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Abstract

The work presented here is originally motivated by the low transfer rate possible for earth
orbiting small satellites. Through different methods for dimensionality reduction, the ef-
fects of such representation on data exploration with respect to target detection have been
investigated. The theory suggests that through using these methods for dimensionality
reduction a considerable compression ratio could be achieved whiteout losing desired in-
formation. How these reduced space representations of the data then would affect the ex-
ploratory analysis, here represented by target detection with known signatures, was used as
an example. The different dimensionality reduction methods were PCA, MNF and JADE
ICA, and the different target detection algorithms were ACE, CEM, OSP, and SAM. Tar-
get detection performance has been measured using the F1-score and Matthews correlation
coefficient for binary classification performance, and visibility for robustness.

When looking purely at the compression of synthetic data all dimensionality trans-
forms performed as expected. The MNF transform was able to achieve a higher score of
restoration than the others for all cases. It should be noted that the synthetic scenes fit
well with some of the assumptions made in the MNF implementation. On data from the
HICO mission the MNF representation was not able to produce as good results as when
performed on synthetic data or data with ground truth. It is speculated that this might be
due to the limitations found in the raw data of the HICO mission and how the restoration
was measured, whilst the synthetic scenes and the scenes with known ground truth were
able to give consistent results for all dimensionality reduction methods, and especially for
the MNF transform.

In the simulations performed MNF was in most cases able to represent the data with
a high level of visibility and good results wrt. both the F1-score and the Matthews cor-
relation coefficient, across all detection algorithms. It was demonstrated that the MNF
transform will be dependent on the estimated noise model, but that even with a lesser
noise model the MNF transform was able to perform well, when compared to PCA and
ICA. These results were trending across all target detection algorithms.

The different Target detection algorithms were able to produce good results, both wrt.
binary classification and robustness. The ACE and SAM detection algorithms showed
great promise wrt. both their ability to detect targets and their apparent robustness. The
CEM algorithm often had a high detection ability, but had a tendency to be less robust.
Lastly, the OSP detector did not perform as well as the others, for any of the scenes tested.

The combination of dimensionality reduction and target detection displayed positive
results wrt. both detection rate and robustness. This suggests that combining the two in
the proposed pipeline will not undermine the performance of the system as a whole, and
potentially even strengthen the operation performed by a target detection system.

i



Sammendrag

(Norwegian Translation of the Abstract)
Arbeidet som presenteres her er opprinnelig motivert av den lave overføringshastigheten
oppnålig for satelliter i bane rundt jorda. Det er kjent at man kan ved dimensjonalitetsre-
duksjon oppnå betydelig datakompresjon, uten å miste for mye viktig informasjon. Hvor-
dan disse reduserte rom-representasjonene av dataene da vil påvirke data-utforskiningen,
her representert ved signaturbasert deteksjon, ble sett på. De forskjellige dimensjonsre-
duksjonsmetodene var PCA, MNF og JADE ICA, og de forskjellige signaturbaserte detek-
sjonsalgoritmene var ACE, CEM, OSP og SAM. den spesifikke sekvensen av oprasjoner
forslått i denne oppgavens prestasjonsevne har blitt målt ved hjelp avF1-score og Matthews
korrelasjonskoeffisient for binær klassifisering, videre har synlighet (visibility) blitt brukt
som et mål for robusthet.

Ved kompresjonen på syntetiske data presterer alle dimensjonsreduksjonsmetodene
som forventet. MNF-transformasjonen var i stand til å oppnå en høyere gjenoppret-
tingsgrad enn de andre for alle tilfeller av støy på den syntetiske dataen. Det skal be-
merkes at de syntetiske bildene passer godt med noen av antagelsene som er gjort i MNF-
implementeringen. På data fra HICO-oppdraget var MNF-representasjonen ikke i stand
til å produsere like gode resultater som når det ble utført på syntetiske data eller data
med kjent innhold (ground truth). Dette er sannsynligvis grunnet begrensningene i de rå
dataene fra HICO-oppdraget og hvordan restaureringen ble målt. For de syntetiske bildene
og bildene med kjent innhold var algoritmene i stand til å gi konsistente resultater for alle
dimensjonsreduksjonsmetodene.

I simuleringene var MNF i de fleste tilfeller i stand til å representere dataene med
et høyt synlighetsnivå og gode resultater mtp. både F1-score og Matthews korrelasjon-
skoeffisient, på tvers av alle deteksjonsalgoritmer. Det ble påvist at resultater fra MNF-
transformasjonen vil være sterkt avhengig av hvor god en estimert støymodell var, men at
selv med en mindre god støymodell var MNF-transformasjonen i stand til å prestere godt,
sammenlignet med PCA og ICA. Det var en trend mot disse resultatene for alle de signa-
turebaserte deteksjonsalgoritmene på tvers av alle dimensjonsreduksrepresentasjoner.

De forskjellige signaturebaserte deteksjonsalgoritmene var i stand til å produsere gode
resultater, både med hensyn på binær klassifiserings evne og robusthet. ACE og SAM de-
teksjonsalgoritmene viste lovende resultater, både med tanke på deres evne til å detektere
mål og deres tilsynelatende gode robusthet. CEM-algoritmen hadde ofte en høy detek-
sjonsevne, men hadde en tendens til å være mindre robust. Til slutt må det påpekes at
OSP-algoritmen ikke presterte så godt som de andre undersøkt her, som var gjeldende for
alle bildene undersøkt.

Kombinasjonen av dimensionalitetsreduksjon og deteksjon viste positive resultater
med hensyn på både deteksjonsevne og robusthet. Dette tyder på at kombinasjonen av
de to i den foreslåtte sekvensen av oprasjoner ikke vil undergrave systemets ytelse som
en helhet, og potensielt til og med styrke systemets ytelsesevne vedrørende signaturbasert
deteksjon.
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Chapter 1
Introduction

The vast majority of the world’s surface consists of water, and the ocean plays a pivotal role
in the earth’s health and climate. Combined with the last half century of developments in
aerospace technology, we have not just been able to explore space, but also enabled seeing
ourselves and our oceans from a new perspective.

The ocean is of particular importance for the Norwegian society and economy. The Nor-
wegian continental shelf is four times the area of the Norwegian mainland and constitutes
about one-third of the European continental shelf. When taking this into consideration,
Norway becomes the second largest country in Europe. The Norwegian University of
Science and Technology is currently developing a small satellite program for multi-agent
marine observations. This program is intended as the beginning of a dedicated constella-
tion of ocean observing satellites.

The first mission of the NTNU SmallSat program is intended to be an ocean color satel-
lite equipped with a hyperspectral camera [5]. A hyperspectral camera captures a broader
range of wavelengths than the human eye can see. Through the information captured by
the satellite, and the processing performed onboard, the system will be able to provide
early warnings of oceanographic phenomena of interest, such as harmful algal blooms
approaching fish farms. The SmallSat will act as an intelligent agent in a tightly con-
trolled and coordinated autonomous mission, being supplemented in the analysis by other
autonomous vehicles such as UAVs, ASVs, and AUVs.

For this mission to fulfill its objectives, innovative steps in terms of onboard data process-
ing need to be taken. To be able to downlink the acquired data, compression needs to be
performed, and to detect oceanographic phenomena of interest, exploratory data analy-
sis will have to be executed. This thesis surveys different ways to do compression with
dimensionality reduction and how this representation will affect target detection.
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1.1 Dimensionality Reduction
For the NTNU SmallSat Program [5] there is a significant bottleneck in how fast the sys-
tem is able to downlink a captured image. Thus the onboard processing should compress
the data as much as possible without losing valuable information, before downlinking.
However, what to consider as valuable information will be dependent on the application.

As the data and knowledge specifically tailored towards the system envisioned in [5]
was unavailable at the time of writing, a solution specifically made for the system and
its objectives were deemed unachievable in the time frame given to complete this thesis.
Thus, a more general approach to dimensionality reduction was chosen, aligned with the
state-of-the-art literature.

In literature and publications regarding dimensionality reduction for hyperspectral
imaging, methods such as Principal Component Analysis, Maximum Noise Factoring,
and Independent Component Analysis, described briefly in this thesis in section 2.2, are
referenced frequently. These methods are used for exploratory analysis, compression and
noise filtering within the field of hyperspectral image analysis [6, 7, 1, 8]. Even though
these methods are not recent developments, their contribution to the analysis and prepro-
cessing and processing of hyperspectral data has proven valuable, and different pipelines
to improve hyperspectral image analysis utilizing these methods are still being published.
There are of course modifications to these three methods, and how they have been exe-
cuted in this thesis is described in chapter 3. The given methods all have their advantages
and disadvantages, that will become more clear as the text progresses and their theory is
elaborated upon.
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1.2 Target Detection
As one of the objectives of the first satellite in the NTNU SmallSat Program [5] is to detect
oceanographic phenomena of interest, an investigation of different methods for hyperspec-
tral target detection algorithms is appropriate.

As stated in [9], an idea or clearly superior target detection algorithm may not exist,
and in the quest for of achieving perfect performance from a detector, many issues are
often overlooked. Some of the main concerns when developing an application specific
detection algorithm raised in [9] are:

• It’s challenging to select a threshold that gives a desired false alarm rate

• Sensor calibration may affect detection gravely

• The noise level experienced by the sensor will have a bad influence on detection and
may change over time

• The atmospheric correction may not render a cube close to the true spectra

• The background may change a lot from the original model over time

• The signature being looked for is not necessarily close to the true target under all
conditions

• Spectral variability of the target is difficult to account for

Thus, the performance gained by constructing more complex and application specific
target detection algorithm may not produce desired results in practical applications.

This thesis is not the first study to compare different target detection algorithms for
hyperspectral image analysis on the full space. Some of the more noteworthy publications
that inspired this thesis are [10, 9, 11, 3]. Often, given the aforementioned publications,
a low false alarm rate is deemed as the main objective. That is, a threshold is chosen so
that as few as possible non-target pixels will be labeled as target pixels, resulting in a false
alarm. As the false alarm rate may be application specific and dependent on the mission
objective [9] a constant threshold was not used in this thesis.

Instead of a measure of how well a given target detection algorithm is able to separate
target and background, dubbed visibility, was adopted form [10], and a description of this
metric is restated in section 3.4.2.

Furthermore, the threshold used in this thesis was chosen by maximizing a given ma-
chine learning performance metric( see section 3.4). Thus, giving an indication as to which
of the target detection algorithms that will give the best score for a chosen metric under
good conditions.

As stated above, this is not the most common way to compare different target detection
algorithms but was chosen opposed to the more common constant threshold for all target
detection algorithms to show the best performance of a given target detection algorithm
and the visibility chosen to illustrate the robustness of the algorithm. As a consequence of
these choices, the results given in this thesis are not reliant on an externally chosen values.

3



1.3 Structure of This Thesis
This thesis is divided into 5 chapters and 4 appendices

• Chapter 1 is intended as a short description of the background and motivation for
this thesis.

• Chapter 2 is a cursory overview of the methods used in this thesis.

• Chapter 3 covers how the different simulations were performed, and what kind of
data sets were used.

• Chapter 4 is a discussion of the results

• Chapter 5 gives a final conclusion to what the work performed for this thesis accu-
mulated into and suggestions for further work.

• Appendix A contains some selected excerpt of the code used for simulations.

• Appendix B is a short description of some of the instruments used for capturing the
scenes analyzed in this thesis.

• Appendix C gives tables of different results wrt. compression on synthetic data and
HICO data.

• Appendix D contains all results for all algorithms and scenes displaying their per-
formance with respect to different metrics
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Chapter 2
Background Theory

2.1 Hyperspectral Imaging and Processing

This section is mainly developed from the books Hyperspectral Imaging Technology in
Food and Agriculture by B. Park and R. Lu [1] and Hyperspectral Remote Sensing by
Michael T. Eismann [6], and the paper Detection Algorithms in Hyperspectral Imaging
Systems by D. Manolakis et al. [11].

Hyperspectral Image processing is the collective term for using different types of algo-
rithms to derive, manipulate or store information from relevant spectral bands in a hyper-
spectral image, often called image cube[1]. An image cube is a set of values spanning
three dimensions x,y, and z, where x and y make up the spatial composition of the im-
age and the z-direction stores the spectral information. A hyperspectral image collects
and processes information from across the electromagnetic spectrum with an objective to
obtain the spectrum for each pixel in the image of a scene for analysis e.g. identifying ma-
terials or detecting processes. Typically, different sources will claim that the hyperspectral
domain starts when the image surpasses 30 spectral bands It is however not uncommon
that a hyperspectral image contains 100 bands or more [12, 1, 13]. Most hyperspectral
instruments share a high spectral resolution, or at the very least segments of high spectral
resolution i.e. certain areas of spectral relevance are particularly well covered. The spec-
tral bands most often associated with hyperspectral image processing are contained within
visible to near-infrared light, often shortened down to VNIR or VISNIR. The algorithms
used in hyperspectral imaging usually handle such problems as classification or detection,
to better understand and characterize the scene or an object in the image. Hyperspectral
image processing is in general concerned with the wavelengths between in and around
the visible range as shown in figure 2.1. There are limitations to the measurements that
Hyperspectral sensors may bring and figure 2.2 displays to some extent the uncertainties
that hyperspectral imaging will bring as a result of illumination and reflectance angle dif-
ferences. Figure 2.2 shows the spectral variance of the metal sheets in the Pavia scene
depicted in figure 3.6. The red dashed line is the spectra from each pixel labeled as metal
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sheets, and the dark solid line is the mean of all pixels labeled as painted metal sheets.

Hyperspectral image processing is inherently a multi-disciplinary field, and many of the
techniques developed for hyperspectral image processing has its origin in other fields.
Chemometrics and spectroscopy have long been developed fields for treating an abun-
dance of spectral data, but also machine learning and data analytics play an important role
in hyperspectral imaging when compared to more traditional remote sensing [14, 1]. Tra-
ditional Remote sensing only uses a few spectral bands to perform analysis, and a lot of
information of the scene will be lost due to the low spectral resolution. However, as the
spectral resolution increases the importance of high spatial resolution increases as well.
The spectral response of an object is the spectral signature that it gives from being illu-
minated by a given light source, e.g. the sun. As will become clear, it is not trivial to
distinguish between the spectral responses of different objects. If the spectral response of
several objects is captured in one pixel, distinguishing between them is even more com-
plicated. An image consisting of hyperspectral data can inherently be considered a mul-
tidimensional or multivariate problem. Thus multivariate techniques found in exploratory
statistics and chemometrics can be used to process the spectral information and to gain
insights. These methods are well-established approaches within the fields of medical anal-
ysis, chemometrics, food analytics, precision agriculture and many more[15, 6, 1].

Figure 2.1: An illustration of different electromagnetic spectrum. Typically a hyperspectral
image sensor will capture light in the in the ultraviolet, visible and near-infrared wavelengths.
[1]. The image is taken from https://app.griffith.edu.au/sciencesimpact/
hyperspectral-imaging/

6

https://app.griffith.edu.au/sciencesimpact/hyperspectral-imaging/
https://app.griffith.edu.au/sciencesimpact/hyperspectral-imaging/


Figure 2.2: Spectral variance of the metal sheets in the Pavia scene depicted in figure 3.6.

2.1.1 Hyperspectral Image Acquisition
There exist several different ways to acquire hyperspectral data e.g. push-broom, wave-
length scanning, snapshot, image slicing and Fourier transform infrared [6, 1]. However,
within the field of remote sensing, the most commonly used method for acquiring a hyper-
spectral image is by using a pushbroom scanner. An illustration of the optical setup for a
pushbroom scanner is given in figure 2.3.

A pushbroom scanner works by scanning each scene onto a slit entrance of a spec-
trometer. The collected light is then split into components by a dispersive element. The
dispersed component is then projected onto a focal plane array, and in this array, the axis
along the slit records spatial data and the axis perpendicular to the slit records the spectral
data. This matrix then represents the spatial and spectral data of one line in the imaged
scene. As time progresses, a pushbroom scanner will need to be in relative motion to
cover a larger spatial area. Thus, through this way of operating the camera is especially
well suited for applications such as airborne applications where a UAV is equipped with
a hyperspectral camera. Additionally, it can be used for imaging from a USV or AUV, all
relevant for the mission envisioned by The NTNU SmallSat Program [5]. Another advan-
tage of the hyperspectral pushbroom scanner is, with a dispersive element of high quality
e.g. diffraction gratings, the camera will be able to provide a high spectral resolution with
high accuracy and precision.

7



Figure 2.3: An illustration of a typical assembly of pushbroom optics. The image is taken from [2].

2.2 Data Models for Hyperspectral Data
An important element of hyperspectral imaging is data representation. This section and
the following subsections is strongly influenced by [6] and [1].

A common approach to representing a hyperspectral data could be to use the original
spatial extent of the image as two-dimensional, and the spectral information of the scene
as a third dimension. In this way spatial information of the cube is intact, and all the data
is represented in only three dimensions. It is also possible to represent the data cube as a
matrix, where both spatial dimensions of an image are ordered along one dimension and
the spectral information as a second dimension and the data cube can be reconstructed
if the original ordering or the transformation approach of the spatial pixels is stored as
metadata. presented in a more mathematical approach, the data cube, also depicted in
figure 2.4:

XCube =


x1,1 x1,2 · · · x1,i

x2,1 x2,2 · · · x2,i

...
...

. . .
...

xj,1 xj,2 · · · xj,i

 (2.1)

and the matrix

XMatrix =
[
x1,1 · · · x1,i x2,1 · · · x2,i · · · xj,1 · · · xj,i

]
(2.2)

where i and j are the spatial extent of the data e.g. x50,200 is the pixel at row 50 column
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Figure 2.4: The different axis of a data cube. Nx, Ny and Nz represent the maximum number of
rows, columns and spectral bands respectively.

200 or x-coordinate 50 and y-coordinate 200, and the spectral information is stored at
every pixel in the following way x ∈ Rk, often shown as follows:

xi =
[
Li(λ1) Li(λ2) · · · Li(λk)

]T
(2.3)

where Li(λn) is the measurement of a spectral band centred at electromagnetic frequency
λn. The measurement can be digital numbers, reflectance, emissivity or radiance depend-
ing on the application.

Furthermore, it is common to refer to the specific pixel in matrix representation by use
of a single number, this transformation could be done as follows:

Tnumber(x, y) = x×Ny + y (2.4)

resulting in a one-dimensional indexation, the representation most often used in algorith-
mic descriptions, of XMatrix as follows:

XMatrix =
[
x1 x2 · · · xN

]
(2.5)

where N is the maximum number of rows and columns multiplied, or the number of pixels
in a scene.

Due to the nature of hyperspectral images containing vast amounts of data, different
approaches will fit for different applications. In a general sense, there are two popular
ways of representing hyperspectral data, a geometric approach, and a statistical approach.

2.2.1 Geometric Representation of Hyperspectral Data
A geometric representation of hyperspectral data is particularly useful when exploring
such concepts as spectral similarity mixing and change transformation. For the geometric
approach, it is natural to imagine the different spatial picture elements as vectors x ∈ Rk,
where k is the number of spectral wavelengths that the instrument is able to perceive.
From this representation of the data, it is trivial to extract certain powerful metrics and
norms and to draw certain useful parallels. A widely used geometric concept to describe,
characterize and compare different pixels is the Euclidean L2 norm:
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d12(x1,x2) = ‖x1 − x2‖2 =
√

(x1 − x2)T (x1 − x2) (2.6)

where x1 and x2 are two pixels in the K-dimensional space. The resulting expression gives
an indication of how far apart two points in the K-Dimensional space are.

Another useful geometrically fueled metric is the multidimensional spectral angle mea-
surement, a geometric approach to enable angle comparison in higher dimensions than that
of the spatial dimensions. It can be represented the following way:

θ12 = cos−1(
xT1 x2√

(xT1 x1)(xT2 x2)
) (2.7)

Furthermore, the geometrical representations of hyperspectral data are truly powerful
when discussing endmembers and detection algorithms, the topic of section 2.3. Geomet-
ric concepts can quite effectively describe the expected transformation of the hyperspectral
data by changes in environmental conditions, illumination or both. The following descrip-
tion is used in [6]:

x = a ◦ p + b (2.8)

where x is the radiance measured at the sensor, p is the reflectance vector for the surface
material, a represents the product of the atmospheric transmission and total dowelling
radiance, b represents the path of radiance and ◦ is the Hadamard product.

This approach is best used to describe a linear mixing of constituents or endmembers,
but it is still a powerful representation. It does however not perfectly hold up if the envi-
ronmental or illumination changes are spatially varying, there exists nonlinear mixing as a
result of adjacency effects, the temperature of the emissive data changes data changes from
pixel to pixel or if the observed reflectance vector change between observations. However,
it should be noted that the linear mixing model usually is a good approximation for many
applications.
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2.2.2 Statistical Representation of Hyperspectral Data
A statistical representation of hyperspectral data is particularly useful when modeling the
inherent randomness of hyperspectral data resulting from sensor noise and the stochastic
nature of real remotely sensed scenes.

In this representation, the measurement x is described as a multidimensional prob-
ability density function p(x; θ), where θ is a set of parameters saying something about
the probability distribution. The x can be said to be composed of two main components,
namely s and n, which is the signal and noise respectively, as follows

x = s + n (2.9)

If s is a deterministic signal related to the ideal spectrum, and the noise represented
by n can be said to be zero-mean, spatially independent normally distributed noise with
wavelength independent variance, the probability density function can be written as fol-
lows:

p(x; θ) =
1

(2π)K/2
1

|Σ|1/2
exp

(
− 1

2
[x− µ]TΣ−1[x− µ]

)
(2.10)

where the θ parameters are the mean µ and the covariance matrix Σ = σI, given the
condition described for n. This again gives the shorthand notation of x ∼ N(s, σ2I)

However, due to the aforementioned inherent stochastic nature of real scenes as a result
of man-made objects and natural background alike, the normal distribution usually does
not hold to describe the complexity of a scene. The main idea of representing the data in a
statistical manner is still useful, as will become apparent in the subsequent sections.

If one instead treats the probability density function parameter θ as an unknown, where
the xi data of an image is presumed that each spectral measurement is independent and
identically distributed in a statically sense. From this, it follows that the maximum likeli-
hood function L for a scene or a set of collected data used to determine θ can be written
as follows:

L(x1,x2, · · · ,xN; θ) =

N∏
i=1

p(xi; θ) (2.11)

Thus, the parameters µ and Σ can be solved analytically, and their estimations can be
calculated as follows:

m ≡ µ̂ =
1

N

N∑
i=1

xi =
1

N
Xu (2.12)

where u is a vector of all ones.

C ≡ Σ̂ =
1

N

N∑
i=1

[xi −m][xi −m]T =
1

N
XXT −mmT (2.13)

This gives the correlation matrix as follows:
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R =
1

N

N∑
i=1

xixi
T =

1

N
XXT = C + mmT (2.14)

Given a sufficiently large sample size of data the estimation for mean µ̂ and correlation
Σ̂ can be regarded as unbiased.

The representation given over are useful ways to describe a scene or a collection of
hyperspectral data in a statistical manner.

12



2.2.3 Principal Component Analysis
Principal Component Analysis or PCA is a much-used method within many fields and can
be said to have its origin at the start of the 20th century [16]. It is known under several
different names, and has been reinvented several times. Within the field of hyperspectral
imaging, it might be known as Karhunen-Loeve transformation or simply PCA [6]. Re-
gardless of the origin of the algorithm, the procedure stays the same in principle. The PCA
transformation seeks to diagonalize the sample covariance matrix C, by determining the
eigenvalues of C as follows:

det(C− σ2I) = 0 (2.15)

Given that the C matrix has full rank i.e. no eigenvalue can be zero, the eigenvalues σ2

found will represent the variance for a particular eigenvector. Furthermore, the principal
direction where the spectral correlation is removed is given by

Cvj = σ2vj (2.16)

Where vj is an eigenvector of unit length and the jth eigenvector corresponding to the jth

eigenvalue. If then all the eigenvalues were ordered in a diagonal matrix D were the largest
eigenvalue came first, and the smallest eigenvalue came last, the following relationship can
be stated:

CV = VD =⇒ C = VDVT (2.17)

Where V is the corresponding eigenvectors vj ordered in a descending manner as well,
same as with the D matrix, following the fact that V is an orthogonal unitary matrix. Thus
the transformation from the original projection into an orthogonal basis where the bands
are uncorrelated and ordered according to the variance of in the original data:

Z = VTX (2.18)

Where Z then represents a principal component data matrix transformation from the orig-
inal coordinate space into an orthogonal coordinate space. To perform the desirable di-
mensionality reduction i.e. represent the original data using fewer samples or variables,
with K as the full dimensional space, you would choose the k ≤ K largest corresponding
eigenvectors and eigenvalues. The inverse transformation would then yield the original
data with reduced noise ideally. Figure 2.5 is a more visual presentation of the effects of
PCA on hyperspectral images. The figure shows to the left a false-color image taken by the
HICO sensor over Lake Erie, the following 4 images are the top 4 Principal Components
of that image, and the last 4 images are components 47 to 50.
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2.2.4 Maximum Noise Fraction
Maximum noise fraction, also known as minimum noise fraction or noise-adjusted princi-
pal component analysis was first described in [17], and has since been used in many hy-
perspectral and multispectral image analysis approaches, and the principal idea has been
developed many times over since the initial publication. The idea of MNF is to sort the
components based on noise, or rather estimated noise, than variance as is the objective of
PCA. At the baseline it is common to assume independence between the signal covariance
and the noise covariance as such:

Σ = Σs + Σn (2.19)

where Σ denotes the total covariance of the samples, whilst Σs and Σn are the covariance
of the actual desired signal and the noise, respectively. Thus the objective of MNF could
then be described as maximizing the SNR value, whilst still decorrelating the covariance
matrix Σ, as follows:

SNR =
vTj Σsvj

vTj Σnvj
=

vTj Σvj

vTj Σnvj
− 1, vTi Σvj = 0, i 6= j (2.20)

As the noise cannot be assumed to be known beforehand, it has to be estimated. There
are several approaches to perform this estimation [17, 18, 19], and how this estimation is
performed is the main difference between MNF methods. The below is one of the original
ones described in [17].

