
Bergarter har minne. Egenskapene målt av seismikk, i brønn eller i laboratorietester på kjerner, avhenger av historien som
brakte bergarten til sin nåværende tilstand. Begravelseshistorien er også en kontrollerende faktor på elementer som modning
av hydrokarboner og reservoarkvalitet. Identifikasjon, kvantifisering og karakterisering av oppløft som en bergart har blitt ek-
sponert til for å nå dens nåværende dybde er derfor et viktig aspekt i tolkningsstrategi og beslutningstaking i olje- og gassindustrien.

Flere metoder eksisterer for å oppnå målet om karakterisering av oppløft. Fokuset i denne oppgaven er modellering av
sandsteiner. Nåværende prosedyrer for estimering av oppløft fra slik modellering er basert på antagelsen om at når bergarten
løftes ut av sementeringsdomenet, vil egenskaper som porøsitet og hastighet forbli uendret under videre oppløft.

Eksperimentelle data fra SINTEF viste at mens antakelsen om ingen endring kan være bra for porøsitet, for en relativt svakt
sementert syntetisk sandstein, var det en dramatisk økning i spenningsavhengighet av hastigheten ved simulert oppløft under
enaksiell ekstensjon. I tillegg til denne økte spenningsavhengigheten ble P-bølgeanisotropien reversert ved tilstrekkelig simulert
oppløft. Hovedmålet med dette arbeidet er å inkorporere disse observasjonene i en oppdatert bergartsfysisk modell, for å predikere
effektene av oppløft.

I tidligere arbeid var en tolkning av observasjonene angående hastighet og P-bølgeanisotropi dannelsen av mikrosprekker
som følge av brutte sementbindinger, med normaler fortrinnsvis orientert parallelt med aksialretningen (Torset, 2017).
Oppløftingsintervallet er derfor modellert med sprekkmodellen presentert i Fjær (2006).

For å modellere en fullstendig begravelseshistorie som er kalibrert til de eksperimentelle dataene, er det også nødvendig med
modeller som kan gjenskape de eksperimentelle dataene ned til starten av oppløft. Før sementering brukes modellen som er gitt
i Walton (1987). I stedet for å bruke de eksplisitte uttrykkene gitt i Walton (1987), har de generelle ligningene for belastning og
stivhet blitt løst for en mer generell belastningstilstand.

De eksperimentelle dataene viste både anisotropi og stressavhengighet etter sementering. For å ta hensyn til dette, har en
modifisert versjon av “patchy cement” modellen, presentert i Avseth et al. (2016), blitt benyttet. Modifikasjonen kom fra å
bruke et anisotropt granulært medium med en anisotrop formulering av Hashin-Shtrikman-grensene, i motsetning til de isotrope
variantene implementert i Avseth et al. (2016).

Sydd sammen resulterte de tre modellene i en god gjenskapelse av de eksperimentelle P-bølgehastighetene som funksjon av
den simulerte begravelseshistorien. Etter kalibrering til eksperimentelle data, ble modellen implementert i kombinasjon med en
sementestimeringsmodell for sementvolum (Walderhaug, 1996) for å produsere modeller som kan simulere prosesser i en ekte
begravelseshistorie.

Modellenes evne til å gjenskape dataene er ikke tatt som bevis på modellens gyldighet. Den endelige bergartsfysiske modellen
utviklet for å karakterisere oppløft er avhengig av antagelsene i de underliggende modellene, metoden for implementering og et
bredt utvalg av parametere. Den endelige modellenes kvantitative karakter er derfor usikker. Dette er imidlertid ikke unikt for
modellen i dette arbeidet, da de fleste bergarstfysiske modeller som karakteriserer hastighet som funksjon av begravelseshistorie
lider av generaliseringer og valg av parametere, som for eksempel de elastiske parametrene til kornmaterialet.

Analyse av ytterligere eksperimentelle data antyder at effekten av oppløft kan bli redusert i meget stive bergarter (tilsvarende
mye sement). I et slikt scenario kan oppløftsmodellering ved å anta ingen endring i parametere være gyldig.

Effekten av væsker ble modellert av den isotrope Biot-Gassmann-ligningen. Effektene av økt spenningsavhengighet for
hastighetene og P-bølgeanisotropien ble redusert, men under tilstrekkelig avlastning ble det fortsatt observert en reversering i
anisotropien.
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Part I

Thesis Introduction

1





Chapter 1
Background

Why does a rock body have the properties that are observed
by seismic, wireline or in the lab? The elastic properties of the
rock, and consequently the velocities are functions of composi-
tion and history. Modelling how rocks are affected by processes
occurring throughout geological history can help shed light
on its observed properties. This information can also used to
characterise any uplift that a rock has been subjected to, as
shall be demonstrated in the next chapter. Being able to predict
parameters such as velocity by modelling can help reduce
the potential for misinterpretation caused by the interplay of
lithology and fluid in defining seismic parameters. Knowledge
of how the rock properties have developed through time will
help contextualise the seismic and well data in terms of the
fluids contained. How elastic velocities of grain assemblages
and cemented rocks are affected by burial history is thus the
key challenge addressed in this work.

This work is based on laboratory data, and the information
that can be extracted from a simulated burial history applied to
a synthetic sandstone. By employing the laboratory data, a rock
physics model is calibrated based on various underlying models
to describe the development of the axial and radial P-wave
velocities through this simulated burial history.

This thesis is split in 6 parts in an attempt to focus the
discussion around one topic at a time. Part I will provide some
insight into geological processes that may or may not take place
during the burial history of a rock, although the discussion will
by no means be exhaustive. This is done because the potential
complexity of the burial history is important to keep in mind
when the later assumptions in the models are presented. The
discussion in this chapter is not limited only to sandstones, as
much of the later parts of this work, but aims to give a slightly
broader overview of geological processes. A discussion into
some of the reasons why being able to extract information
regarding the history of rocks is of interest is also included in
this part.
Some of the methods used in uplift quantification are also
introduced. Finally, some fundamental theory necessary in
several aspects of this work is depicted. Instead of collecting all
the theory in one long chapter, more topic specific theory has
been put in the parts where it is utilised.

Part II aims to give an insight into the experimental proce-
dure, and the necessary laboratory data used to develop the
model produced in this work. These laboratory data have been
discussed in detail in previous work, and this part thus aims
to provide a bridge to that work, and demonstrate how the
laboratory data impact the models presented in part I.

Parts III through to V attempt to develop a model that can
recreate the experimental data over three distinct phases of
the experiment: Pre-cementation loading, Post-cementation
loading and Post-cementation unloading.

Part VI will discuss the applicability of the developed model
on the field scale. The wide range of limitations that is in-
troduced due to the underlying models that form the building
blocks of the final model as well as other necessary assump-
tions are also presented. Factors such as cement volume, stress
path and the effects of fluids are also mentioned in this extended
discussion.

1.1 Processes Defining the Properties of
a Rock

The velocities and density of a rock can be seen as a result of
its burial history. The burial history describes the depth of a
sediment as a function of time. As sediments are buried they
are subjected to diagenetic processes. Diagensis is the term
commonly given to those mechanisms who affect the sediments
after deposition, but in a temperature regime lower than that
of metamorphism (Worden and Burley, 2003). This comprises
a host of physical and chemical changes, only a few of which
will be included in modelling of velocity as a function of burial
history in the present work.

1.1.1 Mechanical Compaction

After deposition, as sediments are buried deeper, the vertical
component of stress increases, and is at any a depth a function
of the weight of the overlying sediments (Worden and Burley,
2003). This increase in compressive stress can cause the
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Chapter 1. Background

porosity to decrease because of grain rearrangement, plastic de-
formation of components that are ductile and brittle fracturing
(Worden and Burley, 2003).

Variability in the mineralogical composition and depositional
properties such as grain size and sorting of the sediments leads
to variable porosity/depth curves. Cleavage planes in feldspars
and plastic deformation in micas are, among others, processes
that could lead to the porosity loss being different than for a pure
quartz assemblage (Worden and Burley, 2003).

The reduction in porosity increases the density of the sedi-
ments. Increased effective stress on grain contacts will cause
the stiffness of the rock to increase (Mavko et al., 2009) and the
interplay between stiffness and density subsequently defines
the velocity development.

If compaction is rapid in relation to the permeability of the
sediment the fluid pressure gradient will deviate from that of
normal hydrostatic pressure, causing overpressure (Osborne and
Swarbrick, 1997). This means the effective stress is lower,
which inhibits mechanical compaction and thus manifests itself
in higher porosities than expected. Overpressure and the effect
of fluids on the stiffness of sediments is discussed in slightly
more detail in appendix B.

1.1.2 Cementation and Chemical Compaction

Chemical compaction and cementation are by some1 used in-
terchangeably, to depict porosity loss in deeply buried rocks.
This is not particularly precise. Chemical compaction refers to
a loss of rock volume to chemical processes such as dissolution
(Worden and Burley, 2003). Cementation is the precipitation of
minerals in the pore space. Indeed, the two processes may have
a degree of interconnectedness as material dissolved in one area
may be reprecipitated elsewhere as cement.

In the modelling of the quantities of cement in a sandstone,
cementation is in this work taken to mean quartz cementation.
Choosing quartz makes sense as it is the most common cement
in sandstones (Worden and Burley, 2003). Rocks may however
be cemented by carbonate, clay minerals, anhydrite, pyrite,
feldspars and zeolites (Worden and Burley, 2003) which would
complicate the description of the rock throughout the burial
history.

Cement at grain contacts significantly increases the stiffness
of the rock (Dvorkin et al., 1994), whilst reducing the porosity.
Excessive exposure to cementation can completely destroy
porosity and permeability. Knowledge of the depositional
setting and burial history of rocks can help predict the amount
of cement, and thus the extent to which it affects velocities
and reservoir properties (Dvorkin and Nur (1996), Walderhaug
(1996)).

1Particularly in literature regarding quartz cementation on the Norwegian
continental shelf.

Figure 1.1: An illustrative figure from Bjørlykke and Jahren (2010)
summarising some of the important processes affecting a sediment as
it goes through deposition, burial and subsequent uplift and the effect
they have on porosity

1.1.3 Uplift

Although uplift is a commonly used term, “the geological
literature is much confused by an inconsistent definition of
the word uplift” (Molnar and England, 1990). England and
Molnar (1990) define the word uplift as “displacement in the
direction opposite to the gravity vector”, and three kinds of
displacements to which uplift and uplift rate can be applied
are presented. “Exhumation” is the displacement of rocks with
respect to the surface, and the rate of exhumation is then the
rate of erosion, or the rate at which overburden is removed
by tectonic forces (England and Molnar, 1990). This is the
characterisation of uplift that will be used throughout this work.
This means that rocks buried deeper down are brought closer to
the surface, which causes unloading, as the weight of overlying
overburden is reduced. This stress release might cause brittle
deformation (Bjørlykke and Jahren, 2010), and the extensional
behaviour causes extensional fractures (Bjørlykke, 2010). This
brittle deformation is not likely to cause major changes in the
porosity.

Figure 1.1 summarises some of the most important changes
happening to sediments as they progress through time and tem-
perature, and how the porosity is impacted as a result of the
various mechanisms2. The present day properties are a conse-
quence of the history that brought it there, in other words, rocks
have memory.

1.2 Why is Burial History Important?
Several processes that happen during burial are of interest in
hydrocarbon exploration. These processes impact both the
amount of producible hydrocarbons and may also influence
interpretation and drilling. Some of these processes are not

2Note that quartz cementation is “lumped together” with chemical com-
paction.
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reversible upon uplift and exhumation. This means that in
uplifted rocks, some features that are characteristic of deeper
buried sediments and rocks are observed.

Further, factors occurring in the eogenetic regime, in other
words under the influence of the original depositional environ-
ment are not considered in the modelling in this work. It is
however noted that these reaction may influence which reac-
tions take placer during deep burial by altering the mineral as-
semblage prior to burial (Worden and Burley (2003), Bjørlykke
and Jahren (2010)).

1.2.1 Quartz Cementation

Quartz cementation is a major porosity reducing factor. As fig-
ure 1.1 suggests, quartz cementation is a function of both time
and temperature, and starts at around 70-80 ◦C. Knowing the
maximum burial depth provides information of the maximum
temperature. Factors favourable for extensive quartz cementa-
tion are slow burial and high geothermal gradients (Bjørlykke
and Jahren, 2010), and as illustrated by figure 1.1 quartz ce-
mentation may severely reduce the pore space available for hy-
drocarbons to be stored.

A reduction in porosity by cementation would be expected to
come with an accompanying reduction in permeability, as some
pore throats are cemented shut.

The link to uplift is that the quartz cement is not removed af-
ter the rock is brought to temperatures below 70-80 ◦C where
the cementation stops. This means that the rock porosity at shal-
lower depths than the onset of cement can have reduced reser-
voir quality as a result of previous burial into the cementation
realm.

1.2.2 Clay Mineral Reactions

The conversion of smectite to illite, occurring at around 70-90
◦C in mudstones with potassium rich pore waters can release
ions that could reprecipitate as chlorite and quartz in adjacent
sandstone formation, but the effects of this transformation as a
source for quartz cement “remains conjectural” (Eslinger and
Pevear, 1988).

In addition, the conversion of smectite to illite might alter
the compressibility of the sediment, which can facilitate further
compaction by the overburden (Osborne and Swarbrick, 1997).
This increased compaction in unison with the potential for re-
duced permeability might facilitate overpressure development,
which can be a drilling hazard (Osborne and Swarbrick, 1997).
Overpressure is however a transient phenomenon, and so it is
not necessarily preserved through an uplift phase as fracturing
might occur.

The transformation from smectite to illite has also been ob-
served to cause a sharp increase in density and velocity, (Mar-
cussen et al. (2009), Bjørlykke and Jahren (2010)). In horizontal
sedimentary packages where temperature and conditions are rel-
atively constant laterally this might cause a horizontal reflector,

that could be mistaken for a fluid contact (Bjørlykke and Jahren,
2010).

In sandstones containing K-feldspar and kaolinite, illite might
also be precipitated accompanied by dissolved silica. Accord-
ing to Worden and Burley (2003) K-feldspar and kaolinite are
“universally unstable together”. Kaolinite and K-feldspar may
however be found together at low temperatures. Worden and
Burley (2003) attributes this to the fact that the reaction is only
prevalent at temperatures exceeding around 70◦C and pervasive
at 130◦C due to a kinetic reaction barrier or slow rate of reac-
tion at lower temperatures. Bjørlykke and Jahren (2010) claims
that the reaction happens at 130◦C, where the “two minerals are
no longer thermodynamically stable together”.
Authigenic (formed in situ) illite can have a detrimental effect
on reservoir properties by reducing permeability (Bjørlykke and
Jahren, 2010). This permeability reduction can come from its
tendency to grow as masses of long, hair-like crystals (Almon
and Davies, 1981).

1.2.3 Source Rock Maturation
The maturation of source rocks to produce hydrocarbons is, as
cementation, a function of time and temperature. One relatively
simple quantification of this is Lopatin’s “Time Temperature
Index”, a review of which can be found in Waples (1980). The
key is that the organic rich shale must be subjected to a high
enough temperature for a sufficient period of time. Exposure to
high temperatures for significant periods of time will however
cause gas formation and eventually the source rock will become
overmature.

Knowing when the source rock was active in generating oil
is important when put into context with other principal events
such as trap formation. If the source rock produced oil before a
trap geometry was formed, the hydrocarbons may have leaked
off (Allen and Allen, 2013).

1.3 Techniques for Characterising
Burial History

The main focus in this work is modelling the properties of a
quartoze grain assemblage through compaction, cementation
and uplift. In this section, a very simple conceptual sketch of
how this process may be conducted to characterise burial and
uplift history is shown. There exist other methods to charac-
terise the temperature history of rocks and sediments, and some
of these are presented in brief.

1.3.1 Diagenetic Sandstone Modelling
As an introductory example, a conceptual sketch of how sand-
stone diagenetic model can be conducted will be considered.
All the models that enter into creating this will be discussed at
length at later stages in this work. The inclusion of this before
all the models are discussed is simply to provide overview
of the current methodology. Prior to cementation, the only
processes considered are mechanical compaction and increased

5



Chapter 1. Background

stress on grain contacts. Upon the onset of cementation, it is
assumed that the only porosity lost is due to the formation of
cement.

Consider a sandstone with a dry velocity of 2776 m/s
found at a burial depth of 600 m. By combining compaction
modelling of porosity, such as that in Lander and Walderhaug
(1999), together with granular media models and cement
models, such as the friable sand and contact cement models,
describe in Dvorkin and Nur (1996) the velocity as a function
of burial history can be modelled. The amount of cement is a
function of several parameters, and can be estimated using the
model in Walderhaug (1996). The effect of increased stress on
uncemented granular media is discussed in more detail in part
3, whereas the effects of cementation are discussed in part 4.

During uplift, as long as the sandstone is within the quartz
cementation realm cementation continues. The onset of quartz
cement is in this work taken to be 70◦C. This is from Bjørlykke
and Jahren (2010) who seems to suggest “70-80 ◦C”. The exact
temperature at the onset of cement might be slightly higher,
but this is easily changed in the models, and so the exact tem-
perature at the onset of cement is not discussed in any further
detail. After the rock is uplifted past depths corresponding to
these temperatures the cementation ceases. During subsequent
uplift, common practice in sandstone diagenetic modelling is
to assume that the sandstone retains the properties it possessed
at the exit point for cementation (see for example Avseth et al.
(2014b) or Avseth and Lehocki (2016)). This will then manifest
itself as a vertical line upon uplift past the 70◦ C mark.

Figure 1.2 shows the result of such as modelling sequence,
predicting an uplift of 2200 m (2800→ 600). The correspond-
ing burial history is shown in figure 1.3. The porosity loss
is illustrated in figure 1.4. The value of Lopatin’s TTI is in
this case 6.65, which is outside the oil window. The models
implemented here are limited to isotropic stress states, and
stress insensitivity during cementation.

1.3.2 Vitrinite Reflectance

Vitrinite reflectance (often denote %R0) measures how much of
incident light is reflected off vitrinite particles in sedimentary
rocks. Vitrinite is something referred to as a maceral, which are
organic particles that are microscopically detectable in kerogen
(Cardott, 2012). Used as a thermal maturity indicator, the value
of the vitrinite reflectance is much more sensitive to the max-
imum burial temperature than time (Japsen and Bidstrup, 1999).

Therefore, although vitrinite reflectance can be used as a mea-
sure for quantifying the maximum burial depth, it will have to be
combined with other geological evidence to recreate the burial
history.

1.3.3 Interval Velocities in Shale

Richardsen et al. (1993) models uplift based on interval veloci-
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able sand model in Dvorkin and Nur (1996). The volume and effect
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with the model from Lander and Walderhaug (1999), and the amount
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is assumed to remain unchanged as a result of the uplift.

ties in shale. The methodology is rooted in two assumptions:

1. Velocity increase in shales due to compaction is caused by
a reduction in porosity

2. There exists a linear relationship between the porosity and
interval velocities

Under these assumptions, the present day properties of the
shale reflects the maximum burial depth of the shale. This is

somewhat similar to the assumption that there is no change in
the sandstone after it is uplifted out of the cementation domain.

1.3.4 The Smectite to Illite Transformation

Smectite and illite commonly occur in mixed layer clays
(Eslinger and Pevear, 1988). The amount of illite, and the
ordering of the smectite/illite is directly related to temperature
in the presence of sufficient initial potassium (Eslinger and
Pevear, 1988). The ordering of smectite and illite in the mixture
is not discussed in detail (see Eslinger and Pevear (1988) for
a detailed description), apart from the notable fact that the
ordering is related to the amount of smectite and temperature.

Eslinger and Pevear (1988) and Abid et al. (2004) thus
suggest that the composition of mixed layer clays may be used
as a paleotemperature indicator. It is however important to note
that the transition from smectite to illite is also dependent on the
original composition of the clay, and the availability of potas-
sium, and so should not be used alone (Eslinger and Pevear,
1988). In terms of hydrocarbon exploration, it is interesting that
the zone of abrupt transformation of smectite to illite coincides
roughly with temperatures ideal for intense oil generation
(Eslinger and Pevear, 1988). A way to identify smectite is by
recognition of a 17Å peak in X-ray diffraction, and presence
of such a peak might thus indicate that source rocks are
immature, or only marginally mature (Eslinger and Pevear,
1988). Furthermore, in Abid et al. (2004) the occurrence
of so-called “R1” ordered mixed layer clay at lower temper-
atures than expected is taken to be a possible indication of uplift.
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Chapter 2
Introductory Theory

This chapter aims to provide some of the general theory
utilised in several aspects of this work. More detailed theory
is provided in the individual parts.

2.1 Stress, Strain and Elasticity

2.1.1 Stress and Strain
Stress is defined as the force acting through a cross-sectional
area, divided by that cross sectional area (Fjær et al., 2008).

σ =
F

A
(2.1)

Strain is a way to quantify deformation caused by applying
stress to a body (Fjær et al., 2008).

2.1.2 Elasticity
An elastic material is one that is able to recover from a defor-
mation induced by the application of a force (Fjær et al., 2008).
The relationship between stress and strain in an elastic material
need not be linear, the key being that the material returns to its
original state upon removal of the force (Wood, 1990).

The generalised Hooke’s law provides the relationship be-
tween stresses and strains in a material that is linearly elastic

σij =

3∑
k=1

3∑
l=1

cijklεkl (2.2)

Isotropic materials are materials in which the properties are
independent of orientation, and in that case Hooke’s law can be
written as (Fjær et al., 2008)


σx
σy
σz
τyz
τxz
τxy

 =


λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G




εx
εy
εz

Γyz
Γxz
Γxy


(2.3)

In the above equation, σi and εi are those stresses and strains
which are parallel to the principal axes in a coordinate system
where x = 1, y = 2 and z = 3, so called “normal” stresses and

strains. The shear stress and strains are represented by τ and γ
respectively.

λ andG are the Lamé parameters. G is the shear modulus and
quantifies the materials ability withstand shear deformation, λ
does not have a simple physical interpretation (Shearer, 2009).
There exists three more parameters that are commonly used to
describe isotropic materials.

• Young’s modulus, E, is the ratio between the extensional
stress, and subsequent strain in a cylinder where both ends
are pulled (Shearer, 2009).

• The ratio between a hydrostatic change in stress and the
volumetric strain caused by this is called bulk modulus,
and is denoted K (Shearer, 2009).

• Poisson’s ratio, ν is a measure of the lateral contraction
in relation to a longitudinal extension when a cylinder is
pulled at both ends (Shearer, 2009)

Under macroscopic changes in stress, porous materials
generally exhibit non-linear behaviour, such that the application
of stress leads to irrecoverable damage. One potential cause
of this is changes to the grain packing (Gassmann, 1951). For
stress variations that are small enough however, deformation
might be reversible. Propagation of waves induce only small
strains, and thus the porous media might behave “differentially
elastic” (Gassmann, 1951).

2.2 Overburden Stress and Pore Pres-
sure

Vertical stress in the subsurface can be calculated, if the proper-
ties of the overburden are known (Bjørlykke et al., 2015)

σv =

∫ z

0

ρ(z)gdz (2.4)

where ρ is the depth-dependent density, and g is the acceleration
due to gravity.

If the rock is saturated with water that is unable to escape,
the fluid will carry some of the load. This reduces the “effective
stress” according to the equation
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σ′ = σ − αPp (2.5)

Where σ′ is an effective stress, σ is the total stress, and Pp is the
pore pressure. α is a parameter known as Biot’s alpha, given by
α = C

M , whereC andM are extra elastic moduli needed to fully
describe the two-phase system (Biot (1962), Fjær et al. (2008)).
By subtracting the load carried by the fluid, the remaining load
is carried by the framework of the porous system1.

2.3 Anisotropy
If the response of a material to deformation is dependent on the
orientation and direction, it is called anisotropic (Fjær et al.,
2008).

Some sources of anisotropy include

1. Intrinsic,such as from clay platelet orientation

2. Stress induced

3. Layering

Deformation of anisotropic media is governed by the
generalised Hooke’s law, given in equation (2.2). At the
lowest symmetry (triclinic), there are 21 independent elastic
parameters. By making assumptions regarding symmetries, the
number of elastic parameters can be brought down. A common
assumption is “Vertical Transverse Isotropy (VTI)” referring
to a material with a vertical symmetry axis, and a horizontal
symmetry plane (Fjær et al., 2008).

2.4 Elastic Wave Velocities
For an isotropic, linearly elastic and homogeneous material, the
P- and S wave velocities can be given as Fjær et al. (2008)

Vp =

√
K + 4

3G

ρ
(2.6)

Vs =

√
ρ

G
(2.7)

From these equations, it is clear that the velocities are functions
of the elastic moduli and the density of the rock.

In anisotropic media, the case is naturally a little more com-
plex. The propagation velocities can be related to the parameters
in equation (2.2), propagation direction and particle displace-
ment through the Christoffel equation (Fjær et al., 2008)∑

i,j

(Cijkllj ll − ρv2δik)u0
k = 0 (2.8)

This will not be discussed in any great detail, for a thorough
discussion, see for example Fjær et al. (2008).

1Some additional comments regarding the presence of pore fluids in the pore
network is discussed in appendix B.

For a VTI media, the stiffness matrix, after introduction of
Voigt notation2 (Voigt, 1910) can be written

C =


C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


(2.9)

The velocity of a wave with propagation and particle dis-
placement parallel to the axis of symmetry (A vertically propa-
gating P-wave) is given as (where z is the vertical axis)

Vp,z =

√
C33

ρ
(2.10)

A P-wave travelling perpendicular to the axis of symmetry
would have velocity given by

Vp,(x,y) =

√
C11

ρ
(2.11)

A S-wave travelling parallel to the axis of symmetry (parti-
cle displacement does not matter, as it will be in the symmetry
plane) has velocity given by

Vs,z =

√
C44

ρ
(2.12)

2.5 Hashin-Shtrikhman Bounds
The Hashin-Shtrikhman bounds are a way of constraining the
value of a mixture of two phases with different elastic prop-
erties, based on their individual elastic properties and volume
fractions (Mavko et al., 2009).

2.5.1 Isotropic Formulation
To compute the bounds for an assemblage of potentially more
than two phases Berryman (1995) introduces three equations

Λ(x) =

( N∑
i=1

fi

Ki + 4x
3

)−1

− 4

3
x (2.13)

Γ(y) =

( N∑
i=1

fi
µi + y

)−1

− y (2.14)

F (x, z) =
x

6

(9z + 8x

z + 2x

)
(2.15)

Where Ki and µi represent the bulk and shear moduli for the
i’th component. The proportion of each component is given by
fi.
If the maximum values of K and µ are denoted K+, µ+ and the

2A way to represent a symmetric tensor by reducing its order; 11 22 33 23
13 12→ 1 2 3 4 5 6.
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minimum values K−, µ−, the Hashin Shtrikhman bounds are
defined as (Berryman, 1995)

K±HS = Λ(µ±) (2.16)

µ±HS = Γ[F (µ±,K±)] (2.17)

2.5.2 Anisotropic Hashin-Shtrikman Bounds
Throughout this work anisotropy is a major factor, and the need
to mix anisotropic phases will become apparent. In anisotropic
media, a reformulation of the Hashin-Shtrikman bounds is
needed, due to rock no longer having a well defined bulk or
shear modulus. This can be found in Parnell and Calvo-Jurado
(2015), and is reviewed below. The rendition here does not
delve deep into the mathematical and physical considerations
found in Parnell and Calvo-Jurado (2015), but aims to provide
the parts necessary for implementation.

Consider two phases with symmetric TI elastic modulus ten-
sor (written in the shorthand notation adopted in Parnell and
Calvo-Jurado (2015))

Cr = (2kr, lr, lr, nr, 2mr, 2pr), r = 0, 1 (2.18)

The components are related to the stiffness parameters through
the following relations3:

k =
C11 + C12

2
(2.19a)

m =
C11 − C12

2
(2.19b)

l = C13 (2.19c)
n = C33 (2.19d)
p = C44 (2.19e)

Define two functions, “Contraction” (con) and “Inversion”
(inv). The contraction function acts on two 6-vectors

H1 = (2k1, l1, l
′
1, n1, 2m1.2p1)

H0 = (2k1, l0, l
′
0, n0, 2m0, 2p0)

in the following manner:

con(H1,H0) =(4k1k0 + 2l1l
′
0, 2k1l0 + l1n0, 2k0l

′
1 + l0n1,

n1n0 + 2l′1l0, 4m1m0, 4p1p0)

(2.20)

the inversion function has the following result

inv(H1) =

(
n1

2∆
,
−l1
2∆

,
l1

2∆
,
k1

∆
,

1

2m1
,

1

2p1

)
∆ = k1n1 − l1l′1

(2.21)

Now consider two phases, with stiffness parameters con-
tained in C1 and C0. First let the so called comparison face
be given by C0 = Cc. The bound is then given by

3Note that in this work Voigt notation has been adopted.

CB = C0 + φ1M
0 (2.22)

This is a lower bound if C1 −C0 is positive semi-definite
and a upper bound if C1 −C0 is negative semi-definite.
Switching C1 and C0 in the two phase compositions to be
considered in this work should then produce the opposite
bound, although it is important to remain consistent in the
proportion definitions4.

M0 is given as

M0 = inv(N + Ps − φ1Pd) (2.23)

where

N = inv(C1 −C0) (2.24)

It remains to define the P-tensor. Parnell and Calvo-Jurado
(2015) defines it as

Pδ = con(Sδ, (Cc)−1) (2.25)

Where Sδ is the TI Eshelby tensor.

The resulting Eshelby tensor in the case of “a spheroidal in-
clusion with semi-axes a1 = a2 6= a3, embedded inside a TI
comparison phase with axis of symmetry along x3 and with
elastic modulus tensor may be written” (Parnell and Calvo-
Jurado, 2015):

Ss = (2kδ, lδ, l
′
δ, nδ, 2mδ, 2pδ) (2.26)

The δ parameter is used to describe the shape of the inclu-
sions. δ = 1 is spherical. To describe the distributions of the
inclusions, ε is used. The subscript “s” is thus to highlight
”Shape” rather than ”Distribution”. A “d” would incite the use
of ε.

The relationship of ε and δ puts a limit of how much of an
inclusion can fit into a security spheroid, and consequently a
limit on the amount of the inclusion phase, if the values of ε and
δ are fixed. The relations are given in Parnell and Calvo-Jurado
(2015) as

0 ≤ φ ≤ ε2

δ2
, δ > ε (2.27)

0 ≤ φ ≤ δ

ε
, ε > δ (2.28)

Throughout this work they are assumed to be equal, such that
the inclusion phase can vary from 0 to 1 in proportion, and also
implies Ps = Pd.

4In this work, the phases are limited to scenarios where C1 is component-
wise larger than C0, so having C0 as the comparison phase produces a lower
bound, and having C1 as the comparison phase produces the upper bound.
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Chapter 2. Introductory Theory

Further, define:

v1 =

(
(l̂c − lc)(l̂c + lc + 2pc)

4ncpc

)1/2

+

(
(l̂c + lc)(l̂c − lc − 2pc)

4ncpc

)1/2
(2.29a)

v2 =

(
(l̂c − lc)(l̂c + lc + 2pc)

4ncpc

)1/2

−

(
(l̂c + lc)(l̂c − lc − 2pc)

4ncpc

)1/2
(2.29b)

v3 =

(
mc

pc

)1/2

(2.29c)

Where

l̂c = (nc(kc +mc))
1/2 (2.30)

It is noted in Parnell and Calvo-Jurado (2015) that generally
v1, v2 ∈ C with one the complex conjugate of the other.
for vi ∈ R define:

I1(vi) =
2πδ

(1− v2
i δ

2)
·
(

cos−1(viδ)
(1−v2i δ2)1/2

− viδ
)
, viδ < 1(

cosh−1(viδ)
(v2i δ

2−1)1/2
− viδ

)
, viδ > 1

(2.31)

if vi ∈ C either of the cases of equation (2.31) can be used.

2.5.2.1 Isotropic Comparison Phase

For an isotropic comparison phase the following relations are
true, based on the elastic descriptions of isotropic media (Parnell
and Calvo-Jurado, 2015)

lc = λc = l′c (2.32)
pc = mc = µc (2.33)
kc +mc = nc = λc + 2µc (2.34)

The relation in equation (2.32) comes from the fact that
C13 = λ, where λ is the aforementioned Lamè parame-
ter. The relation in equation (2.33) is from the fact that
C44 = C66 = µc and finally, equation (2.34) is from the fact
that kc +mc = C11 = C33 = n.

Inserting equation (2.34) into equation (2.30) yields

l̂isoc = nc = kc +mc (2.35)

Further insertion of equations (2.32) to (2.35) into equations
(2.29a) to (2.29c) yields v1 = v2 = v3 = 1.

For an isotropic comparison phase the components of the Es-
helby Tensor becomes (Parnell and Calvo-Jurado, 2015)

S11 = 3AI11 +BI1 (2.36a)
S33 = 3AI33 +BI3 (2.36b)
S12 = AI11 −BI1 (2.36c)
S13 = AI13 −BI1 (2.36d)

S31 =
A

δ2
I13 −BI3 (2.36e)

S44 =
δ2 + 1

2δ2
AI13 +

B

2
(I1 + I3) (2.36f)

Where

A =
1

8π(1− νc)
(2.37a)

B = (1− 2νc)A (2.37b)

νc is the Poisson’s ratio of the isotropic comparison medium.
Further

I3 = 4π − 2I1 (2.38a)

I33 =
4π

3
− 2

3
I13 (2.38b)

I11 = π − I1 − I3
4(δ2 − 1)

(2.38c)

I13 =
δ2(I1 − I3)

δ2 − 1
(2.38d)

In the case of δ = 1 there is division by zero in equation
(2.31).

Parnell and Calvo-Jurado (2015) gives this limit as I1 = 4π
3 .

What happens to all the remaining divide by zero terms is not
explicitly given, but still of interest, as isotropic comparison
phases are to be used.

I3 is relatively simple and is given as

Iδ=1,iso
3 = 4π − 2

4π

3
=

4π

3
(2.39)

where the superscript δ = 1, iso refers to the case of isotropic
inclusion with δ = 1. The limit of the remaining terms has been
found as:

Iδ=1,iso
13 = Iδ=1,iso

11 = Iδ=1,iso
33 =

4π

5
(2.40)

Formal proof is omitted, but visual representation of the limit is
given in appendix A
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2.5 Hashin-Shtrikhman Bounds

2.5.2.2 Anisotropic Comparison Phase

For a TI comparison phase:

S11 =
2∑
i=1

[2pc(1 +Ki)v
2
i −mc]LiviI1(vi) +

1

2
DmcI1(v3) (2.41a)

S12 =

2∑
i=1

[2pc(1 +Ki)v
2
i − 3mc]LiviI1(vi)−

1

2
DmcI1(v3) (2.41b)

S33 = 2

2∑
i=1

[lc − ncKiv2i ]v3iKiLiI3(vi) (2.41c)

S13 = 2

2∑
i=1

[lc − ncKiv2i ]viLiI1(vi) (2.41d)

S31 = 2

2∑
i=1

[pcv
2
i (1 +Ki)−mc]KiLiv3i I3(vi) (2.41e)

S44 = 0.5pc

2∑
i=1

Liv
3
i (1 +Ki)(I3(vi)− 2KiI1(vi)) +

1

4
DpcI3(v3)v

2
3

(2.41f)

where

D =
1

4πpcv3
(2.42a)

Ki =
(kc +mc)/v

2
i − pc

lc + pc
(2.42b)

Li = (−1)i
pc − ncv2

i

8πncpc(v2
1 − v2

2)v2
i

(2.42c)

Parnell and Calvo-Jurado (2015) uses in these equations the
notation I3(vi) = 4π

vi
− 2I1(vi). These results can then be used

to create the short-hand notation through

kδ =
1

2
(S11 + S12) (2.43a)

lδ = S13 (2.43b)
l′δ = S31 (2.43c)
nδ = S33 (2.43d)

mδ =
1

2
(S11 − S12) (2.43e)

pδ = S44 (2.43f)

The final step is then to utilise equation (2.25) to calculate P.

2.5.2.3 Comparison of the Isotropic and Anisotropic Meth-
ods

Setting δ = ε = 1 means that mixing of two isotropic
phases should yield an isotropic result, identical to the isotropic
Hashin-Shtrikhman bound. Figure 2.1 and 2.2 demonstrates this
for two phases with elastic parameters given in table 2.1, an in-
deed the bounds overlap.

Table 2.1: Elastic parameters of the two phases used to demonstrate the
equivalence of the anisotropic and isotropic Hashin-Shtrikman bounds
in the limit of isotropic phases with δ = ε = 1. The values are taken
from Parnell and Calvo-Jurado (2015), and k, l,m, n, p refer to the
parameters used in the anisotropic formulation.

