
Autonomous landing of multi-rotor UAV

Øystein Reitstøen Lasson

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Preface

Unmanned Aerial Vehicles (UAVs) has seen increased increased use in marine ob-
servations systems, [1], [2]. The Ocean-Air synoptic operations using coordinated
autonomous robotic Systems and micro underwater gliders (OASYS) project seeks
to decrease the cost of marine observation system through increased automation.
One aspect of this project is automating the operation of multirotor UAVs.

This thesis is not the continuation of a project thesis. As a starting point, the
author received a problem description, access to the NTNU UAV-lab and access to
the UAV itself. Supervisor Tor Arne Johansen has provided several useful suggestions
concerning the theoretical approach to the problem. Co-supervisor Artur Piotr Zolich
has provided advice and suggestions concerning the practical experiments. However,
the author has ultimately been responsible for the theoretical approach and derivation,
choice of software, software implementation, choice and acquisition of hardware and
planning and conducting experiments.

I would like to express my gratitude to professor Tor Arne Johansen for his help with
the theoretical aspects of this thesis.

I would also like to express my gratitude to Artur Piotr Zolich for his help with the
practical aspects of this thesis.

Øystein Lasson
NTNU, June 2018

i

Abstract

A GPS and camera-based landing system for navigating a multirotor UAV from a
set of arbitrary GPS coordinates to a floating platform has been proposed. The
camera-based sub-system uses a target (a specific geometrical marking), in order to
simplify the process of finding the platform. In terms of robust target detection, an
attempt has been made to address the issue of illumination invariance (detecting the
target under varying light conditions) and filtering out visual noise (objects mistakenly
identified by the system as the target). The 3D (X, Y, Z) position estimation proposed
has undergone motionless tests with, and without, attitude compensation. For both
cases, the absolute error never exceeded 8% of the ground truth measurements.

iii

Sammendrag

Et GPS og kamerabasert landingssystem for å tillate navigering av en multirotor
UAV fra et sett med vilkårlige GPS koordinater tilbake til en flytende plattform har
blitt foreslått. Det kamerabaserte delsystemet bruker et mål (en spesifikk geometrisk
markør) for å forenkle lokalisering av plattformen. Når det kommer til robust mål-
deteksjon har det blitt forsøkt å ta høyde for varierende belysning (finne målet under
forskjellige lysforhold) og å filtrere ut visuelt støy (objekter som har blitt feilidentifisert
som målet av systemet). 3D (X, Y, Z) posisjons estimeringen som er foreslått har
undergått testing med og uten rotasjons-kompensasjon. I begge tilfeller overskrider
aldri den absolutte feilen aldri 8% av de ”sanne” målingene.

v

List of Figures

1.1 Birds-eye view of image projection. A 3D point (𝑋, 𝑌 , 𝑍) [m] in
the world is projected into the image image plane as a 2D point
𝑥𝑝 = 𝑓(𝑋/𝑍) [m], 𝑦𝑝 = 𝑓(𝑌 /𝑍) [m] where 𝑓 [m] is the focal length
of the camera (the distance from the optical center to the image
plane). 𝐹𝑂𝑉 [𝑑𝑒𝑔] denotes the cameras Field Of View. 3

2.1 The orientation of the Cartesian 𝑥, 𝑦 and 𝑧 axis when using the right
hand rule. Image courtesy of [3]. 8

2.2 Sketch of how the CAM {𝑐} frame, BODY frame {𝑏} and NED frame
{𝑛} relates to each other. The BODY and CAM frames are drawn
separately for clarity, but their origins are the same i.e O𝑏 = O𝑐. Also
note that the CAM and BODY frames are meant to have an arbitrary
orientation relative to the NED frame. 9

2.3 Visual representation of the 3D RGB color-space. Each RGB color
is a point contained within the cube, and how far one moves along
each axis will describe how much red, green or blue a color consist of.
Image courtesy of [4]. 13

2.4 A visual representation of the HSV color space. Hue is given by an
angle and represents the color. Saturation describes the amount to
which that color is mixed with white. Value describes the amount to
which that color is mixed with black. Image courtesy of [5]. 15

vii

List of Figures viii List of Figures

2.5 The pinhole camera model and its intrinsic parameters. Some point in
the world is observed as P𝑐 in the camera frame. The point (𝑢, 𝑣) is
the 2D projection of P𝑐 into the image plane. The offsets (𝑢0, 𝑣0) are
constants to shift the image origin (upper left corner), so that it aligns
with the Optical Axis. The point where the Optical Axis intersects the
image plane is called the Principal Point and has coordinates (𝑢0, 𝑣0).
The image plane is located a fixed length 𝑍𝑐 = 𝑓 = 𝑐𝑜𝑛𝑠𝑡 from the
camera frame’s origin O𝑐 where 𝑓 is the focal length of the camera. . 20

3.1 Sketch of several scenarios when the UAV is in search mode. Let the
anchor be in its maximum extended position, and have the UAV ap-
proach from the right. The green UAV1 has a perfect GPS, meaning
that it is perfectly aligned with the anchor, and will have the platform
in its FOV, even if it is searching at 𝑍𝑖𝑑𝑒𝑎𝑙. The red UAV2 has an
imperfect gps with 𝐻𝑒𝑟𝑟𝑜𝑟 denoting the maximum error of the GPS
in the horizontal plane and 𝑉𝑒𝑟𝑟𝑜𝑟 denoting the maximum error of
the GPS in the vertical direction. If the red UAV attempts to search
at 𝑍𝑖𝑑𝑒𝑎𝑙, it runs the risk of not finding the platform, even when it
is close to the anchor, due to its actual altitude being distorted by
𝐻𝑒𝑟𝑟𝑜𝑟 and 𝑉𝑒𝑟𝑟𝑜𝑟. Finally, the yellow UAV3 has the same imperfect
GPS as UAV3, but its search altitude is chosen so that it compensates
for 𝐻𝑒𝑟𝑟𝑜𝑟 and 𝑉𝑒𝑟𝑟𝑜𝑟 , meaning that it will find the platform, even in
the worst case scenario. 28

4.1 The target used in this thesis. Image courtesy of [6]. 30

4.2 Illustration of what feature points the algorithm looks for. For each
distance on the form (4.18) or (4.19), there is a corresponding real
world distance 𝑑𝑟𝑒𝑎𝑙, which is obtained by simply measuring it on the
physical target. 37

5.1 The Mission Planner interface. The ”Status” page shown on the right
allows quick and easy access to some of the most mission critical data.
The UAV’s orientation, roll, pitch and yaw, are highlighted by the red
bounding box. 45

viii

List of Figures ix List of Figures

5.2 Example of how light conditions can deform the binary output of the
thresholding. Even though the target is the only red object and the
target is not physically obstructed as shown in (a), the light conditions
can still cause the thresholding to produce a deformed output shown
in (b). 46

5.3 A sample of the data-set used to test the color-spaces in section 2.3.2
for illumination invariance. 47

5.4 Bounding box used to define Number of pixels reference in (5.3). The
binary output shown is based on image (5.3a). 48

5.5 Absolute error responses for different threshold value sets for the HSV
method. The results are partitioned into 2 plots for readability. 50

5.6 Absolute error responses for different threshold value sets for the nor-
malized RGB method. The results are partitioned into 2 plots for
readability. 52

5.7 Example of visual noise. The red pixel search cannot reasonably be
expected to filter out the additional blobs, which implies the need for
a robust way to separate the target from the added blobs. 53

5.8 Example of a unfiltered and filtered contour search. 53

5.9 Another example of a unfiltered and filtered contour search. This
image was taken from inside the UAV with the camera mounted as
shown in figure 5.15 with sunlight streaming into the room. There
were no other red objects in the image, but there was still a number of
false positives. Even with a large amount of visual noise, the contour
filter still manages to correctly identify the target. 54

5.10 Simple sketch of the test rig for vertical position estimation. The
camera can be moved along the 𝑍𝑐 axis in Δ delta increments. . . . 56

5.11 Result of the vertical position estimation in the 𝑧-direction. 57

5.12 Simple sketch of the test rig for horizontal position estimation. The
camera can be moved along the 𝑋𝑐 or 𝑌 𝑐 axis (depending on the
camera’s orientation) in Δ delta increments. 58

ix

List of Figures x List of Figures

5.13 Result of the horizontal position estimation in the 𝑥-direction. The
discontinuity in 𝑠 = 7 in (5.13c) is due to the ground truth being 0
for sample 7, meaning it cannot be calculated by the metric in (5.2) . 59

5.14 Result of the horizontal position estimation in the 𝑦-direction. The
discontinuity in 𝑠 = 7 in (5.14c) is due to the ground truth being 0
for sample 7, meaning it cannot be calculated by the metric in (5.2) . 60

5.15 The raspberry pi camera was mounted as shown in (a), and was then
covered by the plastic dome shown in (b). 62

5.16 The (very simple) method for inducing roll (a) and pitch (b). 63

5.17 Error metrics for the results seen in table 5.5. 65

5.18 Error metrics for the results seen in table 5.6. 67

5.19 Error metrics for the results seen in table 5.7. 67

A.1 Results of illumination invariance testing. 75

A.1 (Continued) Results of illumination invariance testing. 76

A.1 (Continued) Results of illumination invariance testing. 77

A.1 (Continued) Results of illumination invariance testing. 78

x

List of Tables

5.1 Key specifications for the raspberry pi camera used in this thesis. All
values are taken from [7], where the full table can be found. 44