Green estimates the noise under the assumption that all the data or the portion of the
data used for noise estimation is of a homogeneous region. Thus by calculating the differ-
ence between signals, using notation found in (2.5), as follows:

Xn =
[
x1 − x2, x2 − x3, · · · , xN−1 − xN

]
(2.21)

The covariance and its singular value decomposition of the noise can be found in the
following way:

Cn = XT
nXn Cn = svd(Cn) = UnSnVT

n (2.22)

It is important to decorrelate the noise data, also known as whitening. The process of
whitening or making the covariance uncorrelated and of unit variance can be performed as
follows:

Xw = XUnS−1/2n Xw = svd(Xw) = UwSwVT
w (2.23)

Which again results in the following transformation matrix:

Vg = UnS−1/2n Vw (2.24)

Lastly yielding the following relationship:

Zg = VT
g X (2.25)

Figure 2.5 is a more visual presentation of the effects of MNF, using Green’s method for
noise estimation on hyperspectral images from HICO.
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2.2.5 Independent Component Analysis
Independent component analysis or ICA is an alternative to MNF and PCA for dimension-
ality reduction. Whilst PCA and MNF are based on first and second order statistics i.e.
mean and variance, ICA uses higher-order statistics to find the underlying structures of the
data. Through higher-order statistics the ICA algorithms are able to portray nonlinearities
in the data, obtaining in a more deterministic way the same insight that can be provided by
using multi-layer neural networks [20]. With ICA one seeks a linear decomposition of the
spectra, on a set of normalized basis vectors, such that the resulting transformed images
are uncorrelated and statistically independent. Thus, this approach should fit well when
the normal distribution assumption in PCA is no longer valid[6]. ICA, as it is described
here, is based on the descriptions found in [20, 6, 21].

The principle behind ICA can be described similarly to how PCA is performed. Using
the same notation as previously we have the following linear decomposition:

x = Viz (2.26)

Where Vi is a transformation matrix with the principal vector directions and z is a vector
in the transformed space, where all the bands are statistically independent. With respect to
PCA the columns of Vi are the eigenvectors found from the covariance matrix as described
above. In the case of ICA, equation 2.26 can be rewritten as

z = Wx (2.27)

Where W is the reverse transformation of Vi, and is referred to as the separating
matrix. In this reverse transformation, the W would represent all the different unique
signals in the dataset, ideally. As ICA is used in many different fields, a unique signal
could be defined as different sound sources in sound processing, features within feature
extraction, and to separate different endmember sources in a hyperspectral image [20]. The
linear combination of unique signals that would be contained in the transformed variable
z would be statistically independent. That is, the joint probability density function, p12,
and the marginal probability density functions, p1 and p2, can be written in the following
manner.

p12(z1, z2) = p1(z1)p2(z2) (2.28)

A common way to measure the dependence of K random variables is mutual informa-
tion, often denoted as I

I(z1, z2, · · · , zK) =

K∑
k=1

H(zk)−H(z) (2.29)

In equation 2.29 H(z) is the differential entropy, defined as follows

H(z) = −
∫
p(z) log p(z)dz (2.30)

Thus, from the linear representation given in equation 2.27, equation 2.29 can be
rewritten as follows:
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I(z1, z2,
. . . , zK) =

K∑
k=1

H(xk)−H(z)− log |detW| (2.31)

Furthermore, if the subspace representation is such that the zk components can be said
to be decorrelated and scaled to unit variance, the final form of equation 2.29 is given as:

I(z1, z2,
. . . , zK) = Ck −

K∑
k=1

J(zk) (2.32)

Where C is a constant and J(z) is the negentropy i.e. the difference in entropy between
the estimated distribution and the Gaussian distribution, given that the two distributions
have the same mean and variance. The negentropy, J(z) with znormal as a multivariate
normal random vector process with the same covariance matrix as z, is defined as:

J(z) = H(znormal)−H(z) (2.33)

From equation 2.32 it can be deducted [6] that, as the objective is to maximize the ne-
gentropy function when searching for a set of orthogonal vector directions for the separa-
tion matrix W, the resulting transformation minimizes the statistical dependence between
components.

There are several methods on how to perform this numerically with real-world data.
The three most common can be said to be Fixed-point ICA (FastICA), Infomax and Joint
Approximate Diagonalization of Eigenmatrices (JADE). Each method has different advan-
tages and drawback, and thus they are suited for different types of applications [20].

The implementation used in this thesis is the JADE approach. The JADE ICA estima-
tion approach is a tensorial method for calculating the components [20]. As a preliminary
step the data is whitened by principal component transform i.e. JADE is performed on
uncorrelated data that have a unit variance. Whiting is an important prepossessing step in
independent component analysis [6]. The JADE algorithm was selected due to the fact that
it does not have convergence problems, as it does not rely on gradient searches. Memory
and time usage was not considered when implementing ICA for the analysis. The four first
cumulants as defined for tensorial probability mathematics are mean, variance, skew and
kurtosis, respectively. The JADE algorithm will seek to optimize the second and fourth
cumulants from the data, that is the variance σ2 and the kurtosis κ of the data, defined as
follows:

σ2 =
1

N

N∑
i=1

(xi − µ̂)2 κ =
1

N

N∑
i=1

(xi − µ̂
σ

)4 − 3 (2.34)

Whilst the variance σ2 gives a measurement of how much the data varies from the
mean, the kurtosis κ gives an indication of how the extremities of the data are distributed.
The constant number 3 is the kurtosis of a perfectly normally distributed data set.

The following description of the JADE algorithm is strongly influenced by [20]. The
cumulant tensor cum(·, ·, ·, ·), a matrix space consisting of four vectors representing the
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four different cumulants. This cumulant tensor will have K entries, where K in the hy-
perspectral domain will correspond to the number of wavelengths. with the cum(·, ·, ·, ·)
defined as follows for the zero mean case:

cum(xi, xj , xk, xl) = E[xixjxkxl]

−E[xixj ]E[xkxl]

−E[xixk]E[xjxl]

−E[xixl]E[xjxk]

(2.35)

The matrix space then consists ofK×K matrices, instead of a space ofK-dimensional
vectors.

Given the assumptions made in the ICA model the rows of the separating matrix W,
denoted wm for row m, form the eigenmatrices M = wmwT

m. A natural choice for the
matrix M is the eigenmatrices of the cumulant tensor.

Furthermore, The space of matrices will then be a linear space of dimension K ×K,
and a transformation matrix Fij , with mkl being the elements of M being transformed,
could be defined as follows

Fij(M) =
∑
kl

cum(xµ,xσ,xγ ,xκ) (2.36)

The ordering of the variables that are sent into equation 2.35 does not change the out-
come, thus the space is a symmetric linear operator, the cumulant tensor has an eigenvalue
decomposition, and an eigenmatrix M of the tensor is defined as follows

Fij(M) = λMij (2.37)

Thus, we have a set of just K matrices with all the relevant information on the cumu-
lants, as they span the same subspace as the cumulant tensor. Assuming the ICA model
the matrix F will be a linear combination of terms in the form of wiw

T
i . Thus, in the

ideal case, WF(Mi)W
T is a diagonal matrix. JADE is in principle performed by maxi-

mization of the expression in equation 2.38, where ||diag(·)||2 is the sum of squares of the
diagonal

JJADE(W) =
∑
i

||diag(WF(Mi)W
T )||2 (2.38)

Figure 2.7 is a more visual presentation of the effects of ICA on hyperspectral images.
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2.3 Target Detection Algorithms
There are several ways to utilize acquired hyperspectral images in many different fields.
Within the field of remote sensing, there are usually two approaches on how to gather
information from the captured scenes[6]. Classification i.e. labeling the different pixels
of an image to be of a certain constituent, and Detection i.e. determining whether or not
something in the scene can be regarded as an anomaly or if a certain constituent is in the
scene or not.

This thesis will focus on hyperspectral detection algorithms. These algorithms focus
on detection of a known signature in a given image where a single pixel does not neces-
sarily contain the signature of one constituent. The section is mainly based on [6, 9, 3].
To successfully perform target detection in hyperspectral images it is important to process
the image in a way that makes the signature source and the image cube be in the same ref-
erence space wrt. magnitude, response, etc. That is, an image cube given with reflectance
values should use a signature given in reflectance values to perform detection. From the
high spectral resolution typically found in hyperspectral imaging, it is often possible to
identify spatially resolved and unresolved elements of interest based on a known spectral
signature [9].

The methods discussed in this thesis fall within the category of signature matched
detection. The following descriptions will assume a single deterministic signature s to be
the spectrum that represents the signature normalized to the data units in the given image
or cube under inspection to be looked for.

in the following sectionsH0 will represent a pixel which does not contain the signature
being looked for, and H1 will represent the signature being looked for. In this context a
false alarm is defined as a false positive i.e. p(H1|H0). All the detection algorithms will
give a probability of target, and in practical applications, a detection threshold needs to
be selected. This threshold should ensure that a desired rate of false alarms for a given
application is achieved.

In figure 2.8 a depiction of threshold selection, false alarms and probability distribution
is given. From the illustration it is clear that to select a threshold may be an iterative
process, and is very dependent on the cost of false alarms versus missed targets. If the
sample space does not contain an abundance of targets, a lower threshold would be natural,
and vice versa.
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2.3.1 Spectral Angle Mapper
The detection problem can be represented in the following way:

H0 : x = b H1 : x = αs + b (2.39)

where b is both the noise and the background clutter combined, α is an unknown pa-
rameter that represents the strength of the sought after signal s. Variation in α can due
to illumination variation or subpixel mixing between the target and the background clut-
ter. The background model i.e. the model for the parameter b can take many forms, but
in the following the descriptions, unless otherwise is stated, will be assumed to have a
zero-mean, be normally distributed and variance σ2. That is b ∼ N(0, σ2I).

Thus the unknown parameters to be estimated are σ and α. From a maximum likeli-
hood estimation point of view, the normalized projection for α is given as:

α̂ =
sTx

sT s
(2.40)

The logarithmic form of the generalized likelihood test can be deemed from equation
(2.40) as follows:

r(x) =
xTx

σ2
− (x− α̂s)T (x− α̂s)

σ2
=

2α̂sTx− α̂2sT s

σ2
=

1

σ2

(sTx)2

(sT s)
(2.41)

Then to be able to obtain the desired false alarm rate the noise or clutter, depicted here
as σ needs to be well estimated. σ is assumed to vary spatially across the image, and a
simple much-used approach is to estimate σ as the square of the spectrum magnitude i.e.
xTx. With this applied to equation (2.41) the following metric for similarity is obtained:

rsam(x) =
(sTx)2

(sT s)(xTx)
(2.42)
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2.3.2 Constrained Energy Minimization
As the spectral angle mapper has its limitations in terms of how the variance in the data
is assumed i.e. the normal model is an underlying assumption for background noise and
clutter, there may be performance improvements to gather from a better characterization
of the noise and clutter in a given image [3].

The Constrained Energy Minimization approach is a method used to tackle this prob-
lem. It tries to utilize the data available in an image to estimate the given noise and clutter
of the background.

As a metric to estimate the probability of target can be a linear operation, the following
equation is a starting point:

r(x) = hTx (2.43)

where r(x) is the detector and hT is the linear operation to be performed to better separate
background and target.

It has proven to be a valuable approach to try to optimize the target detection per-
formance by minimizing the background energy. Given that the background energy E is
defined in the following way:

E =
1

N

N∑
i=1

r2(xi)

=
1

N

N∑
i=1

hTxix
T
i h

= hT
( 1

N

N∑
i=1

xix
T
i

)
h

= hTRh

(2.44)

where R is the sample correlation matrix derived in equation (2.14). Furthermore, that the
perfect signature results in unity i.e. x = s gives hT s = 1. Thus the optimization problem
can be formulated as follows

min
h

hTR−1h s.t.hT s = 1 (2.45)

which leads to the following solution:

h =
R−1s

sTR−1s
(2.46)

and when inserting equation 2.46 into equation 2.43 we get the following detection algo-
rithm:

rcem(x) =
sTR−1x

sTR−1s
(2.47)
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2.3.3 Adaptive Cosine Estimator
The additive model depicted in equation (2.39) is limited due to how the background clutter
b is modeled, and an alternative model, used in the derivation of the ACE detector, is given
in equation (2.48)

H0 : x = βb H1 : x = αs + βb (2.48)

The newly introduced parameter β is an unknown scaling factor of the background
noise and clutter. This model better compensates for subpixels i.e. when the desired target
is only a part of the pixel. The background clutter and noise, before whitening and mean
centering, takes the form of b ∼ N(µ, σ). If one were to mean center and whiten the data,
and in the process also mean center the signature, the b parameter would then be a zero
mean, white random vector process.

Thus, by maximizing the joint probability density function of the data under inspection,
the parameters for the null and one hypothesis in equation 2.48 would then become:

Σ̂0 =
1

N + 1

( 1

β2
0

xxT +NΣ̂
)

(2.49)

Σ̂1 =
1

N + 1

( 1

β2
1

(x− αs)(x− αs)T +NΣ̂
)

(2.50)

β̂2
0 =

N −K + 1

NK

(
xT Σ̂−1x

)
(2.51)

β̂2
1 =

N −K + 1

NK

(
(x− αs)T Σ̂−1(x− αs)

)
(2.52)

The Σ̂ is the same as the sample covariance matrix given in equation (2.13) with N
training spectra. This detector is known as the Adaptive Cosine Estimator or ACE for
short.

rACE(x) =
(sT Σ̂−1x)2

(sT Σ̂−1s)(xT Σ̂−1x)
(2.53)
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2.3.4 Orthogonal Subspace Projection
The Orthogonal Subspace Projection algorithm (OSP), is based on a subspace model for
the background data as opposed to a statistical model The detection problem hypothesis is
derived as follows:

H0 : x = Bβ + n H1 : x = αs + Bβ + n (2.54)

In this model the B represent the background subspace, β is the background basis
coefficient, α is an unknown scalar similar to the one found in equation (2.40), and n is
a noise vector process with zero-mean that is spectrally independent, normally distributed
and has a standard deviation of σn.

If B is computed from the data under inspection, and s is the known signature we are
looking for, the subspace projection PB, which can then be formulated as:

PB = B(BTB)−1BT (2.55)

The orthogonal component of equation (2.55) then becomes

P⊥B = I−PB (2.56)

From this, it can be shown that the scalar α̂ found in equation (2.40) based on the
maximum likelihood estimation takes the following form.

α̂ =
sTP⊥Bx

sTP⊥Bs
(2.57)

From this result, it is trivial to derive the Orthogonal Subspace Projection detection
algorithm as:

rOSP (x) = sTP⊥Bx (2.58)

The N-FINDR Endmember Extraction Algorithm

The OSP detector needs an estimate of the background subspace B in addition to the
known signature s and the pixel under inspection x. In this thesis, the background has
been estimated using an endmember extraction algorithm known as N-FINDR [22]. There
exist many further developments on the original method, but in the following work, the
algorithm as it is described in [22].

The N-FINDR algorithm assumes that if an image consists of kbands spectral bands the
total number of pure pixels, constituents or endmembers in a scene kdim will be lower than
the number of bands i.e. kdim < kbands. To estimate these kdim number of endmembers
the algorithm expands a simplex of the virtual estimated endmember space inside the data,
initially starting with a set of random potential endmembers. For each pixel and each
endmember, the endmember is replaced with the spectrum of the pixel and the volume is
calculated again. If the volume increases, the spectrum of endmember will be replaced by
the new pixel. This procedure is repeated until convergence.

Displayed in more mathematical terms, as depicted in [22], the algorithm assumes that
each pixel consists of a linear combination of endmember spectra
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xij =
∑
k

eikckj + n,
∑
k

ckj = 1 (2.59)

where xij is the i-th band and the j-th pixel, eik is the i-th band of the k-th endmember,
whilst ckj is the mixing proportions of the j-th pixel from the k-th endmember, and lastly
n is, of course, a normally distributed vector process representing noise and to be of a
rather small magnitude compared to the rest of the signal. As the pure pixels i.e. pixels
that mainly consists of one endmember ckj ≈ 1, define the vertices in the simplex created
inside the data. In other words, the algorithms assume that there exists at least one pure
pixel for every endmember to be found in the dataset.

In order for the volume of the simplex to be determined the scene must be reduced to
be one less dimension than that of the number of endmembers to be found. In this thesis,
the principal component analysis is used to reduce the dimension when applying the N-
FINDR algorithm. According to [22] theoretically the optimal algorithms to perform this
task should be maximum noise factoring, but in practice, the two different approaches
appear to work equally well.

The volume is determined in the following way

V (E) =
1

(l − 1)!
abs(|E|) E =

[
1 1 · · · 1
~e1 ~e2 · · · ~el

]
(2.60)

where V is the volume of the simplex formed by the endmember estimates, (l − 1) is the
number of dimensions used by the data, and ~ei is a column vector containing the spectra
of the i-th endmember. Each Pixel in the scene is tried as an endmember and if the volume
increases the endmembers are replaced. In a perfect dataset, the data would be of a convex
form and there would be no local maximum, however as most real-world data cannot be
said to be perfect the algorithms usually runs several times and returns the results that gave
the largest volume.

With C as the endmember composition of pixel P, the resulting unmixing of a pixel is
then performed as follows

C = (ETE)−1ETP (2.61)

In the implementation of the OSP detector N-FINDR, in combination with SAM to
remove the endmember most similar to the signature, was used to estimate the background
endmembers. This is one of several ways to estimate the background endmembers needed
in the OSP algorithm. Other popular methods used to estimate the background are ICA
and Automatic Target Generation Procedure. The results would undoubtedly be different
with a different method for estimating the background. To what extent this choice has
affected the performance of the OSP detector is difficult to say, and it is not emphasized in
the analysis.
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Chapter 3
Data Description & Methods

3.1 Instruments
In this thesis three different scenes with ground truth are discussed. On all three scenes
a different hyperspectral imager has been used. below follows a short description of the
instruments. Their respective documentation is given in appendix B.

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) is a well-known instru-
ment within the remote sensing community, used for several reference scenes, in addition
to the one given here. The sensor captures 224 well calibrated contiguous spectral bands
with wavelengths ranging from 400 to 2500 nm AVIRIS has been flown on four different
aircraft platforms as of 2018. The instrument has been used with success over areas such
as North America, Europe, portions of South America, and Argentina. The main goal of
the AVIRIS project is to identify, measure, and monitor constituents on the Earth’s surface
and its atmosphere. The research conducted with the AVIRIS instrument is mainly con-
cerned with better understanding natural phenomena such as the global environment and
climate change. Both the Salinas and the Indian Pines scene were acquired using a version
of the AVIRIS sensor [23].

Reflective optics system imaging spectrometer (ROSIS-3) is an imaging spectrometer
designed specifically for monitoring of ocean color and other oceanographic phenomena.
With its high spectral resolution of more than 5 nm, the instrument is also useful wrt. too
many new airborne applications Such application as vegetation monitoring, crop health
observation, monitoring of the atmosphere and many more. The instrument was jointly
developed by MBB GKSS and DFVLR, and the instrument concept and the scope of ap-
plications were developed in cooperation with ESA earth observation program and the
NASA. The Pavia university scene, is captured using the ROSIS-03 sensor, which, in the
given scene, had a spectral range from 430 nm to 860 nm, spread across 115 spectral
bands. In the publicly available data set of the Pavia university scene, 12 bands are re-
moved due to excessive noise [24].
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The Ecotone scientific UHI is a hyperspectral imager designed for use underwater.
This is able to give a greater detail in remote sensing of the seabed, previously only
available through airborne platforms. With the Ecotone scientific UHI, the field of hy-
perspectral imaging is becoming more accessible for subsea applications. The instrument
is capable of capturing wavelengths in the entire visible color spectrum, according to the
provider. Data from the UHI can in return be used to detect biological and chemical of
interest that occur on the seafloor. The ECOTONE scientific UHI used here has 86 spectral
bands evenly distributed over the range 400 to 700 nm.

3.2 Datasets

In this thesis, several different types of data sets were chosen to perform the analysis.
The different environmental settings are used to validate the proposed methods, and to
illuminate their shortcomings. In this section, the basis for how these datasets were chosen
will be discussed, and their origin will be made clear.

3.2.1 Public Datasets with Known Ground Truth

In this thesis, the performance of different target detection algorithms, exposed to different
types of dimensionality reduction procedures, were studied. Originally the Indian Pines
scene was used in the analysis. This scene was dropped late in the development of this
thesis due to too strong similarities with the Salinas scene. These scenes were selected due
to the fact that they are often used in publications. More relevant oceanographic scenes
from instruments such as the HICO have unsatisfactory uncertainty wrt. ground truth [25].
However, a more oceanographic relevant scene, with signatures and distributions closer to
what one can expect from imaging the ocean is found in the Hopavågen scene.

In table 3.1 an overview of the different endmembers and scenes are given. The table
shows the total number of pixel labeled as a given endmember and what percentage of the
total scene the endmember makes up.

Endmember scene pixels percentage
Lettuce Romaine 4 weeks Salinas 1068 0.96
Lettuce Romaine 5 weeks Salinas 1927 1.73
Lettuce Romaine 7 weeks Salinas 1070 0.69
Asphalt Pavia 6631 3.19
Painted Metal Sheets Pavia 3064 1.47
Trees Pavia 1345 0.64
Carolline algae Hopavågen 9130 20.4
Fucus Erratus Hopavågen 10276 23.0
Green algae Hopavågen 3021 6.78

Table 3.1: Overview of different endmembers in different scenes.
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Salinas
The scene depicted in figure 3.1 is of Salinas Valley in California, USA. The cube has
a width of 512 pixels and a height of 217 pixels and as aforementioned 224 bands. In
several publications [24] the spectral bands associated with water absorption is removed,
but in the simulations conducted in this thesis, they are kept. As can be seen from figure
3.1, the scene contains 16 classes, which mainly are different crops The scene has large
homogeneous regions, which is an important feature of the scene. The scene is also known
to have a very high spatial resolution. For comparison, the spatial resolution of the Salinas
scene was 3.7 meters per pixel, whereas the Indian pines scene has a spatial resolution of
20 meters per pixel.

In figure 3.2 you can see an excerpt of some of the pixels in the scene, showing the
trending of the scene. Figure 3.3, 3.4 and 3.5 are the endmember used in the analysis from
this scene. In the figures all the pixels labeled as a given endmember is given in red, and
the mean is given in black.

Figure 3.1: Salinas test site in California, USA.
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Figure 3.2: Trending of the Salinas scene. The image shows the sensor reading for the first 217
pixels diagonally

Figure 3.3: Lettuce romaine 4th week from the Salinas scene.
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Figure 3.4: Lettuce romaine 5th week from the Salinas scene.

Figure 3.5: Lettuce romaine 7th week from the Salinas scene.
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Pavia University
The Pavia university scene is taken over the campus. This dataset differs from the other
ground truth sets in several ways. It does not contain an abundance of agricultural or
natural phenomena, but rather a lot of man-made structures as can be deduced from figure
3.6. With a spatial resolution of 1.3 meters per pixel, the scene has a high spatial resolution
as well. The scene used in the simulations in this thesis is 610 by 340 pixels spatially and
has as mentioned 103 bands. The bands containing noise are kept out as the publicly
available data set does not contain them, making it impossible to include them [24].

In figure 3.7 you can see an excerpt of some of the pixels in the scene, showing the
trending of the scene. Figure 3.8, 3.9 and 3.10 are the endmember used in the analysis
from this scene. In the figures all the pixels labeled as a given endmember is given in red,
and the mean is given in black.

Figure 3.6: Pavia university site in northern Italy captured by the ROSIS-3 sensor.
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Figure 3.7: Trending of the Pavia university scene.

Figure 3.8: Asphalt from the Pavia scene.
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Figure 3.9: Painted metal sheets from the Pavia scene.

Figure 3.10: Trees from the Pavia scene.
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3.2.2 Hopavågen
On the 22nd of March 2018, a joint test was performed by Trondheim Biological Station
and the Department of Engineering Cybernetics (both affiliated with NTNU), using one
of the prototypes for the Hyperspectral SmallSat mission on a UAV, and a commercial
hyperspectral camera for underwater imaging produced by Ecotone (Ecotone Scientific
UHI) [26]. There were several objectives and motivations for performing this test. With
respect to this thesis, the most useful product of the test was the image depicted in figure
3.11, captured by the UHI instrument. The scene is 158 by 282 pixels spatially. This is a
hyperspectral image with relevant oceanographic signatures with relatively low uncertain-
ties. The image was classified and made available on the 9th of may 2018. The scene was
classified by Ph.D. candidate Aksel Alstad Mogstad and is not publicly available.

In figure 3.12 you can see an excerpt of some of the pixels in the scene, showing the
trending of the scene. Figure 3.13, 3.14 and 3.15 are the endmember used in the analysis
from this scene. In the figures all the pixels labeled as a given endmember is given in red,
and the mean is given in black.

Figure 3.11: Hopavågen scene in Trondheim captured by the ECOTONE Scientific UHI, described
in appendix B.
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Figure 3.12: Trending of the Hopavågen scene.

Figure 3.13: Green algae from the Hopavågen scene
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Figure 3.14: Coralline algae from the Hopavågen scene

Figure 3.15: Fucus serratus from the Hopavågen scene
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3.2.3 Synthetically Generated Datasets
A synthetic data set was generated using software provided by Grupo de Inteligencia Com-
putacional [27] and utilizing the spectral library of USGS [28]. The synthetic data set was
used to solely characterize the effects of dimensionality reduction, and not used to check
the performance of target detection.

As the data from both HICO and all other hyperspectral sensors are contaminated with
the noise it is difficult to know whether or not the dimensionality reduction is removing
signal or removing noise. That is when comparing the reconstructed image with the orig-
inal noise contaminated image. Thus the synthetic data set was generated, to have better
control of the noise propagation in a given scene.

From the USGS spectra gathered, there were originally 2151 spectral measurements
for each endmember ranging from 350 nm to 2.5 µm, having a spectral resolution of 1
nm. Only the wavelengths from 400 nm to 900 nmwas used, with a spectral resolution of
5 nm. This was done in an effort to closer resemble the hyperspectral imager envisioned
for the NTNU SmallSat Project [5]. A false-color image, i.e. an image showing only the
bands associated with the colors red, green and blue, of one of the three scenes generated
is given in figure 3.16. For the synthetic dataset wavelengths at 640, 550, 460 nm was
used to represent red, green and blue, respectively.