Phase 1

C11 (k+m) 6.73 GPa
C12 (k-m) 4.19 GPa
C13 (l) 4.19 GPa
C33 (n) 6.73 GPa
C44 (p) 1.27 GPa
K = C11 − 4C44

3 (Bulk modulus) 5.04 GPa
G = C44 (Shear modulus) 1.27 GPa

Phase 2

C11 (k+m) 77.77 GPa
C12 (k-m) 25.77 GPa
C13 (l) 25.77 GPa
C33 (n) 77.77 GPa
C44 (p) 26 GPa
K = C11 − 4C44

3 (Bulk modulus) 43.1 GPa
G = C44 (Shear modulus) 26 GPa
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Lower bound from Anisotropic Hashin-Shtrikman (  = 1)

Upper bound from Hashin-Shtrikman
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Figure 2.1: Comparison of the upper and lower bounds of the bulk
modulus estimated from the isotropic Hashin-Shtrikman bounds pre-
sented in Mavko et al. (2009), and the anisotropic Hashin-Shtrikman
formulations in the limit of isotropic phases and δ = ε = 1. The in-
put parameters are given in table 2.1, and are taken from Parnell and
Calvo-Jurado (2015). Note that the figures in Parnell and Calvo-Jurado
(2015) are normalised against the lowest elastic parameter, which is not
done here, as it seems unnecessary. The bounds overlap as expected.
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Figure 2.2: Comparison of the upper and lower bounds of the shear modulus estimated from the isotropic Hashin-Shtrikman bounds presented in
Mavko et al. (2009), and the anisotropic Hashin-Shtrikman formulations in the limit of isotropic phases and δ = ε = 1. The input parameters are
given in table 2.1, and are taken from Parnell and Calvo-Jurado (2015). Note that the figures in Parnell and Calvo-Jurado (2015) are normalised
against the lowest elastic parameter, which is not done here, as it seems unnecessary. The bounds overlap as expected.
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Part II

Laboratory Experiments Simulating Burial and
Uplift -

A Bridge From Previous Work
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Chapter 3
Overview of Experimental Procedure and
Interpretation

3.1 Introduction to Part II

This part includes a rendition of prior work. The work in Torset
(2017)1 investigated the consequences that simulated uplift
has on a synthetic sandstone. This part will demonstrate some
observations in the experimental data that are not included
in the diagenetic sandstone modelling used to create the
conceptual model seen in figure 1.2. In the next chapter, an
investigation into how modelling might improve the conceptual
model in terms of incorporating the experimental observations
is presented.

3.2 Experimental Background

The data used in Torset (2017) were from experiments done by
SINTEF in 2013. SINTEF’s motivation was to investigate how
coring damaged the rock, and how subsequent laboratory tests
were not directly adequate in predicting reservoir compaction.
According to SINTEF, the aim was to “to improve best prac-
tices for correction of core compaction data for stress-release
induced data” (Holt et al., 2013).

The motivation was thus not directly linked to uplift esti-
mates, and the effect of uplift on sandstones. As part of the ex-
periment, there was however one “reference” stress path which
was not subjected to the simulated coring. This is the stress path
that will serve as the basis for the discussion in this work.

3.3 Experimental Procedure

The synthetic sandstones were formed by mixing sodium sili-
cate and a representative grain size. After being precompacted,
the sample was flushed with CO2, which reacts with the silicate
to form quartz, which precipitates as a synthetic cement. This

1Torset (2017) was a specialisation project conducted at NTNU. It is not pub-
lished, so this part will give insight into what aspects of this thesis that originates
from previous work.

happens according to the reaction (Kiesel and van Oene, 1982):

Na2Si3O7 + 2H2O + 2CO2 → 3SiO2xH2O + 2NaHCO3

This silicate is less brittle than naturally occurring cement
according to Holt et al. (2000), who utilised the same procedure.

As a “measure of representativeness” between the synthetic
and real sandstones, Holt et al. (2000) provide four criteria:

• The mechanical behaviour of the synthetic sample should
be the same as a target natural rock.

• Key petrophysical properties such as permeability, elastic
wave velocity and porosity should be close to that of the
target rock.

• The visual characteristics of the real and synthetic rocks
should be the same.

• Real and synthetic rocks should possess comparable mi-
crostructure.

Varying the amounts of sodium silicate in the samples allows
for the creation of sandstones of variable stiffness. For the
purpose of this work, the primary focus will be on the sample
labelled “stiff”2. Some additional samples are discussed in part
VI and in appendix C.

3.3.1 “Burial History”
Figure 3.1 shows the stress path3 of the synthetic sandstone.
Prior to cementation the sample is loaded along a stress path
defined by σz = 2σr. After the sample is flushed with CO2 it is
left for two hours to settle. Following this, the sample is loaded
(simulated burial) under uniaxial strain conditions, before be-
ing unloaded (simulated uplift) under uniaxial strain conditions.
Stress paths that involve loading after cementation are referred
to as “A”4.

2Which is actually quite soft, just stiff in relation to the other samples.
3Taken to be analogous with burial history.
4Experiments simulating coring involve unloading right after cementation

and their stress paths are identified by “B”.
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Figure 3.1: The axial and radial stress paths over the experimental
time interval utilised in this work. The experiment did have another
loading/unloading phase which was discussed in Torset (2017), but in
relation to the modelling in this work the time interval displayed in this
figure is sufficient. During pre-cementation loading and the cementa-
tion interval it can be observed that σz = 2σr . During loading and
unloading after cementation the criteria is uniaxial strain.

3.4 Results
In Torset (2017), a significant number of experimental param-
eters are plotted against each other to give a broad overview
of the processes occurring. In this chapter however, only a
small number of those results are displayed. These are the ones
deemed necessary for the subsequent work. Some additional ex-
perimental results are given in appendix C together with a more
detailed discussion. In addition to this, some experimental data
are given in the extended discussion in part VI in relation to the
effect of cement volume and unloading right after cementation
(as opposed to unloading after first loading as done here). The
reason for segregating the experimental results is that the model
developed will be implemented on one cement volume with one
stress path, which is the sample discussed in the present chapter.

Figure 3.2 shows the axial P-wave velocity plotted against
axial stress for the simulated burial history. Since these samples
are left to cement over a constant stress, the velocity increase
due to cementation naturally happens at that stress, which can
be seen at 15MPa.

During loading after cementation the axial P-wave velocity is
still seemingly stress dependent. The cementation has however
made the sample less dependent to the further increase in
stress. The most important observation in relation to uplift
is that the velocity during unloading acts distinctly different
than during the loading after cementation, even though both
paths are defined by uniaxial strain. At 15MPa, the velocity is
around 200m/s lower during simulated uplift than right after
cementation, and the stress dependence keeps increasing. At
the end of the unloading the total change in axial P-wave
velocity is around 500 m/s compared to maximum burial.

The P-wave anisotropy is shown against the axial stress
development in figure 3.3. During loading prior to cementation
the P-wave anisotropy becomes slightly more negative. Ce-
mentation brings the anisotropy towards isotropy. The main
observation from this figure is the large variation in P-wave
anisotropy during loading and unloading after cementation.
The loading conditions (uniaxial strain) are the same, but the
P-wave anisotropy is actually reversed upon simulated uplift.

The stress versus strain is shown in figure 3.4. It can be seen
that during the uplift there is less strain, as compared to the
burial, conforming well with the prediction that porosity change
during uplift is relatively small. Upon reversal of the stress,
it would be expected that the strain is also reversed, causing
extension in the core. It can be observed however that over
the first few MPa’s of unloading, the sample keeps compacting
(i.e., axial strain increases). This is known as creep (Fjær et al.,
2015).

3.5 Interpretation
The stress release during uplift can result in brittle deformation,
leading to the formation of, and/or reactivation of microcracks
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Figure 3.2: Measured axial P-wave velocity visualised against the axial stress. The measured data are discrete, but are joined by lines to form
the observed trends, and this will be adopted for all figures showing experimental data. Three things to note: Large increase in velocity during
cementation at constant stress, some stress dependence upon continued loading, but a much high stress dependence upon subsequent unloading
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Figure 3.3: Measured P-wave anisotropy visualised against the axial stress. The measured data are discrete, but are joined by lines to form
the observed trends, and this will be adopted for all figures showing experimental data. In figures showing anisotropy this occasionally causes
a “zig-zag” pattern due to the indexing of the data containing radial and axial P-wave velocities. Three things to note: The P-wave anisotropy
becomes more negative as the sample is loaded prior to cementation, the cementation brings the rock closer to isotropy, before a reversal of the
P-wave anisotropy is seen during simulated uplift.
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Figure 3.4: Measured axial strain visualised against the axial stress.
The measured data are discrete, but are joined by lines to form the
observed trends, and this will be adopted for all figures showing exper-
imental data. During uplift the strain does not return to its pre-burial
values, indicating permanent deformation and reduction in porosity. In-
set: Upon reversal of the stress, there is a creep effect, whereby the
strain keeps increasing, even though the stress has been reversed

and fractures (Bredesen, 2017). According to Holt et al. (1997),
opening and closing of microcracks, as the stress is varied
facilitates variations in stress dependence. The term “crack”
is used loosely in the following discussion, to also include
grain contacts that are failing, or poorly cemented. Open
cracks that are oriented with normals parallel to either wave

propagation direction, or the particle displacement direction
reduce the velocity of propagating waves (Fjær et al., 2008,
Chapter 5). If these cracks then have a preferred direction,
velocity development would be expected to be affected in an
anisotropic way.

Holt et al. (2004) conducted numerical simulations to inves-
tigate the effect of unloading on cemented grain contacts. It is
discussed how these cement bonds may break through tension
as well as shear. The cement in Holt et al. (2004) is formed
at the max stress level, which is different from the present
discussion, and thus may alter the processes. Furthermore,
the results in Holt et al. (2004) are dependent on parameters
provided to the cement bonds.
One way to explain these observations is thus microcracks
with normals preferentially oriented in the axial direction upon
simulated uplift. This would reduce the axial P-wave velocity
to a greater extent than the radial P-wave velocity. The P-wave
anisotropy is thus reversed when the sample is subjected to
sufficient amounts of simulated uplift. These microcracks
could be broken cement bonds. As the sample is subjected to
uniaxial strain during unloading, the only extension is in the
axial direction. This means tensional axial stress might develop
at grain contacts, causing breakage mainly oriented in the axial
direction.

3.6 Summarising Remarks

Simulated uplift in the laboratory yielded an increased stress de-
pendence in the observed P-wave velocity, with the uplift affect-
ing the axial velocity to a larger degree than the radial P-wave
velocity, leading to a reversal in the P-wave anisotropy.

The exact mechanisms causing the increased stress depen-
dence are not exactly known, although the interpretation made
in Torset (2017) revolves around brittle deformation in the core,
leading to the formation of microcracks, possibly from the
breakage of cement bonds.
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Chapter 4
Uplift Modelling With the Crack Model

4.1 Introduction to Uplift Modelling

It was an objective in Torset (2017) to investigate models that
were able to explain the observed P-wave velocities during
simulated uplift. In “explain”, fitting the observed data was of
course an important aspect. It was also desirable that the model
should also carry some physical interpretation concomitant
with reported potential effects, such as microcracks.

In Torset (2017), three models were tested to model the mea-
sured velocities, namely the models in Prioul et al. (2004), Fjær
(2006) and Ciz and Shapiro (2008). Based on the interpretation
of the microcrack formation, as well as the fact that there is not
a lot of cement, the crack model presented in Fjær (2006) was
deemed to be appropriate.

4.2 The Crack Model (Fjær 2006)

A model to describe the stress dependence of the elastic wave
velocities in weak rocks is depicted in Fjær (2006). The starting
point for the model is that the rock can be considered as a solid,
containing flat cracks, and spherical pores, remembering the
definition of cracks to include poorly or failing cemented grain
contacts. The cracks are assumed to be contained in three sets,
with orientations normal to the principal stresses, as illustrated
in figure 4.1.

If the cracks and pores are assumed to be non-interacting, the
elements of the elastic stiffness tensor are given as (Fjær, 2006)

C11 = C0
11[1−Qp11φ−Q33ζx −Q11(ζy + ζz)] (4.1)

C22 = C0
22[1−Qp11φ−Q33ζy −Q11(ζy + ζx)] (4.2)

C33 = C0
33[1−Qp33φ−Q33ζz −Q11(ζy + ζx)] (4.3)

C12 = C0
12[1−Qp13φ−Q12ζz −Q13(ζy + ζx)] (4.4)

C13 = C0
13[1−Qp13φ−Q12ζy −Q13(ζz + ζx)] (4.5)

C23 = C0
23[1−Qp13φ−Q12ζx −Q13(ζy + ζz)] (4.6)

C44 = C0
44[1−Qp44φ−Q44(ζy + ζz)−Q66ζx] (4.7)

C55 = C0
55[1−Qp44φ−Q44(ζx + ζz)−Q66ζz] (4.8)

C66 = C0
66[1−Qp66φ−Q44(ζy + ζx)−Q66ζz] (4.9)

Figure 4.1: Taken from Fjær (2006), this figure depicts the three sets
of cracks with normals oriented perpendicular to each other that are are
present in the crack model.

In a rock without cracks or pores, the C0
ijs represent the

stiffness of the rock. In the absence of anisotropy prior to
crack formation C11, C22 and C33 are equivalent to the P-wave
modulus of the solid material, given as M = K+ 4G

3 . C44, C55

and C66 are equivalent to the shear modulus G of the solid
material. φ is the porosity and the ζ’s represent the crack
densities.
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The Q’s are given as (Fjær et al., 2008, p. 233-235)

Q11 =
16

3

ν2

1− 2ν
D (4.10a)

Q33 =
16

3

(1− ν)2

1− 2ν
D (4.10b)

Q44 =
16

3

1− ν
2− ν

(4.10c)

Q66 = 0 (4.10d)

Qp11 = Qp33 =
1

2

(
1 + ν

1− 2ν
+ 10

1− 2ν

7− 5ν

)
(4.10e)

Qp44 = Qp66 = 15
1− ν
7− 5ν

(4.10f)

Selecting a Poisson’s ratio of 0.076 it can be seen that1

Q11 = 0.036, Q33 = 5.37, Q44 = 2.56 (4.11)

Looking at equations (4.1), (4.3) and (4.7) it can be seen
that C11 in this scenario is in terms of crack densities nearly
only dependent on ζx, C33 is primarily dependent on ζz and
C44 is dependent on both ζy and ζz . This makes sense when
considering the way in which the waves propagate, as one
would expect a P-wave to be primarily effect by cracks with
normals parallel to the propagation direction, as is the case
in the equations above. The shear wave has a more biaxial
dependence, as the propagation and polarisation directions of
the wave are perpendicular.

The crack densities are expressed as

ζx = ζ0
x

(σ0
x + T0

σx + T0

)n
e−β(2εx−εy−εz)+ηΓ2

(4.12)

ζy = ζ0
y

(σ0
y + T0

σy + T0

)n
e−β(2εy−εx−εz)+ηΓ2

(4.13)

ζz = ζ0
z

(σ0
z + T0

σz + T0

)n
e−β(2εz−εy−εx)+ηΓ2

(4.14)

At some reference point σi = σ0
i the strain is set to zero,

and the crack densities denoted ζ0
i are the crack densities at this

point. T0 is a parameter that Fjær (2006) describe as a param-
eter with some relation to the tensile strength. The remaining
parameters are defined in Fjær (2006) as

• n: “Key parameter for stress sensitivity related to normal
stress”

• β: “A key parameter for stress sensitivity due to shear de-
formation”

• η: A term related to the maximum shear strain, Γ

• In TI media Γ = εz − εr

Under triaxial stress applied to a circular core, with a
radial confining stress2 where σx = σy = σr 6= σz , and
εx = εy = εr 6= εz , then ζx = ζy = ζr. Returning to equations

1D = 1 in dry rocks
2r for radial

(4.1), (4.3) and (4.7) with the previous information of the Q’s,
it is clear that the crack model will predict an axial P-wave
velocity that in terms of stress is dependent primarily on the
axial stress, and a radial P-wave which is dependent on the
radial stress. The axial shear wave velocity will have a more
biaxial stress dependence, consistent with results from triaxial
experiments conducted by Dillen et al. (1999).

In Fjær (2006), porosity is calculated as

φ =
φ0 − εvol
1− εvol

(4.15)

where φ0 is the initial porosity.

The P-wave modulus in Fjær (2006) is chosen “somewhat ar-
bitrarily”, and suitable values for the shear modulus and crack
densities are chosen to match the stiffnesses in the reference
point. The Poisson’s ratio is set to 0.2, which Fjær (2006) de-
scribes as “typical for rock constituting solids”. Fjær (2006) also
allows the Poisson’s ratio to vary independently of the values of
H0 and G0. This introduces an additional degree of freedom,
but according to Fjær (2006) “given the level of approximations
used in this model, the potential physical contribution from this
degree of freedom is minor”.

4.2.1 Implementation of the Crack Model in
Torset (2017)

Implementation of the crack model in Torset (2017) was done
by letting the maximum “burial” serve as the reference point.
The crack densities ζ0

x and ζ0
z were calibrated to the measured

velocities, and predicted porosity and densities.

This starting point was fed into a Levenberg-Marquardt
algorithm3 which calculated the optimal choice of n, β and η.
These parameters were thus estimated based on the measured
velocities as well as estimated porosity and density for the mea-
sured stress and strain values. In addition to the measurements,
grain parameters are needed.

The porosity and therefore density estimations introduces
some degree of uncertainty, as the porosity is never measured,
but only estimated. Deviations in the porosity from the actual
values would naturally change the observed model, but the fit-
ting algorithm would likely change the optimal parameters in re-
sponse to this. If the porosity deviates from the estimated value,
this can be compensated in other parameters used for the fitting
of the data.

4.2.2 Sensitivity to Solid Parameters in the
Crack Model

Torset (2017) discussed the effect of the solid parameters on the
models ability to recreate the observed velocities. In terms of
P-wave anisotropy, the choice of different parameters does not

3Levenberg-Marquardt is a standard technique for solving non-linear least
squares problems (Gavin, 2011). In Matlab it is easily implemented through a
built in function.
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Figure 4.2: Modelled P-wave anisotropy during uplift, with solid pa-
rameters H0 = 90 GPa, ν = 0.076 and porosity φ = 0.293. The
modelled anisotropy provides a relatively good fit

seem not impact the model a great deal, as seen in figures 4.2
and 4.3. Both sets of parameters produce reasonable recreations
of the measured experimental data. The reason for why both
sets of parameters can yield relatively good fits is because the
difference is grain parameters is compensated by the values of
the crack densities.

The axial shear wave velocity is however greatly affected, as
can be seen from figure 4.4 and 4.5. The value of ν = 0.2 is
what Fjær (2006) suggests should be used, and can be seen to
give a much better prediction of the axial shear wave velocities.

The underlying reason for why the crack densities are not
able to compensate for variable grain parameters when describ-
ing the axial shear wave velocity can be found by returning to
the defining equations forC11, C33 andC44. Fjær (2006) allows
the shear modulus to vary independently of the Poisson’s ratio
and bulk modulus of the material, and so these equations form,
in the reference point, a system of three equations, and three
unknowns (G0, ζx and ζz). This is because in the experimental
data only these three stiffnesses are available.

C11 and C33 are completely given by ζz and ζx, and so these
equations can be solved for ζx and ζz yielding: (Torset, 2017)

ζx =
H0(Q11 −Q33)(1−Qp11φ) + C11Q33 − C33Q11

H0(2Q11 +Q33)(Q11 −Q33)
(4.16)

and

ζz =
Q11(C33 +H0 −H0φQp11 − 2C11)

H0(2 ·Q11 +Q33)(Q11 −Q33)
+

Q33((Qp11φ− 1) ·H0 + C33)

H0(2 ·Q11 +Q33)(Q11 −Q33)

(4.17)

Looking at equation (4.7), given that C44 > 0, the criteria for
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Figure 4.3: Modelled P-wave anisotropy during uplift, with solid pa-
rameters H0 = 60 GPa, ν = 0.2 and porosity φ = 0.293. The mod-
elled anisotropy fits quite well, and is not too different from that in
figure 4.2
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Axial shear wave velocity during uplift
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Figure 4.4: Modelled axial shear wave velocity with a starting material
with solid properties H0 = 90 GPa, ν = 0.076, and porosity φ =
0.293. The crack-model is not able to model the observed shear wave
velocity for this set of grain parameters/porosity.

C0
44 > 0 is that

1−Qp44φ−Q44(ζ0
x + ζ0

z ) > 0→
Qp44φ+Q44(ζx + ζz) < 1

(4.18)

Defining
Λ = Qp44φ+Q44(ζx + ζz) (4.19)

such that

C0
44 =

C44

1− Λ
(4.20)

it can further be seen that in the limit Λ→ 1, C0
44 →∞.

Assuming that the solid shear modulus of quartz should be
somewhere between 30 − 50 corresponds to having 0.892 <
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Figure 4.5: Modelled axial shear wave velocity, given a starting ma-
terial with solid properties: H0 = 60 GPa, ν = 0.2, and porosity
φ = 0.293. The shear wave velocity modelling is significantly im-
proved compared of that in figure 4.4

Λ < 0.935 based on the estimated value of C44 at maximum
burial4.

Inserting the expressions for ζz and ζx from equations (4.16)
and (4.17) into equation (4.19), it is obtained that

Λ = Qp44φ+Q44·(
Q33(2H0Qp11 + C11 + C33 − 2H0)

H0(2Q11 +Q33)(Q11 −Q33)
+

2Q11((1−Qp11)H0 − C11)

H0(2Q11 +Q33)(Q11 −Q33)

) (4.21)

The Q′s are all functions of Poisson’s ratio, such that Λ is a
function of H0, ν and φ (5).

Using equation (4.21), the sensitivity to H0, ν and φ can be
investigated. Two cross sections, with constant φ and H0 are
shown in figure 4.6 and 4.7 respectively.

The “Domain with no physical meaning in the model”
corresponds to Λ > 1 → C0

44 < 0. The “Unwanted domain”
are values of Λ producing C44 < 30 GPa & C44 > 50 GPa.
The value of Λ can be seen to be relatively independent of H0.
For a porosity of 0.3(6) however, it is observed that a Poisson’s
ratio of 0.076 falls in the unphysical domain, explaining why
the shear wave velocity is not well modelled at all in figure 4.4.
A Poisson’s ratio of 0.2 however, as utilised in Fjær (2006) falls
within the “useful domain”.

Modelling only P-wave anisotropy can thus be done with a
Poisson’s ratio of 0.076, but to include modelling of the shear
wave velocity, the Poisson’s ratio must be higher, such that C0

44

4In other words, although the solid shear modulus is a free parameter, it is
not allowed to be “too free”. For a P-wave modulus of 100, the value of G in a
material with Poisson’s ratio 0 would be 50

5Recall that although H0 and ν are linked through C44(= G) Fjær (2006)
allows them to vary independently

6Close to the estimated to be the porosity at the start of uplift, which is 0.29
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Figure 4.6: Values of Λ for a cross section with a porosity of 30% at the
start of modelling. It can be observed that Λ (and so C0

44) is relatively
independent of the the P-wave modulus in the range of 70-100GPa,
as indicated by the close to horizontal contour-lines. The “unwanted
domain” is defined based on the assumption that the shear modulus of
the solid material is not allowed to lie outside the 30-50 GPa range.
The “domain of no physical meaning” is where Λ > 1.
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Figure 4.7: Values of Λ for a cross section with a P-wave modulus of
90 GPa. It can be observed that Λ is quite sensitive to both Poisson’s
ratio and porosity. For all porosities in the given range, a Poisson’s ratio
of 0.076 would yield a negative shear modulus for the solid material,
as indicated by Λ > 1. A Poisson’s ratio of 0.2, with a porosity of
0.29 is however seen to fall within the defined “Useful domain”. The
“unwanted domain” is defined based on the assumption that the shear
modulus of the solid material is not allowed to lie outside the 30-50
GPa range.
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4.4 Linking the Experimental Results to Uplift Prediction

does not become negative. Note, that if a fixed value of C0
44 was

used, the consequence would be to make the shear wave veloc-
ity imaginary (as C44 would then be predicted as negative). The
exact values of the elastic parameters of solid quartz is reported
differently in different sources, and seems to be the subject of
some debate. This is discussed in slightly more detail in part
III. For now it is noted that some report the Poisson’s ratio of
pure quartz as low as 0.07 (Dvorkin et al., 2002), a value which
if used would clearly not be able to model the shear wave ve-
locity in the experimental data according to figure 4.6. The P-
wave velocities will be modelled in other parts with a solid Pois-
son’s ratio of around 0.08, and so if this is carried into the crack
model, the shear wave velocities will not be modelled well, and
the uplift modelling will thus focus on the stress sensitivity of
the P-wave velocities and subsequently P-wave anisotropy.

4.3 Updating the Conceptual Model
The results in figures 3.4 suggests that the assumption of
small porosity changes during uplift might be quite reasonable.
Over the uplift interval, the rock only regains the porosity
(if the porosity is assumed to be directly given by the strain)
compacted over the last 5-6 MPa of loading. The assumption
that the velocity does not change during uplift is however put
into question. Returning to the conceptual model discussed
in relation to figure 1.2, a reduction in velocity as the rock is
uplifted would have to be included for the conceptual model to
match the velocity decrease observed in the experimental data.

To incorporate the observation of decreased velocity during
uplift as seen in the lab, the crack model is implemented
in parallel with the other models to model the velocity as a
function of burial history. For the purpose of this example, the
crack model is calibrated to give roughly the same velocity
decrease over similar stress unloading as observed for the axial
P-wave velocity in the experiment.

The result of implementing this in the diagenetic modelling
is seen in figure 4.8. To observe a velocity of 2776 m/s at 600
m would now require a deeper maximum burial according to
the sandstone diagenetic modelling. This follows directly from
the fact that the uplift acts to reduce the velocities, as observed
in the experimental data. Prior to cementation the two grain
assemblages would behave exactly the same. The effects of
cementation would also, until the onset of uplift be identical.

During uplift, as long as the rock is within the cementation
domain, the velocities are assumed to be changed as a combi-
nation of increase from cementation, and decrease from crack
formation. This is represented by the cyan curve. In this illus-
tration the contribution from cementation and crack formation
are assumed to independent, i.e., ∆Vp = ∆Vp,cem+ ∆Vp,crack.
For reference, the effect of cementation with no velocity loss
during uplift is shown by the continuation of the blue curve.
Once the rock is out of the cementation domain, the only factors
acting to reduce the velocity is the crack model.

In both of these samples, the processes acting on the sedi-

ments during burial is limited to mechanical compaction and
quartz cementation. By comparing the green curve to the new
burial history, it is clear that the initial methodology would
underpredict the uplift by 400m.

The processes in the subsurface will not proceed in exactly
the same way as in the laboratory, such that the velocities
will not be exactly the same for similar stress levels in the
laboratory and subsurface. One major difference is the fact
that in the subsurface cementation continue over a multitude
of stress levels, whereas in the lab it is limited to one stress
level. Regardless, if the experimental data is taken to be a fair
representation of processes also occurring in the subsurface,
standard diagenetic modelling of sandstones will underpredict
the uplift. By fair representation it is meant that even though
the velocity vs stress curves will not look exactly identical,
the processes causing the increased stress dependence during
simulated uplift in the laboratory also occur to some extent in
the subsurface.

In relation to the source rock maturation, a source rock with
a similar burial history to that incorporating uplift would have a
TTI of 19.5, which would be in the oil window, but only barely.
A sandstone reservoir would have larger amounts of cement,
and thus lower porosity.

4.4 Linking the Experimental Results to
Uplift Prediction

The crack model in Fjær (2006) was considered appropriate
to model the effects of uplift on the P-wave velocities, with
some restrictions regarding solid grain parameters limiting the
modelling of shear wave velocities.

However, put into context of uplift prediction, the “history”
of the rock down to the uplift starts also has to be modelled.
Prior to cementation that constitutes a granular media subjected
to a stress state where σz = 2σr. After cementation, some
model describing the effects of cementation on a granular
assemblage would be required. Furthermore, the strain, which
is a parameter utilised in Torset (2017) is generally not readily
available, which means that the crack model will have to be
modified slightly.

In addition to the decrease in the velocity, the anisotropy
appears to show interesting potential as an attribute for uplift
(whilst remembering that the experiments are conducted under
uniaxial strain). Therefore, incorporating the ability to model
P-wave anisotropy as a function of the simulated burial history
would be desirable.

The following parts addresses these problems in turn, starting
with the modelling of granular media (part III), followed by a
discussion of cementation (part IV), and finally these are com-
bined with a slightly altered implementation of the crack model
to describe the entire “burial history” of the synthetic sandstone
in part V.

25



Chapter 4. Uplift Modelling With the Crack Model

1000 1500 2000 2500 3000

Velocity [m/s]

0

500

1000

1500

2000

2500

3000

D
e
p
th

 [
m

]

Conceptual sketch of P-wave velocity as function of burial history

Inclusion of uplifted related stress dependence

Granular media models

Cementation models

Cementation models and Crack model

Crack model

Original burial history

Onset cement, 70°C

Figure 4.8: Updated conceptual model with the inclusion of some uplift related increase in stress dependence. The modelling methodology of
granular media and cementation is the same as for figure 1.2. The input parameters in the crack model in this illustrative scenario is calibrated to
yield roughly the same velocity decrease over similar stress intervals as the experimental data. After the onset of uplift, but within the cementation
domain, the effects of the crack model are superposed with those from increased cement in the cementation models.
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Part III

Stiffness of Unconsolidated Granular Media
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Chapter 5
Introduction and Background to Part III

5.1 Introduction to Part III
Modelling the stiffness parameters of granular media is one
technique for estimating velocities as functions of depth in the
subsurface. This chapter provides the necessary background for
the discussion in subsequent chapters in this part. Firstly, the
Hertz-Mindlin model used to create the conceptual model in the
earlier parts of this work will be reviewed. Following this, the
results of Walton (1987) are presented. Walton (1987) provides
explicit expressions for the stiffness parameters in terms of
strain in two limiting strain cases: Uniaxial strain and hydro-
static strain. Although these might be good approximations in
many situations, in the experimental data described in part II the
stress during loading prior to cementation was a triaxial stress
state with σz = 2σr. In this configuration the strain is neither
uniaxial nor hydrostatic. Furthermore, the concept of “slip”
and “no-slip” contacts are discussed, and why a mixture of
these limits might be appropriate to describe the rock as a whole.

Deriving triaxial strain and stress expressions for a particular
triaxial scenario (where the horizontal strains are equal) is
attempted in Bandyopadhyay (2009). The results of this paper
will be reviewed in the second chapter of this part. Potential
errors and shortcomings are pointed out. Following this,
expressions for a triaxial strain case under the same assumption
of equal horizontal strains, but without the limitation on the
relationship between the axial and the horizontal strain imposed
in Bandyopadhyay (2009) are derived directly from Walton
(1987). Additionally, since in the field, stress is generally more
available than strain, expressions for the strain in terms of the
stress are also presented.

The fourth chapter in this part will focus on the implemen-
tation of the model derived throughout the first three chapter to
the experimental data presented in part II.

5.2 Hertz-Mindlin
The normal compliance of a contact between two identical
spheres is given as: (Mindlin, 1949)

Cz =
dα

dPz
(5.1)

where α is the normal displacement of the spheres relative to
each other, corresponding to a shortening of the sphere radius.
Stiffness in this case is given as 1

Cz
, and together with the re-

sults from Digby (1981), the normal stiffness of a contact can
be written

Sn =
4Gsa

1− νs
(5.2)

Where G and ν represent the shear modulus and Poisson’s ratio
of the sphere material, and a if the radius of the contact area.

Furthermore Mindlin (1949) gives the tangential compliance
with no slip as

Ct =
2− νs
8Gsa

(5.3)

In the notation of Digby (1981), the tangential stiffness is given
as

St =
8Gsb

2− νs
(5.4)

Where b is what Digby (1981) calls “bonding radius”. The limit
b = 0 corresponds to slip, and b = a corresponds to no-slip
(Norris and Johnson, 1997).

When two identical spheres are compressed normally, they
have a contact area, a given by (Mavko et al., 2009)

a =
[3FR

8Gs
(1− νs)

] 1
3

(5.5)

Under hydrostatic loading by confining pressure P , on a ran-
dom, identical sphere packing the confining force of two parti-
cles is given as (Mavko et al., 2009)

F =
4πR2P

n(1− φ)
(5.6)

where R is the grain radius, φ is the porosity and n is the
coordination number.
Following the derivation in Mavko et al. (2009), equation (5.6)
can be inserted into equation (5.5), which subsequently can
be inserted into equation (5.2) to yield the normal stiffness.
Assuming no-slip this can also be inserted into equation (5.4)
to yield the tangential stiffness.
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The effective bulk and shear modulus are given in terms of
Sn and St as (Mavko et al., 2009)

K =
n(1− φ)

12πR
Sn →

K =
[n2(1− φ)2G2

sP

18π2(1− νs)2

]1/3 (5.7)

G =
n(1− φ)

20πR
(Sn + 1.5St)→

G =
5− 4νs

5(2− νs)

[3n2(1− φ)2G2
sP

2π2(1− νs)2

]1/3 (5.8)

The slip limit is obtained by setting St = 0. The equations
above can then be used to calculate the P- and S-wave velocities
as a function of stress during burial.

5.3 Walton (1987)

Walton (1987) develops a model to determine the elastic param-
eters of a random packing of spheres which are homogeneous
and elastically isotropic. Walton (1987) provides explicit
relations for the elastic parameters in two strain states; isotropic
and uniaxial. Furthermore, the spherical grains are either
infinitely rough, or infinitely smooth1.

The general expression for average stress in terms of average
strain for the rough contacts is2, 3, 4:

σrij =
(1− φ)n

π2B(2B + C)

[
B
〈

(−Epqnpnq)0.5[Eiknknj + Ejknkni]
〉

−C
〈

(−Epqnpnq)3/2ninj
〉]

(5.9)

Here φ is the porosity, n is the coordination number, Eij are
values of the strain5, and ni are the directional cosines6 . B and
C are given as (Walton, 1987):

B =
1

4π

(
1

Gs
+

1

λs +Gs

)
(5.10)

C =
1

4π

(
1

Gs
− 1

λs +Gs

)
(5.11)

λ and G are the Lamé parameters of the sphere material.

The general expression for stiffness for the rough contacts is

1In Walton (1987) strains are negative in compaction and stresses are nega-
tive in compression.

2Note that the strain notation of Bandyopadhyay (2009) is used throughout,
this is to ease the transition to the more in depth discussion of that paper. The
results of Walton (1987) will serve mainly as reference points in the limits of
hydrostatic and uniaxial strain.

3The superscript r indicates rough limit.
4Note: Walton (1987) uses φ as the fraction of solid grains. Throughout this

analysis, φ will be used as porosity. 1-porosity = solid fraction.
5Defined as ei in Walton (1987).
6Defined as Ii in Walton (1987).

given as

Cijkl =
3(1− φ)N

4π2B(2B + C)

{
B
[
〈(−Epqnpnq)1/2njnk〉δil+

〈(−Epqnpnq)1/2nink〉δjl + 〈(−Epqnjnl)1/2〉δik+

〈(−Epqninl)1/2〉δjk
]

+ 2C〈(−Epqnpnq)1/2ninjnknl〉
}

(5.12)

The general expression for average stress in terms of average
strain for smooth contacts is

σsij =
(1− φ)N

π2B
〈(−Epqnpnq)3/2ninj〉 (5.13)

The general expression for stiffness for the smooth contacts
is given as7

Csijkl =
3(1− φ)N

4π2B

[
2〈(−Epqnpnq)1/2ninjnknl〉

]
(5.14)

According to Bandyopadhyay (2009)8

n1 = sin(θ)cos(φ) (5.15a)
n2 = sin(θ)sin(φ) (5.15b)

n3 = cos(θ) (5.15c)

〈x〉 =
1

4π

∫ 2π

0

∫ π

0

x sin(θ)dθdφ (5.15d)

5.3.1 Explicit Expressions Given in Walton
(1987) for Hydrostatic Strain

The stress expressions for rough and smooth contacts in the case
of a hydrostatic strain E are given as

σrij = − (1− φ)n · (−E)3/2

3π2B
(5.16)

σsij = σrij (5.17)

For an isotropic strain field with infinitely rough grains, the
effective Lamé parameters are given as (Walton, 1987):

λr =
C

10(2B + C)

(
3(1− φ)2n2p

π4B2

) 1
3

(5.18)

Gr =
5B + C

10(2B + C)

(
3(1− φ)2n2p

π4B2

) 1
3

(5.19)

where p refers to a hydrostatic confining pressure.
The effective moduli for smooth grain contacts are given as9

λs = Gs =
1

10

(
3(1− φ)2n2p

π4B2

)1/3

(5.20)

7This is not actually given in Walton (1987), but it is provided in Bandy-
opadhyay (2009).

8This is not explicitly written in Walton (1987).
9Do not confuse the superscript s, denoting “smooth” with the subscript s

denoting “sphere material”.
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5.3.2 Explicit Expressions Given in Walton
(1987) for Uniaxial Strain

The rough and smooth grain limits of stress are given in Walton
(1987) as

σr11 = − (1− φ)nC(−E3)3/2

24π2B(2B + C)
(5.21)

σr33 = − (1− φ)n(3B + C)(−E3)3/2

6π2B(2B + C)
(5.22)

σs11 = − (1− φ)n(−E3)3/2

24π2B
(5.23)

σs33 = − (1− φ)n(−E3)3/2

6π2B
(5.24)

where E3 is uniaxial strain in this case in the 3(z) direction.
For the infinitely rough, uniaxial strain situation, the elastic

moduli of the granular media are given as (Walton, 1987)10:

Cr11 = 3(α+ 2β) (5.25a)
Cr12 = α− 2β (5.25b)
Cr13 = 2Cr12 (5.25c)
Cr33 = 8(α+ β) (5.25d)
Cr44 = 2α+ 5β (5.25e)

where

α =
(1− φ)n(−E3)

1
2

32π2B
(5.26)

β =
(1− φ)n(−E3)

1
2

32π2(2B + C)
(5.27)

E3 is the axial strain.

The P-wave anisotropy predicted in this limit can be found
from

ε =
Cr11 − Cr33

2Cr33

→

ε =
3α+ 6β − 8α− 8β

16α+ 16β
→

ε = − 12B + 5C

48B + 16C

(5.28)

This is clearly only dependent on the grain parameters, through
equations (5.10) and (5.11).

For the smooth limit the anisotropic parameters are given as

Cs11 = 3α (5.29a)
Cs12 = α (5.29b)
Cs13 = 2Cs12 (5.29c)
Cs33 = 8α (5.29d)
Cs44 = 2α (5.29e)

10Note that Cr44 is modified from Walton (1987) to account for a misprint, as
pointed out in Holt et al. (2007).

