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Abstract—In this letter, we study the secrecy performance
of the classic Wyner’s wiretap model, where the main and
eavesdropper channels are modeled by a general and versatile
α-η-κ-µ fading model. Novel and exact expressions of the
average secrecy capacity and secrecy outage probability have
been derived. Previous results on physical layer security can be
obtained through our newly derived expressions by specializing
the model parameters. More importantly, the derived results are
also applicable for the secrecy performance analysis of some field
measurements (e.g. in millimeter wave communications), which
cannot be analyzed by previous results.
Index Terms—Physical layer security, secrecy capacity, secrecy
outage probability, generalized fading, short-term fading.

I. INTRODUCTION

PHYSICAL LAYER SECURITY (PLS) has been consid-
ered as a potential paradigm to enhance communication

secrecy against eavesdropping in wireless communication net-
works [1]. The physical layer secrecy performance of commu-
nication systems over different short-term fading conditions
such as Rayleigh, Hoyt, Rice, Weibull, κ-µ, and α-µ, etc., has
been explored in [2]–[5] and the references therein. On the
other hand, the emerging wireless applications and services
expand the traditional outdoor channel environments to all
sorts of new scenarios such as millimeter wave (mm-Wave)
communications, body area networks, vehicle-to-everything,
Internet of Things, etc [6]. It is found in recent studies that in
some of these emerging communication scenarios (e.g. mobile-
to-mobile communications and indoor-to-outdoor propagation
in fifth generation (5G) networks), none of the aforementioned
traditional and well-established fading distributions follows
the experimental data satisfactorily [7]–[9]. This necessitates
the establishment of a general and versatile channel model
to adapt different fading behaviors resulting from the new
propagation scenarios.

Recently, a new fading distribution called α-η-κ-µ distri-
bution has been proposed in [9], which is probably the most
comprehensive and unifying fading model in open literature
as it encompasses the most traditional and well-established
models such as Rayleigh, Rice, Hoyt, Weibull, α-µ, and κ-
µ distributions as its special cases [9], [10]. This model is
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developed on a physical basis, where the parameters correctly
describe the short-term propagation phenomena such as non-
linearity of the propagation medium, number of multipath
clusters, and powers of the dominant and diffused components.
The model is very useful for accurate modeling of the scenar-
ios, where the conventional models may not correctly hold
[7]–[9], [11]. For instance, extensive channel measurement
campaigns at 28 GHz in outdoor line-of-sight (LOS) and non-
LOS (NLOS) conditions and at 60 GHz in LOS conditions for
mm-Wave communications were conducted in [11], and it was
found that the α-η-κ-µ model best fits the experimental data.
Further, the non-unimodal nature of the α-η-κ-µ envelope
makes it a potentially suitable channel model for device-
to-device communications, mobile-to-mobile communications,
vehicle-to-vehicle communications, indoor-to-outdoor propa-
gation in 5G, military high-frequency (HF) communications,
millimeter communications, and ionospheric scintillation [9].

To the best of the authors’ knowledge, the secrecy per-
formance of communication systems over this comprehensive
fading model is still unexplored. This motivates us to conduct
the secrecy performance analysis of communication systems
over the α-η-κ-µ fading channels. The main contributions of
this letter are as follows:

1) A novel series based expression for the average secrecy
capacity (ASC) is derived in terms of the extended
generalized bivariate Fox H function (EGBFHF) for the
classical Wyner’s model [12] under the α-η-κ-µ fading.

2) Exact and generalized expression is obtained for the
secrecy outage probability (SOP) in terms of the Meijer G
function contrary to previous works [2], [13], [14], where
only lower bound of SOP is derived. The strictly positive
secrecy capacity (SPSC) can be obtained from the derived
SOP by setting the target secrecy rate to zero.

3) Some useful insights into the system are also provided
through the asymptotic ASC analysis and the diversity
analysis based on the exact expression of the SOP.

4) The derived results enable to evaluate the impacts
of physical channel phenomena such as channel non-
linearity, scattering, and multipath clustering, etc., on the
secrecy performance.

The obtained analytical expressions are instrumental in
studying the secrecy performance over generalized fading
scenarios that are not necessarily restricted to the traditional
fading conditions.