5.2 Threshold value sets used to generate the output in figure 5.5. 49

5.3 Threshold value sets used to generate the output in figure 5.6. 51

5.4 Numerical values for the parameters of the contour filter. 54

5.5 Results for trial 1. Here, the roll is gradually increased while keeping
the pitch angles small. The corresponding error metrics can be seen
in figure 5.17. 64

5.6 Results for trial 2. Here, the pitch is gradually increased while keeping
the roll angles small. The corresponding error metrics can be seen in
figure 5.18. 66

5.7 Results for trial 3. Here, both the pitch and roll is gradually increased.
The corresponding error metrics can be seen in figure 5.19. 68

xi

Acronyms

BODY Body-fixed. 7–9, 11, 43, 67

CAM Camera-fixed. 8, 9, 11, 16, 37, 38, 43, 57, 67

FOV Field Of View. 3, 4, 22, 24, 25, 29, 37, 46

GPS Global Positioning System. 2–4, 21–25, 29, 46, 65, 71, 72

HSV Hue Saturation Value. 14, 34

IMU Inertial Measurement Unit. 3, 4, 11, 42, 43, 67, 72

MSL Mean Sea Level. 26

NED North-Eeast-Down. 7, 9, 11, 21, 22, 26, 41, 42, 57

OASYS Ocean-Air synoptic operations using coordinated autonomous robotic Systems
and micro underwater gliders. i

RGB Red Green Blue. 12–14, 32–34

UAV Unmanned Aerial Vehicle. i, 1–5, 7, 8, 10, 21–27, 29, 31, 32, 37, 42, 46–48,
56, 63, 65, 67, 71–73

xiii

Contents

Preface i

Abstract i

Sammendrag iii

List of Figures x

List of Tables xi

Acronyms xiii

1 Introduction 1

1.1 Thesis Objectives . 1

1.2 Literature Review. 2

1.3 Thesis Outline . 5

2 Theory 7

2.1 Reference Frames . 7

2.2 Rotation and Attitude . 8

xv

Contents xvi Contents

2.3 Image Processing . 11

2.3.1 Binary Thresholding . 11

2.3.2 Color-spaces. 12

2.4 The Camera. 16

3 System Overview 21

3.1 Assumptions . 21

3.2 Landing Procedure . 22

3.2.1 Search Mode (GPS) . 23

3.2.2 Tracking Mode . 25

3.2.3 Observation Mode . 26

3.2.4 Landing Mode . 27

4 Vision System 29

4.1 Image Processing . 29

4.1.1 Landing Platform Characteristics 29

4.1.2 Search for Red Pixels . 31

4.1.3 Target Detection . 33

4.2 Position Estimation. 35

4.2.1 Image Plane to CAM Frame 35

4.2.2 CAM Frame to NED Frame 39

4.3 Algorithm Overview . 40

5 Experiments 43

5.1 Hardware . 43

xvi

Contents xvii Contents

5.2 Software . 43

5.3 Error Metrics . 45

5.4 Robustness . 45

5.4.1 Illumination Invariance . 46

5.4.2 Contour Filter . 52

5.5 Position Estimation. 54

5.5.1 Conditions . 55

5.5.2 Vertical Position Estimation 56

5.5.3 Horizontal Position Estimation 57

5.5.4 Sources of Error. 58

5.6 Attitude Compensation. 60

5.6.1 Conditions . 61

5.6.2 Setup . 61

5.6.3 Results . 61

5.6.4 Sources of Error. 65

6 Conclusion 69

6.1 Future Work . 70

6.2 Lessons Learned . 71

Appendices 73

A Robustness Results 75

xvii

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft that operates without a human
crew on board. It can either fly autonomously based on pre-programmed flight plans,
or from a remote station. While UAV’s are often used in military operations, they
have seen increased usage in civilian applications as well.

UAV is an umbrella term covering a wide range of geometric configurations. Broadly
speaking, they can be divided into rotorcraft and fixed-wing. This thesis is only
concerned with rotorcrafts. Common for all configurations of rotorcrafts is their
reliance on rotors to generate lift, yielding a couple of distinct advantages over their
fixed-wing counterparts, namely, vertical landing and takeoff, ability to hover over a
specific point and ability to operate at low airspeeds.

This thesis is mainly concerned with prototyping a vision based landing system for a
rotorcraft UAV.

1.1. Thesis Objectives
The overall goal of this thesis is to investigate how visual navigation for autonomous
landing of a multi-rotor UAV can be achieved. Detailed thesis objectives follows
below.

1. Task: Present a high-level theoretical overview of how the UAV could navigate
from a set of arbitrary GPS coordinates to an anchored landing platform at
sea.

1

Chapter 1. Introduction 2 1.2. Literature Review

2. Investigate how a vision-based system can be made robust with respect to
illumination invariance and visual noise. See detailed objectives below.

(a) The vision system should be able to handle varying light conditions.
i. Task: Investigate how illumination invariance can be achieved, pro-

pose a method for addressing the problem of illumination invariance,
and conduct experiments to validate said method.

(b) Here, visual noise is defined as objects misidentified by the system as the
landing target. Even in the presence of visual noise, the system should be
able to correctly identify the target.

i. Task: Investigate how robustness to visual noise can be achieved,
propose a method for filtering out visual noise, and conduct experi-
ments to validate said method.

3. Task: Present a theoretical proposal for a vision-based 3D-position estimation
algorithm, and conduct experiments to validate its efficiency.

1.2. Literature Review
In order to land autonomously, the UAV must be able to navigate its environment.
Navigation is dependent on two important design choices, the control scheme used
and the set of sensors used [8]. Generally speaking, there needs to be a sensible,
weighted assessment of several factors, namely price, total weight of the UAV and
performance depending on the exact task the UAV is supposed to undertake.

A common approach to measuring orientation and position is a
Inertial Measurement Unit (IMU) for orientation and Global Positioning System
(GPS) for positioning. However, GPS might have severe errors in accuracy. In [9], it
is noted that the low cost GPS used has horizontal errors of ±2𝑚 and vertical errors
of up to ±5𝑚, making it extremely unreliable for precision landing. This uncertainty
in GPS measurements is a huge motivating factor for exploring vision based solutions
for landing.

Vision based landing has multiple advantages over other sensor schemes [10], [11],
[12]. In the context of unmanned flights, several camera characteristics are desirable.
They are generally light, cheap, and applicable both indoors and outdoors. Addition-
ally, cameras are considered passive sensors, meaning that they themselves do not
emit external signals that can interfere with other on-board systems.

In order to estimate the position of the UAV relative to a target, a common approach
starts with the projection equations [13], [14], [15], [16], [17], [9]

2

Chapter 1. Introduction 3 1.2. Literature Review

𝑥𝑝 = 𝑓 𝑋
𝑍 , 𝑦𝑝 = 𝑓 𝑌

𝑍 (1.1)

where 𝑓 is the focal length of the camera, (𝑋, 𝑌 , 𝑍) [m] is a point in the world, and
(𝑥𝑝, 𝑦𝑝) [m] represents the projection into the image plane as shown in figure 1.1.

Camera

Image Plane

Figure 1.1: Birds-eye view of image projection. A 3D point (𝑋, 𝑌 , 𝑍) [m] in the world is projected
into the image image plane as a 2D point 𝑥𝑝 = 𝑓(𝑋/𝑍) [m], 𝑦𝑝 = 𝑓(𝑌 /𝑍) [m] where 𝑓 [m] is the
focal length of the camera (the distance from the optical center to the image plane). 𝐹𝑂𝑉 [𝑑𝑒𝑔]

denotes the cameras Field Of View.

One fundamental limitation of applying (1.1), is that (𝑋, 𝑌 , 𝑍) must be in the cam-
eras Field Of View (FOV) as shown in figure 1.1.

Withing the scope of this thesis, the goal would be to estimate (𝑋, 𝑌 , 𝑍) in (1.1).
Assuming that (𝑥𝑝, 𝑦𝑝) is known, that leaves three unknowns (𝑋, 𝑌 , 𝑍) but only
two equations. Finding estimates for (𝑋, 𝑌 , 𝑍) often begins with first estimating 𝑍
which is a process called range finding.

In [13], a range finding method based on optical flow1 is presented. The optical flow
1Optical flow is the apparent movement of objects between two frames in an image sequence.

3

Chapter 1. Introduction 4 1.2. Literature Review

equations (the time derivative of (1.1)) given by [13, eq. (2)] is solved for 𝑍. Next,
(1.1) can be solved for 𝑋 and 𝑌 to provide an estimate of the horizontal position.

An alternative approach is presented in [18], where multiple cameras, (stereo vision) is
used to determine 𝑍. The main idea is that if the distance between two cameras Left
(L) and Right (R) are known, the range can be found by determining the position of
a point in (L), relative to its position in (R). Yet another approach is using recursive
least squares to estimate 𝑍 as shown in [9].

It is also possible to combine the camera with other sensors. For example, [19,
Chapter 3] uses a camera and an IMU to achieve a complete state estimation. Put
simply, the camera is used to obtain the position, and the IMU is used to obtain the
orientation (roll, pitch, yaw) and other angular states. Other sensor combinations
exists as-well, [20] uses data from a camera, data from an on-board GPS and data
from an on-board IMU as input to a Kalman-filter algorithm. In [21] a camera is
combined with a laser range finder and an on-board IMU to navigate.