The anisotropy in this limit is given through

ε =
Cr11 − Cr33

2Cr33

→

ε =
3α− 8α

16α
→

ε =
−5

16

(5.30)

5.4 Mixing of Infinitely Rough and
Smooth Contacts - a Pragmatic So-
lution to a Difficult Problem

Not all contacts are infinitely rough or infinitely smooth. In a
sense the concept of infinitely rough (also referred to as no-slip)
and infinitely smooth (also referred as slip) describe limits.

Bachrach and Avseth (2008) suggest a binary mixing model,
where the effective stiffness is given as a fraction of rough and
smooth grains. The binary mixing is presented in equation 14 in
Bachrach and Avseth (2008)

σij = (fsC
∗
ijkl(Sn, St = 0)+ftC

∗
ijkl(Sn, St 6= 0))ekl (5.31)

and “tries to account for the heterogeneities in stress chains as
observed in laboratory measurements and numerical simula-
tions” (Bachrach and Avseth, 2008).

Note that Bachrach and Avseth (2008) suggest the stiff-
nesses be functions of Sn and St. This is consistent with the
Hertz-Mindlin formulation, but Walton’s model is a function
of grain-constants B and C. The expressions in Walton (1987)
can however be expressed in terms of Sn and St.

5.4.1 Equivalence of Hertz-Mindlin and Walton
in the Isotropic Compaction Limit

Assuming that the sphere material is isotropic and lineraly elas-
tic, λ is given as

λs = 2
νsGs

1− 2 νs
(5.32)

Inserting this in the equations for B and C given in equations
(5.10) and (5.11) yields

B =
1

2

1− νs
Gsπ

(5.33)

C =
1

2

νs
Gsπ

(5.34)

(5.35)

From which it can further be shown that

5B + C

10(2B + C)
=

1

2

5− 4νs
5(1− 2νs)

(5.36)

Furthermore
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B =
1

4π

( 1

Gs
+

1

λs +Gs

)
→

B =
1

4π

( λs + 2Gs
Gs(λs +Gs)

) (5.37)

νs =
λs

2(λs +Gs)
→

1− ν =
2(λs +Gs)

2(λs +Gs)
− λs

2(λs +Gs)
→

1− ν =
λs + 2GS

2(λs +Gs)
→

(5.38)

B2 =
1

4π2

(1− νs)2

G2
s

(5.39)

Inserting the results from equations (5.36) and (5.39) into
equation (5.19) yields the Hertz-Mindlin result in equation (5.8).

Since the rough bulk modulus is given as

K =
5(2− νs)
3(5− 4νs)

G (5.40)

it follows that the bulk modulus is also consistent.

For the smooth limit, the value ofG in Hertz-Mindlin is given
as (Mavko et al., 2009)

G =
3K

5
(5.41)

The bulk modulus does not change in either Hertz-Mindlin or
Walton (1987) as it is not affected by St → 0. The bulk modulus
in Walton (1987) is given as

K =
1

6

(
3(1− φ)2Pn2

π4B2

)
→ (5.42)

K =
1

6

(
3(1− φ)2Pn2

π4( 1
4π2

(1−νs)2

G2
s

)

)
→ (5.43)

K =

(
(1− φ)2Pn2G2

s

18π2(1− νs)2

)
(5.44)

which can be recognised as the bulk modulus given in equation
(5.7).

5.4.2 Expressing the Uniaxial Results from Wal-
ton (1987) in Terms of Sn and St

Hertz-Mindlin is limited in its current formulation to isotropic
loading, but the stiffnesses in Walton (1987) can still be ex-
tended to Sn and St under uniaxial compaction. This is done

in Duffaut (2011). For no-slip11 contacts

Cr11 =
3(1− φ)n

64πR
(Sn + St) (5.45a)

Cr33 =
(1− φ)n

16πR
(2Sn + St) (5.45b)

Cr13 =
(1− φ)n

32πR
(Sn − St) (5.45c)

Cr44 =
(1− φ)n

128πR
(4Sn + 5St) (5.45d)

Cr66 =
(1− φ)n

64πR
(Sn + 2St) (5.45e)

and for slip contacts12

Cs11 =
3(1− φ)n

64πR
Sn (5.46a)

Cs33 =
(1− φ)n

16πR
2Sn (5.46b)

Cs13 =
1(1− φ)n

32πR
Sn (5.46c)

Cs44 =
(1− φ)n

128πR
4Sn (5.46d)

Cs66 =
(1− φ)n

64πR
Sn (5.46e)

In these definitions, the contacts radius, a, used to define St
and Sn is given as (Duffaut, 2011)

a = R
√
E33 (5.47)

It is on the basis of this argued that mixing of the rough
and smooth limits in Walton (1987) is consistent with the bi-
nary mixing model, and that the B and C parameters in Walton
(1987) can be used instead of Sn and St to accomplish this.

5.4.3 The Concept of Friction

Duffaut et al. (2010) uses results from isotropic loading
experiments on glass beads in order to investigate the effects
of a friction parameter based in Mindlin’s theory. This is
done in attempt to characterise observations that fall between
the slip and no-slip limits. The idea of finite frictions on the
grain contacts is a somewhat contrasting concept to the simple
mixing of slip and no slip contacts.

The friction idea is however mathematically similar to an
arithmetic average of slip and non-slip contacts. This can
be demonstrated for, as an example, the anisotropic elastic
stiffnesses C11 under uniaxial compaction.

With the introduction of the friction parameter, the equation
for C11 is (Duffaut, 2011)

Cdry11 =
3(1− φ)n

64πR
[Sn + Stf(µ)] (5.48)

11Denoted by the superscript r.
12Denoted by the superscript s.
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n corresponds to the coordination number. R is the grain ra-
dius.

f(µ) =
(

1− Ft
Fnµ

)1/3

(5.49)

is the function describing the friction component (Duffaut,
2011, chapter 4). f(µ) = 0 corresponds to the slip limit,
whereas f(µ) = 1 corresponds to the non-slip limit.

The no-slip and slip limits were given in equations (5.45a)
and (5.46a). Following this, mix f rough contacts with 1 − f
smooth contacts:

Cdry11 = fCr11 + (1− f)Cs11 →

Cdry11 = fX[Sn + St]X + (1− f)XSn →

Cdry11 = X[Sn + fSt]

(5.50)

Where

X =
3(1− φ)n

64πR
(5.51)

Equations (5.48) and (5.50) can be seen to have an extremely
similar form, such that the fraction of rough grains can numeri-
cally describe the same as the partial slip suggested in Duffaut
et al. (2010). That is, a value of f(µ) = 0.6 will give the same
result as 60% non-slip and 40% slip contacts.

The derivation is not done for all the stiffness parameters in
(Duffaut, 2011, Chapter 4), but the result is the same for all
the stiffness parameters. Each stiffness parameter has the same
friction function.

Although numerically the methods in Duffaut et al. (2010)
and Bachrach and Avseth (2008) provide the same answer, the
phenomena they are trying to describe are slightly different.
Bachrach and Avseth (2008) aims to explain that in a force
chain, some grain contacts act as slip, whereas some act as
non-slip contacts. Duffaut et al. (2010) on the other hand
extends the theory of Mindlin (1949) to describe an assemblage
where all contacts have finite friction.

It is suggested here that in fact both of these proposals
might provide insight into the processes that occur to produce
the observed experimental data. In Duffaut et al. (2010) it is
observed that during loading, the moduli seem to migrate to
a higher value for the friction coefficient f(µ), which would
correspond to a higher fraction of no-slip contacts.

Duffaut et al. (2010) gives the radius of the no-slip fraction of
the grain contact as

c = a
(

1− Ft
µFn

)1/3

(5.52)

from which it is clear that if Ft = µFt then c = 0 meaning that
there will be slip, and if µFn >> Ft then c = a, indicating
no-slip.

In a thought experiment, letting the normal force imposed on
the contact with a constant tangential force, would thus increase

the radius of the no-slip contact area, leading to an increase in
the tangential stiffness, given in Duffaut et al. (2010) as

St =
8Ga

2− ν

(
1− Ft

µFn

)1/3

(5.53)

The normal stiffness would also increase across a contact
when the normal stress is increased.
In the case of an isotropic compressive stress, this effect of
increasing normal and shear stiffness would be expected to be
the same in all directions. This corresponds to having the same
friction function across all the elastic parameters, as well as
the same normal and tangential stiffnesses. What about if the
stress field is anisotropic? It is argued that if the stress field is
anisotropic the effect across the range of orientations of grain
contacts could also be anisotropic and this anisotropy effect
could be stress dependent. This would introduce an anisotropy
effect that would not be captured by the assumptions in Walton
(1987).

The P-wave anisotropy in Walton (1987) was shown to be
constant in the rough and smooth limits. In the case where the
friction effect is assumed to be the same across all elastic pa-
rameters, Duffaut (2011) shows that the P-wave anisotropy is
purely dependent on the Poisson’s ratio and value of the friction
coefficient:

ε = −
5 + 2 1−ν

2−ν f(µ)

16(1 + 1−ν
2−ν )f(µ)

(5.54)

This is similar to the result in Walton (1987) in that the
anisotropy is constant, provided that the friction coefficient is
constant. If the friction coefficient varies during loading, as
the experimental results depicted in Duffaut et al. (2010) might
suggest, the anisotropy would also change.

By differentiating equation (5.54) with respect to f it is ob-
tained that

dε

df
=

3

16

(1− νs) (2− νs)
(fν − f + ν − 2)

2 (5.55)

Since νs < 0.5, and f, ν ∈ R the derivative is always positive,
i.e., dε/df > 0 meaning that an increase in f yields a positive
change in P-wave anisotropy (towards isotropy in the case of
Vpz > Vpr).

5.4.4 Force Chains Under Anisotropic Loading
Force chain refers to the inhomogenous contact network
carrying most of the external load when an external stress is
applied to a granular media (Majmudar and Behringer, 2005).
In Majmudar and Behringer (2005) such force chains are
investigated for loading under isotropic and pure shear (uniaxial
compression) states. Although the pure shear state used in
Majmudar and Behringer (2005) constitutes a rather extreme
form of strain anisotropy, it is assumed that the effects of the
stress induced anisotropy for weaker forms of strain anisotropy
is similar, although not as pronounced as in Majmudar and
Behringer (2005).
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The force chain network in an isotropically loaded sample
is correlated over only short distances, and with no preferred
direction (Majmudar and Behringer, 2005). During isotropic
loading then, it can be justified claiming that the force chains
will be roughly isotropically distributed, such that the effect
of some load bearing, and some non-load bearing contacts is
isotropic (warranting the use of the same scalar to describe the
relationship in all directions).

During anisotropic loading, the anisotropy created by the
load, is reported to have two effects. First, it creates anisotropy
in the contact network, and secondly it develops an anisotropic
force chain network and alters the stress distribution in the
system (Majmudar and Behringer, 2005). In these anisotropic
force chains, forces have correlations over long ranges, in the
direction of the force chains.

In other words, it might be expected that such a force chain
network would orient itself to have a larger number of load bear-
ing contacts in the direction parallel to the maximum applied
stress. In the binary mixing model, this could be numerically
compensated for by having anisotropic no-slip/slip fractions.

5.4.5 Overestimation of the Shear Modulus
Jenkins et al. (2005) discusses how the methods of Digby
(1981) and Walton (1987) tend to overestimate the shear
modulus. The idea in Jenkins et al. (2005) is that under
non-hydrostatic strain, the motion of a sphere in relation to its
adjacent grains is allowed to be different from the mean strain
field of a homogeneous effective media (Mavko et al., 2009).
The considerations in Jenkins et al. (2005) are done in the
slip limit. In the binary mixing method under non-hydrostatic
strain, incorporating the observation of Jenkins et al. (2005)
would correspond to shifting the slip limit of the shear wave
moduli down. This would be mathematically similar to letting
the shear wave moduli have a lower no-slip/slip fraction than
the P-wave moduli, whilst keeping the no-slip and slip limits
of Walton (1987). This method of compensation is however
limited by scenarios where the observed velocities fall below
the slip limit.

5.4.6 Mixing of Rough and Smooth Contacts -
Summarising Remarks

As pointed out in the last few sections, not all contacts are likely
to be infinitely rough, or infinitely smooth. The relationship
between rough and smooth contacts is possibly anisotropic
based on force chain network work done in Majmudar and
Behringer (2005). Furthermore, the normal and tangential
stiffnesses on grain contacts might be on average anisotropic
in a manner not captured by Walton (1987) due to friction
considerations. These effects, together with incorporation of
the effects observed in Jenkins et al. (2005) can be compensated
for pragmatically by letting the no-slip/slip factor applied to
each stiffness in the binary mixing model be anisotropic and
stress dependent.

Although giving each stiffness a separate, potentially stress
dependent slip/no slip relationship allows for freedom when
modelling, this freedom comes at a cost. Most things can be
modelled given enough free parameters, and it puts a large de-
gree of ambiguity into the forward modelling process.

5.5 Porosity Considerations

The granular media models are typically derived for “random
dense packings”, with porosities of 36%. Thus, instead of
inputting the porosities directly in the granular media models,
a porosity of 36% is used, and then other porosities are inter-
polated using a Hashin-Shtrikman lower bound, as described
in Dvorkin and Nur (1996), Mavko et al. (2009) and Avseth
et al. (2010). The “friable sand model” as it is termed in Avseth
et al. (2010) is implemented to deal with sorting effects on
porosity, but in this work it will be implemented to model all
effects of porosity change on stiffness. This is based on the
implementation of the friable sand model in Dvorkin and Nur
(1996). The model is compared to measured porosities, which
are likely a combination of sorting and compaction effects.
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Chapter 6
Extension to Triaxial Strain - Bandyopadhyay 2009

In this chapter the extension of the theory in Walton (1987) to
triaxial strain by Bandyopadhyay (2009) is reviewed, and some
limitations are pointed out1.

6.1 Review of Bandyopadhayay (2009)

Bandyopadhyay (2009) extends the work of Walton (1987) to
provide explicit expressions for triaxial strain, but limited to the
scenario where the horizontal strains are equal. In other words
strain of the form

Eij = E11δi1δj1 + E11δi2δj2 + E33δi3δj3 (6.1)

In the following discussion, any strain state referred to as
triaxial, will be limited by this condition.

Note that in Bandyopadhyay (2009), the discussion on
triaxial strain is conducted with a definition of strain as positive
in compaction, which is the opposite to that of Walton (1987).
This is evident from the terms inside square roots in Bandy-
opadhyay (2009).

Bandyopadhyay (2009) still keeps the stress as negative in
compression however. The notation in Bandyopadhyay (2009)
introduces some differences regarding signs when compared to
the expressions in Walton (1987).

Bandyopadhyay (2009) presents the following elastic mod-
uli for the rough scenario in the case where the strain can be

1An additional extension to triaxial strain, shown in Johnson et al. (1998) is
briefly discussed in appendix D.

described as E33 6= E11 = E22,

Cr11 =
2

5
X
√
E33

[
C +

10B

3
+

(
6C

7
+

8B

3

)
Er

]
(6.2a)

Cr33 =
2

5
X
√
E33

[
C +

10B

3
+

(
2C

7
+

4B

3

)
Er

]
(6.2b)

Cr13 =
2

15
X
√
E33

[
C +

4CEr
7

]
(6.2c)

Cr44 =
2

15
X
√
E33

[
C + 5B +

(
4C

7
+ 3B

)
Er

]
(6.2d)

Cr66 =
2

15
X
√
E33

[
C + 5B +

(
6C

7
+ 4B

)
Er

]
(6.2e)

Where

X =
3(1− φ)N

4π2B(2B + C)
(6.3)

Er =
E11 − E33

2E33
(6.4)

B and C are the same as defined earlier.
These expressions are based on the assumption that∣∣∣∣E11 − E33

E33

∣∣∣∣ << 1 (6.5)

The assumption in (6.5) puts a limitation on how big the strain
anisotropy, Er, can be.

For smooth contacts, the stiffness parameters are given in
Bandyopadhyay (2009) as:

Cs11 =
2

35
Y
√
E33(7 + 6Er) (6.6a)

Cs33 =
2

35
Y
√
E33(7 + 2Er) (6.6b)

Cs13 =
2

105
Y
√
E33(7 + 4Er) (6.6c)

Cs44 = Cs13 (6.6d)

Cs66 =
2

105
Y
√
E33(7 + 6Er) (6.6e)

Where

Y =
3(1− φ)N

4π2B
(6.7)
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As aptly pointed out in Bandyopadhyay (2009), stresses are
generally more available than strains in the field, and are defined
in Bandyopadhyay (2009) as2:

σr11 = − Z
15

(E
3/2
33 )(5C + 10B + 16BE2

r + 12CEr + 28BEr)

(6.8)

σr33 = − Z
15
E

3/2
33 (5C + 10B + (6C + 8B)Er) (6.9)

Z =
(1− φ)N)

π2B(2B + C)
(6.10)

These expressions can then be solved for strain in terms of
stress, and Bandyopadhyay (2009) present the following equa-
tions3:

Er =
1

16Bσ33
[σ11(2B + 3C)− 2σ33(7B + 3C)− P ]

(6.11)

Where

S1 = σ2
11 − 4σ11σ33 + 4σ2

33

S2 = 3σ2
11 − 7σ11σ33 + 22σ2

33

S3 = σ2
11 + 26σ11σ33 + 9σ2

33

P = 9C2S1 + 4BCS2 + 4B2S3

(6.12)

Further,

E33 =[
12B2(σ11 + 13σ33) + 27C2(σ11 − 2σ33)+

2Z(9C3 + 40C2B + 28CB2 − 32B2)

(9C + 6B)P + 6BC(6σ11 − 7σ33)

2Z(9C3 + 40C2B + 28CB2 − 32B2)

]2/3

(6.13)

6.2 Potential Errors in Bandyopadhyay
(2009)

The first problem in Bandyopadhyay (2009) starts with the inte-
gral equations presented (equations 3.38 to 3.47 in Bandyopad-

2The expression for σr33 provided in Bandyopadhyay (2009) is likely wrong,
but is written as presented in Bandyopadhyay (2009) for reference.

3The starting point is wrong, as σr33 is wrong, but the expression for E33

would wrong even if σr33 was correct.

hyay (2009))

I1 = 〈(Epqnpnq)0.5n4
1〉 ≈

1

35

√
E33(7 + 6Er) (6.14a)

I2 = 〈(Epqnpnq)0.5n4
3〉 ≈

1

35

√
E33(7 + 2Er) (6.14b)

I3 = 〈(Epqnpnq)0.5n2
1〉 ≈

1

15

√
E33(5 + 4Er) (6.14c)

I4 = 〈(Epqnpnq)1/2n2
3〉 ≈

1

15

√
E33(5 + 2Er) (6.14d)

I5 = 〈(Epqnpnq)1/2n2
3〉 ≈

1

15

√
E33(5 + 4Er) (6.14e)

I6 = 〈(Epqnpnq)0.5n2
1n

2
3〉 ≈

1

105

√
E33(7 + 4Er) (6.14f)

I7 = 〈(Epqnpnq)0.5n2
2n

2
3〉 ≈

1

105

√
E33(7 + 4Er) (6.14g)

I8 = 〈(Epqnpnq)0.5n2
1n

2
2〉 ≈

1

105

√
E33(7 + 4Er) (6.14h)

I9 = 〈(Epqnpnq)1.5n2
1〉 ≈

1

15
E1.5

33 (5 + 12Er) (6.14i)

I10 = 〈(Epqnpnq)1.5n2
3〉 ≈

1

15
E1.5

33 (5 + 6Er) (6.14j)

Note that there are two integrals, I4, I5 which apparently have
the same expression 〈(Epqnpnq)1/2n2

3〉, but different approxi-
mations4:

In Bandyopadhyay (2009) it is stated that5

(Epqnpnq)
0.5 = (E11n1n1 + E22n2n2 + E33n3n3)0.5

(6.15a)

≈
√
E33

[
1 +

E11 − E33

2E33
sin2(θ)

]
(6.15b)

Where the approximation is limited by the condition in equation
(6.5)6.

This can be inserted into the expressions for I4 and I5. Using
equation (5.15d) it can be seen from figures 6.1 and 6.2 that I4
is correct, whereas I5 should be for n2

2
(7).

This oversight did not need evolve into a problem, but it ap-
pears as if Bandyopadhyay (2009) uses I5 when creating ex-
plicit expressions for stress. This can be discovered by returning
to equation (5.9) with the results from above8:

4I4 corresponds to equation 3.41, and I5 to equation 3.42 in Bandyopadhyay
(2009)

5(Epqnpnq)0.5 should in principle as far as Einstein summation convention
goes equal (E11n1n1 + E12n1n2 + E13n1n3 + E21n2n1 + E22n2n2 +
E23n2n3 + E31n3n1 + E32n3n2 + E33n3n3)0.5 but due to the definition
of strain as Eij = E11δi1δj1 + E11δi2δj2 + E33δi3δj3 a lot of these terms
are 0 ( i 6= j → Eij = 0).

6This approximation will be analysed in more detail later.
7The software utilised is maple.
8Compared to expression (5.9) −Epqnpnq → Epqnpnq and E33 →

−E33 due to the switch from negative to positive in compaction.
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Figure 6.1: Solving the integrals with n3, which can be seen to corre-
spond to I4 as seen in equation (6.14d) .

Figure 6.2: Solving the integrals with n2, which can be seen to corre-
spond to I5, suggesting that the expression for I5 presented in Bandy-
opadhyay (2009) given in equation (6.14e) should be for n2

σr33 =
(1− φ)B

π2B(2B + C)

{
B〈(Epqnpnq)1/2[−E33n3n3 − E33n3n3]〉−

C〈(Epqnpnq)3/2n3n3〉
}
→

σr33 =
(1− φ)B

π2B(2B + C)

{
− 2E33B

1

15

√
E33(2Er + 5)−

C
1

15
E

3/2
33 (5 + 6Er)

}
→

σr33 = −
Z

15
E

3/2
33 (5C + 10B + Er(6C + 4B))

(6.16)

Where it has been used from Bandyopadhyay (2009) that

〈(Epqnpnq)3/2n3n3〉 ≈
1

15
E

3/2
33 (5 + 6Er) (6.17)

Equation (6.16) does not correspond to (6.9), the difference
being 4B rather than 8B in the final bracket. If the expression
for I5 is used (seemingly corresponding to n2) the expression
in equation (6.9) is obtained. This might be an indicator
that Bandyopadhyay (2009) utilised the expressions which
corresponding to n2 rather than n3. It is uncertain how much
of an error this would actually introduce, since the condition in
equation (6.5) means that the term multiplied by Er will have a
small contribution.

Given that the error introduced by the first mistake might be
minor, it is relevant to investigate to what extend the expressions
for strain in terms of stress given in Bandyopadhyay (2009) are
correct. Presumably, the equations for stress in equations (6.8)
and (6.9) are solved to yield the explicit expressions for strain
given in equations (6.13) and (6.11) (Bandyopadhyay, 2009).

A good way to check if a solution to such a system of equa-
tions is correct is by simply by inserting some numbers. This is
done for a set of parameters, and an implementation sequence in
maple is given in appendix A9. It is observed that the proposed
solutions does not work with back substitution and might there-
fore be wrong. Recall however that the starting point is likely
wrong due to the mistake in σr33.

The expressions presented in Bandyopadhyay (2009) should
thus be treated with care. A further problem with the claim of
having developed triaxial expressions, as is done in Bandyopad-
hyay (2009) is the limitation of equation (6.5). This limitation
means that not all strain states satisfying equation (6.1) are
covered by the expressions.

6.2.1 Understanding the Approximation

The first step in investigating the possibility of removing the
assumption of equation (6.5) is to investigate what the approxi-
mation accomplishes.

9Recall that even though the strains are now positive in compaction, the
stress is negative in compression in Bandyopadhyay (2009).
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Recall from Bandyopadhyay (2009)

(Epqnpnq)
0.5 = (E11n1n1 + E22n2n2 + E33n3n3)0.5

(6.18a)

≈
√
E33

[
1 +

E11 − E33

2E33
sin2(θ)

]
(6.18b)

n1 = sin(θ)cos(φ) (6.18c)
n2 = sin(θ)sin(φ) (6.18d)
n3 = cos(θ) (6.18e)

By inserting the expressions for ni and the condition that the
horizontal strains are equal, E11 = E22, the right hand side of
equation (6.18a) can be written

(E11sin
2(θ)(sin2(φ) + cos2(φ)) + E33 cos2(θ))0.5 =

(6.19a)

(E11 sin2(θ) + E33 cos2(θ))0.5 = (6.19b)√
E33

(E11

E33
sin2(θ) + cos2(θ)

)0.5

= (6.19c)√
E33

(E11

E33
sin2(θ) +

E33

E33
(1− sin2(θ)

)0.5

= (6.19d)√
E33

(
1 +

E11 − E33

E33
sin2(θ)

)0.5

(6.19e)

• To get to equation (6.19b) it has been used that sin2(φ) +
cos2(φ) = 1.

• To get to equation (6.19c) E33 has simply been pulled out
of the brackets.

• To get to equation (6.19d) it has been used that cos2(θ) =
1− sin2(θ) = E33

E33
(1− sin2(θ)).

• To get to equation (6.19e) the terms are simply collected.

Let x = E11−E33

E33
sin2(θ) such that equation (6.19e) can be

written √
E33

√
1 + x (6.20)

By introducing the assumption in (6.5) a reasonable approxima-
tion of the square root term is the first two terms of the Taylor
expansion (see (Adams and Essex, 2009, Chapter 9.6)). The
fact that sin2(θ) ≤ 1 means that the value of x is small, such
that higher order terms approach 0.

√
1 + x = 1 +

x

2
− x2

8
+
x3

8
− 5x4

128
...→ (6.21)

√
1 + x ≈ 1 +

x

2
→ (6.22)√

E33

(
1 +

E11 − E33

E33
sin2(θ)

)0.5

≈ (6.23)√
E33

(
1 +

E11 − E33

2E33
sin2(θ)

)
= (6.24)√

E33

(
1 + Er sin2(θ)

)0.5

(6.25)

One more approximation was utilised in Bandyopadhyay
(2009)

(Epqnpnq)
3/2 ≈ E3/2

33 (1 + 3Er sin2(θ)) (6.26)

This has its root in

(1 + x)3/2 = 1 +
3x

2
+

3x2

8
− x3

16
+ ... (6.27)

By choosing x = E11−E33

E33
sin2(θ) and choosing two terms:

E
3/2
33

(
1 +

E11 − E33

E33
sin2(θ)

)3/2

≈ (6.28a)

E
3/2
33

(
1 + 3

E11 − E33

2E33
sin2(θ)

)
= (6.28b)

E
3/2
33 (1 + 3Er sin2(θ)) (6.28c)

The purpose of the approximations is therefore to remove
the square root and ()3/2 terms containing variables that
enter into the integral equations I1 → I10. This simplifies the
integrals, such that the final expressions are easier to implement.

The approximations are better for the square root terms than
the 1.5 terms, but when approaching the uniaxial compaction
limit (Er = −0.5) there is expected to be significant deviation
also in the square root term.

One consequence is that the model does not reduce to Wal-
ton’s model in the limit of Er → −0.5 (uniaxial compaction).

As an example, consider the smooth model. From Walton
(1987)

σs11 = − (1− φ)n

π2B
〈(Epqnpnq)n2

1〉 (6.29)

σs33 = − (1− φ)n

π2B
〈(Epqnpnq)n2

3〉 (6.30)

σs33

σs11

=
I10

I9
(6.31)

In the limit of uniaxial compaction, it can further be shown
from Walton (1987)

σs11 = − (1− φ)nE
3/2
33

24π2B
(6.32a)

σs33 = − (1− φ)nE
3/2
33

6π2B
→ (6.32b)

σs33

σs11

= 4 (6.32c)

Figure 6.3 shows plots of I10 and I9 as functions of Er. The
interesting thing to note is that the approximation causes the
value of I9 to cross 0. This means that I10

I9
at some point is

infinite, before it becomes negative, clearly not approaching the
expected value of 4. The exact values are dependent on E33, but
the zero crossing is always at Er = − 5

12 .
The expressions by Bandyopadhyay (2009) are not appropri-

ate for all triaxial stress states, even if the horizontal stresses are
equal, and so to implement the theory from Walton (1987) a new
set of equations are needed.
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Figure 6.3: Comparison of I9 and I10 from Bandyopadhyay (2009). Note how I9
crosses zero for a strain anisotropy of Er = −5/12
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Chapter 7
Creating Triaxial Expressions From Walton (1987)

The previous chapter describe the extension to triaxial
strain from Walton (1987) in Bandyopadhyay (2009), which
was limited to the scenario where the horizontal strains are
equal. By assuming small strain anisotropy, relatively simple
expressions can be created1. The assumption however means
that the expressions are not applicable over all strain states
covered by equation (6.1).

It is of interest to derive the expressions from Walton (1987)
for a triaxial strain state, still under the condition in equation
(6.1), but without the strain anisotropy limitations imposed by
Bandyopadhyay (2009).

7.1 Rewriting the Integral Equations

The approximation was implemented to simplify the integral
equations, and so to remove the approximation, these must be
re-evaluated. Keeping with the notation of Bandyopadhyay
(2009) the integral equations are solved to yield2:

I1 = 〈(Epqnpnq)0.5n4
1〉 =

1

4096

√
E33

(−Er)5/2
[
480(−Er)5/2 − 64(−Er)5/2 − 24

√
−Er+

V · (240
√
2E3

r + 72
√
2E2

r − 12
√
2Er + 6

√
2)
] (7.1)

I2 = 〈(Epqnpnq)0.5n4
3〉 =

1

1536

√
E33

(−Er)5/2
[
96(−Er)5/2 + 128(−Er)5/2 − 24

√
−Er+

V · (48
√
2E3

r + 72
√
2E2

r + 36
√
2Er + 6

√
2)
] (7.2)

I3 = 〈(Epqnpnq)0.5n2
1〉 =

−1
128

√
E33

(−Er)3/2
[
− 24(−Er)3/2 + 4

√
−Er+

V · (12
√
2E2

r + 4
√
2Er −

√
2
] (7.3)

1Figures 6.1 and 6.2 demonstrate how one set of these simple expressions
are created.

2Due to the fact that E11 = E22 it can be observed that I3 = I5 and
I6 = I7.

I4 = 〈(Epqnpnq)0.5n2
3〉 =

−1
64

√
E33

(−Er)3/2
[
− 8(−Er)3/2 − 4

√
−Er+

V · (4
√
2E2

r + 4
√
2Er +

√
2)
] (7.4)

I5 = 〈(Epqnpnq)0.5n2
2〉 =

−1
128

√
E33

(−Er)3/2
[
− 24(−Er)3/2 + 4

√
−Er+

V · (12
√
2E2

r + 4
√
2Er −

√
2
] (7.5)

I6 = 〈(Epqnpnq)0.5n2
1n

2
3〉 =

1

3072

√
E33

(−Er)5/2
[
96(−Er)5/2 − 32(−Er)5/2 + 24

√
−Er+

V · (48
√
2E3

r + 24
√
2E2

r − 12
√
2Er − 6

√
2)
] (7.6)

I7 = 〈(Epqnpnq)0.5n2
2n

2
3〉 =

1

3072

√
E33

(−Er)5/2
[
96(−Er)5/2 − 32(−Er)5/2 + 24

√
−Er+

V · (48
√
2E3

r + 24
√
2E2

r − 12
√
2Er − 6

√
2)
] (7.7)

I8 = 〈(Epqnpnq)0.5n2
1n

2
2〉 =

1

12288

√
E33

(−Er)5/2
[
480(−Er)5/2 − 64(−Er)5/2 − 24

√
−Er+

V · (240
√
2E3

r + 72
√
2E2

r − 12
√
2Er + 6

√
2)
] (7.8)

I9 = 〈(Epqnpnq)1.5n2
1〉 =

−
1

1536

E
3/2
33

(−Er)3/2
(480(−Er)5/2 − 352(−Er)3/2 + 24

√
−Er+

V · (240
√
2E3

r + 216
√
2E2

r + 36
√
2Er − 6

√
2))

(7.9)

I10 = 〈(Epqnpnq)1.5n2
3〉 =

−
1

768

E
3/2
33

(−Er)3/2
(96(−Er)5/2 − 128(−Er)3/2 − 24

√
−Er+

V · (48
√
2E3

r + 72
√
2E2

r + 36
√
2Er + 6

√
2))

(7.10)
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Figure 7.1: Comparison of the values of I1 and I2 as functions of strain
anisotropy derived in this work, and those presented in Bandyopadhyay
(2009)

Where

V = ln

(
1 +
√

2
√
−Er

1−
√

2
√
−Er

)
(7.11)

A detailed rendition of the process of solving these integral
equations is given in appendix A for I9.

7.2 Comparison of the Updated Integral
Equations With Those From Bandy-
opadhyay (2009)

The expressions for I1 → I10 can now be compared to those
given in Bandyopadhyay (2009) and this is displayed in figures
7.1 to 7.4. It can be observed that down to a strain ansiotropy
of around Er = −0.15 the approximated values seem to match
the actual values quite well. As the strain anisotropy becomes
stronger, the deviation between the integral equations increases.
The exact values of these curves are dependent on the value of
E33, but the observed trends are not affected by a change inE33.

7.3 The Limits of Uniaxial and Isotropic
Compaction

The cases of Er = 0 and Er = −0.5 correspond to isotropic
and uniaxial strain respectively. Inserting these limits directly
into equations I1 → I10 involves division by zero and also cre-
ates a term with ln 0. Both of these are undefined, and so the
limits have to be calculated. This can be done using for exam-
ple l’Hôpitals rule. The methodology and an example of how
the limits can be calculated is discussed in appendix A, and the
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Figure 7.2: Comparison of the values of I3 and I4 as functions of strain
anisotropy derived in this work, and those presented in Bandyopadhyay
(2009)
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42



7.4 Stress and Stiffness - Rough Contacts

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

E
r

-4

-2

0

2

4

6

8

10

12

I

×10-5

Comparison of I
9
 and I

10
 over the range of E

r

 E
33

 = 0.005

I
9
, No approximation

I
10

, No approximation

I
9
, Bandyopadhyay (2009)

I
10

, Bandyopadhyay (2009)

Figure 7.4: Comparison of the values for I9 and I10 as functions of
strain anisotropy derived in this work, and those presented in Bandy-
opadhyay (2009)

following limits are obtained3:

I1(Er → −0.5) =

√
E33

16
(7.12a)

I1(Er → 0) =

√
E33

5
(7.12b)

I2(Er → −0.5) =

√
E33

6
(7.13a)

I2(Er → 0) =

√
E33

5
(7.13b)

I3(Er → −0.5) =

√
E33

8
(7.14a)

I3(Er → 0) =

√
E33

3
(7.14b)

I4(Er → −0.5) =

√
E33

4
(7.15a)

I4(Er → 0) =

√
E33

3
(7.15b)

I6(Er → −0.5) =

√
E33

24
(7.16a)

I6(Er → 0) =

√
E33

15
(7.16b)

I8(Er → −0.5) =

√
E33

48
(7.17a)

I8(Er → 0) =

√
E33

15
(7.17b)

3Recall I3 = I5, I6 = I7.

I9(Er → −0.5) =
E

3/2
33

24
(7.18a)

I9(Er → 0) =
E

3/2
33

3
(7.18b)

I10(Er → −0.5) =
E

3/2
33

6
(7.19a)

I10(Er → 0) =
E

3/2
33

3
(7.19b)

7.4 Stress and Stiffness - Rough Con-
tacts

To utilise equations (7.1) to (7.10) the expressions for stress and
stiffness are rewritten from equations (5.9) and (5.12) in terms
of I1 → I10

4, 5

σr11 = Z · (−2BE11I3 − C · I9) =

Z · (−4BE33(Er + 0.5)I3 − C · I9)
(7.20)

σr33 = Z · (−2BE33I4 − C · I10) = (7.21)

Where

Z =
(1− φ)n

π2B(2B + C)
(7.22)

Cr11 = X · (4BI3 + 2CI1) (7.23)

Cr33 = X · (4BI4 + 2CI2) (7.24)

Cr13 = X · (2CI6) (7.25)

Cr44 = X · (BI4 +BI5 + 2CI7) (7.26)

Cr66 = X · (BI3 +BI5 + 2CI8) (7.27)

Where

X =
3(1− φ)N

4π2B(2B + C)
(7.28)

The P-wave anisotropy can be seen to be given as

4Sign deviations come from the aforementioned fact that the strain is now
positive in compaction, whereas it in Walton (1987) is negative in compaction.

5In equation (7.20) it is utilised that E11 = E33(2Er + 1).
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ε =
Cr11 − Cr33

2Cr33

=

2B(I3 − I4) + C(I1 − I2)

4BI4 + 2CI2

(7.29)

From figures 7.1 and 7.2 it is observed that I4 > I3 and I2 > I1,
such that ε < 0. Although the full expressions with insertion
of the expression for Ij is not done, it is clear from equations
(7.1) to (7.4) that

√
E33 would cancel from the expression for

anisotropy, leaving the P-wave anisotropy dependent on grain
parameters and strain anisotropy.

As pointed out in Bandyopadhyay (2009) having equations
dependent on stress rather than strain are desired, as stress is
generally a more available parameter. Equations (7.20) and
(7.21) are dependent on Er and E33 and so in theory it is
possible to derive expressions for the strain parameters in terms
of the stress. These strain values can then be used to calculate
the value of I1 → I10 and thus the stiffness parameters.

Due to the complexity of the expressions, creating explicit
expressions (as presented in Bandyopadhyay (2009), although
these were wrong) is complicated. Dividing equation (7.21) by
(7.20) leaves an equation only dependent on Er. The stress is
known, and so this can easily be rearranged and put equal to
zero. By differentiating the expression, Newton’s method can
be used to solve for Er numerically6.