As the motivation for creating these synthetic images was to better control the noise in
a given image and to have an original noise-free image to compare towards. The synthetic
image was introduced to four different types of noise. The types were Gaussian, Poisson,
Salt & pepper and ”speck” noise. All four noise models can be found in the MATLAB
implementation of the noise function imnoise. How they affect the image is listed below
and can be seen in figure 3.16 and 3.17.

What kind of endmembers that were used for the image and how the selected endmem-
bers are distributed can be seen in figure 3.18. The brighter yellow color indicates higher
concentrations of the constituent in question. On the lower part of this figure you see the
different endmember signatures and their name in the USGS library.

• Gaussian noise added a zero-mean noise with a variance of 1e-6

• Poisson noise was added in a way best described by the MATLAB implementation
[29] for double precision numbers

• Salt & pepper noise was added in a way so that it would affect 1 % of the data in the
image.

• Speck noise added multiplicative noise with the model J = I + nI , where n is
uniformly distributed random noise with zero mean and variance of 5e−4
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Figure
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3.2.4 HICO Datasets
The original intention of this thesis was to explore the effects and accuracy of different
combinations of dimensionality reduction and target detection methods with respect to
oceanographic phenomena for hyperspectral images. Thus, data acquired from the HICO
mission was a natural choice [30]. Images from the HICO mission was used as they were
the most relevant when considering the characteristics of the spectral data. The HICO
was situated at the international space station and had several problems that were never
solved during its lifetime. The mission was active for 5 years from September 2009 and
captured several high-quality hyperspectral images of coastal regions all over the world.
The HICO scenes are unable to provide a ground truth with satisfactory levels of certainty,
and the images are contaminated by noise. The noise makes it difficult to see whether or
not the dimensionality reduction removes signal or noise, or both. Still, the HICO scenes
represent the closest publicly available set of data compared to what is to be expected from
the NTNU SmallSat Program [5].

The scenes used in this thesis are depicted in figure 3.19. The dimensionality reduction
described in this thesis was not used solely for target detection. The onboard processing
team surveying and researching methods to use in the NTNU SmallSat Program also uti-
lized the reduced space to see the effects of different compression algorithms, and how
much there is to gain on performing dimensionality reduction wrt. compression ratio. The
scenes were this selected based on the fact that they are often referenced in different pa-
pers, and again that they closely resemble what to be expected from the Hyperspectral
NTNU SmallSat Satellite [5].

For a more thorough discussion of the HICO instrument and operations see [30, 4].
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3.3 MATLAB Toolboxes and Scripts
In this section, the choice of programming language will be defended and the origin of
the previously made code, both in form of toolboxes and stand-alone scripts will be made
more clear.

As the objective of this thesis was to survey the effects of different target detection
algorithms, and how they were affected by different dimensionality reduction methods,
a fast implementation and large standard library were important factors in the decision
of programming language. Furthermore, MATLAB is excellent for matrix operations and
linear algebra e.g. eigenvalues, -decomposition and -vectors. All important mathematical
concepts within the field of hyperspectral image analysis.

Other popular alternatives within hyperspectral image analysis are Python and IDL.
Python has the advantage of having one of the largest communities of any programming
language, several modules and packages both in the sense of general numerical analysis,
but also modules geared specifically towards hyperspectral image analysis. To navigate
between all these modules and their different versions can be a complicated task, as well as
how these packages depend on each other. IDL is another popular choice for hyperspectral
data analysis. Some of its advantages lie in the software package ENVI, and its execution
time is faster, when compared to the aforementioned languages. Some of the difficulties
regarding IDL is its simplicity i.e. it is difficult to create large programs There have also
been reports of IDL exhibiting many irregularities requiring specific workarounds.

It should also be noted that the author of this thesis had a higher level of familiarity
with the MATLAB programming language compared to other alternatives. Thus the natu-
ral choice was initially MATLAB, and after reviewing the alternatives that notion did not
change. Excerpts of some of some selected parts of the code used in this thesis are given
in the appendix A

3.3.1 Dimensionality Reduction Implementation
The implementations of PCA, MNF, and ICA have a different origin. The implementation
for PCA given in the toolbox from section 3.3.2 gave unexpected results, but a pull re-
quest was submitted and accepted to help alleviate the problem. Still, for the simulations
utilizing PCA, the built-in MATLAB version of the algorithm was used as is. The MNF
implementation is made by the author of this thesis and closely following the descriptions
given in A. Green [17] by the use of singular value decomposition as shown in section
2.2.4. The SVD is also part of the built-in MATLAB functions. There was an attempt at
using the MNF as it was implemented in the toolbox mentioned in section 3.3.2, and also
to directly use the implementations given in [19], but none of these gave expected results.
Lastly, the implementation of JADE ICA was provided by professor Frank Westad, and
how the code was used was deiced through discussion with him.
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3.3.2 HyperSpectral Toolbox by Isaac Gerg
A toolbox publicly available through GITHUB�, under GNU General Public License ver-
sion 2.0 (GPLv2) have been used in this thesis [31]. The toolbox was originally made by
Dr. Isaac Gerg and developed further by David Kun under the guidance of Dr. Isaac Gerg.

The open source MATLAB Hyperspectral Toolbox is a MATLAB toolbox con-
taining various hyperspectral exploitation algorithms. The toolbox is meant
to be a concise repository of current state-of-the-art exploitation algorithms
for learning and research purposes. The toolbox includes functions for Target
detection, Endmember Extraction, Material abundance map (MAM) gener-
ation, Spectral Comparison, Anomaly Detectors, Spectral unmixing, Auto-
mated processing, Change detection, Visualization and Reading/writing files.
-Dr. Isaac Gerg, December 2016

From this toolbox implementation for target detection, 3D-2D conversion of cubes and
data sets, as well as the implementation of the N-FINDR algorithm has been used. The dif-
ferent implementations given in the toolbox have been cross-checked with the descriptions
given in Hyperspectral Remote Sensing by M.T. Eismann [6]. Some of the implementa-
tions in the toolbox gave unexpected results or they were implemented in an unexpected
way, and these implementations were of course not used.

3.3.3 Other Notes on Programming
The data sets with ground truth were either given directly as .mat files, or manually pro-
cessed to be of the desired format, and read directly by MATLAB. The data sets from
HICO were given as BSQ files. To read BSQ files, the built-in MATLAB function multi-
bandread was used with the parameters given by the data provider. All images given in
this thesis were generated using the same MATLAB function create rgb from bil, given in
appendix A. For different images different levels of saturation and contrast were chosen.
The wavelengths selected to represent red, green and blue were approximately 640, 550
and 460 nm respectively, for all scenes.
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3.4 Target Detection Performance Metrics
In this thesis, two approaches measuring the performance of a binary classification and
one to measure the robustness of the target detection algorithms were chosen. A target
detection algorithm can be viewed as a binary classification in the sense that you have
the two classes target and background. The first presented here takes inspiration from
machine learning i.e. it weights how well the detection algorithm would perform given
the best possible threshold for a given image and target. In other words, the machine
learning metric does not take into account how well background and target are separated,
but rather how well a given algorithm could perform under ideal threshold values. To give
an indication of how well the algorithm is able to separate the target and background a
measure of visibility is chosen. This measure takes into account the response value or
probability of target and is not dependent on a threshold.

In all three cases with ground truth, the given ground truth being looked for was set as
a true positive, and all other pixels were viewed as true negative. Thus not accounting for
pixels that were not mutually exclusive, that is consisting of more than a single endmem-
ber. This is by the nature of the datasets and not by choice. Hopefully, the people labeling
the original images were thorough in their work and able to accurately determine which
endmember dominated each and every pixel.

3.4.1 Machine Learning Metrics
The performance of the target detection algorithms wrt. machine learning metrics were
measured in two ways. The first metric is the F1-score [32], a metric that takes into
account the precision and recall to measure the performance, The second was the Matthews
correlation coefficient (MCC) [33, 32], metric which uses the entire confusion matrix. The
threshold for each algorithm was chosen based on what gave the highest score for these
two metrics by iterating over potential thresholds from 0 to 1.0 with a step size of 0.0001.
The subsequent plots and analysis are based on the assumption that an ideal threshold was
chosen. An ideal threshold is the one that gave the highest possible score wrt. the chosen
machine learning metric.

A confusion matrix is a systematic representation of different ways to view binary
classification and its potential outcomes, given in figure 3.20. From this the two machine
learning metrics are derived, and terms such as precision and recall are defined.
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The F1-score [34, 32], is a performance metric designed for binary classification. With
tp as true positives, fp as false positives and fn as false negatives the F1-score is given
as:

F1 =
precision× recall
precision+ recall

=
2tp

2tp+ fp+ fn
(3.1)

As mentioned the F1-score is combination of precision and recall, defined in figure
3.20. Precision is the percentage of true positives divided by the total predicted positive
conditions. By itself, precision is limited in its ability to accurately measure the perfor-
mance of a binary classification. Given that a perfect precision score could be achieved
if only one sample was labeled correctly and all other positive conditions were labeled as
false negatives This is due to the fact that precision does not account for false negatives or
true negatives outcomes. Recall, or true positives divided by the total positive conditions,
falls short in the case where your algorithm labels all pixels as positive and achieves a
perfect score, as the measure does not account for true negatives and false positives. As
the F1-score is a combination of these, one would get a measure that focuses on having a
high number of correct guesses with as few false alarms or false positives as possible. The
measure has a minimum at 0 and a maximum at 1, where 1 is a perfect score.

The Matthews correlation coefficient was chosen as metric due to the claim that it
harbors certain advantages over alternative metrics for binary classification [33, 32]. As
F1-score does not account for the true negatives, whilst the MCC uses the entire confusion
matrix to measure the performance of a given classification. Another significant difference
for the MCC is that it ranges from -1 to 1 rather than 0 to 1. For the MCC a score close to
0 would indicate that the detection algorithm is random, and a score closer to 1 would be a
better classifier. A score closer to -1 indicates that the classifier always gives the opposite
class.

With tp as true positives, fp as false positives, tn as true negatives and fn as false
negatives the MCC-score is given as:

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(3.2)
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3.4.2 Visibility Metric
It is important for a target detection algorithm to be able to separate between background
and target. A higher separability between target and background makes it easier to chose a
detection threshold. This in return will suppress more undesirable false alarms. In this the-
sis the evaluation metric visibility, taken form [10], is used as a measure of this separability
Visibility is given as follows:

vis =
|T̄t − T̄b|

max(T )−min(T )
(3.3)

where the T̄t is the average response value or probability of target for target pixels, and the
T̄b is the average response value or probability of target for non-target pixels. furthermore,
max(T ) and min(T ), are the maximum and minimum probability of target in the scene
for a given algorithm. The maximum score of visibility is 1, and the lowest score is 0.

Thus, a higher visibility score indicates a higher separability between target and back-
ground, a higher level of robustness.
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3.5 Dimensionality Reduction and Target Detection

The thesis proposes a pipeline combining dimensionality reduction and target detection,
and a simple schematic drawing is given in figure 3.21. This section describes how di-
mensionality reduction was performed to prepare for the execution of the different target
detection algorithms. Only the OSP algorithm needs to estimate the background. For the
other target detection algorithms the new space created by the dimensionality reduction is
used directly in the computation. This is done with the idea of saving both time and power
for the satellite on matrix operations.

Figure 3.21: The pipeline combining dimensionality reduction and target detection.

3.5.1 Preprocessing and Preparing the Datasets

Three data sets Salinas, Pavia, and Hopavågen, were given in the format of a data cube and
a ground truth with known labels. The endmember signatures, the abundance of samples,
and other auxiliary data are generated from these cubes and ground truth maps. As the
cubes were kept in their most noisy form, not excluding any bands, the images are closest
to what an unsupervised system would experience, and most importantly the information
amid the noise is not lost. The signatures were calculated as the mean of the signatures
given a label. If a signature was given a ground truth label of x, all the pixels that were
labeled x were averaged to produce the signature. In other words, in all the simulations
performed in this thesis, the in-scene measurements were used, without any form of cor-
rection or adjustments prior to performing target detection. All the endmembers used in
the simulations are given in section 3.2.1 and the black average line is then the signature
being looked for in the simulations.
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3.5.2 Cubes and signatures in new space
Listings 3.1, 3.2 and 3.3 show how the three different target detection algorithms were
performed, and how the signatures were projected into the new space. In all of these
listings M is the image cube and end sign is the endmember signature in the original
space. For the PCA listing 3.1, coeff is the transformation matrix. For the MNF listing
3.2, Mg mnf is the transformed cube sorted bye noise, and Ag mnf is the inverse of the
transformationn matrix. For the ICA listing 3.2, IC is the independent components and
Tica is the inverse transformation matrix.

Furthermore, the code depicted in listings A.10 and A.12, show the full context of how
the results were generated and what was stored from each simulation, withM as the scene,
end sign as the signature and q as the number of components.

Listing 3.1: PCA transformation

1 % do pca
2 [ h ,w, d ] = s i z e (M) ;
3 M 2d pca = hyperConvert2d (M) ;
4 M 2d pca = M 2d pca ' ;
5 [ c o e f f , ˜ , ˜ , ˜ , expla ined , ˜ ] = pca ( M 2d pca ) ;
6
7 V = c o e f f ( : , 1 : q ) ;
8 M pct = transpose ( M 2d pca*V) ;
9 M new pca = hyperConvert3d ( M pct , h ,w, q ) ;

10
11 end s ign new = end s ign *V;

Listing 3.2: MNF transformation

1
2 % do mnf
3 [ h ,w, d ] = s i z e (M) ;
4
5 [ Mg mnf , Ag mnf ] = GreenMNF(M) ;
6 Ag mnf inv = inv ( Ag mnf ) ;
7
8 M new mnf = Mg mnf ( : , : , 1 : q ) ;
9 T = Ag mnf inv ( : , 1 : q ) ;

10
11 end s ign new = end s ign * t ranspose ( pinv (T) ) ;
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Listing 3.3: ICA transformation

1 % do i c a
2 [ h ,w, d ] = s i z e (M) ;
3
4 M 2d pca = hyperConvert2d (M) ;
5 M 2d pca = M 2d pca ' ;
6 [ c o e f f , ˜ , ˜ , ˜ , expla ined , ˜ ] = pca ( M 2d pca ) ;
7
8 P = c o e f f ( : , 1 : q ) ;
9 [ IC , ˜ , ˜ ] = j a d e i c a (P' , q ) ;

10 Tica = M 2d pca*IC '/( IC*IC ') ;
11 M new ica = hyperConvert3d ( Tica ' ,h ,w, q ) ;
12 end s ign new = end s ign *pinv ( IC ) ;

Listings 3.4 and 3.5 show computation of how the two different binary classification met-
rics, and computation of visibility, respectively. Utilizing the functional properties of
MATLAB, the function named metric(tp,tn,fp,fn) in listing 3.4 was overloaded with the
desired metric (MCC or the F1-score). However, the chosen binary classification metric
could easily be overloaded with a different metric deemed more relevant for a given appli-
cation. Furthermore, as may be evident from looking at listings A.12, the target detection
algorithms in question can easily be exchanged as well.

Listing 3.4: Computation of machine learning metric.

1 % Measure s co r e
2 xx = s i z e ( gt , 1 ) ; yy = s i z e ( gt , 2 ) ;
3
4 tp = 0 ; tn = 0 ;
5 fp = 0 ; fn = 0 ;
6
7 P FA = 0 . 0 0 0 1 : 0 . 0 0 0 1 : 1 . 0 0 0 0 ;
8 met = ze ro s ( l ength (P FA) ,3) ;
9

10 f o r i = 1 : l ength (P FA)
11 f o r j = 1 : xx
12 f o r k = 1 : yy
13 i f and ( gt ( j , k ) == id , b1 ( j , k ) >=

P FA( i ) )
14 tp = tp + 1 ;
15 e l s e i f and ( gt ( j , k ) == id , b1 ( j , k ) <

P FA( i ) )
16 fn = fn + 1 ;
17 e l s e i f b1 ( j , k ) >= P FA( i )
18 fp = fp + 1 ;
19 e l s e
20 tn = tn + 1 ;
21 end
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22 end
23 end
24
25 met ( i , : ) = [ metr ic ( tp , tn , fp , fn ) ; tp ; fp ; ] ;
26 tp = 0 ; tn = 0 ;
27 fp = 0 ; fn = 0 ;
28 end

Listing 3.5: Computation of visibility metric.

1 % Calcu la te V i s i b i l i t y
2 T t sum = 0 ; T t count = 0 ;
3 T b sum = 0 ; T b count = 0 ;
4
5 f o r j = 1 : xx
6 f o r k = 1 : yy
7 i f gt ( j , k ) == id
8 T t sum = T t sum + b1 ( j , k ) ;
9 T t count = T t count +1;

10 e l s e
11 T b sum = T b sum + b1 ( j , k ) ;
12 T b count = T b count +1;
13
14 end
15 end
16 end
17 T t avg = T t sum / T t count ;
18 T b avg = T b sum / T b count ;
19
20 T max = max( b1 ( : ) ) ; T min = min ( b1 ( : ) ) ;
21
22 v i s = norm( T t avg − T b avg ) /(T max − T min ) ;
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3.6 Limitation of Methods
Below is a list of some potential concerns regarding how this thesis was conducted, and
some further shortcomings of the methods used and how they were implemented.

• The scenes given does not necessarily consist of mutually exclusive pixels, and a
compensation for sub pixel signatures or mixed pixels is not incorporated in the
analysis.

• The target detection analysis covers 7 different representations for 3 different scenes
with 3 specific endmembers using 4 different target detection algorithms, resulting
in 252 different cases to be analyzed. As this is an exhaustive number of cases
the analysis was performed on the average of results for specific scenes, with some
exceptions. By performing the analysis in this way the results discussed gives more
of a qualitative conclusion, even though many of the specific cases point in the same
direction.

• The MNF algorithm, as it is implemented for this thesis, uses the entire image to
estimate the noise model and not specific hand-selected homogeneous areas. This is
not a good way to estimate the noise model when the scene is non-homogeneous and
was intended as a demonstration of the effect of sub-par noise model estimation. As
a consequence, it also undermines the performance given by the MNF algorithm in
the less homogeneous scenes. Unfortunately, a good noise model for the UHI used
in the Hopavågen was unavailable at the time of writing, and the MNF based DR
suffers from this in this particular scene non-intentionally.

• The implementations given in the toolbox were, to the extent permitted, cross-
referenced with papers and textbooks covering hyperspectral algorithms[6, 11] , but
that is not the same as to say that the implementations are without error.

• The JADE ICA methods is one of many methods for performing ICA, it was chosen
as it is known to converge well, but this is not a cost-effective way to perform ICA,
and the implementation in this thesis does not use and automatic cross-validation or
similar approaches [21] to extract the most relevant components. This may not give
the optimal result for the JADE ICA DR.

• In this thesis, considerations regarding atmospheric effects have been neglected. For
the Hopavågen scene it is illogical to perform atmospheric correction, but it is rele-
vant for both the Salinas and Pavia scene. The idea behind neglecting atmospheric
effects is that target detection in hyperspectral imaging is not directly dependent on
the signatures obtained after atmospheric correction i.e. the spectral variance ob-
served should be of similar variance before and after the atmospheric correction,
and the signature searched for should follow a similar transformation. This assump-
tion is potentially naive, as the outcome of atmospheric correction is very dependent
on how the correction is performed [35].
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• A lot of figures and graphs generated for the analysis was kept out of this thesis,
as the number of pages versus information per page was unjustifiable. All the in-
formation used to make the figures and graphs can be found in appendix D, in a
table that is not easily interpretable. The figures and graphs have been made avail-
able at http://folk.ntnu.no/sivertba/master_thesis/, along with
some other files deemed relevant.

• When measuring the target detection performance wrt. visibility of a proposed
pipeline it was assumed that the average probability of target for target pixels would
be higher than the average probability of target for non-target pixels. That is T̄t >
T̄b, given equation (3.3), for all cases.

• To what extent the implementation of the different DR methods in and of itself
affects these results is hard to say. The MNF method uses singular value decompo-
sition rather than the inverse matrix computation. How the inverse of a matrix has
been performed in MATLAB has not been considered widely in this thesis, but that
is not the same as to say that the beneficial results obtained by the MNF transform
are not caused by the implementation. That is, what kind of numerical advantages
taking the inverse based on singular value decomposition rather than the inverse us-
ing the MATLAB implementation gives, has not be accounted for. In principle, the
difference should be rather small.
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Chapter 4
Analysis

In this chapter the results and findings will be discussed. First the compression through di-
mensionality reduction will be analyzed for the HICO data and the synthetic data, without
considering target detection. Secondly, the effect of combining dimensionality reduction
and target detection will be analyzed for the scenes given in section 3.2.1.

4.1 Compression results
The main objective of the first satellite in the NTNU SmallSat program is to capture
oceanographic scenes with a hyperspectral imager [5]. One of the major bottlenecks for a
small satellite transferring data to earth is the data rate. Thus a smart compression scheme,
one that keeps the most valuable information for a given application, is necessary to be
able to produce the desired amount of data.

Several parallel efforts were made, using methods such as JPEG2000 and CCSDS-
123, to survey how to best compress the data. The different DR representations were used
as a prepossessing step before performing the lossless compression. Through combining
dimensionality reduction and loss-less compression high compression ratios was achieved.
This is not discussed further in this thesis,

The algorithms used in this section and how they operate is covered in chapter 2, and
how they were implemented can be seen in appendix A.
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4.1.1 Compression on HICO Data
For the compression on HICO:

• The effects of PCA is visualized in figure 4.1 and 4.2, and figure 2.5. The figures 4.1
and 4.2 show a false color restoration of the image and arbitrarily chosen spectral
responses for four pixels using the reduced space and a transformation matrix.

• The effects of MNF is visualized in figure 4.3 and 4.4, and figure 2.6. The figures
4.3 and 4.4 show a false color restoration of the image and arbitrarily chosen spectral
responses for four pixels using the reduced space and a transformation matrix.

• The effects of ICA is visualized in figure 4.5 and 4.6, and figure 2.7. The figures 4.5
and 4.6 show a false color restoration of the image and arbitrarily chosen spectral
responses for four pixels using the reduced space and a transformation matrix.

Furthermore, the results of the analyzed scenes are given in appendix C.1.

The metrics measured when analyzing the HICO scenes were Peak Signal to Noise
Ratio (PSNR) and Compression Ratio (CR). The PSNR was computed as the peak value
of the original cube divided by the mean square error difference between the original cube
and the restored cube. The Compression ratio was computed as the number of spectral
bands originally in the image divided by the number of components. Not surprisingly,
all the DR methods with the same number of components give identical compression ra-
tio in the preprocessing step that is DR. However, for all the HICO scenes analyzed the
PCA transform gives the highest score wrt. PSNR. The ICA transform follows the PCA
transform closely but does not achieve the same performance wrt. PSNR. Lastly, the MNF
transform is decidedly worse than the other methods for all cases.

For the HICO scenes, the PCA transform seems to be superior when compared to both
MNF and ICA. From figure 2.5, it is apparent that the PCA transform will at an early
stage start to model structures that originates from sensor noise, but this is beneficial in
the sense that the raw HICO image is compared to the restored one directly. Thus, if one
were to recreate the raw image, the PCA transform will not discard information based on
a noise model such as the MNF transform, and the resulting restored image will then be
more similar to the raw image to a larger extent than with MNF and ICA.

From figure 4.1 and 4.2, the ability of the PCA transform to recreate the original signal
with relatively few component is compared with relatively many components. From these
two figures, it is clear that even with few components a lot of the data from the raw image
is still kept. With 50 components the image is more or less completely restored, with only
a few pixels where the PCA model falls short. An optimal number of components wrt.
compression and data integrity would be further application and implementation specific.
That is, how many components to use form the PCA model should be decided based on
whether or not masking of undesired pixels is performed, and if the PCA model should be
static or not.

The results from performing PCA on the HICO data suggests that, if one does not wish
to noise filter the data as part of the compression, the PCA transform have some advantages
when compared to MNF and ICA.
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The low performance displayed by the MNF transform may be due to how the noise
model was estimated. The HICO images have some pixels that are saturated and dead i.e.
the image sensor fails to sense the light levels correctly for some pixels. In none of the
analyzed HICO scenes were dead or saturated pixels removed, thus including them both in
the covariance matrix computation and in the noise model estimation. From this, it is safe
to say that the computation of the covariance wrt. to all DR methods, and the noise model
estimation in MNF, are both sub-optimal. A masking or automatic detection of undesired
pixels, e.g. dead and saturated pixels or non-oceanographic pixels, would be beneficial as
it would help the DR methods to generate better models. With this filtration of pixels, a
more consistent data set to compute the different models would emerge. From figure 2.6
it can be observed that the lower bands contain a lot less information regarding the spatial
structures found in the original image, when compared to the top bands in PCA and ICA,
given in figure 2.5 and 2.7.

From figure 4.3 and 4.4 we can see that the MNF transform struggles with recreating
the image with few bands, and with more components, the MNF transform is still unable
to recreate the lower and upper bands of the HICO sensor. This is expected, as these bands
are known to be the noisiest bands in the HICO instrument [30], suggesting that the MNF
transform is filtering the noise in these bands.

Thus, by trying to filter away the noise, the MNF transform is filtering away some of
the signal contained in the raw HICO image, which the restoration is compared towards.
Such that, by removing noise from the image, the MNF transform is effectively removing
signal that the PSNR metric, given how it is performed for the HICO images, sees as a
signal. This may be some of the reason for the abysmal performance observed for the
MNF transform on HICO data.

By looking at figure 2.7 it is clear that the ICA transform operates differently than the
PCA or MNF transform, given how they sort components. This is as to be expected as the
ICA transform is not implemented with methods to validate or sort the given independent
components that it finds. As the PCA and MNF find the components that give an orthog-
onal data set, the ICA transform finds independent components that in the best possible
way span the data set. This is visualized in the first few components given in figure 2.7,
by the fact that they are very different than the first few components found in PCA and
MNF, given in figure 2.5 and 2.6. The ICA transform is able to find certain patterns wrt.
how noise propagation in the cross-track direction (given the third component in figure
2.7), and the natural choice would be to remove this component completely. This would,
however, result in a lesser score wrt. PSNR for the HICO scenes given how it is measured.
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Figure
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4.1.2 Compression on Synthetic Images

The synthetic data sets were created to better control how the noise propagated in the
image. How the images were created and what kind of noise they were exposed to is
described in section 3.2.3. The results from the different DR representation is given in
appendix C.

