

Automated Process Design in Oil and Gas Field Development

John Clement Swatson

Natural Gas Technology Submission date: June 2018 Supervisor: Even Solbraa, EPT

Norwegian University of Science and Technology Department of Energy and Process Engineering

Norwegian University of Science and Technology Department of Energy and Process Engineering

EPT-M-2018-92

MASTER THESIS

for

Student John Swatson

Spring 2018

Automated process design in oil and gas field development Automatiskert prosessdeisgn for olje og gass feltutvikling

Background and objective

A large part of worlds remaining oil and gas resources is found in harsh environments such as deep water and arctic conditions. The development of such oil and gas fields requires advanced process solutions for hydrate control, separation, dew point control and transport solutions. Furthermore Development of subsea processing technologies and concepts will be central in future field development.

The topics of this project will be to evaluate new processing ideas including process design applicable for subsea and offshore processing of natural gas. Simulation tools such as HYSYS will be used for process simulation. Necessary process design tools for equipment such as heatexchangers, separators, compressors etc. should be developed.

Process design typically involves a number of persons in a company. The focus of this work will be to simplify the design process. An integrated design tool using HYSYS and Excel shall be developed.

The following tasks are to be considered:

- 1. Review of process equipment and design methods related to offshore gas processing
- 2. Development of automated process design methods
- 3. Process design for a field development case study
- 4. Suggestion of process design for case study

Within 14 days of receiving the written text on the master thesis, the candidate shall submit a research plan for his project to the department.

When the thesis is evaluated, emphasis is put on processing of the results, and that they are presented in tabular and/or graphic form in a clear manner, and that they are analyzed carefully.

The thesis should be formulated as a research report with summary both in English and Norwegian, conclusion, literature references, table of contents etc. During the preparation of the text, the candidate should make an effort to produce a well-structured and easily readable report. In order to ease the evaluation of the thesis, it is important that the cross-references are correct. In the making of the report, strong emphasis should be placed on both a thorough discussion of the results and an orderly presentation.

The candidate is requested to initiate and keep close contact with his/her academic supervisor(s) throughout the working period. The candidate must follow the rules and regulations of NTNU as well as passive directions given by the Department of Energy and Process Engineering.

Risk assessment of the candidate's work shall be carried out according to the department's procedures. The risk assessment must be documented and included as part of the final report. Events related to the candidate's work adversely affecting the health, safety or security, must be documented and included as part of the final report. If the documentation on risk assessment represents a large number of pages, the full version is to be submitted electronically to the supervisor and an excerpt is included in the report.

Pursuant to "Regulations concerning the supplementary provisions to the technology study program/Master of Science" at NTNU §20, the Department reserves the permission to utilize all the results and data for teaching and research purposes as well as in future publications.

The final report is to be submitted digitally in DAIM. An executive summary of the thesis including title, student's name, supervisor's name, year, department name, and NTNU's logo and name, shall be submitted to the department as a separate pdf file. Based on an agreement with the supervisor, the final report and other material and documents may be given to the supervisor in digital format.

Work to be done in lab (Water power lab, Fluids engineering lab, Thermal engineering lab) Field work

Department of Energy and Process Engineering, 15. January 2018

For Silbras

Even Solbraa Academic Supervisor

Research Advisor:

Abstract

Oil and Gas Processing plants require specialised equipment to effectively treat the hydrocarbons produced from the field. The processing equipment employed occupy a large amount of space and contribute a significant amount of weight to the platform which add to the cost of offshore structures. The design of an offshore oil and gas field incorporates both technical and economic factors that must be considered throughout the project life. The development concept, design and selection of process equipment, energy consumption, carbon footprint, commodity prices, tax regime and profitability are some of the factors that are critically investigated at each stage of project development. These indicators inform the decision criteria which underpin the feasibility of an oil and gas field development.

This master thesis presents an integrated automated model/tool that encompasses the technical and economic factors that can simplify the decision process. As a starting point, a hypothetical base case given a gas well composition and well parameters is used in this research. An offshore gas processing plant is modelled using ASPEN HYSYS in parallel with Microsoft Excel which was used to create equipment sizing calculators for each gas processing equipment. With such models, the impact to process design or to the entire project based on changes to technical and economic factors can be investigated. Different equations of state are also utilised to equally examine the influence on equipment design. The results from the base case showed that utilising different thermodynamic models can give up to $\sim 3.5\%$ difference in equipment weight and $\sim 1.8\%$ difference in footprint.

The calculator developed was taken a step further to incorporate automation. Automation of the sizing calculator was performed using Aspen Simulation Workbook to link MS Excel to Aspen HYSYS as well as visual basic codes to create the functionality that allows for investigating the process design based on changing parameters. The calculator/tool also presents an analytical model that gives results of design indicators including equipment footprint/weight, energy consumption, carbon footprint and cashflow (Net Present Value) depending on the development concept. As a myriad of technical and economic factors can impact an oil and gas field development, the thesis focusses on three hypothetical production profiles. The results of the analyses using the automated tool showed that producing at a high rate and quickly does not necessarily give the optimum results and/or high profitability. Also, with the "winning scenario" changing the thermodynamic model for the process simulation from Soave Redlich Kwong to Peng Robinson gave a significant relative difference of approximately 3.5% in equipment weight amounting to 22 tons and 5% in NPV which amounted to USD \$ 12 million.

The research goes further to build up on the three scenarios and shows methods to determine the optimum production profile with the objective of maximising NPV. A trend was shown where increasing the flowrate (plateau production) increases the profitability of the project; however, beyond the optimum flowrate the capital expenditure of the project increases and the profitability of the project declines. The optimum flowrate of 8MMsm³/d was determined.

Essentially, the master thesis has presented an automated tool capable of examining gas processing project indicators for field development. It gives a preliminary design of gas processing equipment and provides the functionality of analysing the effect of different thermodynamic models to the design. Furthermore, it enables investigative analysis into changing parameters during the production lifecycle.

Acknowledgement

This document constitutes the formal write-up concluding the master thesis under the Master Natural Gas Technology programme with the Energy and Process Department, NTNU.

I would like to express my gratitude to my supervisor Professor Even Solbraa who has been of immense help and a consistent source of guidance throughout my research work. Further appreciation goes to other professors who provided guidance in the work herein namely Erling Naess, Lars Erik Bakken and Milan Stanko.

In addition, I acknowledge the time, support and inputs made by the engineers at Statoil Research office in Rotvoll, namely; Knut Maråk, Marlene Louise Lund and Efstathios Skouras-Iliopoulos as well as Cleide Vieira (PhD – NTNU) and Jairo Rúa Pazos (PhD-NTNU) who assisted in the review.

Trondheim, 5 June 2018

John Clement Swatson

Table of Contents

Abstract		III	
AcknowledgementV			
List of Figure	es	IX	
List of Tables	S	XI	
List of Apper	ndices	XII	
••	viations		
	e		
	tion		
	lynamic Models		
	ations of State		
-			
2.1.1 2.1.2	Van der Waals Equation Redlich and Kwong		
2.1.2	Soave-Redlich-Kwong (SRK)		
2.1.5	Peng-Robinson		
2.1.5	Cubic-Plus Association (CPA)		
2.2 PV7	and Fluid Characterisation		
2.2.1	Properties of Reservoir Fluids	9	
2.2.2	Mixing Rules		
2.2.3	K-Value Correlation	15	
3 Review a	and Design of Equipment	17	
3.1 Sepa	aration Train	17	
3.1.1	Two-Phase Separator	17	
3.1.2	Three-Phase Separators		
3.1.3	Mechanical Design (Wall thickness and Weight)		
3.1.4	Equipment Footprint		
	t Exchanger		
3.2.1	Heat Exchanger Design		
3.2.2	Mechanical Design (Wall thickness and Weight) and Footprint		
3.2.3	Equipment Footprint		
3.3 Con	npressor		
3.3.1	Performance calculations		
3.3.2	Total Compressor Head and Power		
3.3.3	Mechanical Design (Wall thickness and Weight) and Footprint		
3.4 Pipi	ng		
3.4.1	General Flow Equation		
3.4.2	Compressibility factor		
3.4.3	Velocity of Gas in Pipeline		
3.4.4 3.4.5	Friction Factor		
3.4.5 3.4.6	Mechanical Design (Wall thickness and Weight) and Footprint		
	ips		
	1		

	3.5.1	Pump Design	56
	3.5.2	Submersible Pump (Seawater pump)	58
	3.5.3	Mechanical Design (Wall thickness and Weight) and Footprint	59
4	Simulati	on of Offshore Gas Processing Plant	61
	4.1.1	Saturation of Gas	
	4.1.2	Condensate Stabilisation	
	4.1.3	Hydrocarbon Dew Point Control	62
	4.1.4	Dehydration	
	4.1.5	Compression and cooling for export	
5	Evaluati	on of Equipment Calculator with HYSYS.	65
	5.1.1	Separation Equipment	65
	5.1.2	Heat Exchanger	76
	5.1.3	Compressor System	82
	5.1.4	Piping	
	5.1.5	Evaluation Discussion	
6	Automa	tion of Calculator with HYSYS	91
	6.1.1	Creating a Scenario	
	6.1.2	Design Output Representation	
	6.1.3	Scenario Study Recording	
	6.1.4	Flowchart for developing the Scenario Study	
7	Investig	ative Analysis	97
	7.1.1	Equipment Design and Production profile	97
	7.1.2	Carbon Footprint	101
	7.1.3	Cash Flow Analysis	104
	7.1.4	ASPEN HYSYS and ASPEN Process Economic Analyser (APEA)	110
	7.1.5	Case Study Suggestion	113
8	Discussi	on of Results	123
9	Further '	Work	129
Ref	erences		131

List of Figures

Figure 2.1: Vapour pressure curves for methane and benzene (full drawn line). Phase			
envelope (dashed line)	10		
Figure 2.2: Vapour pressure curves of component with same critical point as nC_{10} and			
different acentric factors (Pedersen, Christensen, & Shaikh, 2015)	12		
Figure 2.3: Acentric factor of nC_{10} from vapor pressure curves of Ar and nC_{10} . (Pedersen, Christensen, & Shaikh, 2015)			
Figure 2.5: Phase envelope of various types of reservoir fluids (Pedersen, Christensen, &	12		
Shaikh, 2015)			
Figure 2.6: Interaction Parameters for Fluid Components (ASPEN HYSYS)			
Figure 3.1: Classification of hydrocarbons in wellhead fluids (Abdel-Aal et al., 2003)			
Figure 3.2: Separator classification (Abdel-Aal et al., 2003)			
Figure 3.3 Three-phase horizontal separator - weir type (left) and bucket and weir type (rig			
(Abdel-Aal et al., 2003)			
Figure 3.4: Three-phase vertical separator (Abdel-Aal et al., 2003)			
Figure 3.5: Shell and tube heat exchanger (Counter-current flow)			
Figure 3.6: Counter-current flow and co-current flow			
Figure 3.7: Shell and tube exchanger nomenclature courtesy of TEMA - (TEMA, 1988)			
Figure 3.8: Triangular tube bundle configuration	41		
Figure 3.9 Heat exchanger baffle spacing- showing cut windows and entrance and exit	4.0		
sections.	42		
Figure 3.10: Compressor Coverage Chart (Gas Processors Suppliers Association (U.S.),			
2012)			
Figure 3.11: Compression process (Bakken, 2017)			
Figure 3.12: Pipeline illustration - steady flow			
Figure 3.13: Submersible pump layout			
Figure 4.1: Saturated gas process			
Figure 4.2: Condensate stabilisation layout			
Figure 4.3: Hydrocarbon dew point control layout			
Figure 4.4: Component splitter (Dehydration specification)			
Figure 4.5: Export compression unit			
Figure 4.6: Offshore natural gas processing - Simulation of base case using ASPEN HYSY			
Figure 5.1: 2-Phase vertical and horizontal separator design layout			
Figure 5.2: 3-Phase vertical and horizontal (weir configuration) separator design layout	66		
Figure 5.3: 3-Phase horizontal separator - Design comparison between SRK and PR EoS			
Figure 5.4: 2-Phase vertical separator- Design comparison between SRK and PR EoS	71		
Figure 5.5: Heat exchanger design comparison between SRK and PR EoS	78		
Figure 5.6: Compressor design comparison between SRK and PR EoS			
Figure 5.7: Total weight and footprint of processing equipment			
Figure 5.8: Weight contribution for different processing equipment (SRK)	88		
Figure 5.9: Footprint contribution for different processing equipment (SRK)	88		
Figure 6.1: ASPEN simulation workbook			
Figure 6.2: Aspen Simulation Workbook ribbon in Excel	92		

Figure 6.3: ASW model variables	92
Figure 6.4: ASW organizer setup and scenario study wizard	93
Figure 6.5: Running multiple cases under scenario table	93
Figure 6.6: Single case equipment summary	94
Figure 6.7: Case and scenario selection representing flowrate for each year	95
Figure 6.8: Flow chart for developing the scenario analysis	96
Figure 7.1: Scenario production profiles	98
Figure 7.2: Typical gas field revenue and cost profiles	104
Figure 7.3: Economic evaluation - scenario 1	109
Figure 7.4: Economic evaluation - scenario 2	109
Figure 7.5: Economic evaluation - scenario 3	109
Figure 7.6: Vessel sizing evaluation	110
Figure 7.7: Relative difference between equipment calculator and ASPEN HYSYS	111
Figure 7.8: APEA model vs calculator economic model	112
Figure 7.9: Oil and gas field production modes	114
Figure 7.10: Production rate behaviour vs. cumulative production	115
Figure 7.11: Gas Flowrate versus time for different plateau rates	117
Figure 7.12: Plateau rate versus NPV	117
Figure 7.13: Suggested case production potential versus cumulative production	120
Figure 7.14: Production potential and plateau length	120
Figure 7.15: Economic evaluation - suggested case scenario	122
Figure 8.1: Weight and footprint analysis with SRK and PR thermodynamic models	123
Figure 8.2: Scenario results comparison	125
Figure 8.3: Relative difference with project indicators between SRK and PR	126

List of Tables

Table 1.1: Process parameters and specifications (Solbraa, 2016)	2
Table 1.2: Well stream composition	2
Table 2.1: Experimental TBP results for a North Sea condensate (Whitson, C.H a	and Brule,
M. R. 2000 Phase behaviour, Richardson, TX: Henry L. Doherty Memorial Fund	l of AIME,
Society of Petroleum Engineers)	11
Table 3.1: Ks Values based on API 12J (Campbell & Maddox, 1999)	26
Table 3.2: Skidded equipment footprint relations	35
Table 3.3: Empirical constants for erosional velocity (API RP 14E, 1991)	51
Table 3.4: Maximum velocities for sizing of liquid lines	
Table 3.5: ASME Piping Codes	53
Table 5.1: 3-Phase horizontal separator design parameters with Soave Redlich-K	wong EoS 68
Table 5.2: 3-Phase horizontal separator design parameters with Peng Robinson E	ioS68
Table 5.3: Separator design parameters with SRK EoS	
Table 5.4: Separator design parameters with Peng Robinson EoS	69
Table 5.5: Heat exchanger design parameters with SRK EoS	77
Table 5.6: Heat exchanger design parameters with PR EoS	
Table 5.7: Compressor design parameters with SRK EoS	83
Table 5.8: Compressor design parameters with PR EoS	
Table 7.1: Scenario process plant design parameters	
Table 7.2: Carbon footprint for scenario	
Table 7.3: Field development cost breakdown	105
Table 7.4: Design and manufacture costs as a factor of Steel	
Table 7.5: Cost and Economic Factors	107
Table 7.6: Plateau length calculation	119
Table 7.7: Suggested case equipment results	
Table 7.8: Suggested case carbon footprint	121

List of Appendices

Appendix A Physical properties of common petroleum reservoir fluids constituents
Appendix B Compositions of reservoir fluids134
Appendix B.1 Gas condensate mixture
Appendix B.2 Near-critical mixture
Appendix B.3 Black oil mixture
Appendix C Separator calculation sheet
Appendix C.1 Two-phase vertical separator calculation sheet
Appendix C.2 Two-phase horizontal separator calculation sheet
Appendix C.3 Three-phase vertical separator calculation sheet140
Appendix C.4 Three-phase horizontal separator calculation sheet142
Appendix C.5 Ks values for separator vessels144
Appendix C.6 Separator vessel internals weight and nozzle weights145
Appendix C.7 Liquid holdup and surge times
Appendix C.8 Low liquid level height147
Appendix C.9 L/D ratio guidelines
Appendix C.10 Cylindrical height and area conversions147
Appendix C.11 3-phase horizontal separator design
Appendix C.12 2-phase vertical separator design
Appendix D Heat exchangers
Appendix D.1 LMTD correction factor (1 shell pass; 2 or more tube passes)
Appendix D.2 Tubing characteristics (courtesy of TEMA)151
Appendix D.3 Typical film heat transfer co-efficients for shell and tube heat exchangers
factor (Courtesy of HEDH : Heat Exchanger Design Handbook 2002)152
Appendix D.4 Heat exchanger calculator
Appendix E Compressor data
Appendix E.1 Compressor specification data (courtesy of Elliot)154
Appendix E.2 Compressor calculator
Appendix F Standing-Katz chart (compressibility factor Z)157
Appendix G Piping data
Appendix G.1 Piping calculator
Appendix G.2 Liquid and gas pipeline optimum velocity159
Appendix G.3 Thread allowance calculations for threaded pipe-wall thickness, t _{th} 161
Appendix G.4 Basic allowable stress for grade B and X-42 seamless pipe161
Appendix G.5 Basic allowable stress for other grades of seamless pipe161
Appendix G.6 Longitudinal weld joint factor
Appendix G.7 Minimum yield stress for pipe (courtesy ANSI/ASME)163
Appendix G.8 Specified minimum yield strength for steel pipe commonly used in pipe
systems (courtesy ANSI/ASME – code B31.8)
Appendix G.9 Basic design factor (F) for steel pipe construction in natural gas service
(courtesy ANSI/ASME – code B31.8)
Appendix G.10 Basic design longitudinal joint factor for steel pipelines in natural gas
service (courtesy ANSI/ASME – code B31.8)
Appendix G.11 Basic design temperature derating factor for (T) for steel pipelines in
natural gas service (courtesy ANSI/ASME – Code B 31.8)

Appendix H	Maximum allowable stress (ASME Division 1 and 2)	169
Appendix I	Pumps	170
Appendix I.1	Piping equivalent length of valves and fittings (feet)	170
Appendix I.2	Frictional loss in pipes (schedule 40)	171
Appendix I.3	Framo submersible pump	172
Appendix J	HYSYS simulation properties table	173
Appendix K	Automation	176
Appendix K.1	Scenario table with input and output parameters in MS excel	176
Appendix K.2	Macro recording for scenario study sensitivity analysis	177
Appendix K.3	VBA code for automatic interpolation of production potential	177
Appendix K.4	Graphical layout of case analysis	178
Appendix K.5	Case by case scenario study generation	178
Appendix L	Investigative analysis	179
Appendix L.1		
Appendix L.2		
Appendix L.3		
Appendix L.4		
Appendix L.5		
Appendix L.6		
Appendix L.7	Cashflow analysis (12 MMsm ³ /d)	191
Appendix L.8	Cashflow analysis (15 MMsm ³ /d)	193
Appendix L.9	Cashflow analysis (20 MMsm ³ /d)	195
Appendix M	Scenario 1 - SRK and PR comparison	197
Appendix M.1	Equipment design	197
Appendix M.2	2 Carbon footprint	198
Appendix M.3	B Cash flow analysis	199
Appendix N	Risk Assessment	203

List of Abbreviations

ANSI	-	American National Standards Institute
APEA	-	Aspen Process Economic Analyser
API	-	American Petroleum Institute
ASME	-	Association Society of Mechanical Engineers
CAPEX	-	Capital expenditure
CO_2	-	Carbon Dioxide
CPA	-	Cubic Plus Association
Bara	-	Absolute pressure in bars
Barg	-	Gauge pressure in bars
EoS	-	Equations of State
HHC	-	Heavy hydrocarbon
H_2S	-	Hydrogen sulphide
ID	-	Internal diameter
MEG	-	Monoethylene glycol
MMscmd	-	Million standard cubic metre per day
NOK	-	Norwegian Kroner
OD	-	Outside diameter
OPEX	-	Operating expenditure
ppm	-	Part per million
PR	-	Peng Robinson
SRK	-	Soave Redlich Kwong
TEMA	-	Tubular Exchanger Manufacturers Association
TST	-	Twu-Sim-Tassone
USD	-	United States Dollar
NCS	-	Norwegian Continental Shelf
NPV	-	Net Present Value
YRS	-	Years

Nomenclature

Symbol		Description
A	-	Area
b	-	Correction factor for volume
С	-	Piping empirical Factor
C_d	-	Drag co-efficient
C_p	-	Specific Heat Capacity
$C_u N_i$	-	Copper Nickel
d_m	-	Particle diameter
D	-	Pipe Inside Diameter
f	-	Friction factor (dimensionless)
, f	-	Polytropic Correction Factor
F	-	Cross-section area for gas flow
F	-	Correction Factor for Countercurrent Heat Exchanger
F_D	-	Drag force
F_{G}	-	Gravitational Force
G	-	Gas Gravity
g	-	Acceleration due to gravity
GC	-	Gas Chromatography
G_p	-	Cumulative Gas Production
h	-	Film transfer co-efficient
H	-	Height
H_p	-	Polytropic Head
H_T	-	Total Head
K	-	Equilibrium constant
K_s	-	Sizing Constant
L	-	Pipe Segment Length
LMTD	-	Logarithmic Temperature Difference
L_s	-	Seam-to-seam length
MW	-	Molecular Weight
n	-	Polytropic Exponent
N_b	-	Number of Baffles
P_b	-	Base Pressure
P_c	-	Pseudocritical pressure
PR	-	Pitch Ratio
P_t	-	Tube Pitch
PVT	-	Pressure Volume Temperature
P_1	-	Upstream Pressure
P_2	-	Downstream Pressure
Q	-	Flow rate at standard conditions (m^3/day)
q_a	-	Actual flow rate
q_g	-	Gas flowrate
q_{pp}	-	Production Potential flowrate
R	-	Universal Gas Constant
Re	-	Reynolds Number
s S	-	Elevation factor
	-	Allowable Stress
SR	-	Slenderness ratio

t	-	Time
t_w	-	Wall Thickness
T_b	-	Base Temperature
TBP	-	True-Boiling Point Distillation
T_{c}	-	Pseudocritical temperature
T_{f}	-	Average Gas flowing Temperature
T_r	-	Pseudoreduced Temperature
U	-	Heat Transfer co-efficient
и	-	Velocity
v	-	Velocity
V_m	-	Specific volume of mass
W_b	-	Weight of empty vessel shell
$\tilde{W_I}$	-	Weight of Internals
W_N	-	Weight of Nozzles
W_P	-	Weight of Piping
W_{ν}	-	Weight of empty vessel
W _i	-	Weight fraction
X_i	-	Mol Fraction molecule <i>i</i>
y_i	-	Mol fraction
Z	-	Gas Compressibility Factor at flowing temperature
Z_i	-	Mol fraction
α	-	Correction Factor (degree of attraction)
ρ	-	Density
ω	-	Accentric Factor
μ	-	Viscosity
γ	-	Specific gravity
ṁ	-	Mass flow
κ	-	Isentropic exponent
η_p	-	Polytropic Efficiency
v	-	Specific Volume
ε	-	Pipe Roughness

1 Introduction

Gas processing plants, be it unmanned platforms or processing facilities, require specialised equipment to effectively treat the hydrocarbons produced from the field. The well-stream may consist of crude oil, gas, condensates, water and various contaminants. The objective for treating the gas is to;

- Ensure flow of the hydrocarbons hence transportability to the end user or process delivery system. This pertains to flow assurance to ensure the gas flows from one point to another without pushing the limits of the conduit in which it is transported, e.g. with respect to pressure rating of pipelines and vessels. Flow assurance challenges could include hydrate formation, scale formation and wax formation in gas condensate systems
- Protect and afford long life of process equipment such as compressors and consumer equipment.
- Meet quality specifications for sale.

With the advancement of unmanned offshore processing techniques, more innovative methods are being created thereby shifting the processing techniques to be performed on the seabed or offshore. Unmanned offshore natural gas platforms require a critical look at process design methods and the related preliminary equipment design. Offshore platform design face limitations with regards to weight and footprint. Such factors largely impact capital expenditure (CAPEX) and subsequently operating expenditure (OPEX) for the processing operations.

This master thesis titled "Automated Process Design in Oil and Gas Field Development" focusses on two main aspects with respect to natural gas processing on offshore unmanned platforms. Firstly, design and selection of gas processing equipment and secondly, automation of the offshore gas plant based on a case study using thermodynamic analysis. The stages of the natural gas encompassing processes such as condensate stabilisation, drying of natural gas and export processes are looked at critically to determine the effect of thermodynamic analyses on process parameters as well as the effect of these thermodynamic models on the design of equipment. The choice and sizing of equipment has in turn a major impact on the space requirements and weight limitations of the offshore structure as processing equipment takes a significant amount of space on offshore platforms. Automation of gas processing is performed to analyse factors such as the impact of varying parameters such as production flowrates on equipment weight and in turn project profitability.

The thesis takes into account a model gas composition scenario as given in *Table 1.1* and *Table 1.2* within the research work. ASPEN HYSYS simulation software was used in designing the offshore process and evaluating the equipment specifications.

Designations and Units	Specification
Well operating pressure [bara]	180
Well operating temperature [°C]	80
Platform inlet pressure [bara]	90
Platform inlet temperature [°C]	5
Platform outlet pressure [bara]	200
Platform outlet temperature [°C]	15
Flowrate at well [MMSm ³ /d]	5
Sea water temperature [°C]	5
Water dew point specification [°C at 80bara]	-10
Hydrocarbon cricondebar Specification [bara]	90
Condensate/ oil specification [bara /°C]	1 / 20
Export pressure [bara]	200

Table 1.1: Process parameters and specifications (Solbraa, 2016)

Table 1.2: Well stream composition

Component	Mole %
Nitrogen	0.56
Carbon Dioxide	2.02
Methane	81.77
Ethane	7.77
Propane	3.91
i-Butane	0.56
n-Butane	0.90
i-Pentane	0.25
n-Pentane	0.24
n-Hexane	0.50
n-Heptane	0.30
n-Octane	0.20
n-Nonane	0.12
n-Decane	0.91

The master thesis focuses on four main tasks under the research topic; with each chapter detailing the work process, concepts and the build-up to the plant design and automation methods used.

The first section, Chapter 2, discusses the thermodynamic models. It touches on different thermodynamic models used predominantly in oil and gas processing. The chapter summarises the history and build-up of different Equations of State (EoS) and highlights their limitations and applications. The equations of state touched on are Redlich-Kwong, Soave-Redlich-Kwong (SRK) and Peng Robinson (PR). A further look into Pressure-Volume-Temperature (PVT) and fluid characterisation is detailed where the properties of reservoir fluids and mixing rules are discussed in relation to the thermodynamic models.

The second section, Chapter 3, presents a breakdown of the theory and fundamentals for sizing of gas processing equipment specifically with respect to *Separators*, *Heat Exchangers*, *Compressors*, *Pumps* and *Pipelines*. The theoretical design of the equipment incorporates industry standards such as API/ASME standards for design of the separators and pipeline as well as TEMA standards for design of heat exchangers. Based on theory, an equipment calculator was developed in *MS Excel* detailing simple design methods to efficiently size the gas processing equipment so as to investigate the impact of thermodynamic models on weight and footprint.

The third section, Chapter 4, simulates an offshore gas processing plant from a saturated gas stream based on the well composition and well parameter case scenario under *Table 1.1*. The simulation tool used in this thesis is ASPEN HYSYS v9.0. The offshore gas processing simulation stages are broken down into *Saturation of Gas Stream*, *Condensate Stabilisation*, *Hydrocarbon Dew Point Control* and *Export compression*.

The fourth section, Chapter 5, discusses the developed calculator and highlights examples for developing the sizing models for each equipment in the related Appendices. It further on utilises the theoretical sizing model to compare the equipment sizing in the HYSYS simulation based on different thermodynamic models and its impact on sizing parameters, weight and footprint of offshore equipment.

The fifth section, Chapter 0, gives an overview of the methodology used in automating the calculators developed in parallel with HYSYS. It shows a step-by-step approach in linking the two models i.e. *HYSYS* and *Equipment Calculator*. This involves setting up the required parameters to perform scenario analysis based on changes during the life cycle of the processing plant. It also outlines the visual basic code and programming involved in setting up the functionality to record data.

The sixth section, Chapter 7, outlines the analysis performed for the plant and process life cycle by examining three scenario production profiles. The analysis covers project indicators that determine the feasibility of the project in its entirety. The indicators captured are limited to *equipment sizing* and *weight* which translates to equipment cost, *carbon footprint* in relation to carbon intensity and emissions and *cash flow analysis* with respect to project revenues and costs.

The seventh section, Chapter 8, presents an overall summary and discussion of the results of the automated tool developed. It touches on how the calculator could be used as a tool for

preliminary design models as well as an economic model for plant design. Different case scenarios are presented and a suggested case scenario for further rigorous study is presented.

The final section, Chapter 9, presents information on further research into the master thesis. Following the work from the master thesis this could be used as a tool and expanded to incorporate a more in-depth model covering reservoir to sales.

2 Thermodynamic Models

This chapter summarises the various thermodynamic models utilised within gas processing. It highlights the development and the history for both classical and more modern thermodynamic models. The master thesis herein analyses the gas process design utilising the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) models in Aspen HYSYS. The effects of the models on the design of equipment sizing are highlighted and presented in *Chapter 5*.

The details of equation of state presented in this chapter are based on previous master thesis conducted in fall 2016, from experimental data in scientific articles and various references indicated herein (Whitson, Brule, & Society of Petroleum Engineers of AIME., 2000).

2.1 Equations of State

Over 100 equations of state have been developed in an attempt to improve on the ideal gas equation of state. British Chemist Robert Boyle performed experiments that supported the relation that gas volume varied inversely with pressure. This was the building block for further equations of state. Further on, Italian scientist, Amedeo Avogadro investigated the equation formulated by Boyle and the effects of molecules in a given volume and formulated what is currently being utilised and termed as the ideal gas law (equation 2.1)

$$PV_m = RT \tag{2.1}$$

where P represents pressure, V_m is volume, R is the gas constant and T is temperature.

An improvement over the ideal gas equation of state based on elementary molecular arguments was suggested by Johannes D. van der Waals, who noted that gas molecules actually occupy more than the negligibly small volume presumed by the ideal gas model and also exert long-range attractive forces on one another. In 1949, the equations and Van der Waals studies were modified by Redlich and Kwong which was further on utilised as the basis for both Peng-Robinson (PR, 1976) and Soave-Redlich-Kwong (SRK, 1972). PR and SRK derived the correlation factor for the attraction of molecules and temperature in gases. SRK and PR have become the most used equations of state for the development of models such as Cubic Plus Association (CPA) and the Twu-Sim-Tassone equation (TST).

2.1.1 Van der Waals Equation

The ideal gas is a hypothetical gas, whose molecules do not attract or repel one another, and their volume is negligible compared to a gas container. Real gases can approach the ideality only at low temperatures and pressures (<5atm). The repulsive forces of gas molecules tend to increase with the increasing temperature. With the increasing pressure, density of gas also increases, the molecules are closer to one another, and the intermolecular forces become significant to affect the motion of the molecules. In addition, the volume of real gas molecules also becomes a significant fraction of the total volume, thus causing deviations from the ideal gas behaviour.

Van der Waals equation was an improvement of the ideal gas laws incorporating correction to the volume of gas molecules and their interactions.

$$\left(P + \frac{\alpha}{V_m^2}\right)(V_m - b) = RT \tag{2.2}$$

The term $V_m - b$ refers to the "free volume", namely the free space where molecules can move around. The parameter α is an expression of the degree of attraction of gas molecules to each other. The parameter b is linked with the volume of the gas molecules and their repulsive forces. Both constants are unique for each gas molecule and are independent of pressure and temperature. External pressure P and attraction between molecules α/V_m^2 act in the same direction, pushing molecules together. At equilibrium, this pressure is balanced by the thermal pressure $RT/(V_m - b)$, which is holding the molecules apart. Hence equation 2.2 can be rearranged to equation 2.3;

$$P = \frac{RT}{V_m - b} - \frac{\alpha}{V_m^2}$$
(2.3)

Van der Waals equation at middle pressures reasonably describes the behaviour of real gases but presents inconsistencies higher pressures, where repulsive forces prevail over attractive ones. The constants in the equation and critical parameters of a given gas are given by (Hurai, Huraiová, Slobodník, & Thomas, 2015):

$$P_c = \frac{\alpha}{27b^2}, T_c = \frac{8\alpha}{27bR}, V_c = 3b$$
 (2.4)

Where P_c , T_c and , V_c are the critical pressure, temperature and volume respectively. For a single component the critical pressure can be explained as the pressure above which liquid and vapour cannot coexist, regardless of temperature. Similarly, the critical temperature is the temperature above which a gas-liquid mixture cannot coexist, regardless of the pressure. In a multicomponent system, however, the two-phase region can extend beyond the systems critical point.

2.1.2 Redlich and Kwong

Van der Waals equation was modified by Redlich Kwong (MRK) in 1949 to improve the ability of the equation to reproduce fluid parameters at higher temperatures and pressures. MRK modifies the second term of *equation 2.2;*

$$\left(P + \frac{\alpha}{V_m (V_m + b)(T)^{0.5}}\right)(V_m - b) = RT$$
(2.5)

This allows MRK to be utilised for pure gases and their mixtures as well as for H_2O-CO_2 and NaCl fluids.

2.1.3 Soave-Redlich-Kwong (SRK)

The Soave-Redlich-Kwong equation of state (SRK) is developed from the Redlich-Kwong (MRK EoS) where modifications to the correction factor are given by *equation 2.6*;

$$P = \frac{RT}{V_m - b} - \frac{\alpha}{V_m(V_m - b)}$$
(2.6)

SRK uses the same equation as MRK; however Soave made some adjustments to the α factor.

$$\alpha = 0.42748 \, \frac{R^2 \, T_c^2}{P_c} [f(T)]^2 \tag{2.7}$$

The adjustment to the equation incorporates the function of the reduced temperature T_r and the accentric factor ω . Given by *equations 2.8* and *2.9*.

$$f(T) = 1 + k\left(1 - \frac{T}{T_c}\right) \tag{2.8}$$

$$k = 0.480 + 1.574\omega - 0.176\omega^2 \tag{2.9}$$

The accentric factor accounts for molecules without a spherical form. Molecules with a spherical form have an accentric factor equal to zero. The accentric factor was introduced by in 1955 by K. S Pitzer and is given by *equation 2.10*.

$$\omega = -\log_{10} \left(\frac{P^{sat}}{P_c}\right)_{T_r = 0.7} - 1$$
(2.10)

The volume correction factor b, was not changed in the analysis made by Soave and was maintained as in *equation 2.11*

$$b = 0.08664 \; \frac{R \, T_c}{P_c} \tag{2.11}$$

The SRK equation of state presented a marked impact on calculation of hydrocarbons and represents one of the biggest advancements upon which cubic equations are built. (Robinson, Peng, & Chung, 1985)

2.1.4 Peng-Robinson

The Peng Robinson equation of state focusses on the natural hydrocarbon gas and petroleum systems. This similar to SRK equation of state except for a slightly better performance of the PR EoS around the critical point, making this EoS better suited for gas/condensate systems. The PR EoS has the following form:

$$\left(P + \frac{\alpha}{V_m(V_m + b) + b(V_m - b)}\right)(V_m - b) = RT$$
(2.12)

Peng Robinson conserved the temperature dependency of the attractive term and the acentric factor introduced by Soave. In addition, they presented different fitting parameters to describe this dependency and the coefficients. The correction factors are obtained as in the SRK equation, with a few changes. The SRK predicts a compressibility factor of 0.333 while PR predicts a value of 0.307. (Robinson et al., 1985).

$$\alpha = 0.45724 \ \frac{R^2 \ T_c^2}{P_c} [f(T)]^2 \tag{2.13}$$

$$b = 0.0778 \ \frac{R \ T_c}{P_c} \tag{2.14}$$

Changes to the function for the acentric factor k, can the correction factor α be calculated the same way as for SRK (equation 2.8)

$$f(T) = 1 + k \left(1 - \frac{T}{T_c}\right)$$
 (2.15)

$$k = 0.37464 + 1.5422\omega - 0.26992\omega^2 \tag{2.16}$$

2.1.5 Cubic-Plus Association (CPA)

More modern equations of state have been developed based on the earlier equations of state. These models take into the hydrogen bonding interactions in ionic liquid systems. For example ionic liquid systems containing nitrogen, oxygen and fluorine can also form hydrogen bonding with other solvents like water and alcohols. Hence it is more accurate to account for the interactions into these models. The CPA EoS was proposed by Kontogeorgis et al. in 1996. Further on, later versions derived from the Peng Robinson EoS included an association term based on the stick-shield method.

The model is a combination of the regular cubic EoS and the association factor. The compressibility factor z is expressed as;

$$z = z_{cubic} + z_{assoc} \tag{2.17}$$

where the z_{cubic} represents the physical contribution and z_{assoc} represents the association contribution. This gives z_{cubic} as;

$$z_{cubic} = \frac{V_m}{V_m - V_b} - \frac{aV_m}{RT \left[V_m(V_m + b) + b \left(V_m - b\right)\right]}$$
(2.18)

where *a* and *b* are characteristic parameters based on the mixing rules highlighted under *Chapter 2.2.2.* The associated contribution to compressibility factor is given as;

$$z_{assoc} = \sum_{i} x_i \left(\frac{1}{X_i} - \frac{1}{2}\right) \rho_0 \left(\frac{\partial X_i}{\partial \rho_0}\right)$$
(2.19)

where X_i represents the mole fraction of molecule *i* not bonded, x_i is the mole fraction of component *i*, and ρ_0 is the total molecule number density. (Ma et al., 2011)

2.2 PVT and Fluid Characterisation

Natural gas is composed primarily of low-molecular weight alkanes; methane through butane, carbon dioxide, hydrogen sulphide, nitrogen in some cases lesser quantities of helium, hydrogen, CO and carbonyl sulfide. The temperature and pressure gradients on a formation may cause reservoir-fluid properties to vary as a function of depth referred to as "compositional grading". (Whitson et al., 2000).

It is important to understand the composition of petroleum reservoir fluids at the onset as this aids in defining the value of the end product for market as well as the subsequent field development solution, which in turn encompasses wells and flowline design, processing equipment, pipeline transport systems and offloading systems.

This section explains the fluid characterisation methods employed. As the simulation ASPEN HYSYS was used; the section explains the theory and fundamentals of phase behavior and EoS employed by the software in characterizing the fluid composition.

2.2.1 Properties of Reservoir Fluids

Hydrocarbon with seven or more carbon atoms are called C_{7+} components. Petroleum reservoir fluids may contain hydrocarbons as heavy as C_{200} . A particular C_{7+} component falls under the following component classes also referred to as Paraffins-Napthenes-Aromatics (PNA) distribution;

Paraffins or Alkanes: These are carbon atoms that are connected by single bonds. Paraffins are divided into normal paraffins (*n-paraffins*) and iso-paraffins (*i-paraffins*). Paraffinic compounds consist of hydrocarbon segments of the type C, CH, CH_2 , or CH_3 .

Naphthenes or *Cycloalkanes*: These are similar to paraffins but contain one more cyclic structure. The segments in the ring structures are connected by single bonds. e.g. *Cyclohexane* and *methyl cyclopentane*.

Aromatics: Aromatics are similar to alkanes in that they contain one or more cyclic structures but have the carbon atoms connected by aromatic double bonds. e.g *Benzene*.

Due to different components, reservoir fluids cover a wide range of component properties for e.g. boiling points as depicted under *Appendix A*.

The pure component vapour pressures and critical points are essential in calculations of component and mixture properties. The pure component vapour pressures are experimentally determined by measuring the corresponding values of temperature (T) and pressure (P) at which the substance undergoes a transition from liquid to gas. *Figure 2.1* shows the vapour pressure for methane and benzene as pure components and as a mixture. The critical points, *CP*, shown are different for the pure components and mixture signifying the difference in phase behavior.

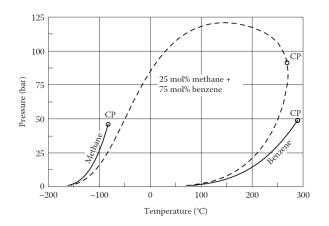


Figure 2.1: Vapour pressure curves for methane and benzene (full drawn line). Phase envelope (dashed line)

Some phase-behaviour applications require the use of an Equation of State (EoS - *reference Chapter 2.1*) to predict the properties of petroleum reservoir fluids. The critical properties, acentric factor, molecular weight and Binary Interaction Parameters (BIP) are required for EoS calculations. The challenge is the chemical separation to identify the properties of many hundreds and thousands of components in reservoir fluids especially for compounds heavier than C_{20} .

The characterisation of C_{7+} fractions are done by;

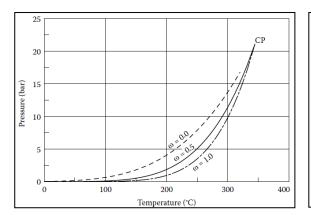
- 1. Splitting the C_{7+} fractions into a number of fractions with known molar compositions.
- 2. Identifying the properties; molecular weight, specific gravity and boiling point of each fraction.
- 3. Estimating the critical properties and acentric factor of each C₇₊ fraction and key BIP for the specific EoS used.

For complete C_{7+} characterisation into discrete fractions the *True-Boiling Point (TBP)* distillation method provides necessary data as highlighted above. *Gas Chromatography (GC)* is a less-expensive, time-saving option to the TBP distillation method which only quantifies C_{7+} mass fractions and does not provide analysis of properties such as specific gravity, molecular weight and boiling point (Whitson et al., 2000). *Appendix A* and *Table 2.1* show examples of the results of true boiling point distillation.

Table 2.1: Experimental TBP results for a North Sea condensate (Whitson, C.H and Brule, M. R.2000 Phase behaviour, Richardson, TX: Henry L. Doherty Memorial Fund of AIME, Society of
Petroleum Engineers)

Fraction	Upper <i>T_{bi}</i> (°F)	Average <i>T_{bi}*</i> (°F)	m _i (g)	γi **	M _i (g/mol)	V _i (cm ³⁾	n _i (mol)	Wj (%)	X _{VI} %	<i>x</i> i %	Σwj %	Σx _{Vi} %	Kw
C ₇	208.4	194.0	90.2	0.7283	96	123.9	0.940	4.35	4.80	7.80	4.35	4.80	11.92
C ₈	258.8	235.4	214.6	0.7459	110	287.7	1.951	10.35	11.15	16.19	14.70	15.95	11.88
C ₉	303.8	282.2	225.3	0.7658	122	294.2	1.847	10.87	11.40	15.33	25.57	27.35	11.82
C ₁₀	347.0	325.4	199.3	0.7711	137	258.5	1.455	9.61	10.02	12.07	35.18	37.37	11.96
C ₁₁	381.2	363.2	128.8	0.7830	151	164.5	0.853	6.21	6.37	7.08	41.40	43.74	11.97
C ₁₂	420.8	401.1	136.8	0.7909	161	173.0	0.850	6.60	6.70	7.05	48.00	50.44	12.03
C ₁₃	455.0	438.8	123.8	0.8047	181	153.8	0.684	5.97	5.96	5.68	53.97	56.41	11.99
C ₁₄	492.8	474.8	120.5	0.8221	193	146.6	0.624	5.81	5.68	5.18	59.78	62.09	11.89
C ₁₅	523.4	509.0	101.6	0.8236	212	123.4	0.479	4.90	4.78	3.98	64.68	66.87	12.01
C ₁₆	550.4	537.8	74.1	0.8278	230	89.5	0.322	3.57	3.47	2.67	68.26	70.33	12.07
C ₁₇	579.2	564.8	76.8	0.8290	245	92.6	0.313	3.70	3.59	2.60	71.96	73.92	12.16
C ₁₈	604.4	591.8	58.2	0.8378	259	69.5	0.225	2.81	2.69	1.87	74.77	76.62	12.14
C ₁₉	629.6	617.0	50.2	0.8466	266	59.3	0.189	2.42	2.30	1.57	77.19	78.91	12.11
C ₂₀	653.0	642.2	45.3	0.8536	280	53.1	0.162	2.19	2.06	1.34	79.37	80.97	12.10
C ₂₁₊			427.6	0.8708	370	491.1	1.156	20.63	19.03	9.59	100.00	100.00	
Sum			2,073.1			2,580.5	12.049	100.00	100.00	100.00			
Average				0.8034	172								11.98
to 653° $V_i = m_i / \gamma_i / 0$	F. 0.9991; n _i = 1 aken at midv	ux cycle=18 s m;/M;;w _i =100> volume point.							-		nd distillation	at 10 mm H	g=471.2

An important factor, the acentric factor, ω , proposed by Kenneth Pitzer (1955) is a measure of the non-sphericity (centricity) of molecules or the measure of the curvature of the pure component vapour pressure curve. The acentric factor of n-paraffins increases with carbon number. That is, methane has an acentric factor of 0.008, ethane 0.098 and propane 0.152. *Figure* 2.2 gives a representation of different acentric factors of components with same critical point.


As defined by Pitzer (1955), ω , is given by

$$\omega = -1 - \log_{10} \left(\frac{P^{sat}}{P_c} \right)_{T=0.7T_c}$$
(2.20)

where P^{sat} stands for saturation pressure or vapour pressure and is given by *equation 2.21* which when plotted against the reciprocal of the reduced temperature, T_r , (given by *equation 2.22*) for most pure substances gives an approximate straight line. By definition, ω , is zero for noble gases; argon, krypton and xenon and very close to zero for other spherical molecules. *Figure 2.3* shows the logarithm plot of the reduced component vapour pressure against the reciprocal of the reduced temperature, T_r .

$$P^{sat} = \frac{P^{sat}}{P_c} \tag{2.21}$$

$$T_r = \frac{T}{T_c} \tag{2.22}$$

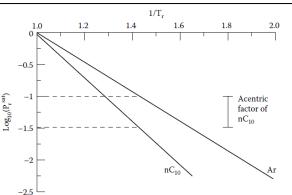


Figure 2.2: Vapour pressure curves of component with same critical point as nC₁₀ and different acentric factors (Pedersen, Christensen, & Shaikh, 2015)

Figure 2.3: Acentric factor of nC₁₀ from vapor pressure curves of Ar and nC₁₀. (Pedersen, Christensen, & Shaikh, 2015)

As petroleum reservoir fluids are multicomponent mixtures, the phase behaviour of the fluid (e.g. natural gas) must be characterised incorporating the vapour pressure curves of the components in a *Phase Envelope* as illustrated in *Figure 2.4*.

Petroleum reservoir fluids are divided into;

- Natural Gas mixtures
- Gas Condensate mixtures
- Near-critical mixtures or volatile oils
- Black oils
- Heavy oils

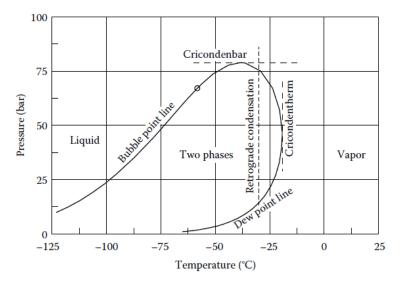
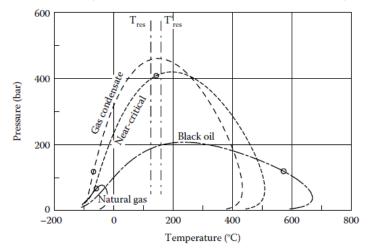



Figure 2.4: Phase envelope of natural gas (Pedersen, Christensen, & Shaikh, 2015)

Appendix B illustrates examples of each type of reservoir fluid. The classifications of the fluids are distinguished by the position of critical temperature of the mixture relative to the reservoir temperature. During production the reservoir temperature T_{res} remains fairly constant however the pressure decreases with production. The phase behaviour of the different fluid types differs with production.

As depicted in *Figure 2.5*, for a natural gas, there would be no impact of the number of phases as the gas remains in a single phase at all pressures. For a gas condensate, the pressure reduction will result in a second liquid phase below the dew point.

Near-critical mixtures have their critical temperatures close to the reservoir temperatures. For near-critical mixtures, a reduction pressure will also result in a second gas phase at the bubble point branch. This mixture is classified as a volatile oil. In the case where the reservoir temperature is slightly higher, indicated in *Figure 2.5* by T'_{res} , the pressure reduction will introduce a second liquid phase at the dew point line and resulting in a mixture classified as *gas condensate* mixture. The compositions and properties of the gas and liquid phases within the phase envelope are similar. (Pedersen, Christensen, & Shaikh, 2015)

Figure 2.5: Phase envelope of various types of reservoir fluids (Pedersen, Christensen, & Shaikh, 2015)

2.2.2 Mixing Rules

Reservoir fluids contains mixtures of hundreds of components. The components are characterised based on mole, weight, and volume fractions. For a mixture with N components, i = 1, ..., N, hence the overall mole fractions are given by

$$z_{i} = \frac{n_{i}}{\sum_{j=1}^{N} n_{j}} = \frac{m_{i}/M_{i}}{\sum_{j=1}^{N} m_{j}/M_{j}}$$
(2.23)

Given n=moles, m= mass, M = molecular weight/Molar mass; where the sum of z_i equals 1.0. Compositions for oil are denoted by x_i and gas compositions by y_i . Mass fractions are given by *equation 2.24*; where w_i equals 1.0.

$$w_i = \frac{m_i}{\sum_{j=1}^N m_j} = \frac{n_i M_i}{\sum_{j=1}^N n_j / M_j}$$
(2.24)

The volume fractions based on component densities at standard conditions

$$x_{\nu i} = \frac{m_i / \rho_i}{\sum_{j=1}^N m_j / \rho_j} = \frac{n_i M_i / \rho_i}{\sum_{j=1}^N n_j M_j / \rho_j} = \frac{x_i M_i / \rho_i}{\sum_{j=1}^N x_j M_j / \rho_j} = \frac{x_i M_i / \gamma_i}{\sum_{j=1}^N x_j M_j / \gamma_j}$$
(2.25)

Some equations of state may give good approximations at low pressures and high temperatures, however at low temperatures and high pressures the impact of intermolecular interaction on gas behaviour increases. It is pertinent to account for the effect of these interactions on the relationship between pressure, volume and temperature. One such method in defining component fractions by average properties of mixtures is the use of Kay's mixing rule which uses the mole-fraction average given by *equation 2.26*. The mixing rule is acceptable for molecular weight, pseudo-critical temperature and acentric factor.

$$\ddot{\theta} = \sum_{i=1}^{N} z_i \theta_i \tag{2.26}$$

For a more generalised linear mixing rule;

$$\ddot{\Theta} = \frac{\sum_{i=1}^{N} \Phi_i \theta_i}{\sum_{i=1}^{N} \Phi_i}$$
(2.27)

where Φ_i may represent one of the following: $\Phi_i = z_i$ (mole fraction), $\Phi_i = w_i$ (weight fraction), $\Phi_i = x_{vi}$ (volume fraction).

With respect to each EoS (highlighted in *Chapter 2.1*) the "attraction" parameter, α , and "repulsion" parameter, b, needs to be expressed in a form to account for multi component systems. For a vapour phase with composition, y_i , the parameters are given by:

$$\alpha = \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j A_{ij}$$
(2.28)

$$b = \sum_{i=1}^{N} y_i B_i \tag{2.29}$$

$$A_{ij} = \left(1 - k_{ij}\right) \sqrt{A_i A_j} \tag{2.30}$$

where k_{ij} represents binary interaction parameters given $k_{ii} = 0$, $k_{ij} = k_{ij}$. Also $k_{ij} = 0$, for most hydrocarbon-hydrocarbon pairs, with the exception of pairs of C₁ and C₇₊. For Nonhydrocarbon-hydrocarbon pairs $k_{ij} \approx 0.1$ to 0.15 for nitrogen-HC pairs and CO₂-HC pairs. (Whitson et al., 2000)

The Aspen HYSYS simulation used for this research gives the *BIP* under a chosen fluid package and presents interaction parameters for each component pair as shown in *Figure 2.6*.

	Nitrogen	CO2	Methane	Ethane	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane	n-Hexane	n-Heptane	n-Octane	n-Nonane
Nitrogen		-0,01710	0,03120	0,03190	0,08860	0,13150	0,05970	0,09300	0,09360	0,16500	0,07999	0,07999	0,07999
CO2	-0,01710		0,09560	0,14010	0,13680	0,13680	0,14120	0,12970	0,13470	0,14200	0,10920	0,13500	0,13500
Methane	0,03120	0,09560		0,00224	0,00683	0,01311	0,01230	0,01763	0,01793	0,02347	0,02886	0,03416	0,03893
Ethane	0,03190	0,14010	0,00224		0,00126	0,00457	0,00410	0,00741	0,00761	0,01141	0,01532	0,01932	0,02302
Propane	0,08860	0,13680	0,00683	0,00126		0,00104	0,00082	0,00258	0,00270	0,00514	0,00789	0,01085	0,01370
i-Butane	0,13150	0,13680	0,01311	0,00457	0,00104		0,00001	0,00035	0,00039	0,00157	0,00322	0,00521	0,00725
n-Butane	0,05970	0,14120	0,01230	0,00410	0,00082	0,00001		0,00050	0,00055	0,00187	0,00365	0,00575	0,00788
i-Pentane	0,09300	0,12970	0,01763	0,00741	0,00258	0,00035	0,00050		0,00000	0,00044	0,00146	0,00288	0,00445
n-Pentane	0,09360	0,13470	0,01793	0,00761	0,00270	0,00039	0,00055	0,00000		0,00039	0,00137	0,00276	0,00430
n-Hexane	0,16500	0,14200	0,02347	0,01141	0,00514	0,00157	0,00187	0,00044	0,00039		0,00030	0,00107	0,00210
n-Heptane	0,07999	0,10920	0,02886	0,01532	0,00789	0,00322	0,00365	0,00146	0,00137	0,00030		0,00024	0,00082
n-Octane	0,07999	0,13500	0,03416	0,01932	0,01085	0,00521	0,00575	0,00288	0,00276	0,00107	0,00024		0,00017
n-Nonane	0,07999	0,13500	0,03893	0,02302	0,01370	0,00725	0,00788	0,00445	0,00430	0,00210	0,00082	0,00017	
n-Decane	0,12790	0,13390	0,04361	0,02673	0,01663	0,00945	0,01016	0,00621	0,00603	0,00335	0,00166	0,00064	0,00015
H2O	-0.67660	-0.11585	0.50000	0.50000	0.48190	0.51800	0.51800	0.48000	0.48000	0.51090	0.48000	0.48000	0,48000

Figure 2.6: Interaction Parameters for Fluid Components (ASPEN HYSYS)

2.2.3 K-Value Correlation

K-value is defined as the ratio of equilibrium gas composition, y_i , to the equilibrium liquid composition x_i . K_i is function of pressure, temperature and overall composition. *K* -values are estimated by empirical correlations or by satisfying equal-fugacity constraint with an EoS. Empirical correlations of K-value are useful in applications involving;

- Multi-stage surface operations (e.g. multistage flash separation)
- Compositional reservoir material balance
- Checking the consistency of separator-oil and gas compositions

There are several methods utilised in the correlation of K-values but are all based on two limiting conditions to describe the pressure dependence of K-values i.e. at low and high pressure.