The function in terms of Er to be set equal to zero is given
in equation (7.30). The derivative is given in equation (7.31).
The full expressions7 can be seen in figures 7.5 and 7.6 and are
easily copied into matlab where the iteration process is run.

f(Er) =
[
(−192B − 128C)(−Er)3/2 + 96C(−Er)5/2

− (96B + 24C)
√
−Er

+ 96 ((
Er
2

+
1

4
)C +B)V

√
2(Er + 1/2)2

]
/[

(−384B − 176C)(−Er)3/2 + (576B + 240C)(−Er)5/2+

(48B + 12C)
√
−Er+

288 ((
5Er
12
− 1

24
)C +B(Er −

1

6
))V
√

2(Er +
1

2
)2
]

− σ33

σ11
= 0

(7.30)

6See for example (Kreyszig, 2010, Chapter 19.2) for a description of using
Newton’s method.

7I.e., with the expression for V inserted. Since V is a function of Er as well
it is instructive to view these expressions. The expression in equation (7.31)
has been calculated by first differentiating the expression in figure 7.5, which
is illustrated in figure 7.6 and then re-inserting V to make the expression more
“clean”.

Figure 7.5: The full expression for the expression with σ33
σ11

set equal to
0, taken directly from maple. The expression corresponds to that seen
in equation (7.30), with the expression for V inserted.

df(Er)

dEr
=
−2

3

(B + C
4

)(B + C
2

)
√
−Er

[(
(−Er)9/2 +

√
−Er
16

−1

2
(−Er)3/2 +

3

2
(−Er)5/2 − 2 (−Er)7/2

)
V 2

− 2
√

2(Er +
1

2
)Er (Er

2 − Er
3

+
1

4
)V

− 3(−Er)3/2

2
+

10(−Er)5/2

3
+ 2(−Er)7/2

]
/[√

2
(

(
5C

12
+B)Er −

B

6
− C

24

)
(Er +

1

2
)2V

− (
4

3
B +

11C

18
)(−Er)3/2 + (2B +

5

6
C)(−Er)5/2

+
1

6
(B +

C

4
)
√
−Er

]2

(7.31)

Following the calculation of Er, E33 can be calculated:

E33 =

([
σ33 (−Er)3/2

]
/

[
Z
{CEr3√2V

16
+
C(−Er)5/2

8
+
BEr

2
√

2V

8
+

3CEr
2
√

2V

32
+
BEr

√
2V

8
− B(−Er)3/2

4
+

3CEr
√

2V

64
− C(−Er)3/2

6
+
B
√

2V

32
+

C
√

2V

128
− 1/8B

√
−Er − 1/32C

√
−Er

}−1])2/3

(7.32)

The values for Er and E33 are then inserted into equations
(7.1) to (7.10) which yields the stiffnesses.

44



7.5 Stress and Stiffness - Smooth Contacts

Figure 7.6: Expression for the derivative of equation (7.30) to be used in Newton’s method. Taken directly from maple, with the expression for
V inserted.

7.4.1 The Limits of Uniaxial and Isotropic Com-
paction

It is imperative that the equations for stress and stiffness reduce
to the expressions in Walton (1987) for the limits of uniaxial
and isotropic compaction. The limits for the integrals have been
provided earlier, and these can be inserted into the equations
for stress and stiffness in the limits.

The stress in the limit of isotropic compaction is also
isotropic, and the expression from Walton (1987) was given
in equation (5.16). Inserting the limits for I3(Er → 0) and
I9(Er → 0) into equation (7.20) together withE11 = E33 gives

σr11 = −ZE
3/2
33

3
(2B + C)→

σr11 = −E
3/2
33 (1− φ)n

3π2B
= σr33

(7.33)

Equation (7.33) is thus consistent with the results from Walton
(1987) in the limit of hydrostatic compaction of rough spheres,
given in equation (5.16).

In the limit of uniaxial compaction the limits of I9(Er →
−0.5) is inserted into equation (7.20) together with E11 = 0 to
yield

σ11 =
−ZCE3/2

33

24
→

σ11 =
−CE3/2

33 (1− φ)n

24π2B(2B + C)

(7.34)

Which corresponds to the limit given in Walton (1987), as
shown in equation (5.21).

Further, the limits of I4(Er → −0.5) and I10(Er → −0.5)
are inserted into equation (7.21) to yield

σ33 = −ZE
3/2
33 (3B + C)

6
→

σ33 = −E
3/2
33 (3B + C)(1− φ)N

6π2B(2B + C)
→

(7.35)

This corresponds to equations (5.22), and so the limits are
consistent.

7.5 Stress and Stiffness - Smooth Con-
tacts

The methodology is repeated for the smooth contacts to give

σs11 = − (1− φ)nI9
π2B

(7.36)

σs33 = − (1− φ)nI10

π2B
(7.37)

Thus
σs33

σs11

=
I10

I9
(7.38)

The stiffness parameters are given as

Cs11 = Y · 2I1 (7.39)

Cs33 = Y · 2I2 (7.40)

Cs13 = Y · 2I6 (7.41)

Cs44 = Y · 2I7 (7.42)

Cs66 = Y · 2I8 (7.43)

Where

Y =
3(1− φ)N

4π2B
(7.44)

The P-wave anisotropy is then given as

ε =
I1 − I2

2I2
(7.45)

The equation to be solved by Newton’s method is in the
smooth case given as
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Chapter 7. Creating Triaxial Expressions From Walton (1987)

g(Er) = 2
[
96 (−Er)5/2 − 128 (−Er)3/2 − 24

√
−Er+

V (48
√

2Er
3 + 72

√
2Er

2 + 36
√

2Er + 6
√

2)
]
/[

480 (−Er)5/2 − 352 (−Er)3/2 + 24
√
−Er+

V (240
√

2Er
3 + 216

√
2Er

2 + 36
√

2Er − 6
√

2)
]

− σ33

σ11
= 0

(7.46)

with corresponding derivative

dg(Er)

dEr
= 144

[
− 48V 2(−Er)9/2 + 96V Er

4
√

2+

96V 2(−Er)7/2 + 16V Er
3
√

2− 72V 2(−Er)5/2−

96 (−Er)7/2 + 8V Er
2
√

2 + 24V 2(−Er)3/2 − 160 (−Er)5/2+

12V Er
√

2− 3V 2
√
−Er + 72 (−Er)3/2

]
/[√

−Er(120V Er
3
√

2 + 240 (−Er)5/2 + 108V Er
2
√

2+

18V Er
√

2− 176 (−Er)3/2 − 3V
√

2 + 12
√
−Er)2

]
(7.47)

The equation for E33 is given as

E33 =

([
− 768σ

3/2
33

]
/[

Q(96 (−E5/2
r − 128(−Er)3/2 − 24

√
−Er+

E(48
√

2Er
3 + 72

√
2Er

2 + 36
√

2Er + 6
√

2)
])2/3

(7.48)

7.5.1 The Limits of Uniaxial and Isotropic Com-
paction

Inserting the limit of I9(Er → 0) given in equation (7.18b) into
equation (7.36) and I10(Er → 0), given in equation (7.19b) into

equation (7.37) yields

σs11(Er → 0) = σs33(Er → 0) = − (1− φ)nE
3/2
33

3π2B
(7.49)

which is consistent with that of Walton (1987), as illustrated
by equations (5.16) and (5.17). Note that the sign convention
reversal of the strain is evident by the fact that the equation
(5.16) has a minus in front of the term that is raised to the power
1.5.

In the case of uniaxial compaction the limit of I9(Er →
−0.5) given in equation (7.18a) is inserted into equation (7.36)
to yield

σs11(Er → −0.5) = − (1− φ)nE
3/2
33

24π2B
(7.50)

which is consistent with the value given in Walton (1987)
presented in equation (5.23). Finally, I10(Er → −0.5) which
is given in equation (7.19a) is inserted into equation (7.37) to
yield:

σs33(Er → −0.5) = − (1− φ)nE
3/2
33

6π2B
(7.51)

This coincides with equation (5.24). Thus the equations for
stress all reduce to those of Walton (1987) in the limits of hy-
drostatic and uniaxial compaction.
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Chapter 8
Implementation of the Equations for Triaxial Strain

This chapter presents the implementation of the equations de-
rived in the previous chapter for a triaxial strain state where the
horizontal strains are equal. In the continuation of this work,
this will be taken as analogous for having an axial stress and a
radial stress. In case of the experimental data, this radial stress
is a confining stress around the core.

8.1 Stress Anisotropy as a Function of
Strain Anisotropy

The rough uniaxial compaction limit presented in Walton (1987)
predicts very low radial stress for a given axial stress.
This can be seen by dividing the equations for stress for rough
contacts1 given in equations (5.21) and (5.22)

σrwz
σrwr

=
4(3B + C)

C
(8.1)

Using the expressions for B, C and λ given in equations
(5.10), (5.11) (5.32) together with grain values such as
G = 41GPa, νs = 0.076 it can be calculated that the stress
anisotropy in this case is 149.9 i.e., σz ≈ 150σr. This is not
likely to be a stress state found in nature. The end limit of the
stress fraction is sensitive to the Poisson’s ratio. A value of 0.08
yields σz = 142σr and νs = 0.2 yields σz = 52σr.

Concluding that most stress states in nature should approach
a hydrostatic strain for rough contacts, such that the approxima-
tion in Bandyopadhyay (2009) becomes valid based on this is
too simplistic. Figure 8.1 shows a plot of σz

σr
against the strain

anisotropy parameter, Er with Gs = 41GPa and νs = 0.076.
It can be seen that the large value at uniaxial strain is an edge ef-
fect. Figure 8.2 shows only down to values of Er = −0.4. The
strong dependence on the limit of the Poisson’s ratio has not yet
manifested itself as strongly at this level of strain anisotropy.
Whereas a change of Poisson’s ratio from 0.2 → 0.076 causes
the stress fraction to be multiplied by nearly 3 in the limit of uni-
axial compaction, at Er = −0.5 the shift would only be from
6→ 6.5.

The stress relationship is plotted for smooth contacts in figure
8.3. The figure shows how the value approaches a value of 4 at

1superscript ’rw’ refers to rough from Walton (Walton, 1987).
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Figure 8.1: σz
σr

plotted against strain anisotropy. This figure illustrates
how the very large stress anisotropy at uniaxial strain (Er = −0.5) is
an edge effect. Rough (no-slip) contacts.
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Figure 8.2: σz
σr

plotted against strain anisotropy, with a limited range
on the strain anisotropy, to give a better illustration of the trends at
stress levels more likely to exist in the subsurface. Rough (no-slip)
contacts.
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Figure 8.3: σz
σr

plotted against strain anisotropy for smooth (slip) con-
tacts. Note how the curve approaches the value of 4, as predicted from
Walton (1987) in the limit Er → −0.5

uniaxial compaction, consistent with Walton (1987).

8.2 Application on Experimental Data

Turning to the experimental data, the model can now be
implemented to attempt to model the observed velocities.

The model, as in Walton, also requires the grain materials
elastic parameters. These are subject to further discussion,
but are initially set to νs = 0.08, Gs = 41GPa where νs is
Poisson’s ratio, and Gs is the shear modulus.

Furthermore the coordination number is needed. This is
a slightly elusive parameter that describes on average, how
many grains a grain is in contact with. Some authors relate
the coordination number to the porosity, which then makes the
coordination number stress dependent. This makes sense as one
would expect more grains to come into contact with each other
as the stress is increased. However, one of the assumptions
in Walton (1987) is that no new contacts are made, and no
contacts are lost. This means that the coordination number in
Walton (1987) should remain constant. Different values of the
relation between coordination number and porosity are present
in literature. Mavko et al. (2009) summarises some of these,
and this is is seen in figure 8.4. The effect of changing the
coordination number is primarily to shift the curves up and
down, and so it is in some scenarios used as a fitting parameter,
initially a value of 9 will be used. The point of figure 8.4
is mainly to show that it is a parameter subject to debate.
It is assumed that the effect of a stress dependence of the
coordination number can be picked up by the stress dependent
no-slip/slip fractions2.

2This would however be limited by the case where the change in coordina-
tion number changes the velocity to such an extent that the observed velocities
falls outside the predefined no-slip limit.

Figure 8.4: From Mavko et al. (2009) summarising the relationships
between coordination number and porosity found in Smith et al. (1929),
Manegold and von Engelhardt (1933), Murphy (1982) and Garcı́a and
Medina (2006) for random sphere packs. One standard deviation from
Smith et al. (1929) is represented by the thin lines (Mavko et al., 2009).
Mavko et al. (2009) also provide a discussion on this relationship

The implementation is conducted at a critical porosity of
36%, and other porosities are interpolated using the Hashin-
Shtrikman lower bound, a methodology described in Dvorkin
and Nur (1996). The reasoning for this is because the deriva-
tions in Walton (1987) are done under the assumption of
random dense packing of grains, which, for equal spheres
constitutes a porosity of 36% (Mavko et al., 2009).

The porosity is estimated based on the volumetric strain, by a
formula given in Fjær (2006), which assumes grain incompress-
ibility:

φ =
φ0 − εvol
1− εvol

(8.2)

The starting porosity is calculated based on an assumption
that the density of quartz is 2650 kg

m3 , together with the known
weight and dimensions of the core. This yielded a starting
porosity of 32.8%.

The porosity and subsequent density do of course affect
the modelled velocities. The fact that they are not measured,
but merely estimated is not ideal. It is argued that this does
not completely inhibit the ability of the model to model the
observed data. This is because an error in the porosity and
density could be compensated in other parameters. Although
two wrongs don’t make a right physically, the fractions of
no-slip/slip contacts can numerically compensate for the
deviations. If the porosity and density are known to a larger
degree of certainty, this would allow for better constraining of
the remaining parameters in the model.

Figure 8.5 to 8.7 show the slip and no-slip limits predicted
by the derivations above, for the axial P-wave, radial P-wave
and axial S-wave velocities respectively. Starting with the axial
P-wave velocity, it can be seen how the measured values falls
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Figure 8.5: Axial P-wave velocity development as a function of axial
stress, in the limits of slip (smooth) and no-slip (rough). Note how the
measured data seems to move between the two extremes

between the two “extremes”. The position however shifts from
being closest to the slip limit, before shifting towards the no-slip
limit as loading progresses. A rough/smooth relationship would
therefore have to be stress dependent to be able to capture this
over the entire loading interval. This is in accordance with the
observation in Duffaut et al. (2010), with the “correct” friction
parameter varying over the loading interval.

For the radial P-wave velocity, the story is similar, with
a move towards a larger proportion of rough contacts. The
position between the rough and smooth limits however does not
shift as much as for the axial P-wave velocity.

Finally, the axial S-wave velocity can be seen to require a
lower rough/smooth relationship than for the P-wave velocities.
It also shifts only slightly between the rough and smooth limit.
The reason why the measured data starts so late is due to data
availability.

In the limit of uniaxial compaction the P-wave anisotropy
was in Walton (1987) seen to be independent of the amount of
loading. Furthermore, in the discussion around the results in
Duffaut (2011) in chapter 5 it was shown that an increase in
a uniform no-slip fraction will yield a positive change in the
P-wave anisotropy in the uniaxial compaction limit. This means
that in the case of Vpz > Vpr the sample would be brought
towards isotropy.

The explicit expressions for P-wave anisotropy were given in
equations (7.29) and (7.45) for the rough and smooth cases re-
spectively. These equations, if the expression for the I ′s are
inserted are naturally not as simple as those in Duffaut (2011),
and so visual inspection of the equations is less fruitful in terms
of ”what if” scenarios. It is however noted that they would be
dependent on Er. By mixing of rough and smooth contacts,
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Figure 8.6: Radial P-wave velocity development as a function of axial
stress, in the limits of slip (smooth) and no-slip (rough). A potential
rough/smooth fraction appears lower than for the axial velocity at high
stress levels. Note how the measured data seems to move between
the two extremes, but the magnitude of the shifts seems less than for
the axial velocity, perhaps indicating the effects of the loading affects
the axial P-wave to a larger extent than predicted by purely the strain
considerations in Walton (1987). Furthermore, the position between
the two limits seems to stabilise towards the maximum stress
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Figure 8.7: Axial S-wave velocity development as a function of ax-
ial stress, in the limits of slip (smooth) and no-slip (rough). Note how
movement between the two extremes is small. It is important to remem-
ber that for the axial S-wave data is limited, and so the data starts at the
stress level around which the radial P-wave velocity starts to equili-
brate. A potential rough/smooth relationship would have to be lower to
explain the observed data, when compared to the P-wave velocities.

49



Chapter 8. Implementation of the Equations for Triaxial Strain

Figure 8.8: Contour plot of the derivative of the P-wave anisotropy
with respect to a uniform no-slip/slip fraction, depicted over the
range of strain anisotropy from hydrostatic to uniaxial. For all strain
anisotropies, the effect of an increased fraction of a uniform no-slip
compared to slip contacts would lead to a positive change in the P-wave
anisotropy. This is the opposite trend to what is seen in figure 8.9, if an
isotropic increase in the rough/smooth relationship is imposed on the
model.

the P-wave anisotropy would be dependent on the rough frac-
tion and the strain anisotropy. The derivative of the P-wave
anisotropy with respect to a uniform no-slip fraction as func-
tion of the no-slip fraction and Er is contoured in figure 8.8 for
a set of parameters

• Gs = 41GPa

• νs = 0.076

• φ = 0.36

• n = 9

From figure 8.8 it is clear that in a mixture of rough and
smooth contacts with the same no-slip fraction on C11 and C33,
an increase in the no-slip proportion would cause a positive
change in the P-wave anisotropy.

Figure 8.9 shows the P-wave anisotropy of the loading
interval. It can be seen that it becomes more negative as loading
progresses. This is in contrast with a scenario of constant
rough/smooth relationship, in which it would be expected to
remain constant (with minute variations possible due to the
Hashin-Shtrikman interpolation, this is discussed in part VI). It
was discussed in relation to the individual velocities that to fit
the velocities, a no-slip/slip fraction would have to increase. A
uniform increase would however cause a positive change in the
anisotropy, as discussed in relation to figure 8.8.
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Figure 8.9: P-wave anisotropy prior to cementation. Note that the
anisotropy trend is negative. The “zigzag” pattern is due to the uneven
time indexing in the measurements of axial and radial P-wave velocity.
In a scenario where the no-slip/slip relationship is uniform and con-
stant, the anisotropy should be constant (apart from small changes pos-
sible due to the Hashin-Shtrikman interpolation). In a scenario where it
is uniform and increasing, the P-wave anisotropy would become more
positive (see figure 8.8). Uniform refers to the mixing proportion being
equal for the elastic stiffnesses C11 and C33.

Based on these observations, to fit the data, an anisotropic and
stress dependent set of no-slip/slip parameters could be used, as
discussed in the introduction chapter of this part.

8.3 Mixing Rough and Smooth Contacts
To model the observed data, mixing of the stiffnesses pre-
dicted for slip (smooth) and no-slip (rough) is utilised, with
different no-slip fractions for the different stiffnesses. This is
implemented to try to model the data in an as simple way as
possible, whilst remembering the multitude of plausible causes
the anisotropic and stress dependent no-slip fraction is trying to
explain.

Furthermore, the exact value of grain parameters is subject to
some debate. The main effect of Gs and n is to shift the curves
for the slip and no slip up and down. Instead of choosing val-
ues for the grain parameters, they are assumed to be normally
distributed around some mean. The mean and standard distribu-
tion of the parameters is chosen somewhat arbitrarily, and are as
follows.

• n: mean = 9, Standard deviation = 1.5

• Gs: Mean = 42Gpa, standard deviation = 3 GPa

• νs: Mean = 0.08, standard deviation = 0.02

Undoubtedly some readers will strongly feel that “Oh no, it
should be this or that”, but that depends on which door on which
one knocks, or which reference is cited.
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8.3 Mixing Rough and Smooth Contacts

The coordination number are reported by some as stress de-
pendent, i.e., Duffaut et al. (2010). A case could probably be
made for it being anisotropic as well. It is assumed that the
effects of the increase in coordination number with decreasing
porosity can be modelled as a factor in the rough/smooth rela-
tionship, as the main effect is upward and downward shifting of
the curves.

The rough/smooth relationships are defined through a lower
and an upper value, reported as [min max]. These values rep-
resent mean values of a normal distribution with standard de-
viation 0.05. Based on the observed measurements, the values
were chosen as follows

• C11: [0.25 0.35]

• C33: [0.2 0.5]

• C44: [0.18 0.23]

These values bear a dependence on the choice of mean
for the grain parameters. Note that the implementation here
assumes that the relationship of the no-slip/slip parameters
varies lineraly over the loading interval. This might not be
true, and it might be that for example the rise would be most
accelerated during the first few MPa’s of loading.

The point of the distributions is that by running an iterative
script that picks random values each time, and checks the
resulting curve fit against the measured data, the process
of finding “good” values can be somewhat automated. The
“measure of fit” so to speak, is in this case simply done by
defining an upper value of the sum of the absolute value of the
errors at each point, which must be smaller than the cut-off for
all the velocities, simultaneously.

An “accepted” solution is one in which the sum of errors is
smaller than an average of 10 m/s for a set of measurement
points, for all the velocities∑M

i=1|vm(i)− ve(i)|
M

< 10m/s (8.3)

M is the number of measurements of a given velocity, vm is
the modelled velocity and ve is the measured experimental
velocity. The shape of the graphs are always similar due to the
nature of the underlying granular media model, so no additional
constraints are put on the variance. These acceptance criteria
are based solely on the observation that as long as that criteria
is fulfilled, the curves reproduce the experimental data well.

The correlation coefficient, ρ is the Pearson correlation coef-
ficient. Different sources subdivide the intervals differently, but
the subdivision implemented here is:

• ρ = ±1: Perfect positive/negative

• ρ = ±(0.75− 1): Strong positive/negative

• ρ = ±(0.5− 0.75: Moderate positive/negative

• ρ = ±(0.25− 0.5): Weak positive/negative
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Figure 8.10: Cross plot of coordination number, n, and grain shear
modulus Gs for 1000 accepted solutions to the velocities. There is a
strong negative correlation between these two variables. The equations
for triaxial strain are somewhat complicated, but using Hertz-Mindlin
and equation (5.7) as an analogy it is not unreasonable that these are
negatively correlated.

• ρ = ±(0− 0.25: Very weak/no correlation

Figure 8.10 shows a scatter plot of the coordination number
and shear modulus for 1000 accepted fits. As expected, the two
parameters show a strong negative correlation, where increasing
one leads to a decrease in the other. The triaxial strain equations
are somewhat complicated and this is perhaps not obvious.
The equivalence of Walton (1987) and Hertz-Mindlin has been
shown in the hydrostatic limit, and so the equation in (5.7)
is used as an illustration. If K is to be the same if the grain
shear modulus is increased, the coordination number must be
decreased.

Figures 8.11 and 8.12 show the scatter of the Poisson’s ratio
vs the coordination number and shear modulus respectively.
These show only very weak correlations. This is not unex-
pected, as it is the product between n and G that appear in the
equations. Plotting then the Poisson’s ratio versus the product
of the coordination number and grain shear modulus reveals a
moderate, approaching strong negative correlation, as seen in
figure 8.13. Turning again to the equation in (5.7), increasing
the Poisson’s ratio decreases the value of the denominator,
causing a decrease in the numerator.

The [min max] relationships of the stiffness, gives an idea of
the effects not captured by the granular media model. It can
be seen from figure 8.14 that for the no-slip/slip relationship
describing C33 there is a strong correlation between the start
and end values of the no-slip/slip relationship. In other words,
the fraction at the highest stress seems to be correlated with the
value at the start of compaction.

For C11 however, there is only a very weak correlation be-
tween the starting and ending slip/no-slip fraction, as displayed
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Figure 8.11: Cross plot of coordination number, n, and Poisson’s ratio
νs for 1000 accepted solutions to the velocities. There is a only a very
weak correlation.
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Figure 8.12: Cross plot of grain shear modulus, Gs, and Poisson’s νs
for 1000 accepted solutions to the velocities. There is a only a very
weak correlation.
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Figure 8.13: Cross plot of the product of coordination number, n, and
grain shear modulusGs with Poisson’s ratio νs for 1000 accepted solu-
tions to the velocities. There is a moderate-strong negative correlation
between these values. The equations for triaxial strain are somewhat
complicated, but using Hertz-Mindlin and equation (5.7) as an analogy
it is not unreasonable that these are negatively correlated.
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Figure 8.14: [min max] values for the no-slip fraction defining C33.
A strong positive correlation is seen, indicating that the max value is
related to the min value.
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Figure 8.15: [min max] values for the no-slip fraction defining C11.
Only a very weak positive correlation is seen, perhaps suggesting that
other factors to a larger extent control the shape of the graph than the
difference between [min max].

in figure 8.15. This might be a testament that other parameters
are more important in determining the shape of the curve for
C11. This in agreement with the observations that the shift
of the radial P-wave velocity towards the no-slip limit is less
pronounced when compared to the axial P-wave velocity.

The relationship for the axial shear wave velocity is even
more interesting. Shown in figure 8.16, this shows a weak neg-
ative correlation between the starting value and ending values.
Some of the points actually plot such that the ending no-slip
fraction is lower than the starting value. The experimental data
for the shear wave velocity is limited to stress levels where the
curves have flattened out, and the measured shear wave velocity
data is increasing close to linearly over the entire stress interval
where data is available. As most solutions flatten out towards
the maximum burial, this methodology might be unsuitable for
the shear wave velocity given the range of data available.

Taking the mean of all the parameters yields the curves for
axial P-wave velocity, radial P-wave velocity and axial S-wave
velocity seen in figure 8.17 to 8.19 respectively. These figures
reveal that the model has the ability to model the observed

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Minimum value of no-slip fraction

0.2

0.25

0.3

0.35

M
a
x
im

u
m

 v
a
lu

e
 o

f 
n
o
-s

lip
 f

ra
c
ti
o
n

Scatter of [min max] for the no-slip proportion of C
44

 = -0.36701

Figure 8.16: [min max] values for the no-slip fraction defining C44. A
weak negative correlation is seen. Some of the points actually plot with
min > max. This would indicate that an accepted solution requires
downshifting compared to the stress dependence provided by the gran-
ular media model. The fact that only data from the flattened out part of
the curve is available means that the methodology might give incom-
plete answers. This is because most solution flatten out in this stress
interval, and fitting the data in the more linear part is not necessarily a
testament to a good fit in the more curved parts of the curve.

data well. Whilst the observation that the model is able to fit
the data is not up for debate, the fact that the model in the
current formulation has several parameters available to be used
as fitting parameters means that the model would be able to
fit a large number of curves. This freedom permits the model
to account for some natural variability in real rocks, but this
freedom also means that the predictive power of the model in
the case of sparse data is in question, as the parameters require
calibration. Although the implementation of the anisotropic
stress dependent elastic no slip proportions has been attempted
to be justified, the utilisation is pragmatic. This means that the
fact that the model fits the data should not be taken as direct
evidence for the models validity.
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Figure 8.17: Modelled axial P-wave velocity created from the mean values of the 1000
accepted fits. This can be seen to correspond well with the measured velocity
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Figure 8.18: Modelled radial P-wave velocity created from the mean values of the
1000 accepted fits. This can be seen to correspond well with the measured velocity
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Figure 8.19: Modelled axial S-wave velocity created from the mean values of the 1000
accepted fits. This can be seen to correspond well with the measured velocity
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Chapter 9
Estimation of the Amount and Effects of Quartz
Cementation

9.1 Introduction to Quartz Cementa-
tion

The effect of quartz cementation on porosity and elastic wave
velocities is of importance in exploration settings, both in
terms of reservoir quality and interpretation. A brief discussion
regarding this was presented in part I. In this part, models that
predict the amount and effect of cementation are reviewed,
before being implemented to the experimental data presented in
part II.

Quartz cementation is a diagenetic processes, which is
assumed to start between 70-80 ◦C (Bjørlykke and Jahren,
2010). The source of the quartz cement has however been a
somewhat controversial topic in the diagenetic community.
McBride (1989) provides an exhaustive list of no less than 23
reported sources of quartz cement, some of which have received
more credit than others.

A discussion of all 23 is excessive, but three prominent
sources are: (Bjørlykke and Egeberg, 1993)

• Silica phases that are more soluble, for example opal CT
and amorphous silica from biogenic and volcanic source

• Dissolution of quartz, commonly from stylolites formed as
a result of pressure solution

• Release of silica from reaction involving silicate minerals

Oelkers et al. (1996) support a stylolite model, with the quartz
cement forming by dissolution at mica and illite interfaces in
contact with the stylolites. This conclusion was based on petro-
graphic data.

9.2 Walderhaug’s Cement Model

This is the model that was used to model the cement volume in
the introductory conceptual model in figure 1.2.

9.2.1 Background

Walderhaug’s cement model, (Walderhaug, 1996), sources the
quartz from stylolites within the sandstone being cemented, or
from somewhat thicker zones of clay- or mica-catalysed quartz
dissolution. In practice there may be several factors affecting
porosity acting alongside cementation, such as mechanical
compaction and volume loss due to pressure solution. The
model however considers the precipitation of cement to be the
only porosity reducing factor.

This is accomplished by modelling volumes of sandstone
that do not include stylolites (but rather places the volumes in
between stylolites). Mechanical compaction is assumed to be
stopped by the formation of cement as it stabilises the rock’s
framework (Walderhaug, 1996). Furthermore, the cementa-
tion is modelled as a continuous phenomenon, as opposed
to being a series of sporadic events separated by periods of
non-cementation.

The lack of obvious gradients in the amount of cement away
from stylolites on the Norwegian shelf supports an assumption
that quartz precipitation is the rate-controlling i.e., slowest
process in quartz cementation (Walderhaug, 1996). If the
diffusion was rate controlling, only a small amount of silica
would be common significant distances from the stylolites.
This would likely lead to a gradient of cement outward from
the stylolites. Work done in Oelkers et al. (1996) indicate that
at higher temperatures and larger stylolite spacing a hetero-
geneous distribution of quartz cement away from stylolites
is observed (figure 5 in Oelkers et al. (1996)). Oelkers et al.
(1996) includes the observation that silica cementation is a
function of distance from stylolites at higher temperatures,
with sparse stylolite frequency as an observation that should
be considered. Models do exist to incorporate the observation
regarding stylolite spacing in the, see in addition to Oelkers
et al. (1996) for example Bjørkum et al. (1998). These models
are however not as simple to that presented in Walderhaug
(1996), which is thus favoured, and valid at lower temperatures
with high stylolite frequency.
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Temperature is identified as a more important factor than
pressure in Walderhaug (1996)1. This is because at diagenetic
conditions, quartz precipitation rates depend exponentially
upon temperature, but not pressure. Bjørkum (1996) suggests
that effective stress at large burial depths have only minor effect
on quartz dissolution at stylolites and grain contacts. This
entices the exclusion of pore pressure and effective stress at
grain contacts as a factor in the model present in Walderhaug
(1996). Following the words of Walderhaug (1996) “Because
precipitation rate is rate controlling, it is logically possible to
regard the model as a precipitation model that does not really
take issue with the source of quartz cement, but is simply
based on the observation that there seems to exist a logarithmic
relationship between quartz precipitation rate and temperature;
However it is very difficult to find viable sources of quartz
cement other than dissolution at stylolites and grain contacts
containing clay or mica”.

9.2.2 Modelling the Cement Volume
The volume of cement, Vcem, that is precipitated in a 1 cm3

volume of sandstone possessing a quartz surface area A during
time t can be given as (Walderhaug, 1996):

Vcem =
MrAt

ρ
(9.1)

where M is the molar mass of quartz ( = 60.09 g
mole ), r is the rate

of quartz precipitation in moles
cm2s and ρ is the density of quartz.

The rate is expressible as (Walderhaug (1994), Walderhaug
(1996)):

r = a10bT (9.2)

Where T is the temperature in ◦C and a and b are constants,
estimated in Walderhaug (1994) to be 1.98 · 10−22moles

cm2s and
0.022 1

◦C . Further, it is noted in Walderhaug et al. (2000) that in
theory, the value of the a and b parameters should be essentially
constant for all quartoze sandstones. This will however only be
the case if the temperature histories are accurate. One method
to overcome this, suggested in Walderhaug et al. (2000) is to al-
low the b parameter to vary between wells (but remain constant
within a given well).
In a scenario where the temperature increases linearly with time,
it can be understood that the temperature can be replaced with a
linear function such that the rate for an area with such a linear
trend can be written

r = a10ct+d (9.3)

c is now the gradient of the temperature/time graph, and d is the
intercept, or, “initial temperature”.

Introducing differentials in equation (9.1) to allow for varying
temperature with time

dVcem =
MrA

ρ
dt (9.4)

1And other works regarding quartz cementation on the Norwegian shelf. See
for example Bjørkum (1996), Oelkers et al. (1996), Bjørkum et al. (1998). Some
additional discussion into the stylolite model and its validity can be found in
Sheldon et al. (2003) and Walderhaug et al. (2004).

the total volume of cement can be written as a sum of integrals
over several time steps from a starting time, t0 to an end time
tm (Walderhaug, 1996)

Vcem =
MA0a

ρ

∫ t1

t0

10b(c1t+d1) +
MA1a

ρ

∫ t2

t1

10b(c2t+d2)

+ ...+
MAm−1a

ρ

∫ tm

tm−1

10b(cmt+dm)

(9.5)

or alternatively

Vcem =
Ma

ρ

n=m∑
n=1

An−1

∫ tn

tn−1

10b(cnt+dn)dt (9.6)

Looking at the integral∫ tn

tn−1

10b(cnt+dn)dt (9.7)

Since eln(x) = x the 10 in the integral can be rewritten∫ tn

tn−1

(eln(10))b(cnt+dn)dt = (9.8)∫ tn

tn−1

eln(10)b(cnt+dn)dt (9.9)

Where the identity follows from the fact that (ea)b = eab. Let-
ting u = ln(10)b(cnt+ dn) it obtained that

du = ln(10)bcndt→ (9.10)

dt =
du

ln(10)bcn
(9.11)

Equation (9.9) can then be rewritten

1

bcnln(10)

∫ un

un−1

eudu = (9.12)

1

bcnln(10)
[eu]un

un−1
= (9.13)

1

bcnln(10)
[eln(10)b(cnt+dn)]tntn−1

= (9.14)

1

bcnln(10)
[10b(cnt+dn)]tntn−1

(9.15)

This result can then be inserted into equation (9.6) to reveal the
result obtained in equation 5 in Walderhaug (1996)

Vcem =
Ma

ρbcln(10)

n=m∑
n=1

An−1[10b(cnt+dn)]tntn−1
(9.16)

The sum of integrals can incorporate two factors: (Walderhaug,
1996)

• Slope variations in the time/temperature relationship

• As quartz cement is precipitated, the area available for
cementation will change, thus inciting alterations of the
amount of cement for subsequent time steps.

60
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Further alterations can be made to equation (9.16) by introduc-
ing expressions for the An parameter.
The initial area available for cementation is given as (Walder-
haug, 1996)

A0 =
6fV

D
(9.17)

Which is the cumulative surface area of spheres with diameter
D (grain size) and with volume fraction given by f . If there
is a variable grain size, each grain size is calculated with the
equation above and their contributions added.

In the model, the change in surface area caused by the precip-
itation of quartz is considered proportional to the porosity loss
caused by quartz precipitation, i.e.,

A = A0(1− Vcem
φ0

) (9.18)

where φ0 is the porosity at the onset of cementation.

Implementing the result for A and having a constant rate of
change of temperature, Walderhaug (1996) claims that equation
(9.16) can be solved analytically to give

Vcem2 = φ0 − (φ0 − Vcem1)exp
( −MaA0

ρφ0bcln(10)
(10bT2 − 10bT1)

)
(9.19)

where T2 and T1 refer to time according to Walderhaug (1996),
but looking at the units of b [1/◦C], it is likely that this is a
typo, and that the T’s indeed refer to temperature, which would
be consistent with previously used notation. Equation (9.19) is
simple to implement in programming software such as Matlab.

9.3 Stiffness of Cemented Granular Me-
dia - Contact Cement Model

When cement is precipitated across grain contacts, the stiffness
of the rock can be significantly increased, even with small
amounts of cement (Dvorkin et al., 1994).

The model used to quantify this effect in the introductory ex-
ample, was that developed over a series of papers (Dvorkin et al.
(1991), Dvorkin et al. (1994), Dvorkin and Nur (1996))

9.3.1 Background
The theory developed by Dvorkin and Nur considers two
schemes, one where the cement is precipitated at the grain
contacts (scheme “A”) and one where the cement is precipitated
evenly across the grains (scheme “B”). The two schemes are
illustrated in figure 9.1 together with the concept of non-contact
cement. According to McBride (1989) a situation where rims
of quartz cement form around grains is the most common.

This model is also referred to as the “contact-cement” model,
and is applicable for high porosity sands, as the initial stage of
the diagenetic trend. During more severe cementation when the

cement starts to fill up the pore space the model breaks down.
In this scenario, modifications, such as appending a modified
upper Hashin Shtrikman bound (“increasing cement model”)
should be used (Avseth et al., 2010).

9.3.2 The Contact Cement Model
Figure 9.2 from Dvorkin and Nur (1996) illustrates the contact
cement model by plotting porosity versus velocities, together
with experimental data. It is observed how the model predicts
that small amounts of cement can cause large changes in the
velocities.

Figure 9.1: A: Contact and non-contact cement. B: Scheme 1. C:
Scheme 2. From Dvorkin and Nur (1996).

The effective Bulk modulus and Shear modulus are given as
(Dvorkin and Nur, 1996)

Keff =
1

6
n(1− φ0)McSn

Geff =
3

5
Keff +

3

20
n(1− φ0)GcSτ

(9.20)

Mc is the P-wave modulus of the cement, and Gc is the shear
modulus of the cement, and they are given as:

Mc = ρcV
2
pc

Gc = ρcV
2
sc

ρc is the density of the cement and Vpc&Vsc are the P- and
S-wave velocities of the cement.