The first thing to observe from the results given in appendix C regarding the synthetic
data sets, is that the images are homogeneous in how they are spatially distributed. Thus,
assumptions made in the implementation of the MNF transform are well met, even with
an in-scene based estimation of the noise model. This is the case across all the different
noise models and component representations for all three files used in the simulations.

In the synthetic scene PSNR and SNR were measures computed as the peak and mean
value of the original cube divided by the mean square error difference between the original
cube and the restored cube, respectively. The increased performance wrt. to PSNR and
SNR demonstrated for the original image, given the MNF representation, is noticeably
higher than for PCA and ICA. The images were synthesized using the software discussed
in section 3.2.3, which simply multiplies the abundance with the endmember signature for
a given pixel. This result suggests once again that the given spatial distribution of data is
particularly well suited for the MNF algorithm.

The differences between the three methods are less acute when Gaussian noise is added.
For the PCA transform, adding more components seem to enable a better recreation of the
original image i.e. in the range researched the model has yet to start modeling noise to a
large extent, and the same can be observed for the ICA transform.

The MNF transform on the other hand does not draw a large advantage of increasing
the number of components, and for some of the files, the SNR becomes lower with an
increased number of components. This suggests that the transformation is modeling noise
at an earlier component than that of the PCA and ICA.

Furthermore, the SNR of the restored image after being exposed to Gaussian noise is
far lower for the MNF representation, and at the same time the PCA and ICA representa-
tion barley experience an effect of the distortion wrt. restoration of the original data cube.
Suggesting that the PCA an ICA transform is best suited for images where the Gaussian
noise distribution dominates.

This corresponds well with the results found in [7], where they concluded that the PCA
transform was beneficial compared to the MNF transform when the added noise was of a
Gaussian character in AVIRIS images.

When the noise added is Poisson noise, the MNF transform performs noticeably better
than both the PCA and ICA transform. Across all representations of the data, an increase
in the number of components increases the ability to reproduce the original image. The
change in SNR is lower with more components for the PCA and ICA than for the MNF.
This suggests that the PCA and ICA methods are not able to filter away this specific type
of noise, whilst the MNF method tries to make a model of the noise based on the sampled
data with better success.
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As the scene is well suited for the type of noise model estimation performed by the
MNF implementation, the noise model created produces better results than when simply
assuming Gaussian distribution.

From this, it seems like the MNF method, as a preprocessing step, is able to better
suppress non-Gaussian noise than PCA and ICA, a welcome result as this also corresponds
well with the conclusion and result found in [7].

The salt pepper noise is easy to detect as an error in sensor reading, and not something
that one would want to keep for analysis. It still may occur in a physical system, thus how
this will affect the restoration of the original image, i.e. the image that should have been
captured, still gives useful insight.

As opposed to the results regarding Gaussian and Poisson noise, the added noise, in
this case, does not obtain a better SNR with an increase in the number of components.
In addition to not improving the SNR with more components, the SNR is initially rather
low, when compared to the effects from other models. Thus indicating that none of the
aforementioned methods are able to filter away the noise. The model for the scene created
by the methods are dominated by the effects of the noise, and the modeling is then unable
to recreate an image close to the original image.

The speck noise model produced by the imnoise function in MATLAB closely resembles
the noise one can find in real applications. For the PCA and ICA implementation, the
addition of more components does not seem to affect the restoration of the original image
in any way. Thus, suggesting that the model created by PCA and ICA model the signal
and noise from one of the most significant components.

The MNF transform on the other hand start off with a much higher SNR than both PCA
and ICA but also start modeling noise when adding more components. This indicates that
the MNF transform once again is better at estimating the noise model, but at some point,
the components will start to model noise rather than signal.

From this it is clear that the different transformations will be able to suppress cer-
tain types of noise, some better than others. As these methods are often used as a pre-
processing step on raw data, it is expected of them to be able to extract what is relevant
wrt. data exploration. The MNF transform seems to be superior in most cases, and this
may be due to the assumptions made in the implementation fits the scenes well. Thus
indicating that with an optimal noise model the MNF transform is able to filter away un-
desirable noise, and at the same time keep the desired signal. How the different methods
have been implemented and if this has skewed the results in a particular direction should
be investigated further.
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4.2 Target Detection Results
In this section, the results generated by the proposed pipeline in section 3.5, depicted in
figure 3.21, will be discussed. The different dimensionality reduction methods will be
compared towards each other, in combination with different target detection algorithms.
The analysis will only be performed on the scenes with ground truth described in sec-
tion 3.2.1. The simulations are conducted on the endmembers given in section 3.2.1. A
more detailed table of the individual results for each scene, endmember, algorithm and
dimensionality reduction is given in appendix D.

As can be seen from the column |F1 −MCC| in appendix D, the F1-score and the
MCC-score rarely differ substantially, or they follow one-another as the DR representa-
tions progress. This is a welcome result as it suggests that the algorithms have consistent
precision and recall, whilst still maintaining a stable rate of true negatives. The analysis is
discussed here only for the MCC-score. This was done due to the small difference between
the F1-score and the MCC-score, and how the results closely followed each other across
all DR representations and target detection algorithms.

4.2.1 Target Detection on Salinas
The Salinas scene is well characterized and has a lot of homogeneous areas, and this is
among the more important features that make it different from the two other scenes pre-
sented in this section. This scene contains 16 different signatures and large unclassified
regions (see figure 3.1). Because of this the number of components to represent all the
relevant information in the image should at the very least be higher than 17. The endmem-
bers looked at are of very similar spectral characteristics, being three similar crops seeded
in different weeks. This is intended to represent the case of a homogeneous scene, where
the target signature shares some of the characteristics of the background or surrounding
regions.

In figure 4.7 it’s clear that the three detectors ACE, CEM, and SAM are able to achieve
a relatively high MCC-score, across all DR representations. The DR representations do not
alter the performance wrt. MCC-score substantially, but the MNF representations seems
to have the least negative impact compared to the full space representation. On the other
hand CEM, OSP and SAM all have similar, and relatively low levels of visibility, whilst
the ACE detector is able to achieve a much higher visibility for all DR representations,
strongly suggesting that it is a more robust alternative given the characteristics of the scene.

The DR representations do not decrease the performance substantially for all detectors.
In the Salinas scene, the original image has a spectral space that consists of 224 bands,
thus a reduction to 50 and 20 components represents a compression ratio of about 4.48
and 11.2 respectively. This is a substantial rate of compression. Furthermore, in some of
the cases shown in appendix D, and as indicated by figures 4.7 and 4.8, the dimensionality
reduction may introduce an improvement wrt. both binary classification performance and
robustness.
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To look at a more specific case, the ACE detector with the target being Lettuce Ro-
maine 4th week and the MNF representation with 20 components were selected. The
results from this particular scenario is given in table 4.1, taken from appendix D. In figure
4.9 a spatial representation of the visibility can be seen. The MNF representation gives a
higher probability of target to a lot more non-target pixels but at the same time a higher
probability of target for target pixels. This pipeline gives an MCC-score and visibility of
0,888 and 0.826 respectively. When performing the target detection on the full space an
MCC-score and visibility of 0.848 and 0.568 are obtained. The improvement in MCC-
score may be due to random variations as it is a factor of less than 5%. However, wrt.
the visibility score an increase of 45% was achieved. This argues that the MNF repre-
sentation is able to better separate the background and target for this particular scene, for
this particular endmember. However, similar improvements can be found for all detection
algorithms for the MNF representation in this scene for all the investigated endmembers
as well (see appendix D).

Table 4.1: Results from Salinas scene looking for Lettuce Romaine 4th week with ACE

DR F1 MCC |F1-MCC| Recall Visbility
FULLDIM 0,849 0,848 0,001 0,840 0,568
PCA50 0,879 0,878 0,001 0,874 0,638
MNF50 0,887 0,885 0,001 0,889 0,636
ICA50 0,879 0,878 0,001 0,874 0,638
PCA20 0,818 0,818 0,000 0,772 0,698
MNF20 0,889 0,888 0,001 0,884 0,826
ICA20 0,818 0,818 0,000 0,772 0,698

As the Salinas scene is particularly homogeneous, the assumptions made in the im-
plementation of MNF is well met. Figure 4.7 and 4.8 show that on average both the per-
formance and visibility is highest for the MNF representation, regardless of the number
of components. So for the Salinas scene, on average, the best performance and visibility
was achieved by using the ACE detector in combination with an MNF-based dimension-
ality reduction with a low number of components. Suggesting that a pipeline using the
MNF representation in combination with the ACE detector is well suited for homogeneous
scenes where the spectral signatures are of similar characteristics.
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Figure 4.7: Average MCC-score for all target detection algorithms in the Salinas scene

Figure 4.8: Average visibility score for all target detection algorithms in the Salinas scene
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4.2.2 Target Detection on Pavia

The Pavia scene is well characterized with a high spatial resolution, and a lot of man-made
rigid structures that creates a lot of edges (see figure 3.6). This scene contains 9 different
signatures and large unclassified regions. Because of this the number of components to
represent all the information in the image should at the very least be higher than 10, but
as all the scenes have been treated the same it is exposed to the same types of transforma-
tions as the Salinas and Hopavågen scene. Due to the aforementioned edges, in an image
processing sense, the scene could be described as non-homogeneous. Thus, for the MNF
representation, this is intended as a challenge, revealing the shortcomings of a subpar noise
model, wrt. how the noise model estimation is implemented. As the other DR representa-
tions do not use the image to estimate any parameters beyond the components, the change
of scene should not affect the performance of the algorithm in that sense. Furthermore, the
full spectral range of this scene contains 103 bands, and a DR representation with 50 and
20 components would give a compression ratio of 2.06 and 5.15. This is not an equally
large compression ratio as compared to the Salinas scene that contained originally 224
spectral bands.

When looking at the average MCC-score for all 4 target detection algorithms in figure
4.10 the results does not follow a clear pattern across all detection algorithms. Both the
ACE and CEM detector experience a decrease in performance when exposed to the MNF
representation, but is not much affected by the other representations. The SAM detector
have similar performance as ACE and CEM detector but does not suffer from the different
DR representations in the same pattern. The OSP detector is also affected in a different
pattern than the other algorithms, but cannot be said to perform with a similar MCC-score.
A representation utilizing fewer components does not seem to decrease the performance
further wrt. MCC-score for any of the 4 algorithms.

This suggests that the transformed covariance and correlation matrix, on a scene as
Pavia represents, is not as straightforward to compute, especially so for the DR representa-
tions. This is expected as the scene is a non-homogeneous dataset. As both the covariance
and correlation matrices are computed based on the sampled data, on a per image basis,
and the DR representations can be said to remove commonalities shared between pixels,
the resulting estimate for the matrices may be insufficient. Thus, indicating that a DR rep-
resentation of a non-homogeneous dataset might be more demanding when considering
the MCC-score. Furthermore, as expected, the estimated noise model does not seem to
perform well under these circumstances either.

The average visibility of the different target detection algorithms in the Pavia scene is
given in figure 4.12. None of the detection algorithms obtain an especially high average
visibility score, irrespective of the chosen representation. The figure also shows that even
though the CEM detector performed well wrt. MCC-score, it does not display robustness
for this particular scene, having the lowest visibility score for all representations. Rel-
atively speaking the ACE and SAM detector achieves a higher visibility score, with the
ACE detector once again showing the highest visibility with the fewest components. The
SAM detector seem to experience a non-trivial increase in visibility with the MNF repre-
sentation, independent of the number of components used. This suggests that even with
a poor noise model, irrelevant information is filtered away, and the MNF representation
better separates the data. As the SAM detector does not utilize covariance nor correlation,
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this promotes the idea that a sample matrix should be calculated with a more consistent
data set for better results.

To look at a more specific case, the ACE detector with the target being painted metal
sheets and the MNF representation with 20 components were selected. The results from
this particular scenario is given in table 4.2, taken from appendix D. In figure 4.12 a spatial
representation of the visibility can be seen. once again, the MNF representation gives
a higher probability of target to some non-target pixels, but at the same time a higher
probability of target for target pixels. By closer inspection of the image titled MNF 20 and
FULLDIM in figure 4.12, both representations seem to give a high probability of target
for pixels of nearby positives when compared to the ground truth. It is not clear if this is
due to poor classification of the original image, or poor performance of the detection of
the proposed pipeline and the detection on the full spectral range.

Using the MNF representation with 20 components gives an MCC-score and visibil-
ity of 0,817 and 0,818 respectively. This is not the optimal score wrt. to either MCC or
visibility obtained for this specific scene and endmember, but it differs from the optimal
score with less than 0.13% for the MCC-score, and less than 2.4% for the visibility score.
These are small variations when taking into account the disadvantage that this specific
scene poses for the MNF representation. Furthermore, when performing the target detec-
tion on the full space an MCC-score and visibility of 0,815 and 0,619 are achieved. The
improvement experienced wrt. MCC-score is probably due to random variations as it is a
factor of less than 0.3%. When compared with the full spectral representation the visibility
score increased with 32% for the MNF representation with 20 components. Even though
this is not an equally large difference as the one experienced in the Salinas scene, it is still
noteworthy. This argues that the MNF representation, even when presented with a lesser
noise model estimate, is able to better separate the background and target for this particular
scene, for this particular endmember, when compared to the full spectral space representa-
tion. Similar trends can be found for all detection algorithms for the MNF representation
in this scene for all the investigated endmembers as well (see appendix D).

Table 4.2: Results from Pavia scene looking for painted metal sheets with ACE

DR F1 MCC |F1-MCC| Recall Visbility
FULLDIM 0,808 0,815 0,008 0,944 0,619
PCA50 0,805 0,814 0,009 0,952 0,712
MNF50 0,809 0,818 0,009 0,946 0,664
ICA50 0,805 0,814 0,009 0,952 0,712
PCA20 0,810 0,817 0,007 0,946 0,838
MNF20 0,808 0,817 0,008 0,935 0,818
ICA20 0,810 0,817 0,007 0,946 0,838
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The Pavia scene showcased the effects of a suboptimal noise model wrt. the MNF rep-
resentation, and how the other DR representations are not as affected by the lack of a priori
knowledge. The ICA and PCA representation did not experience a significant change in
performance, both wrt. MCC-score and visibility. An expected result in the sense that
none of the assumptions made in their implementation was violated. Both the ACE and
the SAM algorithm performs rather well in this scene for the MNF representation with 20
components. The SAM detector narrowly outperforms the ACE detector on average, both
wrt. MCC-score and visibility for this particular scene.

Figure 4.10: Average MCC-score for all target detection algorithms in the Pavia scene
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Figure 4.11: Average visibility score for all target detection algorithms in the Pavia scene
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4.2.3 Target Detection on Hopavågen
The Hopavågen scene is the most interesting scene with respect to the NTNU SmallSat
Program [5], as it has signatures closest resembling relevant signatures. It should be noted
that an approach similar to the SAM detector was used to compare spectral signatures
when manually classifying this scene. The image is given in figure 3.11 shows that the
scene is somewhat homogeneous, but the assumption of large homogeneous areas wrt.
neighboring pixels i.e. the MNF implementation, may not be optimal in this scene ei-
ther. Furthermore, the scene was classified assuming that it contained 4 distinct classes,
which in theory suggests that it should need at least 4 components to classify the image.
However, for all the scenes given, the same number of components was used i.e. 20 and
50 components, for all the different DR representations. The endmember looked for in
this scene is given in section 3.2.1, with a visual representation of their respective spectral
variance.

In the Hopavågen scene, the original image has a spectral space that consists of 86
bands, thus a reduction to 50 and 20 components represents a compression ratio of about
1.72 and 4.3 respectively. This is the lowest level of compression ratio for any of the
scenes given, but still, a noteworthy rate of compression when compared to what can be
achieved on the full space directly.

In figure 4.13 it is clear that all detectors perform, on average, well wrt. MCC-score.
The CEM detector outperforms all other detectors for all representations in this given
scene, and it does not seem to be very affected by the different DR representations. The
ACE detector shows a similar trend wrt. the different DR representations, but does not
have the same performance wrt. MCC-score. The OSP and SAM detectors have the
lowest performance wrt. MCC-score and they are both more affected by different DR
representation. Even though the ACE and CEM detector is not very much affected of
the different representations on average, both the OSP and SAM detectors experience a
positive effect from the MNF representation when compared to the full space.

All of the different target detection algorithms experience a low level of visibility, on
average, in this scene, as can be seen from figure 4.14. No combination of DR representa-
tion and detection algorithm gives a very high visibility score, as can be seen in appendix
D, for the Hopavågen scene. The CEM detector is virtually unaffected by the different DR
representations, but the ACE detector seems to experience a small improvement in per-
formance with a lower number of components. Both the OSP and SAM detector is more
affected by the different representation, with the SAM detector experiencing a substantial
performance increase with MNF.

Thus, this scene also implies that target detection performed on the reduced space
potentially will not harm the performance, while at the same time enabling a lower amount
of data to be downlinked. That is, based on the averaged results, but the same trends can
be found for the individual cases given in appendix D.

79



For the Hopavågen scene, the specific case of looking for Fucus serratus was selected,
and the spatial visualization of this case, with the ACE detector and the MNF representa-
tion of 20 components, is given in figure 4.15. The results from this particular scenario is
given in table 4.3, taken from appendix D. The MNF representation with 20 components
seem to give a higher probability of target for non-targets, but an even higher probability
of target for targets. Which has been observed in the other scenes as well, and also in this
case the visibility score increased.

This pipeline gives an MCC-score and visibility of 0,913 and 0.341 respectively, with
the ACE detector. When performing the target detection on the full space an MCC-score
and visibility of 0.905 and 0.268 were obtained. The improvement in MCC-score may be
due to random variations as it is a factor of less than 1 %. The MNF representation gave
an increase of 27% wrt. visibility, but as the visibility score, for both full space and the
MNF representation, was rather low it is hard to quantify the value of this improvement.

When conferring with appendix D, it is clear that the MNF representation with the
SAM detector outperforms the MNF representation using the ACE detector. This differ-
ence is most noticeable when considering visibility. As the ACE detector does not seem
to be very affected by representation, the SAM detector, on the other hand, is affected by
the different representations, for this particular scene.

This specific case suggests that the MNF representation is an adequate approach for
DR for compression, with an acceptable change in performance wrt. MCC-score or visi-
bility, as they are both improved.

Table 4.3: Results from Hopavågen scene looking for Fucus Serratus with ACE

DR F1 MCC |F1-MCC| Recall Visbility
FULLDIM 0,905 0,877 0,028 0,902 0,268
PCA50 0,900 0,870 0,030 0,890 0,304
MNF50 0,905 0,877 0,028 0,898 0,291
ICA50 0,900 0,870 0,030 0,890 0,304
PCA20 0,893 0,862 0,032 0,896 0,339
MNF20 0,913 0,887 0,026 0,903 0,341
ICA20 0,893 0,862 0,032 0,896 0,339

From figure 4.13 and 4.14, in combination with the specific case, it can be inferred that
for this scene the proposed DR methods as a preliminary step before performing target
detection may not decrease performance to an unsatisfactory degree. How well the noise
model in the MNF representation is estimated, given how it is implemented, is difficult to
quantify. The model assumptions are not well met in the scene, but at the same time, it is
better suited than the Pavia scene. independent of this, the MNF representation does not
decrease the performance of the detection a lot, independent of which detection algorithm
is used.

The high visibility experienced by the SAM detector may be due to how the classifica-
tion of pixels was performed.
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Figure 4.13: Average MCC-score for all target detection algorithms in the Hopavågen scene

Figure 4.14: Average visibility score for all target detection algorithms in the Hopavågen scene
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Figure 4.15: Visualization of the visibility produced by the ACE algorithm in the Hopavågen scene
for Fucus serratus
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Chapter 5
Conclusion and Further Work

This thesis has investigated the effects of dimensionality reduction methods such as PCA,
MNF and JADE ICA on hyperspectral data, and how these representations would affect
target detection. A proposed pipeline, utilizing the filtering obtained by reduced space
representations, was analyzed for target detection algorithms ACE, CEM, OSP, and SAM.
The proposed pipelines were tested on 3 different scenes with ground truth. The scenes
were of different types in hopes to better display the general behavior to be expected from
the proposed pipeline.

All the discussed DR representation gave an expected compression ratio, and all are well
suited to be performed before performing other methods for compression.

The overall robustness with respect to visibility found for the ACE detector corre-
sponds well with the favorable results found in other publications comparing detection al-
gorithms [9, 10, 3, 11, 36]. The MNF representation performed well on the Salinas scene,
where the assumptions made in the implementation were well met. With a better noise
model, one not necessarily based on a per scene basis, the MNF representation should be
able to further suppress undesired noise from a scene. As has been demonstrated, this may
improve both the detection rate and robustness of a given application.

The simplicity of a potential implementation on an onboard processing unit for a small-
sat system should also be taken into consideration. The most computationally demanding
and complex of the surveyed target detection algorithms is the OSP detector, which also
gave relatively poor results. The ACE and CEM detector are of similar complexity and
gave similar results, but the ACE detector tended to be more robust wrt. visibility. Lastly,
the SAM detector is the simplest detector and responded well to the MNF representation.

To better tailor a target detection solution to the specific application of ocean color ob-
servation, more data is needed. These preliminary results suggest that a good approach
to investigate once an acceptable abundance of data is available is the MNF transform in
combination with the ACE detector, or the SAM detector for simplicity.
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5.1 Further Work
It could be beneficial for the system to have the covariance, and other significant statistical
entities, based on a large dataset with relevant pixels specters calculated beforehand e.g.
the DR transformation is not calculated on a per scene basis. This would save both time
and power for the satellite, and could even be beneficial wrt. to performance. How well
the transformation would be projected is difficult to say with the current level of relevant
data available, and a thorough investigation of the cost and benefit of such an approach
should be performed.

To mask out land-regions or regions that are of no interest would give a more consistent
data set with a lower variance for the dimensionality reduction to be performed on. In
return, this would better project the characteristics relevant for ocean color applications,
such as the NTNU SmallSat program, and the subtle differences would emerge in the data.
That is, techniques to label pixels on-the-fly could be useful for any system. Thus using a
minimum of resources on uninteresting data. However, if the satellite were to be used for
other applications, such as terrestrial purposes the sample data representing the basis for
covariance and other significant statistical entities would need to be changed.

In the work performed in this thesis a static number of components was used. There
exist methods to statistically estimate an optimal number of components. Such methods
could be used to dynamically change the number of components used to better fit a given
scene. An investigation of how well the methods estimate the dimensionality of the data,
and how this would affect both compression and target detection could give useful insight.