At *low pressures*, below ~6 bara *Raoult's* and *Daltons* Law for ideal solutions provide a simplified approach for predicting equilibrium ratios as given in *equation 2.31*:

$$K_i = \frac{P_{vi}(T)}{P} \tag{2.31}$$

where P_{vi} is the component vapour pressure at the system temperature. Equation 2.31 is limited as the temperature must be less than the component critical temperature and behaves as an ideal gas. Based on this, *K*-value is independent of overall composition.

Raoult's law states that the partial pressure, P_i , of a component in a multicomponent system is the product of its mole fraction in the liquid phase, x_i , and the vapour pressure of the component, P_{vi} , given as *equation 2.32*

Dalton's Law states that the partial pressure, P_i , of a component is the product of its mole fraction in the gas phase, y_i , and the total pressure of the system, P, given as *equation 2.33*. Combining Raoult and Dalton's Laws gives the correlation in *equation 2.31*.

$$P_i = x_i P_{vi} \tag{2.32}$$

$$P_i = y_i P \tag{2.33}$$

At high pressure, the *K*-value of all components in a mixture tend to converge to unity at the same pressure termed the *Convergence Pressure*. For binary mixtures this is the actual mixture critical pressure; however for multi-component mixtures, the convergence pressure is a non-physical condition unless the system temperature equals the mixture critical temperature. This is due to the fact that mixtures become single phase at bubble point or dew-point pressure before reaching the convergence pressure. The log-log plot of K_i against pressure represents how the ideal gas and convergence pressure conditions define the *K*-value behaviour at limiting conditions.

With respect to lighter components (where $T > T_{ci}$), *K*-values decrease monotonically toward the convergence pressure whereas for heavier components where (where $T < T_{ci}$), *K*-values initially decrease as a function of pressure at low pressures, passing through unity when system pressure equals the vapor pressure of a particular component, reaching a minimum, and finally increasing toward unity at the convergence pressure.

For reservoir fluids, the pressure at which *K*-values reach a minimum is usually >1,000 psia, indicating that *K* values are more or less independent of convergence pressure/composition at pressures < 1000psia. (Whitson et al., 2000) 3

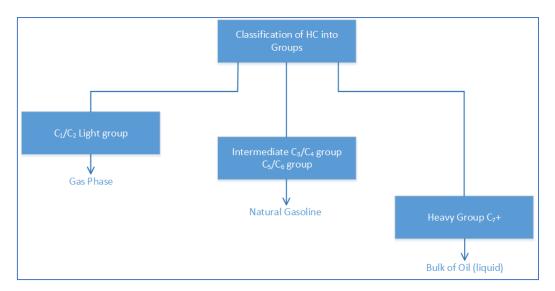
3 Review and Design of Equipment

This chapter reviews design methods in sizing gas processing equipment. It takes an in-depth look at fundamental theoretical procedures in sizing 2-phase and 3-phase separators, shell and tube heat exchangers, centrifugal compressors, sea water pumps and pipeline systems. The fundamental concepts highlighted are used to develop a tool; *Equipment Sizing Calculators* in MS Excel, for each processing equipment.

The calculator gives a summarised output of the equipment covering footprint (length, width and height) and mechanical design (thickness and weight). The design methods incorporate global standards and manufacturer specifications to give as close to accurate standard designs as possible.

3.1 Separation Train

The separation train focusses on the initial bulk removal process upon receiving the wet gas from the field. The separation equipment could be a two-phase separator – to allow for the separation of gas and oil/water, 3-phase separator – to allow for the separation of oil, gas and water. Inclusive in the system are flow control valves to decrease pressure to the required pressure level.


Within this master thesis, two methods are considered herein in performing sizing calculations for the separators. These are with respect to;

- API Specification 12 J standards (based on two major references *Gas Conditioning* and Processing from Campbell, John; Maddox Robert and Separator Sizing of Twophase and Three-phase separators by Monnery, Wayne and Svrcek, William. (Campbell, 1999 #2) and (Svrcek & Monnery, 1993)
- ii. Fundamental theory highlighted in *Petroleum and Gas Field Processing* by Abdel-Aal, H.K ; M. Aggour and M. A Fahim which gives a detailed explanation of the theory. (Abdel-Aal, Aggour, & Fahim, 2003)

3.1.1 Two-Phase Separator

The two-phase separator is used to separate gas from oil in oil fields, or gas from oil/water for gas fields. The hydrocarbon mixtures to be separated contain essentially three main groups of hydrocarbon. (Abdel-Aal et al., 2003)

- 1. Light group, which consists of CH_4 (methane) and C_2H_6 (ethane)
- 2. Intermediate group, which consists of two subgroups; propane/butane (C_3H_8/C_4H_{10}) group and the pentane/hexane group (C_5H_{12}/C_6H_{14})
- 3. Heavy group, which is the bulk of crude oil and identified as C_7H_{16}

Figure 3.1: Classification of hydrocarbons in wellhead fluids (Abdel-Aal et al., 2003)

Within the separation process, the objective is to

- Separate the light gases mostly C₁ and C₂ gases from oil
- Maximize the recovery of heavy components of the intermediate group in the crude oil
- Save the heavy group components in liquid product.

Separation methods can be broadly classified into two main methods (Abdel-Aal et al., 2003);

- 1. Conventional Methods
- 2. Modified methods: this involves
 - a. Including vapour recompression unit to the conventional method
 - b. Replacing the conventional method by a stabiliser and a recompression unit

For the purpose of this thesis, focus is placed on the conventional method of separation. The conventional separator is the first vessel through which the gas from the wellstream flows. For some special cases there are heaters, water knock out drums upstream of the separator. The conventional separator is designed to achieve the following;

- Decrease in the flow velocity and optimum retention time allowing for the separation of gas and liquid by gravity
- Operation above the hydrate point of the flowing gas.

The choice of the configuration of a separator is based on a number of reasons. *Figure 3.2* gives the classification based on the application and operating conditions. The vertical separator occupies less ground area and is easier to clean. The horizontal separator can handle foaming crude oil better and is claimed to be more economical for handling large gas volumes. The spherical separator is easier to install and is more compact and adaptable for portable use.

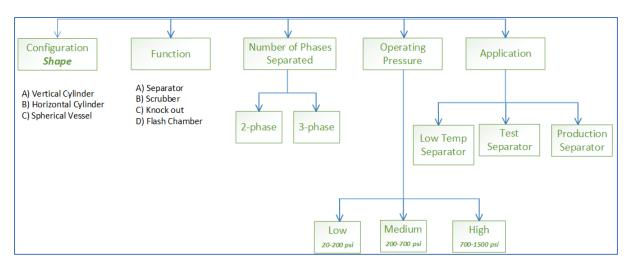


Figure 3.2: Separator classification (Abdel-Aal et al., 2003)

3.1.1.1 Components of a Separator

Gas-oil separators are equipped with control equipment for fluid level and pressure control as well as internal components to allow for the separation process. The control equipment include;

Liquid Level Controller – this is used to maintain the level of the fluid within the separator at a predetermined liquid height. This is achieved via a float and an automatic diaphragm motor valve on the oil outlet. The signal causes the valve to either open or shut, allowing or preventing more fluid into the separator hence maintaining the liquid level.

Pressure Control – the pressure control valve (PCV) is an automatic backpressure valve located on the outlet gas stream. The valve is set at a prescribed pressure that opens and closes automatically allowing more or less gas to flow out of the separator to maintain a fixed pressure inside the separator.

Pressure Relief Valve – this is a safety equipment used to prevent overpressure within the separator. It is set to a design pressure and vents pressure when the design limit is exceeded. The internal components of the separator include;

Mist Extractor – this section of the separator removes liquid mist or very fine liquid droplets from a gas stream via impingement, flow direction/velocity change, centrifugal force, filters or coalescing packs.

Several types of mist extractors are installed in separators. The types available are;

- *Wire-Mesh Mist Extractor* these are made from stainless steel wire which are wrapped into tightly packed cylinder.
- *Vane- Mist Extractor* This extractor type is made up of a series of closely spaced parallel and corrugated plates. It works on the principle that as the flow of fluid changes direction between the plates they impinge on the surface of the plates, thereby coalescing and falling down to the liquid section below.
- *Centrifugal Mist -Extractor-* this type of extractor utilises the principle of centrifugal force to separate the liquid droplets from the gas.

Within this thesis, the wire-mesh and vane type mist extractor are considered in the design as these are the most common design of internals in separators.

Inlet Diverters – This could be in the shape of a flat plate, spherical dish, a cone or centrifugal type. The inlet diverter causes the first bulk separation of liquid and gas. This occurs due to rapid change in velocity of the flowing gas stream and also separation due to difference in fluid densities.

Wave Breakers – Predominantly used in horizontal separators. The wave breakers are vertical baffles installed perpendicular to the flow direction to prevent unsteady fluctuations in the liquid level which would otherwise negatively affect the performance of the liquid level controller.

Defoaming Plates – Foam created in the separator occupies large space that could otherwise be available for the separation process. This causes a reduction in the separator efficiency. Also foam could affect the operation of the liquid level controller.

Vortex Breaker – This is utilised in the liquid exit of the separator to prevent vortices that could entrain gas in the liquid (*gas blowby*).

Sand Jets and Drains – Produced fluids from the wells may contain formation sand which could settle and accumulate at the bottom of the separator. Vertical separators are preferred in this case. In the case of horizontal separators, sand jets and drains may be installed where produced water is injected through the jets to fluidize the accumulated sand and is removed through the drains.

3.1.1.2 Design and Sizing of 2-phase Separators

The most important design factors in the design of separators are length and diameter and this depends on the fluid flow rates and operating conditions. The design factors considered are based on basic theories and assumptions to obtain as close to accurate design parameters for the gas model flow scenario. For the design factors, the following assumptions are made (Abdel-Aal et al., 2003):

- 1. No oil foaming takes place during the gas-oil separation otherwise retention time has to be drastically increased as foam occupies a large space in the separator and reduces the efficiency of the separation)
- 2. The cloud point of the oil and the hydrate point of the gas are below the operating temperature.
- 3. The smallest separable liquid drops are spherical ones having a diameter of $100 \,\mu m$.
- 4. Liquid carryover with the separated gas does not exceed 13l/MMsm³

The sizing and design criteria for vertical and horizontal separators differ and are based on gas or liquid sizing constraints. To understand the constraints it is required to consider the relative motion existing between particles during the separation process.

3.1.1.3 Theory behind Droplet Separation – 2-Phase Separators

Relative motion exists between the liquid particles and the surrounding fluid which is the gas particles. The liquid droplet has a greater density than the gas and tends to move vertically

downward under gravitational or buoyant force, F_g . The gas conversely exerts a drag force, F_d , on the liquid droplet in the opposite direction. The liquid droplet will accelerate until the frictional resistance of the fluid drag force, F_d , approaches and balances gravitational force, F_g . After which the liquid droplet continues to fall at a constant terminal or settling velocity. (Abdel-Aal et al., 2003)

The drag force is proportional to the droplet surface area and perpendicular to the direction of gas flow, and its kinetic energy per unit volume:

$$F_d = C_d \frac{\pi}{4} d^2 \frac{\rho_g u^2}{2}$$
(3.34)

whereas F_{q} is given by

$$F_g = \frac{\pi}{6} d^3 \left(\rho_o - \rho_g\right) g \tag{3.35}$$

where C_d is the drag co-efficient and, d is the diameter of the oil droplet, u is the settling velocity of the oil droplet, ρ_o , and ρ_g are densities and g is the gravitational acceleration. The settling terminal velocity, u, is reached when $F_d = F_g$. Equating equations 3.34 and 3.35 gives the droplet settling velocity as:

$$u^2 = \frac{8}{6}g \frac{\rho_o - \rho_g}{\rho_g} \left(\frac{d}{C_d}\right)$$

The droplet diameter expressed in microns is given as $1\mu m$ and acceleration due to gravity as $9.81 m/s^2$ the above equation gives:

$$u_{s} = 3.617 \times 10^{-3} \left[\left(\frac{\rho_{o} - \rho_{g}}{\rho_{g}} \right) \frac{d_{m}}{C_{d}} \right]^{1/2} \quad m/s$$
(3.36)

3.1.1.4 Separator Gas Capacity

To evaluate the sizing of a separator the gas capacity of the separator is determined. The volumetric flow rate of the gas processed by the separator is related to the cross-sectional area and the maximum allowable gas velocity.

$$Q_g = \frac{A_g u}{35.313} \qquad m^3/s \tag{3.37}$$

The above *equation 3.37* is given in m^3/s , however in standard pressure and temperature reported in million standard cubic metres per day MMscmd is given by

$$Q_g = 0.0865 \left(\frac{P}{TZ}\right) A_g u \quad MMscmd \tag{3.38}$$

which gives the gas velocity as

$$u = 0.09967 Q_g \left(\frac{TZ}{P}\right) \left(\frac{1}{A_g}\right) \frac{m}{s}$$
(3.39)

3.1.1.5 Separator Liquid Capacity

The *liquid capacity* of the separator is given by the volume occupied by the liquid and the retention or residence time, t. This is given as below where $1\text{ft}^3/\text{min} = 0.0283168\text{m}^3/\text{min} = 257$ bbl/day and V_o , is the volume of the separator occupied by oil and Q_o , the oil capacity of the separator.

$$Q_o\left(\frac{bbl}{day}\right) = 257 \ \frac{V_o}{t} \tag{3.40}$$

3.1.1.6 Vertical Separator Sizing

The sizing of a vertical separator is determined by the gas capacity constraint.

3.1.1.7 Gas Capacity Constraint

For vertical separators, the upward average gas velocity should not exceed the terminal velocity of the smallest liquid droplet to be separated. This is given by equating *equations* 3.36 and 3.39 which results

$$0.09967Q_g\left(\frac{TZ}{P}\right)\left(\frac{1}{A_g}\right) = 3.617 \times 10^{-3} \left[\left(\frac{\rho_o - \rho_g}{\rho_g}\right)\frac{d_m}{C_d}\right]^{1/2}$$
(3.41)

Substituting

$$A_g = \frac{\pi}{4} D^2$$

where D represents the internal diameter of the separator in metres and solving for D;

$$D^{2} = 35.085 Q_{g} \left(\frac{TZ}{P}\right) \left[\frac{\rho_{g}}{(\rho_{o} - \rho_{g})} \frac{c_{d}}{d_{m}}\right]^{1/2} \mathrm{m}^{2}$$

$$(3.42)$$

Equation 3.42 gives the *minimum acceptable diameter* of the separator. Larger diameters result in lower gas velocities hence better separation of the oil droplets from the gas. Smaller separator diameters give higher gas velocities hence causing liquid droplets to be carried over with the gas.

The drag co-efficient, C_d , is determined from the equation below which is related to the Reynolds number; this is given empirically for a spherical particle with *Re* in the range of $0.2 < Re < 2 \times 10^3$. (Abdel-Aal et al., 2003)

$$C_d = 0.34 + \frac{3}{Re^{0.5}} + \frac{24}{Re} \tag{3.43}$$

where the Reynolds number is given by

$$Re = 0.0049 \ \frac{\rho_g d_m u}{\mu_g} \tag{3.44}$$

The settling velocity is dependent on C_d and this is found by an iterative procedure.

- a. Assume a value of C_d ,
- b. Calculate the velocity, *u*, from *equation 3.36*
- c. Calculate Re from equation 3.44
- d. Calculate C_d , from equation 3.43 and compare to the assumed value
- e. If no match is obtained, use the calculated value of C_d , and repeats steps b-d until convergence is obtained.

3.1.1.8 Liquid Capacity Constraint

Liquid within the separator has to be retained within the separator for a specific retention time, t for the separation process. The volume of the separator occupied by the oil, V_0 , is obtained by the cross-sectional area by the height of the oil column, H (in.). *Equation 3.40* is therefore rewritten as

$$Q_o = 30.644 \left(\frac{\pi}{4}\right) \left(\frac{D}{12}\right)^2 \left(\frac{H}{12}\right) \left(\frac{1}{t}\right) \left(\frac{m^3}{day}\right)$$
(3.45)

or

$$D^2 H = 1.40355 \ x \ 10^{-4} \ Q_o t \quad \text{m}^3 \tag{3.46}$$

3.1.1.9 Sizing Procedure of Vertical Separator

The sizing procedure based on the above theory can be used to find the size of the vertical separator (diameter and seam-to-seam length or height).(Abdel-Aal et al., 2003)

- 1. Equation 3.42 is used to determine the minimum allowable vessel diameter
- 2. For diameters larger than the minimum, *equation 3.46* is used to determine combinations of *D* and *H*.
- 3. The seam-to-seam length, L_s , for each combination of D and H is determined using one of the following expressions as appropriate:

For D < 0.91 m

$$L_s = \frac{H+76}{39.3696}$$
 m (3.47)

For D > 0.91 m

$$L_s = \frac{H + D + 40}{39.3696} \quad m \tag{3.48}$$

4. For each combination of D and L_s , the *slenderness ratio*, *SR*, defined as the ratio of length to diameter is determined. Separators with SR between 3 and 4 are commonly selected.

3.1.1.10 Horizontal Gas – Liquid Separator Sizing

Similar to the vertical separator the size of the horizontal separator is determined by the gas and liquid capacity. For the horizontal separator the gas capacity constraint yields a relationship between the diameter and effective length of the separator. This along with a similar relationship derived from the liquid capacity constraint are used in determining the size of the separator. In reality, either the gas capacity constraint or the liquid capacity constraint governs the design and only one of the two constraints equations is used in determining the size. (Abdel-Aal et al., 2003)

The derivations below assume the gas and liquid phases each occupy 50% of the effective separator volume.

3.1.1.11 Gas Capacity Constraint

The average gas flowing velocity within the separator, u_g , is is obtained by dividing the volumetric flow rate, Q_g , by one-half of the separator cross-sectional area, A; that is,

$$u_g = \frac{Q_g}{0.5[(\pi/4)D^2]} \tag{3.49}$$

For Q_g , given in MMscmd the velocity is given as

$$u_g = 36.576 \frac{Q_g}{D^2} \left(\frac{TZ}{P}\right) \text{ m/s}$$
 (3.50)

The gas travels horizontally along the effective length of the separator, L (m), in a time, t_g , that is given by;

$$t_g = \frac{L}{u_g}$$
s (3.51)

This time must, at least, be equal to the time it takes the smallest oil droplet, to be removed from the gas, to travel a distance of (D/2) to reach the gas–oil interface. This settling time, t_s , is obtained by dividing the distance (D/2) by the settling velocity (in *equation 3.36*);

$$t_s = \left(\frac{D}{2 x 12}\right) \left\{ 0.01186 \left[\left(\frac{\rho_o - \rho_g}{\rho_g}\right) \frac{d_m}{C_d} \right]^{1/2} \right\}^{-1}$$
s (3.52)

Equating 3.51 and 3.52, substituting u_g from *equation 3.50* and solving for the product *LD*, gives;

$$LD = 326.71 \left(\frac{Q_g TZ}{P}\right) \left[\left(\frac{\rho_g}{\rho_o - \rho_g}\right) \left(\frac{C_d}{d_m}\right) \right]^{1/2} \text{m cm}$$
(3.53)

Equation 3.53 provides a relationship between the vessel diameter and effective length that satisfies the gas capacity constraint. Any combination of D and L satisfying equation 3.53 ensures that all oil droplets having diameter d_m and larger will settle out of the gas flowing at a rate of Q_g (in MMscmd) into the separator that is operating at a given pressure and temperature.

3.1.1.12 Liquid Capacity Constraint

The separator must have sufficient volume to retain liquid for a specified time. For a half full separator, the volume occupied by the liquid is given by

$$V_o = 0.01415 \left(\frac{\pi}{4}\right) \left(\frac{D}{12}\right)^2 L \text{ m}^3$$
 (3.54)

Substituting *equation 3.40*, the below is obtained

$$D^2 L = 0.04044 \, Q_o t \, \mathrm{m}^3 \tag{3.55}$$

The above equation provides another relationship between D and L that satisfies the liquid capacity (retention) time constraint.

3.1.1.13 Sizing Procedure of Horizontal Separator

Based on operating conditions of pressure, temperature, gas and liquid flow rates, gas and liquid properties and oil retention time) the size of (diameter and seam-to-seam length) of a horizontal separator can be determined as follows:

- 1. Assume various values for the separator diameter, *D*.
- 2. For each assumed value of *D*, determine the effective length, L_g , that satisfies the gas capacity constraint from *equation 3.53* and calculate the seam-to-seam length, Ls, from

$$L_s = \frac{1}{3.2808} \left(L_g + \frac{D}{12} \right) \mathbf{m}$$
(3.56)

3. For each assumed value of D, determine the effective length, L_o , that satisfies the liquid capacity constraint from *equation 3.55* and calculate the seam-to-seam length, Ls, from

$$L_s = \frac{4}{9.8424} L_o \,\mathrm{m} \tag{3.57}$$

- 4. For each value of D used, compare the values of L_g and L_o to determine whether the gas capacity constraint or the oil capacity constraint governs the design of the separator. The larger required length governs the design.
- 5. Select reasonable combinations of D and Ls such that the slenderness ratio SR is in the range of 3–5. Following that the cost and availability would then determine the final selection. The cost and availability criteria for separator selection is not covered in this thesis.

For the API determination, the allowable gas velocity, v, is determined from the *Souders Brown* equation. This gives the apparent velocity in the space open to gas flow.

$$v = K_s \left[\frac{\rho_l - \rho_g}{\rho_g} \right]^{0.5} \tag{3.58}$$

where K_s depends on all factors that affect separation other than density – vortex action, foaming, pulsating flow, liquid flowing in heads, presence of solids, degree of separation

needed, separation length, varying gas-liquid ratios etc. K_s values are determined from experience/field data and are dictated per API 12J standard. Examples are given in *Table 3.1* and *Appendix C.5*.

Туре	Height or Length	Typical Ks range		
	[<i>m</i> (<i>ft</i>)]	[ft/sec]	[m/sec]	
Vertical	1.52 (5)	0.12 to 0.24	0.037 - 0.073	
Vertical	3.05 (10)	0.18 to 0.35	0.055 - 0.107	
Horizontal	3.05 (10)	0.40 to 0.50	0.122 - 0.152	
	Other lengths	$(L/10)^{0.56}$	$(L/3.05)^{0.56}$	
Spherical	ALL	0.061 - 0.107	0.20 - 0.35	

Table 3.1: Ks Values based on API 12J (Campbell & Maddox, 1999)

To determine the volume flow rate based on the cross-sectional area, F, of the separator, the actual gas flow is given by

$$q_a = (\pi/4)(d^2)(v)(F) \tag{3.59}$$

From *equation 3.59* the diameter of the separator can be determined.

Vessel Length

Knowing the liquid actual volume flow rate, q_l , the fraction of cross-section area occupied by liquid, F_l , and the residence time required for separation, t, the effective length or seam-to-seam length of the separator can be ascertained

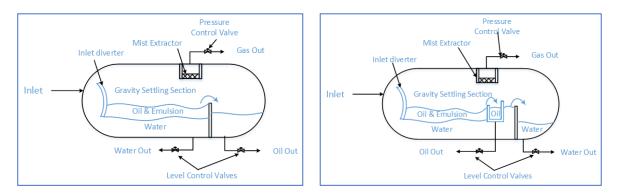
$$L_e = \sqrt{\frac{4tq_l}{\pi D^2 F_l}} \tag{3.60}$$

From *equation 3.60* the actual length can be determined from the effective length and diameter.

$$L = L_e + D \tag{3.61}$$

Based on the fluid properties, *Appendix C* shows an example of the separator calculator developed for the separation process. *Chapter 5* gives a brief on the spreadsheet set up and its practical use.

3.1.2 Three-Phase Separators


In most production operations, the produced fluid stream comprises three-phases: oil, gas and water. Water produced with the oil exists partly as free water and partly as water-in-oil emulsion. Free water produced with the oil will settle and separate from the oil by gravity. The emulsified water requires various methods of treatment including heat treatment, chemical treatment, electrostatic treatment, or a combination of these treatments in addition to gravity settling.

It is therefore advantageous to first separate the free water from the oil to minimize the treatment costs of the emulsion. Gas is mostly present along with the water and oil. If the

volume of gas is small relative to the liquid, the separation of the water from oil will govern the design of the vessel. However, when the volume of the gas to be separated from the liquid is large then either the gas capacity requirement or the water–oil separation constraints govern the vessel design. (Abdel-Aal et al., 2003)

Three-phase separators are either horizontal or vertical. The design of three-phase separators differ from two-phase in that the design must incorporate separation and level control of two liquids.

Figure 3.3 and *Figure 3.4* highlight two main designs of horizontal three-phase separators and the vertical three-phase separator.

Figure 3.3 Three-phase horizontal separator - weir type (left) and bucket and weir type (right) (Abdel-Aal et al., 2003)

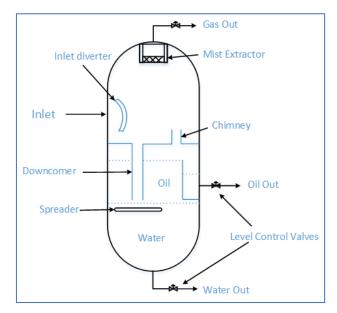


Figure 3.4: Three-phase vertical separator (Abdel-Aal et al., 2003)

The operation of the separator is similar to that of the two-phase separator. The produced fluid stream enters the separator and hits the inlet diverter, where the initial bulk separation of the gas and liquid takes place due to the change in momentum and difference in fluid densities.

The gas flows horizontally through the gravity settling section (the top part of the separator) where the entrained liquid droplets, down to a certain minimum size (normally 100 μ m), are

separated by gravity. The gas then flows through the mist extractor, where smaller entrained liquid droplets are separated, and out of the separator through the pressure control valve, which controls the operating pressure of the separator and maintains it at a constant value. The bulk of liquid, separated at the inlet diverter, flows downward, normally through a downcomer that directs the flow below the oil–water interface. (Abdel-Aal et al., 2003)

3.1.2.1 Theory behind Droplet Separation – 3-Phase Separators

For three-phase separator design the settling and separation of the oil droplets from water and of the water droplets from the oil must be considered in addition to the retention time constraint. This is unlike the two-phase separator where liquid retention time constraint is the only criterion used for determining the liquid capacity of two-phase separators.

With respect to separation of oil droplets from water, or water droplets from oil, a relative motion exists between the droplet and the surrounding continuous phase. An oil droplet, being smaller in density than the water, moves vertically upward under the gravitational or buoyant force, F_g . The continuous phase (water), on the other hand, exerts a drag force, F_d , on the oil droplet in the opposite direction. The oil droplet will accelerate until the fractional resistance of the fluid drag force, F_d , approaches and balances F_g after which the oil droplet reaches constant velocity or settling or terminal velocity.

Conversely, water droplets, are higher in density than the oil, hence move vertically downward under the gravitational or buoyant force, F_g . The continuous phase, on the other hand, exerts a drag force, F_d , on the water droplet in the opposite direction. The water droplet will accelerate until the frictional resistance of the fluid drag force, F_d , approaches and balances F_g ; thereafter, the water droplet continues to rise at a constant velocity or settling or terminal velocity.

$$F_d = C_d \frac{\pi}{4} d^2 \frac{\rho_c u^2}{2}$$
(3.62)

whereas F_g is given by

$$F_g = \frac{\pi}{6} d^3 (\Delta \rho) \tag{3.63}$$

where *d* represents the diameter of the droplet, u is the settling velocity of the droplet (m/s), ρ_c , is the density of the continuous phase (kg/m³), *g* is the gravitational acceleration (m/s) and C_d is the drag co-efficient. For low Reynolds number, *Re*, drag co-efficient is given by

$$C_{d} = \frac{24}{Re} = \frac{24 \,\mu' g}{\rho du} \tag{3.64}$$

where μ is the viscosity of the continuous phase (kg-s/m²) Substituting *equation 3.64* into *3.62* yields

$$F_d = 3\pi\mu' du \tag{3.65}$$

The terminal velocity, u_s , is reached when $F_d = F_g$, therefore equating 3.63 and 3.65 gives

$$u_s = \frac{(\Delta \rho)d^2}{18\mu'} \tag{3.66}$$

The typical units for droplet diameter are in micrometers and viscosity in centipoise. Representing the diameter by d_m and viscosity by μ in the equation becomes

$$u = 8.729 \times 10^{-9} \frac{(\Delta \rho) d_m^2}{\mu} \text{ m/s or}$$
 (3.67)

$$u = 5.447 \times 10^{-7} \frac{(\Delta \gamma) d_m^2}{\mu} \text{ m/s}$$
(3.68)

where $\Delta \gamma = \gamma_w - \gamma_o$, which is the specific gravity of oil and water respectively.

From *Equation 3.67* and/or *3.68* the droplet settling velocity is inversely proportional to the viscosity of the continuous phase. Oil viscosity is several magnitudes higher than the water viscosity. Therefore, the settling velocity of water droplets in oil is much smaller than the settling velocity of oil droplets in water. The time needed for a droplet to settle out of one continuous phase and reach the interface between the two phases depends on the settling velocity and the distance travelled by the droplet. In operations where the thickness of the oil pad is larger than the thickness of the water layer, water droplets would travel a longer distance to reach the water–oil interface than that travelled by the oil droplets. This, combined with the much slower settling velocity of the water droplets, makes the time needed for separation of water from oil longer than the time needed for separation of oil from water. Hence, the separation of the water droplets from the continuous oil phase is always taken as the design criterion for three-phase separators.

The minimum size of the water droplet or the minimum size of the oil droplet that must be removed from the continuous phase (either oil or water) depends on the operating conditions and fluid properties. Data for this can be obtained from simulations of field data or offset fields. In the absence of such data the minimum water droplet size to be removed from the oil is taken as $500\mu m$.

The required liquid volumes within the separator is determined by the retention time. The oil phase needs to be retained within the separator for a period of time that is sufficient for the oil to reach equilibrium and liberates the dissolved gas. The retention time should also be sufficient for appreciable coalescence of the water droplets suspended in the oil to promote effective settling and separation. Similarly, the water phase needs to be retained within the separator for a period of time that is sufficient for coalescence of the suspended oil droplets. This data can be obtained from laboratory test; however in the absence of such data it is common practice to use a retention time of 10 minutes for both oil and water. (Abdel-Aal et al., 2003)

3.1.2.2 Water Droplet settling constraint

Similar to the two-phase separator sizing criteria, the three-phase separator requires consideration of the gas capacity constraint, liquid retention time constraint as well as a the settling of water droplets in oil which gives the maximum diameter of the separator.

The additional constraint in the design of three-phase horizontal separators is that the oil retention time should be sufficient for the water droplets of certain minimum size to settle out of the oil. A conservative assumption is to take the water droplet to travel from the top of the oil pad. Hence the water droplet would have to travel a distance equal to the oil pad thickness, H_o , at a velocity (determined from *equation 3.68*). This gives;

$$t_{wd} = \left(\frac{1}{60}\right) \frac{(H_0/12)}{1.787 \times 10^{-6} (\Delta \gamma) d_m^2 / \mu_0}$$
min (3.69)

To obtain the maximum allowable oil pad thickness and *equating 3.69* to the oil retention time, t_o , this gives:

$$H_{o,max} = \frac{3.2512 \times 10^{-3} (\Delta \gamma) d_m^2}{\mu_o} \text{ cm}$$
(3.70)

 d_m is assumed to be 500µm in the absence of laboratory data.

For a separator half full of liquid the relation is

$$\frac{A}{A_w} = \left(\frac{1}{\pi}\right) \left[\cos^{-1}\left(\frac{2H_o}{D}\right) - \left(\frac{2H_o}{D}\right) \left(1 - \frac{4H^2}{D^2}\right)^{-0.5} \right]$$
(3.71)

where A_w and A are the cross-sectional area of the separator occupied by water and the total cross-sectional area of the separator, respectively.

For a separator half full of liquid the total cross-sectional area of the separator, A, is equal to twice the area occupied by the liquid, which is equal to the area occupied by water, A_w , and the area occupied by oil, A_o , given as $A = 2 (A_o + A_w)$. This gives the below relation

$$\frac{A}{A_w} = 0.5 \frac{Q_w t_w}{Q_o t_o + Q_w t_w}$$
(3.72)

Upon determination of ratio A/A_w ; the ratio of the oil pad height to the diameter H_o/D can be derived from equation 3.71. Knowing H_{omax} , and H_o/D the maximum diameter of the separator is obtained

$$D_{max} = \frac{H_{omax}}{H_o/D} \tag{3.73}$$

This gives the upper limit of the separator diameter. Different equations could be derived as opposed to the assumption made of 50% occupied by the different phases.

Gas Capacity Constraint

As with the two-phase separator the gas capacity constraint also holds with the three-phase separator. This gives a relationship between the separator diameter and the effective length where d_m is normally taken as 100µm;

$$LD = 326.71 \ \left(\frac{Q_g TZ}{P}\right) \left[\left(\frac{\rho_g}{\rho_o - \rho_g}\right) \left(\frac{C_d}{d_m}\right)\right]^{1/2} \text{m cm}$$
(3.74)

With diameters less than the maximum diameter from the water droplet settling constraint, *equation 3.74* is used to determine possible diameter and length combinations that meet the *gas capacity constraint*.

Retention Time Constraint

The space occupied by the oil and water should allow for sufficient retention time for separation. Since half of the liquid phase (both oil and water) occupy half of the separator volume; the diameter and effective length is given by

$$V_l = 0.0141584 \left(\frac{\pi}{4}\right) \left(\frac{D}{12}\right)^2 L \quad \mathrm{m}^3$$

where 1 barrel = 0.15898 m^3 ; this gives:

$$V_l = 7.2959 \times 10^{-5} D^2 L \text{ m}^3$$
 (3.75)

The volume of separator occupied by oil, V_o , is the product of the oil flow rate, Q_o , and the oil retention time, t_o . For Q_o in cubic meters per day and t_o in minutes, gives

$$V_o = 1.104 \times 10^{-4} t_o Q_o \text{ m}^3$$
 (3.76)

Similarly, the volume of the separator occupied by water, is the product of the water flow rate and the water retention time.

$$V_w = 1.104 \times 10^{-4} t_w Q_w \text{ m}^3 \tag{3.77}$$

Since $V_l = V_o + V_w$; this gives

$$D^{2}L = 2.8101 \left(Q_{o}t_{o} + Q_{w}t_{w} \right) \quad \text{cm}^{2}\text{m}$$
(3.78)

Selecting diameters smaller than the maximum diameter determined from *equation 3.73;* with combinations of diameter and length are obtained to satisfy the retention time constraint.

3.1.2.3 Sizing Procedure for three-phase horizontal separator

The procedure for determining the diameter and length of a three-phase horizontal separator can therefore be summarised as:

- 1. Determine the value of A/A_w from equation 3.72.
- 2. From equation 3.71 determine the value of H_o/D for the calculated A/A_w
- 3. Determine the maximum oil pad thickness, H_{omax} from equation 3.70 assuming d_m equal to 500 μ m
- 4. Determine D_{max} from equation 3.73
- 5. For diameters smaller than D_{max} , determine the combinations of D and L that satisfy the gas capacity constraint from *equation 3.74*, substituting 100 µm for d_m .
- 6. For diameters smaller than D_{max} , determine the combinations of D and L that satisfy the retention time constraint from *equation 3.78*.
- 7. Compare the results obtained in steps 5 and 6 and determine whether the gas capacity or retention time (liquid capacity) governs the separator design.
- 8. If the gas capacity governs the design, determine the seam-to-seam length of the separator, L_s , from

$$L_s = \frac{1}{3.2808} \left(L + \frac{D}{12} \right) \tag{3.79}$$

If the liquid retention time (liquid capacity) governs the design, determine L_s from

$$L_s = 4 \frac{L}{9.8424} \tag{3.80}$$

9. A reasonable diameter and length with a slenderness ratio (L_s/D) in the range of 3–5 is recommended. In some cases, the slenderness ratio might be different from the range of 3–5. In such cases, especially when the slenderness ratio is larger than 5, internal baffles can be installed to act as wave breakers in order to stabilize the gas–liquid interface.

For the stepwise sizing procedure using the API method, by using predetermined K_s values, (Svrcek & Monnery, 1993) reference *Chapter 5. Appendix C.9* presents for this method, L/D ratio guidelines in determining the optimum design.

3.1.2.4 Sizing Equations for Vertical Separators

Sizing of a vertical three-phase separator is done in a similar manner to sizing vertical twophase separators where the gas capacity constraint is used to determine the minimum diameter of the vessel and the liquid retention time constraint is used to determine the height of the vessel. For three-phase separators, however, a third constraint is added. This is the requirement to settle water droplets of a certain minimum size out of the oil pad. This results in a second value for the minimum diameter of the separator. Therefore, in selecting the diameter of the vessel, the larger of the minimum diameters determined from the gas capacity constraint and water settling constraint is considered as the minimum acceptable vessel diameter.

3.1.2.5 Water Droplets Settling Constraint

The condition for the settling and separation of water droplets from the oil is established by equating the average upward velocity of the oil phase, u_o , to the downward settling velocity of the water droplets of a given size, u_w . The average velocity of the oil is obtained by dividing the oil flow rate by the cross-sectional area of flow;

$$u_o = 3.627 \times 10^{-3} \frac{Q_o}{D^2}$$
 m/s (3.81)

And the water droplet settling velocity:

$$u_w = 5.446 \times 10^{-7} \frac{(\Delta \gamma) d_m^2}{\mu_o} \text{ m/s}$$
 (3.82)

For water droplets to settle out of the oil, u_w must be larger than u_o . Equating u_w to u_o would result, therefore, in determining the minimum diameter of the separator, D_{min} , that satisfies the water settling constraint. This results from *equation 3.81* and *3.82* gives;

$$D_{min}^2 = 4.3135 \ \frac{Q_0 \mu_0}{(\Delta \gamma) \ d_m^2} \ \mathrm{m}^2$$
(3.83)

Diameters larger than the D_{min} will yield a lower average oil velocity and ensure water separation.

3.1.2.6 Gas Capacity Constraint

The gas capacity constraint for a vertical separator yields an expression for the minimum vessel diameter

$$D_{min}^{2} = 3.263 Q_{g} \left(\frac{TZ}{P}\right) \left(\frac{\rho_{g}}{\rho_{o} - \rho_{g}} \frac{C_{d}}{d_{m}}\right)^{1/2} m^{2}$$
(3.84)

Diameters larger than the D_{min} will yield a lower gas velocity and ensure separation of liquid droplets of diameters equal to and larger than d_m out of the gas.

3.1.2.7 Liquid Retention Time (Capacity Constraint)

The separator volume must be sufficient to afford retention time to allow separation of entrained water droplets from the oil, separation of the entrained oil droplets from the water, and for the oil to reach equilibrium with the gas. Retention times are ideally determined from laboratory tests and range from 3-30 minutes depending on fluid properties and operating conditions.

The calculator assumes a retention time of 10 minutes to be used for both oil and water.

The volume (given in m^3) of each phase within the separator is given by;

$$V_o = 0.0283 \left(\frac{1}{12}\right)^3 \left(\frac{\pi}{4}\right) D^2 H_o \tag{3.85}$$

and

$$V_w = 0.0283 \left(\frac{1}{12}\right)^3 \left(\frac{\pi}{4}\right) D^2 H_w \tag{3.86}$$

Hence,

$$V_o + V_w = 1.286 \times 10^{-5} D^2 (H_o + H_w)$$
 (3.87)

The volume (in m³) is also calculated from the volumetric flow rate and the retention time (in minutes)

$$V_{o} = Q_{o} \frac{0.1589}{24x60} \frac{m^{3}}{min} \times t_{o}$$
$$V_{w} = Q_{w} \frac{0.1589}{24x60} \frac{m^{3}}{min} \times t_{w}$$

Then

$$V_o + V_w = 1.1035 x \, 10^{-4} \left(Q_o t_o + Q_w t_w \right) \tag{3.88}$$

Equating 3.87 and 3.88; we obtain

$$D^{2}(H_{o} + H_{w}) = 8.576 (Q_{o}t_{o} + Q_{w}t_{w}) m^{3}$$
(3.89)

3.1.2.8 Sizing Procedure for a three-phase vertical separator

The procedure for determining the diameter and seam-to-seam length of a three-phase vertical separator can therefore be summarised as:

- 1. Determine the minimum diameter that satisfies the water droplets settling constraint from *equation 3.83*.
- 2. Determine the minimum diameter that satisfies the gas capacity constraint from *equation 3.84*.
- 3. The larger of the two minimum diameters determined in steps 1 and 2 is then considered as the minimum allowable vessel diameter.
- 4. For various values of diameter larger than the minimum allowable vessel diameter, use *equation 3.89* to determine combinations of diameters and liquid heights.
- 5. For each combination, determine the seam-to-seam length (in metres) from the following:

For D > 0.914 m

$$L_s = \frac{1}{39.3696} \left(H_o + H_w + D + 40 \right) \tag{3.90}$$

For D < 0.914 m

$$L_s = \frac{1}{39.3696} \left(H_o + H_w + 76 \right) \tag{3.91}$$

It was assumed in the research a length-to-diameter ratio of 1.5 to 6.0 for the 2-phase horizontal and 3-phase horizontal separators. This was assumed as the optimum target for the equipment design.

3.1.3 Mechanical Design (Wall thickness and Weight)

The total weight of each separator assembly includes the weight of the empty vessel, the weight of the internals, and the skid weight. In addition, the associated piping also contributes to the weight of the equipment or unit and must be taken into consideration.

The weight of an empty vessel, W_b , (mass per unit length, given in kg/m, including heads is) is given by;

$$W_b = 3.47 \, dt$$
 (3.92)

where, d, is the internal diameter (cm) and, t, is the wall thickness (cm).

The wall thickness is estimated according to ASME standards. This is classified under Division 1 or Division 2. The wall thickness is a function of the diameter, d, operating pressure P and

the maximum allowable stress, SE. The wall thickness, t (in cm), is calculated based on *equation 3.93*. The maximum allowable stress, S depends on the material and grade and the division code for the application. The reference standards and allowable stresses for determining the wall thickness is given under *Appendix G* and *Appendix H*.

$$t = 2.54 x \frac{Pd}{2SE - 0.2P}$$
(3.93)

The weight of the empty vessel, W_{ν} , is the sum of the weight of the internals, W_I , the weight of the external nozzles, W_N , and L is the seam-to-seam length of the separator. The internal and nozzle weights are determined from correlations given under *Appendix C.6*.

$$W_{\nu} = W_b L + W_I + W_N \quad \text{kg/m} \tag{3.94}$$

For skidded equipment the following factors are used for the weight of the piping, W_p , weight of skid steel, W_s , weight of electrical & instrument and the weight of the total skid, W_{skid} , is given by *equations 3.95*

$$W_{p} = 40 \% W_{v}$$
(3.95)

$$W_{s} = 10 \% W_{v}$$

$$W_{E} = 80 \% W_{v}$$

$$W_{skid} = W_{v} + W_{P} + W_{E} + W_{s}$$

3.1.4 Equipment Footprint

The footprint of the separators are calculated based on assumptions of preliminary estimates of the skid dimensions. These differ for horizontal vessels and vertical vessels and give an initial approximation of the space occupied by the process equipment.

	Horizontal Vessels	Vertical Vessels	
Skid Width	I.D. x 2	I.D. x 2	
Skid Length	Seam-to-Seam length x 1.5	I.D. x 2.5	
Skid Height	I.D. x 2 +1 meter	Seam to Seam length x 1.5	

Table 3.2: Skidded equipment footprint relations

3.2 Heat Exchanger

Heat exchangers are fundamental in the gas processing system. They are utilised to optimise the processing system in terms of energy utilisation and area considerations which in effect significantly impact cost.

This work focuses on the sizing criteria for the design of heat exchangers based on the model scenario and considers simple guidelines and rules of thumb for heat exchanger selection. The heat exchangers looked at within the research are *Shell and Tube Heat Exchangers*. For this master thesis, heat exchangers used in offshore gas processing focus on gas cooling by sea water. The function of the heat exchanger is to provide the medium for cooling and separation of the heavy hydrocarbon components. This process is done to ensure the cricondenbar and dew point requirements are met for rich gas transport.

3.2.1 Heat Exchanger Design

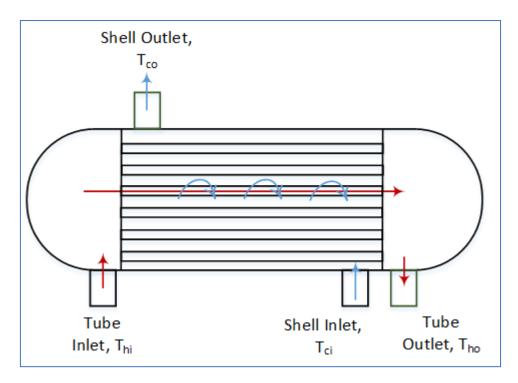
Many factors are considered in the design and selection of heat exchangers. These would include basic process-design variables and other factors such as temperature strains, thickness of tubes and shell, types of baffles, tube pitch, and standard tube lengths.

The design and manufacture of heat exchangers is given by standards provided by the Tubular Exchanger Manufacturers Association (TEMA). These standards identify heat exchanger size and type by designated numbers and letters.(TEMA, 1988)

3.2.1.1 Shell and Tube Heat Exchanger

For the purpose of this master thesis, for simplicity, consistency and for accurate comparison, all heat exchangers are assumed to be of the *single-pass shell and tube type*. In the design of heat exchangers, the amount of heat transfer must be determined and is given by the below equations for heat balance with no phase change of the gas and sea water.

$$Q = \dot{m}C_p(T_1 - T_2) \tag{3.96}$$


From *equation 3.96*, the duty of the heat exchanger could be determined from a heat balance given by *equation 3.97*. This assumes no phase change in any of the fluids.

$$Q = \dot{m}C_{pc}(T_{c,o} - T_{c,i}) = \dot{m}C_{p,h}(T_{h,i} - T_{h,o})$$
(3.97)

given;

Q - Heat Transfer, W

- m Mass flowrate, kg/s
- C_p Heat Capacity of the cold or hot streams, J/kg-K
- *T* Temperature of inlet or outllet hot stream or cold stream, K

Figure 3.5: Shell and tube heat exchanger (Counter-current flow)

Equation 3.98 refers to the heat transfer utilising the overall heat transfer coefficients, U, total surface area, A, and Logarithmic Mean Temperature Difference, *LMTD*, for single pass design. The heat transfer area generally refers to the effective outside bare surface area of the tubes, and the overall heat transfer co-efficient must also be based on this area.

$$Q = UA(LMTD).F \tag{3.98}$$

The local temperature difference between the hot stream and the cooling stream (sea water) will not have a constant value throughout a heat exchanger, and so an effective average value must be used in the rate equation. The appropriate average depends on the configuration of the exchanger. For simple counter-current and co-current exchangers the Log Mean Temperature Difference (LMTD) applies as represented in *Figure 3.6*; where GTTD refers to Greatest Terminal Temperature Difference and LTTD refers to Least Terminal Temperature Difference.

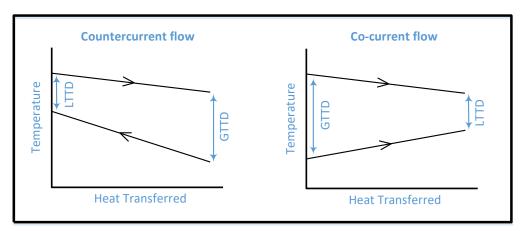


Figure 3.6: Counter-current flow and co-current flow

The factor F, refers to correction factor with exchanger configurations with flow passages being either partially countercurrent or co-current. The magnitude of the factor depends on exchanger configuration and stream temperatures as given in *Appendix D.1* (Gas Processors Suppliers Association (U.S.), 2012)

The logarithmic temperature difference is obtained from equation 3.99

$$LMTD = \frac{\Delta T_1 - \Delta T_2}{ln\frac{\Delta T_1}{\Delta T_2}}$$
(3.99)

Shell and tube exchanger nomenclature are characterised by the front end, shell type and rear end head type as depicted in *Figure 3.7*. Within HYSYS provides a default *AEL* configuration for the shell and tube heat exchanger.

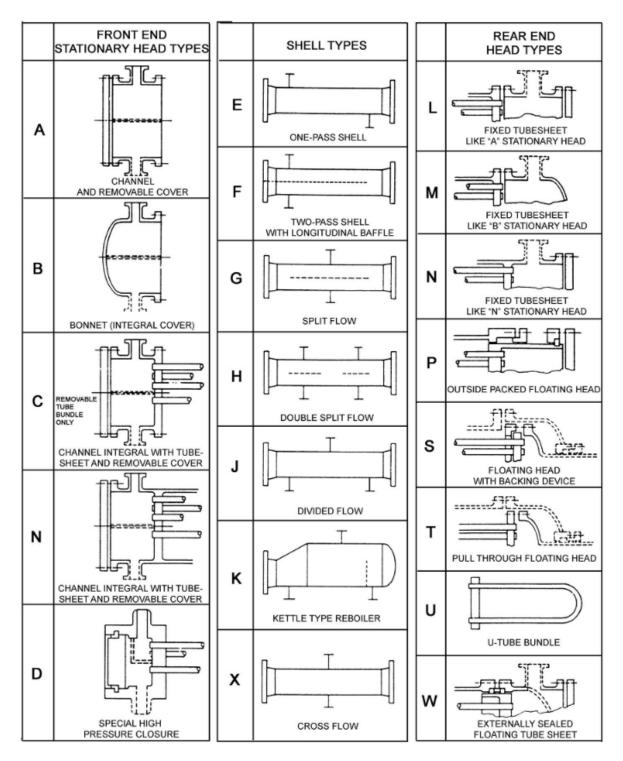


Figure 3.7: Shell and tube exchanger nomenclature courtesy of TEMA - (TEMA, 1988)

In sizing the heat exchanger, the heat transfer area is required which is derived knowing;

- Film heat transfer co-efficient
- Fouling factor
- LMTD (based on hot and cold stream temperatures)
- Duty of the heat exchanger
- Overall heat transfer co-efficient

Heat is transferred from a hot fluid to a cold fluid through the tube walls by the flowing process: convection to the hot fluid wall, conduction through the wall and subsequent convection from the wall to the cold fluid. Over a period with the heat transfer process; there is the formation and accumulation of scale and rust, deposits from the fluid, chemical reaction products between the fluid and wall material, and/or biological growth. This fouling has a low thermal conductivity and can increase the thermal resistance to heat flow from the hot fluid to the cold fluid. This thermal resistance of individual fluids is taken into account by a fouling factor, $R_f = 1/h$ (with units m².K/W); where h is the film transfer co-efficient.

For the purpose of the thesis and to obtain an approximate sizing of the heat exchanger, some pre-design criteria have been selected based on Heat Exchanger Design Handbook (Hewitt, 2002). The overall heat transfer co-efficient for unfinned tubular heat exchangers is found by utilising the empirical factors given by *equation 3.100*. (Shah & Sekuliâc, 2003)

$$\frac{1}{U} = \left(\frac{1}{h_{gas}} + R_{f,gas}\right)\frac{d_o}{d_i} + \frac{d_o ln(d_o/d_i)}{k_w} + \left(\frac{1}{h_{seawater}} + R_{f,seawater}\right)$$
(3.100)

where;

h

- film transfer co-efficient

- fouling resistance of gas (gas in tube, seawater on the shell side)

 d_o , d_i - outer and inner diameters respectively of the tube.

With reference to the Heat Exchanger Design Handbook (reference *Appendix D.3*) the parameters below are assumed. (Hewitt, 2002)

For seawater, the factors for calculating the overall heat transfer coefficient are given as;

h	$5000 - 7500 \text{ W/m}^2\text{K}$		
R_f	$10^{-4} to 2.5 \times 10^{-4} \text{ m}^2\text{K/W}$		

Within the calculator, $h_{seawater}$ is assumed to be 5000 W/m²K, $R_f - 1.5 \times 10^{-4}$ m²K/W and the gas parameters given as:

h	$250 - 400 \text{ W/m}^2\text{K}$ (1MPa)
	$500 - 800 \text{ W/m}^2\text{K}$ (10MPa)
R_f	$0 - 10^{-4} \text{ m}^2 \text{K/W}$

Within the calculator h_{gas} is assumed to be 500 W/m²K, $R_f - 10^{-4}$ m²K/W. Based on the assumed factors, the overall heat transfer co-efficient, U, is given as;

$$\frac{1}{U} = \left(\frac{1}{500} + 10^{-4}\right) \times 1.0 + 0 + \left(\frac{1}{5000} + 1.5 \times 10^{-4}\right)$$
(3.101)
$$U = 408.16 \sim 400 W/m^2 K$$
(3.102)

The area of the heat exchanger can be determined from *equation 3.98* knowing the heat transfer, overall heat transfer co-efficient and corrected LMTD.

Tube Side Parameters

The tube side specification can be determined from TEMA standards (reference *Appendix D.2*) where the outside parameters and the thickness of the tube are indicated and a standard length can be selected. (Gas Processors Suppliers Association (U.S.), 2012). The number of tube passes depending on the heat exchanger configuration is also specified (This has been assumed to be a single pass for the purpose of comparison within this master thesis)

The total length of tubes is determined knowing the total heat transfer area and the area of one standard tube. The diameter of the tube bundle is determined knowing the tube pattern; be it triangular or square. The *triangular tube configuration* is assumed as in *Figure 3.8*; where P_t is the tube pitch and d is the diameter of the tube. The pitch ratio given by *equation 3.103* has been assumed as **1.25**; this is normally the recommended ratio unless process requirements dictate otherwise. (Sinnott, Coulson, & Richardson, 2005)

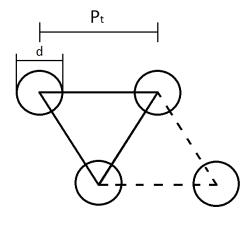


Figure 3.8: Triangular tube bundle configuration

$$\frac{P_t}{D} = 1.25$$
 (3.103)

For the triangular pitch, the diameter of the whole tube bundle is found from

$$D_{tight} = 2 \left(\frac{N_T Area_{tube}}{\pi}\right)^{0.5}$$
(3.104)

Where

Area_{tube, triangular} = 2
$$(PRd_o)^2 \frac{\sqrt{3}}{4}$$
 (3.105)

The corrected area may be calculated from *equation 3.106* for a tube pass greater than 1 (where n_p represents the number of tube passes in the shell) the cross sectional area can be added to account for the pass partition by multiplying the tube diameter by D_{tight} .

$$A_{corrected} = D_{tight} d_o (n_p - 1) + (N_T Area_{tube})$$
(3.106)

Shell Side Parameters

The shell side minimum diameter is related to the number of tubes, tube passes, tube diameter, tube pitch, tube pitch layout (as indicated above under Tube design parameters) and tube omissions to allow space for impingement baffles or to decrease the number of tubes in the baffle windows. This shell side minimum diameter is given by *equation 3.107* where two tube diameters are added to the corrected area for tube passes.

$$D_{s,min} = 2 \left(\frac{A_{corrected}}{\pi}\right)^{0.5} + 2d_o \tag{3.107}$$

Baffle Spacing

Heat exchangers are designed with baffles to divert the flow across the bundle to obtain a higher heat transfer co-efficient and also to give the tubes structural rigidity, preventing tube vibration and sagging. The number of baffles for a heat exchanger must be determined as these add to the weight of the heat exchanger. *Figure 3.9* depicts the baffle spacing and cut window in relation to shell.