The Sn parameter is proportional to the normal stiffness of a
cemented two-grain combination, and is given as

Sn = An(Λn)α2 +Bn(Λn)α+ Cn(Λn)

Where

An(Λn) = −0.024153Λ−1.3646
n

Bn(Λn) = 0.20405Λ−0.89008
n

Cn(λn) = 0.00024649Λ−1.9846
n

Λn =
2 ·Gc
πG

(2− ν)(1− νc)
1− 2νc

The Sτ parameter is proportional to the shear stiffness of a
cemented two-grain combination, and is given as
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Figure 9.2: Effect of P-wave velocity from cementation from the two
schemes in figure 9.1, taken from Dvorkin and Nur (1996). Note the
very large increase in velocity over the first increments of cement (cor-
responding to the first increments of decreased porosity).

Sτ = Aτ (Λτ , ν)α2 +Bτ (Λτ , ν)α+ Cτ (Λτ , ν)

Where

Aτ (Λτ , ν) = 10−2 · (2.26ν2 + 2.07ν + 2.3)·

Λ0.079ν2+0.1754ν−1.342
τ

Bτ (Λτ , ν) = (0.0573ν2 + 0.0937ν + 0.202)·

Λ0.0274ν2+0.0529ν−0.8765
τ

Cτ (λτ , ν) = 10−4 · (9.654ν2 + 4.945ν + 3.1)·

Λ0.01867ν2+0.4011ν−1.8186
τ

Λτ = s
Gc
πG

G & ν represent the shear modulus and Poisson’s ratio of the
grain2, whereas Gc & νc represent the same parameters for the
cement.

The α parameter is used to express the amount of contact
cement, and is the ratio of the cement layer, a, to the radius of
the grain, R.

α =
a

R

Through the assumption that porosity loss is only due to ce-
mentation and by adopting the schemes presented earlier for ce-
ment deposition, the α parameter can be expressed in terms of
the current porosity of the sandstone. For scheme 1, where all
the cement is deposited is at the grain contacts

α = 2

[
Sφ0

3n(1− φ0)

]0.25

(9.21)

For scheme 2:

α =

[
2Sφ0

3(1− φ0)

]0.5

(9.22)

S is the cement saturation of the pore space, defined as the
fraction of the pore space of the uncemented sand occupied by
cement.

9.4 Modifications to Model Lower
Porosities

As pointed out in Avseth et al. (2010), the contact cement
model as presented in Dvorkin and Nur (1996) is a high
porosity model.

For unconsolidated granular media, the friable sand model
has been described previously. This is also mentioned in
Dvorkin and Nur (1996) to extrapolate stiffnesses to lower
porosities. Instead of letting the lower limit be defined by a
granular media, the “constant cement model” takes the lower
limit in the Hashin-Shtrikman lower bound from the contact
cement model (Avseth et al., 2010). This is then a way to
compensate for porosity effects for a given cement volume.

2The notation of Dvorkin and Nur (1996) was used, which deviates slightly
from the notation used in the previous part to denote grain parameters.
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Figure 9.3: Illustration of the different models described in this sec-
tion. The “critical” porosity for the contact cement model is in this
case set at 5%. In this figure the different models and extrapolations
are named as they are in literature. In the continuation of this work
however, any model originating from Dvorkin and Nur (1996) will be
referred to as “contact cement” to highlight and distinguish the origin
of any estimated stiffnesses from that of “patchy cement”.

When the cement volume increases to such an extent that
the contact cement model is no longer valid, something called
the “increasing cement model” can be used. This is described
in Avseth et al. (2010) and appends a Hashin-Shtrikman
upper-bound to maximum cement volume in the contact cement
model.

An illustration of how the different models describe velocity
as function of porosity is given in figure 9.3. The term “Contact
Cement” will be used in the remainder of this work to mean any
stiffness originating from the model of Dvorkin and Nur (1996).
That is, even though the results from Dvorkin and Nur (1996)
may have been extrapolated using a Hashin-Shtrikman lower-
bound (constant), upper-bound (increasing), or both an upper
and a lower-bound (increasing then constant) they will will re-
ferred to as “Contact Cement” so that the origin can be attributed
to the model from Dvorkin and Nur (1996). This might seem
counterintuitive, but it is the contact cement model (CCM) that
is the actual cement model. The modifications are just extrapo-
lations of the contact cement model.

9.5 Limitations of the Model from
Dvorkin and Nur (1996)

9.5.1 The Boundary Between Mechanical Com-
paction and Cementation

From Dvorkin et al. (1994) “The process of cementation starts
at the critical porosity point at which both bulk and shear
moduli are zero in an unconsolidated granular media”. In
the Hertz-Mindlin model (see equations (5.7) and (5.8)) this
would be equivalent to having no stress on grain contacts prior

to cementation. This would mean that they have a velocity
close to zero3 which is of course not true for sediments enter-
ing the cementation domain at burial depths greater than 2-3km.

To illustrate this, consider now a situation where a rock is de-
posited at 36% porosity, and buried down to 2km of depth before
the onset of cement. Utilising the compaction model in Lander
and Walderhaug (1999) yields a porosity of around 0.3(4) at the
onset of cement. Hertz-Mindlin is implemented at 36% and the
friable sand model is used to extrapolate the elastic moduli down
to 30% porosity yielding P- and a S-wave velocities correspond-
ing to the scattered circles in figure 9.4. To implement the effect
of cement volume the following procedure is used:

• Calculate the stiffness from the CCM at 36% starting
porosity

• For each increment of cement extrapolate to the actual
porosity using a Hashin-Shtrikman lower bound

• When the cement volume increases past the limit of the
CCM append a Hashin-Shtrikman upper bound to account
for higher cement volumes

• At these higher cement volumes, the Hashin-Shtrikman
lower bound has its lower limit in the appended Hashin-
Shtrikman upper bound.

The result of this for the P-wave and S-wave velocities is
displayed together with the pre-cementation velocities in figure
9.4. It is clear how these models do not coincide at the porosity
boundary between mechanical compaction and cementation.
The same effect is also seen in figure 9.3, where at 36%
porosity the end-point of the friable sand model, corresponding
to Hertz-Mindlin is not zero. Figure 9.5 shows an illustration
of the implementation given in a textbook (Avseth et al., 2010).
In this example the cement model passes through the elastic
moduli of the initial sand pack, but with no discussion as to
how the models are modified to facilitate this joining.

Two pragmatic alterations seem possible. Either, the contact
cement model can be added on top of the stiffness of the
granular media. In this methodology, it would be assumed that
the absolute change in stiffness is independent of the fact that
the granular media has some stiffness to begin with for a given
amount of cement. The other way to pragmatically alter these
methods such that they “communicate” is to shift the cement
model to the right, so that it passes through the granular media
point. This is illustrated in figure 9.6. This would be equivalent
to saying that the stiffness increase caused by an increase in
stress on the unconsolidated granular media is equivalent to
a tiny amount of cement (in this example, the necessary shift
corresponds to 0.5% cement). In the shifting methodology, the
first percent of actual cement, so the first porosity point lost
along the black or magenta curves in figure 9.6 correspond to a
smaller absolute increase in velocity than the CCM, shown in
blue and red. The “excluded” parts in figure 9.6 are meant to

3Not actually zero in figure 9.3 because of the statistical work done to make
the equations in Dvorkin and Nur (1996), but observed in Dvorkin et al. (1994).

4with β = 0.06.
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Figure 9.4: This figure illustrates how the contact cement model
“misses” the velocity of a pre-compacted unconsolidated granular as-
semblage. Implementing the contact cement model from 36% and ex-
trapolating down to the estimated porosities will naturally not coincide
with that predicted from the friable sand model, unless the stress is so
low prior to cementation that the velocity is close to 0 (see equations
(5.7) and (5.8))

Figure 9.5: Conceptual illustration of how the elastic parameters of
the contact cement model compare to the initial grain pack and the
friable sand model from Avseth et al. (2010). Note that in this figure
the contact cement model seems to “start” from the non-zero stiffness
of the initial grain pack, which does not follow directly from the result
presented in Dvorkin and Nur (1996).
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Figure 9.6: The contact-cement model, together with a pragmatic shift
of the contact-cement model. Without shifting the modelled velocities
to the right, it can be seen that the contact cement model is not able
to coincide with the predicted velocities from granular media models,
in this case Hertz-Mindlin, as was pointed out in relation to figure 9.4.
The shift is numerically the same as treating the velocity increase for
increased stress at the grain contacts as a small amount of cement. This
is represented by the curves named ”excluded” in the figure, which are
not included in the stiffness estimations as function of cement volume.
This means that the effect of a small amount of cement is smaller for
the pre-compacted media than the original contact cement model. This
can be seen by comparing for example the velocity change created by
reducing the porosity 0.01 from 0.3 in the black curve (corresponding
to the shifted velocities) and the blue curve (corresponding to the orig-
inal contact cement model).

demonstrate the parts of the contact cement curve that would
be excluded from the model in figure 9.5 if it is the shifting that
is utilised. In the introductory conceptual sketch, the shifting
methodology was used. This was done based on a perhaps
overly simplistic argument: As the stress increases, the contact
area between grains increases. This reduces the increased
stiffness effect of a rim of cement with predefined thickness.

9.5.2 Isotropy and Stress Independence

The model of Dvorkin and Nur (1996) gives isotropic param-
eters. This makes sense as the granular media is assumed
to be unstressed as the start, and the spheres are isotropic.
Furthermore, the model demands that the the grain assemblage
is stress independent (Dvorkin and Nur, 1996).

This is thus clearly not adequate to describe the experimental
data observed, as the rock after cementation is both stress
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dependent and isotropic.

9.6 The Patchy Cement Model

To deal with the observation of stress dependence in cemented
rocks, Avseth et al. (2016) describes a model where the rock
consists of some cemented, and some uncemented parts. In
other words, the microstructure is considered as an effective
medium with a mixture of cemented sandstone and unconsoli-
dated sandstone.

The unconsolidated sandstone is allowed to be stress depen-
dent through applying some effective granular media theory.
In Avseth et al. (2016), Hertz-Mindlin is used to model the
unconsolidated sand.
The cemented sandstone was modelled using the model in
Dvorkin and Nur (1996). The cemented sandstone is assumed
to be stress insensitive, but the level of cement that is needed
for a sandstone volume to be insensitive is subjective. Avseth
et al. (2016) suggests a level of 10%. This means that when the
bulk cement volume reaches 10% the rock is stress insensitive.

To obtain the stiffnesses, Avseth et al. (2016) utilise what is
referred to as “nested Hashin-Shtrikman”. The implementation
is summarised as follows:

• Calculate the stiffness of the stress sensitive and cemented
sandstone end-members. As per usual, the stiffness of the
granular media is calculated at the critical porosity. If 10%
is chosen as the “critical” cement limit, the increasing ce-
ment model can be used in addition to the contact cement
model.

• When the uncemented and cemented end-members are cal-
culated, they are mixed with a Hashin-Shtrikman bound.
The proportions of the cemented material in the Hashin
Shtrikman bounds is taken as 0 for only uncemented grains
and 1 for only the 10% cemented rock.
An upper bound represents a situation where the stiff ma-
terial coats the softer material, and is interpreted in Avseth
et al. (2010) as “connected patchy cement”. The lower
bound is the oppsite and represents “disconnected patchy
cement”.

• After the high-porosity end-member is calculated with the
Hashin-Shtrikman step above, a Hashin-Shtrikman lower
bound connects that point to the mineral point, equivalent
with the constant cement model.

Although pragmatic in nature, the patchy cement model also
solves the issue of having to pragmatically shift the contact ce-
ment model to match the observed stiffness at the onset of ce-
ment. Figure 9.7 illustrates the implementation of the patchy
cement model, and compares it to that obtained from the contact
cement model. The initial impact of the cement in the patchy ce-
ment model is smaller than that obtained in the contact cement
model.
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Figure 9.7: Illustration of how the Patchy Cement model compares
with the contact cement model (with the increasing cement model ap-
pended at 4% cement). The Patchy Cement model is able to “overlap”
with the predicted velocities of Hertz-Mindlin, but has a different de-
velopment before becoming equal to the contact-cement model at 10%
cement volume. In this figure, the upper bound is used to mix ce-
mented and uncemented rock, corresponding to the interpretation of
“connected patchy cement”.

9.6.1 Extension to Anisotropy
The experimental data could be seen to preserve some of the
anisotropy after cementation. The anisotropy is brought towards
isotropy. Changes in P-wave anisotropy according to changes in
velocities can be shown to be dependent on the relative changes
of the two velocities:

ε =
V 2
r − V 2

z

2 · V 2
z

(9.23)

Taking the total differential yields

dε =
Vr · dVr
V 2
z

− V 2
r · dVz
V 3
z

→ (9.24)

dε =
Vr
V 2
z

(
dVr −

dVz · Vr
Vz

)
(9.25)

The sign of the change in ε is therefore dependent on the
term in the bracket in the equation above. Considering a change
where both the axial and radial P-wave velocity increases thus
yields two possibilities

dVr & dVz > 0, dVr >
dVz · Vr
Vz

→ dε > 0 (9.26a)

dVr & dVz > 0, dVr <
dVz · Vr
Vz

→ dε < 0 (9.26b)

From these equations it is clear that if the radial velocity is
initially less than the axial velocity, a smaller increase in the
radial velocity compared to the axial velocity can still bring the
rock towards isotropy.
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Chapter 9. Estimation of the Amount and Effects of Quartz Cementation

In the experimental data from part II, the radial velocity
increase due to cementation was in fact greater than the axial
velocity increase, which would bring the rock closer to isotropy,
the absolute value of the anisotropy is roughly halved.

A potential way to explain the preferential increase in radial
P-wave velocity could be by considering unevenly deformed
grain contacts in the axial and radial directions, causing a rim of
cement to affect the radial P-wave velocity to a slightly larger
degree.

Using Hertz-Mindlin in the patchy cement model will natu-
rally not be able to account for these factors. Instead of using
Hertz-Mindlin, the granular media model based on the work in
Walton (1987) is used for the stresses in the experiment. This
means that at zero cement the patchy cement reduces to an
anisotropic, stress dependent granular media model, whereas at
the cutoff limit it approaches an isotropic media.
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Chapter 10
Implementation of Cementation Models on the
Experimental Data

10.1 Modelling Methodology

To be able to account for both the stress dependence and
anisotropy observed in the experimental data, the patchy cement
model described in Avseth et al. (2016) is utilised. The method-
ology implemented here can be summarised as

• Calculate the granular media stiffness based on the stress
level, at 36% porosity.

• Calculate the cemented media stiffness at the isotropic
limit

• Mix these using the Hashin-Shtrikman upper bound

• Extrapolate between the mixture of cemented and unce-
mented media down to the estimated porosities

To account for the anisotropy, the granular media model
described in part III is used instead of Hertz-Mindlin. The
granular media is treated independently of the strain condition
on the cemented core, and is modelled only based on the
measured stresses. The no-slip/slip fraction of the axial P-wave
is increased as the loading progresses, based on the loose
argument that it does not appear to have “flattened out” between
the limits at the maximum loading prior to cementation. The
radial P-wave velocity was observed to have “flattened out” to
a larger degree, and so the no-slip/slip ratio is kept constant.
At the start of the loading after cementation, the no-slip/slip
fraction is the same as the [max] values from the previous part
for C11, C33 and C44. The other moduli (C12 and C13) also
enter into the anisotropic Hashin-Shtrikman formulation, and
so will for the last iteration need a no-slip/slip fraction. This is
set equal to that of C44, but the value does not yield significant
changes in the estimated moduli C11 and C33, if allowed to
vary. The cement volume in the core is not measured. This
is a weakness in the results, as it allows the cement volume
to be a free parameter, although the cement volume should be
relatively small. The porosities are estimated as before, using
the equation from Fjær (2006) given in equation (4.15).

Based on previous comments regarding the uncertainties in
the shear wave velocities, the modelling is limited to the P-
waves.

10.2 Modelling Results

Figure 10.1 and 10.2 show the axial and radial P-wave velocities
respectively in the interval of loading after cementation. The
cement volume is taken as 1.6%, with an isotropic limit of
6%. In the figures, both the final anisotropic patchy cement
result, as well as the velocity estimated prior to the final
Hashin-Shtrikman implementation in the patchy cement model
are shown. The stress sensitivity of the final result of the
anisotropic patchy cement model can be seen to overpredict the
stress dependence of the velocities, especially the radial P-wave
velocity. The reason for this is however not the granular media
model, but the effect of decreasing porosity with increased
loading.

10.3 Discussion of the Results from Ce-
mentation Modelling

This argument for claiming that the porosity change creates
the exaggerated stress dependence comes from the fact that
the stress dependence introduced by the granular media model
is contained in the velocity curves obtained prior to the final
Hashin-Shtrikman bound. Another way to visualise this is
to plot the results from using constant porosity in the second
Hashin-Shtrikman bound. This is shown in figures 10.3 and
10.4 where the lower curves represent a constant porosity,
equal to the estimated porosity at the end of cementation
(15MPa). The upper curve represents a constant porosity, with
the estimated porosity at max burial (40MPa). The anisotropic
patchy cement model can be seen to move from the lower to the
upper curve, representing the stress dependence caused by the
decreased porosity.

67



Chapter 10. Implementation of Cementation Models on the Experimental Data

10 15 20 25 30 35 40

Axial stress [MPa]

1900

2000

2100

2200

2300

2400

2500

V
e

lo
c
it
y
 [

m
/s

]

Implementation of the anisotropic patchy cement model

 Axial P-wave velocity

V
pz

 prior to last Hashin-Shtrikman iteration

Modelled V
pz

 from the patchy cement model

Measured Axial P-wave velocity

Figure 10.1: Axial P-wave velocity modelled by the anisotropic patchy
cement (APC) model, with a cement volume of 1.6%. The blue line
represents the velocity modelled prior to conducting the final Hashin-
Shtrikman iteration in the patchy cement model. It is observed how
the APC model as formulated overpredicts the stress dependence of
the axial P-wave velocity. The stress dependence of the underlying
granular media model is however given by the blue curve i.e., prior
to the final Hashin-Shtrikman iteration. In the blue curve the stress
dependence appears to be reasonable in comparison to the measured
data

10 15 20 25 30 35 40

Axial stress [MPa]

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

V
e

lo
c
it
y
 [

m
/s

]

Implementation of the anisotropic patchy cement model

 Radial P-wave velocity

V
pr

 prior to last Hashin-Shtrikman iteration

Modelled V
pr

 from the patchy cement model

Measured Axial P-wave velocity

Figure 10.2: Radial P-wave velocity modelled by the anisotropic
patchy cement model (APC), with a cement volume of 1.6%. The
blue line represents the velocity modelled prior to conducting the final
Hashin-Shtrikman iteration in the patchy cement model. It is observed
how the APC model as formulated overpredicts the stress dependence
of the radial P-wave velocity. The stress dependence of the underlying
granular media model is however given by the blue curve i.e., prior to
the final Hashin-Shtrikman iteration. In the blue curve the stress de-
pendence appears to be reasonable in comparison to the measured data
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Figure 10.3: Axial P-wave velocity modelled from the anisotropic
patchy cement model (APC) with different porosities used in the final
Hashin-Shtrikman iteration. The estimated porosities from the experi-
mental data create the blue curve. Using a constant porosity, with the
one at the start of burial after compaction yields the red curve. The
yellow curve is created by using a constant porosity, with the one at
max “burial”. This figure illustrates the stress dependence created by
the changing porosity. It also demonstrates how the APC with only the
stress dependence from the granular media model seems to provide a
better match to the experimental data than when incorporating porosity
changes after cementation into the stiffness considerations. This is an
interesting empirical observation. The cement volume is still 1.6%

The cementation interval is one where the experimental
procedure deviates from that likely observed in natural rocks.
This is because in a real field case the cementation would
happen at the same time as any potential compaction of the
pore space, as opposed to being finished prior to the loading.
In fact, models such as that of Walderhaug (1996) assume that
mechanical compaction ceases at the onset of cementation, and
that subsequent porosity loss is only due to the infill of pores by
cement. Implementation of this methodology on a field case,
in combination with the model of Walderhaug (1996) would
thus not consider any porosity loss due to other factors than
cementation, and any porosity loss, such as is estimated in the
experimental data would subsequently not be included.

The estimated porosity loss comes from the measured change
in axial strain over the course of the loading after cementation.
This strain was given in figure 3.4. It is observed how during the
first few increments of loading there is very little strain, before
there is a “kink” in the stress strain curve, and the strain (and
thus porosity loss) accelerates. One possible reason for this
“kink” is that cement bonds start breaking due to shear. This
reduces the strength of the rock, and allows for the development
of increased strain. If the cementation was continued during the
loading, it could be that this strain would be hindered by the
increased stiffness of the rock due to continued cementation,
limiting the porosity loss due to other factors than cementation.
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Figure 10.4: Radial P-wave velocity modelled from the anisotropic
patchy cement model (APC) with different porosities used in the final
Hashin-Shtrikman iteration. The estimated porosities from the experi-
mental data create the blue curve. Using a constant porosity, with the
one at the start of burial after compaction yields the red curve. The
yellow curve is created by using a constant porosity, with the one at
max “burial”. This figure illustrates the stress dependence created by
the changing porosity. It also demonstrates how the APC with only the
stress dependence from the granular media model seems to provide a
better match to the experimental data than when incorporating porosity
changes after cementation into the stiffness considerations. This is an
interesting empirical observation. The cement volume is still 1.6%

Assuming that the increased strain is indeed caused by de-
formation of cement bonds, it can then be understood why
this methodology overpredicts the stress dependence. The rock
would likely obtain a higher velocity due to reduced porosity,
but the reduced stiffness due to the breakage of cement bonds
would cause a decrease in velocity. As only the porosity ef-
fect is incorporated into the model as it stands, the velocities are
overpredicted.

The quality of the porosity estimation is of course also in
question. At the stress level where the cementation occurs the
cement volume and porosity are factors that scale the observed
results, and so an erroneous porosity at that point would in this
implementation be compensated by a different cement volume.

Thus, based on the observations, it is assumed that the stress
dependence on the stiffness after cementation in the experimen-
tal data is caused only by the stress dependence contained in the
granular media model. The consequence of this is that the last
iteration of Hashin Shtrikman in the anisotropic patchy cement
implementation uses the estimated porosity at the start of
loading after cementation over the entire interval. One positive
note is that the same cement volume predicts both the axial and
radial P-wave velocities simultaneously to an OK extent.

10.4 Summarising Remarks

As a summarising statement, the stress sensitivity predicted
by the patchy cement model is relatively good if the effect of
mechanical reduction in porosity on the stiffnesses are ignored.
In such a setting, the only factors increasing stiffness is the
cement volume and increased stress on grain contacts.

It is clear that this interval introduces uncertainty in the full-
scale modelling, as the processes happening in the laboratory
and the field might be crucially different. Preserving the P-wave
anisotropy, requires a great deal of “tweaking”. Both arguments
regarding the development of the no-slip/slip relationship, and
the availability of the cement as a free fitting parameter pose
problems for extension to a forward-modelling sequence.

As the model used for porosity prediction with depth
(Walderhaug, 1996) consider cementation as the only porosity
reducing factor after the onset of cement, applications to
full-scale burial histories would produce the curves that show
a decent fit. These will be used for further modelling. This
is done with a conscious awareness that the APC model
implemented directly as presented in Avseth et al. (2016) would
overpredict the stress sensitivity in the laboratory data.

The anisotropic patchy cement model might thus not be the
most appropriate model for describing the experimental obser-
vations. In fact, the crack model might then be more appro-
priate to describe the processes in the laboratory. Implementa-
tion of the crack model in this interval is discussed in the ex-
tended discussion in part VI, but as the anisotropic patchy ce-
ment model still seems most applicable in the context of mod-
elling real burial histories it will be utilised in those scenarios.
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Part V

Combination to a Full “Burial History”
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Chapter 11
Modelling Uplift in the Experimental Data

11.1 Introduction to the Uplift Mod-
elling Procedure

As described in Part II, the crack model in Fjær (2006) was
investigated as a potential way to model the effect of the
simulated uplift on the velocities. The preceding two parts
have attempted to formulate models capable of modelling the
experimental data down to the start of the simulated uplift.

In this chapter, necessary modifications to the crack model
to enhance its applicability are considered. This means that in
this chapter, the stiffnesses at max burial are given by the mea-
sured velocity and estimated density, as opposed to results from
modelling.

In the next chapter, the modified crack model from Fjær
(2006) is appended to the results from the previous parts in
order to create a full burial history. As has been thoroughly
pointed out, the modelling down to this “max burial” point is
not straightforward. Particularly the modelling of the P-wave
anisotropy requires “tweaking” in order to match the observed
experimental data. This is likely a testament to the multitude of
assumptions that are concocted together in the formulation of
the physical models at the base of the derivations.

11.2 Necessary Modifications to the
Crack Model

The crack model was described in part II. It uses strain as an
input, which is generally problematic in a field setting. As a
pragmatic solution, it is assumed that for small enough changes
in stress, Hooke’s law can be used to estimate the corresponding
small changes in strain.

The experiment conducts the unloading under uniaxial strain,
which allows the axial strain increment to be calculated accord-
ing to Hooke’s law as1

∆εz =
∆σz
C33

(11.1)

1The problem in extending the discussion to non-uniaxial strain during un-
loading is considered in the next chapter.
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Figure 11.1: Modelled and measured P-wave velocities for the sim-
ulated uplift interval. The modelled velocities were created using an
iterative combination of the crack model and Hooke’s law. The veloci-
ties are underpredicted throughout the simulated uplift. This is a result
of the fact that the iterative methodology does not take into account the
creep that is observed in the experimental data.

This change in strain can then be used to define the strain
value inputted into the crack model, and thus the change in stiff-
ness over the small change in stress can be estimated. This can
then be run in an iterative loop over the unloading interval.

11.3 Results of the Modified Crack
Model

Figure 11.1 shows the modelled axial and radial P-wave veloci-
ties obtained by implementing the suggested modification to the
crack model. The results might at first glance appear somewhat
underwhelming, with the velocities being underestimated. The
late stage trends are however captured to some extent.

The strain as a function of stress was given in figure 3.4,
showing some creep at the start of the simulated uplift. Positive
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strain in the crack model would yield an increase in the velocity.
Implementing the iterative Hooke’s law methodology would
naturally predict a negative change in strain from the onset of
unloading.

Therefore, to some extent it is encouraging that the velocities
are as they are in figure 11.1. It makes sense that the crack
model without the creep would predict lower velocities than
observed in the sample.

11.4 Compensating for the Creep
Although the observed velocities in figure 11.1 make sense it is
of interest to see whether the creep can be compensated for in
the modelling. Three methods are tested

• Creep compensation by initial shifting

• Creep compensation by changing the reference point

• Creep compensation by adding delayed strain

11.4.1 Initial Shifting
This proposal is based on the observation that the trends at later
stages of uplift were captured quite well. A way to consider
this is that if the effects of creep were allowed to happen at the
maximum stress, the velocity would increase, and subsequent
unloading would produce a trend similar to that observed in fig-
ure 11.1. The result of shifting the starting velocities up by an
appropriate amount is seen in figure 11.2, and can be seen to
provide a better fit. The shift is based on eye-measurement, but
it is noted that a similar synthetic sandstone, with less cement,
was left to settle at 40MPa, and displays a shift of roughly the
same magnitude (see figure C.4).

11.4.2 New Reference Point
This proposal is based on starting the modelling at a stress level
where any delayed strain does not act to cause strain in the
opposite direction to that predicted by the stress release. The
results of this can be seen in figure 11.3, and an improved fit is
observed. The amount that the reference needs to be shifted is
based on the strain development in figure 3.4. At some point
the delayed strain will start to act in the same direction as the
incremental strain change. When any delayed information is
acting in the same direction as the strain caused by subsequent
stress changes, it can be argued that the delayed strain which
occurs at a given stress level compensates for any deformation
that is delayed in the current change in stress (Fjær et al., 2011).

11.4.3 Delayed Strain
This proposal is based on adding a pragmatic delayed strain,
such that the strain profile looks similar to that observed in fig-
ure 3.4. The results are shown in figure 11.4. The amount of
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Figure 11.2: Modelled P-wave velocities from the crack model, where
the creep has been compensated by shifting the starting point up by an
appropriate amount. The assumption behind this correction is that if
there is no creep after stress reversal, the shape of the graph should be
similar to that of the modelled velocities in figure 11.1. If the creep
had been allowed then to run to completion prior to stress reversal,
this would lead to a velocity increase at the maximum “burial depth”.
The shift in this figure is based on fitting the observed data at large
“uplift” values, but in a similar experiment on a synthetic sandstone
that had undergone the same process (but with less cement) there was
a period at max burial to allow for the creep effects. This is displayed
in figure C.4 in appendix C, and shows a shift of similar magnitude to
that implemented in this figure.
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Figure 11.3: Modelled P-wave velocities from the crack model, where
the creep is dealt with by starting the modelling from a stress along
the “uplift” curve. The argument for doing this is that in a situation that
any delayed strain has the same direction as the current strain direction,
the strains estimated by Hooke’s law in the iteration loop should be
appropriate. This is in part based on arguments in Fjær (2006). The
amount of shifting is based on the reversal of the strain trend in figure
3.4.
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Figure 11.4: Modelled P-wave velocities from the crack model, where
the creep is compensated by altering the input strain in the crack model
by some amount to make a strain profile with a similar shape to that
seen in figure 3.4.

delayed strain is again based on observations. The strain is de-
fined as

εcc =

{
|
∑n
i=1 ∆ε|, |

∑n
i=1 ∆ε| < c

2c+
∑n
i=1 ∆ε, |

∑n
i=1 ∆ε| ≥ c

(11.2)

In this equation, c is some parameter describing the amount of
delayed strain. εcc is the creep compensated strain inputted into
the crack model, and ∆ε is the incremental strain changes at
each stress increment predicted by the iteration method.

The change in strain predicted by Hooke’s law will, for nega-
tive changes in stress be negative. If the magnitude of the cumu-
lative strain estimated by the iteration method is smaller than the
predefined value of c, then the strain put into the crack model is
the absolute value, i.e., it will increase until c is reached. Once
the cutoff is reached, the input strain starts decreasing. Continu-
ity is maintained since in the limit of

|
n∑
i=1

∆ε| → c = c (11.3)

for both equations.

11.5 Summarising Remarks
The effect of the creep might be another factor that separates
the laboratory measurements from the field case. Compensating
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Figure 11.5: Comparison of the P-wave anisotropies of the three dif-
ferent methods of compensating for the creep. Observe how the slight
decrease in P-wave anisotropy at the start of the simulated uplift is cap-
tured by the method of adding some delayed strain.

for it as done above is possible, yet pragmatic. If the creep
is not as prevalent in the field scenario, something more like
figure 11.1 might very well be expected.

It is also important to remember that in these figures, the
input parameters of the crack model are changed as to facil-
itate that the curves fit. The value for η was taken from the
Levendberg-Marquart results presented in part II. In the < 10
milliStrain domain, which is the case for the uplift, the results
are relatively independent on the η parameter, due to the term
with ε2 becoming very small, unless of course η is brought to a
correspondingly high level. Thus most of the curve fitting by
altering the crack model parameters was done by altering the
value of n and β. The main argument for why the crack model
seems appropriate, even given the availability for altering of
the parameters, is that the same parameters simultaneously
provide good predictions of both P-wave velocities over the
entire unloading interval.

In terms of which creep compensation methodology to
implement, the delayed strain is the one that will be used. This
is based on a small detail regarding the anisotropy predictions.
The anisotropy predictions given by the three models are com-
pared in figure 11.5. All are quite good, after the compensation
and fitting has been done, which is of no surprise. The delayed
strain method can be seen to actually capture the small decrease
in P-wave anisotropy during the first few MPa’s of unloading.
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Chapter 12
Modelling the Entire “Burial History”

In the previous chapter, the implementation of the crack
model in an iterative loop with Hooke’s law was investigated.
The starting stiffnesses of those models were however chosen
based on the measured velocities and estimated densities, rather
than the modelled velocities from granular media and cement
models.

In this chapter, a full “burial history” is created for the ob-
served experimental data, before an implementation with ce-
ment estimation, i.e. combination with the model from Walder-
haug (1996) is created.

12.1 Combining All Modelling Intervals
The final modelling results for the axial and radial P-wave
velocities in comparison to the measured data are shown in
figures 12.1 and 12.2. The models can be observed to create a
relatively decent fit to the observed velocities.

A key aspect of this work has been to investigate the
possibility of using the P-wave anisotropy in burial and uplift
modelling, and the final result can be seen in figure 12.3, where
the model can be seen to recreate the measured anisotropy to a
decent extent.

Throughout this work it has been made clear that each of
the three intervals that are to be modelled have a set of input
parameters that can be altered in order to fit the observed data
to an as best as possible extent. The ability of the model to fit
the data over the entire “burial history” should therefore not be
taken as a complete validation that the model is true.

The full range of utilised parameters are summarised in table
12.1, and a short note on their selection is warranted.

12.1.1 Grain Parameters
These were mainly selected based on the work done in part III.
The exact values of these parameters are subject to some debate,
and different references could be chosen to justify a range of
values. The coordination number is by several sources (see
figure 8.4) modelled to be porosity dependent. The argument

made in part III is that a potential porosity dependence of the
coordination number can be modelled, together with other
factors, by the no-slip/slip fractions. This is limited by the
scenario where the coordination number changes so much that
the observed values venture above the predefined no-slip limit.

One solution to this would be to let the coordination number
be anisotropic and stress dependent, in addition to the already
anisotropic, stress dependent no-slip/slip fractions. This would
simply give the model even more freedom. Another modifica-
tion could be to let the coordination number “do the job” that
the no-slip/slip fractions are doing in the current model. That
is, instead of having anisotropic, stress dependent no-slip/slip
fractions, the coordination number is made anisotropic and
stress dependent.

12.1.2 No-slip Fractions
For the pre-cementation interval, values are chosen exclusively
based on the work done in part III. For the cement interval, they
are identical to that used in part IV. The reason for keeping the
value for C11 constant during the cement interval was based on
the observation that the curve was seen to stabilise between the
no-slip/slip limits toward the maximum values of loading prior
to cementation, as well as the lack of correlation between the
minimum and maximum values. The values for the no-slip/slip
fractions for C33 is increased slightly over the cementation
interval based on the observation that there still appears to
be some increase in the value towards the maximum loading
value prior to cementation. Furthermore, there was a strong
positive correlation between the start value and end value in the
accepted solutions, suggesting that the [min max] relationships
have a larger role in defining the accepted solutions for C33,
and so a further rise might be expected upon increased stress.

12.1.3 Cement Parameters
For the cement interval, the isotropic limit was defined at 6%.
This is lower than the 10% suggested in Avseth et al. (2016).
The reason for the lower value is the observation that the rock
loses about half of the anisotropy during cementation, but there
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is known to be only small amounts of cement. To need 10%
to achieve isotropy therefore seemed a bit excessive, but it is
noted that this is an argument based purely on observation.
The cement volume that then fit the curves is seen to be 1.6%,
which seems plausible. It is noted that the cement volume
and isotropic limit can be altered together to define several
combinations that yield acceptable fits.

Another aspect of the cement interval is the choice to exclude
the effects of porosity decrease on the stiffness in the anisotropic
patchy cement model through the final Hashin-Shtrikman it-
eration. This was discussed in part IV and the assumption
originates from potential differences in the behaviour of rocks
in the laboratory due to the experimental procedure. The
exclusion of this porosity change on the stiffness was seen to
significantly improve the stress dependence predicted by the
model.

12.1.4 Crack Model Parameters
The grain parameters are kept constant throughout the mod-
elling sequence, which means that shear wave modelling is ex-
cluded from the crack model (see part II). The creep compen-
sation method utilised was that of delayed strain, and so the n
and β parameters utilised are from that fitting. The η param-
eter was from the Levenberg-Marquardt fitting done in Torset
(2017), and is not changed due to the low dependence on the η
parameter in the < 10 mStrain domain.

12.2 Incorporation of Cement Estima-
tion

In the field scenario, quartz cementation would likely be contin-
uous over loading and unloading within a defined temperature
interval, so the model would look somewhat different. The
developed models can be combined with a model to estimate
the cement volume to depict how this would influence the
properties of the sediment and rock.

This methodology is the same as when creating the figures
used in the conceptual illustration (see figure 1.2), but with the
updated models honouring anisotropic stress fields used in place
of the isotropic models. A discussion on what parameters are
used is of interest, and the values are found in table 12.2.

12.2.1 Burial History and Stress Field
The burial history utilised is identical to that used in the creation
of the updated conceptual model in figure 4.8. Instead of an
isotropic stress, the stress is taken to be σz = 2σr. The choice
of this stress level is not rooted in anything particular, other than
a desire for it to be anisotropic.

12.2.2 Grain Parameters and Porosity
The shear modulus, Poisson’s ratio and coordination number
are the same values as used in the modelling of the experimental

Table 12.1: Key factors used in the creation of the modelled P-wave
velocities and P-wave anisotropy seen in figures 12.1, 12.2 and 12.3.
The elastic properties of the quartz cement are assumed to be equal to
those of the quartz grains.

Grain parameters

Poisson’s ratio 0.08
Shear Modulus 42 GPa
Coordination number 9

Granular media no-slip fractions
[Start, Cementation stress, Max Burial]

C11 [0.25, 0.35, 0.35]
C33 [0.2, 0.5, 0.7]

Cement interval parameters

Volume of cement 1.6%
Isotropic cement limit 6%

Crack model parameters
ncm 0.055
β 2.3
η 182
“Delayed strain” for equation (11.2) 0.35 mStrain

data. The coordination number is kept constant in this imple-
mentation, as for the implementation on the experimental data,
although it could have been modelled as porosity dependent.

The stiffnesses of the granular media will be calculated
at 36% porosity, and subsequently extrapolated using the
anisotropic friable sand model. The depositional porosity is
set to 36%, and the porosity as a function of overburden stress
is calculated based on Lander and Walderhaug (1999). The β
parameter in this model is set to 0.06, which was also used in
the introductory conceptual example, and is taken from Lander
and Walderhaug (1999).