If a camera based sensor scheme is chosen, there is another important consideration.
The UAV’s velocity must be seen in the context of the on-board system’s ability
to process images. In [22, 1.1 Challenges of Vision-Based Helicopter Flight] it is
claimed that the on-board image processing must happen at a frame rate of at least
30Hz in order to achieve efficient vision based object tracking.

Target detection, in this context, essentially refers to finding the platform. More
specifically, the target is some kind of geometrical marking placed on the platform,
making it easier for the on-board vision system to locate and navigate to the platform.
This section seeks to explore different ways to achieve this.

In [15], the geometrical shape of the landing target is four white squares of varying
sizes. Additionally, they apply binary thresholding to turn the surrounding are black.
They preform feature extraction by detection corners.

In [23] the geometrical marking used is a single, solid blue square. A Gaussian 2D
filter is first applied to smooth the image before it is converted from the RGB color-
space to the HSV color space. The authors note that the RGB values can vary greatly
depending on the light conditions, which is why HSV is used instead. Once a HSV
image has been obtained, binary thresholding is applied before calculating the center
of the resulting binary blob.

In [9], the target consist of a hexagon-shaped platform with several white colored
nested circles on it. The authors chose this geometrical marking due to its unique-
ness (hexagons rarely, if ever, occur naturally reducing the risks of false positives),

4

Chapter 1. Introduction 5 1.3. Thesis Outline

scalability (the differently sized circles allow for target detection at both short and
long distances), and simplicity (circles has well-known properties that are easy to
exploit in an algorithm). They convert the RGB image to gray-scale before also
applying a binary threshold.

1.3. Thesis Outline
The overall structure of the thesis is outlined below. Each chapter is meant to address
different aspects relevant to eventually implementing a complete system.

• Chapter 2: Theory. This chapter presents the most relevant theory used to
design the system in later chapters.

• Chapter 3: System Overview. This chapter proposes what a complete system
would could eventually look like. More specifically, several modes of operation
for the landing system is proposed and described.

• Chapter 4: Vision System. This chapter describes how camera images can
be used to obtain the relative position of the UAV with respect to the target.
It is largely based on the theory presented in chapter 2.

• Chapter 5: Experiments This chapter presents the experiments done in an
attempt to offer empirical validation of the theoretical concepts from chapter
4.

• Chapter 6: Conclusion This chapter presents the tentative conclusions drawn,
lessons learned and suggestions for future work.

5

Chapter 2

Theory

In this chapter, the fundamental theoretical concepts for the vision-based algorithm
will be covered.

2.1. Reference Frames
In order to accurately describe the position of the the UAV, in the world, several
reference frames must be defined. All reference frames will follow the right-hand-
rule, as seen in figure 2.1.

Based on the right-hand-rule, the following frames are defined.

• NED: The North-Eeast-Down (NED) reference frame {𝑛} = {𝑋𝑛, 𝑌 𝑛, 𝑍𝑛}
has its origin On fixed at the center of the landing platform. However, the NED
axis does not rotate with the platform. The 𝑋𝑛-axis points towards the true
North1, the 𝑌 𝑛-axis points towards East and the 𝑍𝑛 axis points downwards
normal to the Earths surface[24, p.17].

• BODY: The Body-fixed-fixed (BODY) reference frame {𝑏} = {𝑋𝑏, 𝑌 𝑏, 𝑍𝑏}
has its origin Ob fixed at the center of UAV. The 𝑋𝑏-axis points forward, the
𝑌 𝑏 axis points to the right and the 𝑍𝑏- axis points from top to bottom [24,
p.17].

• CAM: The Camera-fixed (CAM) reference frame {𝑐} = {𝑋𝑐, 𝑌 𝑐, 𝑍𝑐} as its
1The direction towards the geographic north pole

7

Chapter 2. Theory 8 2.2. Rotation and Attitude

Figure 2.1: The orientation of the Cartesian 𝑥, 𝑦 and 𝑧 axis when using the right hand rule. Image
courtesy of [3].

origin Oc fixed to the camera aperture2. The 𝑋𝑐-axis points right, the 𝑌 𝑐 axis
points backwards and the 𝑍𝑐- axis points towards the ground.

See figure 2.2 for a sketch of how the different frames relate to each other. Due to
the construction of the UAV the origins of the CAM and BODY are placed in the
same point i.e O𝑏 = O𝑐.

2.2. Rotation and Attitude
There are several possibilities for representing the attitude and orientation of the
UAV. Two common representations are Euler angles and Unit Quaternions.

Euler angles are parameterized by [24, p.22]

Θ = [𝜙 𝜃 𝜓]𝑇 (2.1)

2The camera aperture is an opening or a hole which light travels through.

8

Chapter 2. Theory 9 2.2. Rotation and Attitude

Yc
Xc

Yb

Zb

Zc
Yn

Zn

Xn

Xb

Figure 2.2: Sketch of how the CAM {𝑐} frame, BODY frame {𝑏} and NED frame {𝑛} relates to
each other. The BODY and CAM frames are drawn separately for clarity, but their origins are the

same i.e O𝑏 = O𝑐. Also note that the CAM and BODY frames are meant to have an arbitrary
orientation relative to the NED frame.

where 𝜙 (roll) is rotation about the 𝑥-axis, 𝜃 (pitch) is rotation about the 𝑦-axis
and 𝜓 (yaw) is rotation about the 𝑧-axis [24, p.22]. Euler angles are fairly easy to
understand for a human, and they are good for decomposing rotations into individual
degrees of freedom. However, they suffer from a singularity in 𝜃 = ±90° [24, p.25]
and can suffer from Gimbal lock (loss of one degree of freedom) for certain rotations.

An alternative to Euler angles is unit quaternions parameterized by [24, p.27]

q = [𝜂 + 𝑖𝜖1 + 𝑗𝜖2 + +𝑘𝜖3]

where 𝜂 is the real part and 𝜖1, 𝜖2 and 𝜖3 are the imaginary parts. The main moti-
vation for using quaternions is to avoid the singularity of the Euler angles [24, p.27].
Compared to Euler angles, quaternions are also computationally faster, but they are
more difficult to understand on an intuitive level.

9

Chapter 2. Theory 10 2.2. Rotation and Attitude

Within the scope of this thesis, the UAV is not expected to preform ”acrobatic”
movements (i.e large values for roll (𝜙) and pitch (𝜃). Therefore, the singularity in
𝜃 = ±90° is deemed highly unlikely to present a problem. While quaternions would
be more optimal in terms of computation, the intuitive nature of the Euler angles
are weighted higher during the development of the system. Based on this reasoning,
Euler angles as shown in (2.1) are chosen for representing the various rotations and
the attitude of the UAV.

The notation introduced by [24] will be used for convenience. Let

cos (𝜃) = 𝑐𝜃 and sin (𝜃) = 𝑠𝜃

Additionally, for clarity, the usage of the subscript and superscript will be specified,
according to [24, p.20, eq]. Consider a transformation between two vectors v𝑙 and
v𝑘 in arbitrary reference frames {𝑙} and {𝑘} consisting of a rotation and translation.
The transformation from {𝑘} to {𝑙} is given by

v𝑙 = R𝑙
𝑘v𝑘 reads as v𝑡𝑜 = R𝑡𝑜

𝑓𝑟𝑜𝑚v𝑓𝑟𝑜𝑚

Rotating an angle about the {𝑥, 𝑦, 𝑧} axis are given by [24, p.22, eq. (2.15)]

R𝑥(𝜙) = ⎡⎢
⎣

1 0 0
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙 𝑐𝜙

⎤⎥
⎦

(2.2)

R𝑦(𝜃) = ⎡⎢
⎣

𝑐𝜃 0 𝑠𝜃
0 0 0

−𝑠𝜃 0 𝑐𝜃
⎤⎥
⎦

(2.3)

R𝑧(𝜓) = ⎡⎢
⎣

𝑐𝜓 −𝑠𝜓 0
𝑠𝜓 𝑐𝜓 0
0 0 0

⎤⎥
⎦

(2.4)

Note that the matrices in (2.2), (2.3) and (2.4) are orthogonal which implies the
following property [24, p.20, eq. (2.7)]

R−1 = R𝑇 and (R𝑙
𝑘)𝑇 = R𝑘

𝑙 (2.5)

10

Chapter 2. Theory 11 2.3. Image Processing

where {𝑙} and {𝑘} are arbitrary reference frames. Once the rotation from {𝑙} to {𝑘}
is found, the rotation from {𝑘} to {𝑙} can immediately be found by (2.5). Also note
that the

Next, a sequence of rotations is defined according to [24, p. 22], which is called the
(zyx)-convention. Let Θ𝑛𝑏 = [𝜙𝑛𝑏 𝜃𝑛𝑏 𝜓𝑛𝑏]𝑇 describe the Euler angles between
the {𝑛} NED-frame and {𝑏} BODY-frame. The rotation to {𝑛} from {𝑏} is then
given by [24, p.22 eq. (2.16)]

R𝑛
𝑏 (Θ𝑛𝑏) = R𝑧(𝜓𝑛𝑏)R𝑦(𝜃𝑛𝑏)R𝑥(𝜙𝑛𝑏)

= ⎡⎢
⎣

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑠𝜃𝑠𝜓𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

⎤⎥
⎦

(2.6)

where the An on-board Inertial Measurement Unit (IMU) will be responsible for
providing Θ𝑛𝑏. Next, let Θ𝑐𝑏 = [𝜙𝑐𝑏 𝜃𝑐𝑏 𝜓𝑐𝑏]𝑇 be the angles between the CAM-
frame and BODY-frame. The camera will be mounted to the same rigid body as the
IMU, implying Θ𝑐𝑏 = const. Next, from figure 2.2, it can be seen that

𝜙𝑐𝑏 = 0°, 𝜃𝑐𝑏 = 0°, 𝜓𝑐𝑏 = −90° (2.7)

R𝑐
𝑏(Θ𝑐𝑏) = R𝑧(𝜓𝑐𝑏)R𝑦(𝜃𝑐𝑏)R𝑥(𝜙𝑐𝑏)

= ⎡⎢
⎣

0 1 0
−1 0 0
0 0 1

⎤⎥
⎦

(2.8)

Finally, note that (2.5) applied to (2.6) or (2.8) will yield the inverse rotational
transformation Which one is used is a matter of convenience.