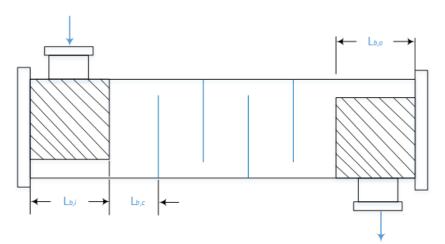


Figure 3.9 Heat exchanger baffle spacing- showing cut windows and entrance and exit sections

The number of baffles, N_b , within the heat exchanger is determined from *equation 3.108* knowing the length of the shell *L*, the central baffle spacing $L_{b,c}$ and the baffle spacings in the inlet and outlet regions $L_{b,i}$ and $L_{b,o}$ respectively. (Shah & Sekuliâc, 2003)

$$N_b = \frac{L - L_{b,i} - L_{b,o}}{L_{b,c}} + 1 \tag{3.108}$$

3.2.2 Mechanical Design (Wall thickness and Weight) and Footprint

The weight and footprint of the shell and tube heat exchanger is calculated based on assumptions of the empty shell weight as is done with the separator. The weight of the internals includes the weight of the tubes, the weight of the baffles as well as the nozzles. The weight of the empty shell is given from *equation 3.109* as;

$$W_{empty shell} = Shell Volume \times Density of Steel$$
 (3.109)

The total baffle weight is given as;

$$W_{baffle weight} = N_b (1 - Baffle Window height) \times$$
(3.110)
$$\pi \frac{(Baffle Clearance \times ID_{shell})^2}{4} \times wall thickness \times Density of Steel$$

In addition to the empty vessel weight, the tube weights are estimated from tube weight per meter given in *Appendix D.2*, the length and total number of tubes. This from *equation 3.111* gives the total weight of the tubes.

$$W_{tubes} = Tube Weight per meter x Tube Length x N total tubes$$
 (3.111)

For skidded equipment as is the case with separators, *equations 3.95* are used for the weight of the piping, W_p , weight of skid steel, W_s , weight of electrical & instrument and the weight of the total skid, W_{skid} .

3.2.3 Equipment Footprint

The footprint of the shell and tube heat exchanger skid is determined in the same manner as the separators i.e. from correlations highlighted in *Table 3.2*. This gives a preliminary estimation of the designed heat exchanger.

	Horizontal Vessels	
Skid Width	I.D. x 2	
Skid Length	Seam to Seam length x 1.5	
Skid Height	I.D. x 2 +1 meter	

3.3 Compressor

Within the offshore processing platform, compression of the gas is performed to transport the fluid in the gaseous phase to reach rich gas transport specification. The most commonly used compressors in offshore platforms are centrifugal compressors. They offer a high power to weight ratio and are manufactured in three configurations: *overhung impeller*, *horizontally split* or *vertically split* (barrel type).

Overhung impellers are commonly used in single stage service where the impeller is usually open, backward-bladed. Horizontally split cases are used in applications of high volume and lower pressure where the casings are split horizontally at the mid-section and repair and inspections are performed by removing the top half. The vertically split or barrel type compressors are used in high pressure and low volume applications and are maintained by removing the compressor barrel from the end of the compressor. More space is required in this case to facilitate removal, however, can be repaired more quickly with a spare barrel than horizontally split compressors. (Campbell & Maddox, 1999).

Compressor design is manufacturer specific and performance is based on in-house design techniques in improving the efficiency. The compressor is characterised by performance parameters specifically "*head*" and the theoretical head may be calculated using the isentropic or polytropic approach. The head is the amount of work per unit mass. In determining the size of the compressor which is manufacturer specific; the head requirement must be determined as well as the efficiency and the power.

This project focuses on centrifugal compressors as these are commonly used in offshore gas processing. *Figure 3.10* shows the coverage of centrifugal compressors in specific range of applications based on discharge pressure and inlet flow. For the purpose of sizing the compressor, data from a specific manufacturer (Elliott Group) has been obtained to obtain an approximate sizing. This is captured under *Appendix E.1*.

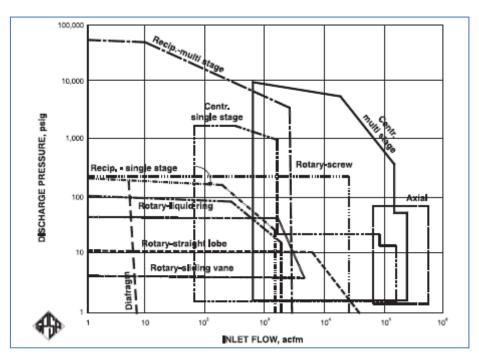


Figure 3.10: Compressor Coverage Chart (Gas Processors Suppliers Association (U.S.), 2012)

3.3.1 Performance calculations

The actual compression process follows a compression path given by the compressor efficiency, either isentropic or polytropic. *Figure 3.11* shows the isentropic compression process (1-2s) and polytropic compression process (1-2) which relates to infinite small isentropic compression steps along the actual compression path given by the compressor efficiency.

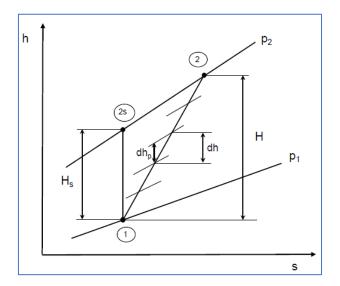


Figure 3.11: Compression process (Bakken, 2017)

The generalised polytropic process, at constant efficiency (polytropic) is defined as;

$$pv^n = constant \tag{3.112}$$

where

$$\frac{n-1}{n} = \frac{\kappa - 1}{\kappa \eta_n} \tag{3.113}$$

Given;

- *n* Polytropic exponent
- κ Isentropic exponent
- η_p Polytropic efficiency

p - Pressure

v - Volume

For real gas behaviour, the proper performance calculation has to distinguish between polytropic temperature exponent (n_T) and polytropic volume exponent (n_V) which takes into account the real gas behaviour when utilising the basic pressure-temperature and pressure-volume relationships.(Bakken, 2017)

The polytropic exponent varies through the compression process. This makes an exact analytical solution of the polytropic head, H_p , challenging. The exponent is assumed constant when solving for the polytropic head equation. This gives an approximate solution of the integral.

$$H_p = \int_{1}^{2} v dp \approx \frac{n_v}{n_v - 1} \left[p_2 v_2 - p_2 v_2 \right]$$
(3.114)

From the real gas equation and equation 3.112, the polytropic head becomes

$$H_p \approx f \, \frac{n_v}{n_v - 1} \, \frac{Z_1 R_o T_1}{MW} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n_v - 1}{n_v}} - 1 \right]$$
(3.115)

where Z is the compressibility factor, f takes into account the change in polytropic volume exponent n_v along the compression path and is given by equation;

$$f = \frac{h_{2s} - h_1}{\frac{\kappa_v}{\kappa_v - 1} [p_2 v_{2s} - p_1 v_1]}$$
(3.116)

At given suction and discharge conditions the polytropic volume exponent is given by *equation 3.117*.

$$n_{\nu} = \frac{ln\left(\frac{p_2}{p_1}\right)}{ln\left(\frac{\nu_1}{\nu_2}\right)}$$
(3.117)

The polytropic efficiency is given by *equation 3.118*. The polytropic efficiency is normally used by vendors when quoting compressor performance as this is essentially independent of compression ratio and gas composition and is determined from compressor tests. (Campbell & Maddox, 1999)

$$\eta_{p} = f \frac{n_{v}}{n_{v} - 1} \frac{(p_{2}v_{2} - p_{1}v_{1})}{(h_{2} - h_{1})}$$

$$= f \frac{n_{v}}{n_{v} - 1} \frac{Z_{1}R_{o}T_{1}}{MW(h_{2} - h_{1})} \left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n_{v} - 1}{n_{v}}} - 1 \right]$$
(3.118)

3.3.2 Total Compressor Head and Power

The total compressor head is derived from the polytropic head and the polytropic efficiency of the compressor. Based on experience from evaluation of compressor performance and from predictions from compressor vendors and process simulation systems; large deviations in isentropic and polytropic exponents as well as polytropic head and efficiency are obtained. This is largely due to different equations of state used in the performance analysis.

The total head, *H*, is calculated by the polytropic head given by *equation 3.119*.

$$H = \frac{H_p}{\eta_p} \tag{3.119}$$

The amount of power, P_{fluid} , required to compress a fluid, excluding the mechanical and friction losses is given by *equation 3.120*

$$P_{fluid} = \dot{m} H = \rho_1 Q_1 H \tag{3.120}$$

where

- ρ_1 Density at suction , kg/m³
- Q_1 Flowrate at suction, m³/s
- *H* Total Head, m

3.3.3 Mechanical Design (Wall thickness and Weight) and Footprint

The compressor weight and footprint was determined from the manufacturers catalog corresponding to the calculated power requirements. The power requirements as depicted are calculated based on parameters of the suction and discharge streams. Since compressor design is very much company specific, the weight and footprint were directly picked from the *Elliot Compressor catalog* highlighted in *Appendix E.1*. Based on the power requirements the main compressor configuration was the frame 10 in either vertical or horizontal configuration depending on the pressure limits.

3.4 Piping

There are numerous factors that need to be considered when designing, constructing and operating a pipeline system. These differ in terms of onshore and offshore requirements. The pipeline systems in offshore processing plants can either be liquid, gas or multiphase pipeline systems. The total pressure drop required to transport a specified volume of fluid from point A to point B will consist of

- Frictional component
- Elevation component
- Pipe delivery pressure

The scope of this master thesis with respect to pipeline design is limited to determination of optimum diameter to achieve a specified flow velocity. This relates to the mechanical properties of the pipe specifically to wall thickness which in turn relates to weight of the pipe. The preliminary design is based on assumption of steady-state isothermal flow in gas pipelines. The scope of this research does not go into pipeline calculations taking into account elevations.

The calculator developed for the pipeline draws up a basic preliminary design calculation for the offshore gas processing platform based on pressure, flow rate as well as mechanical properties of pipe to obtain the *optimum diameter*, *wall thickness* and *pipe weight* based on optimum gas velocity.

3.4.1 General Flow Equation

The fundamental flow equation for the steady-state isothermal flow in a gas pipeline; as shown in *Figure 3.12*, is given from *equation 3.121* given that in the pipe segment from section 1 to section 2, the gas temperature T_f is assumed to be constant (isothermal flow).

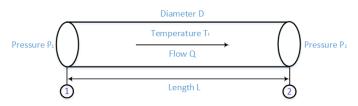


Figure 3.12: Pipeline illustration - steady flow

$$Q = 1.1494 x \, 10^{-3} \left(\frac{T_b}{P_b}\right) \left[\frac{(P_1^2 - P_2^2)}{(GT_f LZf)}\right] D^{2.5}$$
(3.121)

Equation 3.121 relates the capacity of a pipe segment of length L, based on an upstream pressure of P_1 and a downstream pressure of P_2 with the assumption that there is no elevation difference between upstream and downstream points; hence a horizontal pipe.

The *general flow equation* can be written in terms of transmission factor F, as depicted in *equation 3.122*; G represents the gas gravity

$$Q = 5.747 x \, 10^{-4} F\left(\frac{T_b}{P_b}\right) \left[\frac{(P_1^2 - P_2^2)}{(GT_f LZ)}\right] D^{2.5}$$
(3.122)

where the Transmission factor, F, and friction factor f are related by equation 3.123

$$F = \frac{2}{\sqrt{f}} \tag{3.123}$$

The transmission factor is inversely proportional to the friction factor. The friction factor indicates the resistance to flow a volume of gas through pipeline, whereas the transmission factor is a measure of the quantity of gas that can be transported through a pipeline.

When elevation difference between the ends of a pipe segment is included, the elevation should be incorporated in the length term in the general flow equation as in *equation 3.124*

$$Q = 5.747 \ x \ 10^{-4} F\left(\frac{T_b}{P_b}\right) \left[\frac{(P_1^2 - e^s \ P_2^2)}{(GT_f L_e Z)}\right] D^{2.5}$$
(3.124)

Where *e* represents base of natural logarithms and takes the value 2.718.

$$L_e = \frac{L(e^s - 1)}{s}$$
(3.125)

$$s = 0.0684G \left[\frac{H_2 - H_1}{T_f Z} \right]$$
 (3.126)

where *s* represents the elevation adjustment parameter; H_1 and H_2 represent the upstream and downstream elevation.

 L_e in equation 3.124 assumes a single slope between upstream point 1 and downstream point 2. For a series of slopes for a pipe segment L each individual subsegment that constitutes the pipe length from point 1 to point 2 is given by;

$$j = \frac{e^s - 1}{s}$$
(3.127)

j is calculated for each slope of each pipe subsegment of length L_1 , L_2 etc that make up the total length *L*. The equivalent length L_e in equation 3.124 is calculated by summing the individual slopes as defined below

$$L_e = j_1 L_1 + j_2 L_2 e^{s_1} + j_3 L_3 e^{s_2} + \cdots$$
(3.128)

The *j* terms are calculated from each *s* for each rise or fall in elevations of individual pipe subsegments. For the purpose of having a preliminary design; this thesis assumes the pipe segment to be horizontal. (Menon, 2005)

3.4.2 Compressibility factor

The compressibility factor, Z, is a measure of the deviation of a real gas from ideal gas. The compressibility factor is defined as the ratio of the gas volume at a given temperature and pressure to the volume the gas would occupy if it were an ideal gas at the same temperature and pressure.

There are several approaches to calculating the compressibility factor for a given gas temperature and pressure. The below are some of the methods used in the determination of Z. (Menon, 2005)

- a. Standing-Katz Method Method utilises the critical temperature and critical pressure to obtain the pseudoreduced temperature and pressure where these are used to derive *Z* factor from Standing-Katz charts. Appendix F.
- b. Dranchuk, Purvis and Robinson Method
- c. California Natural Gas Association Method (CNGA); this is given by;

$$Z = \frac{1}{\left[1 + \left(\frac{P_{avg} \, 344,400(10)^{1.785G}}{T_f^{3.825}}\right)\right]} \tag{3.129}$$

Which is valid for average gas pressure of more than 6.9 barg (100psig)

- P_{avg} = average gas pressure, psig; where
- T_f = average gas temperature, °R
- G = Gas gravity (air = 1.0)

Within this thesis, the compressibility factor is obtained from equations based on the Standing-Katz chart.

3.4.3 Velocity of Gas in Pipeline

The velocity of gas in a pipeline is a critical parameter to be determined at preliminary design. This is related to flowrate of the gas as an increase in the flowrate of the gas Q results in an increase in the velocity. The velocity of a gas at any point in a pipeline is given by equation

$$u = 14.7349 \left(\frac{Q_b}{D^2}\right) \left(\frac{P_b}{T_b}\right) \left(\frac{ZT}{P}\right)$$
(3.130)

where

- u = gas velocity, m/s
- Q_b = gas flowrate at standard conditions, m^3/day
- D = pipe inside diameter, mm
- P_b = base pressure, kPa
- T_b = base temperature, K
- P = pressure, kPa
- T = average gas flowing temperature, K
- Z = gas compressibility factor at the flowing temperature

The velocity of the gas as indicated increases with flowrate. As velocity increases, vibration and noise occur. Higher velocities cause erosion of the interior of the pipe over a long period of time. Hence, the upper limit of gas velocity or maximum *erosional velocity* is determined

from *equation 3.131*. An acceptable operational velocity is 50% of the erosional velocity. (Menon, 2005)

$$u_{max} = \frac{C}{\sqrt{\rho}} \tag{3.131}$$

where

 u_{max} = maximum or erosional velocity, *m/s* C = empirical factor, $kg^{0.5}m^{-0.5}s^{-1}$ ρ = gas density at flowing temperature, kg/m^3

The value of C is given for solids-free fluids based on continuous service and intermittent service. (Mokhatab, Poe, & Speight, 2006).

Further considerations of corrosion inhibition and the use of corrosion-resistant alloys for (API RP 14E, 1991) typical values of *C* are highlighted in *Table 3.3*.

Continuous Service	100
Intermittent Service	125
Solids-free, No corrosion or CRA material (continuous service)	150 -200
Solids-free, No corrosion or CRA material (intermittent service)	150-250

Table 3.3: Empirical constants for erosional velocity (API RP 14E, 1991)

Within this master thesis, the NORSOK standard for sizing of gas and liquid lines and determining the maximum erosional velocity is used. (NORSOK - Norwegian Oil Industry Association (OLF) & Standards Norway, 2006)

The gas lines are generally sized in order for the gas velocity not to exceed the acceptable noise level at the platform or create vibration problems. Per the standard this is given by *equation 3.132* (whichever is lowest);

$$V = 175 \left(\frac{1}{\rho}\right)^{0.43} \text{ or } 60m/s \tag{3.132}$$

V - maximum velocity of gas to avoid noise, (m/s)

 ρ - density of gas (kg/m³)

For the sizing of liquid lines, per the NORSOK standard (NORSOK - Norwegian Oil Industry Association (OLF) & Standards Norway, 2006), maximum velocity is given by *Table 3.4*.

	Maximum Velocities (m/s)			
Fluid	Carbon Steel	Stainless Steel	CuNi	GRP
Liquids ²	6	7	3	6
Liquids with Sand ³	5	7	N/A	6
Liquids with large quantities of mud or silt ³	4	4	N/A	N/A
Untreated Seawater ¹	3	7	3	6
Deoxygenated Seawater ²	6	7	3	6

Table 3.4: Maximum velocities for sizing of liquid lines

Notes:

- 1) For pipe less than DN200 (8"), see BS MA-18 for maximum velocity limitations.
- 2) For Stainless Steels and Titanium the maximum velocities is limited by system design (available pressure drop/reaction forces).
- 3) Minimum velocity shall normally be 0.8 m/s
- 4) Minimum velocity for CuNi is 1.0 m/s.

With intermittent service, the velocity can be increased to 10 m/s. For CuNi the maximum velocity limit is 6 - 10 m/s depending on the duration and frequency of operation.

With corrosion inhibited fluids in carbon steel piping, the velocity is limited to wall shear stress of 40 N/m^2 to maintain the corrosion inhibiting film at the pipe wall, with the corresponding maximum velocity:

$$V_{max} = \sqrt{\frac{80}{f\rho}} \quad (m/s) \tag{3.133}$$

f - Fanning's Friction factor = $\frac{1}{4}$ of Dacy's friction factor (Moody diagram)

 ρ - density of gas (kg/m³)

For the purpose of the master thesis, the production flowrates are defined so as not to exceed optimum velocity given under *equation 3.132* for gas lines. Also, maximum velocities of condensate and liquid lines are evaluated based on information from *Table 3.4* for liquids with stainless steel (SS) with 7m/s as maximum velocity.

This would mean the limitations of achieving high production flowrates are due to erosional, vibration and noise limits on pipelines as well as operational envelopes on subsea processing equipment.

3.4.4 Friction Factor

Accurate predictions of friction are required to understand the relation of pressure drop along a pipe at a given flow rate. This project looks only at Darcy friction factor f and not the Fanning friction factor (where 4 times the Fanning Friction factor results in the Darcy friction factor). For laminar flow, the friction factor is inversely proportional to the Reynolds number;

$$f = \frac{64}{Re} \tag{3.134}$$

For turbulent flow, the friction factor is a function of the Reynolds number, pipe inside diameter and internal roughness of the pipe. Many empirical relationships are available for finding f. These could be;

- Colebrook-White equation / S. E Haaland
- American Gas Association (AGA) equation

For the purpose of this project, the friction factor would be derived from the modified Colebrook equation; given as

$$\frac{1}{\sqrt{f}} \simeq -1.8 \log \left[\frac{6.9}{Re} + \left(\frac{\varepsilon/D}{3.7} \right)^{1.11} \right]$$
(3.135)

3.4.5 Wall thickness (ANSI/ASME Standards)

The pipeline transmitting gas is subjected to various stresses. These include internal pressure from the fluid being transported, external stresses which could be as a result of hydrostatic pressure acting on the pipe in the case of subsea pipeline or pressure as a result of the weight from soil in the case of a buried pipeline.

In a subsea application the minimum wall thickness will be dictated predominantly by the internal pressure as well as the external pressure. The minimum wall thickness will depend on internal pressure, pipe diameter and the material of the pipe. The larger the pressure or diameter, the larger the wall thickness required. Steel pipes made of higher strength materials can withstand higher pressures hence will require less wall thickness as compared to low-strength materials.

In determining the wall thickness of the pipe, standards have been set out by the American Society of Mechanical Engineers (ASME) depending on the mode of application. *Table 3.5* below highlights the piping codes used within the oil and gas industry.

ASME Piping Code	Application
ANSI/ASME Standard B31.1	Power Piping
ANSI/ASME Standard B31.3	Chemical plant and Petroleum Refinery
ANSI/ASIME Stalidard B51.5	Piping
	Liquid Transportation Systems for
	Hydrocarbons, Liquid Petroleum Gas,
ANSI/ASME Standard B31.4	Anhydrous Ammonia, and Alcohols. This
	standard applies to onshore oil pipeline
	facilities.
	Gas Transmission and Distribution Piping
ANSI/ASME Standard B31.8	Systems. This standard applies to gas
ANSI/ASIVIL Staluaru DS1.0	transmission, gathering, and distribution
	pipelines onshore.

Table	3.5:	ASME	Piping	Codes
-------	------	------	--------	-------

The thesis analyses the wall thickness based on ASME codes *B31.3*, *31.4* and *31.8*. The wall thickness based on ASME 31.3 is given by *equation 3.136*

$$t = t_e + t_{th} + \left[\frac{Pd_o}{2(SE + PY)}\right] \left[\frac{100}{100 - T_{ol}}\right]$$
(3.136)

where

t - wall thickness, mm - corrosion allowance, mm t_e - thread or groove depth, mm (reference Appendix G.3) t_{th} Р - allowable internal pressure in pipe, Pa - outside diameter, mm d_o S - allowable Stress for Pipe, Pa (reference Appendix G.4 and Appendix G.5) Ε - longitudinal weld-joint Factor (reference Appendix G.6) Y - derating factor (0.4 for ferrous materials operating below 900°F) - manufacturers allowable tolerance, % (12.5 pipe up to 20in. -OD, 10 pipe > 20 in T_{ol}

OD, API 5L

The wall thickness given by ASME 31.4 is given by equation 3.137

$$t = \frac{Pd_o}{2(FES_Y)} \tag{3.137}$$

where

- *t* wall thickness , *mm*
- *P* internal pressure in pipe, *Pa*
- d_o outside diameter of pipe, mm
- S_Y allowable Stress for Pipe, *Pa* (*reference* Appendix G.7)
- *F* derating Factor, 0.72 for all locations
- *E* longitudinal weld-joint Factor (1.0 seamless, ERW, double submerged arc weld and flash weld; 0.80 electric fusion (arc) weld and electric fusion weld, 0.6 furnace butt weld

The wall thickness given by ASME 31.8 is given by *equation 3.138*

$$t = \frac{Pd_o}{2(FETS_Y)} \tag{3.138}$$

where

- *t* minimum design wall thickness , *mm*
- *P* internal pressure in pipe, *Pa*
- *d_o* Outside diameter of pipe, *mm*
- S_Y minimum yield stress for Pipe, *Pa* (*reference Appendix G.8*)
- *F* design factor (reference *Appendix G.9*)
- *E* Longitudinal weld-joint Factor (1.0 seamless, ERW, double submerged arc weld and flash weld; 0.80 electric fusion (arc) weld and electric fusion weld, 0.6 furnace butt weld (reference Appendix G.10)
- *T* temperature derating factor (*reference Appendix G.11*)

In this calculator developed for the pipeline, the wall thickness has been determined using the ASME standards as well as from pipeline standard data.

3.4.6 Mechanical Design (Wall thickness and Weight) and Footprint

In pipeline design, the weight off the pipe is required to ascertain the cost of the pipeline. This is dependent on the material of construction, the size of the pipe taking into account the wall thickness based on the application and the corrosion allowance.

From the determined outside diameter and wall thickness, a simple correlation to determine the weight of the pipe based on steel as material is given as;

$$w = 0.0246 \times t \times (d_o - t) \tag{3.139}$$

where

w - pipe weight, kg/m

 d_o - pipe outside diameter, mm

t - pipe wall thickness, mm

The equation relates to pipes made of steel and incorporates the density of steel. For other pipe material, the ratio of densities can be applied to account for pipe weight for non-steel pipe. (Menon, 2005)

It is worth noting that for this master thesis, two general methods where investigated in determining the wall thickness. The first utilising the ANSI/ASME standards based on the application. The second, a more simplified approach, uses standard pipe parameters and optimum flowrates based on NORSOK standards (refer to *section 3.4.3*). Also, actual sectional pipeline lengths have not been considered or modelled in the absence of actual pipeline field data for comparison purposes. Weights of the pipeline have been presented as weight per metre (kg/m). Refer to *Appendix G.2*.

3.5 Pumps

3.5.1 Pump Design

There are various pump designs by numerous vendors for specific pumping applications. For the purpose of this master thesis, a basic centrifugal pump design is assumed to narrow down on basic design parameters needed to assess the performance and required parameters for the equipment analysis.

The pumps required for gas processing are seawater pumps to provide cooling for the shell and tube heat exchangers. With that in mind, the pump is needed to deliver an amount of seawater (flowrate) to achieve the necessary cooling or heat transfer for the process. Parameters to be investigated are;

- Head :- This includes the total differential head.
- Net Positive Suction Head Available (NPSHA) versus Net Positive Suction Head Required (NPSHR)
- Pump Power

Total Differential Head

The total differential head of a pump is determined by the flowrate of liquid being pumped and the systems through which the liquid flows. Frictional head losses exist in the system which work against the pump and the static head difference which is the difference in head between the discharge static head and the suction static head. This is given as

Total differential Head = Static Head difference + Frictional head losses

Static Head Difference

The static head difference across the pump is given as the difference in head between the discharge static head and the suction static head. Given as;

```
Static Head difference = discharge static head - suction static head
```

Discharge Static Head – This is the sum of the pressure existing at the surface of the liquid in the discharge vessel in this case within the heat exchanger (expressed as *head*) and the difference in elevation between the discharge line and the centre line of the pump. Given as;

Discharge static head = Discharge vessel gas pressure head + elevation of discharge pipe outlet - elevation of pump centre line

Suction Static Head - The static Suction Head is the sum of the gas pressure at the surface of the liquid in the suction vessel (expressed as head) in this case this is assumed as a tank of seawater and the difference in elevation between the surface of liquid in the suction vessel and the centre line of the pump.

Suction static head

= Suction vessel gas pressure head + elevation of suction vessel liquid surface - elevation of pump centre line

Frictional Head Losses

The Frictional losses in the system is comprised of the frictional losses in the suction piping and discharging piping system.

Friction in the piping system is as a result of viscous effects within the pipe. This is given from the Darcy-Weibasch factor (Cimbala & Cengel, 2008) in *equation 3.140*. The fittings, valves and bends contribute to the losses in the pipe. From the GPSA Engineering Data Book highlights equivalent lengths for valves and fittings for calculation of the losses within the piping system. This is captured under *Appendix I*. (Gas Processors Suppliers Association (U.S.), 2012)

$$\Delta P_L = f \, \frac{L}{D} \frac{\rho V_{avg}^2}{2} \tag{3.140}$$

where the pressure loss is dependent on

f - friction which is defined under

$$\frac{1}{\sqrt{f}} = -2.0 \log\left[\left(\frac{\varepsilon/D}{3.7}\right) + \frac{2.51}{Re\sqrt{f}}\right]$$
(3.141)

L - length of pipe, m

D - diameter of pipe, *m*

 ρ - fluid Density, kg/m^3

 V_{avg} - average Fluid velocity, *m/s*

Net Positive Suction Head Available (NPSHA)

The Net Positive Suction Head Available (NPSHA) is given as the difference between the absolute pressure at the pump suction and the vapour pressure of the liquid being pumped at the given temperature. The pressure at the suction needs to be above the vapour pressure to maintain the liquid being pumped in the liquid state and prevent the formation of vapour-filled bubbles. These bubbles could cause cavitation in the pumps which in turn causes undesirable noise, vibrations, reduction in efficiency and possible damage to the pump impeller blades. The calculated NPSHA must exceed the Net Positive Suction Head Required (NPSHR) given from the manufacturer specification for the specific pump and indicated on the pump curve. The NPSHA is given as;

NPSHA = Absolute Pressure Head at Suction – Liquid Vapour Pressure Head

Pump Power

Driver selection for pumps could range from electric motors, diesel engines and steam turbines. The pump power is given by

$$P = \frac{\rho g Q H}{\eta} \tag{3.142}$$

Where

P - power, W or kW

- ρ fluid density, kg/m^3
- g acceleration due to gravity, m/s^2

- Q flow rate, m^3/s
- *H* total differential head, *m*
- η pump efficiency

3.5.2 Submersible Pump (Seawater pump)

In the case of the master thesis, it should be noted that a submersible pump was modelled as this is normally the pump type used as a seawater pump for offshore installations. The principle behind the submersible pump is similar to that of a centrifugal pump where the *Total Dynamic Head* is determined by the pump levels and frictional losses.

The submersible pump is submerged below sea level placed in a protective casing or caisson. They do not require a pump room and are suspended from riser pipes in caissons mounted outside or integrated into the hull. With such a design the contribution of the submersible pump to footprint is negligible.

The seawater pumps in this application are used as source of power for the cooling media (sea water) in the heat exchangers during the processing of the gas. The seawater rates of the pump are determined by the heat transfer required in the heat exchanger of the shell side. *Figure 3.13* shows the pictorial view of the sea water pump layout.

The Total dynamic head (TDH) of the submersible pump is given by equation 3.143

$$TDH = Pumping Level + Vertical Rise + Friction Loss$$
 (3.143)

The *vertical rise* is been assumed to be zero as the discharge (horizontal pipe) has been assumed to be on the same level as the heat exchanger.

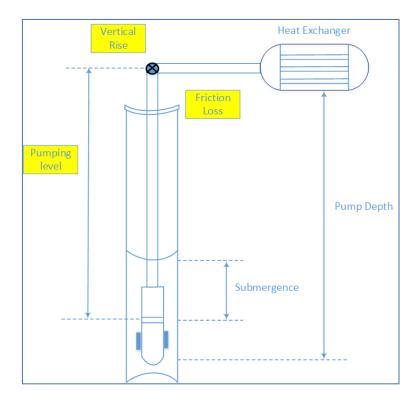


Figure 3.13: Submersible pump layout

The frictional losses are correlated from *Appendix I.2* knowing the pipe size and required flowrate.

$$Friction \ Loss = Total \ Length \ \times \ friction \ loss \ (pipe) factor + \ friction \ loss \ (fittings)$$
(3.144)

The submersible pump to deliver the required flow rate and head is chosen from the vendor information (courtesy of Framo) given under *Appendix I.3*.

3.5.3 Mechanical Design (Wall thickness and Weight) and Footprint

There are many pump manufacturers and designs for specific applications. The pump design flowrate total head and pump weight are obtained from the manufacturer's catalog. As pump designs are manufacturer specific the designs needed for the study were taken from Framo Submersible Model pump indicated in *Appendix I.3*.

4 Simulation of Offshore Gas Processing Plant

This chapter highlights the model build-up of the offshore processing plant. ASPEN HYSYS was used to simulate the plant based on the case study scenario highlighted in *Chapter 1*. The platform inlet of 90 bara and temperature of 5° C was given. The hydrocarbon cricondenbar specification of 90 bara and export conditions of 200 bara and 15°C are also specified for the process with a feed flow rate of 5MMscmd.

The model simulates the main processes to achieve the specifications given. These include;

- Saturation of the gas to model wet gas
- Condensate stabilisation
- Dew point control/ Cooling and separation
- Gas dehydration using component splitter

The objective is to utilise the simulation to develop the process equipment calculators based on the theory highlighted in *Chapter 3*. In addition, the simulation is used to perform analysis with respect to different thermodynamic models specifically Soave-Redlich-Kwong (SRK) and Peng Robinson (PR). Other life-of-field parameters are compared which are captured in the chapters that follow. The simulation was used in comparing the equipment calculators with the simulation based on different thermodynamic models;

4.1.1 Saturation of Gas

The gas conditions from the case study given were simulated to saturate the well stream at 180 bar and 80°C prior to entering the plant at inlet separator.

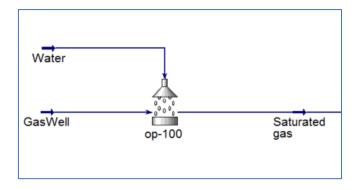
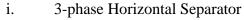



Figure 4.1: Saturated gas process

4.1.2 Condensate Stabilisation

The condensate stabilisation process is a 3-stage flash process. The liquid stream from the inlet separator is heated to aid in separation of the gas and liquid components which includes monoethylene glycol (MEG). The liquid component from the boot of the 1st stage 3-phase separator would be directed to the MEG unit for regeneration. The MEG regeneration stream is not included in the process simulation. The condensate stream undergoes further flashing from 77 bar to 8.8 bar and then to atmospheric conditions where stable condensate is obtained.

The 3-stage flash separation incorporates the use of:

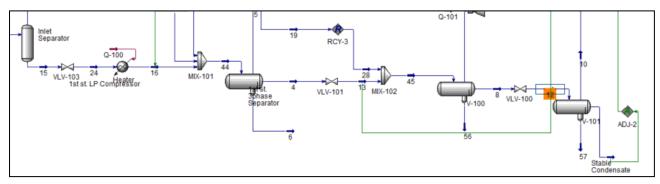


Figure 4.2: Condensate stabilisation layout

4.1.3 Hydrocarbon Dew Point Control

The hydrocarbon dew point of the process is achieved with the use of heat exchangers, scrubbers and compressors. By cooling the gas stream and separating out the heavy components the dew point of the mixture is controlled.

This is done to extract the liquid component for market and to prevent freeze out of the heavy components during transport. The cricondenbar specification of 90 bar was achieved with a Joule Thompson valve with pressure let down to 77 bar downstream of the valve.

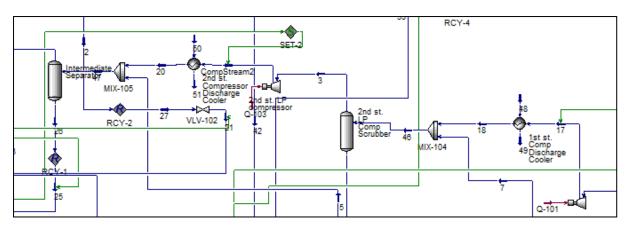
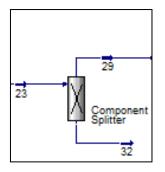



Figure 4.3: Hydrocarbon dew point control layout

4.1.4 Dehydration

The simulation developed on ASPEN HYSYS pertaining to the scope of this project does not include the absorption and regeneration portion of the processing plant. This could be considered for a future project. For the purpose of simulating the gas to meet the required water specification post the dehydration unit; a component splitter has been used to represent the dry gas specification from the dehydration unit. A water specification of 36 ppm has been simulated with the component as shown in *Figure 4.4*.

Figure 4.4: Component splitter (Dehydration specification)

4.1.5 Compression and cooling for export

The dry gas after meeting cricondenbar and dew point specification is compressed and routed via pipeline for further processing onshore. The compression and cooling process is undertaken in two stages with a heat exchanger and gas scrubber to remove any entrained liquids that could damage the export compressors. The dry gas is compressed and cooled to meet platform outlet specification of 200 bar and 15°C.

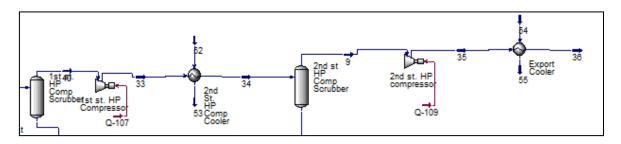


Figure 4.5: Export compression unit

The entire layout of the simulation performed on ASPEN HYSYS is shown in *Figure 4.6. Appendix J* shows the detailed stream and equipment property tables generated on ASPEN HYSYS.

Figure 4.6: Offshore natural gas processing - Simulation of base case using ASPEN HYSYS

5 Evaluation of Equipment Calculator with HYSYS.

This chapter demonstrates the use of the theory highlighted in *Chapter 3* in sizing equipment for the offshore gas processing plant. The sizing design calculations were performed for the separation train for condensate stabilisation, compressor scrubbers, heat exchangers, compressors and pipeline. The design calculations herein referred to as "*sizing calculator*" were developed in MS Excel. The ASPEN HYSYS software was utilised in simulating the offshore processing plant (investigating both SRK and PR EoS) and used in conjunction with the calculator. The calculator developed is not designed for rigorous in-depth equipment design however gives a basis for preliminary design and sensitivity. The analysis gives an output of the different parameters of length, width, height, performance parameters, weight and footprint of the equipment.

5.1.1 Separation Equipment

The offshore processing platform utilises different types of separation equipment for different objectives. Separation equipment is utilised for condensate stabilisation for flash separation, scrubbers for liquid removal from gas and to ensure compressor safe operation. The design of the *Separator Calculator* is based on different theoretical methods and best practices for separator design from *Petroleum and Gas Field Processing by Abdel-Aal H.K.; Mohammed Aggour and Fahim M.A.* as well as *Design Two-Phase Separators Within the Right Limits* and *Successfully Specify Three-Phase Separators by Monnery W. D and Svrcek W. Y. Figure 5.1* and *Figure 5.2* give the typical design layout of the calculator for both 2-phase and 3-phase separator.

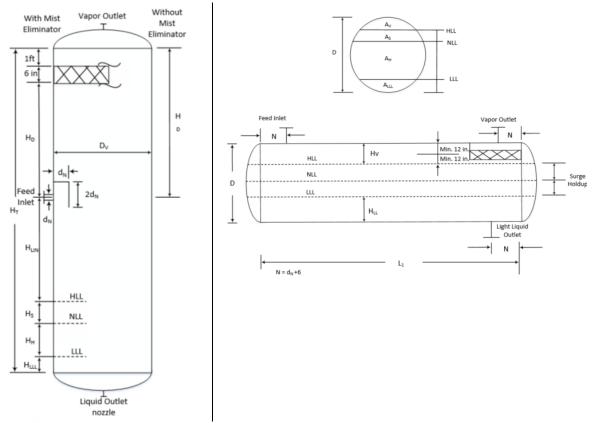


Figure 5.1: 2-Phase vertical and horizontal separator design layout

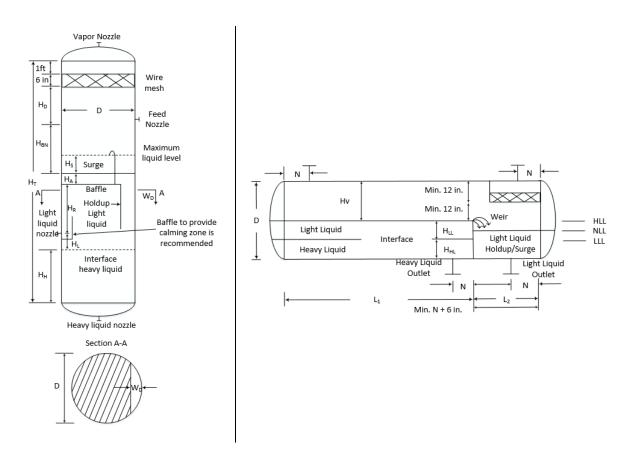


Figure 5.2: 3-Phase vertical and horizontal (weir configuration) separator design layout

The Separator calculator gives an overview design of the different types of separators within the modelled simulation. These are classified under;

5.1.1.1 Condensate Stabilisation

The separators utilised for condensate stabilisation within the process were a three-phase horizontal for the 1^{st} stage flash separator to include MEG Regeneration. This configuration or type was assumed and designed as a separator with interface control with weir as depicted in *Figure 5.2*.

Appendix C.4 gives a representation of the calculator developed and incorporates the functional design for 3-phase horizontal separator labelled as *1stStage 3-phase Separator* which is the 1st stage flash separation. The 2nd and 3rd stage flash incorporate 3-phase horizontal separators and have been designed as such within the calculator as depicted in *Figure 5.2*. The 3rd stage flash upon investigation did not contain any water for the production flowrate investigated. Hence, this was actually modelled as 2-phase horizontal separator to take into account no liquid water. An example of the procedure in setting up the design is also explained in detail under *section 5.1.1.4*.

Upstream of the condensate stabilisation process is the receiving separator, termed *Inlet Separator*, which is a 2-phase vertical separator designed to separate large volumes of gas and entrained liquids. This is depicted in *Figure 5.1. Appendix C.1* gives the representation of the

calculator. A detailed step-wise procedure in developing the calculator is presented under *section 5.1.1.3*.

The design of the separators was done to ascertain a length-to diameter ratio of 1.5 to 6.0 for the 2-phase horizontal and 3-phase horizontal separators. This was assumed as the optimum target for the equipment design. *Table 5.1* and *Table 5.2* show the results of the sizing calculator for the 3-stage flash separators utilising SRK and PR EoS for fluid characterisation.

5.1.1.2 Compressor Scrubbers and Liquid Removal (High Pressure Export Compressors)

Two-phase vertical separators are used upstream of the compressor as scrubbers for safety. The scrubbers are used to remove 3-5 volume % of liquid. The limits of the scrubbers have a carry-over specification of 13 litres/Msm³. Within the HYSYS model the separators for the high pressure (*HP*) compressors have been simulated to have approximately no liquids entering the 1st stage and 2nd stage HP compressor scrubbers and gives no sizing relation in HYSYS. Within the calculator on the other hand, a conservative design flowrate of liquids has been assumed to account for liquids carryover. The separators have been given the nomenclature 1st stage and 2nd stage High Pressure Compressor Scrubber. Table 5.3 and Table 5.4 captures the output of the calculator for the 2-phase HP compressor scrubbers.

Table 5.1 and Table 5.2 highlight the base case 3-phase separator calculator design results utilising input parameters from SRK EoS and PR EoS.

THREE PHASE SEPARATORS	Flow Rate sm ³ /h	Pressure bar	Temperatur e °C	Diameter m	Length m	L/D	Footprin t m ²	Volume m ³	Weight kg
3-Phase Horizontal									
1st Stage 3-Phase Separator	20,350	77	69.7	2.68	7.42	2.77	59.7	380	129,551
2nd Stage Separator	14,280	8.8	68.8	2.91	6.74	2.30	58.8	400	17,227
3rd Stage Separator*	7,464	1.013	20.0	1.58	2.38	1.51	18.8	78	1,157

Table 5.1: 3-Phase horizontal separator design parameters with Soave Redlich-Kwong EoS

Table 5.2: 3-Phase horizontal separator design parameters with Peng Robinson EoS

THREE PHASE		D	Temperatur	D : (I D	Footprin		
SEPARATORS	Flow Rate	Pressure	e	Diameter	Length	L/D	t	Volume	Weight
SEFARATORS	sm ³ /h	bar	°C	m	m		\mathbf{m}^2	\mathbf{m}^3	kg
3-Phase Horizontal									
1st Stage 3-Phase Separator	19,580	77	68.8	2.64	7.35	2.78	58.8	366	124,917
2nd Stage Separator	13,618	9	67.9	2.88	6.70	2.32	58.1	393	16,935
3rd Stage Separator*	7,252	1.013	20.2	1.57	2.37	1.51	18.5	77	1,154

*In the sizing calculator this was modelled as a 2-phase horizontal separator as HYSYS simulation did not have parameters for heavy liquid phase water.

Table 5.3 and *Table 5.4* highlight the 2-phase separator design specifications and makes a comparison of the calculator sizing design with the output parameters from HYSYS as input for the calculator. The output parameters from utilising SRK and PR are shown.

			Temperat					
TWO PHASE SEPARATORS	Flow Rate	Pressure	ure	Diameter	Height	Footprint	Volume	Weight
	sm ³ /h	bar	°C	m	m	\mathbf{m}^2	\mathbf{m}^3	kg
2-Phase Vertical								
Inlet Separator	214,200	77	0.7	1.70	7.6	14.5	180.2	52,603
2nd Stage LP Compressor	8,677	8.8	24.4	0.78	2.9	3.1	16.2	881
Scrubber	8,077	0.0	24.4	0.78	2.9	5.1	10.2	001
Intermediate Separator	13,870	77	38.9	0.59	13.2	1.7	35.8	11,814
Dehydration Scrubber	202,800	77	2.6	1.57	2.3	12.3	54.2	14,383
1st St. HP Comp Scrubber**	202,800	77	25.1	1.64	2.3	13.3	59.4	15,495
2nd St. HP Comp Scrubber**	202,800	120	30.0	1.49	2.2	11.0	48.1	19,659

Table 5.3: Separator design parameters with SRK EoS

Table 5.4: Separator design parameters with Peng Robinson EoS

			Temperat			_		
TWO PHASE SEPARATORS	Flow Rate	Pressure	ure	Diameter	Height	Footprint	Volume	Weight
	sm ³ /h	bar	°C	m	m	\mathbf{m}^2	\mathbf{m}^3	kg
2-Phase Vertical								
Inlet Separator	213,500	77	0.4	1.68	7.5	14.1	174.1	50,776
2nd Stage LP Compressor								
Scrubber	8,144	8.8	24.1	0.75	2.9	2.8	15.2	846
Intermediate Separator	13,240	77	38.7	0.57	11.6	1.6	29.7	9,908
Dehydration Scrubber**	202,900	77	2.3	1.55	2.3	12.1	53.1	14,107
1st St. HP Comp Scrubber**	202,900	77	25.1	1.62	2.3	13.0	58.4	15,243
2nd St. HP Comp Scrubber**	202,900	120	30.0	1.47	2.2	10.7	47.1	19,259

**In the process, these separators do not have a liquid phase. The separator was given a conservative design assuming liquid phase of density 1000kg/m^3 and a flowrate of $0.000001 \text{m}^3/\text{s}$

Based on the results of the separator design and as summarised in *Figure 5.3* and *Figure 5.4*, utilising different equations of state; either Soave-Redlich-Kwong or Peng Robinson parameters, has an effect on design sizing of the separator. This is due to the differences in PVT fluid characterisation derivation from the different equations of state. This creates differences input design parameters such as *density* and *flow rate* which in turn impacts the output design parameters such as diameter, height or length, footprint and weight required for effective separation of the gas and liquid phases. The figures show a relative difference between the two thermodynamic models with SRK as the reference. Majority of the parameters showed reduced results for PR as compared to SRK.

Due to these differences in PVT characterisation (example as seen from temperature in) as a result of different EoS as much as \sim 3.5% difference is observed in some design parameters such as weight in the 3-phase 1st Stage horizontal separator.

Another observation (from *Figure 5.4*) is the marked difference of ~35% in temperature specifically the Inlet separator (2-phase vertical) as well as the significant differences in the weight and volume calculations for the Intermediate separator. This noted difference could be as a result of the known varied liquid volumetric predictions between the SRK and PR EoS as these separators have large amount of liquids and also due to the fact that PR EoS underpredicts saturation pressure of reservoir fluids compared with the SRK EoS (Whitson et al., 2000).

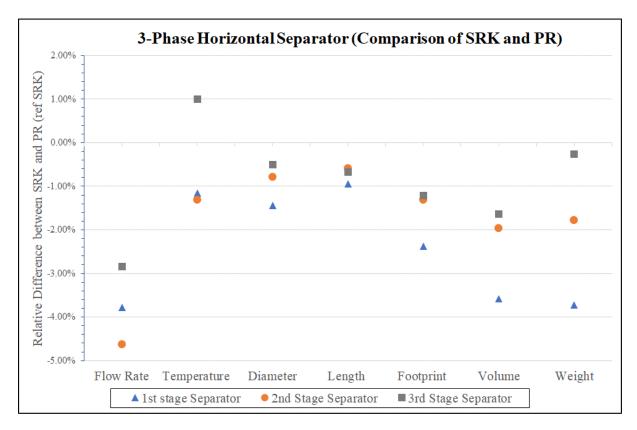


Figure 5.3: 3-Phase horizontal separator - Design comparison between SRK and PR EoS

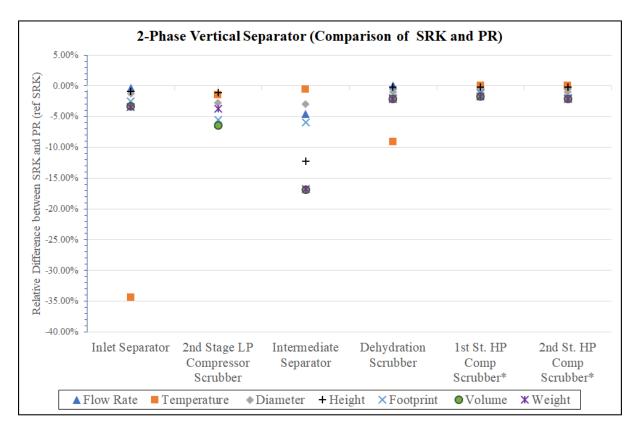


Figure 5.4: 2-Phase vertical separator- Design comparison between SRK and PR EoS

5.1.1.3 Stepwise procedure for developing the 2-phase Vertical Separator calculator using API/GPSA sizing constant Ks (Svrcek & Monnery, 1993)

Input parameters for the 2-phase vertical separator are obtained from the HYSYS model. Reference *Appendix C.12* for design sketch of the separator.

- 1. The input parameters are *liquid phase density*, *gas phase density*, *molecular weight of feed*, *gas flow rate in standard conditions* and *liquid actual volume flow rate*.
- 2. The sizing constant, K_s , is chosen from *Table 3.1* or from GPSA Standards for the application.
- 3. Obtain the vapour mass velocity from equation 5.145.
- 4. Determine the diameter of the separator from *equation 5.147 if* there is a mist eliminator add 0.1524 m for allowance.
- 5. Determine the *holdup* and *surge* time from *Appendix C.7.* for the application of the separator.
- 6. Determine the holdup volume, V_H , and surge volume, V_S , from equations 5.148 and 5.149.
- 7. Determine the low liquid level height, H_{LLL} from Appendix C.8.
- 8. Calculate the height from low liquid level to normal liquid level, H_H , and the normal liquid level to high liquid level (or high level alarm) H_S from *equations* 5.151 and 5.152.
- 9. Determine the height from high liquid level to the centreline of the inlet nozzle based on having an inlet diverter or not from *equation* 5.153 where d_N is calculated from 5.154.

- 10. Determine the disengagement height, from the centreline of the inlet nozzle to:
 - a. The vessel top tangent line if there is no mist eliminator or
 - b. the bottom of the demister pad from *equation 5.155*.
- 11. The total height of the vessel is determined from *equation 5.156*.

Weight Calculation

- 12. Determine the wall thickness and empty vessel weights from *equations 3.92, 3.93* and *3.94*.
- 13. The total weight of the vessel is calculated from *equation 5.157* knowing the weight of the internals, weight of the nozzles, piping, electrical and instrumentation and skid.

$v = K_s \left[\frac{\rho_l - \rho_g}{\rho_g}\right]^{0.5} m/s$ (5.145)	$u_{\nu} = 0.75K_{s} \left[\frac{\rho_{l} - \rho_{g}}{\rho_{g}}\right]^{0.5} m/s$ (5.146)
$D_{min} = \sqrt{\frac{4 q_a}{\pi v}} m$ (5.147)	$V_H = \frac{T_H Q_L m^3}{(5.148)}$
$V_S = T_S Q_L m^3 $ (5.149)	$V_S = \frac{T_S Q_L m^3}{(5.150)}$
$H_{H} = \frac{V_{H}}{(\pi/4)D_{v}^{2}} m$ (5.151)	$H_{S} = \frac{V_{S}}{(\pi/4)D_{v}^{2}} m$ (5.152)
$H_{LIN} = 12 + d_N$ (with inlet diverter in metres) $H_{LIN} = 12 + \frac{1}{2} d_N$ (without inlet diverter in metres)	$d_N \ge \frac{1}{3.2808} \left(\frac{4Q_m}{\frac{\pi 60}{\sqrt{\rho_m}}} \right)^{0.5} m$
(5.153)	$Q_m = Q_L + Q_v m^3/s$
	$\rho_m = \rho_l \lambda + \rho_v (1 - \lambda) \ kg/m^3$
	$\lambda = \frac{Q_L}{Q_L + Q_\nu}$
	(5.154)
$H_D = 0.5 D_V \text{ or a minimum of} H_D = 36 + \frac{1}{2} d_N (without mist eliminator)$	$H_T = H_{LLL} + H_H + H_S + H_{LIN} + H_D + H_{ME} $ meters (5.156)

EQUATIONS

$H_D = 24 + \frac{1}{2} d_N$ (with mist eliminator) Units in metres (5.155)								
$t = 2.54 x \frac{251}{(3.5)}$								
$W_{-3.47}$	' dt ka/m							
5	$W_b = 3.47 \ dt \ kg/m$ (3.93)							
	(5)							
$W_{\nu} = W_{\mu}L$	$\pm 107 \pm 107$							
$w_v - w_b L$								
(5.,	(
$W_p = 0.4 * Weight$	t of Empty Vascal							
r r								
(Weight o	or riping)							
$W_E = 0.08 * Weigh$	at of Empty Vessel							
$W_E = 0.03 * Weight (Weight of Electric$								
(weight of Electric								
$W_{S} = 0.1 * Weight$	t of Empty Vessel							
(Weight of								
Total weight = W	$V_p + W_E + W_S kg$							
(5.1	57)							

5.1.1.4 Stepwise procedure for developing the 3-phase Horizontal Separator (with weir) calculator

Input parameters for the 3-phase horizontal separator are obtained from the HYSYS model. Reference *Appendix C.11* for design sketch of the separator.

- 1. The input parameters are *density*, *viscosity flow rate holdup and surge times for different phases/fluids as well as pressure*.
- 2. The sizing constant, K_s , is chosen from *Table 3.1* or from GPSA Standards for the application.
- 3. Obtain the vertical terminal velocity, U_T from *equation 5.145*. and the conservative velocity, U_v , from *equation 5.146*.
- 4. Select the holdup and surge times from *Appendix C.7* and determine the holdup volume, V_H , and surge volume, V_S , from equations 5.148 and 5.149.
- 5. Obtain the initial L/D ratio from *Appendix C.9*.