Lastly, methods to better utilize the dimensionality of data, i.e. viewing the data not as
a matrix of values but as a cube of values, should be investigated. A popular method in the
literature concerning such multi-way methods could be PARAFAC[37]. An investigation
comparing such methods to the two-dimensional approach taken in this thesis could give
interesting insight.
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Appendix A
MATLAB code

A.1 Code regarding dimensionality reduction

Listing A.1: implementation of Maximum Noise Factoring

1 f unc t i on [ M new ,A] = GreenMNF(M)
2
3 % Input M: data s e t M i s a hype rp s e c t r a l datacube .
4 % Output M new : 3D b a s i s cube
5 % A: Transformation matrix
6
7 [ h ,w, d ] = s i z e (M) ;
8 M = transpose ( hyperConvert2d (M) ) ;
9 [m, n ] = s i z e (M) ;

10
11 % 1 . Estimate the covar iance o f the no i s e .
12 dX = ze ro s (m−1,n) ;
13 f o r i =1:(m−1)
14 dX( i , : ) = M( i , : ) − M( i +1 , : ) ;
15 end
16
17 % Take the e i g e n v e c t o r expansion o f the covar iance o f dX
18 [ U1 , S1 , V1 ] = svd (dX'*dX) ;
19
20 % Whiten the o r i g i n a l data
21 wX = M*U1* inv ( s q r t ( S1 ) ) ;
22
23 % Compute the e i g e n v e c t o r expansion o f the covar iance o f wX
24 [ U2 , S2 , V2 ] = svd (wX'*wX) ;
25

91



26 % Def ine t rans fo rmat ion matrix
27 A = U1* inv ( s q r t ( S1 ) )*V2 ;
28
29 % Compute the Maximum no i s e f r a c t i o n b a s i s v e c t o r s
30 M new = M*A;
31 A = A' ;
32 M new = hyperConvert3d (M new' ,h ,w, d) ;
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Listing A.2: implementation of ICA

1 f unc t i on [ Tica , IC ] = myICA CV(M, NumComponents)
2
3 [ c o e f f , ˜ , ˜ , ˜ , ˜ , ˜ ] = pca (M) ;
4
5 P = c o e f f ( : , 1 : NumComponents) ;
6
7 % T = M*P;
8
9 nIC = NumComponents ;

10 [ IC , ˜ , ˜ ] = j a d e i c a (P' , nIC ) ;
11 Tica = M*IC '/( IC*IC ') ;
12
13 f unc t i on [ i c a s i g , A, W] = j a d e i c a (x ,m)
14
15 i f ( narg in < 2)
16 A = matlabjader ( x ) ;
17 W = Aˆ(−1) ;
18 e l s e
19 A = matlabjader (x ,m) ;
20 W = pinv (A) ;
21 end
22
23
24 i c a s i g = A*x ;
25
26 re turn ;
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Listing A.3: implementation of JADE ICA

1 f unc t i on [ i c a s i g , A, W] = j a d e i c a (x ,m) ;
2
3 i f ( narg in < 2) ,
4 A = matlabjader ( x ) ;
5 W = Aˆ(−1) ;
6 e l s e
7 A = matlabjader (x ,m) ;
8 W = pinv (A) ;
9 end

10
11
12 i c a s i g = A*x ;
13
14 re turn ;
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Listing A.4: implementation of JADE ICA - provided code

1 f unc t i on B = jadeR (X,m)
2 % Blind s epa ra t i on o f r e a l s i g n a l s with JADE. Vers ion 1 .5

Dec . 1997 .
3 %
4 % Usage :
5 % * I f X i s an nxT data matrix (n sensor s , T samples )

then
6 % B=jadeR (X) i s a nxn sepa ra t ing matrix such that S=B*X

i s an nxT
7 % matrix o f est imated source s i g n a l s .
8 % * I f B=jadeR (X,m) , then B has s i z e mxn so that only m

source s are
9 % extrac t ed . This i s done by r e s t r i c t i n g the opera t i on

o f jadeR
10 % to the m f i r s t p r i n c i p a l components .
11 % * Also , the rows o f B are ordered such that the columns

o f pinv (B)
12 % are in order o f de c r ea s ing norm ; t h i s has the e f f e c t

that the
13 % `most e n e r g e t i c a l l y s i g n i f i c a n t ' components appear

f i r s t in the
14 % rows o f S=B*X.
15 %
16 % Quick notes ( more at the end o f t h i s f i l e )
17 %
18 % o t h i s code i s f o r REAL−valued s i g n a l s . An

implementation o f JADE
19 % f o r both r e a l and complex s i g n a l s i s a l s o a v a i l a b l e

from
20 % http :// s i g . enst . f r /˜ cardoso / s t u f f . html
21 %
22 % o This a lgor i thm d i f f e r s from the f i r s t r e l e a s e d

implementat ions o f
23 % JADE in that i t has been opt imized to dea l more

e f f i c i e n t l y
24 % 1) with r e a l s i g n a l s ( as opposed to complex )
25 % 2) with the case when the ICA model does not

n e c e s s a r i l y hold .
26 %
27 % o There i s a p r a c t i c a l l i m i t to the number o f

independent
28 % components that can be ext rac t ed with t h i s

implementation . Note
29 % that the f i r s t s tep o f JADE amounts to a PCA with
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d imens i ona l i t y
30 % reduct ion from n to m ( which d e f a u l t s to n) . In

p r a c t i c e m
31 % cannot be `very la rge ' ( more than 40 , 50 , 6 0 . . .

depending on
32 % a v a i l a b l e memory)
33 %
34 % o See more notes , r e f e r e n c e s and r e v i s i o n h i s t o r y at the

end o f
35 % t h i s f i l e and more s t u f f on the WEB
36 % http :// s i g . enst . f r /˜ cardoso / s t u f f . html
37 %
38 % o This code i s supposed to do a good job ! P lease r epor t

any
39 % problem to cardoso@s i g . ens t . f r
40
41
42 % Copyright : Jean−Franco i s Cardoso . cardoso@s i g . enst . f r
43
44 verbose = 0 ; % Set to 0 f o r qu i e t operat i on
45
46
47 % Finding the number o f sou r c e s
48 [ n ,T] = s i z e (X) ;
49 i f narg in==1, m=n ; end ; % Number o f s ou r c e s

d e f a u l t s to # of s e n s o r s
50 i f m>n , f p r i n t f ( ' jade −> Do not ask more sourc e s than

s e n s o r s here ! ! ! \ n' ) , return , end
51 i f verbose , f p r i n t f ( ' jade −> Looking f o r %d sourc e s \n' ,m) ;

end ;
52
53
54
55 % Se l f−commenting code
56 %=====================
57 i f verbose , f p r i n t f ( ' jade −> Removing the mean value \n' ) ;

end
58 X = X − mean(X') ' * ones (1 ,T) ;
59
60
61 %%% whitening & p r o j e c t i o n onto s i g n a l subspace
62 % ===========================================
63 i f verbose , f p r i n t f ( ' jade −> Whitening the data\n' ) ; end
64 [U,D] = e i g ( (X*X') /T) ;
65 [ pu i ss , k ] = s o r t ( diag (D) ) ;
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66 rangeW = n−m+1:n ; % i n d i c e s
to the m most s i g n i f i c a n t d i r e c t i o n s

67 s c a l e s = s q r t ( pu i s s ( rangeW) ) ; % s c a l e s
68 W = diag ( 1 . / s c a l e s ) * U( 1 : n , k ( rangeW) ) ' ;

% whitener
69 iW = U( 1 : n , k ( rangeW) ) * diag ( s c a l e s ) ;

% i t s pseudo−i n v e r s e
70 X = W*X;
71
72
73 %%% Estimation o f the cumulant matr i ce s .
74 % ====================================
75 i f verbose , f p r i n t f ( ' jade −> Estimating cumulant matr i ce s \n

' ) ; end
76
77 dimsymm = (m*(m+1) ) /2 ; % Dim . o f the space o f r e a l

symm matr i ce s
78 nbcm = dimsymm ; % number o f cumulant

matr i ce s
79 CM = zero s (m,m*nbcm) ; % Storage f o r cumulant

matr i ce s
80 R = eye (m) ; %%
81 Qij = ze ro s (m) ; % Temp f o r a cum . matrix
82 Xim = ze ro s (1 ,m) ; % Temp
83 Xjm = ze ro s (1 ,m) ; % Temp
84 s c a l e = ones (m, 1 ) /T ; % f o r convenience
85
86
87
88 %% I am us ing a symmetry t r i c k to save s to rage . I should

wr i t e a
89 %% short note one o f the se days ex p l a i n i ng what i s going on

here .
90 %%
91 Range = 1 :m ; % w i l l index the columns o f CM

where to s t o r e the cum . mats .
92 f o r im = 1 :m
93 Xim = X( im , : ) ;
94 Qij = ( ( s c a l e * (Xim.*Xim) ) .* X ) * X' − R − 2 * R

( : , im)*R( : , im) ' ;
95 CM( : , Range ) = Qij ;
96 Range = Range + m ;
97 f o r jm = 1 : im−1
98 Xjm = X(jm , : ) ;
99 Qij = ( ( s c a l e * (Xim.*Xjm) ) .*X ) * X' − R( : , im)*R
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( : , jm) ' − R( : , jm)*R( : , im) ' ;
100 CM( : , Range ) = s q r t (2 ) *Qij ;
101 Range = Range + m ;
102 end ;
103 end ;
104
105 %%% j o i n t d i a g o n a l i z a t i o n o f the cumulant matr i ce s
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107
108 %% I n i t
109 i f 1 , %% I n i t by d i a g o n a l i z i n g a * s i n g l e * cumulant matrix

. I t seems to save
110 %% some computation time `sometimes ' . Not c l e a r i f

i n i t i a l i z a t i o n i s
111 %% a good idea s i n c e Jacobi r o t a t i o n s are very

e f f i c i e n t .
112
113 i f verbose , f p r i n t f ( ' jade −> I n i t i a l i z a t i o n o f the

d i a g o n a l i z a t i o n \n' ) ; end
114 [V,D] = e i g (CM( : , 1 :m) ) ; % For ins tance ,

t h i s one
115 f o r u=1:m:m*nbcm , % updating

acco rd ing ly the cumulant s e t g iven the i n i t
116 CM( : , u : u+m−1) = CM( : , u : u+m−1)*V ;
117 end ;
118 CM = V'*CM;
119
120 e l s e , %% The dont−try−to−be−smart i n i t
121 V = eye (m) ; % l a r o t a t i o n i n i t i a l e
122 end ;
123
124 s e u i l = 1/ s q r t (T) /100 ; % A s t a t i s t i c a l l y s i g n i f i c a n t

th r e sho ld
125 encore = 1 ;
126 sweep = 0 ;
127 updates = 0 ;
128 g = ze ro s (2 ,nbcm) ;
129 gg = ze ro s (2 , 2 ) ;
130 G = zero s (2 , 2 ) ;
131 c = 0 ;
132 s = 0 ;
133 ton = 0 ;
134 t o f f = 0 ;
135 theta = 0 ;
136
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137 %% Joint d i a g o n a l i z a t i o n proper
138 i f verbose , f p r i n t f ( ' jade −> Contrast opt imiza t i on by j o i n t

d i a g o n a l i z a t i o n \n' ) ; end
139
140 whi le encore , encore =0;
141
142 i f verbose , f p r i n t f ( ' jade −> Sweep #%d\n' , sweep ) ; end
143 sweep=sweep+1;
144
145 f o r p=1:m−1,
146 f o r q=p+1:m,
147
148 Ip = p :m:m*nbcm ;
149 Iq = q :m:m*nbcm ;
150
151 %%% computation o f Givens ang le
152 g = [ CM(p , Ip )−CM(q , Iq ) ; CM(p , Iq )+CM(q , Ip )

] ;
153 gg = g*g ' ;
154 ton = gg (1 , 1 )−gg (2 , 2 ) ;
155 t o f f = gg (1 , 2 )+gg (2 , 1 ) ;
156 theta = 0.5* atan2 ( t o f f , ton+s q r t ( ton* ton+t o f f *

t o f f ) ) ;
157
158 %%% Givens update
159 i f abs ( theta ) > s e u i l , encore = 1 ;
160 updates = updates + 1 ;
161 c = cos ( theta ) ;
162 s = s i n ( theta ) ;
163 G = [ c −s ; s c ] ;
164
165 pa i r = [ p ; q ] ;
166 V( : , pa i r ) = V( : , pa i r )*G ;
167 CM( pair , : ) = G' * CM( pair , : ) ;
168 CM( : , [ Ip Iq ] ) = [ c*CM( : , Ip )+s*CM( : , Iq ) −

s*CM( : , Ip )+c*CM( : , Iq ) ] ;
169
170 %% f p r i n t f (' jade −> %3d %3d %12.8 f \n' ,p , q , s

) ;
171
172 end%%of the i f
173 end%%of the loop on q
174 end%%of the loop on p
175 end%%of the whi l e loop
176 i f verbose , f p r i n t f ( ' jade −> Total o f %d Givens r o t a t i o n s \n
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' , updates ) ; end
177
178 %%% A separa t ing matrix
179 % ===================
180 B = V'*W ;
181
182 %%% We permut i t s rows to get the most e n e r g e t i c components

f i r s t .
183 %%% Here the ** s i g n a l s ** are normal ized to un i t var i ance .

Therefore ,
184 %%% the s o r t i s accord ing to the norm of the columns o f A =

pinv (B)
185
186 i f verbose , f p r i n t f ( ' jade −> Sor t ing the components\n' ,

updates ) ; end
187 A = iW*V ;
188 [ vars , keys ] = s o r t (sum(A.*A) ) ;
189 B = B( keys , : ) ;
190 B = B(m: −1 : 1 , : ) ; % I s t h i s smart ?
191
192 % Signs are f i x e d by f o r c i n g the f i r s t column o f B to have
193 % non−negat ive e n t r i e s .
194 i f verbose , f p r i n t f ( ' jade −> Fixing the s i g n s \n' , updates ) ;

end
195 b = B( : , 1 ) ;
196 s i g n s = s i gn ( s i gn (b) +0.1) ; % j u s t a t r i c k to dea l with

s i gn=0
197 B = diag ( s i g n s )*B ;
198
199
200 re turn ;
201
202 % To do .
203 % − Implement a cheaper / s imp le r whitening ( i s i t worth i t

?)
204 %
205 % Revis ion h i s t o r y :
206 %
207 %− V1. 5 , Dec . 24 1997
208 % − The s i gn o f each row o f B i s determined by l e t t i n g

the f i r s t
209 % element be p o s i t i v e .
210 %
211 %− V1. 4 , Dec . 23 1997
212 % − Minor c l ean up .
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213 % − Added a verbose switch
214 % − Added the s o r t i n g o f the rows o f B in order to f i x in

some
215 % reasonab l e way the permutation indete rminat ion . See

note 2)
216 % below .
217 %
218 %− V1. 3 , Nov . 2 1997
219 % − Some c l ean up . Released in the pub l i c domain .
220 %
221 %− V1. 2 , Oct . 5 1997
222 % − Changed random pick ing o f the cumulant matrix used

f o r
223 % i n i t i a l i z a t i o n to a d e t e r m i n i s t i c cho i c e . This i s

not because
224 % of a b e t t e r r a t i o n a l e but to make the ouput ( almost

s u r e l y )
225 % d e t e r m i n i s t i c .
226 % − Rewrote the j o i n t diag . to take more advantage o f

Matlab ' s
227 % t r i c k s .
228 % − Created more dummy v a r i a b l e s to combat Matlab ' s l o o s e

memory
229 % management .
230 %
231 %− V1. 1 , Oct . 29 1997 .
232 % Made the e s t imat i on o f the cumulant matr i ce s more

r e g u l a r . This
233 % a l s o c o r r e c t s a bug le t . . .
234 %
235 %− V1. 0 , Sept . 9 1997 . Created .
236 %
237 % Main r e f e r e n c e :
238 % @a r t i c l e {CS−i e e −94,
239 % t i t l e = ” Blind beamforming f o r non {G} auss i an

s i g n a l s ” ,
240 % author = ”Jean−Fran\c{c} o i s Cardoso and Antoine

Souloumiac ” ,
241 % HTML = ” f tp :// s i g . enst . f r /pub/ j f c / Papers / i e e . ps .

gz ” ,
242 % j o u r n a l = ”IEE Proceedings−F” ,
243 % month = dec , number = 6 , pages = {362−370} , volume =

140 , year = 1993}
244 %
245 % Notes :
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246 % ======
247 %
248 % Note 1)
249 %
250 % The o r i g i n a l Jade a lgor i thm / code dea l s with complex

s i g n a l s in
251 % Gaussian no i s e white and e x p l o i t s an under ly ing

assumption that the
252 % model o f independent components a c t u a l l y ho lds . This i s

a
253 % reasonab l e assumption when dea l i ng with some narrowband

s i g n a l s .
254 % In t h i s context , one may i ) s e r i o u s l y con s id e r dea l i ng

p r e c i s e l y
255 % with the no i s e in the whitening proce s s and i i ) expect

to use the
256 % smal l number o f s i g n i f i c a n t e i g enmat r i c e s to e f f i c i e n t l y

summarize
257 % a l l the 4th−order in fo rmat ion . Al l t h i s i s done in the

JADE
258 % algor i thm .
259 %
260 % In t h i s implementation , we dea l with rea l−valued s i g n a l s

and we do
261 % NOT expect the ICA model to hold exac t l y . Therefore , i t

i s
262 % p o i n t l e s s to t ry to dea l p r e c i s e l y with the a d d i t i v e

no i s e and i t
263 % i s very u n l i k e l y that the cumulant t enso r can be

a c c u ra t e l y
264 % summarized by i t s f i r s t n e igen−matr i ce s . Therefore , we

cons id e r
265 % the j o i n t d i a g o n a l i z a t i o n o f the whole s e t o f e igen−

matr i ce s .
266 % However , in such a case , i t i s not nece s sa ry to compute

the
267 % eigenmat r i c e s at a l l because one may e q u i v a l e n t l y use `

p a r a l l e l
268 % s l i c e s ' o f the cumulant t enso r . This part ( computing

the
269 % eigen−matr i ce s ) o f the computation can be saved : i t

s u f f i c e s to
270 % j o i n t l y d i a g o n a l i z e a s e t o f cumulant matr i ce s . Also ,

s i n c e we are
271 % dea l i ng with r e a l s s i g n a l s , i t becomes e a s i e r to e x p l o i t
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the
272 % symmetries o f the cumulants to f u r t h e r reduce the number

o f
273 % matr i ce s to be d i a g o n a l i z e d . These c on s id e r a t i on s ,

t oge the r with
274 % other cheap t r i c k s l ead to t h i s v e r s i on o f JADE which i s

opt imized
275 % ( again ) to dea l with r e a l mixtures and to work ` out s id e

the model ' .
276 % As the o r i g i n a l JADE algorithm , i t works by minimizing a

`good set '
277 % of cumulants .
278 %
279 % Note 2)
280 %
281 % The rows o f the s epa ra t ing matrix B are r e s o r t e d in such

a way that
282 % the columns o f the corre spond ing mixing matrix A=pinv (B)

are in
283 % dec r ea s ing order o f ( Euc l id ian ) norm . This i s a simple ,

`almost
284 % canonica l ' way o f f i x i n g the indete rminat ion o f

permutation . I t
285 % has the e f f e c t that the f i r s t rows o f the recovered

s i g n a l s ( i e the
286 % f i r s t rows o f B*X) correspond to the most e n e r g e t i c *

components * .
287 % Reca l l however that the source s i g n a l s in S=B*X have

un i t var iance .
288 % Therefore , when we say that the obs e rva t i on s are unmixed

in order
289 % of dec r ea s ing energy , the e n e r g e t i c s i g n a t u r e i s found

d i r e c t l y as
290 % the norm o f the columns o f A=pinv (B) .
291 %
292 % Note 3)
293 %
294 % In exper iments where JADE i s run as B=jadeR (X,m) with m

varying in
295 % range o f values , i t i s n i c e to be ab le to t e s t the

s t a b i l i t y o f the
296 % decomposit ion . In order to he lp in such a te s t , the

rows o f B can
297 % be sor t ed as de s c r ibed above . We have a l s o dec ided to

f i x the s i gn

103



298 % of each row in some a r b i t r a r y but f i x e d way . The
convent ion i s

299 % that the f i r s t element o f each row o f B i s p o s i t i v e .
300 %
301 %
302 % Note 4)
303 %
304 % Contrary to many other ICA algor i thms , JADE ( or l e a s t

t h i s v e r s i o n )
305 % does not operate on the data themse lves but on a

s t a t i s t i c ( the
306 % f u l l s e t o f 4 th order cumulant ) . This i s r ep r e s ent ed by

the matrix
307 % CM below , whose s i z e grows as mˆ2 x mˆ2 where m i s the

number o f
308 % source s to be ext rac t ed (m could be much sma l l e r than n)

. As a
309 % consequence , ( t h i s v e r s i o n o f ) JADE w i l l probably choke

on a
310 % ` l a rge ' number o f sou r c e s . Here ` l a rge ' depends mainly

on the
311 % a v a i l a b l e memory and could be something l i k e 40 or so .

One o f
312 % these days , I w i l l prepare a ve r s i on o f JADE tak ing the

`data '
313 % opt ion ra the r than the ` s t a t i s t i c ' opt ion .
314 %
315 %
316
317
318 % JadeR .m ends here .
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A.2 Code regarding target detection

Listing A.5: Implementation of Adaptive Cosine Estimator

1 f unc t i on [ r e s u l t s ] = hyperAce (M, S)
2 % HYPERACE Performs the adapt ive co s i n / coherent e s t imator

a lgor i thm
3 % Performs the adapt ive co s i n / coherent e s t imator

a lgor i thm f o r t a r g e t
4 % d e t e c t i o n .
5 %
6 % Usage
7 % [ r e s u l t s ] = hyperAce (M, S)
8 % Inputs
9 % M − 2d matrix o f HSI data (p x N)

10 % S − 2d matrix o f t a r g e t endmembers (p x q )
11 % Outputs
12 % r e s u l t s − vec to r o f d e t e c t o r output (N x 1)
13 %
14 % Refe rences
15 % X Jin , S Paswater , H Cl ine . ”A Comparative Study o f

Target Detect ion
16 % Algorithms f o r Hyperspect ra l Imagery . ” SPIE Algorithms

and Techno log ie s
17 % f o r Mul t i spec t ra l , Hyperspectra l , and U l t r a s p e c t r a l

Imagery XV. Vol
18 % 7334 . 2009 .
19
20
21 [ p , N] = s i z e (M) ;
22 % Remove mean from data
23 u = mean(M. ' ) . ' ;
24 M = M − repmat (u , 1 , N) ;
25 S = S − repmat (u , 1 , s i z e (S , 2 ) ) ;
26
27 R hat = hyperCov (M) ;
28 G = inv ( R hat ) ;
29
30 r e s u l t s = ze ro s (1 , N) ;
31 % From Broadwater ' s paper
32 %tmp = G*S* inv (S . '*G*S)*S. '*G;
33 tmp = (S. '*G*S) ;
34 f o r k=1:N
35 x = M( : , k ) ;
36 % From Broadwater ' s paper
37 %r e s u l t s ( k ) = ( x . '*tmp*x ) / ( x . '*G*x ) ;
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38 r e s u l t s ( k ) = (S . '*G*x ) ˆ2 / (tmp*(x . '*G*x ) ) ;
39 end
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Listing A.6: Implementation of Constrained Energy Minimization

1 f unc t i on [ r e s u l t s ] = hyperCem (M, t a r g e t )
2 % HYPERCEM Performs cons t ra ined energy minimizat ion (CEM)

algor i thm
3 % Performs the cons t ra ined energy minimizat ion a lgor i thm

f o r t a r g e t
4 % d e t e c t i o n .
5 %
6 % Usage
7 % [ r e s u l t s ] = hyperCem (M, t a r g e t )
8 % Inputs
9 % M − 2d matrix o f HSI data (p x N)

10 % t a r g e t − t a r g e t o f i n t e r e s t (p x 1)
11 % Outputs
12 % r e s u l t s − vec to r o f d e t e c t o r output (N x 1)
13 %
14 % Refe rences
15 % Qian Du, Hsuan Ren , and Chein−I Cheng . A Comparative

Study o f
16 % Orthogonal Subspace Pro j e c t i on and Constrained Energy

Minimizat ion .
17 % IEEE TGRS. Volume 41 . Number 6 . June 2003 .
18
19 % Check dimensions
20 i f ndims (M) ˜= 2
21 e r r o r ( ' Input image must be p x N. ' ) ;
22 end
23
24 p = s i z e (M, 1 ) ;
25
26 i f ˜ i s e q u a l ( s i z e ( t a r g e t ) , [ p , 1 ] )
27 e r r o r ( ' Input t a r g e t must be p x 1 . ' ) ;
28 end
29
30 % CEM uses the c o r r e l a t i o n matrix , NOT the covar iance

matrix . Therefore ,
31 % don' t remove the mean from the data .
32 R hat = hyperCorr (M) ;
33
34 % Equation 6 : w = inv ( target '* inv (R)* t a r g e t ) * inv (R)*

t a r g e t
35 invRtarget = R hat\ t a r g e t ; % inv (R)* t a r g e t
36 weights = ( target '* invRtarget ) \ invRtarget ;
37
38 r e s u l t s = weights '*M;
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Listing A.7: Implementation of Spectral Angle Mapper

1 f unc t i on [ r e s u l t s ] = mySam(M, t a r g e t )
2 % mySam Performs Spec t r a l ang le mapper a lgor i thm
3 %
4 %
5 % Usage
6 % [ r e s u l t s ] = mySam(M, t a r g e t )
7 % Inputs
8 % M − 2d matrix o f HSI data (p x N)
9 % t a r g e t − t a r g e t o f i n t e r e s t (p x 1)

10 % Outputs
11 % r e s u l t s − vec to r o f d e t e c t o r output (N x 1)
12 %
13 % Refe rences
14
15 % Check dimensions
16 i f ndims (M) ˜= 2
17 e r r o r ( ' Input image must be p x N. ' ) ;
18 end
19
20 p = s i z e (M, 1 ) ;
21
22 i f ˜ i s e q u a l ( s i z e ( t a r g e t ) , [ p , 1 ] )
23 e r r o r ( ' Input t a r g e t must be p x 1 . ' ) ;
24 end
25
26 r e s u l t s = ze ro s ( s i z e (M, 2 ) ,1 ) ;
27
28 r sam = @(x , s ) ( s '*x ) ˆ2 / ( ( s '* s ) *(x'*x ) ) ;
29
30 f o r i = 1 : l ength ( r e s u l t s )
31 r e s u l t s ( i , : ) = r sam (M( : , i ) , t a r g e t ) ;
32 end
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Listing A.8: Implementation of Orthogonal Subspace Projection

1 f unc t i on [ nu ] = hyperOsp (M, U, t a r g e t )
2 % HYPEROSP Performs the othogonal subspace p r o j e c t i o n (OSP)

algor i thm
3 % Performs the othogonal subspace p r o j e c t i o n a lgor i thm

f o r t a r g e t
4 % d e t e c t i o n .
5 %
6 % Usage
7 % [ r e s u l t s ] = hyperOsp (M, U, t a r g e t )
8 % Inputs
9 % M − 2d matrix o f HSI data (p x N)

10 % U − 2d matrix o f background endmebers (p x q )
11 % t a r g e t − t a r g e t o f i n t e r e s t (p x 1)
12 % Outputs
13 % r e s u l t s − vec to r o f d e t e c t o r output (N x 1)
14 %
15 % Refe rences
16 % Qian Du, Hsuan Ren , and Chein−I Cheng . ”A Comparative

Study o f
17 % Orthogonal Subspace Pro j e c t i on and Constrained Energy

Minimizat ion . ”
18 % IEEE TGRS. Volume 41 . Number 6 . June 2003 .
19
20 [ p , N] = s i z e (M) ;
21
22 % Equation 3
23 P U = eye (p) − U * pinv (U) ;
24
25 % For abundance e s t imat i on
26 % Equation 4
27 %w osp = inv ( t a r g e t . '*P U* t a r g e t ) * P U * t a r g e t ;
28
29 tmp = target '*P U* t a r g e t ;
30 nu = ze ro s (N, 1) ;
31 f o r k=1:N
32 nu( k ) = ( target '*P U*M( : , k ) ) /tmp ;
33 end
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Listing A.9: Implementation of N-FINDR

1 f unc t i on [U] = hyperNfindr (M, q )
2 % HYPERNFINDR Performs the N−FINDR ( endmember e x t r a c t i o n )

a lgor i thm
3 % Performs the N−FINDR algor i thm to f i n d q endmembers . I f

only M i s
4 % given as input , t h i s func t i on c a l l s hyperHfcVd to

es t imate the number
5 % of endmembers ( q ) and then hyperPct to reduce

d imens i ona l i t y to (q−1) .
6 %
7 % Usage
8 % [U] = hyperNfindr (M)
9 % [U] = hyperNfindr (M, q )

10 % Inputs
11 % M − 2d matrix o f HSI data (p x N)
12 % q − Number o f endmembers to f i n d
13 % −− i f not given , q i s obta ined from hyperHfcVd (M,

10ˆ−3)
14 % Outputs
15 % U − Recovered endmembers (p x q )
16 %
17 % Refe rences
18 % M. Winter , ”N−f i n d r : an a lgor i thm f o r f a s t autonomous
19 % s p e c t r a l endmember determinat ion in hype r spe c t r a l data , ”