2.3. Image Processing

2.3.1. Binary Thresholding

As shown in the literary review in section 1.2, thresholding and more specifically,
binary thresholding was a rather popular approach to simple image segmentation for

11

Chapter 2. Theory 12 2.3. Image Processing

vision based landing.

The principle is quite straightforward. As an exampled, consider a pixel with spatial
coordinates (𝑢, 𝑣) in an image C(𝑢, 𝑣). Here, C(𝑢, 𝑣) can be a single numerical value
(gray-scale image) or a vector (RGB image). Next, a condition 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(C(𝑢, 𝑣), T)
which is a binary function of a pixel and a threshold value T (which can also either
be a single scalar or a vector) can be placed on each pixel. The binary pixel 𝐼𝑏𝑖𝑛(𝑢, 𝑣)
corresponding to C(𝑢, 𝑣) can then be defined as

𝐼𝑏𝑖𝑛(𝑢, 𝑣) = {1 if 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(C(𝑢, 𝑣), T) = 1
0 otherwise

where 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 uses one or more binary operator(s) (depending on the specific
purpose of the thresholding) (≤, ≥, <, >, ≠, ==) etc. to return either 0 or 1. As a
concrete example, if 𝐶(𝑢, 𝑣) is a gray-scale pixel consisting of a single intensity value
and 𝑇𝑔𝑟𝑎𝑦 is some numerical threshold value, then

𝐼𝑏𝑖𝑛(𝑢, 𝑣) = {1 if 𝐶(𝑢, 𝑣) > 𝑇𝑔𝑟𝑎𝑦
0 otherwise

will set all pixels with intensity greater than 𝑇𝑔𝑟𝑎𝑦 to one, and all other pixels to zero
in the binary image.

2.3.2. Color-spaces

A color space outlines an abstract mathematical model for representing colors. A
generic example is

Color = [value1 value2 ...value𝑛]𝑇

that is, the color is represented as a set of values. There exists a wide range of color
spaces, each with their own advantages and disadvantages, depending on what one
is trying to achieve.

12

Chapter 2. Theory 13 2.3. Image Processing

Red-Green-Blue

The Red Green Blue (RGB) color space is arguably the most commonly used color
space. It consist of three color channels which can be thought of as ”layers” in an
image. A visual representation of the RGB color space can be seen in figure (2.3).

Figure 2.3: Visual representation of the 3D RGB color-space. Each RGB color is a point contained
within the cube, and how far one moves along each axis will describe how much red, green or blue

a color consist of. Image courtesy of [4].

Consider an RGB image I𝑅𝐺𝐵 with arbitrary spatial dimensions 𝑉 (height) and
𝑈 (width). Mathematically, the image can be seen as a matrix with dimensions
(𝑈 × 𝑉 × 3). Let 0 ≤ 𝑢 ≤ 𝑈 and 0 ≤ 𝑣 ≤ 𝑉 be arbitrary spatial coordinates of
a pixel in the RGB image. Evaluating 𝐼𝑅𝐺𝐵 at (𝑢, 𝑣) then returns a three element
color vector on the form

C𝑅𝐺𝐵(𝑢, 𝑣) = [𝑅(𝑢, 𝑣) 𝐺(𝑢, 𝑣) 𝐵(𝑢, 𝑣)]𝑇 (2.9)

where the color components 𝑅 = 𝑅(𝑢, 𝑣)), 𝐺 = 𝐺(𝑢, 𝑣) and 𝐵 = 𝐵(𝑢, 𝑣) are often
limited to the range [0, 255]. The amount of each component (i.e how far along you

13

Chapter 2. Theory 14 2.3. Image Processing

are on each colors axis in figure 2.3) will determine what color the pixel at (𝑢, 𝑣) is.

The ”naive” RGB-model described (2.9) is not particularly robust to changes in
illumination. If the same scene is captured after being exposed to some light source
the change in intensity can be modeled by multiplying (2.9) by some unknown factor
𝛽

𝛽C𝑅𝐺𝐵(𝑢, 𝑣) = 𝛽 [𝑅(𝑢, 𝑣) 𝐺(𝑢, 𝑣) 𝐵(𝑢, 𝑣)]𝑇 (2.10)

It is fairy easy to derive a representation of the three components in (2.10) that is
independent of 𝛽 [25]

C𝑅𝐺𝐵(𝑢, 𝑣) = [𝑅
𝑅+𝐺+𝐵

𝐺
𝑅+𝐺+𝐵

𝐵
𝑅+𝐺+𝐵]𝑇 (2.11)

Now, if (2.11) is applied to all pixels in an RGB image I𝑅𝐺𝐵, it will produce I𝑅𝐺𝐵
which is a normalized RGB image. The representation (2.11) is then more robust to
changes in lighting conditions than (2.9), but it should be noted that this is based
on a very simplistic model of the camera response. It is not necessarily the case that
all components of (2.9) is scaled by the same factor 𝛽, and much more sophisticated
methods for illumination-invariance exists [25].

Hue Saturation Value

The Hue Saturation Value (HSV) color-space is an alternative representation of the
RGB color-space. In this model, colors are represented in a cylindrical space, as
shown in figure 2.4.

Let C be a RGB color vector as shown in (2.9). The HSV components seen in figure
(2.4) are mathematically related to C as follows (adapted from [26, eq. (2), (3) and
(4)])

𝑉 = max (C𝑅𝐺𝐵), C𝑅𝐺𝐵 = [𝑅 𝐺 𝐵]𝑇

𝑆(C𝑅𝐺𝐵) = {
max (C𝑅𝐺𝐵)−min (C𝑅𝐺𝐵)

max (C𝑅𝐺𝐵) if max (C𝑅𝐺𝐵) ≠ 0
0 otherwise

14

Chapter 2. Theory 15 2.3. Image Processing

Figure 2.4: A visual representation of the HSV color space. Hue is given by an angle and
represents the color. Saturation describes the amount to which that color is mixed with white.

Value describes the amount to which that color is mixed with black. Image courtesy of [5].

𝐻(C𝑅𝐺𝐵) = 60° ×
⎧{{
⎨{{⎩

undefined if 𝑆(C𝑅𝐺𝐵) = 0
𝐺−𝐵

max (C𝑅𝐺𝐵)−min (C𝑅𝐺𝐵) if 𝑅 = max (C𝑅𝐺𝐵)
2 + 𝐵−𝑅

max (C𝑅𝐺𝐵)−min (C𝑅𝐺𝐵) if 𝐺 = max (C𝑅𝐺𝐵)
4 + 𝑅−𝐺

max (C𝑅𝐺𝐵)−min (C𝑅𝐺𝐵) if 𝐵 = max (C𝑅𝐺𝐵)

which can be combined into a vector similar to (2.9)

C𝐻𝑆𝑉 (𝑢, 𝑣) = [𝐻(𝑢, 𝑣) 𝑆(𝑢, 𝑣) 𝑉 (𝑢, 𝑣)]𝑇 (2.12)

The HSV values can be thought of as follows [23]

• HUE represents the color.

15

Chapter 2. Theory 16 2.4. The Camera

• SATURATION describes the amount to which that color is mixed with white.
Notice how the ”center” of the cylinder in figure 2.4 is white.

• VALUE describes the amount to which that color is mixed with black. Notice
how the bottom of the cylinder in figure 2.4 is black.

2.4. The Camera
In this thesis, a simple camera model is used, called the pinhole camera model. This
model describes the relationship between a 3D point in the word expressed in metric
units [m] and the corresponding 2D point in the image plane expressed in discrete
image units [pixel].

Homogeneous Coordinates

First, homogeneous coordinates allow for a mapping between 2D euclidean space and
3D euclidean space [27, pp. 154]. Let (𝑦1, 𝑦2) be a point in ℝ2 and (𝑥1, 𝑥2, 𝑥3) be
a point in ℝ3 and 𝑔 be a constant. The ℝ3 ↦ ℝ2 map is then described by

⎡⎢
⎣

𝑦1
𝑦2
𝑔

⎤⎥
⎦

= 𝑠 ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

(2.13)

where 𝑠 is a scaling factor needed to solve (2.13). By inspection, one obtains 𝑠 =
𝑔/𝑥3. This principle will be used when deriving the camera model.

Extrinsic Parameters

A point observed in the world P = [𝑋 𝑌 𝑍]𝑇 [m] expressed in some arbitrary
reference frame is mapped to the corresponding point Pc = [𝑋𝑐 𝑌 𝑐 𝑍𝑐]𝑇 [m] in
the CAM reference frame as (in homogeneous coordinates)

[Pc

1] = 𝜆0 [R T
0𝑇 1] [P

1] (2.14)

where R is an arbitrary rotation matrix and T is a translation vector and 𝜆0 = 1.