- 6. Determine the diameter of the separator from *equation 5.158*. and the area, A_T , from *equation 5.159*.
- 7. Set the vapour space height H_v to to the larger of 0.2D or 0.6096 m.(0.3048m without a mist eliminator). Using Appendix C.10 calculate A_V from H_v/D and A_v/A_T .
- 8. Calculate low liquid level height, H_{LLL} , from equation 5.160 if $D \le 1.22m$; then $H_{LLL} = 0.2286m$. Knowing H_{LLL}/D and from Appendix C.10 can calculate A_{LLL} .
- 9. The weir height, H_W , is calculated from *equation 5.161*. If $H_W < 0.6096m$ increase *D* and repeat calculations from step 7.
- 10. Calculate the minimum length of the light liquid compartment to accommodate holdup/surge, L_2 from equation 5.162. The minimum length for L_2 to be $L_2 = d_N + 0.3048m$, where d_N is the nozzle diameter.
- 11. Set the interface at the height , $H_W/2$ to 50% of the separator height (or other). This is to define H_{HL} and H_{LL} .
- 12. For the liquid settling compartment, using the cross-sectional area of the heavy liquid H_{HL}/D determine A_{HL} , from *Appendix C.10* and from *equation 5.163* determine the cross-sectional area for light liquid, A_{LL} .
- 13. Calculate the settling velocity of the heavy liquid out of the light liquid phase, U_{HL} , and the light liquid out of the heavy liquid phase, U_{LH} , using equations 5.164 and the assumed K_s .
- 14. Calculate the settling time for water to rise out of the oil, t_{HL} , and the settling time for oil to rise out of the water, t_{LH} , by dividing the known oil or water pad heights by the respective settling velocity. Ie $t_{LH} = H_{HL}/U_{LH}$ and $t_{HL} = H_{LL}/U_{HL}$.
- 15. Determine minimum L_1 based on equation 5.165
- 16. This gives $L = L_1 + L_2$
- 17. Liquid dropout, ϕ , is calculated from *equation 5.166* and the actual vapour velocity, U_{VA} , from *equation 5.167*.
- 18. The minimum Length, L_{min} , required for vapour-liquid separation is calculated from *equation* 5.168.
- 19. If $L < L_{min}$ set $L = L_{min}$. If $L < < L_{min}$ then increase H_V recalculate A_V and repeat calculations from step 7.

If $L > L_{\min}$ design is acceptable.

If $L >> L_{min}$ (liquid Separation and Hold Up control) L can only be reduced and L_{min} increased if H_V is reduced. H_V may only be reduced if it is greater than minimum in L_2 calculation from step 10.

- 20. Determine L/D. If L/D <<1.5 then decrease D (unless already at minimum) if L/D >>6.0 increase D and repeat from step 6.
- 21. Determine the wall thickness as with equation 3.93.
- 22. Increase or decrease diameter by 0.1524 m and repeat calculations until L/D ranges between 1.5-6.0.
- 23. After obtaining optimum vessel size, calculate normal and high liquid levels from *equations 5.169* and H_{NLL} from *Appendix C.10*.

EQUATIONS

1	
$D = \frac{1}{3.2808} \left(\frac{16(V_H + V_s)}{0.6 \pi (L/D)} \right)^{\frac{1}{3}} m$	$A_T = \frac{\pi D^2}{4} m^2$
(5.158)	(5.159)
$H_{LLL} = 0.0254(0.5D + 7) m$	$H_W = D - H_V m$
(5.160)	(5.161)
$L_2 = \frac{V_H + V_S}{A_T - A_V - A_{LLL}} m$	$A_{LL} = A_T - A_V - A_{HL} m^2$
(5.162)	(5.163)
$U_{HL} = \frac{K_s(\rho_H - \rho_L)}{\mu_L} \text{ m/s}$ $U_{LH} = \frac{K_s(\rho_H - \rho_L)}{\mu_H} \text{ m/s}$	$L_1 = \max\left(\frac{t_{LH} Q_{HL}}{A_{HL}}, \frac{t_{HL} Q_{LL}}{A_{LL}}\right)$
(5.164)	(5.165)
$\phi = H_V / U_V$	$U_{VA} = Q_V / A_V$ m/s
(5.166)	(5.167)
$L_{min} = U_{VA} \phi m$	$H_{HII} = D - H_V$
(5.168)	$A_{NLL} = A_{LLL} - V_H / L_2$ (5.169)
	· · · ·

5.1.2 Heat Exchanger

The heat exchangers employed within offshore gas processing facility perform the main functions of dew point control by the method of cooling and separation and also to cool down the gas to meet export specifications.

The heat exchangers required to aid in the cooling separation process are the 1^{st} stage compressor discharge cooler and the 2^{nd} stage Compressor Discharge Cooler. The utility within the heat exchanger for cooling down the gas is sea water at 5°C and leaving the heat exchanger at maximum 20°C. As highlighted in *Chapter 3.2* the design incorporates assumptions made on the fouling factors and film transfer coefficients for natural gas and sea water at prevailing conditions. A counter current shell and tube (one pass) heat exchanger has been assumed. The fouling factor and film transfer coefficients used within the sizing calculator were assumed and are explained in *chapter 3.2* and given under *Appendix D.3*.

Appendix D.4 represents the design calculations for the designed heat exchangers.

Table 5.7 and *Table 5.8* show the output design sizing parameters for the calculator utilising the SRK and PR EoS. Based on the output of both designs as depicted from *Figure 5.5*; the evaluation showed differences as much \sim 7% in parameters such as duty. Differences as much as 3.2% were observed in parameters such as shell diameters and footprint covered by the heat exchanger with weight reaching a difference of 6%.

The largest differences in design parameters were observed in the 2nd stage discharge cooler.

	HOT: T1	HOT: T2	COLD: T1	COLD: T2	LMTD	Shell Diameter	Footprint	Weight	Overall U	Duty	Massflow
HEAT EXCHANGER	°C	°C	°C	°C	K	mm	m ²	kg	kg W/m ² K kW		kg/s
1st St. Compressor Discharge Cooler	112.4	25	5	20	47.3	258.5	1.6	617	408	195	1.04
2nd St. Compressor Discharge Cooler	163.5	30	5	20	67.8	420.5	3.8	2,310	408	1,142	3.11
1st St. HP Compressor Cooler	63.3	30	5	20	33.3	796.5	13.1	16,985	408	4,538	46.65
2nd St. HP Compressor Cooler	71.4	50	5	20	48.1	646.7	8.2	8,491	408	3,162	46.65

Table 5.5: Heat exchanger design parameters with SRK EoS

Table 5.6: Heat exchanger design parameters with PR EoS

	HOT: T1	HOT: T2	COLD: T1	COLD: T2	LMTD	Shell Diameter	Footprint	Weight	Overall U	Duty	Massflow
HEAT EXCHANGER	°C	°C	°C	°C	К	mm	m ²	kg	W/m2-K	kW	kg/s
1st St. Compressor Discharge Cooler	112.8	25	5	20	47.4	252.5	1.6	590	408	186	0.98
2nd St. Compressor Discharge Cooler	163.5	30	5	20	67.8	406.5	3.6	2,155	408	1,060	2.90
1st St. HP Compressor Cooler	62.9	30	5	20	33.2	792.7	13.0	16,807	408	4,475	46.78
2nd St. HP Compressor Cooler	70.9	50	5	20	47.9	637.1	8.1	8,238	408	3,048	46.78

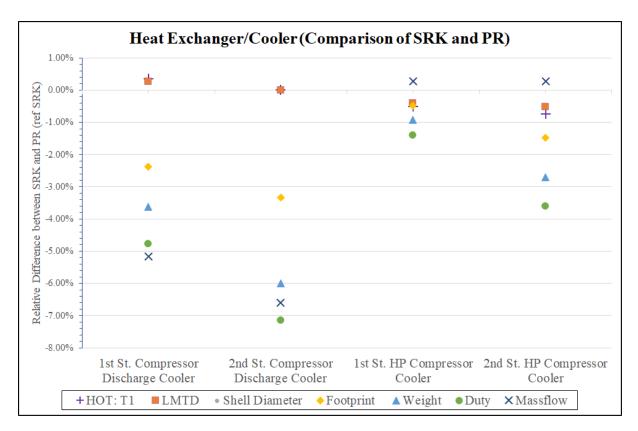


Figure 5.5: Heat exchanger design comparison between SRK and PR EoS

5.1.2.1 Stepwise procedure for developing the Heat Exchanger calculator

Input parameters for the heat exchanger are obtained from the HYSYS model.

- 1. The input parameters for both the tube and shell side are *density of fluid, mass flow rate* (tube fluid only), *specific heat capacity, temperature in, temperature out.*
- 2. For the purpose of the project the film transfer coefficients, h_f , and fouling factors, R_f , are obtained from empirical data from the *Heat Exchanger Design Handbook* highlighted in *Appendix D.3*
- 3. Determine the duty, *Q*, from *equation 3.96* which is equal on the tube and shell side. Based on this the *mass flow* of fluid on the shell side can be determined.
- 4. Calculate the corrected logarithmic temperature difference, C LMTD, from *equation* 5.170
- 5. Select the tube parameters from Appendix D.2. ie Wall thickness, OD, ID.
- 6. Select the tube length based on step 7.
- 7. Assumptions made for the design are highlighted below;
 - a. Tube length, L, for the 1st stage compressor discharge cooler set to 2m and shell side pressure rating set to 15 bar to meet TEMA and NORSOK minimum plate thickness.
 - b. Tube length, L, for the 2nd stage compressor discharge cooler set to 3m and shell side pressure rating set to 15 bar to meet TEMA and NORSOK minimum plate thickness.
 - c. Tube length, L, for the 1st stage HP compressor cooler set to 5m and shell side pressure rating set to 15 bar to meet TEMA and NORSOK minimum plate thickness.
 - d. Tube length, L, for the 2nd stage HP compressor cooler (Export Cooler) set to 4m and shell side pressure rating set to 15 bar to meet TEMA and NORSOK minimum plate thickness.
 - e. This is to ensure a length to diameter (L/D) ratio of 8-10.
- 8. The length of the heat exchanger is the tube length plus the head length.
- 9. Select the number of tube passes. (One-pass countercurrent assumed within this thesis).
- 10. The pitch ratio *PR* is assumed to be **1.25**. Determine the Tube Pitch, P_t , from *equation* 3.103
- 11. Determine the *cross-section area*, A_{cs} , of the tube knowing the ID.($A_{cs} = \pi ID^2/4$) and the area of a single tube , $A_{ST} = (2 \pi ID/2)L$
- 12. Determine overall heat transfer co-efficient, *U*, from *equation 3.100. and the* total transfer area, *A*, from *equation 3.98*.
- 13. Calculate the number of tubes knowing the total area and area of a single tube (A/A_{ST})
- 14. Determine the fluid velocity per pass from *equation 5.171* and adjust the tube size or length to obtain the optimum fluid velocity.
- 15. Select the required tube pattern; *Triangular* or *Square*. Calculate the tube pattern area based on *equation 3.105*.
- 16. Determine the area of total tube bundle from *equation 3.106*.
- 17. Calculate the minimum shell diameter from *equation 3.107. As in step* 7 the length to diameter ratio to be approximately equal to 8.

Weight Calculation

- 18. The weight of the heat exchanger is determined from correlation for vessels (shell weight /separator weight), the weight of the tubes and the weight of the internals (baffles).
- 19. The number of baffle plates must be determined to determine the weight. This is obtained from *equation 3.108*. The baffle cut window (window height to ID optimum between 25-35%) is assumed to be 30%. The baffle spacing is usually between 40-60% of the ID. This is assumed to be 50%. The weight of the baffle is determined from *equation 5.172*.
- 20. The tube weight is determined from *Appendix D.2* knowing the total number of tubes and the weight per meter.
- 21. The empty vessel weight of the heat exchanger is determined by adding the tube weight, baffle weight, flange weight and head weights.
- 22. For the total weight of the skid and vessel; the skid weights are determined from *equation 3.95*.

$Q = \dot{m}C_{pc}(T_{c,o} - T_{c,i}) = \dot{m}C_{p,h}(T_{h,i} - T_{h,o})kW$	$Corr \ LMTD = \frac{\Delta T_1 - \Delta T_2}{ln \frac{\Delta T_1}{\Delta T_2}}.F$
(3.96)	(5.170)
(3.96) $\frac{P_t}{OD} = 1.25$	$\frac{1}{U} = \left(\frac{1}{h_{gas}} + R_{f,gas}\right) \frac{d_o}{d_i} + \frac{d_o ln(d_o/d_i)}{k_w} + \left(\frac{1}{h_{seawater}} + R_{f,seawater}\right)$
	$+\left(\frac{1}{h_{seawater}}+R_{f,seawater}\right)$
(3.103)	(3.100)
(5.105)	
$Q = UA(LMTD).F \ kW$	Tot Tube area per pass $=$ $\frac{N_{tubes}}{A_{cs}}$
	$Volumetric \ Flow \ (tube) = \frac{\dot{m}}{\rho}$
	$Velocity = \frac{Volumetric\ flow}{Tube\ area}$
(3.98)	(5.171)
Area _{tube, triangular} = $2 (PRd_o)^2 \frac{\sqrt{3}}{4} m^2$	0.5
(triangular)	$D_{tight} = 2 \left(\frac{N_T Area_{tube}}{\pi} \right)^{0.5} m$
$Area_{tube, triangular} = (PRd_o)^2$ (Square)	
(3.105)	(3.104)

EQUATIONS

$A_{corrected} = D_{tight} d_o (n_p - 1) + (N_T Area_{tube})$	$D_{s,min} = 2 \left(\frac{A_{corrected}}{\pi}\right)^{0.5} + 2d_o$							
(3.106)	(3.107)							
$N_{b} = \frac{L - L_{b,i} - L_{b,o}}{L_{b,c}} + 1$	$\frac{Weight \ baffle = \ N_b \ (1 - 0.3) * \pi * L *}{\frac{(0.85 * ID)^2}{4} * t * \rho}$							
$L_{b,c} = 50\% of D_{s,min}$	t – wall thickness							
$L_{b,o} = L_{b,i} = 1.1 L_{b,c}$	ρ – density of steel							
(3.108)	(5.172)							
$W_b = 3.47$	7 dt kg/m							
(3.	92)							
1	t of Empty Vessel of Piping)							
2 0	ht of Empty Vessel cal and Instrument)							
5 5	$W_S = 0.1 * Weight of Empty Vessel$ (Weight of Skid steel)							
Total weight = 1	$Total weight = W_p + W_E + W_S kg$							
(5.1	57)							

5.1.3 Compressor System

The compressor calculator developed shows the sizing parameters used for the offshore centrifugal compressors. In determining the performance parameters, the stream parameters including the suction and required discharge pressures are required to determine parameters such as polytropic head, polytropic efficiency and total head.

As compressor design is supplier specific and trademarked, references from supplier equipment were used in determining the weight and footprint calculations. The 'Frame type' compressors from a supplier, Elliot Company, were used in defining weight and footprint. The supplier specifications are given under *Appendix E.1*.

The compressors utilised in the offshore platform can be divided into two. The compressors used in the liquid removal or cooling and separation process which are the *Low Pressure* compressors (*LP*) and the compressors required to meet export specifications termed *High Pressure* compressors (*HP*).

Table 5.7 and *Table 5.8* depict the performance parameters for the two main categories of compressors utilising the SRK and PR EoS.

It is observed from *Figure 5.5* (deviation from SRK) that PR EoS gives lower predictions of volumetric flowrates and power than SRK; however higher predictions of polytropic efficiency (except in the 2nd Stage LP Compressor). As information on compressor design is manufacturer specific, information from Elliot was used to obtain compressor configuration in relation to pressure limits, footprint and weight. Hence, information on weight and footprint is not represented for the different designs from the two EoS.

COMPRESSOR	Inlet Flow Rate	P1	Р2	T1	T2	Polytropic Efficiency	Power	Footprint	Weight	Frame 10 Configurati on
	m ³ /s	Bar	Bar	°C	°C	%	kW	m ²	kg	
1st st. LP Compressor	0.52	1.01	8.8	20.0	112.4	76	167	1.2	3,105	Horizontal
2nd st. LP Compressor	0.25	8.8	77	24.3	163.5	79	695	1.2	3,105	Vertical
1st st. HP Compressor	0.63	77	120	25.1	63.3	73	3,080	1.2	3,105	Vertical
2nd st. HP Compressor	0.39	120	200	30.0	71.4	76	3,547	1.2	3,105	Vertical

Table 5.7: Compressor design parameters with SRK EoS

Table 5.8: Compressor design parameters with PR EoS

COMPRESSOR	Inlet Flow Rate	P1	P2	T1	Τ2	Polytropic Efficiency	Power	Footprint	Weight	Frame 10 Configurati on
	m ³ /s	Bar	Bar	°C	°C	%	W	m ²	kg	
1st st. LP Compressor	0.50	1.01	8.8	20.1	112.8	77	159	1.2	3,105	Horizontal
2nd st. LP Compressor	0.23	8.8	77	24.1	163.5	79	643	1.2	3,105	Vertical
1st st. HP Compressor	0.60	77	120	25.1	63.0	76	2,946	1.2	3,105	Vertical
2nd st. HP Compressor	0.37	120	200	30.0	70.9	77	3,321	1.2	3,105	Vertical

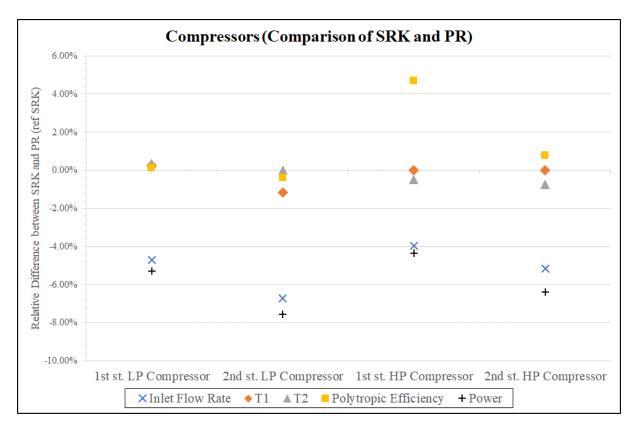


Figure 5.6: Compressor design comparison between SRK and PR EoS

5.1.3.1 Stepwise procedure for developing the Compressor calculator

The calculator is developed in parallel with ASPEN HYSYS model. Input parameters for the heat exchanger are obtained from the HYSYS model.

- 1. The input parameters for both the suction and discharge side are pressure, temperature, density of fluid, specific volume and enthalpy. Also, additional input parameters required on the suction side are flow rate, compressibility factor and molecular weight.
- 2. Determine the *polytropic exponent* from *equation 3.117*.
- 3. Determine the *pressure ratio* and calculate the *polytropic head*, H_p , from *equation* 3.114 assuming the *correction factor*, f, is 1.0.
- 4. Determine the *polytropic efficiency* from *equation 3.173*.
- 5. Determine the *total head*, *H*, from *equation 3.119*.
- 6. Determine the *Power* of the compressor from *equation 3.120*.

Weight and Footprint

The weight and footprint of the compressor was determined from data from manufacturer to be able to obtain as accurate result as possible. The compressor utilised was a frame 10 in either vertical or horizontal configuration as depicted under *Appendix E.1*.

EQUATIONS

$n_{v} = \frac{\ln\left(\frac{p_{2}}{p_{1}}\right)}{\ln\left(\frac{v_{1}}{v_{2}}\right)}$	$H_{p} = f \frac{n_{v}}{n_{v} - 1} \frac{Z_{1}R_{o}T_{1}}{MW} \left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n_{v} - 1}{n_{v}}} - 1 \right]$					
(3.117)	(3.114)					
$\eta_p = \frac{H_p}{(h_2 - h_1)}$	$H = \frac{H_p}{\eta_p}$					
(3.173)	(3.119)					
$P_{fluid} = \dot{m} H = \rho_1 Q_1 H$						
(3.120)						

5.1.4 Piping

The piping analysis done for the offshore processing plant takes into account sizing of the gas, liquid or multiphase line. The analysis focusses on designing the pipeline to within a velocity below the erosional velocity and/or to prevent liquid fallout using industry standards. The analysis does not take into account modelling using different thermodynamic models.

The wall thickness for the different pipe configurations are determined based on pressure rating and the required international standards for gas processing, specifically; ASME/ASTM and API standards. The wall thickness of the pipe is evaluated in the calculator based on different pipe codes. This comprises;

- ANSI/ASME Standard B31.1 Power Piping
- ANSI/ASME Standard B31.3 Chemical plant and Petroleum Refinery Piping
- ANSI/ASME Standard B31.4 Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia, and Alcohols. This standard applies to onshore oil pipeline facilities.
- ANSI/ASME Standard B31.8 Gas Transmission and Distribution Piping Systems. This standard applies to gas transmission, gathering, and distribution pipelines onshore.

In addition to these standards, the NORSOK standard for optimum pipeline specifications was utilised as highlighted in *section 3.4.3*. This provided the benchmark in defining the production rates for maximum velocity in both gas and liquid lines. The optimum maximum velocity data for the pipeline system under the simulation is captured in *Appendix G.2*. The input data; density and volume flowrate was taken from the HYSYS model.

Appendix G represents the alternative design calculations for *piping* using the ANSI/ASME standards. The calculator was developed to determine the optimum sizing for the pipeline inside diameter based on erosional velocity as a limitation. Also the wall thickness and the weight of the pipeline was determined based on the different ANSI/ASME codes which is dependent on the application.

5.1.5 Evaluation Discussion

The equipment evaluation looks at the comparison of the different calculators developed in parallel with the HYSYS model. The analysis is performed with different thermodynamic models which generate different input PVT fluid parameters from HYSYS. Based on these input PVT fluid parameters (such as density, temperature, viscosity, pressure etc) a detailed study is done to investigate the effect of the different thermodynamic models on equipment sizing.

The differences in the calculator arises out of the differences in thermodynamic models and the methods in characterising the reservoir fluids. As mentioned earlier, there could exist substantial liquid volumetric predictions difference between the SRK and PR EoS as well as the fact that PR EoS underpredicts saturation pressure of reservoir fluids in comparison to the SRK EoS hence requiring a somewhat larger hydrocarbon/hydrocarbon (C_1/C_7 +) binary interaction parameters (BIP) for PR EoS (Whitson et al., 2000). There has also been some evidence that PR EoS gives slightly better performance around the critical point, making this EoS better suited for gas/condensate systems (Robinson et al., 1985).

These differences in fluid parameters arising from using different equations of state in designing processing equipment demands accurate predictions of fluid characterisation. As seen earlier in the chapter, notable differences in sizing parameters to design *Separators*, *Heat Exchangers* and *Compressors* evidently impact volume, weight and footprint which in turn reflect in the CAPEX and OPEX both in the preliminary design and operational phase.

From the analysis as shown in *Figure 5.7*, the total weight and footprint for the processing equipment was approximately 308 tons and 225 m^2 utilising the Soave-Redlich-Kwong Equation of State and 298 tons and 221 m^2 for the Peng Robinson Equation of State.

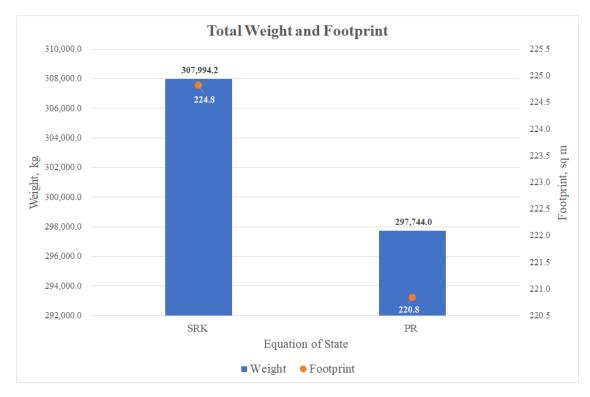
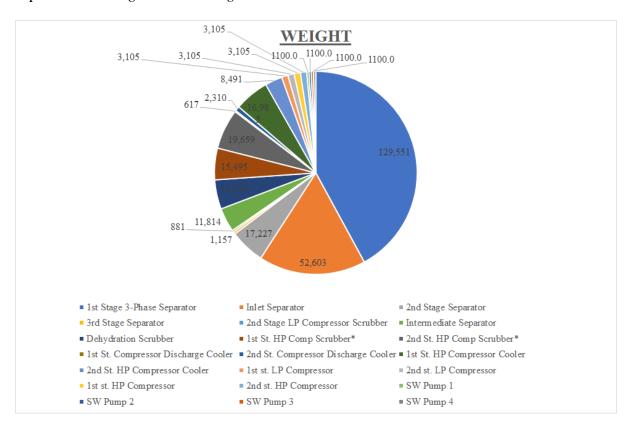



Figure 5.7: Total weight and footprint of processing equipment

The contribution of weight and footprint of the different equipment in the process plant are captured under *Figure 5.8* and *Figure 5.9*.

Figure 5.8: Weight contribution for different processing equipment (SRK)

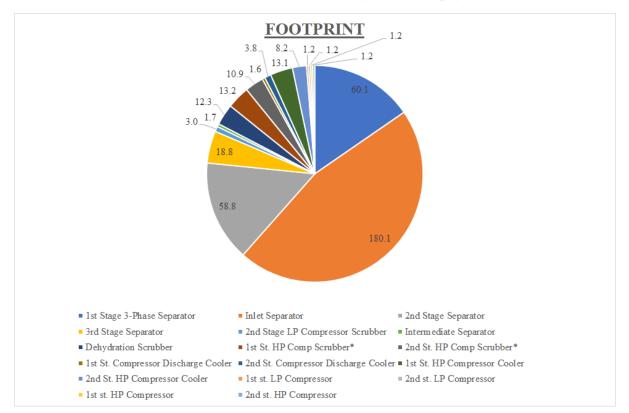


Figure 5.9: Footprint contribution for different processing equipment (SRK)

The results highlighted correspond to the base case well parameters given under *Table 1.1* and *Table 1.2*. A further evaluation performed comparing the calculators developed to the ASPEN HYSYS sizing models was done although this was not a major focus area. This is highlighted under *section 7.1.4*. Expected differences in output results of sizing between HYSYS model and the calculators were observed due to varied methods and empirical constants utilised. The following factors touch on a few of such differences;

Sizing Constant (K)

The sizing constant or empirical factor, K, within the calculator developed for both 2-phase and 3-phase separators were assumed based on API / GPSA standards as highlighted in *section* 3.1.

Holdup and Surge Times

Within the calculator developed, holdup and surge times were selected based on the service from *Appendix C.7*. Within the calculator the holdup-time of 5 minutes and surge time of 3 minutes was used.

Wall thickness

The wall thickness of the vessels both for the separator and heat exchanger as well as the pipeline were determined based on material of the vessel, the grade, the operating pressure of the conduit, working pressure of the material, the joint efficiency type and corrosion allowance. These calculations are taken from API and ASME standards as these differ based n ASME VIII Division I and Division 2 codes.

Heat Exchanger optimal design

The design of the heat exchanger involved various combinations of tube and shell dimensions. The optimal design was based on a length-to-diameter ratio of ~8-10 and a pitch ratio of 1.25 with a triangular tube pattern. An assumed and constant overall heat transfer co-efficient was set for the design. The internal baffle design specifically the cut and baffle spacing was taken to be 30% and 50% respectively and the clearance between baffles and shell taken as 85%.

6 Automation of Calculator with HYSYS.

The design calculators developed for each equipment was done independently of HYSYS equipment modelling. Inputs only were taken from HYSYS in order to obtain a detailed design analysis for each offshore equipment as explained in *Chapter 5*.

Further on, in order to perform any meaningful plant sensitivity analysis based on changing input parameters; be it from change in flowrate, pressure, temperature or to perform some economic analysis, it is imperative that interaction between ASPEN HYSYS and MS Excel (program used to develop the equipment calculators) is established. This was done utilising the

ASPEN Simulation Workbook (ASW) version 9. The workbook provided;

- an efficient user interface between HYSYS and MS Excel equipment design models
- a method to eliminate the need for writing lengthy programming code
- an interface for scenario study for process sensitivity analysis

aspen tech
Aspen Simulation Workbook
www.apentech.com 9-2016 Aspen Technology, Inc. AspenTech8, pspenOAE®, and the Aspen leaf logo are todemones or registered trademones or Aspen Technology, Inc. All rights reserved.
I I I I I I I I I I I I I I I I I I I

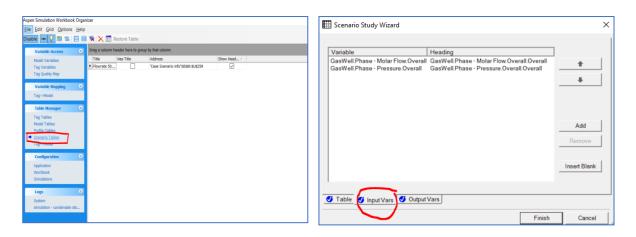
Figure 6.1: ASPEN simulation workbook

With such a tool various analysis could be performed to evaluate the impact of changes in lifeof-field parameters to equipment size. This master thesis focuses on the change in annual production flowrates, with every other parameter being equal, and the resulting impact on equipment sizing to determine the optimal design for the processing plant. This is done by assuming a scenario of different production profiles during the plant life.

6.1.1 Creating a Scenario

Within MS Excel, the Add-in for Aspen Simulation Workbook must be enabled to activate the workbook. This is *"Enabled"* on the ASW ribbon. The simulation case of the plant design is then loaded - *"Connect"* - to complete the interface between ASPEN HYSYS and MS Excel. (depicted by the *'red'* markings as shown in *Figure 6.2*)

.	5•∂- \$ •=		Separator	Separator - Equipment Calcul
File	Home Insert Page Layout Formulas Data Re	eview View Developer Aspen Simulation Workbook	Add-ins FOXIT PE	File Home Insert Page Layout Formulas Data Review View Developer Aspen Simulation Workbook: Add-ins FOXIT PDF Power Pivot
		Create - Gremplates - Context Section Green Copy Mode Actions St Assign Macro € Paste Table P ■ II	- () Lo - Ф Sn н	Conterte & Oreck Links simulation - condent+ Conterte & Interplates - Conterte Simulation - Ology Subscript & Oreck Links Subscript & Oreck Links Conterte & Contert & Conterte & Conterte & Conterte & Conterte & Conterte & Contert
	Workbook Simulations 1%	Design 15	Run	G the dealer i
AC149	<i>A</i> t ∨ × : •			δ. γ × 1 · − 9004
A 67	B C D E F G H	IJKL M	N	A B C D E F G H I J K L M
69 70 71 72 73 74 75 76 77	5-PHASE HORIZONTIAL SEPARATOR			12 12 13 14 15 15 15 15 15 15 15 15 15 15
78 79 80 81 82 83 84 85 86	D Light Liquid Interface	N Parameter Nor Parameter Statistics Diameter Statistics Parameter Nor Nor Statistics Parameter Nor Nor Nor Nor	Units 1 	7 10 </th
80 87 88 89 90 91	++	Low Liquid Level Height Footprint Volume Weight of Vessel Weight of Total Skid Weight	m ² m ³ kg kg	Conclusion for each frequency of the second frequency of the second frequency of the second frequency of the second for the second for the second frequency of the second


Figure 6.2: Aspen Simulation Workbook ribbon in Excel

With the incorporated functionality of the workbook, various scenarios could be run from the HYSYS simulation model by stating the "*Model Variables*" via the simulation workbook "*Organizer*" as shown in *Figure 6.2* and *Figure 6.3*.

ible 🛨 🖌 📜 🔁	BE	🛪 📾 🗙 🖳 🖬 🐻 🖬 🖷	🐴 🛱 🚱 🥵 Find ar	nd Replace Ct	heck Links					
Variable Access	(2)	Drag a column header here to group by that								
Model Variables		Name	Value	Units	Status	Variable Name	Object ID1	Object L	Container	Contain
Tag vanables		GasWell.Phase - Molar Flow.Overall	8811	kgmole/h	Specif	Phase - Molar Flow	Overall		GasWell	GasWel
Tag Quality Map		43.Phase - Pressure.Overall	77	bar	Calcul	Phase - Pressure	Overall		43	43
and found make		43.Calculator Object.Mass Density.Corr	87.5884785529392	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Variable Mapping		43.Calculator Object.Mass Density.Corr	1027.82117424256	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Tag->Model		43.Calculator.Molecular Weight	22.1358504548864		Calcul	Calculator	Molecular Weight		43	43
Tag->Model		43.Calculator.Std. Gas Flow	214517.424063893	STD_m3/h	Calcul	Calculator	Std	Gas Flow	43	43
Table Manager	(2)	43.Calculator.Act. Lig. Flow	0.0208467577635136	m3/s	Calcul	Calculator	Act	Lig	43	43
-		44.Phase - Pressure.Overall	77	bar	Calcul	Phase - Pressure	Overall		44	44
Tag Tables		44.Calculator Object.Mass Density.Corr	80.7104148126205	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Model Tables		44.Calculator Object.Mass Density.Corr	523.607171061953	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Profile Tables		44.Calculator Object.Mass Density.Corr	976.34438765324	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Scenario Tables		44.Calculator Object.Viscosity.Correlati	0.0154108319931767	cP	Calcul	Calculator Object	Viscosity	Correlatio		
Tag->Model		44.Calculator Object.Viscosity.Correlati	0.142509742458999	cP	Calcul	Calculator Object	Viscosity	Correlatio		
	۵	44.Calculator Object.Viscosity.Correlati	0.407283470937673	сP	Calcul	Calculator Object	Viscosity	Correlatio		
Configuration	8	44.Calculator Object.Act. Liq. Flow.Corr	0.0189004509573584	m3/s	Calcul	Calculator Object	Act	Liq		
Application		44.Calculator Object.Act. Liq. Flow.Corr	0.000273180475497371	m3/s	Calcul	Calculator Object	Act	Liq		
Workbook		44.Calculator.Std. Gas Flow	20701.788551532	STD_m3/h	Calcul	Calculator	Std	Gas Flow	44	44
Simulations		45.Phase - Pressure.Overall	8.8	bar	Calcul	Phase - Pressure	Overall		45	45
		45.Calculator Object.Mass Density.Corr	11.0219084766392	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
Logs	۲	45.Calculator Object.Mass Density.Corr	648.684516618684	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
System		45.Calculator Object.Mass Density.Corr	995.272711203166	kg/m3	Calcul	Calculator Object	Mass Density	Correlatio		
simulation - condensate	sta	45.Calculator Object.Viscosity.Correlati	0.0108866796064595	cP	Calcul	Calculator Object	Viscosity	Correlatio		
		45.Calculator Object.Viscosity.Correlati	0.306322748728559	cP	Calcul	Calculator Object	Viscosity	Correlatio		
		45.Calculator Object.Viscosity.Correlati	0.636241530215373	cP	Calcul	Calculator Object	Viscosity	Correlatio		

Figure 6.3: ASW model variables

Within the *Organizer*, input and output parameters to run any sensitivity analysis can be defined under a scenario and multiple cases can be run for different input parameters. The multiple cases are run to generate the output results defined by the organizer under the *"Scenario Study wizard"* as depicted in *Figure 6.4*. The number of cases to be run are also defined under the study wizard.

Creating Scenario table

Defining the input variables

ariable	Heading ^		Table Range Settings Address 'Case Scenario info'l\$D\$8.\$U\$259 Number of Cases 15	-
3. Phase - Pressure Overall 3. Calculator Object Mass Density Correlation Properties, Elem 1	43.Phase - Pres 43.Calculator Ob	+	Override None VICES Voltage data	_
Calculator Object Mass Density Correlation Properties Elem3 Calculator Molecular Weight		+	Table Settings	
Calculator.Std. Gas Flow	43.Calculator.Str		Title Flowrate 5000 mol/hr Show Title	
Calculator.Act Liq. Flow Phase - Pressure Overall	43 Calculator Ac 44 Phase - Pres		Outer Borders Table Style	•
Calculator Object Mass Density Correlation Properties Elem1				_
Calculator Object Mass Density Correlation Properties Elem2		Add	Inside Borders Title Style	•
Calculator Object Mass Density Correlation Properties Elem3	44.Calculator Ot 44 Calculator Ot	Add	AutoFormat None Headings Style	•
Calculator Object Viscosity.Correlation Properties.Elem1 Calculator Object Viscosity.Correlation Properties.Elem2	44.Calculator OE	Remove		<u> </u>
Calculator Object Viscosity Correlation Properties Elem3	44 Calculator Ot		Apply Column Best-Fit V Merge and Center Title	
Calculator Object Act. Liq. Flow.Correlation Properties.Elem2			Show Column Headings	
	44.Calculator Ot	Insert Blank	·)♥ Show Column Headings	
Calculator Strl. Cas Flow	44 Calculator Str		Put scenario data into columns instead of rows	
\sim				
Table 🕑 Input Vars			🚺 Table 🚺 Input Vars 🔮 Output Vars	_

Defining the output variables

Defining the number of cases in a scenario

The main parameters are created under the scenario table in excel. *Specific* or *multiple cases* can be run as shown in *Figure 6.5*. The outputs from the table are fed as inputs to the calculator to obtain the equipment plant design for each case. *Appendix K.1* gives an example of a complete scenario table with fifteen cases.

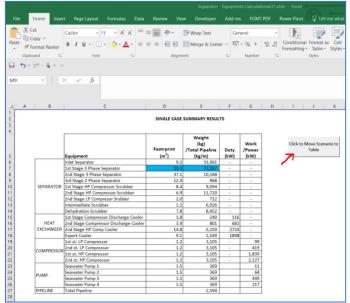
	ASPE	N SIMULATI	ON WORKBOOK DATA TABLE										× =	Run S	enarios						
1	_				7 Carell										_	_				_	_
Deators Action		Care 1	Calibei - 11 - A' A' 17 - %	· ·									~	Labe	State	us G	GasWell.Phase - Molar Flow.Overall	I.Overall	GasWell.Phase - Pressure.Overall.Overa	II 43.Pha	ase
Sachriel Prane - Hole Flos Dieral Overal Gachrel Prane - Prezzon Overal Overal 43 Prane - Prezzon Overal Overal	igreich)	Tell Of S	B I = 0 · A · · · · · ·		635 £485.59 18 80	104871	10415.00	14839 8	16818	14(5)	100	3 148 M	v	Case 1	2 Not r	un 10	0485.3944623019		180		
43 Calculate Object Place Danaty Convision Properties Danit Danit 43 Calculate Object Place Output Convision	(gin)	075194836	n koren kren kenn kenen henn	194825 47.53	4535 67 59 MEOS	87 58 M335	07.5394025	67 5396005	07 5514125	01 59 MICE	67 5394	01 531605	1	Case 1	3 Not r	un 10	0485.3944623019		180		
Prestauflenlfunl	istn?	807 83459	X Out	10453 1027.6	101 101000	1027-80453	12713459	107.63452	1027 62459	KCT0345	8 827.83	107 104 55		Case	4 Note		0485.3944623019		180		
11 Calculates Molecular Volger Molecular Vegite 43 Calculates Std. Gast Rox. Std. Gast Rev.	372,-5%	22.4078.40 22.4078.44 0.12.479.63	Ph Copy	29645 22 Vel 16.84 2548	91-01 22.9379646 8-34 254618-34	22,90964	22.907646 7 25481638 8.5/45/45	25418.14	256634	2568.0	 25495 	41 22 NOV61 14 25416-14	1.2.								
41 Calculates Art Lig Ros Art Lig Ros 64 Phage - Pegistes Overal Overal	4.5h 2#	03247945	Paste Options:	93 0.024	77 TT	2.0247545	0.5247049	10243945	1120548 77	0134706	0.0247	4) (0,4%)c3 7) 11	\checkmark	Case 1	5 Not r	run 10	0485.3944623019		180		
94 Calculator Object Place Density Convision Programme Danit Elevit 94 Calculator Object Place Density Convision	ight)	80.1172300 6	6	12202 00.637	3303 60.6973303	61.6572302	01.5773303 5	10.4773303	81.4972322	90.5173300	0 00.8973	000 00.0973303	1	Case 1	6 Not r	un 10	0477.9930073874		180		
Properties Daniel Plans Density Conversion Properties Daniel Daniel His Colouring Object More Density Conversion	igin7	523 30790 5		ECTED 5217	522 70788	523 75 75 1	523 70790 3	522 70/788	523 727 780	512 70796	523 775	100 523 70730		Case	7 Not r	10	0257.9551542322		180		
Properties (Dens) Dens) Properties (Dens) Dens) Hit Calculation (Dens) Victority Constation	igen?	375 30706 1	Paste Special	8005 975.2	1126 578.30200	275 2019 25	NR.30000 1	10006.010	370 301236	376 30700	575.20	100 576 3000	V								
HK Calculater Object Vesselber Celevitation HK Calculater Object Vesselber Celevitation HK Calculater Object Vesselber Celevitation	6	0.14753075	Smart Lookup										\checkmark	Case 1	8 Not r	run 99	910.25675382761		180		
44 Calculator Object Act, Lig Flow Condition Properties Elen 2, Elen 2	131	0.02240062 0	in Insert		1012 0.12248062								v	Case 1	9 Not r	un 92	290.73536483622		180		
44 Colouison Object Act. Lig. Play. Consistion Proceeders Eleval. Eleval.	n/h	0.00023034	Delete	2004 0.000	104 0.0022034	1.00023034	0.00223034 0	2.00023034	0.00023034	0.00023034	4 1000CS	154 0.00023034		Caro			475.73966603612		180		
Hi Caburano Bid Gaz Rox Sid Gaz Roy Hi Phase - Pressure Denal Overal	513_n3h	100.007	Elear Contents	6.3	4517 34 98.4517 8.6 8.6			2485-657	3485.457	205-01		517 24 85 4517 3.8 0.0									
16. Calculation Object Place Density Derivation Progenies Electric Electric 16. Calculates Object Place Place Density Completion	ight	1.072621	E Duick Analysis	78525 TL25	1907 n.1179501	tt Drizescr	narrason	107950	11.0179901	11.017952	1 1078	601 11 CH11601	✓	Case 2	1 Not r	un 82	3238.52422038008		180		
145 Calculator Object Place Density Constation Properties Eleval, Eleval 145 Calculator Object Place Density Constation	ight)	54.75 RG 6	filter	5802 641.7	102 648 75 102	648 75 802	6-875962 6	643 15 662	648 751922	68.580	643 751	648 75 1632				1	(
Properties Denil Ean3 45 Calculator Object Vinconis Consilation	ignt	325,225965 5	Sort	85 85 395.2	105 005,00005 5134 0.1000704	395,235,65	375,215 65 3	255.225.85	331,285-05	225.225 82	5 225.225	10 205,200 85				`					
H. Calculator Object Veccuts Constation H. Calculator Object Veccuts Constation	3	0.33956346		5345 0.5381	13-0 0 3075 545	0.506555-71	0.308515451 0	3 50656643	0 194203682.0		0 0 0000	54E 0.508505+5									
65 Calculation Object Arts Liss Flow Consulation Properties Bern2 Elem2	-31	0.01101621	C Insert Comment	34521 0.050	4621 DONINE21	2290452	02101621	028062	100621	0.193962	2.010	62 000062									
45 Calculator Object Art. Ltg. Filter Creadiation Properties Barrol Even)	-31	4,20275-06	Eormat Cells	75-08 4.2021	E-06 420272-06	4.2327E-06	420275-06	4.20278-06	420278-06			-06 4,21278-06	Sta	rting S	enario	(Case	e 3)				
4) Cabulator Del Gas Ros Std Cao Pere IE Phase - Phesees Dearad Dearad	313,m3h 3#	ROOM FLOS	Pick From Drop-down List	1005 K006	214 Nove 1006 1337 131024-997	100001001 11000057	1105-205	LUCSENT	1005497	10.597	10054	11 1105-501									
E: Calculator Object Place Density, Corellation Properties Elect Elect E: Calculator Object Place Density, Corellation	iges]	2,300007	Define Name		2009007		2.0730007					1000007	0	otions							
Properties (Den2) Earn2 IC Catoriano Object Viscosits Constanton	ight .	\$30.677%2 F	習報 Link	1000 COL4	1142 670 altract	\$10803	0.009/0.5	0.00002	0.008103	0.00183	0 0.000	\$30645		C			lation for each seco	-			
E: Calculator/Object Uncosits Condition E: Calculator/Object Act Ltg Plot Condition	2	0.651555	Simulation Workbook Tables	Mode	y Table	-		0.461535	0.4557625	045155	5 0.49577	0.461153		save c	opy of s	simula	lation for each case	Save	e Directory:		
Properties Bond San2 El Calculator Bot Gas Row Bid Gas Row El Calculator Art, Gas Row Art, Gas Row			1011 0 1010 10541 1010 101 1010 10 1010 0 1010 10541 1000 101 0010 1056 10		Table	1942		0675 8042			2 8875 10	108 0-3768716 142 0075 ¥542 148 0-5766728		Restar	t simula	tor ev	every 1 cases.	C:\L	Jsers\Johnnie Swatson\Desktop\NTNU - N	at Gas Teo	ł
44. Phase - Premax David Const. H. Calculator Device David Const.	1#	Ell	01 15 54 15		cate Table	0.1	18	01	8.6	11	10001	9.8 0.5									1
Properties Dent Dans HKC ubulance Dans Dans Duration	igis?		E 823 E 6203629 E 62036 E 62036		e Table	290	U-52067		12 622367				-	Macros							
Propenses Devil Cond MC calculates Molecular Uniger Melanular Uniger	ight]	DA STATUTE	100-01 100-0024 100-02 100-02 10 30.545 30.59050 30.5905 30.5905 30.5905 3	10	elected Scena	200	54 55472682	34 EM \$200	5455473060	38 150538	0 345985	TOR YOR 4NOT		macros							
OE Calculates Bell Gar Pox Std Cast Pieu 96 Calculates Art Lig Pox Art Lig Pox	5172_mSA	10009-4943	0002 0.007C4 0.0075 0.00750 0	按 Pan S		50 841	TION MADE 1	THER OLD	10339 04410	1203-050	10 10 10 10 0	4) T328-6643 0.000/2027		un Sce			Pause		OK	Cance	

Figure 6.5: Running multiple cases under scenario table

6.1.2 Design Output Representation

Both the input and output parameters as defined under the Scenario Study Wizard are listed in the excel workbook when the "*Scenario Table*" is created. The different cases can be run altogether or selectively to generate the output parameters defined in the *scenario study wizard*. The *output parameters* produced are the *input parameters* for the equipment calculator sheets. These automatically generate the sizing, design and performance parameters of the separator, heat exchanger, compressor, pump and various piping.

Within this master thesis three different representations of the equipment design output have been presented;


- i. 2-D Graphical Layout of the plant by sections
- ii. Single Case Summary
- iii. Scenario Study Summary (which incorporates various cases)

This is shown under Appendix K.4, Figure 6.6 and Appendix K.5 respectively.

6.1.3 Scenario Study Recording

The output interface of the equipment calculator and ASW have been developed such that it gives the output design for the plant equipment based on a single case. In order to capture each single case and display the results, a macro was developed to record each single case output to generate a Scenario Study comprising different cases. Refer to *Appendix K.2* for the macro written to generate/record the sensitivity data.

The single case study is shown in *Figure 6.6.* Upon generating the single case study, the specific study is recorded and populated under the macro-enabled scenario by clicking the *"Click to Move Scenario To Table"* tab. The recorded data is populated under the *scenario study summary*. Refer to *Appendix K.5* for the fifteen case complete scenario generated for a production profile.

Figure 6.6: Single case equipment summary

With a method to display a single case and record all cases an investigative analysis can be performed. The different cases can be set up to represent varied production flowrates for each year, varied fluid composition during the production lifecycle, pressure changes if any etc. In the case of the master thesis, an investigative analysis was performed using varied production flowrates during the lifecycle of the field. This is depicted under *Figure 6.7* where three (3) different production profile scenarios are considered and each case can be viewed and recorded with a drop-down selection (indicated by red arrow). The investigative analysis performed is detailed further under *Chapter 7*.

Scenario	Scenario 3		
	Flowrate, q (s	m3/d)	
Year (Cases)	Scenario 1	Scenario 2	Scenario 3
1	500000	2000000	500000
2	500000	4000000	3000000
3	5000000	15000000	3000000
4	1000000	1500000	3000000
5	1000000	15000000	1500000
6	1000000	15000000	900000
7	1000000	15000000	(
8	1000000	12000000	(
9	1000000	1000000	(
10	1000000	3000000	(
11	1000000	3000000	(
12	1000000	3000000	(
13	6000000	3000000	(
14	500000	3000000	(
15	3000000	1000000	(
Case	Case 2		T T
1			

Figure 6.7: Case and scenario selection representing flowrate for each year

6.1.4 Flowchart for developing the Scenario Study

After setting up all equipment calculators for the offshore processing plant and having linked all the required output data from ASPEN HYSYS to the Equipment Calculators using ASPEN Simulation Workbook, the required scenario input data which would be the basis for the investigative analysis for the process can be defined.

Figure 6.8 gives a flowchart for developing the scenario study following the setup described in *sections 6.1.1* to *6.1.3*.

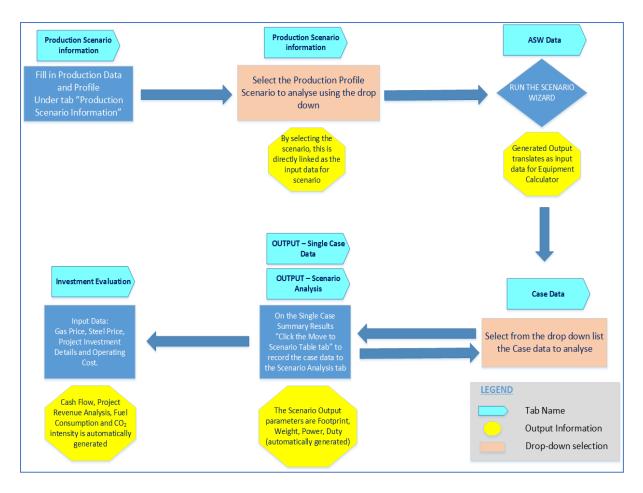


Figure 6.8: Flow chart for developing the scenario analysis

7 Investigative Analysis

After setting up the *Simulation model*, *Case analysis* and *Scenario study* various analysis pertaining to the project can be performed to ascertain optimum project deliverables. The analysis was performed to evaluate;

- i. the optimum process equipment design based on a specific production profile for life of well.
- ii. the carbon footprint of the process for the life of well.
- iii. the profitability of the process plant based on a different scenario production profiles with subsequent effects on equipment design cost, carbon dioxide emissions and break-even analysis.
- iv. comparison of the profitability of a project using different thermodynamic models keeping all other factors constant.

7.1.1 Equipment Design and Production profile

Equipment design varies based on different properties such as fluid composition, production flowrates etc. The production profile influences the design flowrates and operating parameters of equipment. For the scope of this master thesis, investigation in the change of the equipment design for the life of field is based on hypothetical three production profile scenarios as represented in *Figure 7.1* (with all scenarios giving the same total produced gas);

]	Flowrate, q (sm³/d)	
Year (Cases)	Scenario 1	Scenario 2	Scenario 3
1	5,000,000	2,000,000	5,000,000
2	5,000,000	4,000,000	30,000,000
3	5,000,000	15,000,000	30,000,000
4	10,000,000	15,000,000	30,000,000
5	10,000,000	15,000,000	15,000,000
6	10,000,000	15,000,000	9,000,000
7	10,000,000	15,000,000	
8	10,000,000	12,000,000	
9	10,000,000	10,000,000	
10	10,000,000	3,000,000	
11	10,000,000	3,000,000	
12	10,000,000	3,000,000	
13	6,000,000	3,000,000	
14	5,000,000	3,000,000	
15	3,000,000	1,000,000	

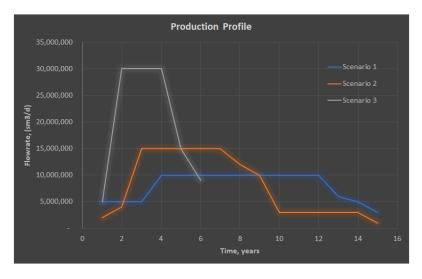


Figure 7.1: Scenario production profiles

A change in production flowrate gives rise to a change in design properties such as velocity, liquid and gas flowrates. This in turn affects the design of the process equipment; footprint, volume and weight as captured under *Chapters 3* and 5.

The production profiles utilised are based on same gas volumes/reserves in place

- Scenario 1 : Steady ramp up of production and longer production plateau and steady decline in production.
- Scenario 2 : Steady ramp up of production and shorter production plateau and steady decline in production (ramp up and decline in production is steeper than scenario 1)
- Scenario 3 : Steep ramp to high plateau for maximum production and sharp decline. This could be akin to extreme projects where it is desired to have maximum production at the earliest possible time.

As can be seen from *Figure 7.1*, the maximum equipment design/size will be defined by periods with corresponding high flow rates. This relates to year 4-12 for scenario 1, year 3-7 for scenario 2 and year 2-4 for scenario 3; as equipment would need to cater for high volumes within this period.

After running the scenarios from the model created, *Table 7.1* shows the process plant equipment design given the effect of change in flowrate along the process life of the plant for all three scenarios. The highlighted cells under *Table 7.1* give the values of the maximum parameters which correspond to the plateau/maximum production flowrates and would inform the design criteria for the plant.

Table 7.1: Scenario process plant design parameters

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total Footprint (m ²)	224.8	224.8	224.8	396.5	396.5	396.5	396.5	396.5	396.5	396.5	396.5	396.5	260.0	224.9	150.5
Total Weight (tons)	307.9	307.9	307.9	635.2	635.2	635.2	635.2	635.2	635.2	635.2	635.2	635.2	369.9	308.1	188.7
Total Duty (MW)	9.03	9.03	9.03	18.07	18.07	18.07	18.07	18.07	18.07	18.07	18.07	18.07	10.84	9.03	5.42
Compressor Power (MW)	7.47	7.47	7.47	14.95	14.95	14.95	14.95	14.95	14.95	14.95	14.95	14.95	8.97	7.47	4.48
Daily Compressor Energy (MWh)	179.4	179.4	179.4	358.7	358.7	358.7	358.7	358.7	358.7	358.7	358.7	358.7	215.2	179.4	107.6
Pump Power (kW)	232.5	232.5	232.5	473.4	473.4	473.4	473.4	473.4	473.4	473.4	473.4	473.4	279.5	232.5	138.8
Condensate (bbl/d)	5,340	5,340	5,340	10,680	10,680	10,680	10,680	10,680	10,680	10,680	10,680	10,680	6,406	5,341	3,203

Scenario 1

Scenario 2

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total Footprint (m ²)	111.3	188.5	558.9	558.9	558.9	558.9	558.9	461.9	396.1	150.6	150.6	150.6	150.6	150.6	68.2
Total Weight (tons)	132.8	247.7	992.9	992.9	992.9	992.9	992.9	774.2	634.7	188.8	188.8	188.8	188.8	188.8	79.2
Total Duty (MW)	3.6	7.2	27.1	27.1	27.1	27.1	27.1	21.7	18.1	5.4	5.4	5.4	5.4	5.4	1.8
Compressor Power (MW)	3.0	6.0	22.4	22.4	22.4	22.4	22.4	17.9	14.9	4.5	4.5	4.5	4.5	4.5	1.5
Daily Compressor Energy (MWh)	71.7	143.5	538.1	538.1	538.1	538.1	538.1	430.5	358.7	107.6	107.6	107.6	107.6	107.6	35.9
Pump Power (kW)	94.8	190.1	721.9	721.9	721.9	721.9	721.9	581.8	480.8	142.4	142.4	142.4	142.4	142.4	47.4
Condensate (bbl/d)	2,137	4,272	16,014	16,014	16,014	16,014	16,014	12,812	10,676	3,203	3,203	3,203	3,203	3,203	1,068

Scenario J	1			1									1		
Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total Footprint (m ²)	224.8	1,022.1	1,022.1	1,022.1	559.0	362.9	-	-	-	-	-	-	-	-	-
Total Weight (tons)	308.0	2,198.6	2,198.6	2,198.6	993.0	565.74	-	-	-	-	-	-	-	-	-
Total Duty (MW)	9.03	54.21	54.21	54.21	27.10	16.26	-	-	-	-	-	-	-	-	-
Compressor Power (MW)	7.47	44.84	44.84	44.84	22.42	13.45	-	-	-	-	-	-	-	-	-
Daily Compressor Energy (MWh)	179.4	1,076.2	1,076.2	1,076.2	538.1	322.8	-	-	-	-	-	-	-	-	-
Pump Power (kW)	238.0	1,580.7	1,580.7	1,580.7	778.4	467.6	-	-	-	-	-	-	-	-	-
Condensate (bbl/d)	5,340	32,044	32,044	32,044	16,017	9,608	-	-	-	-	-	-	-	-	-

Scenario 3

7.1.2 Carbon Footprint

Drivers such as gas turbines, in this case, are required in order to power the compressors on the offshore platform. In Norway, there exists a carbon tax which was introduced in 1991. This tax is levied on all combustion of gas, oil and diesel in petroleum operations on the Norwegian Continental Shelf (NCS) and on releases of carbon dioxide (CO₂) and natural gas which is in accordance with the CO_2 Tax Act on Petroleum Activities. The current tax rate (2018) at the time of writing this thesis is NOK 1.06 per standard cubic meters of gas (Norwegian Petroleum Directorate, 2018a). It is assumed that some of the processed gas would be utilised as fuel in the gas turbines to power the compressors.