12.2.3 No-slip fractions
One problem in forward modelling, which to some extent
already has been discussed, is the choice of the values of the
[min max] values for the different elastic stiffnesses. The
anisotropic, stress dependent fractions were implemented in
order to account for potentially several factors in the simplest
possible way. This implementation however requires sufficient
amount of data in order to be properly determined, as was done
when modelling the experimental results.

Thus, instead of choosing a [min max] relationship, the fol-
lowing implementation is done using the no-slip and slip limits.
These are then assumed to act as a form of bounds. If measure-
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Figure 12.1: Modelled axial P-wave velocity over the full “burial history” of the synthetic sandstone. The parameters inputted to create these
curves are displayed in table 12.1. The model can be seen to have the ability to conform with the measured velocities quite well, it is however
important to remember that the parameters in table 12.1 are chosen on the basis of creating the best fit.
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Figure 12.2: Modelled radial P-wave velocity over the full “burial history” of the synthetic sandstone. The parameters inputted to create these
curves are displayed in table 12.1. The model can be seen to have the ability to conform with the measured velocities quite well, it is however
important to remember that the parameters in table 12.1 are chosen on the basis of creating the best fit.
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Figure 12.3: Modelled P-wave anisotropy over the full “burial history” of the synthetic sandstone. The parameters inputted to create these curves
are displayed in table 12.1. The model can be seen to have the ability to conform with the measured P-wave anisotropy quite well, it is however
important to remember that the parameters in table 12.1 are chosen on the basis of creating the best fit.
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ments at different stress levels are available, an idea of a poten-
tial no-slip/slip fraction might be inferred from these bounds. It
is noted that these bounds are of course dependent on the choice
of grain parameters and the coordination number, taken to be
constant in this modelling.

12.2.4 Cement Parameters

The key difference in the current implementation and that in
the previous section is the incorporation of cement estimation
through Walderhaug (1996), instead of setting a cement volume.
Furthermore, the cementation will now naturally occur over a
larger range of stress. It is assumed by Walderhaug (1996) that
there is no porosity loss due to mechanical compaction after
the onset of cement. This assumption will be carried into the
modelling, and so porosity loss at increased depths after the
onset of cement will come from the cement volume.

The limit of isotropy is in this case reverted back to the value
used in Avseth et al. (2016) of 10%. The values of the a and b
parameters are taken from Walderhaug (1996) with a = 6.247 ·
10−9 moles

cm2·m.yr , b = 0.022 1
◦C . A grain size is needed, and this

is set to have a diameter of D = 0.03cm. The molar mass of
quartz is M = 60.09 g

mole .

12.2.5 Crack Model Parameters

The estimation of radial strain from Hooke’s law requires
the knowledge of C12 and C13 (see equation (2.2)). Whilst
it is certainly possible to utilise the values predicted for C13

and C12 together with C11 and C33 in the iteration loop of
Hooke’s law and the crack model to estimate and utilise radial
strain, the current implementation will be limited to uniaxial
strain. This is because the experimental data allow for no indica-
tion of the quality of C12 and C13 produced from the modelling.

Furthermore, the axial shear wave velocity was seen to need
an alteration in the grain parameters (Poisson’s ratio) in order to
be modelled by the crack model. Similar problems might arise
for the modelled values of C12 and C13. These problems would
then be manifested in the estimated strain values, derailing the
model. Limiting the uplift modelling to uniaxial strain means
that only C33 is needed in the strain estimation.

In this modelling it is also assumed that there is a negligible
effect of creep on the rock as burial changes to uplift. The
extensional deformation is assumed to happen on the onset
of uplift, meaning that no creep compensation methods are
implemented.

The crack model is integrated with the patchy cement model,
in the interval where there is both cementation and uplift. This
is similar to the methodology used when creating the updated
conceptual model in figure 4.8, except now it is the patchy ce-
ment, rather than contact cement model that is superposed with
the crack model. As before, the effects are assumed to be super-
positionable, in that they can simply be added. This is likely a
simplification of the processes occurring in the subsurface. The

consequence of using the patchy cement model during the un-
loading interval is that the granular media model is also present
during unloading. The granular media model as formulated in
part III produces stiffnesses defined by the stress level and not
stress history, which means that the granular media model will
predict the same stiffness for a given stress level during load-
ing and unloading. This is not investigated in any detail in this
work, but it is noted that as the cement volume increases, the
effect of a deviation in the granular media model is decreased,
as it constitutes a smaller part of the overall stiffness.

12.2.6 Results of Integrating Cement Estimation
in the Rock Physics Model

The modelled axial P-wave velocity is shown in figure 12.4.
The same trends as was seen for the updated conceptual model
in figure 4.8 can be observed, with a decrease in P-wave veloc-
ity as the rock is subjected to unloading. The key difference
is that the P-wave anisotropy is now also modelled, and this is
shown in figure 12.5.

During the loading prior to cementation, the P-wave
anisotropy can be seen to become slightly less negative for
both the no-slip and slip limits. Based on equation (7.30), for
a constant σz/σr relationship the solution of Er should be
unchanged. From (7.23) and (7.24), the P-wave anisotropy
should thus remain constant, according to the granular media
theory. It should be constant because E33 will cancel from
all the expressions (see equations (7.1) to (7.4)), leaving only
Er and the grain parameters. The slight change in P-wave
anisotropy still observed is due to the anisotropic friable sand
model affecting C11 and C33 in a manner that causes the
observed change.

It can be seen how increasing the fraction of no-slip contacts
(uniformly) would act to move the P-wave anisotropy toward
the no-slip limit, i.e. towards isotropy. This point was discussed
earlier, in relation to figure 8.8. This formed some of the
argumentation for making this fraction anisotropic, in addition
to stress dependent, as the experimental data when subjected to
loading shows a move towards stronger anisotropy.

The cementation starts at 2000m, and here the velocity in-
crease accelerates. As the cement volume increases, the rock
also moves towards isotropy, as more and more of the assem-
blage consists of the isotropic cemented media. As the sam-
ple gradually consists of smaller amounts of the granular me-
dia, the distance between the slip and no-slip limits is also re-
duced. Once uplift begins the effects of the crack model and
the anisotropic patchy cement model are superposed. Initially,
there is an increase in velocity, before, as temperature drops and
cementation slows down, the velocity increases is flattened out,
before it starts decreasing. As uplift continues, the anisotropy
is brought towards isotropy, before a reversal of the anisotropy
occurs, as for the experimental data.
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Table 12.2: Key factors used in the creation of the modelled axial P-
wave velocity and P-wave anisotropy whilst incorporating cement esti-
mation seen in figures 12.4 and 12.5. The elastic properties of the quartz
cement are assumed to be equal to those of the quartz grains. Parameters
marked (WH) are those used in the Walderhaug model.

Burial history

Burial rate 50 m
m.yr

Uplift rate 100 m
m.yr

Geothermal gradient 35
◦C
km

Maximum burial 3200m
β 0.06

Grain parameters

Poisson’s ratio 0.08
Shear Modulus 42 GPa
Coordination number 9
Density 2.650 g

cm3

Cement interval parameters

Isotropic cement limit 10%
a (WH) 6.247 ∗ 10−9 moles

cm2·m.yr
b (WH) 0.022 1

◦C
D (WH) 0.03cm
M (WH) 60.09 g

mole

Crack model parameters
ncm 0.07
βcm 2.77
ηcm 182
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Figure 12.4: Modelled axial P-wave velocity over the same burial history that was used to create the updated conceptual model in figure 4.8.
The radial stress is assumed to always be half of the estimated vertical stress. During the pre-cementation loading, the granular media model
based on Walton (1987), presented in part III is utilised. The porosity loss is modelled after Lander and Walderhaug (1999). After the onset of
cement, the volume of cement is estimated using the model of Walderhaug (1996), and the cement volume is assumed to be the only porosity
reducing factor. The stiffnesses during burial after the onset of cement are modelled using the anisotropic patchy cement model (APC). The APC
model is based on the work done in Avseth et al. (2016), and is presented in part IV. During uplift whilst in the cementation domain, the changes
in stiffnesses are taken to be the superposed effects of the APC model and those predicted by the crack model presented in Fjær (2006). The
crack model is used in an iteration loop with Hooke’s law assuming uniaxial compaction, to avoid the problem of lack of information regarding
C12 and C13.
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Figure 12.5: Modelled P-wave anisotropy over the same burial history that was used to create the updated conceptual model in figure 4.8. The
radial stress is assumed to always be half of the estimated vertical stress. During the pre-cementation loading, the granular media model based
on Walton (1987), presented in part III is utilised. The porosity loss is modelled after Lander and Walderhaug (1999). After the onset of cement,
assumed to happen at 2km, the volume of cement is estimated using the model of Walderhaug (1996), and the cement volume is assumed to be
the only porosity reducing factor. The stiffnesses during burial after the onset of cement are modelled using the anisotropic patchy cement (APC)
model. The APC model is based on the work done in Avseth et al. (2016), and is presented in part IV. During uplift whilst in the cementation
domain, the changes in stiffnesses are taken to be the superposed effects of the APC model and those predicted by the crack model presented
in Fjær (2006). The crack model is used in an iteration loop with Hooke’s law assuming uniaxial compaction, to avoid the problem of lack of
information regarding C12 and C13.
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Chapter 13
Extended Discussion

13.1 Chapter Introduction

The end product of the previous part is a rock physics model
that sows together granular media models, cementation models,
and the crack model. This is a model capable of modelling the
development of P-wave velocities and subsequently P-wave
anisotropy in sediments subjected to a triaxial stress during
loading1, and uniaxial strain during uplift.

The model was able to reproduce the observed experimental
data quite well, but as pointed out, the model contains weak-
nesses. In this chapter, these weaknesses will be reviewed
and elaborated, in an attempt to provide an overview of the
limitations present in the modelling results.

The chapter will first consider each of the modelling intervals
individually, effectively summarising the results of parts III, IV
and V. Following this, the representability of laboratory data
in relation to the field is discussed. In light of the limitations
and representability, the qualitative and quantitative nature of
the model can be established. Following this, additional labo-
ratory will shed some light on the effect of cement volume and
stress path, before the role of fluids in the pore space is briefly
discussed.

13.2 Granular Media Model

To be able to model the experimental data, a granular media
model capable of handling a triaxial stress state, with a confin-
ing stress and axial stress, was required. Starting from the work
in Walton (1987) and Bandyopadhyay (2009) such a model was
created and tested in part III.

The manufactured model was able to recreate the axially
propagating P and S-wave velocities, as well as the radial
P-wave velocity, but only after a pragmatic implementation of
anisotropic and stress dependent fractions of no-slip and slip
limits.

In Walton (1987) it is assumed that no contacts are created

1But in the current formulation limited to scenarios where the horizontal
stresses are equal.

or lost. Furthermore, all spheres are assumed to be spherical
and of equal size. The idea that no contacts are created or lost
is equivalent to having a constant coordination number as the
stress is increased. As previously discussed the coordination
number might be stress dependent, but in the modelling it
is kept constant. The potential for non-spherical grains and
non-perfect sorting would also mean that the slip and no-slip
limits are not perfect representations of what the actual slip and
no-slip limits would look like.

In a sense therefore, the binary mixing model, where slip and
no-slip contacts from Walton (1987) are mixed, is the pragmatic
mixing of non-perfect limits to describe factors not covered by
the model. These factors have been discussed previously, and
include things such as force chain networks, and increased fric-
tion on grain contacts.

The fact that the model is able to fit the observed P-wave ve-
locities, using anisotropic stress dependent fractions of slip and
no-slip contacts, is not necessarily a testament to the models
validity. It simply means that the model, with the pragmatic al-
terations, has the freedom of parameters to account for natural
deviations compared to the assumptions in Walton (1987).

In addition to the uncertainties in the granular media model,
there is the question of extrapolation to other porosities than
the 36% of a random dense packing of spherical grain. The
friable sand model is used. This is, as previously described, at
its core simply a form of interpolation between the 36% and
0% porosity points.

The porosities were throughout the experimental data esti-
mated, but never measured. This introduces a further uncer-
tainty in the modelling results. It is however likely that the prag-
matic modifications to fit the experimental data would be able to
counteract potential errors introduced by using the wrong poros-
ity (and subsequently density) by altering other parameters.

13.3 Cementation Model

In the model used to recreate the experimental data a cement
volume was chosen on the basis that it was not measured. The
only knowledge was that the there was not a lot of cement. The
effect of cement volume on the uplift mechanisms is discussed
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in more detail later.

The contact cement model with its extensions (constant
cement and increasing cement) (Dvorkin et al. (1991), Dvorkin
et al. (1994), Dvorkin and Nur (1996), Avseth et al. (2010)) was
used to describe the stiffness of cemented media with sufficient
amounts such that a granular assemblage is isotropic and stress
independent. The problem of creating a continuous velocity
as function of burial history when combining true application
of granular media models and the model in Dvorkin and Nur
(1996) was discussed in part IV. The primary issue is that
the model in Dvorkin and Nur (1996) is based on unstressed
cement contacts at the start of cementation. In a scenario
where the rock has been subjected to several km’s of burial this
condition is not met. Furthermore, the model in Dvorkin and
Nur (1996) creates a rock that is stress insensitive, and isotropic.

The patchy cement model with an anisotropic granular media
as the lower bound was used to describe both the stress depen-
dence and anisotropy of the assemblage after cementation. The
cement volume was used as a free fitting parameter giving the
model significant freedom in regard to the magnitude of the
velocities. One cement volume did however simultaneously
provide reasonable estimations for the magnitude of both the
radial and axial P-wave velocities.

When the estimated porosity loss after cementation was
included in the final Hashin-Shtrikman iteration it was observed
that the stress dependence of the velocities was overpredicted.
The stress dependence of the underlying granular media
seemed to conform better with the observed stress dependence.
This led to the implementation of the patchy cement model
without incorporating the stress sensitivity created by the loss
of porosity due to mechanical compaction after cementation.

The strain causing the porosity loss was theorised to occur
due to deformation caused by the loading. This deformation
would act to reduce the velocity, but would not be incorporated
in the anisotropic patchy cement model. One way to poten-
tially model this in the experimental data would have been to
incorporate the crack model from the onset of loading after
cementation, instead of the anisotropic patchy cement model.
This is because in the crack model, the effects on stiffness
of both the reduced porosity and the formation of cracks can
be incorporated. The results of a Levenberg-Marquardt fit of
the loading interval after cementation for the axial P-wave ve-
locity and P-wave anisotropy are shown in figures 13.1 and 13.2.

In the field however, the cementation at one stress level
followed by loading with no more cementation is not realistic.
Instead, cementation is continuous, and upon further cemen-
tation the rock will become stiffer, and so the strain causing
the porosity loss in the experimental data upon loading after
cementation might not be seen in the field. Therefore, instead
of incorporating the crack model earlier, the extra apparent
stress dependence predicted by the patchy cement model due to
the porosity loss during loading after cementation was ignored.
This provides a better fit with the observed experimental data,
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Figure 13.1: Modelling the axial P-wave velocity during the loading
after cementation with a Levenberg-Marquardt fit of the crack model,
as opposed to the APC model. This was done on the basis of the accel-
erating strain, which could be an indicator of crack formation (broken
cement bonds) softening the rock as a whole. The crack model is also
seen to be able to produce reasonable fits of the observed data, and
might in fact be a more appropriate approach to the physical processes
in the experimental data. In a scenario where the cementation is con-
tinuous over the cementation interval (as in the field), it is however
possible that the APC model will be more appropriate in describing the
effects than the crack model.
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Figure 13.2: Modelling the P-wave anisotropy during the loading after
cementation with a Levenberg-Marquardt fit of the crack model, as op-
posed to the APC model. This was done on the basis of the accelerating
strain, which could be an indicator of crack formation (broken cement
bonds) softening the rock as a whole. The crack model is seen to be
able to produce reasonable fits of the observed data (although the trends
seem somewhat better in the modified APC model i.e., where the stress
dependence due to porosity decrease during loading was ignored), and
might in fact be a more appropriate approach to the physical processes
in the experimental data. In a scenario where the cementation is con-
tinuous over the cementation interval (as in the field), it is however
possible that the APC model will be more appropriate in describing the
effects than the crack model.
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and might be more representative of the field scenario. In fact,
as the model in Walderhaug (1996) assumes no mechanical
compaction after cementation, there will be no porosity loss
due to increased stress in the model incorporating cement
estimation. By “more representative” is meant that the only
porosity loss considered is that caused by cementation. The
porosity vs stress curves will in general be quite different for the
field and laboratory scenario due to this continuous cementation.

In the application of the cement models in the field, the final
product of the patchy cement model is dependent on both the
parameters in the underlying granular media, as well as those
chosen in the cementation models. This gives a wide degree of
freedom to model observed data, especially in the event of the
cement volume being unknown.

13.4 The Crack Model
In Torset (2017) the formation of microcracks as a result of
failing cement contacts during uplift is used as an argument
for implementation of the crack model. This was based on the
observations of the experimental data and the work done in
Holt et al. (1997) and Holt et al. (2004).

In Holt et al. (1997) coring damage is investigated, and a
synthetic sandstone similar to that described in this work is
unloaded after formation. Holt et al. (1997) state that during
unloading, “microcracks, that may well be associated with
grain bond breakage are opened”. These microcracks cause a
decrease in velocities and increase in stress dependence.

In Holt et al. (2004), numerical simulation are conducted
that show that uplift can cause the breaking of cement bonds.
This can be done through both tension and shear. In the
numerical simulations, the cementation is done at peak stress,
rather than a lower stress level such that the methodology is
somewhat different from that in the experimental data. This
might however be more representative of the field case, where
more cement is formed at higher stress.

The claim that the cement bonds breaking are the main cause
of the increased stress dependence in the sample described in
part II is not justified further, and has not in this work been
“proven” by observation, by for example creation of thin sec-
tions. The problem of making thin sections of the cores in the
laboratory and from the field is that it requires unloading all the
way to atmospheric conditions. This might give an unrepresen-
tative view of the deformation mechanisms over the unloading
intervals considered in this work.

One weakness of the model as formulated was the limitation
of uniaxial strain, as discussed in the previous part. This was
because the desire to exclude strain from the modelling involved
an iterative combination of the crack model and Hooke’s law.
This is based on the assumption that over small changes in
stress and strain the relations in the generalised Hooke’s law are
valid. The estimation of the strains in the generalised Hooke’s
law for an arbitrary strain state requires the moduli C12 and C13

in addition to C11 and C33. In the case of uniaxial strain, only

C33 is needed. C12 is related to the horizontally propagating
shear wave modulus C66. There is no information regarding
how well the moduli C12 and C13 are modelled up to the onset
of uplift. Utilising these stiffnesses in the iteration loop with
the crack model is therefore uncertain, and as pointed out in
part V might derail the model. The results in this work are
therefore limited to describing uniaxial strain during uplift. The
methodology should in theory be valid for non-uniaxial strain
during uplift.

The sensitivity of the axial shear wave velocity with regard
to the Poisson’s ratio was discussed in part II, and with a
value close to that used in the previous modelling intervals,
i.e., νs ≈ 0.08, the axial shear wave velocity was poorly
modelled. If the assumption that the P-wave anisotropy should
be calibrated in the reference point, a similar consideration
to that done in part II can be undertaken, revealing that the
radial S-wave would also fall in the “domain with no physical
meaning (similar to figure 4.6)”. The choice of νs = 0.08 came
from the desire of keeping the quartz parameters constant. A
material corresponding to 0 porosity and 0 crack density is in
this work considered as a solid block of quartz, and therefore
expected to have the same parameters as the quartz grains.
However, in the implementational strategy in Fjær (2006), the
Poisson’s ratio “typical for rock constituting solids” is set at
a fixed value of 0.2, and is allowed to vary independently of
the H0 and G0. Therefore, it is within the limits of the model
in Fjær (2006) to change the Poisson’s ratio during uplift, to
facilitate the incorporation of modelling of the axial shear
wave velocity, and possibly better prediction of the remaining
parameters.

13.5 The Choice of Models
There exists several models that attempt to depict the processes
occurring in sediments as they are subjected to various burial
histories.

In the granular media domain for example, another triaxial
strain model in the no-slip limit is that presented in Johnson
et al. (1998). Appendix D briefly discusses this model, and
shows how in the no-slip limit, the results from Walton (1987)
and one particular strain history2 in Johnson et al. (1998) are
equal. The desire to derive general expressions directly from
Walton (1987), instead of using the results of Johnson et al.
(1998) originates from the fact that the derivations produced
both slip and no-slip limits, facilitating the use of the binary
mixing model.

In terms of cement volume, work by Oelkers et al. (1996)
shows that at greater depths the cement distribution is uneven
where stylolite spacing is sparse. Thus, the assumption that the
precipitation is rate determining is dependent on the maximum
depth of burial not being too high, if the stylolite spacing is

2Corresponding to where both the radial and axial strain are increased si-
multaneously, with the axial strain being increased faster, as was the case in the
experimental data.
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sparse. In Oelkers et al. (1996), a sample at 3750m of burial
depth shows a relatively even distribution of porosity with
irregular stylolite spacing, indicating that diffusion is not rate
controlling, and so the model in Walderhaug (1996) might be
appropriate. As no greater depths are investigated in this work,
the implementational simplicity of the model in Walderhaug
(1996) was preferred. A model incorporating stylolite spacing
can be found in Bjørkum et al. (1998).

Regardless of the cementation model chosen, the volume of
cement is dependent on the parameters entered into the models.
These include grain sizes, geothermal gradient, burial rate and
the presence of inhibiting coatings such as chlorite (Walder-
haug, 1996). Such information might be available through
geological constraints and core samples. These parameters thus
define the amount of the cemented media that enter into the
patchy cement model.

The stiffness of the cemented rock was modelled with an
anisotropic modification of the patchy cement model Avseth
et al. (2016). Although other extensions to the contact cement
theory presented in Dvorkin and Nur (1996) exist (see for
example Dvorkin et al. (1999)) the patchy cement model allows
for incorporating of both stress dependence and anisotropy
relatively easily. This feature makes the patchy cement model
attractive, although it is not without its weaknesses, as previ-
ously discussed.

Two additional models to the crack model were tested on
the experimental data in the uplift domain in Torset (2017).
These were the models presented in Prioul et al. (2004) and Ciz
and Shapiro (2008) which attempt to describe the dependence
of stiffnesses in terms of the observed stress (Ciz and Shapiro
(2008)) or strain (Prioul et al. (2004)). It was in the previous
work suggested that out of the three models the crack model
was most appropriate.

Other methods to model reduction in velocities as rocks
are exhumed also exist. One such example is found in Bre-
desen (2017), in response to the diagenetic sandstone modelling
overpredicting velocities in the Kobbe sandstone Formation in
the Barents Sea. Microcrack formation during uplift is also
used as an interpretation in Bredesen (2017) for the lack of
fit between the modelled and observed data. Bredesen (2017)
uses a methodology from Avseth et al. (2014a) which com-
bines the contact cement model with “Differential Elastic Me-
dia”, which can incorporate crack-like pore-geometries in low-
porosity sandstones. A key aspect of the present work was the
P-wave anisotropy observed during uplift, which is readily ob-
tained from the crack model. The work presented in Avseth
et al. (2014a) is concerned with bulk and shear moduli, and so
is limited to isotropy. The possibility of extending the model
from Avseth et al. (2014a) to anisotropy is not investigated in
this work.

As a final note, the main problem in the choice of mod-
els was to find models that allow for the incorporation of P-
wave anisotropy. The desire to include anisotropy modelling
came from the reversal of the P-wave anisotropy seen in the

experimental data. Models that allowed for incorporation of
anisotropy either directly or with some modification were there-
fore preferred.

13.6 The Advantage of Laboratory Data

Using laboratory data means that the assemblage of grains
can be controlled, such that other burial diagenetic features
than compaction and quartz cementation can be neglected.
Some examples of such reactions were discussed in part I.
These reactions may act to alter the stiffness of the detrital
assemblages at many stages during burial (Worden and Burley,
2003). This is not to say that well sorted, quartz rich sediments
do not occur in nature, but in the laboratory it can be guaranteed.

The laboratory therefore provides an arena where the ob-
served changes in the velocities can with a greater degree
of certainty be ascribed to the processes considered by the
multitude of models used in this work.

13.7 From Laboratory to Field

Although processes can to some extent be controlled in the lab-
oratory, the extension of the validity of the result to the field is
not trivial.

13.7.1 Lithology

The laboratory data in this work is limited to quartz assem-
blages. Holt et al. (2000) presented four criteria as a “measure
of representativeness”, which were discussed in part II. The
quartz grains used to create the synthetic sandstones are from
real sediments, and so is a fair representation of a certain com-
position of sandstones. The event of mineralogical variations,
in other words not purely quartz would introduce uncertainty in
terms of the validity of the experimental data as representative.

The experiments could of course be conducted for a greater
variety of feldspathic and lithic sandstone assemblages, to
establish a “catalogue of parameters”, but regardless the variety
of mineral assemblages found in nature will likely also vary
somewhat from that tested in the lab. Alternate mineralogies
might also introduce grains that have preferred orientations.
This will impact the observed anisotropies (Fjær et al., 2008).

The silicate cement formed is indicated by Holt et al. (2000)
to be less brittle than that formed naturally. This might mean
that more deformation can occur before the cement contacts
break. This artificial cement is also not ruled out as “at least a
partial source of creep” (Holt et al., 2014).

This work has been exclusively concerned with sandstones,
and models to describe the effects of burial history on sand-
stones. Sandstones however make up only about 20-25% of the
sedimentary column (Boggs Jr, 2006). This limits the availabil-
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ity of sandstone velocity and stress measurements to calibrate
the necessary parameters.

13.7.2 Time and Temperature

In addition to the wide range of compositional variety in natural
sedimentary deposits, there is the question of the rate at which
these processes occur. Burial and uplift of rocks happen over
millions of years, whereas the experiment is done in a couple of
hours.

The cementation in the experiment also deviates from that
seen in natural rocks. In the sediment the synthetic quartz
cement is precipitated over a constant stress interval, whereas
in natural rocks, it is expected to be cemented over a range
of stresses. In the laboratory, this has been thought to create
an overexaggerated porosity loss due to subsequent loading,
as the stiffness of the rock is reduced through the breakage of
cement bonds. The effect of increased stiffness due to porosity
is incorporated into the final Hashin-Shtrikman bound in the
anisotropic patchy cement model, but the effect of decreased
stiffness due to crack formation would not be seen in this
model. This led to the observation that the velocities seemed
overly dependent on stress during loading after cementation.

Even though natural quartz cement might be more brittle than
that formed in the laboratory, for a given confining pressure an
increase in temperature and decreased strain rate will in general
lead to more ductile behaviour (Gudmundsson, 2011).

The differences means that the parameters determined in
the previous sections are not likely to be general for all burial
histories. The hope is however, that the fact that the model is
able to fit the data for a certain parameters is an indicator that
the physical processes described by the models can to some
extent be seen as responsible for the changes. If this is the case,
then other assemblages of grains might be attained by altering
the parameters used in the models.

13.7.3 Measurements from Seismic and Well
data

One of the uncertainties in seismic is that vertical velocities
in offshore surveys are typically estimated, rather than directly
measured. This arises from the distance between source and
receiver in the offshore seismic surveys. The methodology of
creating velocity profiles from seismic and well data is not dis-
cussed in any further detail in this work. An illustration of ve-
locity estimation as function of offset can be found in for ex-
ample Simm and Bacon (2014). Frequency is another aspect of
the comparison to the field case. The sample in the laboratory is
considered dry, and so dispersion effects due to the presence of
fluids are not present. Using Biot-Gassmann fluid substitution
(see appendix B) to model the effects of fluids produces the low
frequency result if the equations of the form of (2.6) are used.
This might be sufficient in the seismic frequency range, but in

wells where the frequency can be in the kHz range, dispersion
due to fluids in the pore space might become a factor.

13.8 All Models Are Wrong, but Some
Are Useful

The timeless words of statistician George Box (Box, 1979) are
certainly applicable to the work done in this thesis. As described
throughout the thesis, the underlying models contain assump-
tions and limitations aplenty. In the knowledge that the final
model designed through part III to part V is likely inadequate
to exactly describe all physical processes in a natural rock, the
question remains, is it useful?

13.8.1 The Qualitative Nature
The qualitative nature refers to the ability to describe the
characteristics, or trends, rather than exact values. In this
regard, the full burial and uplift history might indeed provide
some useful insights.

The incorporation of the crack model commingled with the
cementation model is definitely able to capture the observed
trend of decreased velocity and increased stress sensitivity upon
uplift. Furthermore, the trend of the anisotropy to become re-
versed upon uplift is also captured when applying the crack
model in combination with Hooke’s law. This implies that the
model can give an indication of qualitatively the effect of burial
and uplift compared to a reference area.

13.8.2 The Quantitative Nature
By quantitative nature, the ability of the model to predict
numerically a value for the uplift is in question.

In the introductory conceptual example it was claimed
that the current methodology of assuming no uplift would
underestimate the uplift by 400m. By the end of this thesis,
the reader should hopefully have been convinced that this is
wholly dependent of the choice of parameters through the entire
modelling history.

In the “inverse” case where data is available at all stress
levels, parameters that fit the data well can be determined,
as seen in figures 12.1 to 12.3. In this scenario, the uplift is
however already known, and used to estimate the parameters
needed. As has been already addressed, due to differences
between the field and the laboratory, it is unlikely that the same
set of parameters will be appropriate in a general case.

This means that the forward application of this model to
quantitatively establish a value for the uplift is uncertain. This
caveat is however not unique for this model, but true for any
model using rock physics to quantitatively determine uplift.

Some degree of quantitative determination of the uplift
would require plentiful data to calibrate the parameters. This is
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where the model runs into another problem, because although
vertically travelling P-wave velocities are measured in wells
and estimated from seismic data, accurate determination of the
radial P-wave velocity and P-wave anisotropy are less available.

This is troublesome for the pragmatic alteration of the granu-
lar media models, as these had stress dependent and anisotropic
values for the no-slip/slip fractions. Having anisotropic no-slip
fractions means that determination of the appropriate relation
for the axially propagating P-wave does not necessarily give
any information on the radially propagating P-wave.

There does exist a way to compensate for the same effects as
the anisotropic, stress dependent values of the no-slip/slip ra-
tio, although it is slightly less intuitive. The δ parameter in the
anisotropic Hashin-Shtrikhman (see Parnell and Calvo-Jurado
(2015)) describes the shape and distribution (as ε = δ)3 of the
phases that enter into the calculation of the bounds. So far this
has been set to 1. Setting it to 1 means that mixing of two
isotropic phases should yield an isotropic result, identical to
the isotropic Hashin-Shtrikhman bound, as was demonstrated
in part I.

By letting δ 6= 1 the friable sand model can be used to alter
the observed P-wave anisotropy. This means that the δ(= ε)
parameter is capable of incorporating the possible deviations
from the granular media model in the friable sand model.

Figures 13.3 and 13.4 show the axial P-wave velocity and
P-wave anisotropy in a scenario where the no-slip/slip ratio
is kept constant at 0.4, but the δ parameter in the anisotropic
Hashin-Shtrikman formulation is allowed to vary from 0.9 to
1.55 over the course of the loading.

The modelling can be seen to fit the measured data quite
well, where the same set of parameters can be used to model
both the axial and radial P-wave velocities. This does of
course not fix the issue of this being a pragmatic way to
account for potentially complex processes occurring in the
grain assemblage. It is noted that the axial shear wave velocity
is still overpredicted as long as the same fraction if no-slip and
slip contacts are used as for the P-wave velocities.

Thus, even though the P-wave anisotropy modelling can
be done without the anisotropic no-slip/slip relationships, the
solution is less intuitive and still pragmatic.

In the crack model interval, calibrating the model to give a
decent fit to the axial P-wave velocity simultaneously provided
a decent fit to the radial P-wave velocity, which is the ideal
scenario.

If there is sufficient data available regarding stress history,
some of the parameters might be inferred in a semi-quantitative
nature, but as is apparent, exact uplift determination is difficult.

3As confusing as the variable notation used is, this is now the ε, δ from the
Anisotropic Hashin-Shtrikman paper of Parnell and Calvo-Jurado (2015) and
not the anisotropy parameters from Thomsen (1986).
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Figure 13.3: Modelled axial P-wave velocity based on the equations
derived in part III. The difference between this modelling and the mod-
elling done in part III is that instead of letting the no-slip/slip fraction
be anisotropic and stress dependent, the δ parameter in the anisotropic
Hashin-Shtrikman formulation is allowed to be stress dependent. The
no/slip slip fraction is constant and uniform (i.e., the same for C11 and
C33).
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Figure 13.4: Modelled P-wave anisotropy based on the equations de-
rived in part III. The difference between this modelling and the mod-
elling done in part III is that instead of letting the no-slip/slip fraction
be anisotropic and stress dependent, the δ parameter in the anisotropic
Hashin-Shtrikman formulation is allowed to be stress dependent. The
no/slip slip fraction is constant and uniform (i.e., the same for C11 and
C33).
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This also casts a shadow of doubt on all attempts to model
uplift from velocity measurements, and is as mentioned not
unique to this work. This is because previous modelling
attempts also make assumptions regarding the stress history
(most commonly that it is isotropic) and the no-slip/slip
relationships. An example is that the use of Hertz-Mindlin will
imply an isotropic stress state, and unless a reduced shear factor
is mentioned, a no-slip fraction of 1. In a sense then, the model
in this work is not less quantitative than existing diagenetic
sandstone models for predicting uplift, whose uplift estimates
also depend on the choice of parameters.

The cement volume, if it can be estimated can be used to
legitimise the time that a rock has been subjected to time and
temperature conditions suitable for cementation. Estimation
methods could be point counting in thin section, or a combi-
nation of cathodoluminescence data with backscatter electron
images (McBride (1989), Oelkers et al. (1996)). It is clear
however, that if using the model in Walderhaug (1996) that a
cement volume is not unique to one burial history, and thus the
velocity development with depth and time is also not unique.
What is meant by this is that several burial histories can produce
the same volume of cement.

As an example, consider the two burial histories in figures
13.5 and 13.6. Burial history 1 enters the cementation domain
and stays there for 36 million years, with a burial rate of 50m

m.yr ,

an uplift rate of 100 m
m.yr and a geothermal gradient of 35

◦C
km .

In burial history 2, after reaching a depth of 2500m, the rock is
static for 66 million years, before being uplifted. The rates of
burial and uplift are identical to burial history 1.

The amount of cement produced by the two burial histories
are indicated in figure 13.7. The two burial histories produce
the same amount of cement over different time-scales.

The subsequent velocities are shown in figure 13.8. The
pre-cementation interval is modelled using Hertz-Mindlin (as it
is not of immediate interest), with the effect of cement modelled
with the patchy cement model. As the velocities are at larger
cement volumes primarily a function of the cement volume, the
velocities at 2000m are extremely similar, although the burial
histories are different.

Other geological factors could, if available, be used to
constrain the possible burial history, as discussed in part I. The
results in figure 13.8 are simply an illustration of the fact that
using cement volume as a legitimisation for a burial history
is uncertain. In addition, the final estimated cement volume
is as ever dependent on the parameters fed into the model in
Walderhaug (1996).

This section was an attempt to justify the usefulness of the
model. The quantitative nature of using the modelled velocities,
or for that matter P-wave anisotropy is uncertain. Using the
slip and no-slip limits as boundaries provides a qualitative il-
lustration of the trends, although these limits are also subject to
grain parameters, stress history, burial rate, geothermal gradient
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Figure 13.5: The first burial history (Burial History 1) used for com-
parison of the development of the volume of cement, and subsequently
velocity, as function of time and temperature (depth) in figures 13.7
and 13.8.
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Figure 13.6: The second burial history (Burial History 2) used for
comparison of the development of the volume of cement, and subse-
quently velocity, as function of time and temperature (depth) in figures
13.7 and 13.8.

95



Chapter 13. Extended Discussion

40 50 60 70 80 90 100 110 120

time [m.yr]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
e
m

e
n
t 
v
o
lu

m
e
 [
fr

a
c
]

Cement volume during the years of cementation

Burial History 1

Burial History 2

Figure 13.7: Cement volume estimated from the burial histories in
figure 13.5 and 13.6. Note how the final cement volume estimated by
the two burial histories is identical, although the development with time
is vastly different. This is a natural result of the lower temperatures in
Burial history 2
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Figure 13.8: Velocities as a function of depth for the two burial his-
tories in figures 13.5 and 13.6. The pre-cementation velocities are es-
timated using Hertz-Mindlin, and the velocities in the cement domain
are modelled using the patchy cement model. No uplift-related velocity
changes are added in this particular modelling. Note how the velocities
end up at the same velocity after being subjected to two different burial
histories. This is because the cement volume is essentially the same.
This is a rather extreme comparison, but serves as an example as to
how using cement volume to legitimise modelled velocities, in the lack
of other constraining geological information, could introduce errors.

etc. A semi-quantitative inference might be made in the event
that sufficient data, and other constraining geological factors are
available and under conditions where the effects interpreted in
the laboratory might be expected to have occurred in the field.

13.9 The Effect of Cement Volume
The calibration of experimental data has been focused around
one particular sample, and thusly one cement volume. Similar
experiments have however been conducted with variable
amounts of cement.

13.9.1 Very Little Cement - “Soft”.
The velocity as function of axial stress for the case of very
little cement is shown in figure 13.9. The P-wave anisotropy is
shown in figure 13.10. There are a couple of things that stand
out.

Firstly, the anisotropy prior to cementation would be ex-
pected to be equal, it is not. This is because the radial strain
measured in this experiment is only about half that measured in
the laboratory data described in part II, leading to lower radial
velocities. The lower radial velocities would be predicted by
the equations in part III given lower radial strain, but why the
radial strain is lower for an apparently identical assemblage for
identical loading conditions is unknown. It goes to show that
the laboratory procedures are not perfect either.

Secondly, the P-wave anisotropy becomes stronger upon
cementation. This is possible even though both velocities
increase according to equation (9.26b).