16

Chapter 2. Theory 17 2.4. The Camera

R = ⎡⎢
⎣

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤⎥
⎦

T = ⎡⎢
⎣

𝑇11
𝑇21
𝑇31

⎤⎥
⎦

The pair (R, T) are the extrinsic parameters.

Intrinsic Parameters

Next, the point P𝑐 from (2.14) is mapped to an image point p𝑖 = [𝑥𝑖 𝑦𝑖]𝑇 [m]
in the image plane which is located at 𝑍𝑐 = 𝑓 (see figure 2.5) where 𝑓 is the focal
length of the camera [27, pp. 153] through a projection matrix Π1 (in homogeneous
coordinates)

[p𝑖

1] = 𝜆1Π1 [P𝑐

1] (2.15)

where Π1 is given by

Π1 = ⎡⎢
⎣

𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

⎤⎥
⎦

(2.16)

and where 𝜆1 is a scaling factor needed to solve (2.15) due to the homogeneous
coordinates. By inspection, one can see that 𝜆1 = 1/𝑍𝑐. Multiplying out (2.15)
leads to

𝑥𝑖 = 𝑓 𝑋𝑐

𝑍𝑐 , 𝑦𝑖 = 𝑓 𝑌 𝑐

𝑍𝑐 (2.17)

where (2.17) describes a map from 3D euclidean space ℝ3 to 2D euclidean space ℝ2,
i.e

(𝑋𝑐, 𝑌 𝑐, 𝑍𝑐) ↦ (𝑓𝑋𝑐/𝑍𝑐, 𝑓𝑌 𝑐/𝑍𝑐)

The equation (2.15) is still in metric units [m] so a final transformation is needed to

17

Chapter 2. Theory 18 2.4. The Camera

express the image point (2.17) in discrete image coordinates with unit [pixel]. Let
the point p𝑝 = [𝑢 𝑣]𝑇

express discrete image coordinates with unit [pixels]. The transformation from the
image point p𝑖 in (2.15) to p𝑝 is then (in homogeneous coordinates),

[p𝑝

1] = 𝜆2Π2 [p𝑖

1] (2.18)

where 𝜆2 = 1 and (adapted from [28, Lesson 20: Intrinsic camera parameters])

Π2 = ⎡⎢
⎣

𝑠𝑥 𝑠𝑥 cot (𝛾) 𝑢0 + 𝑣0 cot 𝛾
0 𝑠𝑦/ sin (𝛾) 𝑣0 sin (𝛾)
0 0 1

⎤⎥
⎦

(2.19)

where 𝑠𝑥 and 𝑠𝑦 are scaling factors attempting to account for non-square pixels,
(𝑢0, 𝑣0) represent the coordinates of where the optical axis intersects with the im-
age plane, cot (𝛾) = 1/ tan (𝛾) and 𝛾 attempts to account for any possible non-
orthogonality between the rows and columns in the image. At this point, the follow-
ing assumptions are made [28, Lesson 20: Intrinsic camera parameters, Improving
Intrinsic Parameters])

• The rows and columns in the image are orthogonal, implying 𝛾 = 𝑝𝑖/2.

• The pixels in the image are square, implying 𝑠𝑐 = 𝑠𝑥 = 𝑠𝑦. This assumption
are based on the values found in table 5.1.

Applying the above assumptions, (2.19) simplifies to

Π2 = ⎡⎢
⎣

𝑠𝑐 0 𝑢0
0 𝑠𝑐 𝑣0
0 0 1

⎤⎥
⎦

(2.20)

Next, define the intrinsic parameter matrix K3×4 and K3×3 based on (2.16) and
(2.20) as follows

18

Chapter 2. Theory 19 2.4. The Camera

K3×4 = [K3×3 0] = Π2Π1 = ⎡⎢
⎣

𝑠𝑐𝑓 0 𝑢0 0
0 𝑠𝑐𝑓 𝑣0 0
0 0 1 0

⎤⎥
⎦

(2.21)

and

K3×3 = ⎡⎢
⎣

𝑠𝑐𝑓 0 𝑢0
0 𝑠𝑐𝑓 𝑣0
0 0 1

⎤⎥
⎦

(2.22)

A summary of the intrinsic parameters can be seen in figure (2.5).

World to Image Plane

A complete mapping from an arbitrary point P in the world to discrete image coor-
dinates p𝑝 can now be expressed as (in homogeneous coordinates)

[P𝑝

1] = 𝜆 ⋅ K3×4 ⋅ [R T
0𝑇 1] ⋅ [P

1]

⎡⎢
⎣

𝑢
𝑣
1
⎤⎥
⎦

= 𝜆 ⋅ ⎡⎢
⎣

𝑠𝑐𝑓 0 𝑢0 0
0 𝑠𝑐𝑓 𝑣0 0
0 0 1 0

⎤⎥
⎦

⋅
⎡
⎢⎢
⎣

𝑅11 𝑅12 𝑅13 𝑇11
𝑅21 𝑅22 𝑅23 𝑇21
𝑅31 𝑅32 𝑅33 𝑇31
0 0 0 1

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥⎥
⎦

(2.23)

where 𝜆 = 𝜆0𝜆1𝜆2 is a scale factor needed to solve the camera model (2.23). The
rotation matrix R and the translation vector T will be left as arbitrary for now, but
will be made concrete later.

19

Chapter 2. Theory 20 2.4. The Camera

Figure 2.5: The pinhole camera model and its intrinsic parameters. Some point in the world is
observed as P𝑐 in the camera frame. The point (𝑢, 𝑣) is the 2D projection of P𝑐 into the image
plane. The offsets (𝑢0, 𝑣0) are constants to shift the image origin (upper left corner), so that it

aligns with the Optical Axis. The point where the Optical Axis intersects the image plane is called
the Principal Point and has coordinates (𝑢0, 𝑣0). The image plane is located a fixed length

𝑍𝑐 = 𝑓 = 𝑐𝑜𝑛𝑠𝑡 from the camera frame’s origin O𝑐 where 𝑓 is the focal length of the camera.

20

Chapter 3

System Overview

3.1. Assumptions
In practice, the system cannot operate under any given conditions. As a trivial
example, if there is a full blown hurricane, the UAV will not be able to land or
navigate due to high speed winds. Additionally, the 3D motion of the platform is
directly linked to the waves, which in turn is linked to the wind speed. Therefore, the
wind speed can be a useful metric for placing restrictions on the operational range
of the system in terms of weather. A scale that can be used to describe different sea
conditions in terms of wind speed, is the Beaufort Wind Force Scale [29].

Certain assumptions must also be made about the landing platform itself. These
assumptions are mainly centered around limiting the possible area where the platform
can be found, relative to a point with known Global Positioning System (GPS)
coordinates. Additionally, more specific constraints are placed on its motion in all
three directions.

The following assumptions are made about the system

• The UAV will not fly unless the observed sea conditions are in the range [0 -
3] as described by the Beaufort Wind Force scale as presented by [29].

• Let Θ𝑝𝑛 = [𝜙𝑝𝑛 𝜃𝑝𝑛 𝜓𝑝𝑛]𝑇 denote the Euler angles between the platform
fixed body frame and the inertial NED frame. Within the scope of this thesis,
it is then assumed that

Θ𝑝𝑛 ≈ [0 0 0]𝑇

21

Chapter 3. System Overview 22 3.2. Landing Procedure

meaning that the platforms body frame is approximately aligned with the NED-
frame at all times. Note that this also implies

Θ̇𝑝𝑛 ≈ [0 0 0]𝑇

meaning that the angular motion of the platform is assumed to be zero for this
thesis.

• The surge and sway are negligible, since the platform is anchored and since the
UAV will only fly if the observed sea conditions are calm, as described by the
Beaufort Wind Force Scale.

• The landing platform is anchored so that it cannot drift away with currents.
The anchor itself has known fixed-GPS coordinates

P𝐺𝑃𝑆
𝑎𝑛𝑐ℎ𝑜𝑟 = [𝑋𝐺𝑃𝑆

𝑎𝑛𝑐ℎ𝑜𝑟 𝑌 𝐺𝑃𝑆
𝑎𝑛𝑐ℎ𝑜𝑟]𝑇

meaning that the platform will be found within a circular area with radius 𝑟𝑝𝑙𝑎𝑡,
and center (𝑋𝐺𝑃𝑆

𝑎𝑛𝑐ℎ𝑜𝑟, 𝑌 𝐺𝑃𝑆
𝑎𝑛𝑐ℎ𝑜𝑟).

These assumptions may have to be relaxed for the final system, but they are made
to simplify the development phase and tighten the scope of this thesis.

3.2. Landing Procedure
Suppose the UAV has preformed some task at sea. The last part of its mission
will consist of safely returning to a landing platform from a set of arbitrary GPS
coordinates for recharging, maintenance etc. The overall process of returning to the
platform can be outlined by the following steps

1. Search for the platform at some sensible altitude and get the platform into the
cameras FOV.

2. Track the platform and use the camera based vision system to position UAV
over the landing platform and descend to a lower altitude.