For a gas turbine, as given in *equation 7.174*, the mass flowrate of fuel (Saravanamuttoo, 2009) is given as;

$$\dot{\mathbf{m}}_f = \frac{W_N}{\eta_{GT} \, LHV} \tag{7.174}$$

where

 \dot{m}_f – Mass flowrate of fuel (kg/s)

 W_N – Net work (kW), given as the difference in work of the turbine and compressor.

 η_{GT} – Gas Turbine Efficiency/Cycle efficiency

LHV – Lower Heating Value of fuel (CH₄) which is 46,540 kJ/kg

For the ease of calculations as a gas turbine has not been modelled, an efficiency of 35% has been assumed. This efficiency is representative for gas turbine on the NCS. This indicates the percentage of heat supplied that translates into work for the compressor.

From the mass flowrate of fuel the volumetric flowrate, V_f , can be deduced and the CO₂ emissions cost per year determined from *equations* 7.175 and 7.176

$$V_f = \frac{\dot{m}_f R T_{sc}}{MW P_{sc}} \tag{7.175}$$

$$CO_2$$
 emissions cost/yr = CO_2 Tax rate $\times V_f \times 86400 \frac{s}{day} \times operational days per year$ (7.176)

where

 V_f – Volumetric flowrate, m³/s

 \vec{R} – Universal Gas Constant

 T_{sc} – Temperature at standard conditions, 288.15 K

MW – Molecular Weight (CH₄) is 19.59

 P_{sc} – Pressure at standard Conditions, 101,325Pa

Operational days set to 300 days per year to account for downtime and maintenance.

Table 7.2 shows the carbon footprint pertaining to the project for each year. The highlighted cell represents the maximum CO_2 emissions cost corresponding to the highest production rate as this would require increased fuel/power for the compression process.

One factor that is monitored with respect to carbon dioxide emissions on a project to project basis undertaken by Statoil and other companies on the NCS is the carbon intensity. This is

measured as the weight of carbon dioxide per barrel of oil equivalent produced given as kilogram of CO_2 per BOE (barrel of oil equivalent). Statoil has set a strategy to create a low carbon advantage on the NCS. The current carbon intensity of projects in Norway is 9kg CO_2 per BOE. The target set out by Statoil by 2030 is 8kg CO_2 per BOE (Statoil ASA, 2017).

The carbon intensity is calculated as given below – assuming the fuel burned is processed methane from the plant;

For $1m^3$ of Methane fuel ; Density of Methane = 0.657 kg/m³ Methane (CH₄) contains = 12/16 = 75% of Carbon Weight of Carbon = 75% of 0.657 kg = 0.4927 kg of Carbon per m³ of methane

Assuming complete combustion of Carbon to carbon dioxide:

$$C + O_2 \xrightarrow{yields} CO_2$$

2.667kg of O_2 to 1kg of Carbon. This gives weight of O_2 to be 1.31416 kg to form CO_2 .

Weight of CO_2 per m³ of Methane = 0.4927 kg of Carbon + 1.31416 kg of $O_2 = 1.8069$ kg of CO_2 per m³ of CH₄

Knowing the amount of fuel consumed and given the conversion factor of $1m^3$ of natural gas equals 0.00642857 BOE, the carbon intensity for the project can be obtained from *equation* 7.177.

$$Carbon Intensity (kg CO_2 per BOE) = \frac{1.8069 \frac{kg CO_2}{m^3} \times V_f \times 86400 \frac{s}{day} \times \frac{300 \ days}{yr}}{\Delta G_p \times 0.00642857 \frac{BOE}{yr}}$$
(7.177)

Where ΔG_p is yearly produced gas and operational days is given as 300 days in a year to take into account downtime or maintenance days.

Table 7.2: Carbon footprint for scenario

Scenario 1

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.46	0.46	0.46	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.55	0.46	0.28
Fuel Consumption (sm ³ /s)	0.55	0.55	0.55	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	0.67	0.55	0.33
CO ₂ emissions cost per year (MM NOK /year)	15.24	15.24	15.24	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	18.29	15.24	9.15
CO ₂ intensity (kg CO ₂ per BOE)	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70

Scenario 2

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.18	0.37	1.38	1.38	1.38	1.38	1.38	1.10	0.92	0.28	0.28	0.28	0.28	0.28	0.09
Fuel Consumption (sm ³ /s)	0.22	0.44	1.66	1.66	1.66	1.66	1.66	1.33	1.11	0.33	0.33	0.33	0.33	0.33	0.11
CO ₂ emissions cost per year (MM NOK /year)	6.10	12.19	45.73	45.73	45.73	45.73	45.73	36.58	30.49	9.15	9.15	9.15	9.15	9.15	3.05
CO ₂ intensity (kg CO2 per BOE)	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70

Scenario 3

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.46	2.76	2.76	2.76	1.38	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fuel Consumption (sm ³ /s)	0.55	3.33	3.33	3.33	1.66	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ emissions cost per year (MM NOK /year)	15.24	91.46	91.46	91.46	45.73	27.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ intensity (kg CO2 per BOE)	2.70	2.70	2.70	2.70	2.70	2.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

7.1.3 Cash Flow Analysis

For a project to be feasible, profitability must be determined. The revenues generated from the sale of gas and condensate as opposed to the cost associated with the project must be forecasted with its accompanying risk factors. Actual revenue depends not only on production rates but on current or contracted prices of oil and gas. Typically, the economics and risks associated with oil and gas field projects are ascertained using several price development scenarios. For the scope covered under this master thesis, the capital structure of the project has not been defined and assumed to be entirely financed internally without taking into account debt. *Figure* 7.2 shows the revenue and cost factors in relation to the timeline for a typical gas project.

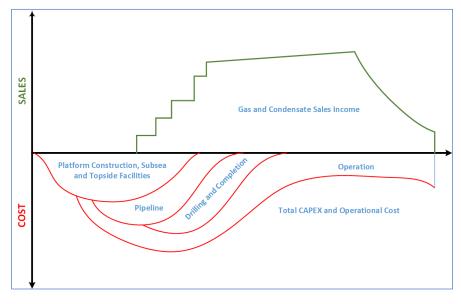


Figure 7.2: Typical gas field revenue and cost profiles

The accompanying risk factors mentioned are the assumed market price of risk, the *opportunity cost of capital*, which is the return that the market offers on investments with the same risk characteristics. (Wijst, 2013)

Revenue

The revenue generated from the project is the sale of 'dry' gas and condensate produced from the process plant. Forecasting price trends for the products is more uncertain than determining the gas field production profile. The market price of natural gas (NYMEX) as at the time of the master thesis is USD \$2.76 /MMBtu and USD \$64.94 per barrel (Bloomberg Energy, 2018). The conversion used for gas volume/price relationship is $1m^3$ to 0.0411MMBtu.

Cost

Costs associated with a gas field development project are made up of Capital Costs and Operating costs. Capital costs fall under broad categories which include;

- Design and administration costs
- Equipment and materials purchase cost
- Fabrication costs
- Installation costs
- Commissioning cost
- Insurance spares cost
- Reinvestment cost

whereas operating costs include but are not limited to;

- Man-hour cost
- Spare parts and consumables consumption cost
- Logistic support cost
- Energy consumption cost
- Insurance cost
- Onshore support cost
- Cost of deferred production

Based on research data of Statoil operating fields, the overall cost breakdown of field development is categorised under *investment costs*, *operating costs*, *exploration costs*, *disposal and cessation* and *other costs*. In 2017, the total overall costs amounted to NOK 210 billion. This constituted 60% as *Investments*, 25% as *operating costs* with over 10% as exploration costs. (Norwegian Petroleum Directorate, 2017)

In the case of this master thesis, the costs captured have been narrowed down, for the capital cost, to include that associated with *Subsea development*, *Well and drilling* and *Production facility*.

The field development cost breakdown from data published in the OG 21 TTA4 Subsea Cost Report 2015 (OG21, 2015) gives the breakdown based on *field development concept* as represented in *Table 7.3;*

FIEL	FIELD DEVELOPMENT PROJECTS ON NCS												
	Subsea	Well and Drilling	Production Facility										
Subsea tie-back	41%	35%	24%										
Floating Installation	17%	37%	46%										
Fixed Installation	3%	38%	69%										

Table 7.3: Field development cost breakdown

Source : OG 21 TTA4 Subsea Cost Report 2015(OG21, 2015)

This master thesis assumes the cost of the process equipment design and manufacture as well as installation correlated using a factor from the *average steel price*. This follows from the data given in *Table 7.3* and *Table 7.4* from NCS Subsea Cost Report from OG 21. It should be noted that following the decline in petroleum prices in 2014, costs related to offshore operations were affected and consistently change to adapt to market trends.

Table 7.4: Design and manufactu	ire costs as a factor of Steel
---------------------------------	--------------------------------

Equipment Material Cost Factor										
Equipment Design and Manufacture Cost	3500%									
Equipment Installation	4500%									

The investment or initial capital cost was then determined by correlating the historical cost data on the NCS and the required weight of steel for processing equipment.

Other costs apart from capital cost considered under this master thesis has been broken down to include;

- Operating Costs This has been lumped up to include all costs highlighted above. Based on Statoil historical data constitutes 3% of capital cost.
- Tax The tax rate is the percentage of corporate earnings imposed by government or federal state. Within Norway for the year 2018, the ordinary tax rate is pegged at 23% and special tax rate at 55% (Norwegian Petroleum Directorate, 2018b). Within the scope of the thesis, the tax rate has been assumed to be 78%. In addition, as the capital structure has not been defined to include debt, tax shields have not been taken to account in the profitability of the project.
- Carbon Tax The carbon tax relates to regulating emissions to air from petroleum activities on the NCS. This is based on the *Carbon dioxide (CO₂) Tax Act on Petroleum Activities* which is levied on all combustion of gas, oil and diesel in petroleum operations on the continental shelf and on releases of CO₂ and natural gas. For 2018, the tax rate is NOK 1.06 per standard cubic metre of gas or per litre of oil or condensate. For combustion of natural gas, this is equivalent to NOK 453 per tonne of CO₂. (Norwegian Petroleum Directorate, 2017). A thorough explanation of this has been given under *Section 7.1.2*.

Cost of Capital

This is the rate that must be overcome to generate value for the project. It is company specific and depends on factors such as the company's operating history, profitability, creditworthiness etc. With respect to project financing, the capital structure is not defined under the scope of the project. Hence, it can be assumed the financing structure to be entirely from equity i.e. are obtained from internally generated funds. This implies the cost of capital can be used to discount the potential future cash flows from the project to estimate the Net Present Value. The Cost of Capital assumed for this project is 8%. All cash flows are discounted to year zero (0) which is the year the initial investment is made at the start of the project.

Depreciation

Costs of long-lived assets such as the gas processing equipment are spread over time. These have been assumed to be depreciated over a 6-year period for ease of comparison for each of the production profiles within the master thesis. This period has been selected based on data from the Norwegian Petroleum Directorate. (Norwegian Petroleum Directorate, 2017)

Net present Value

In order perform accurate profitability/investment decision analysis of the project, the present value of the cash flows need to be determined. The cash flows are discounted to a specific period (in this case to the time of investment or start of project) with the cost of capital assumed for the business. This takes into account the risk associated with the business including the time value of money. The cost of capital for upstream petroleum business in Norway is 8%. The present value of the cash flows for each year of the project is obtained by discounting the cash flows to the year of the capital expenditure, year zero. This is deduced from *equation* 7.178.

$$PV = \frac{FV}{(1+r)^n} \tag{7.178}$$

where;
PV - Present Value, \$USD
FV - Future Value, \$USD
r - Cost of Capital, 8%
n - time, year

The *Net Present Value* (NPV) is the sum of all the present value of the cash flows. A positive NPV indicates a profitable project as the cash inflows are greater than the cash outflows.

$$NPV = \sum PV \text{ of Cashflow , } NPV > 0 \text{ (project is feasible)}$$
 (7.179)

With an estimate of projected present value of cash flows, the payback period of the project can be estimated with cumulative present value of the cash flow. It should be noted again that for the purpose of this master thesis, this economic evaluation does not take into account equity and debt within the capital structure of the project, neither does it consider an economic evaluation if the project is deferred.

Table 7.5 sums up the economic and accounting input factors utilised in the cash flow analysis. *Appendix L.1, Appendix L.2* and *Appendix L.3* show the cash flow sheets for the three (3) production profiles under evaluation.

CURRENT ECON	CURRENT ECONOMIC FACTORS												
Conversion $(1m^3 = 0.0411mmBtu)$	0.0411												
Equipment Depreciation (years)	6	years											
Average Gas Price	2.76	USD \$ per MMBtu											
Average Condensate Price	64.94	USD \$ per bbl											
Average Steel Price	660.00	per metric ton											
Cost of Capital	8%												
Corporate Tax	23%												
Additional Tax Rate	55%												
Total Tax Rate	78%												

Table 7.5: Cost and Economic Factors

Based on the economic analysis performed *Figure 7.3*, *Figure 7.4* and *Figure 7.5* show the cumulative present value of the cash flow and break-even periods for each production profile based on a single well scenario. This shows scenario 1 giving the highest NPV followed by scenario 2 and then scenario 3. This is attributed to scenario 1 having the lowest plateau rate as compared to scenario 2 and 3. This implies the capacity/size of the processing equipment needed for the maximum production flowrate is lowest in scenario1. This in turn translates to lower CAPEX associated with equipment costs. In addition, although scenario 2 and 3 present higher production earlier on than in scenario 1, these revenues are largely eroded by the equipment capital cost based on their higher flowrates. This is extreme in the case of scenario 3. Another factor that is also accounted for is the discount rate; meaning, it is generally more profitable to produce today than tomorrow due to the 'time value of money'. Although this theory of producing early is in favour of scenario 3, it is evident again that the very high production rates translate to larger capacity processing equipment hence much larger equipment capital cost which erodes into the high revenues generated under scenario 3.

Scenario 2, clearly falls in between scenario 1 and 3 where early higher production rates (meaning both higher revenues and larger capacity equipment) are observed with a later breakeven period scenario 1.

As explained, from the results on the cash flow analysis, *scenario 3* generated high revenues (*Appendix L.3*) due to the high flowrates; however, the high flowrates required high capacity process equipment hence higher investment cost. The scenario in question showed no net profits for the production lifecycle, largely due to the high production rates as compared to the other scenarios. This presents the case where an optimum flowrate is required that would both meet the plant design criteria and the needed project profitability. This analysis of an optimum flowrate is detailed further on under *Section 7.1.5*.

Figure 7.3: Economic evaluation - scenario 1

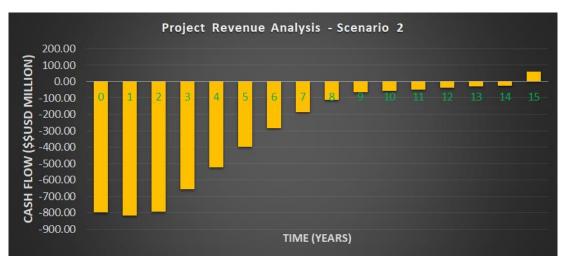


Figure 7.4: Economic evaluation - scenario 2

Figure 7.5: Economic evaluation - scenario 3

7.1.4 ASPEN HYSYS and ASPEN Process Economic Analyser (APEA)

This sub-chapter highlights the comparison of the process equipment sizing from the calculator developed and from ASPEN HYSYS. It also compares the cash flow analysis developed and the economic analyser, ASPEN Process Economic Analyser (APEA).

The sizing calculator developed takes into account fundamental concepts for analysing processing equipment. For more rigorous designs of each process equipment, more advanced design software can be used. *Figure 7.6* shows an example of the engineering design that can be performed on a separator in ASPEN HYSYS which in turn goes into the cost evaluation within the APEA.

関 Vessel Sizing: Ve	essel Sizing-Inlet Separator	- 🗆 ×	🕒 Vessel Sizing	: Vessel Sizing-Inlet Separator	-
Design Performa	ance		Design Perfor	mance	
Design Connections Sizing Construction Costing Notes	Name Vessel Sizing-Inlet Separator Separator Inlet Separator	Select Separator	Design Connections Sizing Construction Costing Notes	Available Specifications Max. Vap. Velocity Diameter Demister Thickness Liq. Surge Height LLSD Nozz. To Demister Tot. Length - Height	Active Specifications UD Ratio 3.000 Liq. Res. Time 000:05:0.00 sec Demister to Top 0.3048 m
Delete	OK	Ignored	Delete		Remove Spec
	/essel Sizing-Inlet Separator	- 🗆 ×		Vessel Sizing-Inlet Separator	
Design Perform			5 Design Perfor		
Design	Construction Information		Design	Base Cost Coefficients	Accessories Cost Coefficients
Connections Sizing Construction Costing Notes	Chemical Eng. Index 252.5 Material Type Carbon Steel Mass Density [kg/m3] 7961 FMC 1.000 Allowable Stress [bar] 944.6 Shell Thickness [mm] 7303.2 Corrosion Allowance [mm] 3.175 Efficency of Joints 1.000		Connections Sizing Construction Costing Notes	A5 8.600 A6 -0.2165 A7 4.580c-002 Shell Thickness Coefficients	A8 1017 A9 0.7396 A10 0.7068 Shell Mass Coefficients A4 0.8116 Cost Equation Help_ 5205
Delete	ÖK	Ignored	Delete	Total Cost (US\$)	6.565e+004

Figure 7.6: Vessel sizing evaluation

Figure 7.7 shows the relative differences of the results obtained in the calculator to the results in ASPEN HYSYS for some of the design parameters.

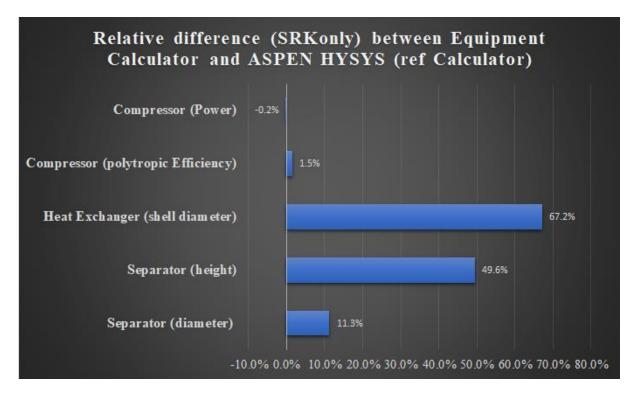


Figure 7.7: Relative difference between equipment calculator and ASPEN HYSYS

The APEA is a functionality on ASPEN HYSYS that allows a cost evaluation of a process simulation performed on ASPEN HYSYS. It takes into account an overall *capital expenditure* based on process equipment employed and a utility cost based on power requirements and consumption.

The APEA makes some assumptions based on a database of cost models. These models take into consideration factors such as

- operating Life of plant/ Operational hours
- length of plant startup
- equipment material and engineering specifications

For comparative purposes only, the APEA has been compared to the 'Calculator Economic model' developed with the objective of matching both models. This comparison was also used as a check for the factors used to correlate the equipment cost to the steel cost shown under Section 7.1.3. Figure 7.8 shows the final summary results of the process simulated for $10MMsm^3/d$ flowrate. The 'red markings' highlight the total processing equipment cost from the APEA model and the calculator economic model. This represented a relative difference of ~7.4% to the calculator economic model. This signifies a small difference between both models based on the assumed factors under Section 7.1.3 and presents the calculator economic model as a good estimate for the cost evaluation of the processing plant.

apital: 24,020,500 USD Utilities: 14,472	2,900 USD/Year 🔔 🧲		Development Concept	Floating Installation							
Flowsheet Case (Main) - Solver Active $ imes$	Economic Equipme	nt Dat									
Enabled by Aspen Process Ecor	amia Analyzar (ADE		CAPEX EXPENDITURE								
Enabled by Aspen Process Ecor	iomic Analyzer (APE		Item	Factor	Cost \$\$						
Template: <default> Save</default>	Save as new	Res	Steel Material Cost		\$	419,188.					
Summary Utilities Unit opera	tion Equipment	Vertica	Equipment Design and Mfg Cost	3500%	\$	14,671,589.					
		1	Equipment Installation	4500%	\$	18,863,472.					
Total Capital Cost [USD]	24,020,500		Processing Equipment Total Cost (rep xx% of entire Platform)	15%	\$	33,954,249					
Total Operating Cost [USD/Year]	17,954,900		Offshore Production Facility		¢	226,361,664					
Total Raw Materials Cost [USD/Year]	0		onshore riodaction racinty		¥	220,002,004					
Total Product Sales [USD/Year]	0										
Total Utilities Cost [USD/Year]	14,472,900		Development Concept -Capex Structure	Floating Installation							
Desired Rate of Return [Percent/'Year]	20		Subsea	17%							
P.O.Period [Year]	0		Well and Drilling	37%							
Equipment Cost [USD]	8,574,500		Production Facility	46%							
Total Installed Cost [USD]	12,442,200		Total CAPEX		6	492,090,573.					

ASPEN HYSYS Economic Model

Calculator Economic Model

Figure 7.8: APEA model vs calculator economic model

From the comparison of the calculator economic model and the APEA model, it is evident that the model developed gives a more in-depth evaluation of internal components with respect to equipment such as separators, scrubbers and heat exchangers.

The cost structure for the calculator economic model has also taken into account business and economic factors in Norway for e.g. tax regimes, recent development concept breakdown factors for investment costs; be it for a floating installation, fixed platform or subsea installation.

As CAPEX and OPEX are dependent on costs factors that constantly change due to market structure, such as current commodity prices etc., a benchmark upon which to compare the cost models from ASPEN HYSYS and the model developed is not defined. However, the marginal differences of equipment cost from both models is a good indicator that an informed analysis from the calculator economic model can be made.

7.1.5 Case Study Suggestion

Process optimisation is one of the important procedures to undertake within complex processes to achieve best asset utilisation and performance. This is done to improve profitability of the plant or return on investment in a quantifiable manner. The benefits of this are to increase yield, reduce down-time, address off-specification production and to generally reduce energy costs (Poe & Mokhatab, 2017).

Various factors can be optimised depending on the objective within the gas processing plant. Within the scope of this master thesis, optimisation was performed by varying the production flowrates to determine the basis for the production profile that best gives a high return in revenue and low cost. However, the production rates of a gas field are affected by numerous technical and economic factors such as;

- Reservoir Characteristics
 - Water Coning
 - Sand production
 - Gas-Liquid Ratios (with increasing production)
- Equipment operational envelopes
 - Pressure
 - Temperature
 - Flowrate
- Pipeline flow or network limitations
 - Erosional velocity
 - Vibration
 - o Noise
 - Project profitability
 - Net Present value
 - Time to profitability

In effect, assumed production profiles as was done initially does not reflect the optimum production profile as the reservoir characteristics and other factors highlighted above have not been adequately represented in the profiles.

In practice, the production engineer provides the *production potential* or flowrates for life of field. These must be ascertained with the technical and economic factors highlighted. The suggested study case method employed considers a steady-state method for varied production profiles with a single objective to maximise Net Present Value.

It was noticed from the three production profiles that *scenario 1* gave the lowest maximum weight, relatively early break-even and the highest NPV as shown in *sections 7.1.1, 7.1.2* and 7.1.3. This indicates a high initial flowrate does not necessarily ensure high return as is the case with scenario 3; however, a sustainable plateau production gives a more technical and economically feasible life cycle of the project. From this, the deliverability of the field needs to be defined taking into account the mode of production and/or depletion during life of the field.

In oil and gas fields, production of hydrocarbon reserves can be done in two modes. Either producing via *constant rate, meaning* achieving plateau production or by *decline mode (full*

potential), which means producing as much as possible and as early as possible with a decline in production rates as depicted in *Figure 7.9*. Gas fields are predominantly produced using the constant rate mode where gas offtakes are bound by long-term sales agreements, production equipment limitations or regulatory control. This is important for economic analysis for an offshore development field. The constant rate mode is characterised by a plateau production rate and although there exists a constant rate this would eventually lead to production decline due to the fact that the plateau rate can no longer be sustained by the wellhead pressure sufficient to process and transport the gas and also due to depletion.

From historical data and by rule of thumb annual plateau rates normally within the range of 3.5% - 5% of recoverable gas reserves for gas fields. (Golan & Whitson, 1996). The plateau rate is however flexible and it is a factor that can be controlled. However, the decline after a period of production is dependent on the reservoir characteristics. This means that production rates might be in some cases lower than the production potential but will follow a similar decline with time.

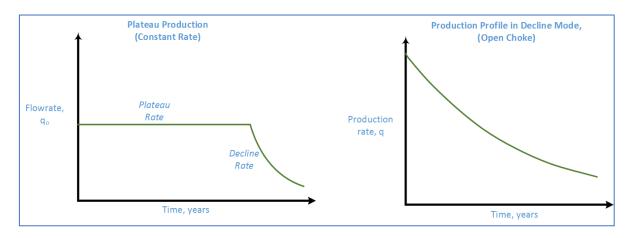


Figure 7.9: Oil and gas field production modes

The *production potential* of the well needs to be determined to ascertain the length of the plateau given. The production potential of the well is determined by performing material balance equations, flow equilibrium calculations based on a model of the well, flowline and separator parameters, information on the Inflow Performance Relationship (IPR), reservoir pressure and gas-liquid ratios (GLR). This information is obtained from the production engineer.

For the purpose of the master thesis, production potential has been deduced from the initial scenarios under investigation i.e. *scenario* 1 and 2. As mentioned, the production potential depends on the reservoir deliverability. It mainly depends on the amount of fluid withdrawn (not necessarily on time as is the case of water injected wells) from the reservoir. For a production system with a single well, assuming no changes to the production system in the life of the well and in a fully open choke production mode the production potential curve can be seen to be linear as shown in *Figure 7.10*.

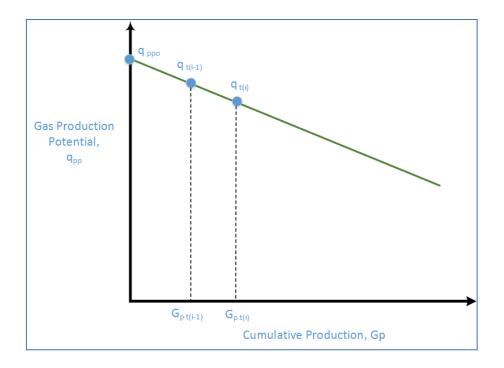


Figure 7.10: Production rate behaviour vs. cumulative production

The cumulative gas produced is given by;

$$G_p = \int_0^t q_g dt \tag{7.180}$$

where

$$G_p$$
 - Cumulative gas produced, sm^3

 q_g - Gas production rate, sm^3/d

With the well producing all the time at its production potential, q_{pp} , (fully open choke) i.e. $q_g = q_{pp}$; the linear relationship between the production potential and cumulative production can be deduced from *equation* 7.181.

$$q_{pp} = -m G_p + q_{ppo} \tag{7.181}$$

where q_{ppo} , is the flowrate with no gas produced from the field.

Referencing *Figure 7.9* (point at which plateau ends and decline begins) and utilising *equation* 7.181 a relationship for the well potential can be derived from both scenario 1 and scenario 2. Scenario 1 with a plateau rate (or q_{pp} in this case) of 10MMsm³/d, cumulative production (G_p) at end of plateau at 31.5 Gsm³ and scenario 2 with a plateau rate of 15MMsm³/d, cumulative production at end of plateau at 24.3 Gsm³; solving simultaneously for *m* and q_{ppo} , a linear relationship for the production potential is obtained and expressed as

$$q_{pp} = -0.694 \times 10^{-3} \, G_p + 31.86 \, \times 10^6 \tag{7.182}$$

To determine the length of the plateau (for a plateau production mode) the cumulative gas produced for the years in production must be known. The production potential, q_{pp} , is

representative of the open choke production i.e. assuming the well is allowed to flow at its full potential.

The production time, t, can be deduced from the same curve of gas flowrate, q_g , versus cumulative gas produced, G_p (*Figure 7.10*). This is given as *equation 7.180* where the time is determined based on trapezoid rule from *equation 7.183*

$$t^{i} = \frac{2(G_{p}^{i} - G_{p}^{i-1})}{q_{pp}^{i} + q_{pp}^{i-1}} + t^{i-1}$$
(7.183)

The plateau rate can be sustained as long as the production potential is not exceeded, after which the production rate follows the decline of the production potential. (Nind, 1981) The plateau rate, from historical data and as a rule of thumb, is approximately 3.5-5% of the recoverable reserves. Given in *equation* 7.184

$$q_{plateau} = \frac{0.5 * RF * IGIP}{Operational days}$$
(7.184)

where;

RF - Recovery Factor *IGIP* - Initial Gas In Place, sm³

Within the thesis, the plateau rate of 5.95MMsm³/d (based on the rule of thumb) was used as a starting point for determining the optimum plateau rate to achieve the maximum NPV. This plateau rate was analysed based on the production potential of the field. Increasing plateau rates were analysed with the objective to maximise NPV. The plateau flowrates analysed were;

- 5.95 MMsm³/d
- 8 $MMsm^3/d$
- $10 \text{ MMsm}^3/\text{d}$
- $12 \text{ MMsm}^3/\text{d}$
- 15 MMsm³/d
- 20 MMsm³/d

The flowrates based on the production potential of the field gave a plateau length and decline (the lower the plateau rate the longer the plateau length) as presented in *Figure 7.11*.

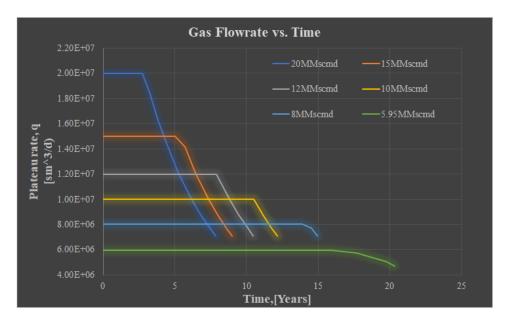


Figure 7.11: Gas Flowrate versus time for different plateau rates

For each assumed plateau rate, the NPV was investigated to determine which plateau rate gave the maximum NPV (reference *Appendix L.4* to *Appendix L.9*). This was found to be approximately 8MMsm³/d with an NPV of USD \$ 352 million as depicted in *Figure 7.12*. This is consistent with the analysis done for the initial 3 case scenario (scenarios 1, 2 and 3) whereby an increase in flowrate will result in increased production revenues. However, an increased flowrate would require an increase in capital expenditure for higher capacity equipment in line with that flowrate. Hence, production flowrate can be increased to an optimum point to obtain maximum possible revenues and lowest possible cost to obtain maximum profitability of the project. If Figure 7.12 had shown a flat increasing trend with flowrate, the results would be inconsistent as a limit would exist as to how much CAPEX can be added on to sustain an increase in flowrate. On the low side as well, a limit would exist as to how far production can be lowered to reduce cost and with the objective increasing profit from yearly production.

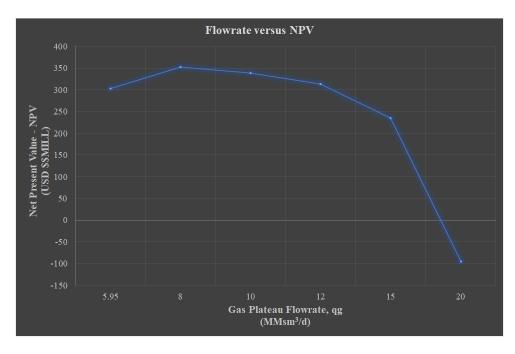


Figure 7.12: Plateau rate versus NPV

The length of the plateau rate also depends on the number of wells in production. An increase in the number of wells results in a longer plateau. An increase in the number of wells results in each well producing a smaller fraction of the total rate. Consequently, each well produces with a smaller pressure drawdown as compared to a single well producing at the total flow rate. This smaller pressure drawdown from having multiple wells reflects in a higher wellhead pressure which in turn results in a longer plateau period before reaching allowable wellhead pressure (Golan & Whitson, 1996). Determination of the allowable wellhead pressure has not been detailed under this research work.

Table 7.6, Figure 7.13 and *Figure 7.14* give the calculation of production potential and plateau length based on depletion and the corresponding time of plateau based on increasing the number of the wells for the optimum plateau rate of 8MMsm³/d. *Appendix K.3* shows the visual basic code which was used for automatic interpolating of the production potential to the start of each year.

The results of the calculation reflect three cases;

- producing at a rate equal to the full potential of the well,
- producing from one single well
- producing from two wells and the corresponding length of the plateau

The results show that for a single well at open choke, the field would be depleted in approximately 7 years. Based on the same production potential, at a given plateau production of $8MMsm^3/d$ for a single well, production to depletion would take 15 years and for two wells this would take approximately 30 years.

Increasing the number of wells could be as a result of factors such as a change of gas sales contracts or agreements to deliver an estimated amount of gas for an extended period. It should be noted that increasing the number of wells will prolong the time till decline; however, this increases the capital expenditure as more wells would have to be drilled and completed and tied in to the processing facility. The impact of the increase in the number of wells to the profitability of the project has not been investigated in this thesis and is possibility for further work.

The single well case, plateau production of 8MMsm³/d, is to be used as a *suggested case* for further study under a decision tree analysis. Further rigorous evaluation of this suggested case study could be performed to meet the reservoir, technical and economic requirements for managerial decisions to be made on project viability to meet gas sales contracts and agreements.

				PLAT	ГЕАЦ			PLATEAU (2	wells)
Cumulated gas produced, G _p	Reservoir Pressure, P _R	Single Well Production Potential, qpp	Open Choke Production time (@ Qpp)	Single Well Plateau Production rate	Time (Single Well)	Field Production Potential, qpp	Field Open Choke Production Time (@ Qpp)	Field Plateau Production Rate	Time (Field)
(sm ³)	(bara)	(sm ³ /d)	(years)	(sm ³ /d)	(years)	(sm ³ /d)	(years)	(sm ³ /d)	(years)
0.000E+00	225.00	3.186E+07	0.0	8.000E+06	0	3.186E+07	0	4.000E+06	0
1.500E+09	216.56	3.082E+07	0.2	8.000E+06	1	3.082E+07	0.16	4.000E+06	1
3.000E+09	207.36	2.978E+07	0.3	8.000E+06	1	2.978E+07	0.32	4.000E+06	3
4.500E+09	198.26	2.874E+07	0.5	8.000E+06	2	2.874E+07	0.50	4.000E+06	4
7.500E+09	180.97	2.666E+07	0.9	8.000E+06	3	2.666E+07	0.86	4.000E+06	6
1.050E+10	163.62	2.457E+07	1.2	8.000E+06	4	2.457E+07	1.25	4.000E+06	9
1.350E+10	146.74	2.249E+07	1.7	8.000E+06	6	2.249E+07	1.67	4.000E+06	11
1.650E+10	130.20	2.041E+07	2.1	8.000E+06	7	2.041E+07	2.14	4.000E+06	14
1.950E+10	113.89	1.832E+07	2.7	8.000E+06	8	1.832E+07	2.65	4.000E+06	16
2.250E+10	97.68	1.624E+07	3.2	8.000E+06	9	1.624E+07	3.23	4.000E+06	19
2.550E+10	81.47	1.416E+07	3.9	8.000E+06	11	1.416E+07	3.89	4.000E+06	21
2.850E+10	65.16	1.207E+07	4.7	8.000E+06	12	1.207E+07	4.65	4.000E+06	24
3.150E+10	48.64	9.989E+06	5.6	8.000E+06	13	9.989E+06	5.56	4.000E+06	26
3.330E+10	38.79	8.739E+06	6.2	8.000E+06	14	8.739E+06	6.20	4.000E+06	28
3.480E+10	30.33	7.698E+06	6.8	7.698E+06	15	7.698E+06	6.81	4.000E+06	29
3.570E+10	25.25	7.073E+06	7.2	7.073E+06	15	7.073E+06	7.22	4.000E+06	29.8

Table 7.6: Plateau length calculation

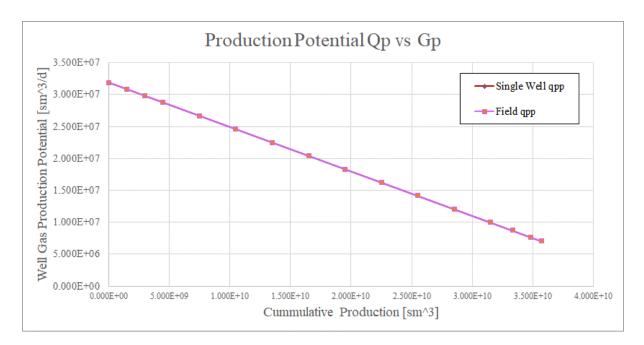


Figure 7.13: Suggested case production potential versus cumulative production

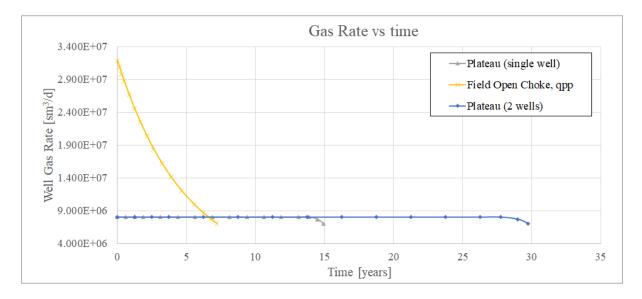


Figure 7.14: Production potential and plateau length

The production profile for the *suggested case* when run in the calculator gives the results for equipment design (weight and footprint), carbon footprint and cash flow analysis as displayed under *Table 7.7* and *Table 7.8*.

The NPV for the suggested case gives a higher value than that for scenario 1 (reference *Appendix L.1* and *Appendix L.5*) and payback period between 6 and 7 years. The highlighted cells show the years/case study under which maximum values for the lifecycle of the production was obtained.

Suggested Case Scenario

Year/ Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total Footprint (m ²)	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	297.4
Total Weight (tons)	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	499.4	438.6
Total Duty (MW)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	12.8
Compressor Power (MW)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	10.6
Daily Compressor Energy (MWh)	287	287	287	287	287	287	287	287	287	287	287	287	287	287	254
Pump Power (kW)	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	331.1
Condensate (bbl/d)	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	8,544	7,555

Table 7.7: Suggested case equipment results

Table 7.8: Suggested case carbon footprint

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.65
Fuel Consumption (sm ³ /s)	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.78
CO ₂ emissions cost per year (MM NOK /year)	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	24.39	21.57
CO ₂ efficiency (kg CO ₂ per BOE)	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.73

Figure 7.15: Economic evaluation - suggested case scenario

8 Discussion of Results

The focus of the thesis involved investigating two outcomes. Firstly, to evaluate the impact of gas process equipment design when utilising different thermodynamic models. This involved utilising two main thermodynamic models namely Soave-Redlich-Kwong (SRK) thermodynamic model and Peng Robinson to effectively characterise the fluid composition. This informed the parameters needed to size each processing equipment. By developing the equipment calculator (highlighted in *Chapter 3*) to effectively size all necessary equipment needed for gas processing i.e. separators, heat exchangers, compressors and pumps, an analysis was made into factors such as weight, footprint, volume and power requirements. These factors serve as indicators to make decisions based on processing facility requirements. From the calculators developed, the impact of utilising different thermodynamic models was highlighted in Section 5.1.5. The differences in results of the calculator arises out of the differences in thermodynamic models and the methods utilised by the models in characterising the reservoir fluids. As mentioned earlier, there could exist substantial liquid volumetric prediction differences between the SRK and PR Equations of State (EoS) as well as the fact that PR EoS underpredicts saturation pressure of reservoir fluids in comparison to the SRK EoS hence requiring a somewhat larger hydrocarbon/hydrocarbon (C_1/C_7+) binary interaction parameters (BIP) for PR EoS (Whitson et al., 2000). In addition, there is some evidence that PR EoS gives slightly better performance around the critical point, making the PR EoS better suited for gas/condensate systems (Robinson et al., 1985). Correlated historical and field data would ascertain the right thermodynamic models to be used.

Figure 8.1 summarises the results of the impact of thermodynamic models to gas processing equipment design. This represents a 3% and 2% difference in results for weight and footprint respectively using the SRK and PR thermodynamic models from the base case well scenario highlighted under *Chapter 1*. Such a difference could have a significant impact in the decision to be made on the facility requirements as well as the cost to the project depending on the scale.

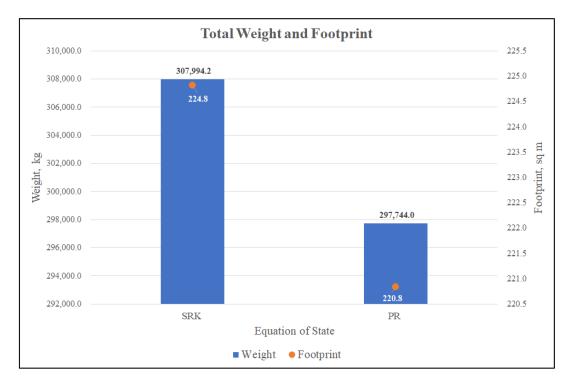
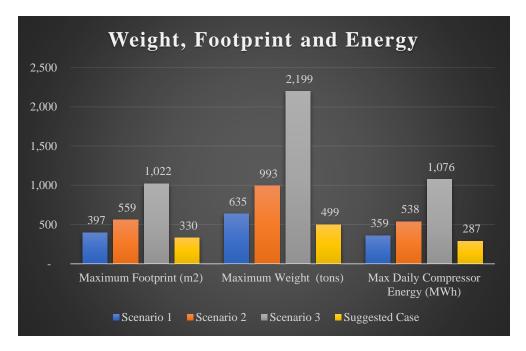
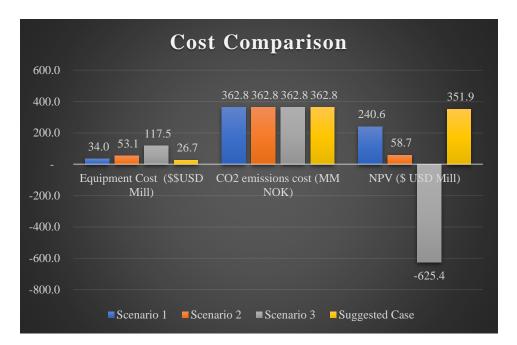




Figure 8.1: Weight and footprint analysis with SRK and PR thermodynamic models

The *second focus* of the master thesis is a build-up of the first objective which involves the automation of the gas processing plant. Many factors would impact the design of the offshore oil and gas field processing plant. An offshore gas processing plant could be developed based on different concepts; be it a subsea tie-back, floating installation or a fixed installation. The decision on the development concept impacts costs. In addition to the development concept factor is the change in operational parameters during the lifecycle of the field. This includes, but not limited to, production flowrates, pressure, and/or temperature which would affect the technical design and in turn affect capital structure and tax regime. Also, factors such as commodity price changes within the project lifetime would also affect its economic viability. In order to fully integrate all these factors in a working model, as was explained in *Chapters 0* and 7, it is imperative to find the optimal design that incorporates both technically and economically feasible solutions that fits the objective of the project. The technical objective being the process design that meets the production lifecycle of minimal weight of equipment (which translates to cost) and the economic objective that maximises profitability (maximum NPV).

The automation was performed focussing on the three main production profiles (scenarios) explained in *Chapters 0* and 7. This involved a sensitivity analysis using the production profiles within HYSYS to generate input parameters. These input parameters from HYSYS are incorporated directly into the calculator using the Aspen Simulation Workbook (ASW) interface. This automatically generates equipment design parameters for the production lifecycle which are recorded and tabulated to produce a technical design model. This technical design model then feeds into an economic model; a cash flow analysis which provides information on the project viability. The results of the initial scenario analysis based on the three production profiles (scenarios 1-3) explained under *Sections 7.1.1, 7.1.2* and *7.1.3* are summarised under *Figure 8.2*.

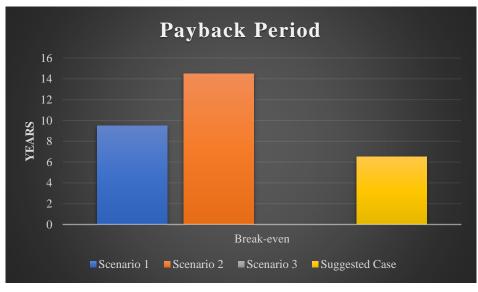


Figure 8.2: Scenario results comparison

The results showed that scenario 1; amongst the initial three scenarios investigated, represented the production profile that gave the minimum footprint, weight and energy consumption which translates to minimum CO_2 emission and minimum energy cost. This resulted in maximum net present value of the project utilising scenario 1 production profile. It can be inferred that a high production profile or a high early production rate (represented by scenario 3) which gives a high initial cash flow does not necessarily give an assurance of a profitable project as the costs associated with a high production rate are significantly increased, specifically with respect to increased equipment capacity. Due to these factors, scenario 3 showed a negative cashflow and no payback for the project. For cases such as scenario 3, more in-depth analysis needs to be performed to weigh the cost impacts against the revenue from high production rates as well as considering other development strategies such as drilling of multiple wells or tie-in to existing offshore processing facilities to offset some development costs.

Further to a comparison of the scenarios, an analysis of scenario 1 was performed utilising two different thermodynamic models; Soave-Redlich-Kwong and Peng Robinson. This was done to determine any significant differences to both the technical and economic parameters of the project when employing different thermodynamic models. The chart under *Figure 8.3* shows a comparative analysis of the study done. It is evident that the two different thermodynamic models give different predictions of equipment design and in turn different project profitability. The analysis showed a difference by a factor 3.5% in maximum weight of equipment in the plant and a factor of 5% in the case of NPV. This translates to a difference of 22 tons in weight and USD \$12 million in NPV when utilising different thermodynamic models. PR EoS as shown earlier gives a lower weight approximation meaning lower equipment cost than SRK which translates to a higher NPV than SRK.

Based on these results, it is clear the significant impact that thermodynamic models have on evaluating equipment design and project profitability. It is imperative that as close as accurate thermodynamic models are used to evaluate the process as these could significantly impact the feasibility of offshore oil and gas field developments depending on the scale. In order, to ascertain the right thermodynamic model for a process design, correlating offset data or historical data from adjacent fields with previous models can give more accurate working models.

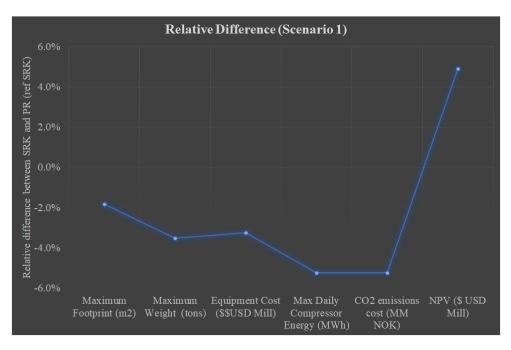
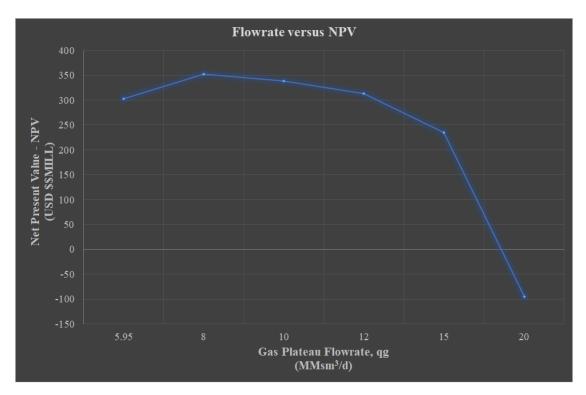



Figure 8.3: Relative difference with project indicators between SRK and PR

Appendix M gives the detailed breakdown of the sensitivity performed on scenario 1 using SRK and PR thermodynamic models.

The *suggested case* presented under *Section 7.1.5*, was based on further assumptions from scenario 1 incorporating the deliverability of the reservoir from the perspective of depletion. It highlighted a more realistic production profile depicting a plateau rate bounded by the field production potential. Different plateau production rates were investigated starting from a rate corresponding to 3.5-5% of the recoverable reserves (5.95 MMsm³/d) which is based on a rule of thumb (explained under the same section). Incremental plateau rates were investigated and the net present value for each rate was evaluated. The results were consistent with the analysis

performed for the initial three scenarios where an increase in flowrate results in increased production revenues. However, an increased flowrate would mean an increase in capital expenditure for higher capacity equipment. From the analysis of the plateau production, the optimum rate of 8 MMsm³/d was seen to give the maximum NPV (*Figure 7.12* – highlighted below) which is indicative of maximum possible revenues and lowest possible cost.

The results from indicators based on the suggested case are shown in *Figure 8.2*. A further analysis was performed to show the effect of increasing the number of wells to the production life. The plateau rate could be sustained for much longer periods by increasing the number of wells; however, the profitability of the project would be impacted due to the increased cost of drilling and completing more wells as depicted in *Figure 7.14*.

Essentially, the master thesis has presented an automated tool capable of examining gas processing project indicators; comprising equipment weight/footprint/energy requirements, carbon footprint as well as cash flow analysis. It gives a preliminary design of gas processing equipment and provides the functionality of analysing the effect of different thermodynamic models to the design. Furthermore, it enables investigative analysis into changing parameters during the production lifecycle. These include, but are not limited to, production flowrates, increased water production, compositional changes, increase in well count etc. The master thesis looked critically at production flowrate as a basis to investigate project profitability. It presents a suggested production profile based on maximising NPV. The automated tool, thus allows evaluation of parameters such as equipment design (weight, footprint), energy requirements, carbon intensity and project profitability at the conceptual phase which would inform the decision process pertaining to offshore oil and gas field development which include;

- Offshore development concepts
- Facility weight limitations and requirements
- Equipment design and raw material costs
- Revenues from products

- Power and Utility consumption
- CO₂ emissions and CO₂ intensity targets and limits.
- Overall project economic viability

9 Further Work

The preceding chapters have focussed on the gas processing design and the impact of thermodynamic models (specifically with respect to Soave-Redlich-Kwong and Peng Robinson) on equipment sizing based on process equipment calculators.

Furthermore, the calculators have been interfaced with ASPEN HYSYS to allow automated functionality in performing sensitivity analysis on various gas project indicators such as offshore facility weight requirements, power and utility consumption, CO₂ emissions and intensity and overall project profitability based on different production profiles.

Further work in this regard is to analyse the dehydration unit incorporating the absorption column, regeneration column and ancillary equipment for a full offshore gas processing plant. This was not done due to time constraints and to limit the scope of the thesis.

The models for the master thesis could be utilised for other real life scenarios such as tie-in of additional wells to the gas processing facility. This could be used to show holistic optimum equipment design based on the field production lifecycle in the event of

- an increase in capacity,
- compositional changes
- increased water content in produced fluids

In addition, pressure decline analysis studies during life-of-field and corresponding fluid characteristic changes could be modelled to determine realistic product yield.

The models created from the thesis could be further investigated using other thermodynamic models such as Cubic Plus Association (CPA) and incorporating or interfacing to other simulation tools like NeqSim to create a functional automated interface.

A step further from the work done is to expand the model from an offshore platform and investigate aspects of optimising the process using more rigorous methods to ascertain product yield. A typical example is increasing yield of natural gas liquids to take advantage of increase in commodity price in a distillation process.

References

- Abdel-Aal, H. K., Aggour, M., & Fahim, M. A. (2003). *Petroleum and gas field processing*. API RP 14E. (1991).
- Bakken, L. (2017). Turbo Machinery Specialisation Project Lecture Notes. 1(2).
- Bloomberg Energy. (2018). Crude Oil and Natural Gas Prices.
- Campbell, J. M., & Maddox, R. N. (1999). Gas conditioning and processing (7th ed.).
- Cimbala, J. M., & Cengel, Y. A. (2008). *Essentials of fluid mechanics : fundamentals and applications*. Boston: McGraw-Hill Higher Education.
- Gas Processors Suppliers Association (U.S.). (2012). *Engineering data book : FPS version* (13th ed.). Tusla, Okla.: Gas Processors Suppliers Association.
- Golan, M., & Whitson, C. H. (1996). Well performance (2nd ed.).
- Hewitt, G. F. (2002). *HEDH : heat exchanger design handbook 2002*. New York: Begell House.
- Hurai, V., Huraiová, M., Slobodník, M., & Thomas, R. (2015). Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes.
- Ma, J., Li, J. L., Fan, D. F., Peng, C. J., Liu, H. L., & Hu, Y. (2011). Modeling pVT Properties and Vapor-Liquid Equilibrium of Ionic Liquids Using Cubic-plus-association Equation of State. *Chinese Journal of Chemical Engineering*, 19(6), 1009-1016.
- Menon, E. S. (2005). Gas pipeline hydraulics. In (pp. 1 online resource.).
- Mokhatab, S., Poe, W. A., & Speight, J. G. (2006). Handbook of natural gas transmission and processing.
- Nind, T. E. W. (1981). Principles of oil well production (2d ed.). New York: McGraw-Hill.
- NORSOK Norwegian Oil Industry Association (OLF), & Standards Norway. (2006). NORSOK Standard - Process Design P-001. *Edition 5*.
- Norwegian Petroleum Directorate. (2017). Investment and Operating Costs on Norwegian Continental Shelf.
- Norwegian Petroleum Directorate. (2018a). Carbon Dioxide Tax Act on Petroleum Activities.
- Norwegian Petroleum Directorate. (2018b). Norwegian Corporate Tax Rate.
- OG21. (2015). TTA4 Subsea Cost Report 2015.
- Pedersen, K. S., Christensen, P. L., & Shaikh, J. A. (2015). *Phase behavior of petroleum reservoir fluids* (2nd edition. ed.).
- Poe, W. A., & Mokhatab, S. (2017). *Modeling, control, and optimization of natural gas processing plants.*
- Robinson, D. B., Peng, D. Y., & Chung, S. Y. K. (1985). The Development of the Peng -Robinson Equation and Its Application to Phase-Equilibrium in a System Containing Methanol. *Fluid Phase Equilibria*, 24(1-2), 25-41. doi:Doi 10.1016/0378-3812(85)87035-7
- Saravanamuttoo, H. I. H. (2009). *Gas turbine theory* (6th ed.). Harlow, England ; New York: Pearson Prentice Hall.
- Shah, R. K., & Sekuliâc, D. P. (2003). Fundamentals of heat exchanger design.
- Sinnott, R. K., Coulson, J. M., & Richardson, J. F. (2005). *Chemical engineering design* (4th ed.).
- Statoil ASA. (2017). Climate Roadmap -Creating a low Carbon Advantage.
- Svrcek, W. Y., & Monnery, W. D. (1993). Design two-phase separators within the right limits. *Chemical Engineering Progress*, 89(10), 53-60.
- TEMA. (1988). *Standards of the Tubular Exchanger Manufacturers Association* (7th ed.). Tarrytown, N.Y. (25 N. Broadway, Tarrytown 10591): The Association.