S P I E s
20 % I n t e r n a t i o n a l Symposium on Opt ica l Sc ience , Engineer ing ,

and
21 % Instrumentat ion , pages 266 2 7 5 . I n t e r n a t i o n a l Soc i e ty

f o r Optics
22 % and Photonics , 1999 .
23
24 % Error trapping
25 i f ndims (M) ˜= 2
26 warning ( 'WarnTests : dim' , ...
27 ' Input image must be p x N.\n' , ...
28 'Converting with hyperConvert2d .\n' )
29 M = hyperConvert2d (M) ;
30 end
31
32 M orig = M;
33 [ p , N] = s i z e (M) ;
34
35 i f narg in == 1
36 f p r i n t f ( ' Implementing hyperHfcVd to determine the
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number o f endmembers .\n' )
37 q = hyperHfcVd ( M orig , [10ˆ−3]) ;
38 f p r i n t f ( 'Reducing d imens i ona l i t y to (q−1) us ing

hyperPct .\n' )
39 M = hyperPct (M, q−1) ;
40 e l s e i f q < p+1
41 warning ( 'WarnTests : dim' , ...
42 s t r c a t ( 'N−FINDR r e q u i r e s (q−1) s p e c t r a l bands .\n' , ...
43 'Performing PCA to reduce d imens i ona l i t y .\n' ) )
44 M = hyperPct (M, q−1) ;
45 e l s e i f q > p+1
46 warning ( 'WarnTests : dim' , ...
47 s t r c a t ( 'N−FINDR r e q u i r e s (q−1) s p e c t r a l bands .\n' , ...
48 'Performing PCA to reduce d imens i ona l i t y .\n' ) )
49 e r r o r ( 'ErrTests : dim' , ...
50 s t r c a t ( 'N−FINDR cannot f i n d more than (p+1)

endmembers ( q ) ,\n' , ...
51 'where p i s the number o f a v a i l a b l e s p e c t r a l

bands .\n' ) )
52 end
53
54 % I n i t i a l i z e
55 U idx = randperm (N, q ) ; % Random endmember s e l e c t i o n
56 E = M( : , U idx ) ; % Endmember matrix
57 V = abs ( det ( [ ones (1 , q ) ; E ] ) ) / f a c t o r i a l (q−1) ; %

Simplex volume
58 v o l s = ze ro s (q , 1 ) ;
59
60 % Search f o r maximum volume simplex
61 f o r j = 1 :N;
62 % Replace each column o f E with sample vec to r M( : , j )
63 % and compute the volume f o r each
64 f o r k = 1 : q ;
65 E tmp = E;
66 E tmp ( : , k ) = M( : , j ) ;
67 v o l s ( k ) = abs ( det ( [ ones (1 , q ) ; E tmp ] ) ) /

f a c t o r i a l (q−1) ;
68 end
69 % I f max volume i s g r e a t e r than prev ious V, update E

and V
70 [ V tmp , k idx ] = max( v o l s ) ;
71 i f V tmp > V
72 V = V tmp ;
73 E( : , k idx ) = M( : , j ) ;
74 U idx ( k idx ) = j ;
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75 end
76 end
77
78 % Return endmembers
79 U = M orig ( : , U idx ) ;
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A.3 Code used in simulations

Listing A.10: How the simulations were ran, only line 36 to the comment ”calculate score” was
changed between the different dimensionality reduction methods

1 t d t e s t i n i t ;
2
3 %% t e s t 1 − loop
4 s c o r e c s v = 'Name ; s co r e ; c/a ;w/a ;\n' ;
5 s c o r e s t r u c t = s t r u c t ;
6
7 f o r s = 1 : l ength ( s cene s )
8 f o r temp = 1 : s i z e ( ids , 2 )
9 f o r a = 1 : l ength ( t d a l g s )

10 id = i d s ( s , temp ) ;
11
12 %s e t params
13 scene = g t d a t a s e t . ( s c ene s ( s ) ) ;
14 M = scene . cube ;
15 %M = scene . c o r r e c t e d ;
16 gt = scene . gt ;
17 end name = scene . endmembers ( id ) ;
18 end s ign = scene . s i g n a t u r e s ( id , : ) ;
19 %end s ign = scene . s i g n a t u r e s c o r r e c t e d ( id , : ) ;
20 end index = id ;
21 abundance = scene . abundance ( id ) ;
22 t d a l g = t d a l g s ( a ) ;
23 %end s e t params
24
25 %Calcu la te s co r e
26 i f t d a l g == ”hyperOsp”
27 numEndmembers = length ( scene . endmembers ) ;
28 B = getBackground (M, numEndmembers ,

end s ign ) ;
29 [ a1 , b1 , ˜ ] = t d r e s u l t s (M, gt , end name ,

end s ign , ...
30 end index , abundance , s c ene s ( s ) , td a lg

, B) ;
31
32 e l s e
33 [ a1 , b1 , ˜ ] = t d r e s u l t s (M, gt , end name ,

end s ign , ...
34 end index , abundance , s c ene s ( s ) , t d a l g

) ;
35 end
36
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37 b1 = normal ize ( b1 ) ;
38 % Measure s co r e
39 xx = s i z e ( gt , 1 ) ; yy = s i z e ( gt , 2 ) ;
40
41 tp = 0 ; tn = 0 ;
42 fp = 0 ; fn = 0 ;
43
44 P FA = 0 . 0 0 0 1 : 0 . 0 0 0 1 : 1 . 0 0 0 0 ;
45 met = ze ro s ( l ength (P FA) ,3) ;
46
47 f o r i = 1 : l ength (P FA)
48 f o r j = 1 : xx
49 f o r k = 1 : yy
50 i f and ( gt ( j , k ) == id , b1 ( j , k ) >=

P FA( i ) )
51 tp = tp + 1 ;
52 e l s e i f and ( gt ( j , k ) == id , b1 ( j , k ) <

P FA( i ) )
53 fn = fn + 1 ;
54 e l s e i f b1 ( j , k ) >= P FA( i )
55 fp = fp + 1 ;
56 e l s e
57 tn = tn + 1 ;
58 end
59 end
60 end
61
62 met ( i , : ) = [ metr ic ( tp , tn , fp , fn ) ; tp ; fp ; ] ;
63 tp = 0 ; tn = 0 ;
64 fp = 0 ; fn = 0 ;
65 end
66
67 % Calcu la te V i s i b i l i t y
68 T t sum = 0 ; T t count = 0 ;
69 T b sum = 0 ; T b count = 0 ;
70
71 f o r j = 1 : xx
72 f o r k = 1 : yy
73 i f gt ( j , k ) == id
74 T t sum = T t sum + b1 ( j , k ) ;
75 T t count = T t count +1;
76 e l s e
77 T b sum = T b sum + b1 ( j , k ) ;
78 T b count = T b count +1;
79
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80 end
81 end
82 end
83 T t avg = T t sum / T t count ;
84 T b avg = T b sum / T b count ;
85
86 T max = max( b1 ( : ) ) ; T min = min ( b1 ( : ) ) ;
87
88 v i s = norm( T t avg − T b avg ) /(T max − T min ) ;
89
90 % s t o r e s co r e
91 [ max score , max index ] = max( met ( : , 1 ) ) ;
92 p c a = met ( max index , 2 ) /abundance ;
93 p f a = met ( max index , 3 ) /abundance ;
94
95 name = r e p l a c e ( j o i n ( [ e r a s e ( td a lg , 'hyper' )

r e p l a c e ( s c ene s ( s ) , ' ' , '' ) end name ] ) , ' ' , ' '
) ;

96 r e s u l t = s p r i n t f ( '%s;%d;%d;%d\n' ,name , max score
, p c a , p f a ) ;

97 s c o r e c s v = j o i n ( [ s c o r e c s v r e s u l t ] ) ;
98
99 end name alt = r e p l a c e ( end name , ' ' , ' ' ) ;

100 end name alt = r e p l a c e ( end name alt , '−' , ' ' ) ;
101 alg name = r e p l a c e ( td a lg , 'hyper' , '' ) ;
102
103 r e s u l t s t r u c t . ( s c ene s ( s ) ) . ( end name alt ) . (

alg name ) . ( 'ca' ) = p c a ;
104 r e s u l t s t r u c t . ( s c ene s ( s ) ) . ( end name alt ) . (

alg name ) . ( 'wa' ) = p f a ;
105 r e s u l t s t r u c t . ( s c ene s ( s ) ) . ( end name alt ) . (

alg name ) . ( ' s co r e ' ) = max score ;
106 r e s u l t s t r u c t . ( s c ene s ( s ) ) . ( end name alt ) . (

alg name ) . ( 'abundance' ) = abundance ;
107 r e s u l t s t r u c t . ( s c ene s ( s ) ) . ( end name alt ) . (

alg name ) . ( ' v i s i b i l i t y ' ) = v i s ;
108
109 end
110 end
111 end
112
113 f i d = fopen ( ' r e s u l t f u l l . csv ' , 'a' ) ;
114 f p r i n t f ( f i d , s c o r e c s v ) ;
115 f p r i n t f ( f i d , '\n' ) ;
116 f c l o s e ( f i d ) ;
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117
118 di sp ( 'done ! ' ) ;
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Listing A.11: The same initialization was used across all simulations

1 c l c ; c l e a r ; c l o s e a l l ;
2 %% load
3 [ f i l e , path ] = u i g e t f i l e ( ) ;
4 load ( [ path f i l e ] ) ;
5
6 %% parameters
7 %assuming the g t d a t a s e t s t r u c t i s used
8 t d a l g s = [ ” hyperAce ” , ”hyperOsp ” , ”hyperCem ” , ”mySam ” ] ;
9

10 i f s t r i n g ( f i l e ) == ” hopavaagen data . mat”
11 g t d a t a s e t . hopavaagen = hopavaagen ;
12 s c ene s = [ ” hopavaagen ” ] ;
13 i d s = [ 1 3 4 ;
14 3 0 0 ;
15 4 0 0 ] ;
16 e l s e
17 s c ene s = [ ” pavia ” , ” s a l i n a s ” , ... ” i n d i a n p i n e s ” ,
18 ”hopavaagen ” ] ;
19 i d s = ...
20 [ 1 4 5 ; % scene 1
21 11 12 14 ; % scene 2
22 % 1 7 9 ; % scene 3
23 1 3 4 ] ; % scene 4
24 end
25
26 r e s u l t s t r u c t = s t r u c t ;
27
28 q = 50 ;
29
30 %metr ic f o r performance
31 mcc = @(tp , tn , fp , fn ) ( tp* tn − fp * fn ) /( s q r t ( ( tp+fp ) *( tp+fn )

*( tn+fp ) *( tn+fn ) ) ) ;
32 f 1 = @(tp , tn , fp , fn ) (2* tp ) /(2* tp+fp+fn ) ;
33
34 metr ic = mcc ;
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Listing A.12: How the different target detection algorithms were tested.

1 f unc t i on [ f i g , res img , r e s p rob ] = t d r e s u l t s (M, gt ,
end name , end s ign , end index , abundance , scene name ,
td a lg , background )

2
3 % M, A 3 dimens iona l datacube
4 % gt , a s p a t i a l 2d r e p r e s e n t a t i o n o f the d i f f e r e n t

c l a s s e s in the image
5 % end name , the name o f the endmember to be detec ted
6 % end s ign , the s i g n a t u r e o f the endmember to be detec ted
7 % end index , the index o f the endmember to be detec ted
8 % abundance , the number o f t a r g e t p i x e l s in the image
9 % td a lg , the func t i on name o f the a lgor i thms used to do

d e t e c t i o n
10 % background the est imated backgroudn i f r e l e v a n t f o r the

d e t e c t i o n a lgor i thm
11
12 %number of b ins = round (0 .25* abundance ) ;
13
14 switch narg in
15 case 8
16 background = −1;
17 case 9
18 %Do nothing ;
19 otherwi se
20 di sp ( 'Wrong number o f arguments' ) ;
21 end
22
23 [ h ,w, d ] = s i z e (M) ;
24 f rom 3d to 2d = @(M) reshape (M, w*h , d) . ' ;
25 f rom 2d to 3d = @(M, h ,w, d) reshape (M. ' , h , w, d) ;
26
27 end s ign = end s ign ' ;
28
29 M2d = from 3d to 2d (M) ;
30
31 i f background == −1
32 r e s 2d = f e v a l ( td a lg ,M2d, end s ign ) ;
33 e l s e
34 r e s 2d = f e v a l ( td a lg , M2d, background , end s ign ) ;
35 end
36
37 r e s p rob = ze ro s (1 , abundance ) ;
38 re s img = from 2d to 3d ( res 2d , h ,w, 1 ) ;
39 [ rows , columns ] = f i n d ( gt == end index ) ;
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40
41 f o r i = length ( rows )
42 r e s p rob ( i ) = res img ( rows ( i ) , columns ( i ) ) ;
43 end
44
45 f i g = histogram ( res prob , 2 0 ) ;
46 t i t l e ( [ end name e ra s e ( td a lg , 'hyper' ) r e p l a c e ( scene name , '

' , ' ' ) ] ) ;
47
48 f i g = 3 ;
49
50 end
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A.4 Other utility code

Listing A.13: Implementation of false color image function

1 f unc t i on [ x img ] = c r e a t e r g b f r o m b i l ( x b i l ,R,G,B,FRA, OS)
2 % Create RGB Image
3 x img = x b i l ( : , : , [R G B] ) ;
4
5
6 % The v a r i a b l e FRA roughly c o n t r o l s the con t ra s t .
7 % I n c r e a s e the value o f FRA to make the image b r i g h t e r .
8 switch narg in
9 case 4

10 FRA = 0 . 0 2 ;
11 OS = 0 . 5 ;
12 case 5
13 OS = 0 . 5 ;
14 end
15
16 % s c a l e the rad iance s from 0 to 1
17 RA = (1 . 0* x img ( : , : , 1 ) ) /max(max( x img ( : , : , 1 ) ) ) ;
18 GA = (1 . 0* x img ( : , : , 2 ) ) /max(max( x img ( : , : , 2 ) ) ) ;
19 BA = (1 . 0* x img ( : , : , 3 ) ) /max(max( x img ( : , : , 3 ) ) ) ;
20
21 RA = OS+(FRA/ std ( std (RA) ) *(RA − mean(mean(RA) ) ) ) ;
22 GA = OS+(FRA/ std ( std (GA) ) *(GA − mean(mean(GA) ) ) ) ;
23 BA = OS+(FRA/ std ( std (BA) ) *(BA − mean(mean(BA) ) ) ) ;
24
25 RA(RA>1) = 1 ; RA(RA<0) = 0 ;
26 GA(GA>1) = 1 ; GA(GA<0) = 0 ;
27 BA(BA>1) = 1 ; BA(BA<0) = 0 ;
28
29 x img ( : , : , 1 ) = RA;
30 x img ( : , : , 2 ) = GA;
31 x img ( : , : , 3 ) = BA;
32
33 %f i g u r e ;
34 imagesc ( x img ) ; a x i s o f f ; a x i s image ;
35
36 end
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Listing A.14: Implementation of the N-FINDR algorithm as found in the toolbox described in
section 3.3.2

1 f unc t i on [U] = hyperNfindr (M, q )
2 % HYPERNFINDR Performs the N−FINDR ( endmember e x t r a c t i o n )

a lgor i thm
3 % Performs the N−FINDR algor i thm to f i n d q endmembers . I f

only M i s
4 % given as input , t h i s func t i on c a l l s hyperHfcVd to

es t imate the number
5 % of endmembers ( q ) and then hyperPct to reduce

d imens i ona l i t y to (q−1) .
6 %
7 % Usage
8 % [U] = hyperNfindr (M)
9 % [U] = hyperNfindr (M, q )

10 % Inputs
11 % M − 2d matrix o f HSI data (p x N)
12 % q − Number o f endmembers to f i n d
13 % −− i f not given , q i s obta ined from hyperHfcVd (M,

10ˆ−3)
14 % Outputs
15 % U − Recovered endmembers (p x q )
16 %
17 % Refe rences
18 % M. Winter , ”N−f i n d r : an a lgor i thm f o r f a s t autonomous
19 % s p e c t r a l endmember determinat ion in hype r spe c t r a l data , ”

S P I E s
20 % I n t e r n a t i o n a l Symposium on Opt ica l Sc ience , Engineer ing ,

and
21 % Instrumentat ion , pages 266 2 7 5 . I n t e r n a t i o n a l Soc i e ty

f o r Optics
22 % and Photonics , 1999 .
23
24 % Error trapping
25 i f ndims (M) ˜= 2
26 warning ( 'WarnTests : dim' , ...
27 ' Input image must be p x N.\n' , ...
28 'Converting with hyperConvert2d .\n' )
29 M = hyperConvert2d (M) ;
30 end
31
32 M orig = M;
33 [ p , N] = s i z e (M) ;
34
35 i f narg in == 1
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36 f p r i n t f ( ' Implementing hyperHfcVd to determine the
number o f endmembers .\n' )

37 q = hyperHfcVd ( M orig , [10ˆ−3]) ;
38 f p r i n t f ( 'Reducing d imens i ona l i t y to (q−1) us ing

hyperPct .\n' )
39 M = hyperPct (M, q−1) ;
40 e l s e i f q < p+1
41 warning ( 'WarnTests : dim' , ...
42 s t r c a t ( 'N−FINDR r e q u i r e s (q−1) s p e c t r a l bands .\n' , ...
43 'Performing PCA to reduce d imens i ona l i t y .\n' ) )
44 M = hyperPct (M, q−1) ;
45 e l s e i f q > p+1
46 warning ( 'WarnTests : dim' , ...
47 s t r c a t ( 'N−FINDR r e q u i r e s (q−1) s p e c t r a l bands .\n' , ...
48 'Performing PCA to reduce d imens i ona l i t y .\n' ) )
49 e r r o r ( 'ErrTests : dim' , ...
50 s t r c a t ( 'N−FINDR cannot f i n d more than (p+1)

endmembers ( q ) ,\n' , ...
51 'where p i s the number o f a v a i l a b l e s p e c t r a l

bands .\n' ) )
52 end
53
54 % I n i t i a l i z e
55 U idx = randperm (N, q ) ; % Random endmember s e l e c t i o n
56 E = M( : , U idx ) ; % Endmember matrix
57 V = abs ( det ( [ ones (1 , q ) ; E ] ) ) / f a c t o r i a l (q−1) ; %

Simplex volume
58 v o l s = ze ro s (q , 1 ) ;
59
60 % Search f o r maximum volume simplex
61 f o r j = 1 :N;
62 % Replace each column o f E with sample vec to r M( : , j )
63 % and compute the volume f o r each
64 f o r k = 1 : q ;
65 E tmp = E;
66 E tmp ( : , k ) = M( : , j ) ;
67 v o l s ( k ) = abs ( det ( [ ones (1 , q ) ; E tmp ] ) ) /

f a c t o r i a l (q−1) ;
68 end
69 % I f max volume i s g r e a t e r than prev ious V, update E

and V
70 [ V tmp , k idx ] = max( v o l s ) ;
71 i f V tmp > V
72 V = V tmp ;
73 E( : , k idx ) = M( : , j ) ;

122



74 U idx ( k idx ) = j ;
75 end
76 end
77
78 % Return endmembers
79 U = M orig ( : , U idx ) ;
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Appendix B
Instrument Specifications

In this part of the appendix a short descriptions of the different instruments are given.
Unfortunately they do not follow the same structure, but most of the useful information is
there.
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Imaging Spectroscopy and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS)

Robert O. Green, Michael L. Eastwood, Charles M. Sarture,
Thomas G. Chrien, Mikael Aronsson, Bruce J. Chippendale,
Jessica A. Faust, Betina E. Pavri, Christopher J. Chovit,
Manuel Solis, Martin R. Olah, and Orlesa Williams

Imaging spectroscopy is of growing interest as a new ap- radiation with matter. Imaging spectroscopy in the solar
proach to Earth remote sensing. The Airborne Visible/In- reflected spectrum was conceived for the same objective,
frared Imaging Spectrometer (AVIRIS) was the first im- but from the Earth looking and regional perspective
aging sensor to measure the solar reflected spectrum from (Fig. 1). Molecules and particles of the land, water and
400 nm to 2500 nm at 10 nm intervals. The calibration atmosphere environments interact with solar energy in
accuracy and signal-to-noise of AVIRIS remain unique. the 400–2500 nm spectral region through absorption, re-
The AVIRIS system as well as the science research and flection, and scattering processes. Imaging spectrometers
applications have evolved significantly in recent years. The in the solar reflected spectrum are developed to measure
initial design and upgraded characteristics of the AVIRIS spectra as images in some or all of this portion of this
system are described in terms of the sensor, calibration, spectrum. These spectral measurements are used to de-
data system, and flight operation. This update on the char- termine constituent composition through the physics and
acteristics of AVIRIS provides the context for the science chemistry of spectroscopy for science research and appli-
research and applications that use AVIRIS data acquired cations over the regional scale of the image.
in the past several years. Recent science research and ap- To pursue the objective of imaging spectroscopy, the
plications are reviewed spanning investigations of atmo- Jet Propulsion Laboratory proposed to design and de-
spheric correction, ecology and vegetation, geology and velop the Airborne Visible/Infrared Imaging Spectrome-
soils, inland and coastal waters, the atmosphere, snow and ter (AVIRIS) in 1983. AVIRIS first measured spectral
ice hydrology, biomass burning, environmental hazards, images in 1987 and was the first imaging spectrometer
satellite simulation and calibration, commercial applica- to measure the solar reflected spectrum from 400 nm to
tions, spectral algorithms, human infrastructure, as well as 2500 nm (Fig. 2). AVIRIS measures upwelling radiance
spectral modeling. Elsevier Science Inc., 1998 through 224 contiguous spectral channels at 10 nm inter-

vals across the spectrum. These radiance spectra are
measured as images of 11 km width and up to 800 km

INTRODUCTION length with 20 m spatial resolution. AVIRIS spectral im-
ages are acquired from the Q-bay of a NASA ER-2 air-Spectroscopy is used in the laboratory in the disciplines
craft from an altitude of 20,000 m. The spectral, radio-of physics, chemistry, and biology to investigate material
metric, and spatial calibration of AVIRIS is determinedproperties based on the interaction of electromagnetic
in laboratory and monitored inflight each year. More
than 4 TB of AVIRIS data have been acquired, and the
requested data has been calibrated and distributed to in-Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California vestigators since the initial flights.
Address correspondence to R. O. Green, JPL Mail-Stop 306-438, AVIRIS has measured spectral images for science

4800 Oak Grove Dr., Pasadena, CA 91109-8099. E-mail: rog@gomez. research and applications in every year since 1987. Morejpl.nasa.gov
Received 24 June 1998; accepted 8 July 1998. than 250 papers and abstracts have been written for the

REMOTE SENS. ENVIRON. 65:227–248 (1998)
Elsevier Science Inc., 1998 0034-4257/98/$19.00
655 Avenue of the Americas, New York, NY 10010 PII S0034-4257(98)00064-9
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Figure 1. The concept of imaging spectroscopy is shown with a spectrum measured for each spatial element in a image. The
spectra are analyzed for science research and applications in a range of disciplines.

AVIRIS workshops (Vane, 1988, Green, 1990a; 1991; 1992; the AVIRIS system. The article also reviews a range of
science research and applications results and objectives1993; 1995; 1996a). The workshop documents and addi-
pursued with AVIRIS and provides a context for the ac-tional information are maintained on the AVIRIS website
companying articles in this journal special issue.(http://makalu.jpl.nasa.gov/AVIRIS.html). In the past 10

years, there have been a comparable number of AVIRIS
papers written for other workshops, symposia, and confer-

SENSORences. A previous special journal issue related to AVIRIS
has been published (Vane, 1993). There are additional AVIRIS is a sophisticated and complex optical sensor sys-

tem involving a number of major subsystems, compo-AVIRIS related articles and papers throughout the re-
mote sensing literature. nents, and characteristics (Table 1). Taken together,

these result in the AVIRIS data characteristics (Table 2).The AVIRIS system has been upgraded and im-
proved in a continuous effort to meet the requirements The AVIRIS sensor receives white light in the foreop-

tics, disperses the light into the spectrum, converts theof investigators using AVIRIS spectral images for science
research and applications. These improvements have photons to electrons, amplifies the signal, digitizes the sig-

nal and records the data to high density tape. The majorbeen directed towards the AVIRIS sensor, calibration,
data system, and flight operations. In parallel with the subsystems of the sensor are the: scan mirror, foreoptics,

spectrometers, detectors, onboard calibrator, and elec-sensor, the science research and applications pursued
with AVIRIS have diversified and evolved. This article tronic signal chain (Fig. 3). The initial design contained

many opportunities for improvements with advances indescribes the characteristics and recent improvements to
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Figure 2. The 224 spectral chan-
nels of AVIRIS are shown with a
transmittance spectrum of the at-
mosphere as well as the six solar
reflected bands of the Landsat
Thematic Mapper.

technology. The initial design, subsequent improvements, scan (Miller, 1987). The AVIRIS scan drive approaches
and the signal path through AVIRIS are described. 70% efficiency. The great advantage of a whiskbroom

The upwelling radiance arriving at AVIRIS in flight scanner is that the light for every spatial element passes
(Fig. 4) enters through at 2.54-cm-thick hatch window in through the same path of the optical system. This gives
the ER-2 aircraft. This hatch window is composed of exceptional uniformity for the 614 cross-track spatial
low-water fused silica and has an average transmittance samples in each AVIRIS image scan line.
of better than 0.95 across the spectrum. An antireflection After reflection from the scan mirror the light from
coating was applied to the hatch window to further im- the two facets is recombined using a set of fold flats and
prove transmittance. Light arriving from the hatch window then focused using a paraboliod and elliptical mirror. A
passes through the AVIRIS aperture door and is reflected final fold flat is used to direct the focused light to an
into the foreoptics by an oscillating whiskbroom scan array of optical fibers. The first three mirrors are coated
mirror. The aperture door is closed to protect the scan with high-reflectivity silver, the last two mirrors are alu-
mirror and foreoptics and automatically opened only minum. The 200 mm effective focal length of the fore-
when spectral images are being measured. The door re- optics and the 200 lm diameter entrance aperture of the
places a protective aperture window that reduced through- fibers define the 1 milliradian instantaneous field of view
put and introduced a small amount of scattered light into (IFOV) of the AVIRIS sensor. A mechanical shutter is
the AVIRIS foreoptics. The scan mirror is silver-coated
and triangular in cross section with two primary facets
giving a 10 cm by 20 cm equivalent area. The oscillating Table 2. Nominal AVIRIS Data Characteristics
scan drive sweeps the mirror across the active 308 field

Spectralof view of the Earth at a rate of 12 Hz. Significant engi-
Wavelength range 400–2500 nmneering effort was required to develop a scan drive to Sampling 10 nm

sweep linearly across the 308 field-of-view and then fly Spectral response (fwhm) 10 nm
Calibration accuracy ,1 nmback at nearly twice the speed to start the next imaging

Radiometric
Radiometric range 0 to maximum lambertian radiance
Sampling z1 DN noise RMSTable 1. AVIRIS Sensor Characteristics
Absolute calibration >96%
Inter flight stability >98%Imager type Whiskbroom scanner

Scan rate 12 Hz Signal-to-noise Exceeding 100:1 requirement
Polarization sensitivity <1%Dispersion Four grating spectrometers (A,B,C,D)

Detectors 224 detectors (32, 64, 64, 64) Si and InSb Spatial (at 20 km altitude)
Field of view 30 degrees (11 km)Digitization 12 bits

Data rate 20.4 mbits/s Instantaneous FOV 1.0 mrad (20 m)
Calibration accuracy <0.1 mradSpectrum rate 7300 spectra/s

Data capacity .10 GB (.8000 km2) Flight line length 800 km total
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Abstract

 The Reflective optics system imaging spectrometer ( ROSIS ) is a compact programmable imaging spectrometer
based on a CCD matrix detector array . The instruction has been designed specially for the monitoring for the of
water color and of natural chlorophyll fluorescence in order to quantitatively derive pigments suspended matter
and yellow substance distributions in the marine environment how ever its high spectral resolution of £ 5 nm also
permits many new air borne new application in vegetation monitoring and in atmospheric physics an air borne
prototype IS ROSIS IS jointly developed at present by MBB GKSS and DFVLR the instrument concept the scope
of applications and the relationship to ESA earth observation programme and to NASA earth observation system
is discussed. 