There are two notable deviations from the experimental
procedure in part II. The creep period over which the P-wave
velocity keeps increasing at max burial, as well as the fact that
the unloading is only conducted down to a value of 15MPa
axial stress.

The qualitative observations that were made in part II re-
garding the uplift interval are also observed in the experimental
data presented in figures 13.9 and 13.10. Upon unloading, the
P-wave velocity shows a greater degree of stress dependence
than during burial after cementation, and the P-wave anisotropy
shows a distinct move towards less negative values, although it
is not reversed in the softer sample. This is an attribute of the
fact that the P-wave anisotropy is stronger to begin with, and
that the stress is not reduced to the same extent as in the sample
in part II.

The stress dependence of the axial P-wave velocity during
loading after cementation is greater for the sample with less
cement. This is in accordance with the patchy cement model,
as the stress-dependent granular media contacts will play a
more dominant role in the overall mixture. The difference
between the loading after cementation and unloading interval
in the sample with less cement is less prominent than for the
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Figure 13.9: Measured P-wave velocity on a similar synthetic sand-
stone as that described in part II, but with smaller amounts of synthetic
quartz cement. The key differences in the experimental procedure are
that the sample in this figure is left at 40MPa, which allows for the
viewing of the previously described creep effects. Note also how upon
unloading, the velocity decrease is more immediate than for the sam-
ple in part II, also a likely testament to the fact that the creep has been
allowed to occur. The second difference in experimental procedure is
that this sample is only unloaded until 15MPa axial stress. In terms of
interpretation, there is less cement in this sample, leading to a smaller
increase in velocity upon cementation. There is an increased stress de-
pendence upon unloading, as was described for the stiffer sample in
part II, but the difference between loading and unloading after cemen-
tation is smaller.

sample with more cement. An interesting observation is that
the additional decrease during unloading exactly matches the
increase during the creep period, such that the velocity is the
same at 15MPa before loading, and after simulated uplift.

13.9.2 EPOX-stone - Stiffer
The other end of the spectra are samples that contain more
“cement” than that in part II. This sample is however created
with epoxy rather than synthetic quartz cement, and so the
composition varies in other terms than just the amount of
cement. The experimental procedure is no longer identical,
which can be seen by loading to 30MPa prior to cementation
and subsequent loading to 90MPa. There is also a temperature
aspect of the experimental procedure in this sample, but this
will not be discussed in any detail.

The axial P-wave velocity and P-wave anisotropy for this
sample is shown in figures 13.11 and 13.12. The effect of
cementation is to increase the velocity significantly and bring
the rock close to isotropy. Upon loading after cementation
there is a very small increase in the P-wave velocity, but more
importantly, the P-wave anisotropy does not behave as the
previous samples, and is seemingly unaffected.
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Figure 13.10: Measured P-wave anisotropy on a similar synthetic
sandstone as that described in part II, but with smaller amounts of
quartz cement. The P-wave anisotropy prior to cementation deviates
from that in part II. This seems to be due to a lower observed radial
strain. A lower radial strain would according to the granular media the-
ory presented in part III provide a lower radial P-wave velocity. Why
the radial strain is lower for the same stress state and similar granular
assemblage is not investigated further. Upon cementation the P-wave
anisotropy becomes stronger, in that it deviates more from isotropy.
Upon unloading, the same trend, with progressively less negative P-
wave anisotropy is observed.

10 20 30 40 50 60 70 80 90

Axial stress [MPa]

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

A
x
ia

l 
P

-w
a

v
e

 v
e

lo
c
it
y
 [

m
/s

]

EPOX-stone, Axial P-wave velocity vs Axial stress

Pre-cementation loading, 
z
 = 2

r

Cementation interval, constant stress

"Burial" after cementation, uniaxial strain

"Uplift", uniaxial strain

Figure 13.11: Axial P-wave velocity plotted against axial stress for a
sample with epoxy which significantly stiffens the sample. Note that
the grain assemblage and experimental procedure is not identical to the
previous samples. In this sample it can be observed how the stress de-
pendence after cementation is extremely minor, and that upon unload-
ing, the velocities are pretty much identical to that seen whilst loading
for a given stress level
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Figure 13.12: P-wave anisotropy plotted against axial stress for a sam-
ple with epoxy. Note that the grain assemblage and experimental pro-
cedure is not identical to the previous samples. In this sample it can
be observed how the anisotropy after cementation approaches isotropy.
Furthermore, in contrast to the previous samples, upon unloading the
P-wave anisotropy behaves identically as during loading after cemen-
tation.

13.9.3 Interpretation of Observations Regarding
Cement Volume

The implementation of the crack model in Torset (2017) was as
mentioned done on the basis of the increased stress dependence
being caused by broken and failing cement bonds acting as
microcracks. In the case of a sample with a lot of cement/epoxy,
an argument could be that the breaking of a given number of
cement bonds has a smaller effect on the rock as a whole, thus
muting the effects of uplift.

The stress unloading in the simulated uplift of the EPOX-
stone is over 50 MPa, but the extensional strain is only 2
mStrain (see figure C.8 in Appendix C). The sample in part II
showed an extension of 8 mStrain over an unloading of about
30MPa. This means that extensional tension on grain contacts
is smaller in the stiffest sample, such that the epoxy might
not undergo brittle deformation. During loading of the epoxy
sample, there is 4 mStrain of compaction, significantly smaller
than the other samples. This means that less deformation
happened during loading, reducing the chance of reactivation
of microcracks during uplift.

In the sample with the least cement, there is 5mStrain of
extensional strain, but direct comparison is difficult due to
the creep period. Although microcrack formation might be
happening in this sample as well, it was observed that the

increase in stress dependence during uplift was less prominent.
This might be a pointer to cement bonds breaking being a
factor in the microcrack formation, as less cement means
that the potential for brittle deformation to increase the stress
dependence is smaller.

The results of variable cement volume indicate that the ef-
fects seen during uplift in part II might be limited by extensive
amounts of cement. In the epoxy case, a methodology of assum-
ing that the velocity and porosity remains constant after cemen-
tation has ceased (Avseth et al. (2014b), Avseth and Lehocki
(2016)) could thus prove quite accurate.

13.10 Unloading After Cementation -
Simulated Coring

The stress paths considered so far involve loading after ce-
mentation prior to unloading. In a different set of stress paths,
coring was simulated by unloading right after cementation. The
“coring” stress path (B2) is given in figure 13.13. Note that
the unloading in this scenario is not limited to uniaxial strain.
Figure 13.14 shows the axial P-wave development as a function
of axial stress for this stress path4. The orange curve represents
the “coring” interval and shows a decrease in velocity from the
onset of unloading5. The decrease in velocity in this sample
suggests that the assumption of no change during unloading
would be inadequate also in the scenario where the cement is
not loaded after cementation prior to unloading.

The P-wave anisotropy during coring is shown in figure
13.15, together with the anisotropy in the relevant stress inter-
val from the sample discussed in part II. The trends are observed
to be quite similar. For the “cored” sample the development in
P-wave anisotropy correspond well with a potential stress de-
pendence in the sample. As the axial stress is brought towards
the radial stress, the anisotropy decreases, as the axial P-wave
velocity approaches the radial P-wave velocity.
Figure 13.16 compares the stress dependence during loading af-
ter cementation, unloading following loading after cementation
and simulated coring. The “stress dependence” is quantified
through absolute change in axial P-wave velocity per 10MPa.
This is plotted against the axial P-wave velocity after cementa-
tion, which is an indicator of the amount of cement, and there-
fore the stiffness of the cemented rocks. The small difference
in stress dependence between the loading and unloading of the
samples with little cement and the very stiff sample discussed
earlier is observed. Furthermore it is observed that the samples
subjected to simulated coring show an even greater degree of
stress dependence (“uplift after cementation”).

4In appendix C, the effects of reloading and unloading after “coring” are also
included.

5Velocity data is not available below 8MPa.
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Figure 13.13: Stress path for the stress history referred to as “B2” up to the end of the
simulated coring. During loading prior to cementation the stress is identical to that in
the sample in part II (σz = 2σr). The difference is that instead of further loading the
sample is brought back to 0 stress. First, the axial stress is reduced whilst the radial
stress is kept constant. When the axial stress has reached the level of the radial stress
they are brought down equally.
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Figure 13.14: Axial P-wave velocity during pre-cementation loading, cementation and
simulated coring for the sample subjected to stress history “B2”. Upon unloading the
velocity decreases, and this decrease is larger at lower stress level indicating a degree
of increased stress dependence during unloading. The axial P-wave velocity data is
limited to unloading down to 8MPa of axial stress.
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Figure 13.15: P-wave anisotropy for the sample subjected to simulated coring according to the “B2” stress path. For comparison, the P-wave
anisotropy of the relevant stress interval from the sample form part II is also included. During the unloading where velocity data is available, the
axial stress is decreased whilst the radial stress is kept constant. During simulated coring the strain is not limited to be uniaxial. The observed
results make sense in regard to stress sensitivity. As the axial stress approaches the radial stress, the axial P-wave velocity approaches the radial
P-wave velocity, which acts to bring the rock towards isotropy.

Figure 13.16: Illustration of the stress sensitivity for samples with varying amounts of cement. The measure of stress sensitivity is a relatively
simplistic methodology of normalising the change in P-wave velocity to 10 MPa. “Burial after cementation” refers to the interval of loading
after cementation present in the “A” paths. “Uplift after burial” refers to the simulated uplift in the “A” paths, and “uplift after cementation”
are samples subjected to simulated coring. The cement volume is represented by the Axial P-wave velocity after cementation. Samples with
more cement have higher velocities after cementation. The effect of small differences between the stress sensitivity of the loading and unloading
after cementation of the samples with small amounts of cement and the EPOX-stone are observed at the end of the black and blue curves. The
arrows point to the values obtained when the normalisation procedure is applied to the sample from part II (“A-stiff”). Modified from Torset
et al. (2018).
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13.11 Testing the Crack Model on the
“Soft” Sample

In part V the modified crack model was implemented on the
“main” sample that has been used throughout this work. The
fact that the soft sample has been left to creep means that
implementation of the crack model might yield decent results
without requiring any form of compensation, and thus testing
the modified crack model6 on this sample as well is of interest.

Figure 13.17 shows the modelled P-wave velocities, and fig-
ure 13.18 shows the modelled P-wave anisotropy. In this mod-
elling, the starting stiffnesses are taken based on the estimated
density and measured velocity. The grain parameters are iden-
tical to those used previously. The crack model inputs are
n = 0.04, β = 1.5, η = 100, and these are obtained based
on observation, and a Levenberg-Marquardt fit similar to that
used in part II. The stress dependence on both the P-wave ve-
locities (and subsequently the P-wave anisotropy) can now be
modelled with the iterative combination of Hooke’s law and the
crack model without any form of creep compensation. This is an
encouraging result for the possibility of using the crack model
to model the effects of uplift.
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Figure 13.17: Modelled P-wave velocities using the crack model to-
gether with Hooke’s law for the sample denoted “soft”. Starting stiff-
nesses were based on measured velocities and estimated density. Note
how the model is able to fit the data well without the need for creep
compensation, which was required for the sample denoted “stiff” (see
part V).

13.12 The Effect of Fluids
Throughout this work, all velocities considered have been
dry velocities, that is, there are assumed to be no stiffness
contributions from fluids. A brief discussion on the concept of

6I.e., using strains from Hooke’s law instead of measured experimental
strain.

15 20 25 30 35 40 45

Axial stress [MPa]

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

P
-w

a
v
e

 a
n

is
o

tr
o

p
y
, 

, 
[-

]

Modelled P-wave anisotropy using strain from Hooke's law

Soft sample - no creep compensation

Modelled P-wave anisotropy- Crackmodel

Measured P-wave anisotropy

Figure 13.18: Modelled P-wave anisotropy using the crack model to-
gether with Hooke’s law for the sample denoted “soft”. Starting stiff-
nesses were based on measured velocities and estimated density. Note
how the model is able to fit the data well without the need for creep
compensation, which was required for the sample denoted “stiff” (see
part V).

poroelasticity is given in appendix B.

Gassmann (1951) derived equations for poroelasticity in
anisotropic media. The problem with these equations (see
Appendix B) is however that all moduli are needed. The
experimental data carry no information regarding C66 or C13

and so it is not possible to investigate the degree to which these
are satisfactorily modelled.

In Torset (2017) experimental data from Lo et al. (1986) was
used to investigate the error introduced by using the isotropic
Biot-Gassmann fluid substitution and found that there was
less than 2% error for the axial P-wave velocity and around
2.5% error for the radial P-wave velocity. The isotropic fluid
substitution in both cases underpredicted the velocity. Based on
this, and the fact that anisotropy in the sample from part II is
relatively weak, it is assumed that the error imposed by using
the isotropic Gassmann substitution would be small (Torset
et al., 2018). In a general case, this would of course depend on
the rock.

The effect of introducing the pore fluid through the isotropic
Gassmann substitution in the measured data for the axial
P-wave velocity and P-wave anisotropy is shown in figure 13.19
and 13.20 respectively.

The fluid, assumed to be water with a density of 1000 kg
m3 and

bulk modulus of 2.2GPa can be shown to increase the axial P-
wave velocity. The extent to which the anisotropy is affected
by the simulated uplift is also reduced, but the reversal of the
P-wave anisotropy is still present.

The presence of a fluid has other effects than just altering the
velocities. The pressure of the pore fluid is part of the definition
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of effective stress, and so knowledge of overpressured zones,
both in space and time, is part of an accurate stress history. Fur-
thermore, the presence of the fluid might facilitate chemical re-
actions in more unstable mineral assemblages than that used in
the laboratory. This is also dependent on the composition of the
fluid (Carter et al. (1990), Worden and Burley (2003)).
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Figure 13.19: Axial P-wave velocity obtained by implementing the
isotropic Biot-Gassmann fluid substitution on the measured experimen-
tal data. The fluid was taken to have density of 1000 kg/m3 with a bulk
modulus of 2.2GPa. The velocities can be seen to increase, with the
effect of the fluid inclusion being most significant prior to cementation.
The effect of increased stress dependence during simulated uplift is still
visible, but somewhat reduced.
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Figure 13.20: P-wave anisotropy obtained by implementing the
isotropic Biot-Gassmann fluid substitution on the measured experimen-
tal data. The fluid was taken to have density of 1000 kg/m3 with
a bulk modulus of 2.2GPa. The P-wave anisotropy can be seen to
move closer to isotropy as the velocities are increased. The effect of
anisotropy reversal during simulated uplift is still observed, but the the
absolute value of the change in anisotropy over the unloading interval
is reduced.
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Chapter 14
Conclusion and Suggestions for Future Work

14.1 Conclusion
The aim of this work has been to develop a rock physics
model that predicts the axial and radial P-wave velocities (and
subsequently P-wave anisotropy) as function of burial history,
in order to incorporate observations made in the laboratory of
a synthetic sandstone subjected to loading and unloading. By
combining this rock physics model with a model for cement
estimation, an updated diagenetic sandstone model for charac-
terising the effects of uplift on the properties of sandstones has
been created. The necessity for such a modification came from
the observation in the laboratory that simulated uplift created
a significant increase in stress dependence on the synthetic
sandstone. This observation casted doubt on the assumption
often implemented in the modelling of sandstones, that once
cementation ceases, the properties of the rock are preserved
through uplift. Whilst this assumption proved reasonable for
the porosity, it was clearly inadequate for the velocity of the
synthetic sandstone during simulated uplift under uniaxial
strain.

Another observation that the model attempts to recreate
was the reversal of the P-wave anisotropy that was seen in
the experimental data. If processes in the laboratory are
taken as representative for that seen in the field, the P-wave
anisotropy provides an interesting potential attribute for uplift
characterisation. Being able to model how it develops through
the simulated burial history was therefore needed.

The modelling of the experimental data was done in three
“domains”

• Loading prior to cementation

• Loading after cementation

• Unloading

Loading prior to cementation was done under the stress con-
dition σz = 2σr, and so a granular media model describing a
triaxial strain state was needed. In addition to this, it was of
interest to incorporate the idea of binary mixing of so-called
rough and smooth contacts. To accomplish this, the general
expressions given in Walton (1987) were solved for a scenario
of triaxial strain, where the horizontal strains are equal, taken

as the radial strain. The notation and derivation strategy
was adopted from Bandyopadhyay (2009), but the equations
derived in this work were however not limited to a small strain
anisotropy. This means that they are valid over a wider range
of strain states, and reduce to the explicit limits presented in
Walton (1987) at uniaxial compaction.

During further loading after cementation, the synthetic
sandstone retained both stress dependence and anisotropy. To
model both of these effects, an anisotropic modification to
the patchy cement model presented in Avseth et al. (2016)
was utilised. It was observed that the porosity loss during
compaction after cementation caused the model to overpredict
the stress sensitivity, due to the last Hashin-Shtrikman iteration
in the patchy cement model. The representability of the experi-
mental procedure in relation to the field case in this interval was
brought into question, as the cementation in the field will likely
be more continuous over the loading history. The processes
seen in the laboratory in this interval might therefore not be
exactly analogous of those that would be observed in real rocks.
The fact that the anisotropic patchy cement model is able to fit
the data reasonably well is therefore an observation that should
be treated with care.

Uplift was modelled using the crack model from Fjær (2006).
The implementational strategy was modified slightly from Fjær
(2006), because instead of using the observed strain, the strain
was estimated using Hooke’s law for small stress variations,
and this change in strain together with the change in stress
is used to update the stiffness. This was run in an iterative
loop until the end of the simulated uplift. After pragmatically
compensating for observed creep in the experimental data, the
crack model was able to recreate the P-wave anisotropy trends
observed during the simulated uplift for the sample presented
in part II1. For a sample that had been left to creep, the crack
model was able to recreate the velocities well, without the
requirement of creep compensation.
The experimental data were limited to uniaxial strain during
uplift. Although the cementation model and crack model in
theory are able to model strain states that are not uniaxial,
some problems regarding the crack model have been identified

1The sample that formed the basis for the model development.
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in relation to the value of Poisson’s ratio. Furthermore,
implementation of a non-uniaxial strain required estimation of
C12 and C13. The experimental data contained no information
on these parameters, and so the quality of the modelling of
these parameters down to the onset of uplift has not been
investigated. The results in this work are therefore limited
to providing adequate modelling of P-wave velocities under
uniaxial strain.

Both the effect of cement volume and the presence of fluids
in the pore space have an effect of the observed results. Based
on experimental results from a very stiff sample, it appears
as if the increase in stress dependence could be muted by
a significant amount of cement. The effect of fluids were
modelled using the isotropic Biot-Gassmann equation and the
results were a less prominent increase in stress dependence,
and a smaller absolute change in the P-wave anisotropy during
simulated uplift. In other words, the trends were still there, but
weaker.

The quantitative nature of the results in terms of uplift es-
timation is uncertain. The uplift estimate is dependent on the
parameters entered into the model, and is also a victim of the
intrinsic assumptions in the models that are altered and sown
together. In the presence of abundant data however, the limits of
no-slip and slip might provide a qualitative to semi-quantitative
illustration of how the velocities and P-wave anisotropy has de-
veloped through time.

14.2 Suggestions for Future Work
The rock physics model developed in this work has only been
thoroughly tested in its entirety on one burial history of one
specific synthetic sandstone. Future work should expand this to
include a more diverse selection of lithologies, stress histories
and cement volumes. Furthermore, the link to seismic and well
data needs to be established. Several factors that could create
deviations between that seen in the laboratory and in the field
were described in part VI.

In addition to expanding the experimental result “catalogue”
for the burial history as a whole for synthetic sandstones, work
should also be done to test the underlying modelling intervals
i.e., loading prior to cementation, the effects of cementation and
microcrack formation during uplift. True for all of these inter-
vals is that measurements that would enable the determination
of C12 and C13 would yield further insight into the capabilities
of the model.

For the granular media, a set of experiments with spherical
glass beads could be conducted, which is more in line with the
assumptions in Walton (1987). Such experiments do exist for
isotropic loading, but in this work, equations for a particular
triaxial strain state have been derived. Additional experiments
to investigate how these equations compare to experimental re-
sults for such a loading state would provide further insight into

the modelling procedure as a whole. These experiments would
not only provide useful information for the work in relation

to uplift, but for work with loading of granular media as a whole.

The cementation interval has been pointed at a potential
source of significant variability in the processes occurring in
the laboratory in comparison to the field scenario. This arises
from the methodology of cementing at constant stress prior to
subsequent loading, which is not likely to provide a realistic
recreation of the sequence of events in the field. Experiments
with incremental cementation over the loading interval might
provide better insight into whether the anisotropic patchy
cement model is an adequate solution to preserve stress depen-
dence and anisotropy. Ideally, the cement volume should be
increased according to a predicted stress-volume relationship
from for example Walderhaug (1996). The volume is related
in the field to time and temperature, but through the burial
history, these factors can be related to the stress. By such
a methodology, the simulated uplift can then be initiated at
variable stress levels, corresponding to different volumes of
cement. This would provide further insight into the comments
regarding the possibility of the increased stress dependence
being effectively muted by a sufficient amount of cement.
Exact control of the cement volume in the laboratory in relation
to stress is likely to be a difficult task, but a wide distribution
of cement volumes and stress levels at the onset of simulated
uplift should be achievable.

The crack model from Fjær (2006) proved promising in mod-
elling the effects of the simulated uplift in the experimental data.
This observation is however limited to implementation on two
synthetic sandstones, under uniaxial compaction. The problems
of extending the Hooke’s law iteration methodology to non-
uniaxial strain are not reiterated, but designing experiments to
investigate the applicability of the crack model under more gen-
eral strain states would be fruitful. This would yield information
into the weakness of the crack model relating to the Poisson’s
ratio, and also provide insight into how dependent the obser-
vations are on the strain state during simulated uplift. In other
words, how limited are the observations in this work by restric-
tion of uniaxial strain during the simulated uplift?

Creating thin sections after the simulated uplift might
also further the understanding of the processes happening,
as the interpretation of the formation of microcracks can be
investigated. Furthermore, the nature of the origin of these
microcracks can be established (i.e., is the interpretation of
broken cement bonds valid?). The problem of this would be
that it is hard to characterise at which stress levels deformation
occurred, but it would serve as an analogy to rocks uplifted to
the surface in terms of stress level.

Future work should therefore focus on both testing the valid-
ity of the rock physics model in the laboratory, and investigating
the representativeness of observations in the laboratory to obser-
vations made in the field. This would ascertain the applicability
(or lack thereof) of the model presented in this thesis.

104



Bibliography

Abid, I. A., Hesse, R., Harper, J. D., 2004. Variations in
mixed-layer illite/smectite diagenesis in the rift and post-rift
sediments of the jeanne d’arc basin, grand banks offshore
newfoundland, canada. Canadian Journal of Earth Sciences
41 (4), 401–429.

Adams, R. A., Essex, C., 2009. Calculus: A Complete Course,
7th Edition. Pearson.

Allen, P. A., Allen, J. R., 2013. Basin analysis: Principles
and application to petroleum play assessment. John Wiley &
Sons.

Almon, W. R., Davies, D. K., 1981. Formation damage and
the crystal chemistry of clays. Clays and the Resource Ge-
ologist. Mineralogical Association of Canada, Short Course
Handbook 7, 81–103.

Avseth, P., Johansen, T. A., Bakhorji, A., Mustafa, H. M.,
2014a. Rock-physics modeling guided by depositional and
burial history in low-to-intermediate-porosity sandstones.
Geophysics 79 (2), D115–D121.

Avseth, P., Lehocki, I., 2016. Combining burial history and
rock-physics modeling to constrain avo analysis during ex-
ploration. The Leading Edge 35 (6), 528–534.

Avseth, P., Mukerji, T., Mavko, G., 2010. Quantitative seismic
interpretation: Applying rock physics tools to reduce inter-
pretation risk. Cambridge university press.

Avseth, P., Skjei, N., Mavko, G., 2016. Rock-physics mod-
eling of stress sensitivity and 4d time shifts in patchy ce-
mented sandstonesapplication to the visund field, north sea.
The Leading Edge 35 (10), 868–878.

Avseth, P., Veggeland, T., Lehocki, I., 2014b. Combined burial
history and rock physics modeling of quartz-rich sandstones–
norwegian shelf demonstrations. In: SEG Technical Program
Expanded Abstracts 2014. Society of Exploration Geophysi-
cists, pp. 2809–2813.

Bachrach, R., Avseth, P., 2008. Rock physics modeling of un-
consolidated sands: Accounting for nonuniform contacts and
heterogeneous stress fields in the effective media approxi-
mation with applications to hydrocarbon exploration. Geo-
physics 73 (6), E197–E209.

Bandyopadhyay, K., 2009. Seismic anisotropy: Geological
causes and its implications to reservoir geophysics. Stanford
University.

Berryman, J. G., 1995. Mixture theories for rock properties.
Rock physics & phase relations: A handbook of physical con-
stants, 205–228.

Biot, M. A., 1962. Mechanics of deformation and acoustic prop-
agation in porous media. Journal of applied physics 33 (4),
1482–1498.

Bjørkum, P. A., 1996. How important is pressure in causing dis-
solution of quartz in sandstones? Journal of Sedimentary Re-
search 66 (1).

Bjørkum, P. A., Oelkers, E. H., Nadeau, P. H., Walderhaug, O.,
Murphy, W. M., 1998. Porosity prediction in quartzose sand-
stones as a function of time, temperature, depth, stylolite fre-
quency, and hydrocarbon saturation. AAPG bulletin 82 (4),
637–648.

Bjørlykke, K., 2010. Introduction to petroleum geology. In:
Petroleum Geoscience. Springer, pp. 1–26.

Bjørlykke, K., Egeberg, P., 1993. Quartz cementation in sedi-
mentary basins. AAPG bulletin 77 (9), 1538–1548.

Bjørlykke, K., Høeg, K., Mondol, N. H., 2015. Introduction to
geomechanics: stress and strain in sedimentary basins. In:
Petroleum Geoscience. Springer, pp. 301–318.

Bjørlykke, K., Jahren, J., 2010. Sandstones and sandstone reser-
voirs. In: Petroleum Geoscience. Springer, pp. 113–140.

Boggs Jr, S., 2006. Sedimentology and stratigraphy. Pearson
Education.

Box, G. E., 1979. Robustness in the strategy of scientific model
building. Robustness in statistics 1, 201–236.

Bredesen, K., 2017. On integration of rock physics in quantita-
tive seismic interpretation.

Cardott, B. J., 2012. Introduction to vitrinite reflectance as a
thermal maturity indicator. In: Adapted from an Oral Presen-
tation at Tulsa Geological Society Luncheon, May 8, 2012.
American Association of Petroleum Geologists Search and
Discovery.

Carter, N., Kronenberg, A., Ross, J., Wiltschko, D., 1990. Con-
trol of fluids on deformation of rocks. Geological Society,
London, Special Publications 54 (1), 1–13.

Cheng, A. H.-D., Detournay, E., 2014. Fundamentals of poroe-
lasticity. Analysis and Design Methods: Comprehensive
Rock Engineering: Principles, Practice and Projects 2, 113.

Ciz, R., Shapiro, S. A., 2008. Stress-dependent anisotropy in
transversely isotropic rocks: Comparison between theory and
laboratory experiment on shale. Geophysics 74 (1), D7–D12.

Digby, P., 1981. The effective elastic moduli of porous granular
rocks. Journal of Applied Mechanics 48 (4), 803–808.

105



BIBLIOGRAPHY

Dillen, M. W., Cruts, H. M., Groenenboom, J., Fokkema, J. T.,
Duijndam, A. J., 1999. Ultrasonic velocity and shear-wave
splitting behavior of a colton sandstone under a changing tri-
axial stress. Geophysics 64 (5), 1603–1607.

Duffaut, K., 2011. Stress sensitivity of elastic wave velocities in
granular media.

Duffaut, K., Landrø, M., Sollie, R., 2010. Using mindlin theory
to model friction-dependent shear modulus in granular media.
Geophysics 75 (3), E143–E152.

Dvorkin, J., Berryman, J., Nur, A., 1999. Elastic moduli of ce-
mented sphere packs. Mechanics of materials 31 (7), 461–
469.

Dvorkin, J., Gutierrez, M. A., et al., 2002. Grain sorting, poros-
ity, and elasticity. Petrophysics 43 (03).

Dvorkin, J., Mavko, G., Nur, A., 1991. The effect of cementa-
tion on the elastic properties of granular material. Mechanics
of Materials 12 (3-4), 207–217.

Dvorkin, J., Nur, A., 1996. Elasticity of high-porosity sand-
stones: Theory for two north sea data sets. Geophysics 61 (5),
1363–1370.

Dvorkin, J., Nur, A., Yin, H., 1994. Effective properties of ce-
mented granular materials. Mechanics of materials 18 (4),
351–366.

England, P., Molnar, P., 1990. Surface uplift, uplift of rocks, and
exhumation of rocks. Geology 18 (12), 1173–1177.

Eslinger, E., Pevear, D. R., 1988. Clay minerals for petroleum
geologists and engineers. Society of Economic Paleontolo-
gists and Mineralogis ts.

Fjær, E., 2006. Modeling the stress dependence of elastic wave
velocities in soft rocks. In: Golden Rocks 2006, The 41st US
Symposium on Rock Mechanics (USRMS). American Rock
Mechanics Association.

Fjær, E., Holt, R., Nes, O., Stenebraten, J., et al., 2011. The tran-
sition from elastic to non-elastic behavior. In: 45th US Rock
Mechanics/Geomechanics Symposium. American Rock Me-
chanics Association.

Fjær, E., Holt, R. M., Raaen, A., Risnes, R., Horsrud, P., 2008.
Petroleum related rock mechanics. Vol. 53. Elsevier.

Fjær, E., Stroisz, A., Holt, R., et al., 2015. Static versus dy-
namic moduli: Another piece in the puzzle. In: 49th US Rock
Mechanics/Geomechanics Symposium. American Rock Me-
chanics Association.

Garcı́a, X., Medina, E. A., 2006. Hysteresis effects studied by
numerical simulations: Cyclic loading-unloading of a realis-
tic sand model. Geophysics 71 (2), F13–F20.

Gassmann, F., 1951. Elasticity of porous media. Vierteljahrss-
chrder Naturforschenden Gesselschaft 96, 1–23.

Gavin, H., 2011. The levenberg-marquardt method for nonlinear
least squares curve-fitting problems. Department of Civil and
Environmental Engineering, Duke University, 1–15.

Gudmundsson, A., 2011. Rock fractures in geological pro-
cesses. Cambridge University Press.

Holt, R., Brignoli, M., Kenter, C., 2000. Core quality: quantifi-
cation of coring-induced rock alteration. International Journal
of Rock Mechanics and Mining Sciences 37 (6), 889–907.

Holt, R., Furre, A.-K., Horsrud, P., 1997. Stress dependent wave
velocities in sedimentary rock cores: Why and why not? In-
ternational Journal of Rock Mechanics and Mining Sciences
34 (3-4), 128–e1.

Holt, R., Kenter, C., Verboom, B., Doornhof, D., 2004. Influ-
ence of stress history on in situ and core compaction. In: Nu-
merical Modeling in Micromechanics via Particle Methods-
2004: Proceedings of the 2nd International PFC Symposium,
Kyoto, Japan, 28-29 October 2004. CRC Press, p. 391.

Holt, R., Larsen, I., Stenebrten, F., 2013. Core damage effects
on compaction of soft sandstone, sintef report (confidential).
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systeme, xii (2). die berechnung des stoffgehaltes homogener
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auf dem Gebiete der mathematischen Wissenschaften ; Bd.
XXXIV. B.G. Teubner.
URL https://books.google.no/books?id=
SvPPAAAAMAAJ

Walderhaug, O., 1994. Precipitation rates for quartz cement in
sandstones determined by fluid-inclusion microthermometry
and temperature-history modeling. Journal of Sedimentary
Research 64 (2).

Walderhaug, O., 1996. Kinetic modeling of quartz cementa-
tion and porosity loss in deeply buried sandstone reservoirs.
AAPG bulletin 80 (5), 731–745.

Walderhaug, O., Lander, R., Bjørkum, P., Oelkers, E.,
Bjørlykke, K., Nadeau, P., Worden, R., Morad, S., 2000.
Modelling quartz cementation and porosity in reservoir sand-
stones: examples from the norwegian continental shelf.
Quartz cementation in sandstones 29, 39–49.

Walderhaug, O., Oelkers, E. H., Bjørkum, P. A., 2004. An anal-
ysis of the roles of stress, temperature, and ph in chemical
compaction of sandstones: discussion. Journal of Sedimen-
tary Research 74 (3), 447–449.

Walton, K., 1987. The effective elastic moduli of a random
packing of spheres. Journal of the Mechanics and Physics of
Solids 35 (2), 213–226.

Waples, D. W., 1980. Time and temperature in petroleum for-
mation: application of lopatin’s method to petroleum explo-
ration. AAPG bulletin 64 (6), 916–926.

107

https://books.google.no/books?id=SvPPAAAAMAAJ
https://books.google.no/books?id=SvPPAAAAMAAJ


BIBLIOGRAPHY

Winkler, K. W., 1985. Dispersion analysis of velocity and atten-
uation in berea sandstone. Journal of Geophysical Research:
Solid Earth 90 (B8), 6793–6800.

Wood, D. M., 1990. Soil behaviour and critical state soil me-
chanics. Cambridge university press.

Worden, R., Burley, S., 2003. Sandstone diagenesis: the evo-
lution of sand to stone. Sandstone Diagenesis: Recent and
Ancient 4, 3–44.

108



Part VII

Appendix

109





Appendix A
Proofs

A.1 Loading of Granular Media

A.1.1 Integral Equations
This subsection will go through the derivation of the integral
equation to produce I9 in equation (7.9). The other integrals
can be obtained using similar considerations, and are omitted
due to the similarity. The software used throughout this project
is maple.

Recall that

I9 = 〈(Epqnpnq)1.5n2
1〉 (A.1a)

n1 = sin(θ)cos(φ) (A.1b)

〈x〉 =
1

4π

∫ 2π

0

∫ π

0

x sin(θ)dθdφ (A.1c)

Introducing the strain condition where the horizontal strains
are equal

Eij = E11δi1δj1 + E11δi2δj2 + E33δi3δj3 (A.2)

Where δ is the Kronecker delta.
Implementation of Einstein’s summation convention yields

(Epqnqnp) = (E11n
2
1 + E11n

2
2 + E33n

2
3) (A.3)

Following the derivations done in part II

(E11sin
2(θ)(sin2(φ) + cos2(φ)) + E33 cos2(θ))1.5 =

(A.4a)

(E11 sin2(θ) + E33 cos2(θ))1.5 = (A.4b)

E
3/2
33

(E11

E33
sin2(θ) + cos2(θ)

)1.5

= (A.4c)

E
3/2
33

(E11

E33
sin2(θ) +

E33

E33
(1− sin2(θ)

)1.5

= (A.4d)

E
3/2
33

(
1 +

E11 − E33

E33
sin2(θ)

)1.5

= (A.4e)

E
3/2
33

(
1 + 2Er sin2(θ)

)1.5

(A.4f)

After inserting equations (A.4f) and (A.1b) into equation
(A.1a), followed by insertion into equation (A.1c), (A.1c) can

be solved in maple. The result of this is

I9 =
5E33

3/2

64Er
3/2

(
2
√

2(Er −
1

10
)(Er +

1

2
)2R+

i(Er +
1

2
)2(Er −

1

10
)
√

2S−

i(Er +
1

2
)2(Er −

1

10
)
√

2T+

1

5

√
Er +

44Er
3/2

15
+ 4Er

5/2

)
(A.5)

Where

R = arctan

(
1

4

√
2 (2Er − 1)√

Er

)
(A.6a)

S = ln

(
−i
√

2Er + 1√
Er

)
(A.6b)

T = ln

(
i
√

2Er + 1√
Er

)
(A.6c)

From Rottmann (1960)1

arctan(x) =
−i
2

ln
1 + ix

1− ix
(A.7)

From Theorem 2, Chapter 3.3 Adams and Essex (2009) and
from Equation 2 & Example 1 in chapter 13 Kreyszig (2010)

ln(a · b) = ln a+ ln b

ln(
a

b
) = ln(a)− ln(b)

ln(−i) =
−πi

2
1

i
= −i

(A.8)

Utilising equation (A.7) and (A.8) with

x =
1

4

√
2(2Er − 1)√

Er

1The reference is to the original published by Karl Rottmann, but it is in
fact taken from the Norwegian translation ”Matematisk Formelsamling”. In the
Norwegian translation (13th edition,2013) it is found on page 91
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yields

arctan

(
1

4

√
2(2Er − 1)√

Er

)
=

1

2
i · ln

(
1− (0.25

√
2i)(2Er − 1)√
Er

)
−

1

2
i · ln

(
1 +

(0.25
√

2i)(2Er − 1)√
Er

) (A.9)

The expression within the first natural logarithm can be manip-
ulated as

√
Er√
Er
− (0.25

√
2i)(2Er − 1)√
Er

=

4
√
Er − 2

√
2iEr +

√
2i

4
√
Er

=

−i
4
√
Er

(2
√

2Er + 4i
√
Er −

√
2)

(A.10)

Similarly for the expression within the second natural logarithm:
√
Er√
Er

+
(0.25

√
2i)(2Er − 1)√
Er

=

i

4
√
Er

(2
√

2Er − 4i
√
Er −

√
2)

(A.11)

The first natural logarithm term in (A.9) can then be expanded
as

1

2
i · ln

(
1−

(0.25
√
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√
Er

)
=
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(A.12)

Similarly for the second natural logarithm term in equation
(A.9)

1
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√
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(A.13)

Thus
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(A.14)

Now the ln terms (S and T ) will be considered.

ln

(
i
√

2Er + 1√
Er

)
=

ln

(
i
√

2Er + 1

i
√
−Er

)
=

ln

(√
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−Er
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=

ln
√

2Er + 1− ln
√
−Er =

1

2
ln(2Er + 1)− 1

2
ln(−Er)

(A.15)

where the last equality follows from the fact that ln(ab) =
b ln(a). This expression is real due to the range of Er

Similarly

ln

(
−i
√

2Er + 1√
Er

)
=

ln

(
−i
√

2Er + 1

i
√
−Er

)
=

ln

(
−
√
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−Er
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=

ln(−1) + ln(
√

2Er + 1)− ln(
√
−Er) =

πi+
1

2
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2
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(A.16)

Thus2

a · i ln

(
−i
√

2Er + 1√
Er

)
− a · i ln

(
i
√

2Er + 1√
Er

)
=

− a · π
(A.17)

Using equations (A.14) and (A.17) it can then be shown that

2 This means that for the ln terms of equation (A.5) the lack of definition in
the limits is seemingly not of great concern.
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2a arctan
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It is of interest to remove the imaginary terms in the remain-
ing logarithm

W = ia ln
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Er
√

2− 1
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)
(A.19a)
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(A.19g)

W = 2 · ia ln

( √
2
√
−Er + 1

−
√

2
√
−Er + 1

)
(A.19h)

The equality from (A.19f) to (A.19g) follows from
ln(ab) = b ln(a) but the minus sign inside the ln expres-
sion in (A.19g) needs further explanation.