- Whitson, C. H., Brule, M. R., & Society of Petroleum Engineers of AIME. (2000). Phase Behavior. In SPE monograph, Henry L. Doherty series v. 20 (pp. 1 online resource (vi, 233 p.)).
- Wijst, N. v. d. (2013). *Finance : a quantitative introduction*. Cambridge: Cambridge University Press.

		Molecular	Melting Point	Normal Boiling Point	Critical Temperature	Critical Pressure	Acentric	Density (g/cm³) at 1 atn
Component	Formula	Weight (g/mol)	(°C)	(°C)	(°C)	(bar)	Factor	and 20°C
Inorganics								
Nitrogen	N ₂	28.013	-209.9	-195.8	147.0	33.9	0.040	—
Carbon dioxide	CO2	44.010	-56.6	-78.5	31.1	73.8	0.225	_
Hydrogen sulfide	H_2S	34.080	-83.6	59.7	100.1	89.4	0.100	—
				Paraffins				
Methane	CH_4	16.043	-182.5	-161.6	82.6	46.0	0.008	_
Ethane	C_2H_6	30.070	-183.3	-87.6	32.3	48.8	0.098	_
Propane	C ₃ H ₈	44.094	-187.7	-42.1	96.7	42.5	0.152	_
so-butane	C_4H_{10}	58.124	-159.6	-11.8	135.0	36.5	0.176	_
1-Butane	$C_{4}H_{10}$	58.124	-138.4	-0.5	152.1	38.0	0.193	_
so-pentane	$C_{5}H_{12}$	72.151	-159.9	27.9	187.3	33.8	0.227	0.620
n-Pentane	$C_{5}H_{12}$	72.151	-129.8	36.1	196.4	33.7	0.251	0.626
n-Hexane	$C_{6}H_{14}$	86.178	-95.1	68.8	234.3	29.7	0.296	0.659
so-cetane	$C_{8}H_{18}$	114.232	-109.2	117.7	286.5	24.8	0.378	0.702 (16°C)
n-Decane	$C_{10}H_{22}$	142.286	-29.7	174.2	344.6	21.2	0.489	0.730
				Naphthenes				
Cyclopentane	$C_{3}H_{10}$	70.135	-93.9	49.3	238.6	45.1	0.196	0.745
Methyl cyclopentane	C ₆ H ₁₂	84.162	-142.5	71.9	259.6	37.8	0.231	0.754 (16°C)
Cyclohexane	C_6H_{12}	84.162	6.5	80.7	280.4	40.7	0.212	0.779
				Aromatics				
Benzene	$C_{e}H_{6}$	78.114	5.6	80.1	289.0	48.9	0.212	0.885 (16°C)
Foluene	C_7H_8	92.141	-95.2	110.7	318.7	41.0	0.263	0.867
2-X ylene	C_8H_{10}	106.168	-25.2	144.5	357.2	37.3	0.310	0.880
Naphthalene	$C_{10}H_8$	128.174	80.4	218.0	475.3	40.5	0.302	0.971 (90°C)

Appendix A Physical properties of common petroleum reservoir fluids constituents

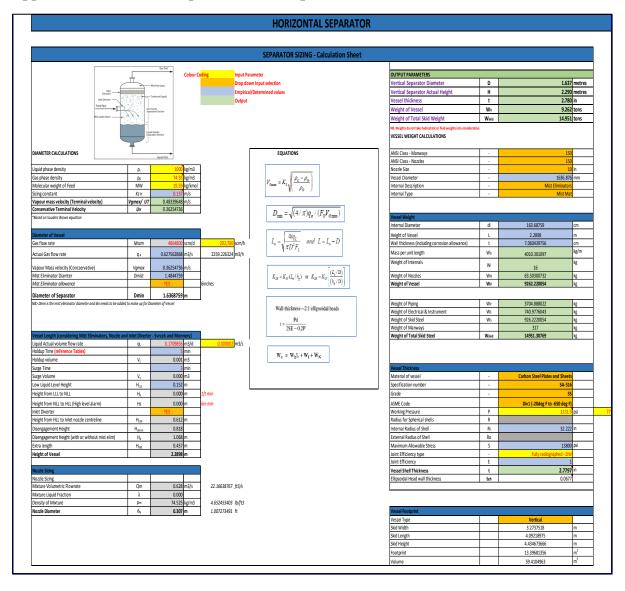
Appendix B Compositions of reservoir fluids

Appendix B.1Gas condensate mixture

Component	Mole Percentage	Molecular Weight	Density (g/cm³) at 1 atm and 15°C
N ₂	0.53	_	_
CO ₂	3.30	_	_
C ₁	72.98	_	—
C_2	7.68	—	_
C ₃	4.10	_	_
iC ₄	0.70	_	_
nC ₄	1.42	—	_
iC ₅	0.54	_	_
nC ₅	0.67	_	_
C_6	0.85	_	_
C ₇	1.33	91.3	0.746
C ₈	1.33	104.1	0.768
C ₉	0.78	118.8	0.790
C ₁₀	0.61	136	0.787
C ₁₁	0.42	150	0.793
C ₁₂	0.33	164	0.804
C ₁₃	0.42	179	0.817
C ₁₄	0.24	188	0.830
C ₁₅	0.30	204	0.835
C ₁₆	0.17	216	0.843
C ₁₇	0.21	236	0.837
C ₁₈	0.15	253	0.840
C ₁₉	0.15	270	0.850
C ₁₉ C ₂₀₊	0.80	391	0.877

Appendix B.2

Near-critical mixture

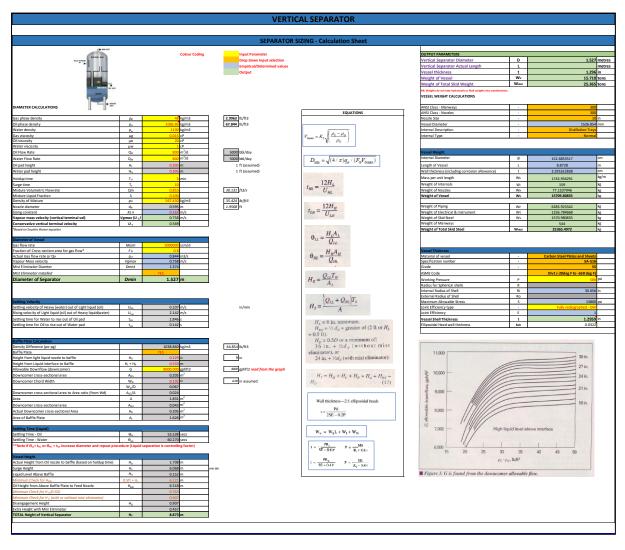

Component	Mole Percentage	Molecular Weight	Density (g/cm³) at 1 atm and 15°C
N ₂	0.46	_	_
CO ₂	3.36	_	_
C ₁	62.36	_	_
C_2	8.90	_	_
C ₃	5.31	_	_
iC ₄	0.92	_	_
nC ₄	2.08	_	_
iC ₅	0.73	_	
nC ₅	0.85	_	
C ₆	1.05	_	_
C ₇	1.85	95	0.733
C ₈	1.75	106	0.756
C ₉	1.40	121	0.772
C ₁₀	1.07	135	0.791
C ₁₁	0.84	150	0.795
C ₁₂	0.76	164	0.809
C ₁₃	0.75	177	0.825
C ₁₄	0.64	190	0.835
C ₁₅	0.58	201	0.841
C ₁₆	0.50	214	0.847
C ₁₇	0.42	232	0.843
C ₁₈	0.42	248	0.846
C ₁₉	0.37	256	0.858
C ₂₀₊	2.63	406	0.897

Component	Mole Percentage	Molecular Weight	Density (g/cm³) at 1 atm and 15°C
N ₂	0.04	_	_
CO ₂	0.69	_	
C ₁	39.24	_	
C ₂	1.59	_	
C ₃	0.25	_	_
iC ₄	0.11	_	
nC ₄	0.10	_	_
iC₅	0.11	_	_
nC ₅	0.03	_	_
C ₆	0.20	_	_
C ₇	0.69	85.2	0.769
C ₈	1.31	104.8	0.769
C ₉	0.75	121.5	0.765
C ₁₀₊	54.89	322.0	0.936

Appendix B.3 Black oil mixture

Appendix C Separator calculation sheet

Appendix C.1 Two-phase vertical separator calculation sheet

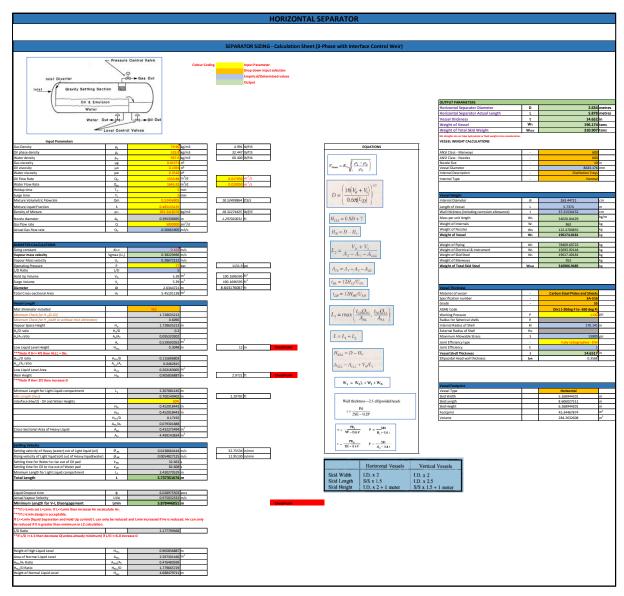

VERTICAL GAS LIQUID SEPARATOR

		SEPARATOR	SIZING - Ca	alculation Sheet	t					
Colour Coding										
Colour Couling	Input Parameter	r							Gas	s Out
	Drop down Inpu							÷.		
	Empirical/Deter	mined values					\subset	-	Mist-free Vap	or
	Output iterative value					Mist Extractor				
	iterative value					Inlet Diverter	.6.	0.000	Coalesced Lic	quid
INSTRUCTION						Feed Pipe	-	· A		
A. Fill in input parameters based on colour code									Gas Gravity Separation Sectio	n
B. Determine Drag co-efficient , Cd by running the solve	er (error=0)(Step	1) NB:-click on SOLVER)				Mist Laden Vapor				
C. Obtain Minimum Allowable Vessel Diameter, Dmin									-	
D. From Dmin ; obtain combinations of D and H (with a E. Manual operation of Dand H combinations is done n			~						Liquid Gravity Separation Section	'n
E. Manual operation of Danu H combinations is done in		OTPOT REFERENCED TABLE	3						j	
								4		
									Liquid	Out
INPUTS (IMPERIAL)					-		ERENCES TAB	LES		
	NOMENC					Selected	Height of	Seam-to-	Slenderness	
	LATURE			METRIC		diameter (D)	Separator (H)	Seam length (Ls)	Ratio (SR)	
Liquid phase density	ρι	53.05867665	lb/ft3	850	kg/m3	in	in	ft	(
Gas phase density	ρε	3.745318352	lb/ft3	60.00	kg/m3	32	75.28	12.61	4.73	
Gas Flow rate	Qg	15.010915		0.43	MMscmd	34	66.68	11.89	4.20	
Liquid Flow Rate	Q _i	3000 0.013	bbl/day cP	480) m³/d	36 38	59.48 53.38	11.29 10.95	3.76 3.46	
Gas viscosity Pressure	μg P	986.2584	psi	68	Bar	40	48.18	10.95	3.40	
Temperature	т	519.678	R	288.71	Lκ	42	43.70	10.47	2.99	
Compressibility factor	Z	0.84	-			44	39.82	10.32	2.81	
Drag Co-efficient (Iterative) Diameter of Particle	Cd dm	1.166269	- μm			46 48	36.43 33.46	10.20 10.12	2.66 2.53	
Gas Retention time	tg	3	min			50	30.83	10.12	2.33	
			•							
			1			52	28.51	10.04	2.32	
STEP 1: DETERMINE Re, Cd, AND SETTLING VELOCITY Settling velocity	u	0.398495419	ft/s	0.1215	m/s	54	26.44	10.04	2.23	I
Reynolds Number	Re	56.25547551								
Drag Co-efficient (Calculated)	Cd	1.166605671		_		EQUATIONS				
Error correction (Drag co-efficient)		0.000	SOLVER					1.0		
						u = 0.01	$186\left[\left(\frac{\rho_o - \rho_o}{\rho_g}\right)\right]$	$\rho_g d_m^{1/2}$	ft/s	
STEP 2: DETERMINE GAS CAPACITY CONSTRAINTS			1				$[\rho_g$	$\int C_d$,	
Diameter squared	D ²	1000.161767	in ²		_					
Minimum Allowable Vessel Diameter	Dmin	31.62533426	in	0.8033	3 m			_		
						$P_{0} = 0.00$	$\rho_g d_m u$			
STEP 3: DETERMINE LIQUID CAPACITY CONSTRAINT			1			$\mathrm{Re} = 0.00$	μ_g			
Retention time	t	0.002083333	-					24		
D ² H*		77085	in³			$C_d = 0.3$	$34 + \frac{3}{\text{Re}^{0.5}}$	$+\frac{24}{2}$		
*Determine combinations of D and H based on the min	unowable vessel a	iume ter					Re	Re		
MANUAL COMBINATION OF D AND H (refer to Outpu	t Table)]		_					
Diameter		32	in	0.8128	3 m				1.12	
Height	1	75.27832031	in			$D^2 - 50$	(TZ)	$Z = \rho_g$	$\left[\frac{C_d}{D_g}\right] \frac{C_d}{d_m} \right]^{1/2}$ in	n ²
Slenderness Ratio Check (Between 3 and 4) - For D<3	6 in or For D>36 in		1			D = 0.0	P	$\int \left(\rho_o - \rho\right)$	$d_{g} d_{m} \int d_{m}$	
Height from combination	н	75.27832031			-					
Seam-to-seam length	Ls	12.60652669	1	3.842	2 m	$D^2 H = S$	$8.565Q_ot$:n 3		
Slenderness Ratio	SR	4.72744751	1			D H = 0	$5.505Q_0l$			
					-	D 261				
Notes		Typical retention times are as follows:				D < 36 in				
Gas Capacity Constraint - Determines the diameter		Natural gas-oil Lean oil surge		1-3 minutes 10-15 minutes		I.	$=\frac{H+76}{12}$ f	¥		
Smallest gas particle to be separated is 100µm		Fractionation for Refrigerant sur	eed surge tanks	8-15 minutes 4-7 minutes		$L_S =$	12			
Retention time is between 1-3 minutes		Refrigerant con	nomizers	2-3 minutes		D > 36 in.				
Drag co-efficient is determined by iteration Liquid Capacity Constraint - determines the height of	the vessel	API 12J gives the following guideline						40		
signed capacity constraint - determines the neight of			ative Density w 0.85 -0.93	Minutes		$L_s =$	$=\frac{H+D+12}{12}$	ft		
		0.85	-0.93 -1.0	1 to 2 2 to 4			12			
1					1	1				

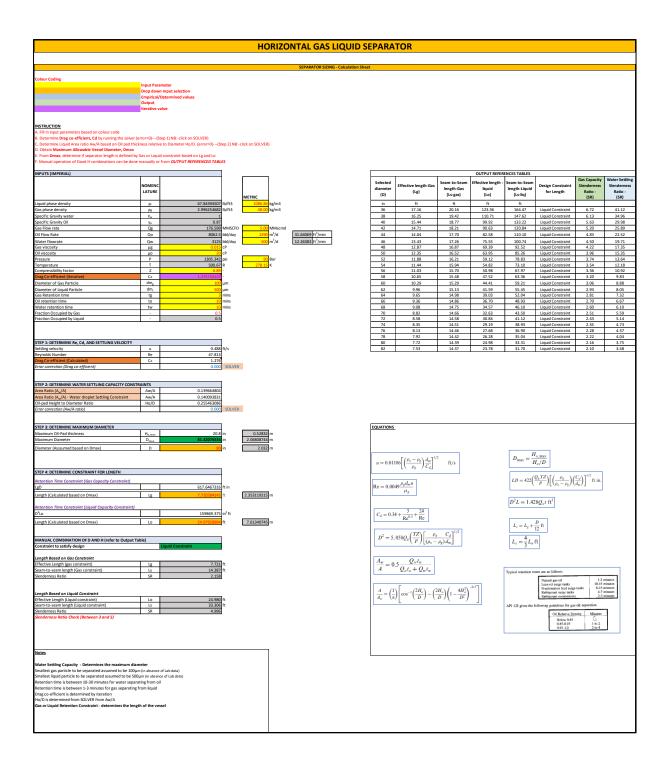
	_				HORIZONTAL SEPARATOR				_
					SEPARATOR SIZING - Calculation Sheet				
		_							
	ŧ	Coli	our Coding	Input Parameter		OUTPUT PARAMETERS	1		
	<u>+</u> II			Drop down Input sele		Horizontal Separator Diameter	D		152 metres
	h.	\		Empirical/Determined	values	Horizontal Separator Actual Length	-		030 metres 232 in
V _i	ria	1		Output		Vessel thickness Weight of Vessel	t Wv		589 tons
		/				Weight of Total Skid Weight	Wskid		955 tons
						NB. Weights do not take hydrostatic or fluid weights into considerati	WV SOD	10.3	555 10115
	Ţ					VESSEL WEIGHT CALCULATIONS	л.		
DIAMETER CALCULATIONS						ANSI Class - Manways			300
					EQUATIONS	ANSI Class - Nozzles			300
Liquid phase density	ρ	1086.860 kg/r	m3			Nozzle Size	-		10 in
Gas phase density	ρε	48.000 kg/r				Vessel Diameter			608 mm
Sizing constant	Кsн	0.137 m/s			×	Internal Description		Distillation Tr	
Vapour mass velocity (terminal velocity)	Vgmax	0.637 m/s			$V_{\text{Generat}} = K_s \sqrt{\left(\frac{\rho_L - \rho_G}{\rho_G}\right)}$	Internal Type	•	Non	mal
Conservative terminal velocity *Based on Souders Brown equation	Uv	0.478 m/s	5		$\rho_{GRDMX} = \frac{1}{2} \left(\rho_{G} \right)$				
						Vessel Weight			
Diameter of Vessel						Internal Diameter	di	145.1607534	cm
Gas flow rate	Mscm	5000000 scm	n/d		$D_{\min} = \sqrt{(4 / \pi)q_g / (F_G V_{G\max})}$	Length of Vessel	L	4.0303	m
Fraction of Cross-section area for gas flow*	FG	0.8				Wall thickness (including corrosion allowance)	t	3.129396464	cm
Actual Gas flow rate	q zv	0.8439 m3/	/s			Mass per unit length	Wb	1576.301453	kg/m
Vapour Mass velocity		0.6374 m/s				Weight of Internals	Wi	159	kg
Minimum Gas Flow area	Vgmax A _{g.min}	1.3241	<u>,</u>		$L_{o} = \sqrt{\frac{4tq_{\perp}}{\pi D^2 F_{\perp}}}$ and $L = L_{o} + D$	Weight of Nozzles	Wn	77.1107946	kg
Diameter of Separator	Dmin	1.4516 m			$\gamma \pi D^* F_L$	Weight of Vessel	Wv	6589.078068	kg
 Machania J. Cross section area available for gas flow (PG = 2 for backpostal constance) 	in venicar separators	and is a junction of inquire neig	gni joi						
						Weight of Piping	WP	2635.631227	kg
					r r (L(h) - r r (L/D)	Weight of Electrical & Instrument	WE	527.1262454	kg
Length of Vessel		-			$K_{BI} = K_{SI} (L_e / h_p)$ or $K_{SI} = K_{SI} \left[\frac{(L_e / D)}{(h_e / D)} \right]$	Weight of Skid Steel	Ws	658.9078068 544	kg
Liquid Actual volume flow rate Holdup Time	qL	3000 m3/ 5 min				Weight of Manways Weight of Total Skid Steel	Wskid	10954.74335	Kg Lur
Holdup volume	V,	10.417 m3				weight of Total Skie Steel	WY365	10334.74333	*6
Surge Time		5 min			$W_v = W_b L + W_l + W_N$				
Surge Volume	V,	10.417 m3							
L/D Ratio	L/D	6		Table		Vessel Thickness			
Initial Diameter		2.246 m		7.3683 ft	Wall thickness-2:1 ellipsoidal heads	Material of vessel		Carbon Steel Plates and She	ets
Total Cross-sectional Area	A _T	3.962 m2			AN INCOMENTATION PROVIDE THE WORK STREAM	Specification number	-	SA-	
Low Liquid Level Height	Hui	0.271 m		10.684 in	$t = \frac{Pd}{2SE - 0.2P}$	Grade	-		55
H _{LLL} /D ratio	H _{LLI} /D	0.187			2SE - 0.2P	ASME Code		Div1 (-20deg F to -650 deg	g F)
A _{LL1} /A ₁ ratio	A _{LLI} /A _T	0.088				Working Pressure	Р		580 psi
Low Liquid Level Area	A _{LLL}	0.347 m2				Radius for Spherical shells	R		
Mist Eliminator Pad		YES	0.6096			Internal Radius of Shell	Ri	28.5	575 in
Height of Vapour Disengagement Area - Check Height of Vapour Disengagement Area	H,	0.290 m 0.610 m		11.43 in		External Radius of Shell Maximum Allowable Stress	Ro	121	800 psi
Height of Vapour Disengagement Area H./D ratio	H,/D	0.610 m				Joint Efficiency type		131 Fully radiographed - I	-
A/A-ratio	A/Ar	0.420				Joint Efficiency	E	runy raurug/apried - 1	1
did one	A/Ar A,	0.217 0.860 m2				Vessel Shell Thickness	t	1.23	20 in
Minimum Length - Holdup/Surge	L	4.030 m				Ellipsoidal Head wall thickness	teh	0.03	
Liquid Dropout time	¢	1.275 s						0.0.	
Actual Vapour Velocity	UVA	0.981 m/s	5			L			
Minimum Length for V-L Disengagement	Lmin	1.251 m							
Length of Vessel		4.030 m							
L/D Ratio		2.776							
NOTE: L/D Ratio must be between 1.5 to 6.0 (incre	ase and decreas	e Diamter by 6in							
increments and repeat to obtain L/D ratio)		2 0324							
Area of Normal Liquid Level A _{NLL} /A _T Ratio	A _{NLL} A _{NLL} /A _T	2.9321 m2 0.7401							
	A _{NLL} /A _T H _{NLL} /D	-1.5511							
H _{NLL} /D Ratio Height of Normal Liquid Level	H _{NLL} /D	-1.5511 -2.2516 m							
Height of High Liquid Level	H _{NLL}	0.8420 m							

Appendix C.2 Two-phase horizontal separator calculation sheet

HORIZONTAL GAS LIQUID SEPARATOR lour Coding skour Coding Input Parameter Drop down Input selection Empirica/Determined values Output Iterative value INSTRUCTION STRUCTON Fill In Input parameters based on colour code Determine Drag coefficient, Cd by running the solver (error-0)—(Step 1) NB:-click on SOLVER) Otzan Minimum Allowable Vessel Diameter, Dmin From Dmin, determine if aparators is differed by Gas or Liquid constraint based on Lg and Lo Manual operation of Dand H combinations can be done manually or from OUTPUT REFERENCED TABLES OUTPUT REFERENCES TABLES Effective length Selected Gas diameter (D) (Lg) INPUTS (IMPERIAL) Seam-to-Seam length-Gas (Ls-gas) Effective ength - liquid (Lo) Seam-to-Sean length-Liquid (Ls-liq) NOMENC enderne Ratio (SR) METRIC Constra iquid phase density ias phase density ias Flow rate iquid Flow Rate S3.05867665 Ib/ft3 850 kg/m3 3.745318352 Ib/ft3 60.00 kg/m3 14.834316 MMSCFD 0.42 MMscmd 3000 bb/day 480 m³/d ρ in 2.64 5.39 5.41 11.79 10.48 15.72 13.98 Liquid Constraint Liquid Constraint 5.72 4.79 ρ₈ Qg 11.77328 ft³/min Qo 2.35 2.23 5.44 5.48 9.38 8.44 12.51 11.26 Liquid Constraint Liquid Constraint 4.06 3.46 s viscosity μg 68 Bar 288.71 K P T Z Cd 986.2584 psi 519.678 R 2.12 2.03 1.94 1.85 5.54 5.61 5.69 5.77 7.64 6.95 6.34 5.81 10.19 9.26 8.46 7.75 Liquid Constraint Liquid Constraint Liquid Constraint Liquid Constraint 2.98 2.58 2.25 1.98 nperature mpressibility fac ag Co-efficient (I 0.8 1.3015 1.03 1.78 1.71 1.64 1.58 1.53 1.30 1.75 1.55 1.38 1.23 1.11 ameter of Particle dm tg μm min 5.86 5.96 5.35 4.94 7.13 6.58 Liquid Constraint Liquid Constraint 4.57 4.25 3.95 3.69 3.45 6.06 6.17 6.28 6.39 6.51 Liquid Constraint Liquid Constraint Liquid Constraint Liquid Constraint Liquid Constraint action Occupied by Gas action Occupied by Liqu 0.5 6.10 5.66 5.27 -1.48 4.92 4.60 1.00 0.91 STEP 1: DETERMINE Re, Cd, AND SETTLING VELOCITY 1.38 Liquid Constrain 0.377 46.151 1.302 ft/s 0.114976207 m/s ettling velocity eynolds Number rag Co-efficient (Calculated) u Re Cd EQUATIONS SOLVER ror correction (Drag co-efficient) $u = 0.01186 \left[\left(\frac{\rho_o - \rho_g}{\rho_g} \right) \frac{d_m}{C_d} \right]^{1/2} \qquad \text{ft/s}$ TEP 2: DETERMINE GAS CAPACITY CONS D² Dmin 1044.157977 iameter squared Iinimum Allowable Vessel Diameter 0.820761208 m $\operatorname{Re} = 0.0049 \frac{\rho_g d_m u}{\mu_g}$ STEP 3: DETERMINE LIQUID CAPACITY CONSTRAINT $C_d = 0.34 + \frac{3}{\text{Re}^{0.5}} + \frac{24}{\text{Re}}$ 12841.38 ir $D^2 = 5,058 Q_g \left(\frac{TZ}{P}\right) \left[\frac{\rho_g}{(\rho_o - \rho_g)} \frac{C_d}{d_m}\right]^{1/2}$ MANUAL COMBINATION OF D AND H (refer to Output Table) Diameter D 33 Constraint to satisfy design (compare Lg and Lo) Liquid Constraint 0.8382 m $LD = 422 \left(\frac{Q_g TZ}{P}\right) \left[\left(\frac{\rho_g}{\rho_o - \rho_g}\right) \left(\frac{C_d}{d_m}\right) \right]^{1/2} \text{ft in.}$ onstraint to satisfy design (compare Lg and Lo) ength Based on Gas Constraint fective Length (gas constraint) eam-to-seam length (Gas constraint) enderness Ratio $D^2L = 1.428Q_ot$ ft³ Lg 2.639890401 ft 0.80 m 1.64 m are as follo Ls SR 5.389890401 0.163330012 Natural gas-oil Lean oil surge tanks Fractionation feed surge tanks Refrigerant surge tanks Refrigerant economizers 1-3 minutes 10-15 minutes 8-15 minutes 4-7 minutes 2-3 minutes $L_{\rm y} = L_{\rm y} + \frac{D}{12} \, {\rm ft}$ ength Based on Liquid Constraint ffective Length (Liquid constraint) eam-to-seam length (Liquid constraint) lenderness Ratio Lenderness Ratio Check (Between 3 and 5) Lo Ls SR 11.79190083 15.72253444 5.717285249 3.59400 m 4.79199 m $L_s = \frac{4}{3}L_o\,\mathrm{ft}$ g guidelines for gas-oil separation. Oil Relative Density Minutes Below 0.85 G 0.85-0.93 1 to 2 0.93-1.0 2 to 4 API 12J gives the fo Notes Theory Assumptions Either the Gas Capacity Constraint or Liquid Capacity Constraint governs the design Gas Capacity Constraint Upward Gas velocity shouldnot exceed the the downward terminal velocity of the smallest oil droplet to be separated. Iterative scale of Cit to obtain settling velocity, u Oil Capacity Constraint


Appendix C.3 Three-phase vertical separator calculation sheet

VERTICAL GAS LIQUID SEPARATOR lour Coding Input Parameter Drop down input selection Empirical/Determined values Output TRUCTION Fill in input parameters based on colour code Determine Drag co-different, Cd by running the solver (enror-0)—(Step 1) NB-click on SOLVER) Othain Minimum Allowable Vestal Diameter, Dmin Tem Dmin; colstan contrainstion of D and H (within a SR—between 3 and 5) Manual operation of Dand H combinations is done manually or from *OUPPUT REFERENCED TABLES* NPUTS (IMPERIAL) OUTPUT REFERENCES TABLES Water Settling Slendernes Ratio -(SR) Water Settling Constraint diameter (Dmin) Gas Capacity Constraint diameter (Dmin) Seam-to-Seam length for Water Settling Constraint (Ls) as Capac Seam-to-Seam length fo Gas Capacity Constraint (Ls) NOMENO Height of Liquid level (Ho+Hw) Design Constraint for Diameter Ratio -(SR) METRIC quid phase density as phase density pecific Gravity water Ρι Ρε Υν lb/ft3 lb/ft3 67.843945 ft 18.78 18.85 18.93 19.01 19.09 in 41.36 ft 11.53 1.56 Water Settling Constraint Water Settling Constraint 41.36 40.23 39.15 38.12 37.12 γ_w γ_o Qg Q_o Q_W HB μο P Water Settling Constraint ecific Gravity Oi Is Flow rate I Flow Rate 11.68 176.59 500 5.00 MMsc 800 m³/d 800 m³/d 1.52 1.51 1.49 1.48 1.47 1.46 obl/day obl/day 11.84 37.12 36.16 35.24 34.35 33.50 32.68 31.89 31.12 ater Flow Rate s viscosity viscosity essure 19.18 19.27 19.36 19.46 1305.342 90 Bar 278.15 K 19.56 19.66 19.76 1.45 1.44 1.43 Water Settling Constraint Water Settling Constraint 12.41 12.51 mpressibility fact Z Cd dmg dmi tg to μm μm mins mins mins neter of Liquid Particle Retention time ter retention time tw EQUATIONS ction Occupied by Liqui 0.5 TEP 1: DETERMINE Re, Cd, AND SETT $D_{\min}^2 = 6686 \frac{Q_o \mu_o}{(\Delta \gamma) d_m^2}$ in.² $u=0.01186 \bigg[\bigg(\frac{\rho_o-\rho_g}{\rho_g} \bigg) \frac{d_m}{C_d} \bigg]^{1/2} \qquad {\rm ft/s} \label{eq:u}$ u Re Cd 0.488 f 47.813 1.276 0.000 SOLVER rror correction (Drag co-efficient) $\mathrm{Re} = 0.0049 \frac{\rho_g d_m u}{\mu_g}$ $(H_o + H_w)D^2 = 8.576(Q_o t_o + Q_w t_w)$ STEP 2: DETERMINE WATER SETTLING CAR ONSTRAINTS 20572.30769 in 4304978 in D²min Dmin 3.643134644 m For D > 36 in $C_d = 0.34 + \frac{3}{\text{Re}^{0.5}} + \frac{24}{\text{Re}}$ $L_s = \frac{1}{12}(H_v + H_w + D + 40)$ ft For D < 36 in. STEP 3: DETERMINE GAS CAPACITY CONSTRAINTS 3236.314846 ir 56 98961789 ir $L_s = \frac{1}{12}(H_o + H_w + 76)$ ft D²min Dmin $D_{\min}^2 = 5058Q_g \left(\frac{TZ}{P}\right) \left(\frac{\rho_g C_d}{\rho_v - \rho_g d_m}\right)^{1/2}$ in² 1.444970894 m ANUAL COMBINATION OF D AND H (refer to Output Ta enstraint to satisfy design lv 1-3 minutes 10-15 minutes 8-15 minutes 4-7 minutes 2-3 min Typical retention ti es are as follows 3.6576 m Natural gas-oil Lean oil surge tanks Fractionation feed surge tanks Refrigerant surge tanks Refrigerant economizers 44 in EP 4: LIQUID RETENTION TIME CO ines for gas-oil separation API 12J gives the follow combinations of D and (Ho+Hw) h
 Oil Relative Density
 Minutes


 Below 0.85
 (1)

 0.85-0.93
 i to 2

 0.93-1.0
 2 to 4
 FEP 4: Check based on Seam-to-seam length, Ls Slenderness Ratio Check (Between 3 and 4) - For D>36 in or For D<36 in 18.77983539 ft 0.130415524 5.723814505 m Ls SR enderness Ratio as Capacity Constraint or Water Setting Capacity - Determines the diameter maliest gap anticle to be separated assumed to be 100µm (nakancer of Labata) malest isupla particle to be separated assumed to be 500µm (nakancer of Labata) electronic mice between 13-2 and multices gap separating from oil determine the between 13-2 multice for a separating from and ang co-officients determined by invition upge determine Constanti- electromise the height of the vessel

Appendix C.4 Three-phase horizontal separator calculation sheet

Appendix C.5 Ks values for separator vessels

Reference - (Svrcek & Monnery,

1993)	
Mist Eliminator (Pressure in Psia)	
1<=P<15	K = 0.1821 + 0.0029P + 0.0460Ln (P)
15<=P<=40	K = 0.35
40<=P<=5500	K = 0.430 - 0.023 Ln(P)

GPSA (Pressure in Psig)	
0<=P<=1500	K = 0.35 - 0.01(P-100/100)
Vapours under vacuum	K = 0.20
Glycol and Amine Solutions	Multiply K by 0.6-0.8
Vertical vessels without mist eliminators	Divide K by 2
For compressor suction scrubbers, mole sieve scrubbers and expander inlet separators multiply k by 0.7-0.8	Multiply K by 0.7-0.8

$$K = \sqrt{\frac{4gD_{p}}{3C_{D}}}$$

$$C_{p} = \exp(Y)$$

$$Y = 8.411 - 2.243X + 0.273X^{2} - 1.865E - 2X^{3} + 5.201E - 4X^{4}$$

$$X = Lr\left(\frac{0.95 + 8\rho_{V}D_{p}^{3}(\rho_{L} - \rho_{V})}{\mu_{V}^{2}}\right)$$
Notes:
$$D_{y} \text{ ft}$$

$$p, \text{ tb/ft}^{3}$$

$$\mu, \text{ cP}$$

$$1 \text{ micron} = 3.28084 \times 10^{4} \text{ ft}$$

Light Phase	Heavy Phase	Min Droplet Diameter, μ m	Ks
Hydrocarbons		127	0.333
Sg at 60degF < 0.85	Water or Caustic	89	0.163
Sg at 60degF < 0.86	Water or Caustic	89	0.163
Water	Furfural	89	0.163

Appendix C.6 Separator vessel internals weight and nozzle weights

	Vessel Inter	nals Weight in pounds (Wi	Manways				
Vessel Diameter		Mist Elin	inators	Distillation Trays			
Vessei Diametei		Vane		Normal	Light Weight		
mm	ft	kg	kg	kg	kg		
0	0	6	5	32	23		
616	2.0	6	5	32	23		
770	2.5	8	7	48	34		
924	3.0	10	9	73	50		
1078	3.5	13	10	95	68		
1232	4.0	15	12	127	91		
1386	4.5	18	15	159	113		
1540	5.0	21	16	200	141		
1694	5.5	25	19	236	168		
1848	6.0	27	21	284	200		
2002	6.5	31	23	331	234		
2156	7.0	34	25	386	272		
2310	7.5	38	28	440	311		
2464	8.0	42	31	504	354		
2618	8.5	47	34	563	397		
2772	9.0	53	36	635	445		
2926	9.5	57	39	703	499		
3080	10.0	62	42	794	553		
3234	10.5	62	45	862	608		

	External Nozzle Weights in kg (Wv)											
ANSI		Nominal Nozzle Sizes (DN)										
Class	2	2 3 4 6 8 10 12 14 16 18								20		
150	10	30	45	65	100	140	185	240	320	345	410	
300	15	30	55	95	130	170	245	325	440	565	670	
400	20	40	70	100	150	205	295	370	490	580	705	
600	20	40	75	120	180	270	330	485	675	825	1020.00	

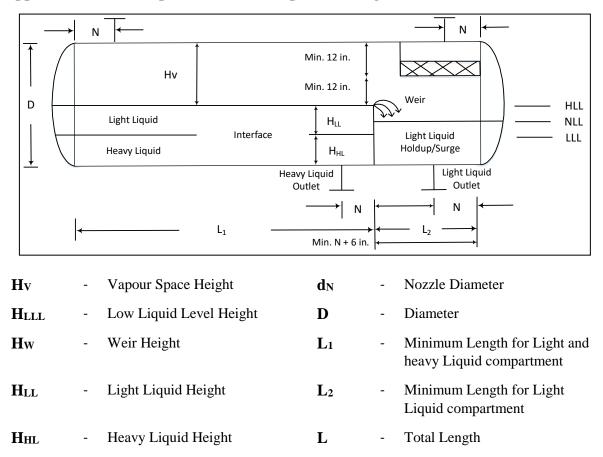
LIQUID HO	OLDUP AND SURGE	TIMES	
SERVICES	Holdup Times NLL-HLL min	Surge Times NLL-LLL min	
A. UNIT FEED DRUM	10	5	
		-	
B. SEPARATORS			
1. Feed to Column	5	3	
Feed to other drum or Tankagge			
a. with pump or through exchanger	5	2	
b. without pump	2	1	
3. Feed to Fire Heater	10	3	
C. REFLUX OR PRODUCT ACCUMULATOR			
1. Reflux only	3	2	
2. Reflux and Product	3+	2+	
*based on reflux (3min) + appropriate holdup time			
of overhead product (per B.1,2,3)			
D. COLUMN BOTTOMS			
1. Feed to another column	5	2	
2. Feed to other drum or Tankagge	-	_	
a. with pump or through exchanger	5	2	
b. without pump	2	1	
3. Feed to Fired boiler	5-8	2-4	
*based on reboiler vapour expressed as liquid			
(3min) + appropriate holdup time for the bottom			
product (per D.1,2,)			
E. COMPRESSOR SUCTION /INTERSTAGE SCRUBBER			
3min between high liquid alarm (HLL/HLA) and high			
level shutdown (HLSD)			
10min from bottom tangent line to high liquid alarm			
F. FUEL GAS KNOCKOUT DRUM			
20ft slug in the incoming fuel gas line between NLL			
and HLSD			
F. FLARE KNOCKOUT DRUM			
20 to 30min to HLL			
Personnel	factor	Instrumentation	factor
Experienced	1.0	Well instrumented	1.0
Trained	1.0	Standard instrumented	1.2
Insperienced	1.5	Poorly instrumented	1.5

Appendix C.7 Liquid holdup and surge times

Vessel Diameter		tical LL	Horizontal LLL
	<300 psia	>300 psia	
<=4ft	15 in	6 in	9 in
6ft	15 in	6 in	10 in
8ft	15 in	6 in	11 in
10ft	6 in	6 in	12 in
12ft	6 in	6 in	13 in
16ft	6 in	6 in	15 in

Appendix C.8 Low liquid level height

Appendix C.9 L/D ratio guidelines

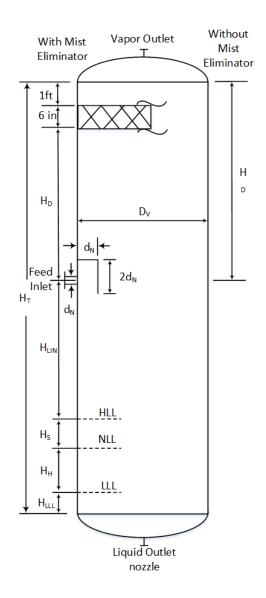

Vessel Operating pressure, psig	L/D
0 <p<=250< td=""><td>1.5 - 3.0</td></p<=250<>	1.5 - 3.0
250 <p<500< td=""><td>3.0 - 4.0</td></p<500<>	3.0 - 4.0
500 <p< td=""><td>4.0 - 6.0</td></p<>	4.0 - 6.0

Appendix C.10 Cylindrical height and area conversions

a	4.76E-05	0.00153756
b	3.924091	26.787101
с	0.174875	3.299201
d	-6.358805	-22.923932
e	5.668973	24.353518
f	4.018448	-14.844824
g	-4.916411	-36.999376
h	-1.801705	10.529572
i	-0.145348	9.892851

$$y = \frac{a + cx + ex^2 + gx^3 + ix^4}{1.0 + bx + dx^2 + fx^3 + hx^4}$$

For **H/D to A/A**_T; $y = \frac{A}{A_T}$ and $x = \frac{H}{D}$; For **A/A**_T to **H/D**; $y = \frac{H}{D}$ and $x = \frac{A}{A_T}$

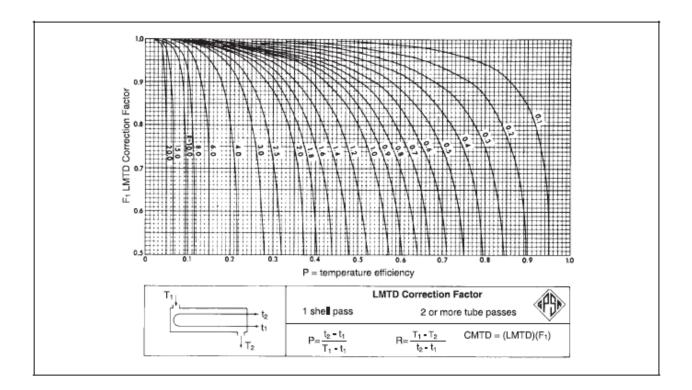


Appendix C.113-phase horizontal separator design

<u>1st stage 3-phase separator design</u>

3-Phase Horizontal (units in metres)	Hv	HLLL	Hw	HLL	H _{HL}	dN	D	L_1	L_2	L
1st Stage 3-Phase Separator	1.76	0.30	0.92	0.46	0.46	0.16	2.68	4.02	3.41	7.43

Appendix C.12 2-phase vertical separator design


HLLL	-	Low Liquid Level Height
Нн	-	Height from Normal Liquid Level (NLL) to High Liquid Level (HLL)
Hs	-	Surge Height
HLIN	-	Height from HLL to Inlet nozzle centreline
HD	-	Disengagement Height
HME	-	Extra length
d _N	-	Nozzle Diameter
Dv	-	Diameter
Нт	-	Total Height

2-Phase Vertical (units in metres)	HLLL	H _H	Hs	HLIN	HD	H _{ME}	dN	D	HT
Inlet Separator	0.15	2.00	1.20	1.12	1.32	0.46	0.81	1.70	7.61
2nd Stage Separator	0.15	2.40	1.44	1.01	1.26	0.46	0.70	1.26	7.64
3rd Stage Separator	0.15	1.20	0.72	1.17	1.35	0.46	0.87	1.62	5.53
2nd Stage LP Compressor Scrubber	0.15	0.35	0.21	0.53	1.03	0.46	0.23	0.78	2.92
Intermediate Separator	0.15	4.00	2.40	0.66	1.09	0.46	0.35	0.59	13.24
Dehydration Scrubber*	0.15	0.00	0.00	0.60	1.06	0.46	0.29	1.57	2.27
1st St. HP Comp Scrubber*	0.15	0.00	0.00	0.61	1.07	0.46	0.31	1.64	2.29
2nd St. HP Comp Scrubber*	0.15	0.00	0.00	0.58	1.05	0.46	0.27	1.49	2.24

*In the process, these separators do not have a liquid phase. Separator was given a conservative design assuming liquid phase of density 1000kg/m^3 and a flowrate of $0.000001 \text{m}^3/\text{s}$

Appendix D Heat exchangers

Appendix D.1LMTD correction factor (1 shell pass; 2 or more tube passes)

Appendix D.2

Tubing characteristics (courtesy of TEMA)

Tube O.D. Inches	B.W.G. Gaugo	Thickness Inches	Internal Area Sq. Inch	Sq Ft External Surface Per Foot Longth	Sq Ft Internal Surface Par Foot Longth	Weight Per Foot Longth Steel Lbs*	Tube I.D. Inches	Moment of Inertia (Inches ⁴)	Section Modulus (Inches ²)	Radius of Gyration (Inches)	Constant C**	<u>0.D.</u> I.D.	Transverse Metal Area Sq. Inch
1/4 1/4 1/4	22 24 26 27	0.028 0.022 0.018 0.016	0.0296 0.0333 0.0360 0.0373	0.0654 0.0654 0.0654 0.0654	0.0508 0.0539 0.0560 0.0571	0.066 0.054 0.045 0.040	0.194 0.206 0.214 0.218	0.00012 0.00010 0.00009 0.00008	0.00098 0.00083 0.00071 0.00065	0.0791 0.0810 0.0823 0.0829	46 52 56 58	1.289 1.214 1.168 1.147	0.0195 0.0158 0.0131 0.0118
2/8 2/8 2/8 2/8	18 20 22 24	0.049 0.035 0.028 0.022	0.0603 0.0731 0.0799 0.0860	0.0982 0.0982 0.0982 0.0982	0.0725 0.0798 0.0835 0.0867	0.171 0.127 0.104 0.083	0.277 0.305 0.319 0.331	0.00068 0.00055 0.00046 0.00038	0.0036 0.0029 0.0025 0.0020	0.1166 0.1208 0.1231 0.1250	94 114 125 134	1.354 1.230 1.176 1.133	0.0502 0.0374 0.0305 0.0244
1/2 1/2 1/2 1/2	16 18 20 22	0.065 0.049 0.035 0.028	0.1075 0.1269 0.1452 0.1548	0.1309 0.1309 0.1309 0.1309	0.0969 0.1052 0.1126 0.1162	0.302 0.236 0.174 0.141	0.370 0.402 0.430 0.444	0.0021 0.0018 0.0014 0.0012	0.0086 0.0071 0.0056 0.0046	0.1555 0.1604 0.1649 0.1672	168 198 227 241	1.351 1.244 1.163 1.126	0.0888 0.0694 0.0511 0.0415
88888888888	12 13 14 15 16 17 18 19 20	0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.049 0.042	0.1301 0.1486 0.1655 0.1817 0.1924 0.2035 0.2181 0.2299 0.2419	0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636	$\begin{array}{c} 0.1066\\ 0.1139\\ 0.1202\\ 0.1259\\ 0.1296\\ 0.1333\\ 0.1380\\ 0.1416\\ 0.1453\end{array}$	0.601 0.538 0.481 0.426 0.389 0.352 0.302 0.262 0.221	0.407 0.435 0.459 0.481 0.495 0.509 0.527 0.541 0.555	0.0061 0.0057 0.0053 0.0049 0.0045 0.0045 0.0042 0.0037 0.0033 0.0028	0.0197 0.0183 0.0170 0.0156 0.0145 0.0134 0.0134 0.0105 0.0091	0.1865 0.1904 0.1939 0.1972 0.1993 0.2015 0.2044 0.2067 0.2090	203 232 258 283 300 317 340 359 377	1.536 1.437 1.362 1.299 1.263 1.228 1.186 1.155 1.126	0.177 0.158 0.141 0.125 0.114 0.103 0.089 0.077 0.065
21444444 212222	10 11 12 13 14 15 16 17 18 20	0.134 0.120 0.095 0.083 0.072 0.065 0.058 0.049 0.035	0.1825 0.2043 0.2223 0.2463 0.2679 0.2884 0.3019 0.3157 0.3339 0.3632	0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963	0.1262 0.1335 0.1393 0.1466 0.1529 0.1587 0.1623 0.1660 0.1707 0.1780	$ \begin{array}{c} 0.833 \\ 0.809 \\ 0.747 \\ 0.665 \\ 0.592 \\ 0.522 \\ 0.476 \\ 0.429 \\ 0.367 \\ 0.268 \end{array} $	0.482 0.510 0.532 0.584 0.606 0.620 0.634 0.632 0.630	0.0129 0.0122 0.0116 0.0107 0.0098 0.0089 0.0083 0.0076 0.0067 0.0067	0.0344 0.0326 0.0309 0.0285 0.0252 0.0238 0.0221 0.0208 0.0178 0.0134	0.2229 0.2267 0.2299 0.2376 0.2411 0.2433 0.2455 0.2455 0.2484 0.2531	285 319 347 418 450 471 492 521 567	1.556 1.471 1.410 1.339 1.284 1.238 1.210 1.183 1.150 1.103	0.259 0.238 0.219 0.195 0.174 0.153 0.140 0.126 0.108 0.079
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	10 11 12 13 14 15 16 17 18 20	$\begin{array}{c} 0.134\\ 0.120\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ 0.035\\ \end{array}$	$\begin{array}{c} 0.2894\\ 0.3167\\ 0.3390\\ 0.3685\\ 0.3948\\ 0.4197\\ 0.4359\\ 0.4525\\ 0.4525\\ 0.4742\\ 0.5090 \end{array}$	0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291	$\begin{array}{c} 0.1589 \\ 0.1662 \\ 0.1720 \\ 0.1793 \\ 0.1856 \\ 0.1914 \\ 0.1950 \\ 0.1987 \\ 0.2034 \\ 0.2107 \end{array}$	$\begin{array}{c} 1.062\\ 0.969\\ 0.893\\ 0.792\\ 0.703\\ 0.618\\ 0.563\\ 0.507\\ 0.433\\ 0.314 \end{array}$	0.607 0.635 0.657 0.709 0.731 0.745 0.759 0.777 0.805	$\begin{array}{c} 0.0221\\ 0.0208\\ 0.0196\\ 0.0180\\ 0.0164\\ 0.0148\\ 0.0137\\ 0.0125\\ 0.0109\\ 0.0082 \end{array}$	0.0505 0.0475 0.0449 0.0411 0.0374 0.0337 0.0312 0.0285 0.0249 0.0187	0.2662 0.2703 02736 0.2815 0.2850 0.2873 0.2896 0.2925 0.2972	451 494 529 575 616 655 680 706 740 794	1.442 1.378 1.277 1.234 1.197 1.174 1.153 1.126 1.087	$\begin{array}{c} 0.312\\ 0.285\\ 0.262\\ 0.233\\ 0.207\\ 0.182\\ 0.165\\ 0.149\\ 0.127\\ 0.092 \end{array}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 10 11 12 13 14 15 16 18 20	$\begin{array}{c} 0.165\\ 0.134\\ 0.120\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.049\\ 0.035 \end{array}$	0.3526 0.4208 0.4536 0.5153 0.5153 0.5463 0.5755 0.5945 0.6390 0.6798	0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618	0.1754 0.1916 0.1990 0.2047 0.2121 0.2183 0.2241 0.2278 0.2261 0.2361	1.473 1.241 1.129 1.038 0.919 0.814 0.650 0.498 0.361	0.670 0.732 0.760 0.810 0.834 0.856 0.870 0.902 0.930	$\begin{array}{c} 0.0392 \\ 0.0350 \\ 0.0327 \\ 0.0280 \\ 0.0253 \\ 0.0227 \\ 0.0210 \\ 0.0126 \\ 0.0124 \end{array}$	0.0784 0.0700 0.0654 0.0659 0.0559 0.0507 0.0455 0.0419 0.0332 0.0247	0.3009 0.3098 0.3140 0.3217 0.3255 0.3291 0.3314 0.3367 0.3414	550 656 708 804 852 898 927 997 1060	1.498 1.366 1.279 1.235 1.199 1.168 1.149 1.109 1.075	0.433 0.365 0.332 0.270 0.239 0.210 0.191 0.146 0.106
$\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$ $\frac{1}{V_{a}}$	7 8 10 11 12 13 14 16 18 20	0.180 0.165 0.134 0.120 0.095 0.083 0.065 0.049 0.035	0.6221 0.6648 0.7574 0.8012 0.8365 0.8825 0.9229 0.9852 1.0423 1.0936	0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272	0.2330 0.2409 0.2571 0.2644 0.2702 0.2775 0.2838 0.2932 0.3016 0.3089	2.059 1.914 1.599 1.450 1.330 1.173 1.036 0.824 0.629 0.455	0.890 0.920 0.982 1.010 1.032 1.060 1.084 1.120 1.152 1.180	0.0890 0.0847 0.0742 0.0688 0.0642 0.0579 0.0521 0.0426 0.0334 0.0247	0.1425 0.1355 0.1187 0.1100 0.1027 0.0926 0.0833 0.0682 0.0534 0.0395	0.3836 0.3880 0.3974 0.4018 0.4052 0.4097 0.4136 0.4196 0.4250 0.4297	970 1037 1182 1250 1305 1377 1440 1537 1626 1706	1.404 1.359 1.273 1.238 1.211 1.179 1.153 1.116 1.085 1.059	0.605 0.565 0.470 0.426 0.391 0.345 0.304 0.242 0.185 0.185
11/2 11/2 11/2 11/2	10 12 14 16	0.134 0.109 0.083 0.065	1.1921 1.2908 1.3977 1.4741	0.3927 0.3927 0.3927 0.3927	0.3225 0.3356 0.3492 0.3587	1.957 1.621 1.257 0.997	1.232 1.282 1.334 1.370	0.1354 0.1159 0.0931 0.0756	0.1806 0.1545 0.1241 0.1008	0.4853 0.4933 0.5018 0.5079	1860 2014 2180 2300	1.218 1.170 1.124 1.095	0.575 0.476 0.369 0.293
2 2 2 2	11 12 13 14	0.120 0.109 0.095 0.083	2.4328 2.4941 2.5730 2.6417	0.5236 0.5236 0.5236 0.5236	0.4608 0.4665 0.4739 0.4801	2.412 2.204 1.935 1.701	1.760 1.782 1.810 1.834	0.3144 0.2904 0.2586 0.2300	0.3144 0.2904 0.2586 0.2300	0.6660 0.6697 0.6744 0.6784	3795 3891 4014 4121	1.136 1.122 1.105 1.091	0.709 0.648 0.569 0.500
* Weights a Aluminum Titanium A.I.S.I. 40 A.I.S.I. 30	n 0 Series St	1 low carbor ainless Stee ainless Stee	0 0 els 0	a density o).35).58).99 1.02	f 0.2833 lbs Aluminum Aluminum Nickel-Chi Admiralty	Bronze Brass rome-Iron	othe r metal	s multiply b 1.0 1.0 1.0	04 06 07	wing factors Nickel Nickel-Copy Copper and	per	cels	1.13 1.12 1.14
** Liquid V	elocity = -	Lbs Per (Tu (C) (Sp Gr	be • Hour) of Liquid)	in feet per	sec (Sp Gr o	of Water at	60°F = 1.0)					
												Cou	tesy of TEMA