3. Observe the platform if necessary and attempt to compensate for heave.

4. Ensure a controlled Touchdown1.

Based on the steps outlined above, four distinct modes of operation are defined.
1Touchdown is defined as the moment where the UAV makes contact with the landing platform

22

Chapter 3. System Overview 23 3.2. Landing Procedure

3.2.1. Search Mode (GPS)

The assumed starting point for this mode is

• The UAV has preformed its designated task and is located at some point ex-
pressed in the GPS-frame

P𝐺𝑃𝑆
𝑈𝐴𝑉 = [𝑋𝐺𝑃𝑆

𝑢𝑎𝑣 𝑌 𝐺𝑃𝑆
𝑢𝑎𝑣 𝑍𝐺𝑃𝑆

𝑢𝑎𝑣]𝑇

Then the relative position between the UAV and the anchor is

P𝐺𝑃𝑆
𝑟𝑒𝑙 = (P𝐺𝑃𝑆

𝑎𝑛𝑐ℎ𝑜𝑟 − P𝐺𝑃𝑆
𝑈𝐴𝑉) + E𝐺𝑃𝑆

𝑒𝑟𝑟𝑜𝑟 (3.1)

where

E𝐺𝑃𝑆
𝑒𝑟𝑟𝑜𝑟 = [𝑋𝐺𝑃𝑆

𝑒𝑟𝑟𝑜𝑟 𝑌 𝐺𝑃𝑆
𝑒𝑟𝑟𝑜𝑟 𝑍𝐺𝑃𝑆

𝑒𝑟𝑟𝑜𝑟]𝑇 (3.2)

is an error term quantifying the uncertainty of the GPS measurements.

Next, an expression for a search altitude must be derived. Specifically, an expression
for a search altitude must be found such that the UAV will find the platform, even
in the worst case scenario, described in figure 3.1.

The proposed general form of this search altitude is

𝑍𝑠𝑒𝑎𝑟𝑐ℎ = 𝑐𝑒𝑖𝑙(𝑍𝑖𝑑𝑒𝑎𝑙 + 𝑍𝐻
𝑒𝑟𝑟𝑜𝑟 + 𝑉𝑒𝑟𝑟𝑜𝑟) (3.3)

where 𝑐𝑒𝑖𝑙(𝑥) is the ceiling function (ensuring that 𝑍𝑠𝑒𝑎𝑟𝑐ℎ is always rounded up),
𝑍𝑖𝑑𝑒𝑎𝑙 denotes the search altitude if the GPS measurements were perfect, ,𝑍𝐻

𝑒𝑟𝑟𝑜𝑟 is
a correction factor that attempts to account for how the maximum horizontal GPS
error from (3.2) might affect the search height and 𝑉𝑒𝑟𝑟𝑜𝑟 is simply the magnitude
of the vertical GPS error.

Consider the possible worst case scenario in figure 3.1, where the platform is in its
maximum extended position to the left, and the UAV approaches from the right.
The green UAV1 has a (hypothetical) perfect GPS, meaning that P𝐺𝑃𝑆

𝑟𝑒𝑙 = 0 in its

23

Chapter 3. System Overview 24 3.2. Landing Procedure

position shown in figure 3.1. Even if its search altitude is only set to 𝑍𝑖𝑑𝑒𝑎𝑙, it will
find the platform in this scenario.

The red UAV has an imperfect GPS where the error is described by (3.2). Then, the
error terms are defined as

𝐻𝑒𝑟𝑟𝑜𝑟 = max
𝑋,𝑌

(∣E𝐺𝑃𝑆
𝑒𝑟𝑟𝑜𝑟∣)

𝑉𝑒𝑟𝑟𝑜𝑟 = ∣𝑍𝐺𝑃𝑆
𝑒𝑟𝑟𝑜𝑟∣

In its position shown in figure 3.1, the red UAV2 will not find the anchor if its
searching at 𝑍𝑖𝑑𝑒𝑎𝑙, due to the error terms 𝐻𝑒𝑟𝑟𝑜𝑟 and 𝑉𝑒𝑟𝑟𝑜𝑟.

The yellow UAV3 in figure 3.1 has the same imperfect GPS as UAV2, but compensates
for this by increasing its search altitude to 𝑍𝑠𝑒𝑎𝑟𝑐ℎ as shown in (3.3), where 𝑍𝑒𝑟𝑟𝑜𝑟
is a correction factor proportional to the error term 𝐻𝑒𝑟𝑟𝑜𝑟.

By applying basic trigonometry to figure 3.1, expressions for 𝑍𝑖𝑑𝑒𝑎𝑙 and 𝑍𝑒𝑟𝑟𝑜𝑟 in (3.3)
can be derived. Let 𝐹𝑂𝑉ℎ and 𝐹𝑂𝑉𝑣 denote the cameras FOV in the horizontal and
vertical direction respectively. Let 𝑟𝑎𝑛𝑐ℎ𝑜𝑟 denote biggest possible radius the platform
can be found within. The following is then obtained

𝑍𝑖𝑑𝑒𝑎𝑙 = 𝑟𝑎𝑛𝑐ℎ𝑜𝑟
tan (min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣)/2)

𝑍𝐻
𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑒𝑟𝑟𝑜𝑟

tan (min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣)/2)

which can be plugged into (3.3) to obtain the proposed expression for the search
height

𝑍𝑠𝑒𝑎𝑟𝑐ℎ = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑐ℎ𝑜𝑟
tan (min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣)/2) + 𝐻𝑒𝑟𝑟𝑜𝑟

tan (min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣)/2) + 𝑉𝑒𝑟𝑟𝑜𝑟)

= 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑐ℎ𝑜𝑟 + 𝐻𝑒𝑟𝑟𝑜𝑟
tan (min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣)/2) + 𝑉𝑒𝑟𝑟𝑜𝑟) (3.4)

24

Chapter 3. System Overview 25 3.2. Landing Procedure

To get a feel for the magnitude of the search altitude in (3.4), suppose the UAV is
fitted with the low cost GPS found in the literary review in [9] which has the following
error margins

𝑋𝐺𝑃𝑆
𝑒𝑟𝑟𝑜𝑟 = 𝑌 𝐺𝑃𝑆

𝑒𝑟𝑟𝑜𝑟 = ±2𝑚 ⇒ 𝐻𝑒𝑟𝑟𝑜𝑟 = | ± 2𝑚| = 2𝑚
𝑍𝐺𝑃𝑆

𝑒𝑟𝑟𝑜𝑟 = ±5𝑚 ⇒ 𝑉𝑒𝑟𝑟𝑜𝑟 = | ± 5𝑚| = 5𝑚

Additionally, assume the following

𝑟𝑎𝑛𝑐ℎ𝑜𝑟 = 15m, min (𝐹𝑂𝑉ℎ, 𝐹𝑂𝑉𝑣) = 50°

Plugging these values into (3.4), the search altitude is calculated to be

𝑍𝑠𝑒𝑎𝑟𝑐ℎ = 𝑐𝑒𝑖𝑙(33.5294m) = 34m

meaning that the UAV must send 𝑍𝑐𝑚𝑑 = 𝑍𝑠𝑒𝑎𝑟𝑐ℎ = 34𝑚 into the existing control
hierarchy to be guaranteed to get the landing platform into its FOV, given the GPS
error margins.

As a slight caveat, even if the platform is in the camera’s FOV, it does no good if
the vision-system is unable to lock on to the target on the platform due to it being
to far away. Therefore, it is critical that the target is sufficiently large to be detected
at 𝑍𝑠𝑒𝑎𝑟𝑐ℎ, given the image resolution used in the system.

3.2.2. Tracking Mode

When the platform is in the UAV’s FOV and the target is detected, the tracking
mode will attempt to align the UAV’s center with the targets center, and descend
to an altitude given by 𝑍𝑡𝑟𝑎𝑐𝑘 = 𝛼𝑡𝑟𝑎𝑐𝑘𝑍𝑠𝑒𝑎𝑟𝑐ℎ, where 0 < 𝛼𝑡𝑟𝑎𝑐𝑘 < 1 is a scaling
factor so that 𝑍𝑡𝑟𝑎𝑐𝑘 is some percentage of 𝑍𝑠𝑒𝑎𝑟𝑐ℎ.

Let

P𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 = [𝑋𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 𝑌 𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 𝑍𝑛

𝑡𝑎𝑟𝑔𝑒𝑡]
𝑇

25

Chapter 3. System Overview 26 3.2. Landing Procedure

denote the position of the center of the target expressed in the NED frame and

P𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 = [𝑋𝑛

𝑢𝑎𝑣,𝑟𝑒𝑙 𝑌 𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 𝑍𝑛

𝑢𝑎𝑣,𝑟𝑒𝑙]
𝑇

be the UAV’s position relative to P𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 expressed in the NED frame. Ideally, the

relative position in this mode would be

P𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 = [0 0 𝑍𝑡𝑟𝑎𝑐𝑘]𝑇

but demanding 𝑋𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 = 𝑌 𝑛

𝑢𝑎𝑣,𝑟𝑒𝑙 = 0 is unrealistic. One can relax this constraint
by putting a threshold on the allowed magnitude of the horizontal relative position
as

(𝑋𝑛
𝑟𝑒𝑙,𝑥)

2
+ (𝑌 𝑛

𝑟𝑒𝑙,𝑥)
2

≤ 𝑟2
𝑡𝑟𝑎𝑐𝑘 (3.5)

where 𝑟𝑡𝑟𝑎𝑐𝑘 [m] is a design parameter. The constraint (3.5) demands that the
horizontal relative position of the UAV is within a circle with radius 𝑟𝑡𝑟𝑎𝑐𝑘 and center
(𝑋𝑛

𝑡𝑎𝑟𝑔𝑒𝑡, 𝑌 𝑛
𝑡𝑎𝑟𝑔𝑒𝑡).