  
Imaging spectroscopy

 The future observation system by NASA and the earth observation programme by ESA rely to a large extent on
the imaging spectrometers like the high resolution imaging spectrometer the moderate resolution imaging
spectrometer or the medium resolution imaging spectrometer in addition to other operational sensors these are
expect to largely improve the monitoring capabilities for climatology and environment studies in regard to ocean
land and atmospheric parameters. 

  
The main advantage of imaging spectrometers in comparison to conventional optional mechanical multi spectral
scanners is the availability of a large number of narrow band width spectral channel combined with the positively
of an applications specific selection of a few channels for data recording or transmission this permits the use of a
single for a variety of monitoring tasks sensor alternatives focus instead on either medium of high geometric
resolution (HIRIS, HRIS). 

  
The Narrow band width channels permit a detailed analysis of spectral fine structures which are present in many
signatures related to marine biology pigment fluorescence water pollution vegetation stress land use geology
atmospheric absorption features etc. As a result these sensors will permit an essential improvement of data
interpretation for environmental monitoring. 

  
In preparation of NASA and ESA future space programmers a few air borne prototypes of such sensors have
been developed and used during the past few years Typical examples are the air borne imaging spectrometer
from the U.S jet propulsion Laboratory or the Fluorescence line manager from the Canadian Department of
Fishers and oceans while the former was designed mainly for the monitoring of mineralogical features the design
driver for the latter was based on earlier experience with modern CCD technology a new sensor for water color
monitoring from space was studied during 1986/87 by the company MBB on observation mission with ESA's
European Retrievable Carrier an air borne prototype of this under construction the instrument conception its future
applications are discussed in the following sections . 
 
ROSIS

1. Cooperation agreement
 Based on the EURECA / ROSIS experience an agreement between the organizations GKSSS MBB and

DFVLR was signed in 1987 with the aim to develop jointly an aircraft prototype of ROSIS .In order to meet
future requirements in regard to ESA's polar platform missions there aircrafts version was to be developed
as closely as possible to the spacecraft version studied already before. And after through tests in to
laboratory the instrument will be ready for the first flight tests in early 1990. 

  
2. Optical system

 In order to meet the stringent radiometric requirements of a water color florescence sensor throughout the
relevant spectral range the optical system incorporates reflectance components only (Figure 1): 

  
i. The image on ground is relayed through a baffle via a lift mirror the purpose of which is to shift the

scan line either forward or aft for sun glint avoidance, onto the
  

ii. two telescope mirrors, which focus the image on to the entrance slit of the spectrometer (the
entrance slit represents the actual scan line on ground by cutting off the rest FOV);



 
iii. the focused scan line image is expanded and paralcllized through a collimator system (two spherical

mirrors) for
  

iv. dispersion by means of a reflective grating (bottom of the housing); 
  

v. the collimating system (using again the same spherical mirrors) subsequently focuses the beam via
a small deflection mirror onto the CCD detector (top of housing);

  
vi. the trigger and read-out electronics is arranged on top of the array so as to avoid long connections

 
The front-end tilt mirror also serves as a means to reflect diffuse sun light into the system for calibration
purposes(the reverse slide is covered by a diffuser).Further more, the same mirror is used in an
intermediate position as shutter to enable dark current measurements. 

  
The off-axis system compensates partially for the slit curvature in the focal plane. The optical performance
data are summarized in Table1.

  
Figure 1. ROSIS optical scheme.

 
 

3. Dectator array
 A matrix detector array of the type Thomson CSF model THX 31156 is incorporated in to the design

(Table2).Thisallows1024 picture elements to be used across the scan perpendicular to the flight direction
85 spectral channel corresponding to the spectral range from 430 to 850 nm can be used in the spectral
mode. all the other detector elements on the elements on the array are masked or used as intermediate
storage. 

  
However since the above mentioned detector will become only available later the present ROSIS
instrument will be temporarily operated with the detector model TH 7884 which permits the use of only 500
detector elements across the scan line this can be mounted either off axis for tests of the system or
alternatively in 

  
Table 1. ROSIS optical performance data 

 Total FOV................................................................. ±16 degrees
 IFOV ........................................................................ 0.56 mrad

 F Number ................................................................ 3.6 Distortion
................................................................ £ 2 %

 Grating constant ..................................................... n = 55
 Blaze angle ............................................................ 1.01 degrees

 Spectral angle ....................................................... 430 - 860 nm
 Spectral range ...................................................... 5 nm / detector

element
 Tilt ...................................................................... ± 20 degrees

 
Table 2. ROSIS detector array 

 Present Type ............................................................... Thomson CSF
TH 7884

Lines / Columns ............................................... 512 X 500
 Element size .................................................... 23.5 x 18.5 mm 

 Dynamic range ................................................ 3300 :1
 operation mode ............................................... frame transfer

Future Type ............................................................... Thomson CSF
THX 31156

Lines / Columns ............................................... 1024 X 1024
 Element size .................................................... 19.0 x 19.0 mm 

 Dynamic range ................................................ 5000 : 1
 operation mode ............................................... frame transfer

 
the center for flight operations with FOV of 16 degrees this detector will be replaced once the large one will
become commercially available . 

  
4. Operation modes

 Similar to the FLI the air borne ROSIS can be operated either in the spatial or alternatively in the spectral



mode (Table 3). 
  

The spatial mode allows the full geometric resolution to be recorded in up to 32spectral channels .the
spatial mode allows all 85 spectral channels to be recorded simultaneously at a reduced spatial resolution
the center wave length can be adjusted electronically in 1 mm steps. 

  
5. Data recording

 The control of ROSIS, the real-time quick look and the recording of data is done by means of a multi
processors based VME bus system using OS/9 as real time operating system all memories on processor
and inter face modules are dual-ported. 

  
Table 3. Rosis operation modes

 Imaging mode:

500 pixel across track ( with detector TH 7884
 any of 65 wavelength selectable upon command

 recording of up to 32 selected channels.

Spectral mode:

85 adjacent spectral channels ( 430 850 nm)
 every third pixel or across track.

 
The data from ROSIS are transferred in to system as a block of one frame with up to 16 k 12 bit words.
data are accepted from the aircraft inertial navigation system and from other instruments via an ancillary
data inter face processor the final frame is built up in the main memory and then transformation to the disc
controller which packs the information and writes it on the storage medium this will be a 51 /4 erasable will
once optical disc with 1 GB storage capacity. 

  
The control processor checks the dynamic range of the radiance data and the environmental of the
instrument it allows the operator to display the numeric or graphic form and to program the sampling mode
adjustment a protocol of all actions is recorded on floppy disc the quick look image processor with color
display provides the operator with a continuously updated image of the data. 

  
The data rate is at present maximum 85 frames per second with 2.2 MB/s. 

  
6. Future developments

 After tests flights to be performed by GKSS and DFVLR it is a planned to incorporate a wider user
community in to the ROSIS data and application by means of an extensive flight programme. 

  
The present aircraft prototype of ROSIS will eventually be modified as indicated with the larger detector
array so as to permit imaging of the full 32 degree FOV for which the optical system has been designed
further developments may include an extension of the special range in to the short wave infrared so to be
compactable with sensors like the thematic mapped or similar. 

  
In regard to space flights further studies are presently performed so as investigate in more detail the
possibilities of applying the ROSIS concept to the requirements of MERIS and MODIS T incorporated in
ESA EOP and NASA EOS as part of the Columns space programmed 

  
The rapidly increasing demand for environmental monitoring may also lead to a combined mission for
monitoring the atmosphere plus and the coastal environmental vegetation stress water pollution and
Biomass through during a period after NASA Upper Atmospheric research Satellite Mission and prior to the
EOP /EOS programme i.e in the middle of the next decade investigations are taking asoas the determine
how ROSIS could be modified to include the ultra spectral range for measuring solar back scattered
radiation around nadir.

Applications
 Monitoring of the water color fluorescence permits applications in the fields of marine biology and ecology water

pollution and sediment transport citatory and monitoring of dynamic features. 
  

It is expected that the narrow spectral bands of ROSIS in combination with the programmable channel selection
bands of ROSIS in water color monitoring in parameters in case II waters where the presence of components
such as yellow substance or sediments restrict the use of color ratios fore a quantities interpretation of spectral . 
 
The possibility to adapt the spectral channels to the pigments of different populations will improve the sensitivity
and specify of the system for monitoring also exceptional restricts blooms by means of color ratios or by inverse
modeling of spectral . 

 



 
In additions it will permit a precise selection of several atmosphere correction channels for the aerosol
determination as well as suitable channels for establishing a base for an evaluations of the fluorescence signal. 

  
Future land applications in context with NASA EOS will include especially the advanced monitoring to tropical rain
forest vegetation index stress plant diseases and land use. it is expected that the high spectral resolution will also
permit an analysis of the red edge shift of the pant albedo associated with stress features . 

  
The precise positioning of narrow band channels is expected to open addition measurements also in the field of
atmospheric physics which sofar could be dealt with if at all only with active optical or micro wave sensors. These
aspects include

Cloud height atmospheric pressure determination by comparative analysis of radiances originating from the
surface and cloud tops.
Optical depth of clouds and droplet size determination by means of comparison of different liquid water
absorption bands.
Water vapour column content through a comparison of relative differences of radiance ratios with in out
side water vapour rotation bands.
acrosol type and concentration determination from radiances especially in the near infrared region.
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Scientific UHI 

 
Underwater hyperspectral imaging system 
Hardware 

The UHI is a hyperspectral imager optimized for underwater use. This opens 

up an entirely new layer of detail in remote sensing previously only available 

for airborne-based platforms. With the UHI, the field of hyperspectral 

imaging is now available for subsea applications. The UHI is capable of 

acquiring information in the entire visible color spectrum (370-800nm - 

adjustable). Data from the UHI can thus be used to detect biological and 

chemical characteristics of seafloor habitats, as well. 

The UHI-system integrates with most modern ROV-systems using off-the-

shelf connectors and Ethernet-connection. It can also be independently 

operated on other underwater platforms. Mounted with a clear view of the 

seafloor and flanked by dedicated lights, the UHI will acquire data frame-by-

frame as the platform moves. The data archives (hyperspectral cube, 

navigation data, video*) is stored locally and can be transferred topside 

Software 

The unit is delivered complete with control software necessary to acquire and preprocess data. All 

hyperspectral and ancillary data is stored in a structured archive file. The control software enables 

communication with the deployed unit, and provides the following functions: 

 Live view and acquisition of hyperspectral data (RGB and spectrum) and video stream 

 Adjust spatial/spectral binning 

 Adjust framerate/integration time and gain 

 Parsing, synchronizing and storing of navigation data from ROV and GPS. 

 

Hyperspectral imaging 
A hyperspectral imager can record 

the full electromagnetic spectrum in 

each image pixel. This is a 

representation of the light energy 

reflected and absorbed off of an 

object, and can be used to detect and 

discriminate unique characteristics of 

materials and features. Objects of 

different colors and materials will 

have different spectral response in 

the image, and the identifying 

features can be used as an “optical 

fingerprint” pertaining to that 

particular object. 



 

 
   

 

UHI Technical Specifications 

UHI model  UHI4 

Depth rating 3000 m (Other depth options on request) 

Imager Specifications  

Imaging range   0.2m to 5m typical (Depends on illumination)  

Imager update rate:  Adjustable up to 65 hz 

Field of view transverse:  ~ 60° standard (Spec. upon order)  

Field of view longitudinal:  ~ 0.4° standard (Spec. upon order)  

Camera resolution:  1920 spatial pixels (resolution adjustable via spatial binning) 

Data Range  12-bit  

Spectral Range 370-800 nm (resolution adjustable via spectral binning) 

Focus Manual adjustable 

Interface Specifications  

Communication:  Ethernet (standard) 

Input voltage:  12 to 36 VDC  

Power consumption:  Max. 35 W (20W typical) 

Integrated computer 

Integrated computer Intel i7, 8 GB ram, Linux OS  

Internal data storage: 1TB M.2 SSD 

System startup time: 30 sec 

Software Specifications 

Data acquisition and preprocessing “Immersion”, acquisition software for hyperspectral data, video and navigation data 

File compatibility Compatible with ENVI and other spectral analysis applications. 

Environmental Specifications  

Operation temperature (in water):  -5°C to +30°C  

Operation temperature (in air):  -5°C to +20°C  

Storage temperature:  -20°C to +50°C  

Mechanical Specifications  

Weight without mounting bracket (air/water)  Approx. 11/6 kg (3000m version) 

Size (Length x Diameter)  Approx. 355 x 135 mm (3000m version) 

Connector Type:  Subconn DFCR2013M (standard) 

Housing Material:  Titanium GR 5  

Front port material: Fused silica 

Delivery Specifications 

Included in standard delivery 
 UHI and software 

 Connector dust cap 

 Pelicase for transport and storage 

 Power supply 

Optional equipment/services 

Upgraded internal data storage One additional 1TB SSD 

Quick mounting bracket Flexible mounting bracket for integration on an underwater platform. Carrying handle included. 

Integrated IMU 
Integrated Inertial Measurement Unit (IMU) for high-resolution attitude information (pitch, roll, 
yaw) of the UHI. 

Integrated video camera 
5 MP (2592 x 1944) camera, providing live view and video recording of the same field of view as 
the hyperspectral camera. 

Contact Information 

 
 support@ecotone.com 



Table 1. HICO Parameters

Value Comment

ISS
Orbital altitude ≈350km May rise to 400km over a 1–3 year mission
Inclination 51:6° HICO’s latitude range ≈þ 54°= − 53°;

it covers 80% of the Earth’s surface
Period 91:5 min 15.7 orbits/day; the HICO can do

one scene per orbit
Ground speed 7:0km=s Speed of sub-ISS point on ground,

includes Earth rotation
HICO Hardware Lens
FL 67:16mm Gives 83m nadir IFOV for

16 μm pixels and 350km altitude
Clear aperture 19mm f =3:5 gives desired radiometrics
FOV 6:92° ð�3:46°Þ Covers 512 cross-track pixels

(see Subsection 2.C)
Spectrometer
Slit width 16 μm Matches CCD pixel size
Blaze wavelength of grating 400nm High efficiency in first-order blue light
Blazed fraction of groove ≈90% of groove spacing High efficiency
CCD CCD97 from e2v Technologies
Pixel size 16 μm Gives 83m nadir IFOV for 16 μm pixels

and 350km altitude
IFOV 0:01365° See Eq. (2)
Array size, total used 512 × 512 512 ðspatialÞ × 384 ðspectralÞ One spatial pixel ¼ 83m at 350km

altitude; one spectral pixel ¼1:91nm
Spectral sample width (normal) 5:73nm Three-pixel on-chip binning
Spectral sample width (HR mode) 1:91nm On-orbit wavelength calibration

check (no binning)
Digitization 14 bits Maximum DN ¼ 16; 383
Dark noise ≈3:8DN Dynamic range: 16; 000=3:8 ¼ 4200
Photoelectrons/DN 26� 2 Photon-limited SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

26 × DN
p

Operations
Stable exposure time 12:64ms (28:94ms in HR mode) See Subsection 2.A and Appendix A
Frame transfer time 1:11ms See Subsection 2.A and Appendix A
Exposure time (total frame time) 13:75ms ð12:64þ 1:11)

(30:05ms in HR mode)
Along-track GSD ¼ 96m
(210m in HR mode)

Scene time 275 s ð0:01375 × 2000Þ
15 s ð0:03 × 500Þ in HR mode

Scene ¼ 2000 frames in normal mode
and 500 frames in HR mode

Data volume normal mode
Data bytes/frame 512 × 128 × 2 ¼ 131KB BIL format
Frames per observation 200darkþ 2000 sceneþ dark ¼ 2400 total ð13:75ms=frameÞ × ð2000 framesÞ

⇒ 2:75 s to record scene
Data bytes/scene 131KB × 2400 ¼ 315MB —

Data volume HR (hi-res.) mode
Data bytes/frame 512 × 384 × 2 ¼ 393KB BIL format
Frames per observation 100darkþ 500 sceneþ 100dark ¼ 700 ð30:05ms=frameÞ × ð500 framesÞ

⇒ 15 s to record scene
Data bytes/scene 393KB × 700 ¼ 275MB —

Performance
Off-nadir pointing
(normal flight mode)

45° to port (north), 30°
to starboard (south)

Accessible ground swath ≈550km

Observed ground swath width 42km (nadir, 350km altitude) Up to 92km at 45° off nadir
GSD 83m cross-track (nadir, 350km altitude) Proportional to altitude
GSD 96m along track (210m in HR mode) Proportional to frame time
Scene length 192km ð2000 × 96mÞ (105km in HR mode) Maximum, can be shorter
Scene area ð42kmwideÞ × ð192km longÞ

≈8000km2 (nadir view)
Encompasses the scale
of coastal dynamics

Spectral range Nominal: 350–1080nm; best data: 400–900nm —

Spatial FWHM 1.6 pixels typical (130m at nadir, 350km) See Fig. 3
Spectral FWHM 1.9 pixels typical (3:6nm) See Fig. 5
Keystone <0:2pixels ð0:4nmÞ, mostly Minimal spatial smearing; see Fig. 4
Spectral tilt <0:15pixels ð0:3nmÞ, mostly Minimal spectral smearing; see Fig. 6
Spectral smile Negligible See Fig. 6
Polarization sensitivity <4% for most wavelengths See Fig. 7
SNR >200:1 over 400–600nm

for shallow water (see Fig. 13)
For 11:46nm spectral bins, allows
removal of atmospheric effects

10 April 2011 / Vol. 50, No. 11 / APPLIED OPTICS 1503
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Appendix C
Compression on HICO and
Synthetic Data

C.1 Compression on HICO
On the following page the results discussed in section 4.1.1 is given. The file names
corresponds with figure 3.19 from left to right in numbering. The names were given by the
on-board processing group. The ”missing” fifth file was not available when the simulation
was performed. It was processed by the NASA SeaDAS processing software[12], and is
thus not an example of unprocessed data.
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Results from compression on HICO

Files HICO L1B_1 HICO L1B_2 HICO L1B_3 HICO L1B_4 HICO L1B_6
Methods PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR

PCA 5 36.33 25.60 35.50 25.60 38.31 25.60 54.33 25.60 35.50 25.60

PCA 10 48.54 12.80 60.25 12.80 54.38 12.80 58.95 12.80 62.66 12.80

PCA 20 60.58 6.40 73.60 6.40 69.91 6.40 72.67 6.40 74.77 6.40

PCA 30 75.58 4.27 81.05 4.27 80.18 4.27 78.55 4.27 81.25 4.27

PCA 40 83.46 3.20 84.62 3.20 84.34 3.20 81.93 3.20 84.50 3.20

PCA 50 86.42 2.56 87.21 2.56 87.01 2.56 84.85 2.56 87.22 2.56

MNF 5 29.48 25.60 31.42 25.60 28.64 25.60 36.42 25.60 29.88 25.60

MNF 10 29.59 12.80 32.72 12.80 29.50 12.80 37.88 12.80 31.24 12.80

MNF 20 30.32 6.40 33.34 6.40 31.32 6.40 38.38 6.40 32.42 6.40

MNF 30 32.73 4.27 37.61 4.27 33.42 4.27 38.97 4.27 36.74 4.27

MNF 40 36.35 3.20 39.80 3.20 34.17 3.20 45.76 3.20 38.21 3.20

MNF 50 36.95 2.56 40.36 2.56 35.38 2.56 48.69 2.56 39.37 2.56

JADE ICA 5 41.57 25.60 40.65 25.60 38.69 25.60 54.44 25.60 39.25 25.60

JADE ICA 10 52.49 12.80 61.37 12.80 57.32 12.80 58.92 12.80 59.68 12.80

JADE ICA 20 60.61 6.40 70.20 6.40 63.36 6.40 63.37 6.40 64.92 6.40

JADE ICA 30 66.27 4.27 71.76 4.27 66.15 4.27 66.91 4.27 67.27 4.27

JADE ICA 40 69.32 3.20 72.21 3.20 68.28 3.20 67.44 3.20 67.88 3.20

JADE ICA 50 70.36 2.56 73.13 2.56 69.32 2.56 67.88 2.56 68.75 2.56



C.2 Compression on Synthetic Data Sets
In figure C.1 all the abundance plot of the synthetic files are given.

On the following page the results discussed in section 4.1.2 is given. Figures from this
simulation can be found at http://folk.ntnu.no/sivertba/master_thesis/.
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Figure C.1: The synthetic figures discussed in section 4.1.2

140



File 1 File 2 File 3
Name mse PSNR mean SNR CR mse PSNR mean SNR CR mse PSNR mean SNR CR
original PCA_5 8,39E-06 40,60 34,66 20,20 8,38E-06 41,34 35,62 20,20 8,37E-06 41,34 34,48 20,20
original MNFg_5 8,43E-11 90,58 84,64 20,20 4,42E-11 94,12 88,39 20,20 6,66E-12 102,34 95,47 20,20
original ICA_5 8,39E-06 40,60 34,66 20,20 8,38E-06 41,34 35,62 20,20 8,37E-06 41,34 34,48 20,20
original PCA_10 5,76E-06 42,23 36,29 10,10 4,39E-06 44,15 38,43 10,10 7,09E-06 42,07 35,20 10,10
original MNFg_10 6,17E-11 91,93 85,99 10,10 3,95E-11 94,60 88,88 10,10 2,15E-12 107,25 100,38 10,10
original ICA_10 5,76E-06 42,23 36,29 10,10 4,39E-06 44,15 38,43 10,10 7,09E-06 42,07 35,20 10,10
original PCA_20 4,68E-06 43,13 37,19 5,05 3,52E-06 45,10 39,38 5,05 5,75E-06 42,97 36,11 5,05
original MNFg_20 7,65E-12 101,00 95,06 5,05 3,48E-11 95,15 89,43 5,05 2,02E-12 107,52 100,65 5,05
original ICA_20 4,68E-06 43,13 37,19 5,05 3,52E-06 45,10 39,38 5,05 5,75E-06 42,97 36,11 5,05
original PCA_30 4,50E-06 43,30 37,37 3,37 2,91E-06 45,93 40,21 3,37 5,61E-06 43,09 36,22 3,37
original MNFg_30 7,62E-12 101,01 95,08 3,37 2,57E-11 96,48 90,76 3,37 2,01E-12 107,54 100,67 3,37
original ICA_30 4,50E-06 43,30 37,37 3,37 2,91E-06 45,93 40,21 3,37 5,61E-06 43,09 36,22 3,37
original PCA_40 4,11E-06 43,70 37,77 2,53 2,74E-06 46,19 40,47 2,53 5,32E-06 43,32 36,45 2,53
original MNFg_40 7,59E-12 101,03 95,10 2,53 1,96E-11 97,64 91,92 2,53 2,00E-12 107,56 100,69 2,53
original ICA_40 4,11E-06 43,70 37,77 2,53 2,74E-06 46,19 40,47 2,53 5,32E-06 43,32 36,45 2,53
original PCA_50 3,77E-06 44,07 38,13 2,02 1,87E-06 47,85 42,13 2,02 5,10E-06 43,50 36,63 2,02
original MNFg_50 7,58E-12 101,04 95,10 2,02 1,83E-11 97,96 92,23 2,02 2,00E-12 107,56 100,69 2,02
original ICA_50 3,77E-06 44,07 38,13 2,02 1,87E-06 47,85 42,13 2,02 5,10E-06 43,50 36,63 2,02
gauss PCA_5 9,02E-06 40,28 34,35 20,20 1,58E-05 38,57 32,85 20,20 8,34E-06 41,36 34,49 20,20
gauss MNFg_5 1,24E-06 48,89 42,96 20,20 1,35E-06 49,27 43,55 20,20 1,20E-06 49,78 42,92 20,20
gauss ICA_5 9,02E-06 40,28 34,35 20,20 1,58E-05 38,57 32,85 20,20 8,34E-06 41,36 34,49 20,20
gauss PCA_10 8,50E-06 40,54 34,61 10,10 1,55E-05 38,66 32,93 10,10 8,02E-06 41,53 34,66 10,10
gauss MNFg_10 1,23E-06 48,93 43,00 10,10 1,30E-06 49,42 43,69 10,10 1,17E-06 49,88 43,01 10,10
gauss ICA_10 8,50E-06 40,54 34,61 10,10 1,55E-05 38,66 32,93 10,10 8,02E-06 41,53 34,66 10,10
gauss PCA_20 7,43E-06 41,13 35,19 5,05 1,49E-05 38,83 33,11 5,05 7,25E-06 41,97 35,10 5,05
gauss MNFg_20 1,19E-06 49,10 43,16 5,05 1,25E-06 49,59 43,86 5,05 1,18E-06 49,84 42,97 5,05
gauss ICA_20 7,43E-06 41,13 35,19 5,05 1,49E-05 38,83 33,11 5,05 7,25E-06 41,97 35,10 5,05
gauss PCA_30 6,43E-06 41,76 35,82 3,37 1,41E-05 39,08 33,35 3,37 6,75E-06 42,28 35,41 3,37
gauss MNFg_30 1,16E-06 49,21 43,27 3,37 1,26E-06 49,56 43,83 3,37 9,80E-07 50,66 43,79 3,37
gauss ICA_30 6,43E-06 41,76 35,82 3,37 1,41E-05 39,08 33,35 3,37 6,75E-06 42,28 35,41 3,37
gauss PCA_40 5,74E-06 42,25 36,31 2,53 1,25E-05 39,62 33,89 2,53 5,83E-06 42,92 36,05 2,53
gauss MNFg_40 1,11E-06 49,37 43,43 2,53 1,23E-06 49,68 43,96 2,53 9,93E-07 50,60 43,73 2,53
gauss ICA_40 5,74E-06 42,25 36,31 2,53 1,25E-05 39,62 33,89 2,53 5,83E-06 42,92 36,05 2,53
gauss PCA_50 4,65E-06 43,16 37,22 2,02 9,40E-06 40,84 35,12 2,02 5,02E-06 43,56 36,69 2,02
gauss MNFg_50 9,95E-07 49,86 43,92 2,02 1,25E-06 49,60 43,87 2,02 9,59E-07 50,76 43,89 2,02
gauss ICA_50 4,65E-06 43,16 37,22 2,02 9,40E-06 40,84 35,12 2,02 5,02E-06 43,56 36,69 2,02
poisson PCA_5 8,39E-06 40,60 34,66 20,20 8,41E-06 41,32 35,60 20,20 8,41E-06 41,32 34,46 20,20
poisson MNFg_5 8,94E-07 50,32 44,39 20,20 8,91E-07 51,08 45,35 20,20 1,60E-06 48,53 41,66 20,20
poisson ICA_5 8,39E-06 40,60 34,66 20,20 8,41E-06 41,32 35,60 20,20 8,41E-06 41,32 34,46 20,20
poisson PCA_10 8,32E-06 40,63 34,70 10,10 8,20E-06 41,43 35,71 10,10 8,38E-06 41,34 34,47 10,10
poisson MNFg_10 8,64E-07 50,47 44,54 10,10 8,59E-07 51,23 45,51 10,10 1,40E-06 49,11 42,24 10,10