Appendix D.3 Typical film heat transfer co-efficients for shell and tube heat exchangers factor (Courtesy of HEDH : Heat Exchanger Design Handbook 2002)

Table 2 Typical film heat transfer	coefficients for shell-and-tube heat	exchangers	
Fluid condit		α , W/m ³ K ^{<i>a</i>, <i>b</i>}	Fouling resistance, m ² K/W ^a
			1 × 10 ⁻⁴ -2.5 × 10 ⁻⁴
Sensible heat transfer	f lauld	5 000-7 500	0-1 × 10-4
Water ^c	Liquid Liquid	6 000-8 000	1 × 10 ⁻⁴ -2 × 10 ⁻⁴
Ammonia	Liquid	1 500-2 000	1.5 × 10-4 -4 × 10-4
Light organics ^d	Liquid	750-1 500	
Medium organics ^e	Liquid,		$2 \times 10^{-4} - 1 \times 10^{-3}$
Heavy organics ^J	Heating	250-750 150-400	$2 \times 10^{-4} - 1 \times 10^{-3}$
	Cooling	150-400	
Very heavy organics ^g	Liquid,	100-300	$4 \times 10^{-4} - 3 \times 10^{-3}$
very neavy organics-	Heating	60-150	$4 \times 10^{-4} - 3 \times 10^{-3}$
	Cooling	80-125	0-1 × 10-*
Gash	Pressure 100-200 kN/m ² abs	250-400	0-1 × 10-4
Gash	Pressure 1 MN/m ² abs	500-800	0-1 × 10 ^{-*}
Gash	Pressure 10 MN/m ² abs		
Condensing heat transfer		8 000-12 000	0-1 × 10 ⁻⁴
Steam, ammonia	Pressure 10 kN/m ² abs, no		
orouni, anno 1	noncondensables ^{1, j}	4 000-6 000	0-1 × 10 ⁻⁴
Steam, ammonia	Pressure 10 kN/m ² abs, 1%		10-4
Steam, announ	noncondensablesk	2 000-3 000	$0-1 \times 10^{-4}$
Steam, ammonia	Pressure 10 kN/m ² abs, 4%		
Steam, anno-	noncondensablesk	10 000-15 000	0-1 × 10 ⁻⁴
Steam, ammonia	Pressure 100 kN/m ² abs, no		
Steam, announ	condensables ^{<i>i</i>} , <i>j</i> , <i>k</i> , <i>l</i>	15 000-25 000	0-1 × 10 ⁻⁴
Steam, ammonia	Pressure 1 MN/m ² abs, no		
Steam, anni-	condensables ⁱ , j, k, l	1 500-2 000	$0-1 \times 10^{-4}$
Light organics ^d	Pure component, pressure		
Light organise	10 kN/m ² abs, no non-		A DESCRIPTION OF THE REAL PROPERTY OF
	condensables ¹	750-1 000	0-1 × 10 ⁻⁴
Light organics ^d	Pressure 10 kN/m ² abs, 4%	150 1 000	
Light organics	noncondensablesk	2 000-4 000	0-1 × 10 ⁻⁴
	Pure component, pressure	2 000 -1 000	
Light organics ^d	100 kN/m ² abs, no non-		
	condensables ¹	3 000-7 000	$0-1 \times 10^{-4}$
. d	Pure component, pressure	3 000-7 000	
Light organics ^d	1 MN/m ² abs	1 000 1 000	1 × 10 ⁻⁴ -3 × 10 ⁻⁴
	Pure component or narrow	1 500-4 000	1
Medium organics ^e	condensing range, pressure		
	$100 \text{ kN/m}^2 \text{ abs}^{m, n}$		2 × 10 ⁻⁴ -5 × 10 ⁻⁴
	Marrow condensing range,	600-2 000	2 × 10 -5 × 10
Heavy organics	pressure 100 kN/m ² abs ^{m, n}		
	Medium condensing range,	1 000-2 500	$0-2 \times 10^{-4}$
Light multicomponent mixtures,	Medium condensing range,		
all condensable ^d	pressure 100 kN/m ²		Statistic and Statistics
an condendation	abs ^k , m, o	600-1 500	$1 \times 10^{-4} - 4 \times 10^{-4}$
Medium multicomponent	Medium condensing range,	000-1 000	
mixtures, all condensable	pressure 100 kN/m ²		
mixtures, all condensation	abs ^k , m, o		2 × 10 ⁻⁴ -8 × 10 ⁻
a minture?	Medium condensing range,	300-600	2 × 10 -6 × 10
Heavy multicomponent mixtures,	pressure 100 kN/m ²		
all condensable ^f	absk, m, o		
	203		Real Property and the second
porizing heat transfer ^{p,q}	a cos MN/m² abe	3 000-10 000	$1 \times 10^{-4} - 2 \times 10^{-1}$
Water ^r	Pressure $< 0.5 \text{ MN/m}^2$ abs,	5 000 10 000	
natvi	$\Delta T_{\rm SH, max} = 25 \text{ K}$	4 000-15 000	1 × 10 ⁻⁴ -2 × 10
r r	Pressure $> 0.5 \text{ MN/m}^2$ abs,	4 000-15 000	1.4.10
Water ^P	pressure < 10 MN/m ² abs,		
	$\Delta T_{SH, \max} = 20 \text{ K}$		
	$\Delta T SH, max = 20 M$ Pressure < 3 MN/m ² abs,	3 000-5 000	1 N 10-4 -2 × 10
Ammonia	$\Delta T_{SH, \max} = 20 \text{ K}$		

				HEAT EXCHANGER				
				HEAT EXCHANGER SIZING - Calculation Sheet				
Colour Codi		Input Parameter			OUTPUT PARAMETERS			
Colour Coal	ng		_		Tube Diameter	dr		0.015
		Drop down Input selection				01		
		Empirical/Determined va	lues		Number of Tubes	_		219.00
		Output			Shell Inside Diameter	Ds		0.408
		Look up table			Heat Exchanger Length	L		2.438
					Weight of Vessel	Wv		1.24
					Weight of Total Skid Weight	Wskid		2.441
					NB. Weights do not take hydrostatic or fluid weights into consid	eration.		
P 1: INPUT PARAMETERS, SHELL AND TUBE SID	E CONDITIONS	TUBE UNI	TS SHELL		VESSEL WEIGHT CALCULATIONS			
id	-	GAS	SEA WATER		Density of Steel	kg/m ³	79/	41.717
a rsity of fluid	1.			EQUATIONS	Defisity of Steel	Ng/111	/04	
sity of huid is Flow	ρ			EQUATIONS	Total Martine			_
s now cific Heat Capacity	m Cp	1.901 kg/ 2.297 kJ/kg			Tube Weight	 _	Waisht Dar matar	_
					Weight Parameter	_	Weight Per meter	
nperature in	K	409.65 K 298.15 K			Tube Weight per meter Total Tube Weight	+	0.8809848 468.7512	
nperature Out ling Factor	K Rf	1.00E-04	1.50E-04 Assumed const	$U_{a,fould} = \frac{1}{\frac{d_o}{d_i h_i} + \frac{d_o R_{f,i}}{d_i} + \frac{d_o \ln(d_o/d_i)}{2 k} + R_{f,o} + \frac{1}{h_o}}$	rotal rube weight		408./312	_
i Transfer Co-efficient	h	5.00E+02 W/m		$U_{o,fouled} = \frac{1}{1 + 1} \frac$	Shell Weight	╧╧╧╈		_
	Q	486.8755655 kW		$U_{o,fould} = \frac{1}{\frac{d_o}{d_b} + \frac{d_o R_{f,i}}{d_i} + \frac{d_o \ln(d_o/d_i)}{d_i} + R_{f,o} + \frac{1}{b_i}}$	Pressure Rating	Р	00	_
Ŷ	ų	400.0/33033 NV	460.6733033	$\frac{1}{d_i h_i} + \frac{1}{d_i} + \frac{1}{2k} + \frac{1}{k_{f,o}} + \frac{1}{h_o}$			50	-
					Shell Diameter	D _{s,min}	0.40814	_
	-		_		Maximum Allowable Stress of Material	f	938.78	
rithmic Temperature difference	LMTD	48.10629711 K	_	Area _{1 tube, triangular} = $2 (PR d_o)^2 \frac{\sqrt{3}}{4}$	Joint Efficiency type		Spot radiographed - DW	
ection Factor (countercurrent)	F	1		Area 1 tube, triangular $= 2 (I R u_0) \frac{4}{4}$	Joint Efficiency	1	0.85	
rected LMTD	LMTD	48.10629711			Corrosion allowance (2mm)	С	0.002	
				Area _{1 tube, square} = $(PR d_o)^2$	Shell wall thickness	t	0.051374354	
P 2: TUBE SIDE DESIGN PARAMETERS					Length of Shell (seam-to-seam)		2.438	
umed overall U (Tube Side)					Shell I D		0.40814	
ie Size	OD	0.01905 m	0.75 inches		Shell OD		0.45951	
II Thickness	BWG	14		$D_{tight} = 2 \left(\frac{N_t Area_{tube}}{\pi} \right)^{0.5}$	Shell Volume		0.085352382	
II Thickness (Based on BWG selected)		0.002108 m		$D_{tiabt} = 2 \left(\frac{1}{1} 1$	Weight of Empty Shell		669.3092276	
e Size	ID	0.014834 m		π				
e Length		2.438 m	8ft assumption		Vessel Externals			
nber of Tube passes		1	Number of Passes (1-pass or even no. up to 14)		Head Weights		133.6224476	_
ie Length per pass		2,438			Flange Weights		152	
e eerigin per pero		2.450		$A_{corrected} = D_{tight} d_o (n_p - 1) + (N_t Area_{tube})$			132	_
umed Pitch Ratio (Pt/d)		1.25	assumed	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Internals Weight (Baffles)			
e Pitch		0.0238125 m	ossumed		Baffle Cut (window height to ID -25-35%)		30%	
ss-Sectional Area of Tube		0.000172825 m ²		(4	Baffle Spacing (usually 40-60%) of ID)		50%	-
a of a single tube		0.113616616 m ²		$D_{s,\min} = 2 \left(\frac{A_{corrected}}{\pi}\right)^{0.5} + 2 d_o$	Tube Length	L	2.4380	-
i o i a single tabe		0.113010010		π	Central baffle Spacing		0.2041	-
						L _{b,c}		_
P 3: DETERMINE U AND AREA REQUIREMENTS	1				Baffle Outlet Spacing	L _{b,0}	0.2245	_
med Overall Heat Transfer Co-efficient	U	408.1632653 W/m ²		$t_{i} = \frac{p\delta_{i}}{f_{i} - t_{i}a_{i}} + c$	Baffle Inlet Spacing	L _{bj}	0.2245	
isfer Area	A	24.79602894 m ²		(2.1)	Number of Baffles	No	11	
al Number of Tubes	1	218.2429814		(2.1) t_=shell thickness	Clearance betweenn Baffles and Shell		85%	
nber of Tubes per pass	Nubes	219			Total Baffle Weight		293.2189676	
Il Tube Area per pass		0.037848663 m ²		p= design pressure	Nozzle Weight			_
metric Flow		0.082616254 m ³ /s		D ₁ = Shell ID				
l Velocity per pass		2.182805064 m/s	Adjust Tube Size/Length etc to obtain fluid velocity	f=Maximum allowable stress of the material of construction	Empty Vessel Weight		1248.150643	
				J=Joint efficiency (usually varies from 0.7 to 0.9)				_
4: SHELL SIDE DESIGN PARAMETERS				The minimum shell thicknesses should be decided in compliance with the nominal shell	Weight of Piping	W?	499.2602571	
Pattern		Triangular		diameter including the corrosion allowance as specified by IS: 4503. Usually the	Weight of Electrical & Instrument	WE	99.85205142	
Tube		0.00049 m ²			Weight of Skid Steel	Ws	124.8150643	
neter of Area	Dtight	0.37004						
ected Area	Acorrected	0.10754 m ²			Weight of Total Skid Steel	Wskid	2440.8292	
mum Shell Inside Diameter	D _{s.min}	0.40814 m	17 in		Skid Width		0.816	
d Lengths	· .,				Skid Length		3.657	
I Length	1	2.43800			Skid Height	+	1.919	-

Appendix D.4 Heat exchanger calculator

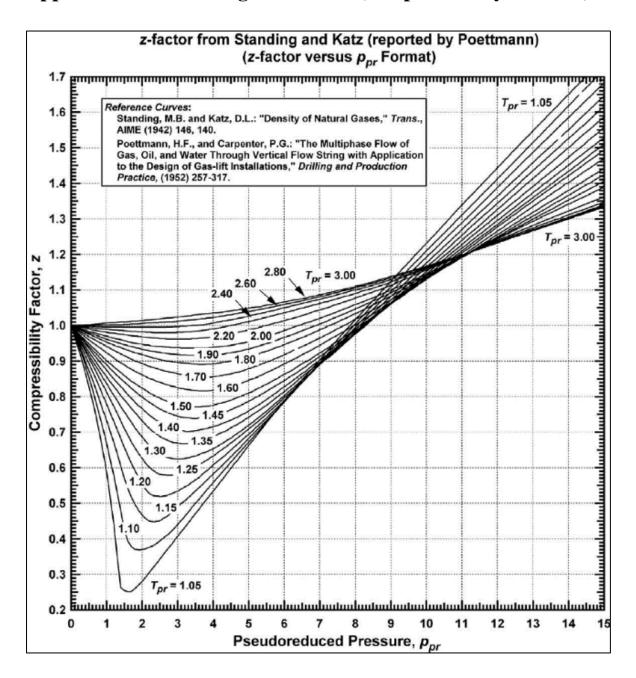
Appendix E Compressor data

Appendix E.1 Compressor specification data (courtesy of Elliot)

CFM 6,400 8,500 11,200 14,700 19,400 25,600	264 303 348 401 461	in 10.4 11.9 13.7 15.8 18.2	RPM 19,800 17,300 15,000 13,100	M (Horizontal Split) MB (Vertical Split) M MB M MB M MB M MB M MB M MB	EARG 69 345 69 689 69 689 69 689 69 689 69	PSIG 1,000 5,000 1,000 10,000 1,000 1,000 1,000 10,000
8,500 11,200 14,700 19,400	303 348 401	11.9 13.7 15.8	17,300 15,000 13,100	MB MB MB MB MB	345 69 689 69 689 69 689	5,000 1,000 10,000 1,000 10,000 1,000
11,200 14,700 19,400	348 401	13.7 15.8	15,000 13,100	MB MB MB MB	689 69 689 69 69 689	10,000 1,000 10,000 1,000
14,700 19,400	401	15.8	13,100	MB M MB	689 69 689	10,000
19,400				MB	689	
	461	18.2	44.400	M	60	
25,600			11,400	MB	689	1,000 10,000
	530	20.9	9,900	M MB	69 345	1,000 5,000
33,800	610	24.0	8,600	M MB	69 345	1,000 5,000
44,700	701	27.6	7,500	M MB	69 217	1,000 3,150
59,000	806	31.7	6,500	M MB	69 217	1,000 3,150
78,000	927	36.5	5,600	M MB	69 138	1,000 2,000
103,000	1,066	42.0	4,900	M MB	52 103	750 1,500
136,000	1,226	48.3	4,300	M MB	41 103	600 1,500
180,000	1,410	55.5	3,700	M MB	41 69	600 1,000
238,000	1,622	63.8	3,200	М	26	380
	59,000 78,000 103,000 136,000 180,000	59,000 806 78,000 927 103,000 1,066 136,000 1,226 180,000 1,410 238,000 1,622	1000 806 31.7 59,000 806 31.7 78,000 927 36.5 103,000 1,066 42.0 136,000 1,226 48.3 180,000 1,410 55.5 238,000 1,622 63.8	59,000 806 31.7 6,500 78,000 927 36.5 5,600 103,000 1,066 42.0 4,900 136,000 1,226 48.3 4,300 180,000 1,410 55.5 3,700 238,000 1,622 63.8 3,200	44,700 701 27.6 7,500 MB 59,000 806 31.7 6,500 MB 78,000 927 36.5 5,600 MB 103,000 1,066 42.0 4,900 MB 136,000 1,226 48.3 4,300 MB 180,000 1,410 55.5 3,700 MB 238,000 1,622 63.8 3,200 M	44,700 701 27.6 7,500 MB 69 217 59,000 806 31.7 6,500 MB 69 217 78,000 927 36.5 5,600 MB 69 138 103,000 1,066 42.0 4,900 MB 52 103 136,000 1,226 48.3 4,300 MB 41 103 180,000 1,410 55.5 3,700 MB 469 238,000 1,622 63.8 3,200 M 26

Note: Table does not include specifications for double flow configuration.

Standardization of Components


In developing the EDGE compressor product line, we focused on standardizing components and hardware to reduce costs and improve reliability across a wide array of applications. The EDGE product line consists of 15 standard frame sizes, which are scaled from the 38M median frame size. Casing bores and internal aerodynamic hardware, such as impellers, diaphragms, and shafts, are scaled. Scaling aerodynamic components improves performance predictability and increases reliability by preserving geometric similarity across frame sizes. Bearings and seals are selected from vendor standard sizes for each application.

Frame Size	Minimum Rotor Length (in. / mm)	Maximum Rotor Length (in. / mm)	Casing Width (includes supports) (in. / mm)	Casing Height (exc. supports) (in. / mm)	Minimum Cas- ing Weight (Ib/kg)	Maximum Casing Weight (Ib / kg)	
	Typic	al Weights and	Dimensions for	Elliott Horizonta	I Split Compressors	:*	
10M	35 / 890	64 / 1,625	37.3 / 947.4	36.25 / 921	4,700 / 2,130	9,000 / 4,080	
15M	35 / 890	75 / 1,905	42.5 / 1,080	41.38 / 1,051	5,600 / 2,540	12,700 / 5,760	In-Line
20M	40 / 1,015	80/2,030	48.5 / 1,232	47.85 / 1,215	8,200 / 3,720	18,000 / 8,165	
25M	45 / 1,145	90/2,285	55.1 / 1,400	54.12 / 1,375	11,100 / 5,035	24,500 / 11,100	_ ♥ ♠
29M	50 / 1,270	110/2,795	65.4 / 1,661	59.25 / 1,505	14,000 / 6,350	32,000 / 14,500	
32M	50 / 1,270	124 / 3,150	70.5 / 1,791	65.75 / 1,670	15,700 / 7,120	45,000 / 20,400	
38M	55 / 1,400	135 / 3,430	76.3 / 1,938	70.62 / 1,794	23,000 / 10,430	62,000 / 28,100	
46M	70 / 1,780	155 / 3,940	66.5 / 1,689	89.5 / 2,273	32,500 / 14,740	87,000 / 39,500	In-Line
56M	80/2,032	175 / 4,445	76 / 1,930	93.38 / 2,372	51,500 / 23,360	127,000 / 57,600	with Side-Streams
60M	90/2,285	190 / 4,825	89.7 / 2,278	97 / 2,464	59,000 / 26,760	170,000 / 77,100	_⊥ _▲
70M	100/2,540	230 / 5,840	103.5 / 2,629	113.88 / 2,893	71,000 / 34,000	210,000 / 95,250	
78M	100/2,540	250 / 6,350	109.5 / 2,781	125.5 / 3,188	95,000 / 43,100	295,000 / 133,800	
88M	115/2,920	275 / 6,985	133 / 3,378	137.5 / 3,492	130,000 / 59,000	380,000 / 172,400	
103M	135 / 3,429	300 / 7,620	156 / 3,962	158.5 / 4,025	215,000 / 97,500	525,000 / 238,100	t t
110M	140 / 3,556	325 / 8,255	182 / 4,623	182 / 4,630	270,000 / 122,470	690,000 / 312,980	
	Турі	ical Weights a	nd Dimensions fo	or Elliott Vertical	Split Compressors*		In-Line with Iso-Cooling
10MB	35 / 890	62/1,575	43 / 1,092	42.5 / 1,080	7,000 / 3,175	13,000 / 5,900	
15MB	35 / 890	72 / 1,830	46 / 1,168	48 / 1,219	8,400 / 3,810	17,500 / 7,940	♦ ♦
20MB	40 / 1,015	80 / 2,030	50 / 1,270	53.75 / 1,366	12,000 / 5,440	25,000 / 11,340	
25MB	45 / 1,145	88 / 2,235	58.5 / 1,486	62 / 1,575	18,400 / 8,345	36,000 / 163,030	
29MB	50 / 1,270	105 / 2,670	64.3 / 1,633	64 / 1,626	23,000 / 10,435	49,000 / 22,225	↓
32MB	50 / 1,270	120 / 3,050	71.7 / 1,821	76.5 / 1,943	28,500 / 12,900	69,000 / 31,300	V Double-Flow
38MB	55 / 1,400	130 / 3,300	78.5 / 1,994	83.25 / 2,115	36,500 / 16,560	89,000 / 40,400	
46MB	70 / 1,780	150 / 3,810	96.5 / 2,451	86.5 / 2,197	47,500 / 21,500	115,000 / 52,200	_ ★ ♠
56MB	80/2,030	170 / 4,320	104.2 / 2,647	102.12 / 2,594	70,000 / 31,750	160,000 / 72,600	
60MB	90 / 1,525	185 / 4,700	113 / 2,870	112.5 / 2,858	90,000 / 41,000	200,000 / 91,000	
70MB	100/2,540	225 / 5,715	115.2 / 2,926	120.96 / 3,064	100,000 / 45,350	251,000 / 113,900	
78MB	100/2.540	245/6,225	120/3,048	140 / 3,556	125,000 / 56,700	315,000 / 143,000	Back-to-Ba

			C	ompresso	Sizing			
Cob	our Coding		Input Par	ameter /Determined values				
c	OMPRESSOR	R SIZING - Calculation Sheet						
Question: which enthalpy — there is mass enthalpy and mole	renthaply			273.15 136.5 409.65				
INPUTS PARAMETERS	ı	Custing (1)	Unite	Discharge (2)				
Descentes	Р	Suction (1)	Units	Discharge (2)		OUTPUT PARAMETERS	w	-
Pressure	۲	120	bar	200		Compressor Width		1.
Temperature	т	30	°C	70.86		Casing Height	н	1.
		303.15		344.01		Average Footprint		1.
Density	ρ	127.2	kg/m ³	165.3		Weight of Vessel	Wv	4.
ipecific Volume	v	0.007861635	m³/kg	0.006049607		Weight of Total Skid Weight	Wskid	4.
Enthalpy	h	-4416.0	kJ/kg	-4345.0				
Flow Rate	Q	0.3677	m³/s			NB. Weights do not take hydrostatic or fluid weights into	consideration.	
Compressibilty Factor	Z	0.7344	-					
Molecular Weight	MW	19.63	kg/kmol			COMPRESSOR WEIGHT CALCULATIONS		
Gas Constant	R	8314	J/kmol.K	1		Casing Width		1092.0
Correction Factor	f	1.0		1		Casing Height	-	1080.0
Polytropic exponent	n	1.949706046		1		Average Casing Weight	-	4537.5
				-		Average Footprint		1.34589
PERFORMANCE PARAMETERS								
Pressure Ratio	Π	1.67	-]		Average Casing Weight		4537.5
				1		werdge casing weight		-337.3
Polytropic Head	Hp	54,689.50	J/kg	4		1		
Polytropic Efficiency	ηρ	77.0%		1		1		
Total Head	H	71,000.00	J/kg	1				
				- 1				
Calculated Work	W	3,320.77	kW]				
COMPRESSOR TYPE								
Frame		10]				
Frame Configuration		Vertical Split	MB	1				
Pressure Limit		345	Barg	1				
Frame Selection - Confirmation (based on Pressure limit)		YES		ge frame				
Split Stream (based on Compressor pressure limits)		1		1				
spiil stream (based on Compressor pressure limits)		1		4				
Adjusted Flow rate		0.3677	m³/s					

Appendix E.2 Compressor calculator

Appendix F Standing-Katz chart (compressibility factor Z)

Appendix G Piping data

Appendix G.1 Piping calculator

Colo NPUT PARAMETERS Tasse Flow	our Coding	Input Parame Empirical/De	Pipeline Sizing				
		Empirical/De	eter				
			termined values				
		Output					
			PIPELINE SIZING - Calculation She	et			
			_	OUTPUT PARAMETERS			
		Liquid	-				
				Wall Thickness (ASME Code)		Wall thickness (Generalised formula)	
						0.172	in
				Line Type		Multiphase Line 3.338	
				Pipe Internal Diameter		3.338 20.705	
				velocity		20.705	n/sec
/all thickness							
all thickness (Generalised formula)				Velocity Considerations (Governed by API RP 14)			
oop Stress in pipe wall	Hs	12000 psi	Pdo	Liquid Line Sizing			
ength of Pipe	L	ft	$t = \frac{T u_0}{2(H_c + P)}$	Pipe ID	d	16	in
ternal Pressure of the pipe	P	725 psi	$2(H_f + P)$	Fluid Flow rate	QL		B/D
utside diameter of pipe	do	6.025 in 0.17163556 in		Liquid Velocity*	V	14.1525	rt/sec
pe wall thickness	t	0.17163556 in		*where solids might be present or where water coul	d settle out and co	ente corrosion zones in low spots, a minimum velo	city of 2 f
SME/ANSI Code B31.3				normally used. A maximum velocity of 15 ft/sec is of			
ominal Pipe Size		2.5 - 20 in		quickly closing a valve.			
ongitudinal Weld-joint type		Electric Resistance Weld (ERW)					
pe Grade		ASTM A206 &API 5L, Grade B					
emperature limit		500 * F	Pd, 1	100			
prrosion allowance rread or groove depth	te tth	0.11 in	$t = t_{\theta} + t_{Ik} + \frac{1}{2(SE + PY)}$ 100	Gas Line Sizing Pipe ID	d	10	in
lowable internal pressure	P	500 psi		Gas Flow rate	Qg		MMscf/D
utside diameter of pipe	do	6.025 in	-	Gas flowing temperature	T	552.87	0
lowable stress for pipe	S	18900 psi	-	Flowing Pressure	P		psi
ongitudinal Weld-joint factor	E	0.85		Compressibility factor	Z	0.85	
erating Factor*	Y	0.4		Gas Velocity **	Vg	68.67208412	ft/sec
fanufacturers allowable tolerance** finimum design wall thickness	Tol t	10.0% 0.2027 in		**velocity in gas lines should be less than 60 to 80 ft			
*12.5 pipe up to 20 inOD, 10 pipe > 20 in. OD, API SL				minimizes liquid fallout.			
				Multiphase Line Sizing			
ternal Pressure of the pipe	Р	725 psi	Pdo	Pressure	р	725	psi
ternal Pressure of the pipe utside diameter of pipe	P do	725 pri 5 jn	$t = \frac{Pd_o}{2(FES_Y)}$	Pressure Gas Constant	R	725 8.314	psi
iternal Pressure of the pipe utside diameter of pipe pecification				Pressure Gas Constant Specific Gravity of the Liquid (relative to water)		725 8.314 0.862 0.67	psi
iternal Pressure of the pipe utside diameter of pipe pecification rade				Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the gas relative to air	R	725 8.314 0.862 0.67 552.87	psi R
ternal Pressure of the pipe utside diameter of pipe secification rade /eld Joint Type linimum Yield stress for pipe	do Sr	2 m API SL, ASTM A 53, ASTM A 10 6 Seamths 35000 pi		Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor	R SG S T Z	8.314 0.862 0.67 552.87 0.85	R
SME/ANSI Code B31.4 termal Pressure of the pipe builde diameter of pipe pecification rade Veld Joint Type Minimum Heid stress for pipe ereating Factor*	do	S in API SL, ASTM A 53, ASTM A 106 B Seamless		Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the gas relative to air Temperature	R SG S T	8.314 0.662 0.67 552.87 0.65 52.8491718 52.8491718	R
ternal Pressure of the pipe utside diameter of pipe secification rade Veld Joint Type linimum Yield stress for pipe erating Factor*	do Sr	5 n API SL, ASTM A 53, ASTM A 156 6 semteur 5 semteur 3 50000 pri 0.72		Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the gas relative to air Temperature Compresative Average density of the mature	R SG T Z rhom	8.314 0.862 0.67 552.87 0.85 52.88491718 52.88491718 50lids-free, No corrosion or CRA material	R
termal Pressure of the pipe vuide diameter of pipe pecification rade del Joint Type del Joint Type reld stress for pipe reating Factor ⁺ populatinal Weld-pint type	do Sr	5 m API 54, ASTM A 53, ASTM A 100 0 5 member 35000 pd 0.72 Electric Fusion (Jurc) Weld		Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the pas relative to air Temperative factor Compressibility factor Average deniky of the msture Empirical Constant	R SG T Z rhom	8.314 0.862 0.67 552.87 0.655 52.88491718 Solids-free, No corrosion or CRA material (cort. service) mix	R
ternal Pressure of the pipe twick damater of pipe textification rade teld Joint Type Ininium Yield attess for pipe praving Factor* nggludnal Weld-joint type nggludnal Weld-joint factor	do Sr F	5 n API SL, ASTM A 50, ASTM A 50 6 n 5 emfeta 350000 pi 0.72		Pressure Gas Constant Specific Gravity of the Liquid (relative to water) Specific Gravity of the gas relative to air Temperature Compresative Average density of the mature	R SG T Z rhom	8.314 0.67 0.67 0.52 0.35 52.4493712 Solidy-free, No corrosion of CAR material (cont. service) min 52.000000000000000000000000000000000000	R kg/m3
ternal Pressure of the pipe visited dameter of pipe secification rade Pield Joint Type Inimum Yield stress for pipe erating Factor* angludnal Weld-joint type ngptudnal Weld-joint factor	do Sr F E	In An SL, ASTMA SS, ASTMA 10 Sector 30000 pil 0.75 Electric Facin Arcel Web 0.00		Pressure Pressure Gas Constant Specific Gravity of the Ligad (relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the mature Empirical Constant Empirical Constant Erosional Velocity*** Ligads/For ate	R SG T Z rhom C C C Ve QL	8.114 0.052 552.87 512.4461104 501dv free, No consolino r CM material (cost. service) mm, 150 20.70454117 150 20.70454117 151 20.70454117	R kg/m3 ft/ssec B/D
ternal Pressure of the pipe visited dameter of pipe secification rade Pield Joint Type Inimum Yield stress for pipe erating Factor* angludnal Weld-joint type ngptudnal Weld-joint factor	do Sr F E	In An SL, ASTMA SS, ASTMA 10 Sector 30000 pil 0.75 Electric Facin Arcel Web 0.00		Pressure Gas Constant Specific Gravity of the gas relative to avarter) Specific Gravity of the gas relative to air Temperature Compressibility factor Average devally of the mature Empirical Constant Empirical Constant Empirical Constant Empirical Constant	R SG S T Z rhom C C Ve	8.314 0.67 0.67 0.52 0.35 52.4493712 Solidy-free, No corrosion of CAR material (cont. service) min 52.000000000000000000000000000000000000	R kg/m3 ft/ssec B/D
ternal Pressure of the pipe ternal Pressure of the pipe tercification end from Type end John Type realing Factor ¹¹ angludmai Weld-pinit Spee regludmai Weld-pinit Spee regludmai Weld-pinit Seco	do Sr F E	In An SL, ASTMA SS, ASTMA 10 Sector 30000 pil 0.75 Electric Facin Arcel Web 0.00		Pressure Gas Constant Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Temperature Constant Empirical Constant Empirical Constant Empirical Constant Empirical Constant Exposite Liquid Tow rate Double D	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe ternal Areasure of the pipe cellfaction edition of the second second second second edition of the second second second second rating Second Weak Joint type migliocheal Weak Joint type mission design wall thickness SMM (ANSI Code B31.8	Sr F E t	in API SL, ASTM A S3, ASTM A IS Samelin 35000 pi 0.72 Electric Fusion (Arc) Wel 0.80 0.0590 p	$\left(1-\frac{1}{2(FE_{0})}\right)$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
Itemail Tensue of the ppe Itemail Tensue of the ppe Itemail Tensor of ppe Itemail Tensor of the ppe Itemail Tensor of the ppe Itemail Testor of the ppe Itemail Testor of the ppe Itemail Testor of the ppe	do Sr F E	In An SL, ASTMA SS, ASTMA 10 Sector 30000 pil 0.75 Electric Facin Arcel Web 0.00	$P_{p_{0}}^{I}$	Pressure Gas Constant Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Temperature Constant Empirical Constant Empirical Constant Empirical Constant Empirical Constant Exposite Liquid Tow rate Double D	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe ternal Areasure of the pipe terlification add del Joint Type ted Joint Type randing Station" randing Station" randing Station" randing Station" randing Station randing Sta	do Sr F E t	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\left(1-\frac{1}{2(FE_{0})}\right)$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe ternal Areasure of the pipe terlification ade del Joint Type innium Vield stress for pipe rating Scator ⁴⁴ ingludnal Weld-pint type innium design walt thickness SML/ANSI Code 831.8 ternal Pressure of the pipe ternal stress of pipe ternal response of pipe terlification	do Sr F E t	00 API 54, ATTMA 53, ATTMA 10 Caracter 33000 pil 0.72 Electric Fusion (Arel West 0.80 0.80 0.0	$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
erran I resure of the ppe entities deameter of ppe entities deameter of ppe end joint Type and joint Type and press for ppe minum tried press for ppe minum design wall thickness MM/ MSI Scote B3.8 end fresure of the ppe diside and the p	do Sr F E t		$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
email Pressure of the pipe strict dameter of pipe striftation advance to pipe advance to pipe advance to pipe string Factor ¹ registurdinal Weld-piint Stroor minum design with thickness ML/ANSI Code B31.8 email Pressure of the pipe State dameter of pipe clicitation strict dameses transmission state dameter of pipe clicitation string Factor ¹	do Sr F E t	200 AR 51, ATM A 53, ATM A 10 Carrier	$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
email Pressure of the pipe certification def def doi: 100 doi: 100 doi	do Sr F E t do Sr		$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
email Pressure of the pipe enforcement of the pipe enforcement of pipe enforcement able the pipe enforcement of pipe enforceme	do Sr F E t	200 AR 51, ATM A 53, ATM A 10 Carrier	$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe ternal Pressure of the pipe terficiation terficiation teld Joint Type immum Yield stress for pipe marking Stator ¹ marking Stator ¹ minum design wall thickness SML/ANSI Code B31.8 SML/ANSI CODE B31.8	do Sr F E t do Sr		$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe ternal Tressure of the pipe terrification did Joint Types did Joint Types many Tridd stress for pipe many Tridd stress for pipe majoudnai Weld-pint Tactor Informative Stress MML/ANSI Code 831.8 MML/ANSI CODE 80.8 MML/ANSI CODE 80.8	do Sr F E t do Sr		$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
ternal Pressure of the pipe divide dameter of pipe divide dameter of pipe del Joint Type motion of the pipe motion of the pipe motion of the pipe motion of the pipe divide of the pipe divide dameter of pipe divid	do Sw F E t do Sw Sw E E		$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in
stemal Pressure of the pipe vtside diameter of pipe pecification rade Veld Joint Type filminum Yield stress for pipe	do Sr F t do Sr F	In In API Sig. ASTMA 5 SIG. Security Security Security 30000 pil In 0.72 Electric Facility Active Methy 0.80 0.80 772 pil 783 In 784 API Signal Sig	$P_{p_{0}}^{I}$	Pressure Pressure Gas Constant Specific Gravity of the gas relative to water) Specific Gravity of the gas relative to air Temperature Compressibility factor Average density of the muture Implicial Constant Temporal Constant Temporal Constant Liquid-Flow rate Bipe ID ***Recommended minimum velocity is 10 to 15 fu/s	R SG T Z rhom C C C Ve QL d	8.814 0.862 0.872 0.852 0.855 0.85489778 Solids free, No consistent Assessment (cont. service) mos 0.87489778 0.87489778 0.8749777 0.87497777 0.87497777 0.87497777 0.874977777 0.874977777777777777777777777777777777777	R kg/m3 ft/ssec B/D in

PIPELINE OPTIMUM FLUID VELOCITY													
									60				
PIPELINE	PHASE	Mass Density	Volume Flowrate	NOMINAL PIPE SIZE (in)	SCHEDULE	Wall thickness (m)	Inside Area (m ²)	Actual Velocity	Theoretical Max Velocity	Feasible	Weight (kg/m)	Assumed Length	Gross Weight
		kg/m ³	m ³ /s	NPS			m ²	m/s	m/s		kg/m	m	
43	Wet Gas	106.55	1.0455	10	80	0.015062	0.046325	22.57	23.51	YES	95.73	7	670.13
15	Condensate	564.90	0.0415	2.5	5S	0.002108	0.003717	11.17	11.47	YES	3.68	7	25.73
14	Wet Gas	87.59	1.0040	10	120	0.021412	0.041608	24.13	25.57	YES	132.74	7	929.21
24	Condensate	564.90	0.0415	2.5	5S	0.002108	0.003717	11.17	11.47	YES	3.68	7	25.73
16	Condensate	297.32	0.0789	3	10s	0.003048	0.005382	14.66	15.12	YES	6.44	7	45.11
42	liquid	74.35	0.0000	8	XXS	0.022225	0.023938	0.00	27.44	YES	107.77	7	754.41
39	liquid	81.43	0.0000	8	XXS	0.022225	0.023938	0.00	26.39	YES	107.77	7	754.41
44	Condensate	297.32	0.0789	3	10s	0.003048	0.005382	14.66	15.12	YES	6.44	7	45.11
5	Wet Gas	80.70	0.0407	2	80 XS 80S	0.005537	0.001904	21.38	26.49	YES	7.47	7	52.29
6	Water	976.46	0.0004	1.5	XXS	0.010160	0.000613	0.63	8.00	YES	9.54	7	66.77
4	Condensate	523.76	0.0378	1.5	160	0.007137	0.000907	41.68	50.00	YES	7.23	7	50.63
13	Condensate	42.10	0.4701	12	100	0.021412	0.061996	7.58	8.00	YES	159.53	7	1116.72
28	Condensate	588.95	0.0014	1.5	XXS	0.010160	0.000613	2.24	8.00	YES	9.54	7	66.77
45	Condensate	43.54	0.4732	12	100	0.021412	0.061996	7.63	8.00	YES	159.53	7	1116.72
7	Wet Gas	11.02	0.4491	4	80 XS 80S	0.008560	0.007414	60.57	62.37	YES	22.29	7	156.05
56	Water	995.35	0.0000	2	XXS	0.011074	0.001144	0.01	8.00	YES	13.44	7	94.07
8	Condensate	648.78	0.0241	2.5	5S	0.002108	0.003717	6.49	8.00	YES	3.68	7	25.73
12	Condensate	14.84	1.0548	18	30	0.011100	0.148542	7.10	8.00	YES	121.98	7	853.89
10	Wet Gas	2.01	1.0351	4	40 Std 40S	0.006020	0.008209	126.10	129.65	YES	16.06	7	112.40
57	Water	757.59	0.0000	10	5S	0.003404	0.055645	0.00	8.00	YES	22.61	7	158.24
Stable Condensate	Condensate	690.52	0.0197	2	80 XS 80S	0.005537	0.001904	10.32	10.52	YES	7.47	7	52.29
17	Gas	14.07	0.1478	3	XXS	0.015240	0.002679	55.17	56.14	YES	27.65	7	193.55
18	Gas	43.80	0.0475	2	160	0.008712	0.001445	32.86	34.45	YES	11.07	7	77.50
58	Sea water	1022.25	0.0123	1.5	5S	0.001651	0.001587	7.75	8.00	YES	1.89	7	13.23
48	Sea water	1022.59	0.0123	1.5	58	0.001651	0.001587	7.74	8.00	YES	1.89	7	13.23
49	Sea water	1011.50	0.0124	1.5	<u>5</u> S	0.001651	0.001587	7.83	8.00	YES	1.89	7	13.23
46	Wet gas	14.22	0.4940	4	10s	0.003048	0.009191	53.75	55.88	YES	8.35	7	58.44

Appendix G.2 Liquid and gas pipeline optimum velocity

PIPELINE	PHASE	Mass Density	Volume Flowrate	NOMINAL PIPE SIZE (in)	SCHEDULE	Wall thickness (m)	Inside Area (m²)	Actual Velocity	Theoretical Max Velocity	Feasible	Weight (kg/m)	Assumed Length	Gross Weight
		kg/m ³	m³/s	NPS			m ²	m/s	m/s		kg/m	m	
3	Wet Gas	12.62	0.4926	4	10s	0.003048	0.009191	53.60	58.83	YES	8.35	7	58.44
19	Condensate	588.94	0.0014	1.5	XXS	0.010160	0.000613	2.24	8.00	YES	9.54	7	66.77
CompStream2	Wet Gas	81.15	0.0766	3	160	0.011100	0.003492	21.94	26.43	YES	21.28	7	148.96
20	Wet Gas	276.92	0.0224	1.5	5S	0.001651	0.001587	14.15	15.59	YES	1.89	7	13.23
59	Sea water	1022.25	0.0442	3	5S	0.002108	0.005629	7.86	8.00	YES	4.51	7	31.56
50	Sea water	1022.59	0.0442	3	5S	0.002108	0.005629	7.85	8.00	YES	4.51	7	31.56
51	Sea water	1011.50	0.0447	3	5S	0.002108	0.005629	7.94	8.00	YES	4.51	7	31.56
47	Wet Gas	159.01	0.0598	2.5	10s	0.003048	0.003516	16.99	19.79	YES	5.25	7	36.77
26	Liquids	344.90	0.0120	1.5	5S	0.001651	0.001587	7.53	8.00	YES	1.89	7	13.23
11	Wet Gas	112.54	0.0478	2	10s	0.002769	0.002356	20.29	22.96	YES	3.93	7	27.50
22	Wet Gas	88.55	1.0539	10	120	0.021412	0.041608	25.33	25.45	YES	132.74	7	929.21
1	Wet Gas	88.55	1.0539	10	120	0.021412	0.041608	25.33	25.45	YES	132.74	7	929.21
23	Wet Gas	74.40	1.2542	10	80	0.015062	0.046325	27.07	27.43	YES	95.73	7	670.13
29	Dry gas	74.35	1.2550	10	80	0.015062	0.046325	27.09	27.44	YES	95.73	7	670.13
32	Water	1009.52	0.0000	8	XXS	0.022225	0.023938	0.00	8.00	YES	107.77	7	754.41
41	liquid	74.35	0.0000	8	XXS	0.022225	0.023938	0.00	8.00	YES	107.77	7	754.41
40	Dry gas	74.35	1.2550	10	80	0.015062	0.046325	27.09	27.44	YES	95.73	7	670.13
33	Dry gas	97.57	0.9563	10	120	0.021412	0.041608	22.98	24.41	YES	132.74	7	929.21
34	Dry gas	120.32	0.7755	10	160	0.028575	0.036591	21.19	22.31	YES	172.09	7	1204.64
60	Sea water	1022.22	0.1401	6	40 Std 40S	0.007112	0.018629	7.52	8.00	YES	28.23	7	197.61
52	Sea water	1022.39	0.1401	6	40 Std 40S	0.007112	0.018629	7.52	8.00	YES	28.23	7	197.61
53	Sea water	1011.29	0.1416	6	40 Std 40S	0.007112	0.018629	7.60	8.00	YES	28.23	7	197.61
9	Dry gas	120.32	0.7755	8	10s	0.003759	0.035134	22.07	22.31	YES	19.94	7	139.59
37	liquid	120.32	0.0000	8	XXS	0.022225	0.023938	0.00	8.00	YES	107.77	7	754.41
38	liquid	81.37	0.0000	8	XXS	0.022225	0.023938	0.00	8.00	YES	107.77	7	754.41
35	Dry gas	155.13	0.6015	8	40 Std 40S	0.008179	0.032259	18.65	20.00	YES	42.49	7	297.41
36	Dry gas	174.24	0.5355	8	80 XS 80S	0.012700	0.029445	18.19	19.03	YES	64.57	7	452.00
61	Sea water	1022.22	0.0950	6	XXS	0.021946	0.012145	7.82	8.00	YES	79.11	7	553.77
54	Sea water	1022.39	0.0949	6	XXS	0.021946	0.012145	7.82	8.00	YES	79.11	7	553.77
55	Sea water	1011.29	0.0960	6	XXS	0.021946	0.012145	7.90	8.00	YES	79.11	7	553.77

2880.66 TOTAL 20164.63

Appendix G.3	Thread allowance calculations for threaded pipe-wall thickness, t_{th}
--------------	--

Nominal Pipe Size	tth, in
0.25 - 0.375	0.05
0.5 - 0.375	0.06
1-2	0.08
2.5 - 20	0.11

Appendix G.4Basic allowable stress for grade B and X-42 seamless pipe

Temperature, ° F	ASTM A206 & API 5L, Grade B	API 5L, Grade X42
-20 to 400	20000	20000
500	18900	N/A
600	17300	N/A
650	17000	N/A

Appendix G.5Basic allowable stress for other grades of seamless pipe

Grade	Minimum Temperature	Allowable Stress Minimum Temperature to 100° F
API 5L-A	-20	16,000
API 5LX-42	-20	20,000
API 5LX-46	-20	21,000
API 5LX-52	-20	22,000
ASTM A-106-B	-20	20,000
ASTM A-333-6	-50	20,000
ASTM A-369-FPA	-20	16,000
ASTM A-369-FPB	-20	20,000
ASTM A-524-I	-20	20,000
ASTM A-524-II	-20	18,300

Appendix G.6 Longitudinal weld joint factor

Seamless	1.00
Electric Fusion Weld	0.95
Double Butt	0.95
Straight Seam	0.95
Spiral Seam APL 5L	0.95
Electric Resistance Weld	
(ERW)	0.85
Furnace Butt Weld	0.60

Specification	Grade	Seamless	Furnace Butt Weld, Continuous Welded	Electric Resistance Weld (ERW) and Electric Flash welded	Electric Fusion Welded	Submerged Arc Weld
API 5L	A25	25,000	25,000	-	-	
API 5L, ASTM A 53, ASTM A 106	А	30,000	30,000	-	-	30,000
API 5L, ASTM A 53, ASTM A 106	В	35,000	35,000	-	-	35,000
API 5LU	U80	80,000	80,000	-	-	80,000
API 5LU	U100	100,000	100,000	-	-	100,000
API 5L	X42	42,000	42,000	-	-	42,000
API 5L	X46	46,000	46,000	-	-	46,000
API 5L	X52	52,000	52,000	-	-	52,000
API 5L	X56	56,000	56,000	-	-	56,000
API 5L	X60	60,000	60,000	-	-	60,000
API 5L	X65	65,000	65,000	-	-	65,000
API 5L	X70	70,000	70,000	-	-	70,000
ASTM A 106	С	40,000	-	-	-	-
ASTM A 524	Ι	35,000	-	-	-	-
ASTM A 524	Н	30,000	-	-	-	-
API 5L, ASTM A 53, ASTM A 135	А	-	-	30,000	-	-
API 5L, ASTM A 53, ASTM A 135	В	-	-	35,000	-	-
ASTM A 134	-	-	-	-		-
ASTM A 139	А	-	-	-	30,000	-
ASTM A 139	В	-	-	-	35,000	-
ASTM A 671	-	-	-	-	-	-
ASTM A 671	-	-	-	-	-	-
ASTM A 672	-	-	-	-	-	-
ASTM A 672	-	_	-	-	-	-
ASTM A 381	Y35	-	-	-	-	35,000

Appendix G.7Minimum yield stress for pipe (courtesy ANSI/ASME)

Specification	Grade	Seamless	Furnace Butt Weld, Continuous Welded	Electric Resistance Weld (ERW) and Electric Flash welded	Electric Fusion Welded	Submerged Arc Weld
ASTM A 381	Y42	-	-	-	-	42,000
ASTM A 381	Y46	-	-	-	-	46,000
ASTM A 381	Y48	-	-	-	-	48,000
ASTM A 381	Y50	-	-	-	-	50,000
ASTM A 381	Y52	-	-	-	-	52,000
ASTM A 381	Y60	_	-	_	_	60,000
ASTM A 381	Y65	_	-	-	-	65,000

Specification Number	Grade	Туре	SMYS, psi
API 5L	A25	BW, ERW, S	25,000
API 5L	А	ERW, S, DSA	30,000
API 5L	В	ERW, S, DSA	35,000
API 5L	X42	ERW, S, DSA	42,000
API 5L	X46	ERW, S, DSA	46,000
API 5L	X52	ERW, S, DSA	52,000
API 5L	X56	ERW, S, DSA	56,000
API 5L	X60	ERW, S, DSA	60,000
API 5L	X65	ERW, S, DSA	65,000
API 5L	X70	ERW, S, DSA	70,000
API 5L	X80	ERW, S, DSA	80,000
ASTM A 53	Type F	BW	25,000
ASTM A 53	А	ERW, S	30,000
ASTM A 53	В	ERW, S	35,000
ASTM A 106	А	S	30,000
ASTM A 106	В	S	35,000
ASTM A 106	С	S	40,000
ASTM A 134	-	EFW	-
ASTM A 135	А	ERW	30,000
ASTM A 135	В	ERW	35,000
ASTM A 139	А	EFW	30,000
ASTM A 139	В	EFW	35,000
ASTM A 139	С	EFW	42,000
ASTM A 139	D	EFW	46,000
ASTM A 139	Е	EFW	52,000
ASTM A 333	1	S, ERW	30,000

Appendix G.8Specified minimum yield strength for steel pipe commonly used in pipe systems (courtesy ANSI/ASME – code B31.8)

Specification Number	Grade	Туре	SMYS, psi
ASTM A 333	3	S, ERW	35,000
ASTM A 333	4	S	35,000
ASTM A 333	6	S, ERW	35,000
ASTM A 333	7	S, ERW	35,000
ASTM A 333	8	S, ERW	75,000
ASTM A 333	9	S, ERW	46,000
ASTM A 381	Class Y-35	DSA	35,000
ASTM A 381	Class Y-42	DSA	42,000
ASTM A 381	Class Y-46	DSA	46,000
ASTM A 381	Class Y-48	DSA	48,000
ASTM A 381	Class Y-50	DSA	50,000
ASTM A 381	Class Y-52	DSA	52,000
ASTM A 381	Class Y-56	DSA	56,000
ASTM A 381	Class Y-60	DSA	60,000
ASTM A 381	Class Y-65	DSA	65,000

Appendix G.9Basic design factor (F) for steel pipe construction in natural gas service (courtesy ANSI/ASME – code B31.8)

	Location Class										
Facility		1									
	1-Div 1	1-Div 2	2	3	4						
Pipelines, mains and service lines	0.80	0.72	0.60	0.50	0.40						
Private Roads (without Casing)	0.80	0.72	0.60	0.50	0.40						
Unimproved public roads (without Casing)	0.60	0.60	0.60	0.50	0.40						
Roads, Highways, Public streets with hard surface and											
railroads (without Casing)	0.60	0.60	0.50	0.50	0.40						
Private Roads (with Casing)	0.80	0.72	0.60	0.50	0.40						
Unimproved public roads (with Casing)	0.72	0.72	0.60	0.50	0.40						

		Location	Class		
arallel encroachment - Private Roads inimproved public roads - Parallel encroachment oads, Highways, Public streets with hard surface and ilroads - Parallel encroachment abricated assemblies ipelines on bridges ompression Station piping		1			
	1-Div 1	1-Div 2	2	3	4
Roads, Highways, Public streets with hard surface and					
railroads (with Casing)	0.72	0.72	0.60	0.50	0.40
Parallel encroachment - Private Roads	0.80	0.72	0.60	0.50	0.40
Unimproved public roads - Parallel encroachment	0.80	0.72	0.60	0.50	0.40
Roads, Highways, Public streets with hard surface and					
railroads - Parallel encroachment	0.60	0.60	0.60	0.50	0.40
Fabricated assemblies	0.60	0.60	0.60	0.50	0.40
Pipelines on bridges	0.60	0.60	0.60	0.50	0.40
Compression Station piping	0.50	0.50	0.50	0.50	0.40
Near concentration of people in Location Classes 1 and					
2	0.50	0.50	0.50	0.50	0.40

Specification Number	Pipe Class	E factor
ASTM A 53	Seamless	1.00
ASTM A 53	ERW	1.00
ASTM A 53	Furnace Butt Welded	0.60
ASTM A 106	Seamless	1.00
ASTM A 134	Electric Fusion Arc Welded	0.80
ASTM A 135	Electric Resistance Welded	1.00
ASTM A 139	Electric Fusion Welded	0.80
ASTM A 211	Spiral Welded Steel Pipe	0.80
ASTM A 333	Seamless	0.80
ASTM A 381	Double Submerged Arc-Welded	1.00
ASTM A 671	EFW - Class 13, 23, 33, 43, 53	0.80
ASTM A 671	EFW - Class 12, 22, 32, 42, 52	1.00
ASTM A 672	EFW - Class 13, 23, 33, 43, 53	0.80
ASTM A 672	EFW - Class 12, 22, 32, 42, 52	1.00
API 5L	Seamless	1.00
API 5L	Electric Resistance Welded	1.00
API 5L	Electric Flash Welded	1.00
API 5L	Submerged Arc-Welded	1.00
API 5L	Furnace Butt Welded	0.60

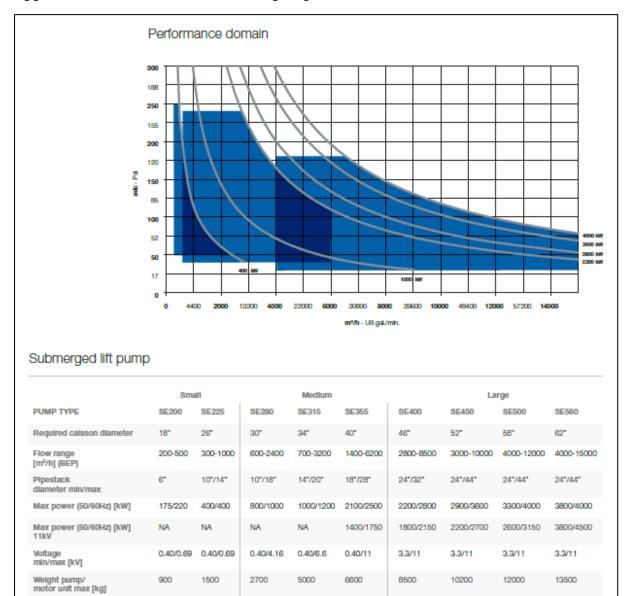
Appendix G.10Basic design longitudinal joint factor for steel pipelines in natural gas
service (courtesy ANSI/ASME – code B31.8)

Appendix G.11	Basic design temperature derating factor for (T) for steel pipelines in
	natural gas service (courtesy ANSI/ASME – Code B 31.8)

Temperature, ° F	Т
-20 to 250	1.000
300	0.967
350	0.933
400	0.900
450	0.867

Appendix HMaximum allowable stress (ASME Division 1 and
2)