In this mode, the platforms heave is ignored completely. The altitude in this mode
is still computed relative to the MSL, not the platform.

Another important function of this mode is to determine if the platform has been
lost. The details for how this criteria is defined will be discussed in chapter 4. In the
event that the target is in fact lost, the target detected flag should be set to false,
and the UAV should return to search mode.

3.2.3. Observation Mode

While the issue of estimating the motion of a floating platform is not addressed in
this thesis, this mode is included for completeness. This mode is inspired by the
approach stage in [30].

As the name suggest, in this mode, the UAV would observe the platform over some
pre-defined time interval 𝑡0...𝑡𝑁 and attempt to build a model of the platform’s
vertical position on the form (adapted from [31, eq. (2)])

26

Chapter 3. System Overview 27 3.2. Landing Procedure

𝑍𝑛
𝑃𝐿𝐴𝑇 (𝑡) =

𝑁
∑
𝑖=1

𝐴𝑖 sin (2𝜋
𝑇 𝑡 + 𝜑𝑖) (3.6)

where where the amplitudes 𝐴𝑖, frequency (2𝜋/𝑇) and phases 𝜑𝑖 are unknown con-
stants, assumed to range over some fixed interval. The details of how this is done is
outside the scope of this thesis.

3.2.4. Landing Mode

The main function of the landing mode is to ensure a controlled, vertical descent, and
to ensure that the UAV hits the platform. This mode is inspired by the touchdown
stage from [30].

First, it should impose a desired vertical descent velocity constraint

̇𝑍𝑐𝑚𝑑 ≤ 0.5m/s

Second, it should attempt to keep the UAV horizontally aligned with the platform ,
meaning

𝜙𝑐𝑚𝑑 = 0 𝜃𝑐𝑚𝑑 = 0

i.e the control system should drive pitch and roll towards zero.

Third, it should enforce a constraint similar to (3.5), but it might be necessary to
tighten it further to

(𝑋𝑛
𝑟𝑒𝑙,𝑥)

2
+ (𝑌 𝑛

𝑟𝑒𝑙,𝑥)
2

≤ 𝑟2
𝑙𝑎𝑛𝑑 ≤ 𝑟2

𝑡𝑟𝑎𝑐𝑘 (3.7)

27

Chapter 3. System Overview 28 3.2. Landing Procedure

Figure 3.1: Sketch of several scenarios when the UAV is in search mode. Let the anchor be in its
maximum extended position, and have the UAV approach from the right. The green UAV1 has a
perfect GPS, meaning that it is perfectly aligned with the anchor, and will have the platform in its
FOV, even if it is searching at 𝑍𝑖𝑑𝑒𝑎𝑙. The red UAV2 has an imperfect gps with 𝐻𝑒𝑟𝑟𝑜𝑟 denoting
the maximum error of the GPS in the horizontal plane and 𝑉𝑒𝑟𝑟𝑜𝑟 denoting the maximum error of
the GPS in the vertical direction. If the red UAV attempts to search at 𝑍𝑖𝑑𝑒𝑎𝑙, it runs the risk of

not finding the platform, even when it is close to the anchor, due to its actual altitude being
distorted by 𝐻𝑒𝑟𝑟𝑜𝑟 and 𝑉𝑒𝑟𝑟𝑜𝑟. Finally, the yellow UAV3 has the same imperfect GPS as UAV3,
but its search altitude is chosen so that it compensates for 𝐻𝑒𝑟𝑟𝑜𝑟 and 𝑉𝑒𝑟𝑟𝑜𝑟 , meaning that it

will find the platform, even in the worst case scenario.

28

Chapter 4

Vision System

This chapter will present a theoretical overview of the vision system. The vision
system will be based on the on-board downward-pointing camera. Its main purpose
is to calculate the UAV’s position relative to the center of a landing target with
certain known characteristics/features.

4.1. Image Processing
Based on the characteristics mentioned in section 4.1.1, it is possible to formulate
a general idea of what the target will look like. The target will likely be composed
of one or more colored (in this case red) blobs1. Therefore, the image processing
algorithm will be designed to detect these blobs.

4.1.1. Landing Platform Characteristics

The landing platform characteristics can will influence the choice of image processing
algorithms and techniques used. Therefore, it is important to establish exactly what
those characteristics are.

For the purposes of this thesis, the following three characteristics have been deemed
most important:

1In the context of computer vision, blob refers to a region in a digital image that differ in their
properties, for example brightness or color

29

Chapter 4. Vision System 30 4.1. Image Processing

• Geometric Marking: The landing platform will be marked with a simple geo-
metric shape. Shapes with well known properties such as circles or squares are
preferable.

• Physical Size: The physical size of the geometrical marking must meet two
fundamental requirements. Fist, it must be small enough to appear in its
entirety in the image when the UAV is close to the platform. Second, it must
be large enough to yield robust measurements from higher altitudes.

• Color: Since the landing platform will be ocean based, the color of the marking
can be exploited.

The chosen target can be seen in figure 4.1. The reasoning for choosing this particular
target was threefold. First, red is not a color that is likely to occur naturally at sea.
It is also fairly easy to separate it from the approximately uniformly blue background
of the ocean in both the RGB and HSV color spaces. Second, circles have well-
known geometric properties that can easily be exploited with respect to robust target
detection. Third, the nested circle scheme allows the target to easily to be scaled up
(simply add more circles).

Figure 4.1: The target used in this thesis. Image courtesy of [6].

30

Chapter 4. Vision System 31 4.1. Image Processing

4.1.2. Search for Red Pixels

Recall from section 2.3.2 that each pixel in an RGB image is essentially a small
vector consisting of three values; amount of red, amount of green, amount of blue,
returning a color vector I𝑅𝐺𝐵(𝑢, 𝑣) = [𝑅(𝑢, 𝑣) 𝐺(𝑢, 𝑣) 𝐵(𝑢, 𝑣)]𝑇 . Each of the
RGB values is assumed to be in the range [0, 255]. Since the target is chosen to be
red the pixels in the blob would ideally be perfectly red: [255 0 0]𝑇 . However,
this is obviously not the case in real life, meaning that the detection method must
have some tolerance for variations of red.

Additionally, the color space chosen must be able to find red pixels under different
light conditions. Both color spaces presented in 2.3.2 will be tested for illumination
invariance in chapter 5.

1. Search for red pixels in the captured Red Green Blue (RGB) image.

2. Convert the RGB image to a binary image.

3. Extract and filter blob properties.

Each of the three steps mentioned are described in more detail in the next sections.

Normalized RGB

A condition for testing the ”redness” of the pixel can be imposed on every color
vector in the RGB image. In order detect red pixels, two methods will be proposed.
Consider a normalized RGB vector given by (2.11) which will now be expressed as

C𝑅𝐺𝐵(𝑢, 𝑣) = [𝑅(𝑢, 𝑣) 𝐺(𝑢, 𝑣) 𝐵(𝑢, 𝑣)]𝑇

where (𝑢, 𝑣) [pixel] are discrete image coordinates in the image plane. Let I𝑅𝐺𝐵 be
an (𝑀 ×𝑁 ×3) normalized RGB image and 𝑇1 and 𝑇2 be numerical threshold values.
For the purposes of this thesis, the following conditions expressed as a function of a
normalized RGB color vector will be tested:

𝐶1(C𝑅𝐺𝐵, 𝑇1, 𝑇2) = 𝑅 > 𝑇1 ⋅ 𝐺) and (𝑅 > 𝑇1 ⋅ 𝐵] (4.1)

𝐶2(C𝑅𝐺𝐵, 𝑇1, 𝑇2) = [𝑅 > 𝑇2 ⋅ (𝐺 + 𝐵)] (4.2)

31

Chapter 4. Vision System 32 4.1. Image Processing

The (𝑀 × 𝑁 × 1) binary image I𝑏𝑖𝑛 is constructed by applying 4.1 and 4.2 to every
color vector C𝑅𝐺𝐵(𝑢, 𝑣) ∈ I𝑅𝐺𝐵, where, assuming appropriate values for 𝑇1 and 𝑇1,
I𝑏𝑖𝑛 will have the red pixels marked as 1’s.