II. CHANNEL AND SYSTEM MODELS

A. The α-η-κ-µ Channel Model: Preliminaries
The envelope probability density function (PDF) of the α-

η-κ-µ fading [9] is given by

fR(ρ) =
αραµ−1e−

(
ρα

2

)
2µΓ(µ)

∞∑
k=0

k!ck
(µ)k

Lµ−1
k (2ρα), (1)
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where Lmn (·) is the Laguerre polynomial [15, Eq. (8.970.1)],
(·)n is the Pochhammer symbol [16, Eq. (6.1.22)], and Γ(·)
is the Gamma function [15, Eq. (8.310.1)]. The PDF in (1)
is described by the positive parameters α, η, κ, µ, p, and q,
where α is the non-linearity parameter of the channel, η gives
the ratio of the total power of the in-phase and quadrature
scattered waves of the multipath clusters, κ signifies the total
power of the dominant components divided by the total power
of scattered waves, µ represents the total number of multipath
clusters, p is the ratio of the number of multipath clusters of
the in-phase and quadrature signals, and q is defined as the
ratio of two ratios: the ratio of the power of the dominant
components to the power of the scattered waves of the in-
phase signal and its counterpart for the quadrature signal. The
parameter ck in (1) is computed with the aid of parameters α,
η, κ, µ, p, and q using the recursive relation in [9, Eq. (15)]
and the relations given by [9, Eqs. (30) and (31)].

The cumulative distribution function (CDF) of the envelope
of α-η-κ-µ fading model is given by [9]

FR(ρ) =
ραµe−

(
ρα

2

)
2µ+1Γ(µ+ 1)
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k=0

k!mk

(µ+ 1)k
Lµk

(2(µ+ 1)ρα

µ

)
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In (2), mk is obtained with the help of the parameters α, η,
κ, µ, p, and q using the recursive relation in [9, Eq. 16] and
the expressions given by [9, Eqs. (33) and (34)].
B. System Model

In this letter, we consider the classic Wyner’s wiretap model
[12] for our analysis, where the legitimate transmitter, Alice
(node A), transmits confidential information signal to the
legitimate receiver, Bob (node B), over the main channel. The
eavesdropper, Eve (node E), tries to intercept these messages
by decoding its received signal through the eavesdropper
channel. It is assumed that the main and eavesdropper channels
experience independent but not necessarily identical α-η-κ-µ
fading and the channel coefficients remain constant during the
transmission of a block of codewords.

The instantaneous signal-to-noise-ratio (SNR) at node X ,
X ∈ {B,E}, is expressed as

γX =
R2
XEs
N0,X

= R2
XγX , (3)

where RX represents the received signal envelope at node X ,
Es is the transmitted signal energy, N0,X is the power spectral
density of the additive white Gaussian noise (AWGN) on the
corresponding links, and γX = Es/N0,X . Using (1) and (3),
the PDF of the instantaneous SNR at node X is given as
follows:
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Similarly, the CDF of the instantaneous SNR at node X is
given by
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III. SECRECY PERFORMANCE ANALYSIS
A. ASC Analysis

In the scenario of active eavesdropping, full channel state
information (CSI) of both the main and eavesdropper channels
is available to the node A, which can adapt the achievable
secrecy rate accordingly. In this case, the instantaneous secrecy
capacity of the considered system is defined as Cs(γB , γE) =
max{ln(1 + γB)− ln(1 + γE), 0} [2]. The ASC, Cs, can be
obtained from [2]

Cs = E{Cs(γB , γE)}

=

∫ ∞
0

∫ ∞
0

Cs(γB , γE)fγB ,γE (γB , γE) dγBdγE

= I1 + I2 − I3, (6)

where fγB ,γE (γB , γE) = fγB (γB)fγE (γE) due
to the independence of the two links, and
I1 =
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On substituting the PDF of γB and the CDF of γE from

(4) and (5), respectively, into I1, and using [15, Eq. 8.970.1],
the integral in I1 can be re-written by expressing the ln(·)
and exp(·) functions in their corresponding Meijer G rep-
resentation using [17, Eq. (8.4.6.4)] and [17, Eq. (8.4.3.1)],
respectively, and then utilizing [18, Eq. (6.2.8)] to get
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In (7), Hm,n
p,q (·| :) is the Fox H function [17, Eq. (8.3.1)].

The integral in (7) can be solved with the help of [19,
Eq. (2.3)] and is expressed in terms of the EGBFHF,
Hm,n:r,s:v,u
p,q:t,u:w,x (·), given by (8) at the top of this page. The

EGBFHF function can be implemented in Mathematica [12].
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Similarly, I2 can be obtained by replacing αB , µB , and γB
in (8) with αE , µE , and γE and vice-versa. For computing
I3, we substitute (4) into the expression of I3. By using [15,
Eq. (8.970.1)] and [17, Eqs. (8.4.6.5) and (8.4.3.1)], the inte-
gral in I3 is converted to a form similar to [17, Eq. (2.24.1.1)].
After some manipulations, the following simplified form for
I3 is obtained:
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a . Thus, ASC can be evaluated
by putting (8) and (9) into (6).

Remark 1: Although the expressions in (8) and (9) are
expressed in terms of infinite series, these infinite summations
converge quickly for finitely small values of k and n, which is
also justified by the numerical results in Fig. 1. For instance,
the ASC for the special case of Rayleigh fading is obtained
using k = 10 and n = 10 in Fig. 1.