Material	Spec No.	Grade	Div1 (-20deg F to -650 deg F)	Div2 (-20degF to 650degF)
	SA-516	55	13,800	18,300
	SA-516	60	15,000	20,000
	SA-516	65	16,300	21,700
	SA-516	70	17,500	23,300
	SA-285	А	11,300	15,000
Carbon Steel Plates	SA-285	В	12,500	16,700
and Sheets	SA-285	С	13,800	18,300
	SA-36	-	12,700	16,900
	SA-203	А	16,300	21,700
	SA-203	В	17,500	23,300
	SA-203	D	16,300	21,700
	SA-203	E	17,500	23,300
	SA-240	304	1,200	20,000
High Alloy Steel	SA-240	304L	-	16,700
Plates	SA-240	316	12,300	20,000
	SA-240	316L	10,200	16,700


Appendix I Pumps

Appendix I.1	Piping equivalent length of valves and fittings (feet)
--------------	--

Nominal Pipe size	Globe val ve or ball check valve	e	Swing check valve		Gate or ball valve	45 el	· .	hort ad. ell	ra	ng id. 11	T T ^{90°} miter bends				Soft 9						90° miter bends			Enlargement					Co	tion	
8	k r	al,	생	8	í.		_	_				_						5	Sudden		Std.	red.		Sudder	1	Std.	red.				
ž I	e de	é	pe pe	5	pa	P.	2 3	3	pa	2	7	3	7	2	5	5	5			1	Equiv.	L in te	rms of	small (1						
a la	र्द्ध 🗄	Angle valve	5	Plug cock	10	Welded	Threaded	Threaded	Welded	Threaded	Welded	Threaded	Welded	Threaded	miter	3 miter	4 miter	1/4	1/2	3/4	1/2	3'4	1/4	1/2	3'4	1/2	3/4				
-	월 월	×.	<u>-</u>	-	ate	×.	自同	1	×.	Å,	Ň	Å,	Ň	Å,	69	~	- -														
Nor	-		å		Ö			5		-		-		-				Ę	Ę	Ę	Ę	d'D.	d'D	d'D	d'D	ď.D	Ę				
11/2	55	26	13	7	1	1	2 3	5	2	3	8	9	2	3				5	3	1	4	1	3	2	1	1	-				
2	70	33	17	14	2		3 4	5	3	4	10		3	4				7	4	1	5	1	3	3	1	1	-				
$2\frac{1}{2}$	80	40	20	11	2	2	- 4	i –	3	-	12	-	3	-				8	5	2	6	2	4	3	2	2	-				
3	100	50	25	17	2	2		6		4		4		4				10	6	2	8	2	5	4	2	2	-				
4	130	65	32	30	3	3		7		5		9		5				12	8	3	10	3	6	5	3	3	-				
6	200	100	48	70	4	4		11	1	В	2	8	1	8				18	12	4	14	4	9	7	4	4	1				
8	260	125	64	120	6	6		15		9		7		9				25	16	5	19	5	12	9	5	5	2				
10	330	160	80	170	7	7		18		2		7		2				31	20	7	24	7	15	12	6	6	2				
12	400	190	95	170	9	9		22	1	4	5	5	1	4	28	21	20	37	24	8	28	8	18	14	7	7	2				
14	450	210	105	80	10	10		26	1	6	6	2	1	6	32	24	22	42	26	9	-	-	20	16	8	-	-				
16	500	240	120	145	11	11		29		8		2		8	38	27	24	47	30	10	-	-	24	18	9	-	-				
18	550	280	140	160	12	12	2	33	2	0	8	2	2	20	42	30	28	53	35	11	-	-	26	20	10	-	-				
20	650	300	155	210	14	14	L	36	2	3	9	0	2	3	46	33	32	60	38	13	-	-	30	23	11	-	-				
22	688	335	170	225	15	15		40		5		00		5	52	36	34	65	42	14	-	-	32	25	12	-	-				
24	750	370	185	254	16	16	;	44	2	7	1	10	2	7	56	39	36	70	46	15	-	-	35	27	13	-	-				
30	-	-	-	312	21	21		55		0		40		0	70	51	44														
36	-	-	-		25	25		66		7		70		7	84	60	52														
42	-	-	-		30	30		77		5		00		5	98	69	64														
48	-	-	-		35	35		88		5		20		5	112	81	72														
54 60	-	-	-		40 45	40		99 110		0 0		50 60		0 10	126 190	90 99	80 92														

		SCHEDULE	40 (STEEL	PIPE) ir	nches											
		Pipe Size in Inches Friction Loss per 100ft														
GPM	2	3	4	6	8	10	12									
10	0.25	0.04														
12	0.34	0.05														
15	0.52	0.08														
20	0.87	0.13														
25	1.30	0.19														
30	1.82	0.26														
35	2.42	0.35														
40	3.10	0.44														
45	3.85	0.55														
70	8.86	1.22	0.35													
100	17.40	2.39	0.63													
150	38.00	5.14	1.32													
200	66.30	8.90	2.27	0.3	0.08											
250	90.70	14.10	3.60	0.49	0.13											
300		19.20	4.89	0.64	0.16	0.05										
350		26.90	6.72	0.88	0.23	0.07										
400		33.90	8.47	1.09	0.28	0.09										
450		42.75	10.65	1.36	0.35	0.11										
500		52.50	13.00	1.66	0.42	0.14										
550		63.20	15.70	1.99	0.51	0.16										
600		74.80	18.60	2.34	0.6	0.19										
650		87.50	21.70	2.73	0.69	0.22										
700		101.00	25.00	3.13	0.8	0.26										
750		116.00	28.60	3.57	0.91	0.29										
800		131.00	32.40	4.03	1.02	0.33	0.14									
850		148.00	36.50	4.53	1.13	0.37	0.15									
900		165.00	40.80	5.05	1.27	0.41	0.17									
950		184.00	45.30	5.6	1.41	0.46	0.19									
1000		204.00	50.20	6.17	1.56	0.50	0.21									
1100				7.41	1.87	0.60	0.25									
1200				8.76	2.2	0.70	0.30									
1300				10.2	2.56	0.82	0.34									
1400				11.8	2.95	0.94	0.40									
1500				13.5	3.37	1.07	0.45									
1600					3.82	1.21	0.51									
1800					4.79	1.52	0.64									
2000				1		1.86	0.78									
2200						2.25	0.94									

Appendix I.2 Frictional loss in pipes (schedule 40)

Appendix I.3 Framo submersible pump

Weight per 6m pipestack min/max dla [kg]

Weight top-bend and topplate min dia/max dia [kg] 394/500

380/415

200

394/591

430/500

500/720

535/651

591/915

670/1050

770/1150

1200/1250

770/1300

1380/1500

770/1300

1600/1700

770/1300

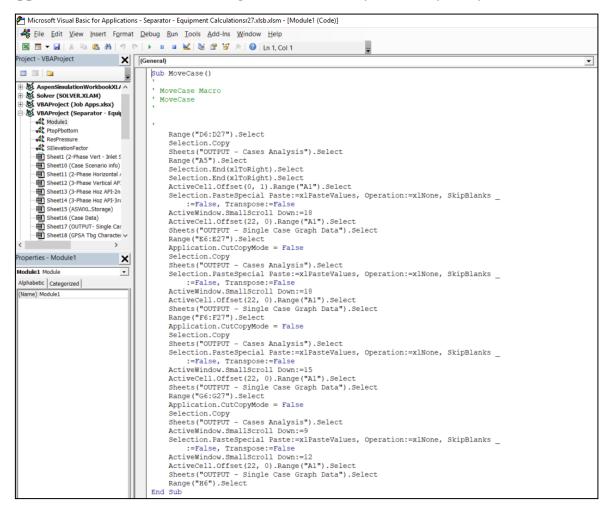
1750/1850

Appendix J HYSYS simulation properties table

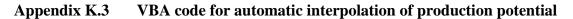
Charles Manua	Pressure	Temperature	Mass Flow	Std Ideal Liq Vol Flow	Molar Enthalpy
Stream Name	[bar]	[C]	[kg/s]	[m3/s]	[kJ/kgmole]
GasWell	180	80,0	53 <i>,</i> 44	0,1480	- 87 651,18
Water	90	5,0	0,20	0,0002	- 287 784,79
Stream 5	77	69,7	1,67	0,0044	- 92 390,93
Stream 6	77	69,7	0,19	0,0002	- 282 681,19
Stream 7	9	42,1	2,48	0,0058	- 99 946,80
Stable Condensate	1	20,0	6,77	0,0099	- 232 114,77
Stream 10	1	20,0	1,04	0,0020	- 118 377,96
Stream 12	1	20,0	7,81	0,0118	- 203 471,99
Stream 8	9	42,1	7,81	0,0118	- 203 471,99
Stream 4	77	69,7	9,88	0,0169	- 153 381,33
Sat gas	180	80,0	53,64	0,1482	- 88 351,56
Stream 15	77	0,7	11,75	0,0215	- 151 461,65
Stream 16	77	69,7	11,75	0,0215	- 141 596,20
Stream 17	9	112,4	1,04	0,0020	- 110 844,63
Stream 18	9	25,0	1,04	0,0020	- 130 709,51
CompStream2	77	163,5	3,11	0,0071	- 94 157,93
Stream 3	9	24,4	3,11	0,0071	- 101 540,45
Stream 20	77	30,0	3,11	0,0071	- 110 176,36
Stream 11	77	39,0	2,70	0,0070	- 95 662,32
Stream 14	77	0,7	43,97	0,1312	- 86 743,99
Stream 22	77	2,6	46,68	0,1382	- 87 139,59
Stream 23	77	25,0	46,67	0,1382	- 85 818,07
Stream 1	77	2,6	46,67	0,1382	- 87 133,40
Stream 2	77	2,6	0,00	0,0000	- 288 077,82
Stream 19	9	24,4	0,41	0,0007	- 171 507,94
Stream 21	77	2,6	0,00	0,0000	- 288 079,43
Stream 24	77	0,7	11,75	0,0215	- 151 461,65
Stream 25	77	39,0	2,08	0,0045	- 115 740,19
Stream 26	77	39,0	2,08	0,0045	- 115 694,36
Stream 27	77	2,6	0,00	0,0000	- 288 079,43

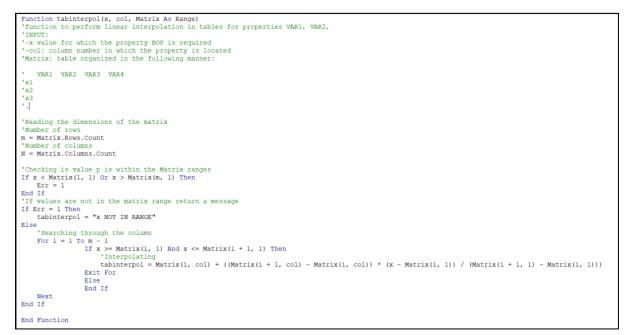
Church Norma	Pressure	Temperature	Mass Flow	Std Ideal Liq Vol Flow	Molar Enthalpy
Stream Name	[bar]	[C]	[kg/s]	[m3/s]	[kJ/kgmole]
Stream 28	9	24,4	0,41	0,0007	- 171 542,55
Stream 31	90	5,0	53,64	0,1482	- 92 358,73
Stream 30	77	- 0,0	53,64	0,1482	- 92 358,73
Stream 13	9	44,0	9,88	0,0169	- 153 381,33
Stream 29	77	25,1	46,67	0,1382	- 85 789,60
Stream 32	77	25,1	0,01	0,0000	- 286 203,70
Stream 33	120	63,3	46,67	0,1382	- 84 503,10
Stream 34	120	30,0	46,67	0,1382	- 86 507,99
Stream 35	200	71,4	46,67	0,1382	- 85 019,91
Stream 36	200	50,0	46,67	0,1382	- 86 378,12
Stream9	120	30,0	46,67	0,1382	- 86 507,99
Stream 37	120	30,0	-	0,0000	- 86 508,04
Stream 38	77	12,5	-	0,0000	- 86 508,04
Stream 39	77	12,5	-	0,0000	- 86 530,17
Stream 40	77	25,1	46,67	0,1382	- 85 789,60
Stream 41	77	25,1	-	0,0000	- 85 789,68
Stream 42	77	25,1	-	0,0000	- 85 789,68
Stream 43	77	0,7	55,72	0,1527	- 92 897,07
Stream 44	77	69,7	11,75	0,0215	- 141 596,20
Stream 45	9	42,1	10,30	0,0176	- 154 182,58
Stream 46	9	24,4	3,52	0,0078	- 106 621,69
Stream 47	77	39,0	4,78	0,0115	- 102 706,41
Stream 48	1	5,0	6,59	0,0066	- 287 956,80
Stream 49	1	20,0	6,59	0,0066	- 286 755,70
Stream 50	1	5,0	22,71	0,0228	- 287 956,80
Stream 51	1	20,0	22,71	0,0228	- 286 755,70
Stream 52	1	5,0	71,63	0,0718	- 287 956,80
Stream 53	1	20,0	71,63	0,0718	- 286 755,70
Stream 54	1	5,0	48,52	0,0486	- 287 956,80
Stream 55	1	20,0	48,52	0,0486	- 286 755,70

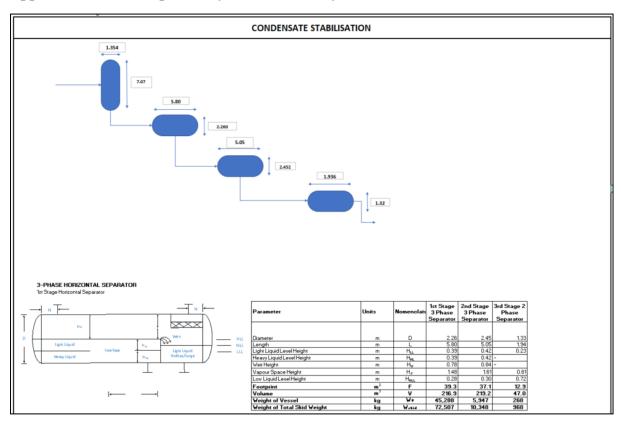
				Separator					
Property	1st st. 3-phase Separator	3rd Stage Separator	Inlet Separator	2nd st. LP Comp Scrubber	2nd Stage Separator	Intermediate Separator	Dehydration Scrubber	2nd st HP Comp Scrubber	1st st. HP Comp Scrubber
Vessel Temperature [C]	69,7	20,0	0,7	24,4	42,1	39,0	2,6	30,0	25,1
Vessel Pressure [bar]	77,0	1,0	77,0	8,8	8,8	77,0	77,0	120,0	77,0
Vessel Pressure Drop [bar]	-	-	-	-	-	-	-	-	-
Vapour Outlet Pressure Drop [bar]	-	-	-	-	-	-	-	-	-
Tank Volume [m3]	2 479,4	5,2	26,7	2,1	7,8	3,3	32,8		
Liquid Volume [m3]	1 239,7	2,6	13,3	1,1	3,9	1,7	16,4		
Liquid Volume Percent [%]	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0
Vessel Diameter [m]	0,3	1,1	2,1	0,9	1,2	0,9	2,3		
Vessel Length or Height [m]	32 767,0	5,9	7,5	3,2	6,7	5,0	8,0		

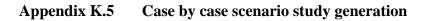

	Heat E	Exchanger		
	1st st. Compressor	2nd st. Compressor	2nd St. HP	
Property	Discharge Cooler	Discharge Cooler	Comp Cooler	Export Cooler
Duty [kcal/h]	378061,11	1302966,14	4109086,66	2783637,28
UA [kJ/C-h]	33427,14	88501,71	562085,44	247861,02
Control UA [kJ/C-h]	33427,14	88501,71	562085,44	247861,02
Tube Side Pressure Drop [bar]	0,00	0,00	0,00	0,00
Shell Side Pressure Drop [bar]	0,00	0,00	0,00	0,00
Tube Side Delta T [C]	-87,38	-133,48	-33,26	-21,39
Shell Side Delta T [C]	15,00	15,00	15,00	15,00
Uncorrected LMTD [C]	47,32	67,85	33,30	48,12
LMTD [C]	47,32	61,60	30,59	46,99
Ft Factor	1,00	0,91	0,92	0,98
Tube Side Zones	1,00	1,00	1,00	1,00
Shell Side Zones	1,00	1,00	1,00	1,00
Tube Side Volume [m3]	0,10	0,10	0,10	0,10
Shell Side Volume [m3]	0,10	0,10	0,10	0,10
Heat Trans. Area [m2]		60,32	60,32	60,32
Minimum Flow Scale Factor	0,00	0,00	0,00	0,00
Overall U [kJ/h-m2-C]		1467,24	9318,61	4109,20

	Co	mpressor		
Property	1st st. LP Compressor	2nd st. LP compressor	1st st. HP Compressor	2nd st. HP compressor
Compressor Speed [rpm]				
Power [kW]	166,63	697,92	3 064,45	3 544,60
Capacity (act feed vol flow) [ACT_m3/s]	0,52	0,25	0,63	0,39
Adiabatic Efficiency	75,00	75,00	75,00	75,00
Polytropic Efficiency	77,55	78,65	76,18	76,21
Compressor Volume [m3]	-	-	-	-
Delta T [C]	92,38	139,05	38,15	41,39
Delta P [bar]	7,79	68,20	43,00	80,00
Polytropic Head [m]	12 670,15	17 996,48	5 101,13	5 902,46
Adiabatic Head [m]	12 253,34	17 161,10	5 021,98	5 808,84
Dynamic Head [m]	12 670,15	17 996,48	5 101,13	5 902,46
Polytropic Fluid Head [kJ/kg]	124,25	176,49	50,03	57,88
Adiabatic Fluid Head [kJ/kg]	120,16	168,29	49,25	56,97
Dynamic Fluid Head [kJ/kg]	124,25	176,49	50,03	57,88
Polytropic Head Factor	1,01	1,00	1,00	1,00
Polytropic Exponent	1,11	1,16	1,63	2,01
Isentropic Exponent	1,08	1,11	1,47	1,79
Fluid Power [kW]	166,63	697,92	3 064,45	3 544,60
Duty [kcal/h]	143 371,61	600 506,28	2 636 722,86	3 049 854,18


Appendix K Automation


Appendix K.1 Scenario table with input and output parameters in MS excel


	Scenario		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15
	Active		•														
Input	GasWell Phase - Molar Flow. Overall Overall	kgmolelh	8811.26	8811.26	8811.26	17622.51	17622.51	17622.51	17622.51	17622.51	17622.51	17622.51	17622.51	17622.51	10573.51	8811.26	5286.75
input	GasWell Phase - Pressure Overall Overall	bar	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
	43.Phase - Pressure.Overall.Overall	bar	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77
	43. Calculator Object. Mass Bensity. Correlation																
	Properties.Elem1.Elem1	kg/m3	32.10569413	87.5893	87.58925499	87.583255	87.590446	87.59083933	112.6372281	112.6372281	112.6372281	112.6372281	112.6372281	112.6372281	112.6372281	112.6372281	112.6372281
	43. Calculator Object. Mass Density. Correlation																
	Properties.Elem3.Elem3	kg/m3	1028.099624	1027.83	1027.832009	1027.832	1027.8337	1027.833331	999.702233	999.702233	999.702233	999.702233	999.702233	999.702233	999.702233	999.702233	999.702233
	43. Calculator. Molecular Weight. Molecular Weight		22.09665502	22.1413	22.14133618	22.141336	22.140824	22.14051283	36.13424836	36.13424836	36.13424836	36.13424836	36.13424836	36.13424836	36.13424836	36.13424836	36.13424836
	43. Calculator. Std. Gas Flow. Std. Gas Flow	STD_m3/h	213383.0808	1284790	1284789.954	1284790	642390.54	385438.4257	8731.181645	8731.181645	8731.181645	8731.181645	8731.181645	8731.181645	8731.181645	8731.181645	8731.181645
	43.Calculator.Act. Liq. Flov.Act. Liq. Flow	m3/s	0.020006815	0.12458	0.12457732	0.1245773	0.0622755	0.037358878	0.010746629	0.010746629	0.010746629	0.010746629	0.010746629	0.010746629	0.010746629	0.010746629	0.010746629
	44.Phase - Pressure.Overall.Overall	bar	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77
	44. Calculator Object. Mass Density. Correlation																
	Properties.Elem1.Elem1	kg/m3	84.01327022	80.6944	80.69438375	80.694384	80.693059	80.69405605	364.2401322	364.2401322	364.2401322	364.2401322	364.2401322	364.2401322	364.2401322	364.2401322	364.2401322
	44. Calculator Object. Mass Density. Correlation																
	Properties.Elem2.Elem2	kg/m3	529.4635129	523.787	523.7871642	523.78716	523.78557	523.722956	966.0143817	966.0143817	966.0143817	966.0143817	966.0143817	966.0143817	966.0143817	966.0143817	966.0143817
	44. Calculator Object. Mass Bensity. Correlation																
	Properties.Elem3.Elem3		977.1334983	976.478	976.4783482	976.47835	976.45735	976.3754702									
		D	0.045505450	0.045.44	0.045405050	0.0454050	0.045400	0.045400004	0.000504000	0.000004000	0.000504000	0.000504000	0.000504000	0.000504000	0.000504000	0.000504000	0.000504000


Appendix K.2 Macro recording for scenario study sensitivity analysis

Appendix K.4 Graphical layout of case analysis

				CAS	E BY CASE	SENSITIVIT	Y ANALYSI	S OF PLAN	T DESIGN								
			Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Ci
		Inlet Separator	14.505045542851	14.51	14.51	14.51	27.51	27.51	27.51	27.51	27.51	27.51	27.51	27.51	9.16	9.16	
		1st Stage 3 Phase Separator	60.14	60.14	60.14	60.14	108.38	108.38	108.38	108.38	108.38	108.38	108.38	108.38	39.29	39.29	
		2nd Stage 3 Phase Separator	58.78	58.78	58.78	58.78	110.54	110.54	110.54	110.54	110.54	110.54	110.54	110.54	37.12	37.12	
		3rd Stage 2 Phase Separator	18.77	18.77	18.77	18.77	31.18	31.18	31.18	31.18	31.18	31.18	31.18	31.18	12.86	12.86	
	SEPARATOR	1st Stage HP Compressor Scrubber	13.23	13.23	13.23	13.23	25.02	25.02	25.02	25.02	25.02	25.02	25.02	25.02	8.38	8.38	
		2nd Stage HP Compressor Scrubber	10.89	10.89	10.89	10.89	20.48	20.48	20.48	20.48	20.48	20.48	20.48	20.48	6.93	6.93	
		2nd Stage LP Compresor Srubber	3.01	3.01	3.01	3.01	5.34	5.34	5.34	5.34	5.34	5.34	5.34	5.34	2.02	2.02	
	Det 1st	Intermediate Scrubber	1.71	1.71	1.71	1.71	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	1.18	1.18	
		Dehydration Scrubber	12.31	12.31	12.31	12.31	23.23	23.23	23.23	23.23	23.23	23.23	23.23	23.23	7.81	7.81	
		1st Stage Compressor Discharge Cooler	2.27 787.	2298943	2.27	2.27	3.05	3.05	3.05	3.05	3.05	3.05	3.05	3.05	1.84	1.84	
FOOTPRINT		2nd Stage Compressor Discharge Cooler	4.92	4.92	4.92	4.92	6.77	6.77	6.77	6.77	6.77	6.77	6.77	6.77	3.92	3.92	
(m²)	EXCHANGER	2nd Stage HP Comp Cooler	18.88	18.88	18.88	18.88	26.32	26.32	26.32	26.32	26.32	26.32	26.32	26.32	14.83	14.83	
		Export Cooler	11.49	11.49	11.49	11.49	15.96	15.96	15.96	15.96	15.96	15.96	15.96	15.96	9.06	9.06	
		1st st. LP Compressor	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	
	COMPRESSOR	2nd st. LP Compressor	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	
	COMIN NESSON	1st st. HP Compressor	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	
		2nd st. HP Compressor	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	
		Seawater Pump 1	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	
		Seawater Pump 2	1.52	1.52	1.52	1.52	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	1.52	1.52	
		Seawater Pump 3	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	1.52	1.52	
		Seawater Pump 4	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	1.52	1.52	
	PIPELINE	Total Pipeline															

Appendix L Investigative analysis

Appendix L.1 Cashflow analysis (scenario 1)

[YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		170.15	170.15	170.15	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	204.18	170.15	102.09
Production Revenue - Condensate Sales (\$\$US mill)		104.03	104.03	104.03	208.07	208.07	208.07	208.07	208.07	208.07	208.07	208.07	208.07	124.80	104.05	62.40
(\$\$05 mm)		104.05	104.05	104.05	200.07	200.07	200.07	200.07	200.07	200.07	200.07	200.07	200.07	124.00	104.05	02.40
Operating Cost (3% of CAPEX)	\$ -14.76	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98
CO ₂ Cost (\$\$US mill)		-1.96	-1.96	-1.96	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-2.35	-1.96	-1.17
Operating Income		271.24	271.24	271.24	543.48	543.48	543.48	543.48	543.48	543.48	543.48	543.48	543.48	325.65	271.27	162.33
Process Equipment Capital Cost Equipment Depreciation Per year	33.96 5.66															
Depreciation		-5.66	-5.66	-5.66	-5.66	-5.66	-5.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before																
Tax		265.58	265.58	265.58	537.82	537.82	537.82	543.48	543.48	543.48	543.48	543.48	543.48	325.65	271.27	162.33

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tax		-207.15	-207.15	-207.15	-419.50	-419.50	-419.50	-423.91	-423.91	-423.91	-423.91	-423.91	-423.91	-254.01	-211.59	-126.62
Income after Tax		58.43	58.43	58.43	118.32	118.32	118.32	119.57	119.57	119.57	119.57	119.57	119.57	71.64	59.68	35.71
Income after Tax		58.43	58.43	58.43	118.32	118.32	118.32	119.57	119.57	119.57	119.57	119.57	119.57	71.64	59.68	35.71
Depreciation		5.66	5.66	5.66	5.66	5.66	5.66	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-492.14															
Cash Flow	-522.14	14.09	39.09	49.09	120.98	118.98	117.98	111.57	109.57	97.57	101.57	100.57	108.57	56.64	36.68	295.71
PV Cash Flow		13.04	33.51	38.97	88.92	80.98	74.35	65.10	59.19	48.81	47.04	43.13	43.11	20.83	12.49	93.22
Sum of Present Value Net Present Value	762.69 240.56															
Cumulative PV of Cash flow	-522.14	-509.09	-475.58	-436.61	-347.69	-266.72	-192.37	-127.27	-68.08	-19.27	27.78	70.91	114.02	134.85	147.33	240.56

[YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		68.06	136.12	510.46	510.46	510.46	510.46	510.46	408.37	340.31	102.09	102.09	102.09	102.09	102.09	34.03
Production Revenue - Condensate Sales (\$\$US mill)		41.63	83.22	311.99	311.99	311.99	311.99	311.99	249.61	207.99	62.40	62.40	62.40	62.40	62.40	20.80
Operating Cost (3% of CAPEX)	\$ -23.08	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54
CO ₂ Cost (\$\$US mill)		-0.78	-1.56	-5.87	-5.87	-5.87	-5.87	-5.87	-4.69	-3.91	-1.17	-1.17	-1.17	-1.17	-1.17	-0.39
Operating Income		107.37	216.24	815.05	815.05	815.05	815.05	815.05	651.74	542.85	161.78	161.78	161.78	161.78	161.78	52.91
Process Equipment Capital Cost Equipment Depreciation Per year	53.08 8.85															
Depreciation		-8.85	-8.85	-8.85	-8.85	-8.85	-8.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		98.52	207.39	806.20	806.20	806.20	806.20	815.05	651.74	542.85	161.78	161.78	161.78	161.78	161.78	52.91
								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Appendix L.2 Cashflow analysis (scenario 2)

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tax		-76.85	-161.77	-628.84	-628.84	-628.84	-628.84	-635.74	- 508.36	-423.42	- 126.19	-126.19	-126.19	- 126.19	- 126.19	-41.27
Income after Tax		21.67	45.63	177.36	177.36	177.36	177.36	179.31	143.38	119.43	35.59	35.59	35.59	35.59	35.59	11.64
147		21.07	45.05	177.50	177.50	177.50	177.50	179.51	145.50	117.45	55.57	55.57	55.57	33.37	55.57	11.04
Income after			_	_	_	_	_			_	_		_		_	
Tax		21.67	45.63	177.36	177.36	177.36	177.36	179.31	143.38	119.43	35.59	35.59	35.59	35.59	35.59	11.64
Depreciation		8.85	8.85	8.85	8.85	8.85	8.85									
Depreciation		0.03	0.03	0.03	0.03	0.03	0.03	-	-	-	-	-	-	-	-	-
Change in Working																
Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-769.26															
		_														
Cash Flow	-799.26	19.48	29.47	171.21	183.21	181.21	180.21	171.31	133.38	97.43	17.59	16.59	24.59	20.59	12.59	271.64
PV Cash Flow		18.04	25.27	135.91	134.67	123.33	113.56	99.96	72.06	48.74	8.15	7.12	9.77	7.57	4.29	85.63
Sum of Present	857.98															
Value Net Present Value	58.72															
	30.72															
Cumulative PV of Cash flow	-799.26	-817.30	-792.03	-656.11	-521.45	-398.12	-284.56	-184.60	- 112.53	-63.80	-55.65	-48.53	-38.77	-31.20	-26.91	58.72

Appendix L.3 Cashflow analysis (scenario 3)

								YEA	AR								
	0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)			170.15	1020.92	1020.92	1020.92	510.46	306.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Production Revenue - Condensate Sales (\$\$US mill)			104.03	624.28	624.28	624.28	312.04	187.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Operating Cost (3% of CAPEX)	\$	-51.10	-3.41	-3.41	-3.41	-3.41	-3.41	-3.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂ Cost (\$\$US mill)			-1.96	-11.73	-11.73	-11.73	-5.87	-3.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Operating Income			268.82	1630.07	1630.07	1630.07	813.23	486.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Process Equipment Capital Cost		117.54															
Equipment Depreciation Per year		19.59															
Depreciation			-19.59	-19.59	-19.59	-19.59	-19.59	-19.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax			249.23	1610.48	1610.48	1610.48	793.64	466.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tax		-194.40	-1256.17	-1256.17	-1256.17	-619.04	-364.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income after Tax		54.83	354.30	354.30	354.30	174.60	102.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income after Tax		54.83	354.30	354.30	354.30	174.60	102.73	-	-	-	-	-	-	-	-	-
Depreciation		19.59	19.59	19.59	19.59	19.59	19.59	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	- 1703.41															
Cash Flow	1733.41	24.42	348.89	358.89	370.89	189.19	116.32	- 8.00	- 10.00	- 22.00	- 18.00	- 19.00	- 11.00	- 15.00	- 23.00	260.00
PV Cash Flow		22.61	299.12	284.90	272.62	128.76	73.30	- 4.67	- 5.40	- 11.01	- 8.34	- 8.15	- 4.37	- 5.52	- 7.83	81.96
Sum of Present Value Net Present Value	1,108.0 0 -625.41															
Cumulative PV of Cash flow	1733.41	-1710.80	-1411.68	-1126.78	-854.16	-725.40	-652.10	-656.77	-662.17	-673.18	-681.51	-689.66	-694.03	-699.55	-707.38	-625.41

										YEA	R										
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Production Revenue - Gas (\$\$US mill)		202.48	202.4 8	202.4 8	202.48	202.4 8	202.4 8	202.4 8	202. 48	202.48	202. 48	202.4 8	202.4 8	202. 48	202. 48	202. 48	202.4 8	202.3 4	198.0 9	191. 38	179. 41
Production Revenue - Condensat e Sales (\$\$US mill)		123.74	123.7 4	123.7 4	123.74	123.7 4	123.7 4	123.7 4	123. 74	123.74	123. 74	123.7 4	123.7 4	123. 74	123. 74	123. 74	123.6 6	121.1 1	117.0 4	109. 65	100. 08
Operating Cost (3% of CAPEX)	\$ -8.53	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41
CO ₂ Cost (\$\$US mill)		-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.56	-0.54	-0.53	-0.49	-0.45
Operating Income		325.26	325.2 6	325.2 6	325.26	325.2 6	325.2 6	325.2 6	325. 26	325.26	325. 26	325.2 6	325.2 6	325. 26	325. 26	325. 26	325.1 8	322.5 0	314.2 0	300. 13	278. 64
Process Equipment Capital Cost Equipment Depreciatio n Per year Depreciatio	19.61 3.27																				
n		-3.27	-3.27	-3.27	-3.27	-3.27	-3.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		322.00	322.0 0	322.0 0	322.00	322.0 0	322.0 0	325.2 6	325. 26	325.26	325. 26	325.2 6	325.2 6	325. 26	325. 26	325. 26	325.1 8	322.5 0	314.2 0	300. 13	278. 64

Appendix L.4 Cashflow analysis (5.95 MMsm³/d)

										YEA	R										
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Tax		-251.16	- 251.1 6	251.1 6	-251.16	251.1 6	251.1 6	253.7 1	253. 71	253.71	253. 71	253.7 1	253.7 1	253. 71	253. 71	253. 71	253.6 4	251.5 5	245.0 7	- 234. 10	- 217. 34
Income after Tax		70.84	70.84	70.84	70.84	70.84	70.84	71.56	71.5 6	71.56	71.5 6	71.56	71.56	71.5 6	71.5 6	71.5 6	71.54	70.95	69.12	66.0 3	61.3 0
Income after Tax		70.84	70.84	70.84	70.84	70.84	70.84	71.56	71.5 6	71.56	71.5 6	71.56	71.56	71.5 6	71.5 6	71.5 6	71.54	70.95	69.12	66.0 3	61.3 0
Depreciati on		3.27	3.27	3.27	3.27	3.27	3.27	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	-5	-5	-5	-5	-5	-5
Investment	- 284.1 8																				
Cash Flow	314.1 8	24.11	49.11	59.11	71.11	69.11	68.11	63.56	61.5 6	49.56	53.5 6	52.56	60.56	56.5 6	48.5 6	66.5 6	66.54	65.95	64.12	61.0 3	56.3 0
PV Cash Flow		22.32	42.10	46.92	52.27	47.03	42.92	37.09	33.2 6	24.79	24.8 1	22.54	24.05	20.8 0	16.5 3	20.9 8	19.42	17.82	16.05	14.1 4	12.0 8
Sum of Present Value Net Present Value Cumulative PV of Cash	621.4 4 307.2 6 314.1	-291.86	249.7	202.8	-150.57	103.5	-60.62	-23.53	9.72	34.52	59.3 2	81.86	105.9	126. 71	143. 24	164. 22	183.6	201.4	217.5	231.	243. 74

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	272.25	238.22
Production Revenue - Condensate Sales (\$\$US mill)		166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	166.45	147.19
Operating Cost (3% of CAPEX)	\$ -11.61	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77	-0.77
CO ₂ Cost (\$\$US mill)		-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.75	-0.66
Operating Income		437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	383.97
Process Equipment Capital Cost Equipment Depreciation Per year	26.70 4.45															
Depreciation		-4.45	-4.45	-4.45	-4.45	-4.45	-4.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		432.73	432.73	432.73	432.73	432.73	432.73	437.18	437.18	437.18	437.18	437.18	437.18	437.18	437.18	383.97
Tax		-337.53	-337.53	-337.53	-337.53	-337.53	-337.53	-341.00	- 341.00	-341.00	- 341.00	-341.00	-341.00	- 341.00	- 341.00	- 299.50

Appendix L.5Cashflow analysis (suggested case- 8MMsm³/d)

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Income after Tax		95.20	95.20	95.20	95.20	95.20	95.20	96.18	96.18	96.18	96.18	96.18	96.18	96.18	96.18	84.47
Income after Tax		95.20	95.20	95.20	95.20	95.20	95.20	96.18	96.18	96.18	96.18	96.18	96.18	96.18	96.18	84.47
Depreciation		4.45	4.45	4.45	4.45	4.45	4.45	-	-	_	-	_	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
-																
Investment	-386.91															
Cash Flow	-416.91	49.65	74.65	84.65	96.65	94.65	93.65	88.18	86.18	74.18	78.18	77.18	85.18	81.18	73.18	344.47
PV Cash Flow		45.97	64.00	67.20	71.04	64.42	59.02	51.45	46.56	37.11	36.21	33.10	33.83	29.85	24.91	108.59
Sum of Present Value Net Present Value	773.25 356.34															
Cumulative PV of Cash flow	-416.91	-370.94	-306.94	-239.75	-168.71	-104.29	-45.27	6.18	52.74	89.85	126.06	159.16	192.98	222.83	247.75	356.34

[YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	304.50	241.06	240.69	0.00	0.00
Production Revenue - Condensate Sales (\$\$US mill)		204.83	204.83	204.83	204.83	204.83	204.83	204.83	204.83	204.83	204.83	183.44	145.19	144.99	0.00	0.00
Operating Cost (3% of CAPEX)	\$ -14.76	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98
CO ₂ Cost (\$\$US mill)		-0.93	-0.93	-0.93	-0.93	-0.93	-0.93	-0.93	-0.93	-0.93	-0.93	-0.84	-0.66	-0.66	0.00	0.00
Operating Income		543.22	543.22	543.22	543.22	543.22	543.22	543.22	543.22	543.22	543.22	486.12	384.60	384.03	-0.98	-0.98
Process Equipment Capital Cost Equipment Depreciation Per year	33.95 5.66															
Depreciation		-5.66	-5.66	-5.66	-5.66	-5.66	-5.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		537.56	537.56	537.56	537.56	537.56	537.56	543.22	543.22	543.22	543.22	486.12	384.60	384.03	-0.98	-0.98
Tax		-419.30	-419.30	-419.30	-419.30	-419.30	-419.30	-423.71	423.71	-423.71	423.71	-379.17	-299.99	299.54	0.77	0.77

Appendix L.6Cashflow analysis (10 MMsm³/d)

								VEAD								
								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Income after Tax		118.26	118.26	118.26	118.26	118.26	118.26	119.51	119.51	119.51	119.51	106.95	84.61	84.49	-0.22	-0.22
Income after Tax		118.26	118.26	118.26	118.26	118.26	118.26	119.51	119.51	119.51	119.51	106.95	84.61	84.49	- 0.22	- 0.22
Depreciation		5.66	5.66	5.66	5.66	5.66	5.66	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-492.09															
Cash Flow	-522.09	73.92	98.92	108.92	120.92	118.92	117.92	111.51	109.51	97.51	101.51	87.95	73.61	69.49	- 23.22	259.78
PV Cash Flow		68.45	84.81	86.47	88.88	80.94	74.31	65.06	59.16	48.78	47.02	37.72	29.23	25.55	7.90	81.89
Sum of Present Value Net Present Value	870.36 348.27															
Cumulative PV of Cash flow	-522.09	-453.64	-368.83	-282.37	-193.49	-112.55	-38.24	26.82	85.99	134.76	181.78	219.50	248.73	274.28	266.38	348.27

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		408.37	408.37	408.37	408.37	408.37	408.37	408.37	408.37	403.75	319.64	59.32	0.00	0.00	0.00	0.00
Production Revenue - Condensate Sales (\$\$US mill)		249.67	249.67	249.67	249.67	249.67	249.67	249.67	247.01	195.39	154.75	147.23	0.00	0.00	0.00	0.00
Operating Cost (3% of CAPEX)	\$ -18.00	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20
CO ₂ Cost (\$\$US mill)		-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.11	-0.88	-0.70	-0.66	0.00	0.00	0.00	0.00
Operating Income		655.72	655.72	655.72	655.72	655.72	655.72	655.72	653.07	597.06	472.49	204.68	-1.20	-1.20	-1.20	-1.20
Process Equipment Capital Cost Equipment Depreciation Per year	41.40 6.90															
Depreciation		-6.90	-6.90	-6.90	-6.90	-6.90	-6.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		648.82	648.82	648.82	648.82	648.82	648.82	655.72	653.07	597.06	472.49	204.68	-1.20	-1.20	-1.20	-1.20
Tax		-506.08	-506.08	-506.08	-506.08	-506.08	-506.08	-511.46	509.40	-465.71	368.55	-159.65	0.94	0.94	0.94	0.94

Appendix L.7Cashflow analysis (12 MMsm³/d)

								XE A D								
								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Income after Tax		142.74	142.74	142.74	142.74	142.74	142.74	144.26	143.68	131.35	103.95	45.03	-0.26	-0.26	-0.26	-0.26
Income after Tax		142.74	142.74	142.74	142.74	142.74	142.74	144.26	143.68	131.35	103.95	45.03	- 0.26	- 0.26	- 0.26	- 0.26
Depreciation		6.90	6.90	6.90	6.90	6.90	6.90	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-600.06															
Cash Flow	-630.06	99.64	124.64	134.64	146.64	144.64	143.64	136.26	133.68	109.35	85.95	26.03	- 11.26	- 15.26	- 23.26	259.74
PV Cash Flow		92.26	106.86	106.88	107.79	98.44	90.52	79.51	72.22	54.70	39.81	11.16	- 4.47	- 5.61	- 7.92	81.88
Sum of Present Value Net Present Value	924.03 293.96															
Cumulative PV of Cash flow	-630.06	-537.80	-430.94	-324.06	-216.27	-117.83	-27.32	52.19	124.41	179.11	218.93	230.09	225.62	220.00	212.08	293.96

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		510.46	510.46	510.46	510.46	510.46	510.46	446.29	353.31	187.29	0.00	0.00	0.00	0.00	0.00	0.00
Production Revenue - Condensate Sales (\$\$US mill)		312.10	312.10	312.10	312.10	312.10	272.84	215.99	170.98	147.10	0.00	0.00	0.00	0.00	0.00	0.00
Operating Cost (3% of CAPEX)	\$ -23.09	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54
CO₂ Cost (\$\$US mill)		-1.40	-1.40	-1.40	-1.40	-1.40	-1.23	-0.97	-0.77	-0.66	0.00	0.00	0.00	0.00	0.00	0.00
Operating Income		819.62	819.62	819.62	819.62	819.62	780.54	659.77	521.98	332.19	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54
Process Equipment Capital Cost Equipment Depreciation Per year	53.11 8.85															
Depreciation		-8.85	-8.85	-8.85	-8.85	-8.85	-8.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		810.77	810.77	810.77	810.77	810.77	771.69	659.77	521.98	332.19	-1.54	-1.54	-1.54	-1.54	-1.54	-1.54
Тах		-632.40	-632.40	-632.40	-632.40	-632.40	-601.92	-514.62	- 407.15	-259.11	1.20	1.20	1.20	1.20	1.20	1.20

Appendix L.8Cashflow analysis (15 MMsm³/d)

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Income after Tax		178.37	178.37	178.37	178.37	178.37	169.77	145.15	114.84	73.08	-0.34	-0.34	-0.34	-0.34	-0.34	-0.34
Income after Tax		178.37	178.37	178.37	178.37	178.37	169.77	145.15	114.84	73.08	- 0.34	- 0.34	- 0.34	- 0.34	- 0.34	- 0.34
Depreciation		8.85	8.85	8.85	8.85	8.85	8.85	-	-	-	-	-	-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-769.76															
											_	-	-	-	-	
Cash Flow	-799.76	137.22	162.22	172.22	184.22	182.22	172.62	137.15	104.84	51.08	18.34	19.34	11.34	15.34	23.34	259.66
PV Cash Flow		127.06	139.08	136.72	135.41	124.02	108.78	80.03	56.64	25.55	- 8.49	- 8.29	- 4.50	- 5.64	- 7.95	81.86
Sum of Present Value Net Present	980.26															
Value	180.50															
Cumulative PV of	700 70	(72 70	522.62	205.02	264.42	427.40	20.70	54.32	407.07	422.52	425.02	446.74	442.22	406 50	00.65	400.50
Cash flow	-799.76	-672.70	-533.62	-396.90	-261.49	-137.48	-28.70	51.33	107.97	133.52	125.03	116.74	112.23	106.59	98.65	180.50

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		680.62	680.62	680.62	658.98	521.69	413.01	326.97	87.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Production Revenue - Condensate Sales (\$\$US mill)		416.07	416.07	402.83	318.89	252.46	199.96	158.32	147.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Operating Cost (3% of CAPEX)	\$ -31.94	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13
CO ₂ Cost (\$\$US mill)		-1.87	-1.87	-1.81	-1.43	-1.13	-0.90	-0.71	-0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Operating Income		1092.69	1092.69	1079.51	974.31	770.89	609.94	482.44	231.52	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13
Process Equipment Capital Cost Equipment Depreciation Per year	73.46 12.24															
Depreciation		-12.24	-12.24	-12.24	-12.24	-12.24	-12.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		1080.45	1080.45	1067.27	962.06	758.65	597.70	482.44	231.52	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13	-2.13
Tax		-842.75	-842.75	-832.47	-750.41	-591.75	-466.20	-376.31	- 180.59	1.66	1.66	1.66	1.66	1.66	1.66	1.66

Appendix L.9Cashflow analysis (20 MMsm³/d)

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Income after																
Tax		237.70	237.70	234.80	211.65	166.90	131.49	106.14	50.94	-0.47	-0.47	-0.47	-0.47	-0.47	-0.47	-0.47
Income after Tax		237.70	237.70	234.80	211.65	166.90	131.49	106.14	50.94	- 0.47	- 0.47	- 0.47	- 0.47	- 0.47	- 0.47	- 0.47
Depreciation		12.24	12.24	12.24	12.24	12.24	12.24	-	-	-	-		-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	- 1064.70															
Cash Flow	- 1094.70	199.94	224.94	232.04	220.90	174.15	137.74	98.14	40.94	- 22.47	- 18.47	- 19.47	- 11.47	- 15.47	- 23.47	259.53
PV Cash Flow		185.13	192.85	184.20	162.37	118.52	86.80	57.26	22.12	- 11.24	- 8.55	8.35	- 4.55	- 5.69	- 7.99	81.82
Sum of Present Value Net Present Value	1,044.6 9 -50.01															
Cumulative PV of Cash flow	- 1094.70	-909.56	-716.71	-532.51	-370.14	-251.62	-164.82	-107.56	-85.44	-96.68	-105.24	-113.59	-118.14	-123.83	-131.82	-50.01

Appendix M Scenario 1 - SRK and PR comparison

Appendix M.1 Equipment design

Soave-Redlich-Kwong

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total Footprint (m ²)	224.8	224.8	224.8	396.5	396.5	396.5	396.5	396.5	396.5	396.5	396.5	396.5	260.0	224.9	150.5
Total Weight (tons)	307.9	307.9	307.9	635.2	635.2	635.2	635.2	635.2	635.2	635.2	635.2	635.2	369.9	308.1	188.7
Total Duty (MW)	9.03	9.03	9.03	18.07	18.07	18.07	18.07	18.07	18.07	18.07	18.07	18.07	10.84	9.03	5.42
Compressor Power (MW)	7.47	7.47	7.47	14.95	14.95	14.95	14.95	14.95	14.95	14.95	14.95	14.95	8.97	7.47	4.48
Daily Compressor Energy (MWh)	179.4	179.4	179.4	358.7	358.7	358.7	358.7	358.7	358.7	358.7	358.7	358.7	215.2	179.4	107.6
Pump Power (kW)	232.5	232.5	232.5	473.4	473.4	473.4	473.4	473.4	473.4	473.4	473.4	473.4	279.5	232.5	138.8
Condensate (bbl/d)	5,340	5,340	5,340	10,680	10,680	10,680	10,680	10,680	10,680	10,680	10,680	10,680	6,406	5,341	3,203
Peng Robinson															
Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Total FootPrint (m2)	220.9	220.9	220.9	389.3	389.3	389.3	389.3	389.3	389.3	389.3	389.3	389.3	255.6	220.9	148.0
Total Weight (kg)	297.7	297.7	297.7	612.9	612.9	612.9	612.9	612.9	612.9	612.9	612.9	612.9	357.5	297.9	182.8
Total Duty (kW)	8.76	8.76	8.76	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	10.51	8.76	5.26
Compressor Power (kW)	7.08	7.08	7.08	14.16	14.16	14.16	14.16	14.16	14.16	14.16	14.16	14.16	8.50	7.08	4.25
Daily Compressor Energy (MWh)	170.0	170.0	170.0	339.9	339.9	339.9	339.9	339.9	339.9	339.9	339.9	339.9	204.0	170.0	102.0
Pump Power (kW)	230.5	230.5	230.5	469.8	469.8	469.8	469.8	469.8	469.8	469.8	469.8	469.8	277.4	230.5	137.8

Appendix M.2 Carbon footprint

Soave-Redlich-Kwong

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.46	0.46	0.46	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.55	0.46	0.28
Fuel Consumption (sm ³ /s)	0.55	0.55	0.55	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	0.67	0.55	0.33
CO ₂ emissions cost per year (MM NOK /year)	15.24	15.24	15.24	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	18.29	15.24	9.15
CO ₂ intensity (kg CO2 per BOE)	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70

Peng Robinson

Year/Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel Consumption (kg/s)	0.44	0.44	0.44	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.52	0.44	0.26
Fuel Consumption (sm3/s)	0.53	0.53	0.53	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	0.63	0.53	0.32
CO2 emissions cost per year (MM NOK /year)	14.45	14.45	14.45	28.89	28.89	28.89	28.89	28.89	28.89	28.89	28.89	28.89	17.33	14.45	8.67
CO2 efficency (kg CO2 per BOE)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56

Appendix M.3 Cash flow analysis

Soave-Redlich-Kwong

Souve-Reunen-Iswong																
								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		170.15	170.15	170.15	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	204.18	170.15	102.09
Production Revenue - Condensate Sales (\$\$US mill)		104.03	104.03	104.03	208.07	208.07	208.07	208.07	208.07	208.07	208.07	208.07	208.07	124.80	104.05	62.40
Operating Cost (3% of CAPEX)	\$-14.76	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98	-0.98
CO ₂ Cost (\$\$US mill)		-1.96	-1.96	-1.96	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-3.91	-2.35	-1.96	-1.17
Operating Income		271.24	271.24	271.24	543.48	543.48	543.48	543.48	543.48	543.48	543.48	543.48	543.48	325.65	271.27	162.33
Process Equipment Capital Cost	33.96															
Equipment Depreciation Per year	5.66															
Depreciation		-5.66	-5.66	-5.66	-5.66	-5.66	-5.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		265.58	265.58	265.58	537.82	537.82	537.82	543.48	543.48	543.48	543.48	543.48	543.48	325.65	271.27	162.33

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tax		-207.15	-207.15	-207.15	-419.50	-419.50	-419.50	-423.91	-423.91	-423.91	-423.91	-423.91	-423.91	-254.01	-211.59	-126.62
Income after Tax		58.43	58.43	58.43	118.32	118.32	118.32	119.57	119.57	119.57	119.57	119.57	119.57	71.64	59.68	35.71
Income after Tax		58.43	58.43	58.43	118.32	118.32	118.32	119.57	119.57	119.57	119.57	119.57	119.57	71.64	59.68	35.71
Depreciation		5.66	5.66	5.66	5.66	5.66	5.66		-	-	-	-	-		-	
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	-492.14															
Cash Flow	-522.14	14.09	39.09	49.09	120.98	118.98	117.98	111.57	109.57	97.57	101.57	100.57	108.57	56.64	36.68	295.71
PV Cash Flow		13.04	33.51	38.97	88.92	80.98	74.35	65.10	59.19	48.81	47.04	43.13	43.11	20.83	12.49	93.22
Sum of Present Value Net Present Value	762.69 240.56															
Cumulative PV of Cash flow	-522.14	-509.09	-475.58	-436.61	-347.69	-266.72	-192.37	-127.27	-68.08	-19.27	27.78	70.91	114.02	134.85	147.33	240.56

Peng Robinson

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Production Revenue - Gas (\$\$US mill)		170.15	170.15	170.15	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	340.31	204.18	170.15	102.09
Production Revenue - Condensate Sales (\$\$US mill)		102.31	102.31	102.31	204.61	204.61	204.61	204.61	204.61	204.61	204.61	204.61	204.61	122.79	102.36	61.39
Operating Cost (3% of CAPEX)	\$ -14.25	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95
CO ₂ Cost (\$\$US mill)		-1.85	-1.85	-1.85	-3.71	-3.71	-3.71	-3.71	-3.71	-3.71	-3.71	-3.71	-3.71	-2.22	-1.85	-1.11
Operating Income		269.66	269.66	269.66	540.26	540.26	540.26	540.26	540.26	540.26	540.26	540.26	540.26	323.80	269.71	161.42
Process Equipment Capital Cost Equipment Depreciation Per year	32.76 5.46															
Depreciation		-5.46	-5.46	-5.46	-5.46	-5.46	-5.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Income before Tax		264.20	264.20	264.20	534.80	534.80	534.80	540.26	540.26	540.26	540.26	540.26	540.26	323.80	269.71	161.42

								YEAR								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tax		-206.07	-206.07	-206.07	-417.14	-417.14	-417.14	-421.40	- 421.40	-421.40	421.40	-421.40	- 421.40	- 252.56	210.38	- 125.91
Income after Tax		58.12	58.12	58.12	117.66	117.66	117.66	118.86	118.86	118.86	118.86	118.86	118.86	71.24	59.34	35.51
Income after Tax		58.12	58.12	58.12	117.66	117.66	117.66	118.86	118.86	118.86	118.86	118.86	118.86	71.24	59.34	35.51
Depreciation		5.46	5.46	5.46	5.46	5.46	5.46	-	-	-	-		-	-	-	-
Change in Working Capital	-30	-50	-25	-15	-3	-5	-6	-8	-10	-22	-18	-19	-11	-15	-23	260
Investment	- 474.85															
Cash Flow	- 504.85	13.58	38.58	48.58	120.12	118.12	117.12	110.86	108.86	96.86	100.86	99.86	107.86	56.24	36.34	295.51
PV Cash Flow		12.58	33.08	38.57	88.29	80.39	73.80	64.68	58.81	48.45	46.72	42.83	42.83	20.68	12.37	93.16
Sum of Present Value Net Present Value	757.24 252.38															
Cumulative PV of Cash flow	- 504.85	-492.28	-459.20	-420.63	-332.34	-251.95	-178.15	-113.46	-54.65	-6.20	40.52	83.34	126.18	146.85	159.22	252.38

Appendix N Risk Assessment

	U			Prepared	by Number	Date	
0	Hazardoue or	ctivity identifica	tion process	HSE sect	on HMSRV2601E	09.01.2013	110
_		sivity identifica	ation process	Approved	by	Replaces	1112
HSE				The Rect	x	01.12.2006	um
nit: E	nergy and Process Engineering Departme	ent			Da	te: 6 th June	2018
	anager: Even Solbraa						
artici	pants in the identification process (inclu	ding their function):	John Swatson – Mas	ters Student			
hort o	description of the main activity/main pro s Field Development				le: Automated P	rocess De	sign in O
	project work purely theoretical? (YES/N	N-VER	A	WEDI incline that success			
quirin	g risk assessment are involved in the work. If	YES, briefly descri	Answei ibe the activities below.	"YES" implies that super The risk assessment form	visor is assured ti need not be fille	nat no activi d out.	ues
					9	o oon	
ignat	ures: Responsible supervisor: EC-	er delt	rag	Student:	>		
ID nr.	Activity/process	Responsible	Existing documentation	Existing safety measures	Laws, regulations e	Com	nent
	Master thesis involves purely theoretical research and performing simulations. No experimental work nor risk assement	- fax		matures	Tegulatoris		
	required.						
	required.						
	required.						
	required.						
	required.						
	required.						
	required.						
	required.						
	required.						
	required.						