poisson ICA_10 8,32E-06 40,63 34,70 10,10 8,20E-06 41,43 35,71 10,10 8,38E-06 41,34 34,47 10,10
poisson PCA_20 8,03E-06 40,79 34,86 5,05 7,97E-06 41,56 35,83 5,05 8,26E-06 41,41 34,54 5,05
poisson MNFg_20 6,83E-07 51,49 45,55 5,05 7,33E-07 51,92 46,19 5,05 1,26E-06 49,58 42,71 5,05
poisson ICA_20 8,03E-06 40,79 34,86 5,05 7,97E-06 41,56 35,83 5,05 8,26E-06 41,41 34,54 5,05
poisson PCA_30 7,68E-06 40,98 35,04 3,37 7,86E-06 41,62 35,90 3,37 7,92E-06 41,59 34,72 3,37
poisson MNFg_30 5,90E-07 52,13 46,19 3,37 6,54E-07 52,42 46,69 3,37 1,12E-06 50,09 43,22 3,37
poisson ICA_30 7,68E-06 40,98 35,04 3,37 7,86E-06 41,62 35,90 3,37 7,92E-06 41,59 34,72 3,37
poisson PCA_40 7,28E-06 41,22 35,28 2,53 7,62E-06 41,75 36,03 2,53 7,62E-06 41,76 34,89 2,53
poisson MNFg_40 4,77E-07 53,05 47,12 2,53 5,83E-07 52,92 47,20 2,53 8,43E-07 51,31 44,45 2,53
poisson ICA_40 7,28E-06 41,22 35,28 2,53 7,62E-06 41,75 36,03 2,53 7,62E-06 41,76 34,89 2,53
poisson PCA_50 6,89E-06 41,45 35,52 2,02 7,36E-06 41,91 36,18 2,02 6,94E-06 42,16 35,29 2,02
poisson MNFg_50 4,15E-07 53,65 47,71 2,02 4,81E-07 53,75 48,03 2,02 6,84E-07 52,22 45,35 2,02
poisson ICA_50 6,89E-06 41,45 35,52 2,02 7,36E-06 41,91 36,18 2,02 6,94E-06 42,16 35,29 2,02
SnP PCA_5 4,45E-04 23,35 17,41 20,20 1,05E-03 20,38 14,66 20,20 5,62E-04 23,08 16,21 20,20
SnP MNFg_5 2,04E-04 26,75 20,81 20,20 1,99E-04 27,59 21,87 20,20 1,97E-04 27,63 20,76 20,20
SnP ICA_5 4,45E-04 23,35 17,41 20,20 1,05E-03 20,38 14,66 20,20 5,62E-04 23,08 16,21 20,20
SnP PCA_10 6,70E-04 21,57 15,64 10,10 1,14E-03 20,00 14,27 10,10 7,57E-04 21,78 14,91 10,10
SnP MNFg_10 3,90E-04 23,93 17,99 10,10 3,84E-04 24,73 19,00 10,10 3,79E-04 24,79 17,92 10,10
SnP ICA_10 6,70E-04 21,57 15,64 10,10 1,14E-03 20,00 14,27 10,10 7,57E-04 21,78 14,91 10,10
SnP PCA_20 1,10E-03 19,42 13,49 5,05 1,51E-03 18,78 13,06 5,05 1,14E-03 19,99 13,12 5,05
SnP MNFg_20 7,59E-04 21,03 15,10 5,05 7,55E-04 21,79 16,07 5,05 7,41E-04 21,87 15,00 5,05
SnP ICA_20 1,10E-03 19,42 13,49 5,05 1,51E-03 18,78 13,06 5,05 1,14E-03 19,99 13,12 5,05
SnP PCA_30 1,48E-03 18,13 12,20 3,37 1,85E-03 17,91 12,19 3,37 1,54E-03 18,68 11,82 3,37
SnP MNFg_30 1,13E-03 19,30 13,37 3,37 1,12E-03 20,07 14,34 3,37 1,11E-03 20,12 13,25 3,37
SnP ICA_30 1,48E-03 18,13 12,20 3,37 1,85E-03 17,91 12,19 3,37 1,54E-03 18,68 11,82 3,37
SnP PCA_40 1,87E-03 17,11 11,18 2,53 2,15E-03 17,25 11,52 2,53 1,90E-03 17,78 10,91 2,53
SnP MNFg_40 1,49E-03 18,09 12,15 2,53 1,49E-03 18,84 13,12 2,53 1,48E-03 18,88 12,01 2,53
SnP ICA_40 1,87E-03 17,11 11,18 2,53 2,15E-03 17,25 11,52 2,53 1,90E-03 17,78 10,91 2,53
SnP PCA_50 2,23E-03 16,35 10,42 2,02 2,45E-03 16,69 10,96 2,02 2,23E-03 17,09 10,22 2,02
SnP MNFg_50 1,87E-03 17,12 11,19 2,02 1,86E-03 17,89 12,16 2,02 1,84E-03 17,92 11,06 2,02
SnP ICA_50 2,23E-03 16,35 10,42 2,02 2,45E-03 16,69 10,96 2,02 2,23E-03 17,09 10,22 2,02
speck PCA_5 8,44E-05 30,57 24,64 20,20 8,68E-04 21,19 15,47 20,20 1,12E-05 40,07 33,21 20,20
speck MNFg_5 1,81E-06 47,25 41,31 20,20 1,82E-06 47,97 42,24 20,20 2,25E-06 47,04 40,18 20,20
speck ICA_5 8,44E-05 30,57 24,64 20,20 8,68E-04 21,19 15,47 20,20 1,12E-05 40,07 33,21 20,20
speck PCA_10 6,57E-05 31,66 25,72 10,10 8,66E-04 21,20 15,47 10,10 1,20E-05 39,77 32,90 10,10
speck MNFg_10 2,43E-06 45,98 40,04 10,10 2,57E-06 46,48 40,75 10,10 2,84E-06 46,03 39,17 10,10
speck ICA_10 6,57E-05 31,66 25,72 10,10 8,66E-04 21,20 15,47 10,10 1,20E-05 39,77 32,90 10,10
speck PCA_20 5,78E-05 32,22 26,28 5,05 8,58E-04 21,24 15,51 5,05 1,35E-05 39,27 32,40 5,05
speck MNFg_20 3,65E-06 44,21 38,28 5,05 4,16E-06 44,39 38,66 5,05 3,95E-06 44,60 37,73 5,05
speck ICA_20 5,78E-05 32,22 26,28 5,05 8,58E-04 21,24 15,51 5,05 1,35E-05 39,27 32,40 5,05
speck PCA_30 5,38E-05 32,52 26,59 3,37 8,27E-04 21,40 15,67 3,37 1,48E-05 38,88 32,01 3,37
speck MNFg_30 4,96E-06 42,88 36,95 3,37 5,83E-06 42,92 37,19 3,37 5,07E-06 43,52 36,65 3,37
speck ICA_30 5,38E-05 32,52 26,59 3,37 8,27E-04 21,40 15,67 3,37 1,48E-05 38,88 32,01 3,37



speck PCA_40 5,34E-05 32,56 26,62 2,53 7,97E-04 21,56 15,84 2,53 1,62E-05 38,48 31,61 2,53
speck MNFg_40 6,17E-06 41,94 36,00 2,53 7,38E-06 41,89 36,17 2,53 6,29E-06 42,59 35,72 2,53
speck ICA_40 5,34E-05 32,56 26,62 2,53 7,97E-04 21,56 15,84 2,53 1,62E-05 38,48 31,61 2,53
speck PCA_50 5,26E-05 32,63 26,69 2,02 7,34E-04 21,92 16,19 2,02 1,72E-05 38,21 31,34 2,02
speck MNFg_50 7,35E-06 41,17 35,24 2,02 9,11E-06 40,98 35,25 2,02 7,34E-06 41,91 35,05 2,02
speck ICA_50 5,26E-05 32,63 26,69 2,02 7,34E-04 21,92 16,19 2,02 1,72E-05 38,21 31,34 2,02
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Appendix D
Performance of Target Detection
Algorithms

On the subsequent pages the results from all the different scenes, DR representations, and
Target detection algorithms are given. In the tables you can find the F1-score, the MCC-
score, the distance between the two binary classification scores, recall and visibility. The
format in the table is the format of the name of the scene - endmember - target detection
algorithms, the results for that given scenario follows.
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DR F1 MCC |F1-MCC| Recall Visibility

FULLDIM 0,214 0,234 0,020 0,485 0,039

PCA50 0,202 0,228 0,026 0,511 0,012

MNF50 0,124 0,116 0,008 0,371 0,015

ICA50 0,202 0,228 0,026 0,511 0,012

PCA20 0,196 0,224 0,029 0,507 0,010

MNF20 0,174 0,196 0,022 0,483 0,028

ICA20 0,196 0,224 0,029 0,507 0,010

FULLDIM 0,156 0,183 0,026 0,588 0,077

PCA50 0,164 0,191 0,027 0,532 0,108

MNF50 0,100 0,065 0,034 0,213 0,038

ICA50 0,164 0,191 0,027 0,532 0,108

PCA20 0,197 0,210 0,013 0,452 0,142

MNF20 0,173 0,167 0,007 0,381 0,127

ICA20 0,197 0,210 0,013 0,452 0,142

FULLDIM 0,065 0,129 0,064 0,995 0,074

PCA50 0,065 0,039 0,026 0,995 0,074

MNF50 0,073 0,066 0,007 0,917 0,001

ICA50 0,070 0,055 0,015 0,896 0,005

PCA20 0,065 0,037 0,027 0,995 0,071

MNF20 0,069 0,083 0,014 0,934 0,004

ICA20 0,066 0,032 0,035 0,890 0,007

FULLDIM 0,249 0,266 0,017 0,395 0,253

PCA50 0,250 0,266 0,016 0,396 0,253

MNF50 0,159 0,196 0,037 0,561 0,172

ICA50 0,086 0,062 0,023 0,482 0,018

PCA20 0,254 0,266 0,012 0,395 0,254

MNF20 0,208 0,248 0,040 0,598 0,246

ICA20 0,091 0,072 0,019 0,500 0,030

FULLDIM 0,372 0,388 0,017 0,500 0,175

PCA50 0,365 0,386 0,021 0,490 0,072

MNF50 0,359 0,378 0,019 0,484 0,103

ICA50 0,365 0,386 0,021 0,490 0,072

PCA20 0,364 0,381 0,017 0,493 0,058

MNF20 0,355 0,375 0,020 0,498 0,214

ICA20 0,364 0,381 0,017 0,493 0,058

FULLDIM 0,367 0,392 0,025 0,551 0,259

PCA50 0,367 0,386 0,019 0,493 0,302

MNF50 0,356 0,374 0,019 0,452 0,269

Dimensionality Reduction and Target Detection Results

Pavia - Trees - ACE

Pavia - Asphalt - CEM

Pavia - Asphalt - ACE

Pavia - Asphalt - OSP

Pavia - Asphalt - SAM

Pavia - Trees - CEM



ICA50 0,367 0,386 0,019 0,493 0,302

PCA20 0,368 0,381 0,013 0,465 0,396

MNF20 0,352 0,364 0,012 0,454 0,319

ICA20 0,368 0,381 0,013 0,465 0,396

FULLDIM 0,255 0,302 0,046 0,476 0,263

PCA50 0,255 0,302 0,047 0,476 0,262

MNF50 0,341 0,367 0,025 0,406 0,264

ICA50 0,261 0,307 0,047 0,462 0,221

PCA20 0,259 0,305 0,046 0,442 0,229

MNF20 0,328 0,353 0,025 0,430 0,223

ICA20 0,256 0,304 0,048 0,463 0,199

FULLDIM 0,241 0,287 0,046 0,430 0,243

PCA50 0,241 0,287 0,046 0,430 0,243

MNF50 0,332 0,349 0,017 0,539 0,414

ICA50 0,296 0,318 0,022 0,491 0,287

PCA20 0,241 0,287 0,047 0,449 0,243

MNF20 0,307 0,329 0,023 0,436 0,404

ICA20 0,295 0,316 0,021 0,485 0,285

FULLDIM 0,804 0,813 0,009 0,956 0,177

PCA50 0,802 0,812 0,010 0,941 0,191

MNF50 0,800 0,812 0,011 0,972 0,194

ICA50 0,802 0,812 0,010 0,941 0,191

PCA20 0,795 0,805 0,010 0,950 0,137

MNF20 0,801 0,811 0,009 0,955 0,207

ICA20 0,795 0,805 0,010 0,950 0,137

FULLDIM 0,808 0,815 0,008 0,944 0,619

PCA50 0,805 0,814 0,009 0,952 0,712

MNF50 0,809 0,818 0,009 0,946 0,664

ICA50 0,805 0,814 0,009 0,952 0,712

PCA20 0,810 0,817 0,007 0,946 0,838

MNF20 0,808 0,817 0,008 0,935 0,818

ICA20 0,810 0,817 0,007 0,946 0,838

FULLDIM 0,640 0,653 0,014 0,704 0,346

PCA50 0,661 0,653 0,008 0,726 0,191

MNF50 0,770 0,785 0,015 0,894 0,324

ICA50 0,762 0,775 0,013 0,934 0,212

PCA20 0,654 0,661 0,007 0,718 0,343

MNF20 0,773 0,711 0,062 0,955 0,329

ICA20 0,755 0,769 0,014 0,932 0,254

FULLDIM 0,807 0,814 0,008 0,946 0,431

PCA50 0,807 0,814 0,008 0,946 0,431

MNF50 0,816 0,824 0,009 0,965 0,767

ICA50 0,811 0,814 0,003 0,907 0,615

PCA20 0,807 0,814 0,008 0,946 0,431

Pavia - Trees - OSP

Pavia - Trees - SAM

Pavia - Painted_metal_sheets - CEM

Pavia - Painted_metal_sheets - ACE

Pavia - Painted_metal_sheets - OSP

Pavia - Painted_metal_sheets - SAM



MNF20 0,817 0,825 0,008 0,962 0,760

ICA20 0,810 0,814 0,004 0,908 0,614

FULLDIM 0,842 0,840 0,001 0,857 0,154

PCA50 0,816 0,814 0,002 0,800 0,099

MNF50 0,842 0,840 0,002 0,845 0,148

ICA50 0,816 0,814 0,002 0,800 0,099

PCA20 0,680 0,681 0,001 0,761 0,027

MNF20 0,841 0,839 0,001 0,854 0,172

ICA20 0,680 0,681 0,001 0,761 0,027

FULLDIM 0,849 0,848 0,001 0,840 0,568

PCA50 0,879 0,878 0,001 0,874 0,638

MNF50 0,887 0,885 0,001 0,889 0,636

ICA50 0,879 0,878 0,001 0,874 0,638

PCA20 0,818 0,818 0,000 0,772 0,698

MNF20 0,889 0,888 0,001 0,884 0,826

ICA20 0,818 0,818 0,000 0,772 0,698

FULLDIM 0,058 0,181 0,123 0,611 0,220

PCA50 0,036 0,126 0,090 0,914 0,123

MNF50 0,783 0,676 0,107 0,789 0,306

ICA50 0,033 0,088 0,055 0,973 0,082

PCA20 0,030 0,022 0,007 0,893 0,069

MNF20 0,435 0,348 0,087 0,493 0,262

ICA20 0,040 0,054 0,014 0,914 0,132

FULLDIM 0,658 0,671 0,013 0,542 0,072

PCA50 0,657 0,670 0,013 0,542 0,072

MNF50 0,871 0,870 0,001 0,889 0,193

ICA50 0,738 0,738 0,000 0,680 0,136

PCA20 0,654 0,665 0,012 0,543 0,072

MNF20 0,872 0,871 0,001 0,893 0,194

ICA20 0,717 0,718 0,001 0,657 0,144

FULLDIM 0,571 0,563 0,007 0,598 0,071

PCA50 0,369 0,429 0,060 0,776 0,088

MNF50 0,538 0,538 0,000 0,657 0,088

ICA50 0,369 0,429 0,060 0,776 0,088

PCA20 0,333 0,381 0,048 0,677 0,026

MNF20 0,361 0,436 0,074 0,895 0,151

ICA20 0,333 0,381 0,048 0,677 0,026

FULLDIM 0,563 0,555 0,008 0,572 0,272

PCA50 0,411 0,432 0,021 0,647 0,287

MNF50 0,627 0,621 0,006 0,646 0,350

ICA50 0,411 0,432 0,021 0,647 0,287

PCA20 0,525 0,524 0,001 0,565 0,418

MNF20 0,708 0,703 0,005 0,714 0,505

ICA20 0,525 0,524 0,001 0,565 0,418
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FULLDIM 0,056 0,140 0,084 0,983 0,008

PCA50 0,093 0,102 0,010 0,663 0,105

MNF50 0,088 0,184 0,096 0,950 0,175

ICA50 0,075 0,167 0,092 0,967 0,185

PCA20 0,075 0,095 0,021 0,963 0,151

MNF20 0,078 0,140 0,062 0,917 0,094

ICA20 0,088 0,154 0,066 0,752 0,163

FULLDIM 0,684 0,679 0,005 0,728 0,065

PCA50 0,685 0,680 0,005 0,728 0,065

MNF50 0,781 0,778 0,004 0,804 0,143

ICA50 0,656 0,656 0,000 0,766 0,118

PCA20 0,684 0,680 0,005 0,726 0,065

MNF20 0,811 0,808 0,003 0,810 0,152

ICA20 0,655 0,654 0,001 0,754 0,125

FULLDIM 0,734 0,732 0,002 0,779 0,332

PCA50 0,685 0,682 0,002 0,723 0,229

MNF50 0,729 0,728 0,001 0,780 0,348

ICA50 0,685 0,682 0,002 0,723 0,229

PCA20 0,667 0,664 0,003 0,693 0,170

MNF20 0,685 0,682 0,003 0,700 0,320

ICA20 0,667 0,664 0,003 0,693 0,170

FULLDIM 0,741 0,739 0,001 0,790 0,519

PCA50 0,661 0,662 0,001 0,747 0,604

MNF50 0,724 0,725 0,000 0,785 0,619

ICA50 0,661 0,662 0,001 0,747 0,604

PCA20 0,640 0,640 0,000 0,717 0,758

MNF20 0,673 0,672 0,001 0,734 0,803

ICA20 0,640 0,640 0,000 0,717 0,758

FULLDIM 0,030 0,338 0,308 0,875 0,029

PCA50 0,027 0,061 0,035 0,961 0,005

MNF50 0,579 0,667 0,088 0,651 0,265

ICA50 0,117 0,177 0,059 0,508 0,186

PCA20 0,021 0,399 0,379 0,983 0,068

MNF20 0,608 0,507 0,101 0,681 0,252

ICA20 0,082 0,020 0,062 0,682 0,062

FULLDIM 0,669 0,669 0,000 0,744 0,099

PCA50 0,669 0,669 0,000 0,744 0,099

MNF50 0,714 0,711 0,003 0,731 0,216

ICA50 0,685 0,686 0,001 0,774 0,204

PCA20 0,669 0,669 0,000 0,744 0,099

MNF20 0,719 0,717 0,002 0,753 0,221

ICA20 0,683 0,685 0,002 0,777 0,208

FULLDIM 0,782 0,767 0,015 0,836 0,197
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PCA50 0,780 0,764 0,016 0,804 0,193

MNF50 0,779 0,763 0,016 0,791 0,198

ICA50 0,780 0,764 0,016 0,804 0,193

PCA20 0,780 0,764 0,016 0,811 0,194

MNF20 0,772 0,756 0,017 0,777 0,198

ICA20 0,780 0,764 0,016 0,811 0,194

FULLDIM 0,762 0,745 0,017 0,755 0,182

PCA50 0,768 0,753 0,015 0,739 0,193

MNF50 0,759 0,744 0,015 0,736 0,203

ICA50 0,768 0,753 0,015 0,739 0,193

PCA20 0,744 0,726 0,019 0,744 0,260

MNF20 0,736 0,723 0,013 0,669 0,257

ICA20 0,744 0,726 0,019 0,744 0,260

FULLDIM 0,380 0,452 0,072 0,675 0,189

PCA50 0,461 0,375 0,087 0,720 0,196

MNF50 0,579 0,547 0,031 0,596 0,191

ICA50 0,529 0,514 0,015 0,545 0,161

PCA20 0,453 0,440 0,013 0,649 0,205

MNF20 0,584 0,557 0,027 0,562 0,188

ICA20 0,534 0,516 0,018 0,552 0,165

FULLDIM 0,387 0,341 0,046 0,402 0,081

PCA50 0,384 0,339 0,045 0,407 0,081

MNF50 0,578 0,547 0,031 0,577 0,251

ICA50 0,442 0,432 0,010 0,380 0,277

PCA20 0,377 0,333 0,044 0,395 0,079

MNF20 0,519 0,483 0,036 0,567 0,236

ICA20 0,442 0,429 0,013 0,379 0,275

FULLDIM 0,836 0,794 0,043 0,841 0,253

PCA50 0,833 0,789 0,044 0,842 0,266

MNF50 0,835 0,793 0,042 0,828 0,256

ICA50 0,833 0,789 0,044 0,842 0,266

PCA20 0,823 0,776 0,047 0,867 0,271

MNF20 0,834 0,791 0,043 0,854 0,257

ICA20 0,823 0,776 0,047 0,867 0,271

FULLDIM 0,561 0,504 0,057 0,485 0,137

PCA50 0,567 0,516 0,051 0,478 0,137

MNF50 0,550 0,495 0,055 0,508 0,139

ICA50 0,567 0,516 0,051 0,478 0,137

PCA20 0,553 0,498 0,054 0,504 0,127

MNF20 0,515 0,432 0,082 0,478 0,137

ICA20 0,553 0,498 0,054 0,504 0,127

FULLDIM 0,725 0,651 0,074 0,806 0,207

PCA50 0,724 0,650 0,074 0,805 0,207

MNF50 0,722 0,647 0,075 0,774 0,234
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ICA50 0,749 0,682 0,067 0,774 0,217

PCA20 0,721 0,646 0,075 0,825 0,209

MNF20 0,716 0,639 0,077 0,773 0,218

ICA20 0,748 0,682 0,067 0,769 0,217

FULLDIM 0,662 0,574 0,089 0,694 0,111

PCA50 0,661 0,571 0,090 0,686 0,110

MNF50 0,700 0,622 0,078 0,710 0,247

ICA50 0,671 0,591 0,080 0,658 0,381

PCA20 0,655 0,565 0,091 0,699 0,108

MNF20 0,648 0,558 0,090 0,647 0,247

ICA20 0,668 0,585 0,083 0,714 0,377

FULLDIM 0,906 0,878 0,028 0,948 0,206

PCA50 0,905 0,876 0,029 0,942 0,205

MNF50 0,904 0,876 0,029 0,946 0,206

ICA50 0,905 0,876 0,029 0,942 0,205

PCA20 0,896 0,864 0,032 0,925 0,195

MNF20 0,905 0,877 0,029 0,936 0,203

ICA20 0,896 0,864 0,032 0,925 0,195

FULLDIM 0,905 0,877 0,028 0,902 0,268

PCA50 0,900 0,870 0,030 0,890 0,304

MNF50 0,905 0,877 0,028 0,898 0,291

ICA50 0,900 0,870 0,030 0,890 0,304

PCA20 0,893 0,862 0,032 0,896 0,339

MNF20 0,913 0,887 0,026 0,903 0,341

ICA20 0,893 0,862 0,032 0,896 0,339

FULLDIM 0,510 0,339 0,170 0,815 0,058

PCA50 0,510 0,339 0,170 0,815 0,058

MNF50 0,741 0,660 0,081 0,783 0,176

ICA50 0,769 0,698 0,071 0,873 0,184

PCA20 0,704 0,334 0,369 0,836 0,110

MNF20 0,752 0,674 0,078 0,787 0,179

ICA20 0,767 0,695 0,072 0,871 0,184

FULLDIM 0,629 0,557 0,073 0,566 0,081

PCA50 0,636 0,564 0,071 0,568 0,081

MNF50 0,929 0,908 0,021 0,943 0,514

ICA50 0,736 0,693 0,043 0,622 0,333

PCA20 0,653 0,585 0,068 0,591 0,084

MNF20 0,937 0,918 0,019 0,950 0,557

ICA20 0,749 0,703 0,046 0,655 0,343
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