√
x2 = ±x. The

overall expression within the ln is clearly positive from (A.19f)
(as all the i’s are removed, the squares will produce positive
numbers). The denominator in equation (A.19g) is however
negative for all Er in −0.5 < Er < 0. Thus, for the equality to
hold, there has to a minus sign in front.

Equation (A.5) can now be expressed using equation (A.18)
with a =

√
2(Er − 1

10 )(Er + 0.5)2 and equation (A.19h) (note
that the terms in a have been expanded)
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2iV (Er
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+
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44E

3/2
r

15
+ 4E5/2

r

] (A.20)

Where

V = ln

(
1 +
√

2
√
−Er

1−
√

2
√
−Er

)
(A.21)

It is of further interest to remove the imaginary unit, as it is
not obvious that the final result is real from equation (A.20).

To get rid of the imaginary unit, recall that Er ≤ 0, which
means that

√
−Er is real. Further√

Er =
√
−1 · −Er =

√
−1
√
−Er = i

√
−Er (A.22)

(Er)
3/2 = Er

√
Er = i

√
−ErEr =

− i
√
−Er(−Er) = −i(−Er)3/2

(A.23)

E5/2
r =

√
ErE

2
r = i

√
−Er(−Er)2 = i(−Er)5/2 (A.24)

(A.25)

This can then be used in equation (A.20), together with the
last equation in equation (A.8)
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I9 =

−E3/2
33
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[
V (240

√
2Er

3 + 216
√

2E2
r + 36

√
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√
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+ 24
√
−Er − 352(−Er)3/2 + 480(−Er)5/2

]
(A.28)

The final representation is obtained by simply scaling the
terms to remove some of the fractions. As an example
5
64 ·

44
15 = 1

1536 · 352. The expression in (A.28) is recognised
as the expression given in equation (7.9). The methodology to
obtain the other 9 integral equations is identical, and thus it is
not deemed necessary to run through the full calculations one
more time.

A.1.2 The Limits of Isotropic and Uniaxial Com-
paction

Again, this will be demonstrated for I9. This derivation could
probably have been carried out directly on equation (A.5), but
as this is equal to the final expression for I9 given in equation
(A.28), this is used to ease the process (as derivatives are imple-
mented).

A.1.2.1 Isotropic Compaction

From equation (A.28) it is clear that Er = 0 incites a division
by 0. Further

lim
Er→0

(V ) = ln(1) = 0 (A.29)

L’hôpital’s rule, described in theorem 3, chapter 4.3 in Adams
and Essex (2009) (see also example 2 in the same chapter) states
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that in the case of

limx→ag(x) = limx→af(x) = 0 (A.30)

limx→a
g′(x)

f ′(x)
= L→ (A.31)

limx→a
g(x)

f(x)
= L (A.32)

If
limx→ag

′(x) = limx→af
′(x) = 0 (A.33)

it can be used several times, until a limit L might be reached.

Letting

g(Er) = V (240
√

2Er
3 + 216

√
2E2

r + 36
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2Er − 6
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2)+

24
√
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(A.34a)

f(Er) = (−Er)3/2 (A.34b)

It is clear that both f and g approach 0 as Er → 0. The factor
−E3/2

33

1536 is left out for the time being for ease of notation, it will
simply be multiplied onto the final product.

Differentiating g(Er) and f(Er) yields
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f ′(Er) = −3
√
−Er
2

(A.35b)

The limit of g′(Er) as Er → 0 is still 0. As the logarithm
term goes to infinity, and the denominator

√
−Er can be multi-

plied into the higher exponent terms. It should be clear that also
f ′(Er) → 0 as Er → 0. Thus, the differentiation is conducted
a second time

g′′(Er) =
−2880√
−Er

[
Er +

2

15
− −3

20
ln

(
1 +
√

2
√
−Er

1−
√

2
√
−Er

)
·

(
√
−Er − 12

3(−Er)3/2

10
)
] (A.36a)
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(A.36b)

Dividing the two double derivatives yields
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lim
Er→0

g′′(Er)
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= −512 (A.37b)

Thus
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A.1.2.2 Uniaxial Compaction

In this limit, the expression for the limit is split in two

I9(Er → −0.5) =
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The reason for this is that the first term is a well defined limit.
The second term is of the form∞ · 0. This is because as Er →
−0.5 the argument of the logarithm in V goes to 0. This follows
from

ln(
1 +
√

2
√
−Er

1−
√

2
√
−Er

)→ ln
2

0+
→ ln∞→∞ (A.40)

The positive superscript on the zero indicates that the limit is
approached from “the right” (i.e., from the positive side). The
multiplication by 0 comes from the fact that

(240
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(A.41)

Further, define
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Y = ln(
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(A.44)

This means that X · Y ≤ 0.
Following this, define

Z = eY =
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√

2
√
−Er

1−
√

2
√
−Er

> Y (A.45)

such that X · Z ≤ X · Y ≤ 0. The “smaller than” comes
from the fact that |Z| > |Y |, X ≤ 0

In X · Z a 0
0 is obtained as both the numerator and denomi-

nator approach zero. L’hôpital’s is utilised to yield
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The limit of this as Er → −0.5 is 0, as can be seen from the
first bracket (1− 2 · 0.5 = 0).

Thus X · Z → 0 ≤ X · Y ≤ 0. It is therefore concluded that

lim
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(A.47)

114



A.1 Loading of Granular Media

Such that

I9(Er → −0.5) =

−E3/2
33 (24

√
0.5− 352(0.5)3/2 + 480(0.5)5/2

1536(0.5)3/2
=

E
3/2
33
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A.1.3 Expression for Strain in Terms of Stress
from Bandyopadhyay (2009)

Bandyopadhyay (2009) presents equations for strain in terms
of stress, as a means of not having to estimate strain values in
the field. The strain and stress form a system of two equations

and two unknowns. The solutions for strain anisotropy and
axial strain suggested by Bandyopadhyay (2009) were given
in equations (6.11) and (6.13). To check whether a solution to
such a system is correct, one can back substitute, and check
that one ends up where one started. This is done in maple for
the equations suggested in Bandyopadhyay (2009) for a set of
grain parameters, and the implementation sequence is shown
below. It can be seen that the stresses from the estimated strains
when back-substituted in the original equations do not produce
the starting values, as would be expected., in fact, the value of
the strain anisotropy obtained by these equations fall outside
the allowable range of the parameter if the limits are taken at
uniaxial and hydrostatic strain.
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A.2 Anisotropic Hashin Shtrikhman -
Supplementary Material

It was claimed that

Iδ=1,iso
11 = Iδ=1,iso

13 = Iδ=1,iso
33 =

4π

5
(A.49)

The expressions for I13, I11, I33 before insertion of δ with
ν1 = ν2 = ν3 = 1 can be given as
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for δ < 1 and
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for δ > 1 Plotting these expressions against δ is done in figure
A.1 and they can be seen to converge to the proposed limit of
4π
5
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Figure A.1: Visualisation of I13, I11 and I33 used in the anisotropic
Hashin-Shtrikman bounds. The expressions are undefined in δ = 1,
but the limit can be visualised as 4π
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Appendix B
Poroelasticity and Pore Pressure

This is a short theory section on poroelasticity taken from
previous work (Torset, 2017), deemed excessive for the main
manuscript.

B.1 Isotropic Media

In subsurface rocks, fluids are generally present in the pores
space. This acts to modify the mechanical response of the rock.
Poroelasticity describes the interplay between deformation of
a volume element attached to the solid and the movement of
the fluid, relative to the movement of the solid (Cheng and
Detournay, 2014).

When a rock is compressed due to an external load, it will
seek to compact. If it contains a fluid in the pore space that
is unable to escape, the pore pressure will increase, which
causes an expansionary mechanism (Cheng and Detournay,
2014). Therefore, the necessary steps are to relate two stresses,
the elements of the stress tensor and the pore pressure, to the
strain parameters εvol and ζ (Fjær et al., 2008, Chapter 1). ζ
represents the relative displacement of the fluid compared to
that of the solid and is referred to as the “increment of fluid
content” (Biot, 1962).

In Biot (1962) the stresses and strains are related through a set
of equations1. The medium is porous and permeable, linearly
elastic and in this formulation isotropic2

σx = 2Gεx + λεvol − Cζ (B.1a)
σy = 2Gεy + λεvol − Cζ (B.1b)
σz = 2Gεz + λεvol − Cζ (B.1c)

pf = Cεvol −Mζ (B.1d)

C and M are additional elastic moduli required to characterise
the two phase system. Adding equations (B.1a), (B.1b) and

1Notation modified slightly
2An anisotropic version exists and shall be discussed later

(B.1c) yields

σx + σy + σz = 3(
2G

3
(εx + εy + εz) + λεvol − Cζ)→

σ̄ = εvol(
2G

3
+ λ)− Cζ

(B.2)

The relations for mean stress, σ̄ =
σx+σy+σz

3 and volumetric
strain, εvol = εx + εy + εz have been applied (Fjær et al., 2008,
Chapter 1).
One of the aforementioned relationships between the elastic
moduli is that K = 2G

3 + λ (Fjær et al., 2008, Chapter 1), thus
equation B.2 can be written as

σ̄ = Kεvol − Cζ (B.3)

Three specific scenarios can then be implemented to derive
useful relationships: If the fluid does not move relative to the
solid, then ζ = 0, and the system is said to be undrained (Fjær
et al., 2008, Chapter 1). Utilising this in equation (B.3), it can
be inferred that K is the bulk modulus of the undrained system.

By having an “open” system, the pore fluid is allowed to es-
cape when stress is applied, such that the change in pore pres-
sure is zero (Biot, 1962). From equation (B.1d) it then follows
that C

M εvol = ζ. Inserting this in equation (B.2), when the rock
is subjected to an external hydrostatic pressure σhs it is obtained
that.

σhs = εvol(K −
C2

M
)→ σhs

εvol
= K − C2

M
(B.4)

This can be identified as the bulk modulus of the solid
framework, since the fluid in this case is escaping rather than
carrying any load, such that the framework is carrying the entire
load (Fjær et al., 2008, Chapter 1).

Finally, the porous and permeable medium is placed within
a container of fluid, such that the pore pressure is equal to the

119



Chapter B. Poroelasticity and Pore Pressure

hydrostatic pressure in the fluid, that is pf = σhs.

ζ =
C

M
εvol −

pf
M
→

σhs = εvol(K −
C2

M
) +

C·f
M
→

σhs
εvol

(1− C

M
) = Kfr →

σhs
εvol

=
Kfr

1− C
M

(B.5)

The fact that pf = σhs means that there is uniform stress in
the sample. This further implies that the rock framework de-
forms uniformly (Fjær et al., 2008, Chapter 1). In other words

∆Vtot
Vtot

=
∆Vp
Vp

=
∆Vs
Vs

(B.6)

where Vtot refers to the total volume, Vp refers to the pore vol-
ume, and Vs refers to the solid volume. Thus

∆Vs
Vs

= −εvol = − pf
Ks

(B.7)

Correlating equations (B.5) and (B.7) it is clear that

Ks =
Kfr

1− C
M

(B.8)

These results, together with the definition of ζ can be com-
bined to form the ”Biot-Gassmann” equation, relating the bulk
moduli of the solid, fluid and framework together with the
porosity to the bulk modulus of the undrained system (Fjær
et al., 2008).

K = Kfr +
Kf

φ

(1− Kfr

Ks
)2

1 +
Kf

Ksφ
(1− φ− Kfr

Ks
)

(B.9)

The considerations above were done based on the work of Biot
(1962), but Gassmann (1951) derived the same result.

It was demonstrated earlier that the bulk modulus of a
porous, undrained material is related to the bulk moduli of the
framework, fluid and solid as well as the porosity. According
to the theory derived by Biot, there is also a frequency depen-
dence introduced by the presence of a viscous fluid (Biot, 1962).

The low frequency limit for poroelastic media was given in
(2.6) (Fjær et al., 2008, Chapter 5).. In other words

vp(ω → 0) =

√
K +

4Gfr

3

ρ
(B.10)

K is given by equation (B.9), and the argument for why
G = Gfr is that there aren’t shear forces associated with the
fluid (Fjær et al., 2008, Chapter 1). The density of the system
is given by the density of the solid material and the density
of the fluid through ρ = (1−φ)ρs+φρf where φ is the porosity.

The dispersion mechanisms suggested by Biot are generally
not sufficient to explain the dispersion seen in real, saturated

rocks. The dispersion suggested by the Biot mechanism is gen-
erally on the scale of 1-3%, whereas dispersion observed in
real rocks may be higher than this (Fjær et al., 2008, Chap-
ter 5). Other mechanisms involve so called “local flow” where
the compliance of thin, compliant pores “cracks” is determined
by the frequency. In the low frequency limit, the pore fluid in
these cracks is able to flow into adjacent, stiffer pores, making
the crack more compliant. At higher frequencies, the pores are
essentially isolated due to the rapidly oscilating motion, i.e., the
pore fluid remains in the thin pores. This means that the pores
are less compliant, and the effective stiffness is thus increased
(Fjær et al., 2008, Chapter 5).

Recall that linear elasticity was assumed for (B.9) and thus
also implied in equation (B.10). It has been mentioned that
rocks might very well not behave elastically under significant
stress application, but for the case of small enough stress vari-
ations, such as those brought about by a propagating wave, the
concept of differential elasticity is thought to apply (Gassmann,
1951).

The mechanisms suggested above for dispersion relate
mainly to the presence of a fluid. By then assuming that for
dry rocks, the velocity is independent of frequency, experimen-
tal data in the ultrasonic range can be applied to the field case
(Winkler, 1985). For application to field data from seismic (low
frequency) range, the method is to calculate the expected veloc-
ity through equations (B.9) and (2.6) (Winkler, 1985).

B.2 Anisotropic Media
The poroelasticity consideration previously made were done un-
der isotropic assumptions. Gassmann (1951) however extends
the discussion to porous systems with an anisotropic frame.
Keeping with the notation used so far, the elastic stiffness pa-
rameters of the bulk material c, can be be expressed in terms
of the elastic stiffness parameters of the anisotropic frame cfr,
bulk modulus of the solid and fluid Ks,Kf and the porosity φ
through the equation (Gassmann, 1951)

cij = cfr,ij +
α

D∗
bibj , i, j = 1, 2...6 (B.11)

Where

bi = εi −
cfr,1i + cfr,2i + cfr,3i

3 ∗Ks
i = 1, 2...6

εi =

{
1 if i = 1, 2, 3

0 if i = 4, 5, 6

D∗ = 1 +
α

3 ·Ks
(b1 + b2 + b3)

1

α
= φ

( 1

Kf
− 1

Ks

)

B.3 Pore Pressure
The hydrostatic pressure gradient is defined by Osborne and
Swarbrick (1997) as the “pressure that would be exerted by
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B.3 Pore Pressure

a continuous column of static fluid”. If the pressure exceeds
that which would be expected from the hydrostatic pressure
gradient at a certain depth, the fluid is said to be overpressured.
Osborne and Swarbrick (1997) present several mechanisms
by which such overpressure can be generated. The most
prominent is disequilibrium compaction. When sediments
are originally deposited, they can have very high porosities,
40% for sandstone, and even higher for shales. As sediments
are buried, the pore space compacts, which forces the fluid to
escape. If the permeability of the sediment is very low, or the
sediment is encapsulated in a low permeability rock, such that
the fluid is unable to escape quickly enough in response to the
decrease in pore space, the fluid becomes overpressured. This
mechanism is called disequilibrium compaction (Osborne and
Swarbrick, 1997).

The pore pressure controls the effective stress, as was

demonstrated earlier, and it is the effective stress which has the
primary control on compaction mechanisms, in areas where
little cementation has occurred (Bjørlykke et al., 2015). Thus,
overpressured rocks might have higher porosities at a specified
depth than expected, as compaction (pore space reduction) is
slowed down. Furthermore, in areas where pressure solution is
the dominant process for the diagenetic setting, the overpres-
sure will reduce the effective stress, which will act to preserve
porosity (Sathar and Jones, 2016).

In the situation where the rock is dry, as for the laboratory
tests in this project, the stress values represent the effective
stress. It is the magnitude of the effective stress components
that failure and slip properties in granular and porous media are
primarily dependent on (Biot, 1962).
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Appendix C
Additional Discussion of the Experimental Data

This chapter provides some additional experimental results
than that given in the main text. This is to provide a better
insight into the range of experimental data available. The pur-
pose of including additional experimental data is to reinforce
the interpretation of microcrack formation as a cause of stress
dependence. The main focus of the thesis was to develop
a rock physics model to describe the entire burial history,
which is calibrated to one set of cement volume and stress
history. To that extent, only the experimental data needed in
part II were critical which is why the remainder of the experi-
mental data were put in the extended discussion or the appendix.

In the subsequent the distinction “stiff” and “soft” are used.
The “stiff” sample is still quite soft, it is simply “stiff” in relation
to the “soft” sample. The reason for this terminology is because
it is this what is adopted by SINTEF when they conducted the
experiments (Holt et al., 2014). The “stiff” sample is the sample
that was introduced in part II.

C.1 “Stiff”

The axial P-wave velocity, P-wave anisotropy and axial strain
have have all been given previously. Additional figures given
in this section include a comparison of the P-wave velocities as
functions of axial stress, figure C.1. The radial P-wave velocity
as function of radial stress is given in figure C.2 and finally the
radial stress as function of axial stress is given in figure C.3.

The display of the P-wave velocities in figure C.1 gives
a further insight into the P-wave anisotropy. Observe how
the P-wave velocities cross at around 12MPa, corresponding
to reversal of P-wave anisotropy discussed at length in the
main text. Note that when compared to the axial stress, the
radial P-wave velocity remains above the velocity it had during
loading down to around 20MPa of unloading.

It has been shown that according to the crack model, in terms
of stress, the axial P-wave velocity will be mainly dependent on
the axial stress and the radial P-wave velocity will be mainly
dependent on the radial stress. When the radial P-wave velocity
is viewed as a function of radial stress, as done in figure C.2,
it can be seen that the velocity drops below the value during

loading quite quickly.

The key lies in the plot of radial stress versus axial stress
given in figure C.3. It can be seen that under the conditions
of uniaxial compaction and extension, the radial stress behaves
differently during unloading and loading. During unloading,
the radial stress is consistently higher than that observed during
loading, for a given axial stress. Eventually the radial P-wave
velocity also falls below that seen during loading when plotted
against axial stress as well, due to an increase in stress depen-
dence during simulated uplift.

C.2 “Soft”

The axial strain compared to axial stress is shown in figure C.4
for the sample with less cement. The notable difference is the
creep period at max “burial”. After this creep period, the strain
starts decreasing on the onset of unloading, in contrast to the
“stiff” sample. In the “stiff” sample, the strain (given in figure
3.4) increased slightly during the first few MPa’s of unloading.
During loading after cementation, two distinct gradients can
be observed, with a “bend” observable at around 23 MPa of
axial stress. After this bend the relationship between the axial
stress and strain is quite linear upon subsequent loading. It is
further observed that the degree of axial strain in this sample is
significantly larger after cementation than for the “stiff” sample,
reflecting the lower amount of cement. For the “stiff” sample,
there were about 15 mStrain of compaction during loading after
cementation, whereas in the “soft” sample the value is close to
40.

During unloading, the decrease in axial strain is somewhat
difficult to compare due to variable treatment of creep. The
“soft” sample during unloading to 15MPa axial stress can be
seen to show a smaller decrease in strain than the increase
during creep. In other words, the sample contracted more over
the creep period than it expanded during unloading. Whether
the creep was finished or not, or whether this is an attribute to
further delayed information is not investigated in further detail.
In the “stiff” sample the unloading down to 15MPa’s produces
a combined expansion due to stress unloading and compaction
due to creep response that has the sample expand compared to
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Figure C.1: Axial and Radial P-wave velocities plotted against axial
stress for the sample termed “stiff”. The reversal of P-wave anisotropy
is observed as the axial P-wave velocity drops below that of the radial
P-wave velocity. The initial higher axial P-wave velocity during un-
loading can be linked to axial compaction due to creep during the first
few MPa’s of unloading. The observations that the radial P-wave ve-
locity remains higher during the first 20MPa’s of axial stress unloading
is considered in figures C.2 and C.3
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Figure C.2: Radial P-wave velocity plotted against radial stress for
the sample termed “stiff”. It is noted in figure C.1 that the radial P-
wave velocity when plotted against axial stress remains above its value
during loading down to about 20MPa during unloading. Note however
that when plotted against radial stress it drops below quite quickly. The
two observations are connected by the observations in figure C.3.
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Figure C.3: Radial stress plotted against axial stress for the sample
termed “stiff”. The radial stress can be seen to be higher for a given
axial stress during unloading compared to loading. This can be linked
to the observation that the radial P-wave velocity when plotted against
axial stress remains higher during unloading compared to loading for
around 20MPa of unloading. When the radial P-wave velocity is com-
pared to radial stress however, the velocity drops below after a few
MPa’s of unloading
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C.2 “Soft”

the maximum “burial” stress. This might be an indication that
the effect of uplift is greater in the stiffer sample, that is, the
stress unloading has a bigger effect on expansion than in the
“soft” sample. The different creep conditions however make
this interpretation uncertain. Holt et al. (2014) provides some
discussion on the creep effects in these experiments.

The P-wave velocities are shown in figure C.5. No reversal
of the P-wave anisotropy is observed in this sample, but the
unloading only occurs down to 15MPa axial stress, in contrast
to the “stiff” sample. If the trends of the axial and radial P-wave
velocities are extrapolated, it is not unlikely that a reversal of
the P-wave anisotropy would occur also in this sample. During
the creep both the axial and radial P-wave velocities increase.
The increase in the axial P-wave velocity is about 40 m/s, and
for the radial P-wave velocity it is about 30 m/s.

The trend for the P-wave velocities when comparing loading
and unloading is that the effect of the simulated uplift is smaller
in the “soft” sample than in the “stiff” sample. Consider the
radial P-wave velocity plotted against radial stress for the “soft”
sample given in figure C.6. Over the unloading the change
in velocity over the unloading interval is close to identical to
that seen during the same stress levels during loading. The
reason for the unloading interval only extending down to about
12MPa radial stress is the aforementioned deviation in the
extent of unloading, compared to the stress path in the “stiff”
sample (cf. figure 3.1). The increased stress dependence has
been attributed to the opening of microcracks. If the increase
in stress dependence is smaller in the “soft” sample this
means that the opening of microcracks should have a smaller
impact on the rock as a whole. Since the cement volume is
smaller in the “soft” sample, this could be a pointer to cement
bonds breaking being the cause of the microcrack formation.
Since there are more potential cement bonds that could be
breaking in the “stiff” sample, due to more cement, the effect
would be larger. The axial strain was also interpreted to be
extensional to a larger degree in the “stiff” sample, although
the creep somewhat complicates the interpretation. This might
accelerate the breaking of cement bonds. Since the cement
bonds are not likely oriented exactly in the radial and axial
direction there will be some effect in the radial direction as well.

Another interesting observation is made by comparing the ra-
dial P-wave velocity as function of axial stress in figure C.5 and
the plot of radial stress against axial stress in figure C.7. The
shape of the two curves during loading after cementation and
unloading is strikingly similar, further reinforcing the idea of the
radial P-wave velocity being primarily dependent on the radial
stress. A further consequence of this is that it reinforces that the
increase in stress dependence for the radial P-wave velocity over
the unloading interval is smaller than that observed in the stiff
sample. If the stress dependence increased considerably, the ra-
dial P-wave velocity would decrease to a larger extent during
unloading (compared figure C.5 and C.7 to figure C.1 and C.3).
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Figure C.4: Axial strain plotted against axial stress for the sample
termed “soft”. A key thing to note is the creep period at maximum
“burial” where the strain continues to increase even as the axial stress
is kept constant. Upon the onset of unloading, the axial strain starts to
decrease at once, in contrast to what was observed for the stiff sample
(cf. figure 3.4). As for the “stiff” sample an accelerated strain can be
seen after the first few MPa’s of loading. From around 23 to 40 MPa’s
of loading, the behaviour between the axial stress and axial strain be-
haves quite linearly.
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Figure C.5: Comparison of the P-wave velocities plotted against axial
stress for the sample termed “soft”. The effect of simulated uplift to
15MPa axial stress can be seen to have a more muted effect on the
velocities in this sample compared to the “stiff” sample. When plotted
against axial stress, it can be seen how the change in radial P-wave
velocity during unloading is smaller than during loading. This is due
to radial stress considerations, discussed in more detail in relation to
figures C.6 and C.7. In the stiff sample, over the same axial unloading
interval, the change in the radial P-wave velocity was bigger during
unloading compared to loading. The creep period increases the axial
P-wave velocity by roughly 40 m/s and the radial P-wave velocity by
roughly 30 m/s
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Figure C.6: Radial P-wave velocity visualised against radial stress for
the sample termed “soft”. Over the unloading interval, the axial stress
is only unloaded to the value at the start value of the post-cementation
loading, which, with reference to figure C.7 causes the radial velocity to
be limited to unloading down to 12MPa. Over this unloading interval,
the radial P-wave velocity can be seen to have a very similar velocity
change compared to the velocity change observed over the same radial
stress interval during loading. This is in contrast to the stiff sample, and
is indicative of the increase in stress dependence being less prominent
in the “soft” sample. In terms of the interpretation of the increased
stress dependence being related to the formation of microcracks in the
sample, this might then be an indication of fewer microcracks being
formed. Further, since the cement volume is smaller this might point to
the microcracks being formed due to failing cement bonds
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C.3 EPOX-stone
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Figure C.7: Radial stress plotted against axial stress for the sample
termed “soft”. The radial stress during unloading remains higher than
during loading for all axial stress levels. The axial stress is only un-
loaded down to 15MPa in the “soft” sample, which is in contrast to that
observed in the sample termed “stiff” (cf. figure C.3). The shape of the
radial vs axial stress in this curve is very similar to the radial velocity
plotted against radial stress during the loading after cementation and
unloading intervals. This is an indication that the increase in stress de-
pendence for the radial P-wave velocity is smaller for the “soft” sample
than for the stiff sample. If microcracks are responsible for the stress
formation, this the means that the opening of microcracks has a less
prominent effect on the “soft” sample than the stiff sample.
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Figure C.8: Axial stress vs axial strain for the EPOX-stone over the
intervals of loading after cementation and simulated uplift. During the
loading interval, the change in strain is larger than during unloading,
but the values in both intervals are smaller than that observed for the
two other samples considered in this work (see figure 3.4 and figure
C.4).

C.3 EPOX-stone

The stress vs strain is given for the EPOX-stone in figure C.8
during the loading after “cementation” and simulated uplift.
Note how there is nearly no change in strain during either of
these intervals, when compared to the main sample used in this
work (figure 3.4) and the softer sample (figure C.4). During
loading there is a change in strain of less than 4 mStrain over
a stress increase of 60MPa (compared to around 18mStrain
in the sample from part II and more than 35mStrain in the
“soft” sample over an axial stress increase of 25MPa). There
is no defined kink in the strain curve either, suggesting that the
epoxy does not mimic the potential breakage of cement bonds
interpreted for the other samples. During unloading there is
only 2mStrain of extension. This indicates that any deformation
mechanisms are less active in this sample than in the other
samples. Crack formation during uplift and reactivation of
previously formed microcracks were interpreted as the main
cause of the increased stress dependence in the other samples,
and since this is not present in any significant quantity in the
EPOX-stone, the stress sensitivity does not change during uplift.

C.4 Simulated Coring

Figure C.9 shows an extension of the stress history of the
sample subjected to simulated coring (see figure13.13). During
loading (from 15 to 40MPa) and unloading after coring, the
samples were limited to uniaxial compaction. The resulting
velocities are shown in figure C.10. The coring interval is
discussed in part VI. During the loading after coring the
velocity increase is 75% larger than that seen during loading
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Chapter C. Additional Discussion of the Experimental Data

after cementation in the sample not subjected to coring over
the same stress interval. The simulated coring is therefore
seen to suggest that cores are not representative for measuring
the stress dependence of in-situ rocks, which was the original
motivation for conducting the experiments (Holt et al., 2014).
The reason for this could be the formation of microcracks
during the simulated coring. These microcracks act to increase
the stress dependence of the core. During reloading, cracks
formed during coring could be closing, meaning that the stress
dependence decreases with increased loading. After a small
creep period, the sample is unloaded along a uniaxial strain
path. The velocity change during unloading is very similar
to that seen during the loading over the same stress interval.
This observation is similar to that made regarding the softer
sample. This might be a further indicator of cement-bonds
breaking during the simulated coring. As cement bonds cannot
heal in the experimental setup, those that are broken during
the coring cannot break again. This limits the potential for a
further increase in stress dependence during the unloading after
reloading of the sample.

The P-wave anisotropy is shown in figure C.11. Contrary to
the sample from part II (“stiff”) and the “soft” sample, there
is not a significant difference between the loading from 15-40
MPa and the unloading back to 15MPa. The “soft” sample
and the “cored” sample therefore have similar observations
regarding how the stress dependence of the velocity varies from
loading to unloading, but differ in how the anisotropy develops.
This is likely a testament to the cause of the stress dependence
in the samples. In the “soft” sample the stress dependence
during loading comes from the lack of cement, so that the
granular media, with its stress dependent contacts, is dominant.
In the “cored” sample, the stress dependence during loading
comes from the deformation caused by the simulated coring,
which due to the initial anisotropic stress field during “coring”
is anisotropic. A small increase in the stress dependence in
the cored sample is observed during unloading after reloading,
which could indicate some additional microcrack formation
occurring during this stress interval.
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Figure C.9: Continuation of the stress path after coring. Subsequent
loading up to 40MPa of axial stress. From 15 MPa during reloading
the sample was restricted to uniaxial strain.
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Figure C.10: Velocities of the cored sample including reloading and
subsequent unloading. The stress dependence of the sample during
loading from 15MPa-40MPa axial stress is larger than for the samples
not subjected to simulated coring. This is likely a testament to deforma-
tion that occurred during the simulated coring interval. Upon unload-
ing, the stress sensitivity of the velocity increases, but only slightly, and
shows a similar trend of returning to the velocity value at 15MPa as was
seen in the sample with less cement (see part VI). This can be put into
context of broken cement bonds as microcracks, as cement bonds that
are broken during coring are not healed in the experimental setup. This
means that new deformation during unloading after reloading happens
to a smaller extent than that which was seen in the sample with similar
amounts of cement with no coring simulation (the sample presented in
part II).
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C.4 Simulated Coring
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Figure C.11: P-wave anisotropy of the sample subjected to coring simulation, includ-
ing reloading and unloading. There is less difference in the anisotropy trends during
reloading and unloading in this sample than in the same stress intervals of the samples
that had not been subjected to the coring simulation. The anisotropy is slightly more
stress dependent during the unloading, but the apparent increase in stress dependence
during simulated uplift compared to loading after cementation is smaller than that ob-
served in the other samples. This is interpreted as a result of microcrack formation
during the simulated coring, such that the closing of those microcracks enter into the
definition of the stress dependence of the velocities during reloading after coring. Dur-
ing the unloading, there might be some additional microcrack formation, adding to the
re-opening of those closed during the reloading.

129



Chapter C. Additional Discussion of the Experimental Data

130



Appendix D
Alternate Strain Formulation (Johnson 1998)

In part III expressions for a particular triaxial strain and stress
state are derived for the no-slip and slip limit from Walton
(1987). A similar triaxial strain is considered in Johnson et al.
(1998) for the no-slip case. It is of interest to see how the equa-
tions derived in part III compare with those of Johnson et al.
(1998) for the loading of the granular media prior to cementa-
tion. This is to provide further insight and validation for the
derivations.

D.1 The Model in Johnson (1998)

Johnson et al. (1998) considers a transversely isotropic strain as
a combination of a hydrostatic and uniaxial strain:

εij = εδij + ε3δi3δj3 (D.1)

The rough limit (no slip) is considered, and yields the follow-
ing moduli (Johnson et al., 1998):

Cr11 =
γ

α

{
2Bw[I0(α)− I2(α)] +

3Cw

4
[I0(α)− 2I2(α) + I4(α)]

}

(D.2a)

Cr33 =
γ

α
{4BwI2(α) + 2CwI4(α)} (D.2b)

Cr13 =
γ

α
Cw[I2(α)− I4(α)] (D.2c)

Cr44 =
γ

α

{
Bw

2
[I0(α) + I2(α)] + Cw[I2(α)− I4(α)]

}
(D.2d)

Cr66 =
γ

α

{
Bw[I0(α)− I2(α)] +

Cw

4
[I0(α)− 2I2(α) + I4(α)]

}
(D.2e)

The remaining factors needed are

Cn =
4µs

1− νs
(D.3)

Ct =
8µs

2− νs
(D.4)

Bw =
2

πCn
(D.5)

Cw =
4

π

[
1

Ct
− 1

Cn

]
(D.6)

γ =
3

32
CnCtn(1− φ)

√
ε (D.7)

α =

√
ε

ε3
(D.8)

In(α) =

∫ 1

0

xn
√
α2 + x2dx (D.9)

The integrals can, according to Johnson et al. (1998) be solved
analytically to give

I0(α) =
1

2

[√
1 + α2 + α2ln

(1 +
√

1 + α2

α

)]
(D.10)

I2n+2 =
1

2n+ 4
[(1 + α2)3/2 − (2n+ 1)α2I2n(α)] (D.11)

The method of modelling velocities will be the same as that
in part III: Estimate the strains based on the measured stress
and use this estimated strain in the stiffness equations. The
additional applicability of the model in Johnson et al. (1998)
is that the strain path is also considered. This is not explored
in detail in this work, due to the availability of experimental
data, but it is noted that three explicit sets of stress equations
is given in Johnson et al. (1998), together with a general, path
dependent expression.

The path utilised here corresponds to a situation where ε and
ε3 are increased together. This coincides with the experimental
data presented earlier, where the radial and axial strain both in-
crease, with the axial strain increasing faster. The radial strain
is given by ε, whereas the axial strain is εz = ε+ ε3. The stress
equations are then given as (Johnson et al., 1998):
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Chapter D. Alternate Strain Formulation (Johnson 1998)

Figure D.1: A: The expression that is set equal to zero to solve α numerically using Newton’s method. B: The derivative of the expression in A
with respect to α, needed in the implementation of Newton’s method

σ11 = −
Q
(
Ct (I2 − I4) + Cn

(
α2I0 +

(
1− α2

)
I2 − I4

))
4

(D.12)

σ33 = −
Q
(
Ct (I2 − I4) + Cn

(
α2I2 + I4

))
2

(D.13)

where

Q =
ε3/2 (1− φ)n

π α3
(D.14)

Note that in this formulation strain is positive in compaction,
whilst stress is negative in compression, consistent with the
derivations in part III, based on that used in Bandyopadhyay
(2009).
Due to the nested logarithm expressions created by I0, obtain-
ing explicit expressions for the strains in terms of stresses is
difficult. Instead, the methodology of using Newton’s method
is implemented, which is the same as was done in part III.
Dividing σ33 by σ11 creates an expression where the only strain

parameter is α. This expression can then be differentiated,
and fed into matlab. The expression to be set equal to zero is
shown in figure D.1A, and the derivative is given in figure D.1B.

The results of implementing this for the axial and radial P-
wave velocities is shown in figures D.2 and D.3 respectively.
The similarity to that obtained in part III (denoted “Walton
Rough”) is not unexpected, as Johnson et al. (1998) states “Note
that the limit ε3 → 0 leads to the result for hydrostatic pressure
(Eq. (3.19) of Walton (1987)) and that in the opposite limit of
purely uniaxial compression, ε → 0, the above equations all
reduce to Eqs. (3.24) of Walton (1987)”. Therefore, the fact
that they coincide is unsurprising. The advantage of using the
equations derived in part III over the result from Johnson et al.
(1998) is that the slip limit in Walton (1987) can be used in the
binary mixing model. It might be that the equations Johnson
et al. (1998) can be modified to recognise the equations for the
rough limit in part III, by relating α toEr etc, but this possibility
is not investigated further.
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D.1 The Model in Johnson (1998)
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Figure D.2: Comparison of the axial P-wave velocity in the rough limit from the equations derived from Walton (1987) and the results from
Johnson et al. (1998) with a strain path where the hydrostatic and uniaxial parts of the strains in Johnson et al. (1998) are increased simultaneously.
Note that the results are indistinguishable. The stress state corresponds to that in the pre-cementation loading in the experimental data, with
σz = 2σr .
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Figure D.3: Comparison of the radial P-wave velocity in the rough limit from the equations derived from Walton (1987) and the results from
Johnson et al. (1998) with a strain path where the hydrostatic and uniaxial parts of the strains in Johnson et al. (1998) are increased simultaneously.
Note that the results are indistinguishable. The stress state corresponds to that in the pre-cementation loading in the experimental data, with
σz = 2σr .
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