B. Asymptotic ASC Analysis

To obtain more insights on the ASC, the asymptotic analysis
is conducted for the ASC performance in the high transmit
SNR regime, namely assuming γB = γE = γ → ∞. Using
the definition of secrecy capacity [12, Eq. (6)] and applying the
transformation γB = |RB |2γ = uγ and γE = |RE |2γ = vγ,
the asymptotic ASC is written as

Cs ≈ αEαB
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integration order and using [15, Eqs. (8.970.1) and (3.381.1)]
to have
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where xi and wi are the abscissas and weight factors of
the Gauss Laguerre integration [16, Eq. (25.4.45)], g1(x) =

TABLE I
PARAMETER VALUES FOR NUMERICAL RESULTS [9], [11]

Fading (α, η, κ, µ, p, q)
Nakagami−m (2, 1, 0, 0.7, 1, 1)

Hoyt (2, 3, 0, 0.5, 1, 1)
Rayleigh (2, 1, 0, 1, 1, 1)
Weibull (3, 1, 0, 1, 1, 1)

60 GHz (LOS, indoor) (3.49, 0.12, 0.6, 0.79, 0.5, 0.07)
28 GHz (LOS, outdoor) (2.2, 73, 5.7, 1.01, 1.05, 1)
28 GHz (NLOS, outdoor) (2.545, 0.006, 2.5, 1.98, 1.5, 1.05)

(2x)µB−1LµB−1
l (4x)γ(µE + r, (2x)

αE
αB

2 ) ln(2x)
2
αB , and γ(·, ·)

is the lower incomplete Gamma function. Similarly, J2 can be
solved by using [15, Eqs. (8.970.1) and (3.381.3)] to get
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2 ) ln(2x)
2
αE and Γ(·, ·) is the upper incomplete

Gamma function. Employing (11) and (12) into (10), we
obtain the expression for the asymptotic ASC.
C. SOP Analysis

The SOP is a useful secrecy performance metric for the
passive eavesdropping scenario, where node A does not have
CSI on the eavesdropper’s channel. The SOP is defined as the
probability that the instantaneous secrecy capacity is below a
threshold rate Rs [5], i.e.,

Po = Pr[Cs(γB , γE) ≤ Rs] = Pr[γB ≤ ΘγE + Θ− 1]

=
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0

fγE (γE)
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0
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)
dγE ,(13)

where Θ = exp (Rs) ≥ 1. Substituting (4) into (13),
using the series expansion of the Laguerre polynomial [15,
Eq. (8.970.1)], and applying the transformation γ(αB/2)

B = y,
the inner integral in (13) is solved using [15, Eq. (3.381.1)]
to obtain
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Now, using [15, Eq. (8.354.1)] and [20, Eqs. (10) and (11)],
(14) is converted to a form similar to [17, Eq. (2.24.1.1)]. Thus,
Po is given by (15) at the top of the page.
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Fig. 1. Comparison of analytical (6), simulated, and asymptotic (10) ASC
versus average SNR for various fading scenarios using parameter values from
Table I.

Remark 2: For diversity analysis, we analyze (15) for high
values of γB for a fixed γE . At high γB , the dominant term in
(15) would correspond to the smallest exponent of γB . Thus,
the SOP curves fall with a slope of αBµB

2 at high γB implying
that the diversity order based on SOP depends only on the
channel non-linearity and the number of multipath clusters.

IV. NUMERICAL RESULTS AND DISCUSSIONS
Assuming αB = αE = α, µB = µE = µ, κB = κE = κ,

and ηB = ηE = η, the model parameter values used for the
simulation are provided in Table I, where the last three data
sets are extracted from the field measurements [11].

Figure 1 shows the comparison of ASC for different fading
scenarios, which are obtained as special cases of the α-η-κ-µ
fading model. We observe from Fig. 1 that for high transmit
SNR, there is no improvement in ASC with the SNR. This is
also justified by the asymptotic ASC derived in (10), which
is independent of γ. It is also noted that as the value of α
increases from 2 to 4 keeping µ = 1, κ = 0, and η = p, the
ASC deteriorates. Similarly, on reducing µ from 1 to 0.7 for
α = 2, κ = 0, and η = p, the ASC becomes better. As α or
µ increases, both the main channel and eavesdropper channel
become better and have higher individual capacities, but the
resulting capacity difference between these two is small and
hence, ASC is small. Similar trends are also observed in [12]
for the α-µ fading channel, which is a special case of the
α-η-κ-µ channel.

In Fig. 2, we compare the SOP as a function of γB for
different values of γE and Rs = 1. It is seen from the
figure that as the eavesdropper SNR, γE , increases, the SOP
deteriorates. Moreover, the SOP performance improves in
good channel conditions, which corresponds to higher values
of the parameters α, η, κ, and µ.

Remark 3: The versatility of the derived results over α-η-
κ-µ fading model is clearly depicted through the numerical
results. Not only does this model map to the well-known
fading scenarios, it also describes generalized fading scenarios,
where the traditional models do not fit well.
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