HSV

The approach to detecting red pixels in the HSV image is slightly different than
for the normalized RGB image. While the RGB threshold considers all three RGB
values in a single condition, the HSV threshold will work on each layer in the HSV
image separately, before combining the results. First, recall the expression for an HSV
color vector given by (2.12). Instead of expressing a color vector, let I𝐻𝑆𝑉 denote
a 𝑀 × 𝑁 × 3 HSV image where H, S and V are the three (𝑀 × 𝑁 × 1) layers in
I𝐻𝑆𝑉 . Next, let T𝐻 , T𝑆 and T𝑉 be (1 × 2) threshold vectors containing numerical
threshold values as follows

T𝐻 = [𝑇 𝑙𝑜𝑤𝑒𝑟
𝐻 𝑇 𝑢𝑝𝑝𝑒𝑟

𝐻] , T𝑆 = [𝑇 𝑙𝑜𝑤𝑒𝑟
𝑆 𝑇 𝑢𝑝𝑝𝑒𝑟

𝑆] T𝑉 = [𝑇 𝑙𝑜𝑤𝑒𝑟
𝑉 𝑇 𝑢𝑝𝑝𝑒𝑟

𝑉]

Next, three (𝑀 × 𝑁 × 1) masks are created by evaluating

H𝑚𝑎𝑠𝑘 = [((𝐻(𝑢, 𝑣) ≤ 𝑇 𝑙𝑜𝑤𝑒𝑟
𝐻) or (𝐻(𝑢, 𝑣) ≥ 𝑇 𝑢𝑝𝑝𝑒𝑟

𝐻)) ∀ 𝐻(𝑢, 𝑣) ∈ H]

S𝑚𝑎𝑠𝑘 = [((𝑆(𝑢, 𝑣) ≥ 𝑇 𝑙𝑜𝑤𝑒𝑟
𝑆) and (𝑆(𝑢, 𝑣) ≤ 𝑇 𝑢𝑝𝑝𝑒𝑟

𝑆)) ∀ 𝑆(𝑢, 𝑣) ∈ S]

V𝑚𝑎𝑠𝑘 = [((𝑉 (𝑢, 𝑣) ≥ 𝑇 𝑙𝑜𝑤𝑒𝑟
𝑉) and (𝑉 (𝑢, 𝑣) ≤ 𝑇 𝑢𝑝𝑝𝑒𝑟

𝑉)) ∀ 𝑉 (𝑢, 𝑣) ∈ V]

Then the three masks are combined as follows to create a (𝑀 × 𝑁 × 1) binary image

I𝑏𝑖𝑛
𝐻𝑆𝑉 = [H𝑚𝑎𝑠𝑘 and S𝑚𝑎𝑠𝑘 and V𝑚𝑎𝑠𝑘]

where, assuming appropriate values for T𝐻 , T𝑆 and T𝑉 , I𝑏𝑖𝑛 will have the red pixels
marked as 1’s.

32

Chapter 4. Vision System 33 4.1. Image Processing

4.1.3. Target Detection

Once the red pixels have been found in an image, it is necessary to determine which
blobs qualifies as the target. It is unrealistic to expect the threshold to perfectly only
extract the red nested circles, so the underlying assumption here is that there will
always be some visual noise in the image and a robust method for filtering out this
noise must be found.

Contour Filter

The first step after the algorithm preforms after the thresholding, is to trace the
contours (Contours𝑏𝑙𝑜𝑏𝑠) of the binary blobs in the image. In practice,
Contours𝑏𝑙𝑜𝑏𝑠 is a set of vectors where each vector contains all the pixel coordinates
(𝑢, 𝑣) of the contour of the blob they correspond to.

Let C𝑏𝑙𝑜𝑏 be the vector containing all the pixel coordinates of the contour of a single
blob i.e C𝑏𝑙𝑜𝑏 ∈ Contours𝑏𝑙𝑜𝑏𝑠. The circumference of the blob 𝑐𝑏𝑙𝑜𝑏 can then be
approximated by counting the number of pixels in C𝑏𝑙𝑜𝑏 as

𝑐𝑏𝑙𝑜𝑏 = 𝑙𝑒𝑛𝑔𝑡ℎ(C𝑏𝑙𝑜𝑏) (4.3)

The first constraint placed on the contours is that the circumference of any given
blob must pass

𝑐𝑏𝑙𝑜𝑏 > 𝑇𝑐𝑏𝑙𝑜𝑏
(4.4)

where 𝑇𝑐𝑏𝑙𝑜𝑏
is a numerical value. Next, the diameter can be approximated by finding

the horizontal max and min values of the blob

𝑢𝑚𝑖𝑛 = min
𝑢

(C𝑏𝑙𝑜𝑏), 𝑢𝑚𝑎𝑥 = max
𝑢

(C𝑏𝑙𝑜𝑏)

𝑣𝑚𝑖𝑛 = min
𝑣

(C𝑏𝑙𝑜𝑏), 𝑣𝑚𝑎𝑥 = max
𝑣

(C𝑏𝑙𝑜𝑏)

The diameter of the blob can then be approximated by

33

Chapter 4. Vision System 34 4.1. Image Processing

𝑑𝑢
𝑏𝑙𝑜𝑏 = (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)

2
𝑑𝑣

𝑏𝑙𝑜𝑏 = (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)
2

𝑑𝑏𝑙𝑜𝑏 = 𝑑𝑢
𝑏𝑙𝑜𝑏 + 𝑑𝑣

𝑏𝑙𝑜𝑏
2 (4.5)

The reason for averaging over both the 𝑢 and 𝑣 direction in (4.5) is that a circle, even
as a binary blob, should have approximately the same diameter in both directions.
The area of the blob can then be calculated as

𝐴𝑏𝑙𝑜𝑏 = 𝜋(𝑑𝑏𝑙𝑜𝑏
2)

2

(4.6)

Since the algorithm looks for circles, there should be a approximately constant ratio
between (4.3), (4.5) and (4.6) if the blob is circular. In the ideal case (perfect circle)
the following would be true

𝑐𝑖𝑑𝑒𝑎𝑙
𝑑𝑖𝑑𝑒𝑎𝑙

= 𝜋, 𝐴𝑖𝑑𝑒𝑎𝑙
𝑐2

𝑖𝑑𝑒𝑎𝑙
= 1

4𝜋

which can be used to set sensible threshold values for the non-ideal blob case

𝑘1 + 𝜋 ≤ 𝑐𝑏𝑙𝑜𝑏
𝑑𝑏𝑙𝑜𝑏

≤ 𝑘2 + 𝜋 (4.7)

𝑘3 + 1
4𝜋 ≤ 𝐴𝑏𝑙𝑜𝑏

𝑐2
𝑏𝑙𝑜𝑏

≤ 𝑘4 + 1
4𝜋 (4.8)

where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are small correction factors used to relax the constraints in
(4.7) and (4.8).

Additionally, a constraint is placed directly on the area calculated in (4.6). Let 𝐴𝑖𝑚𝑎𝑔𝑒
be the total area of the entire image. Then, the area of any given blob is bounded
by

34

Chapter 4. Vision System 35 4.2. Position Estimation

𝛼𝑚𝑖𝑛𝐴𝑖𝑚𝑎𝑔𝑒 ≤ 𝐴𝑏𝑙𝑜𝑏 ≤ 𝛼𝑚𝑎𝑥𝐴𝑖𝑚𝑎𝑔𝑒 (4.9)

where 0 < 𝛼𝑚𝑖𝑛 < 𝛼𝑚𝑎𝑥 < 1. The conditions in (4.4), (4.7), (4.8) and (4.9) will be
tested in chapter 5.

4.2. Position Estimation
Suppose the camera has the target in its FOV. The goal is to estimate the translation
between the UAV and the center of the target. At this point, it is assumed that the
contour filter has been applied, and that all contours detected is part of the target.

4.2.1. Image Plane to CAM Frame

The first step in the translation estimation is to take the feature points found in
the image with unit [pixel], and map them to the position in the CAM frame. By
plugging (2.18) into (2.15) one obtains

[p𝑝

1] = 𝜆2𝜆1Π1Π2 [P𝑐

1] ⇒ [p𝑝

1] = 𝜆2𝜆1K3×4 [P𝑐

1]

in its expanded form

⎡⎢
⎣

𝑢
𝑣
1
⎤⎥
⎦

= 𝜆2𝜆1
⎡⎢
⎣

𝑠𝑐𝑓 0 𝑢0 0
0 𝑠𝑐𝑓 𝑣0 0
0 0 1 0

⎤⎥
⎦

⎡
⎢⎢
⎣

𝑋𝑐

𝑌 𝑐

𝑍𝑐

1

⎤
⎥⎥
⎦

(4.10)

By inspection, 𝜆2𝜆1 = 1/𝑍𝑐. Multiplying out one obtains

𝑢 = 𝑠𝑐𝑓 𝑋𝑐

𝑍𝑐 + 𝑢0 (4.11)

𝑣 = 𝑠𝑐𝑓 𝑌 𝑐

𝑍𝑐 + 𝑣0 (4.12)

A key assumption for the next part of the derivation is that all points on the target
is approximately the same distance from the camera frame origin O𝑐, i.e 𝑍𝑐 is the

35

Chapter 4. Vision System 36 4.2. Position Estimation

same for all points. Now, let (𝑢1, 𝑣) and (𝑢2, 𝑣) be two discrete points in the image
plane on the same horizontal line. Let (𝑋𝑐

1, 𝑌 𝑐) and (𝑋𝑐
2, 𝑌 𝑐) be the corresponding

points in the CAM frame. Consider the distance between (𝑢1, 𝑣) and (𝑢2, 𝑣) in the
𝑢 direction given by

𝑢2 − 𝑢1 = (𝑠𝑐𝑓 𝑋𝑐
2

𝑍𝑐 + 𝑢0) − (𝑠𝑐𝑓 𝑋𝑐
1

𝑍𝑐 + 𝑢0)

𝑢2 − 𝑢1 = 𝑠𝑐𝑓
𝑍𝑐 (𝑋𝑐

2 − 𝑋𝑐
1)

𝑍𝑐 = 𝑠𝑐𝑓
(𝑋𝑐

2 − 𝑋𝑐
1)

(𝑢2 − 𝑢1) (4.13)

By observing that 𝑍𝑐 > 0 (recall the CAM frame in figure 2.2) and 𝑠𝑐𝑓 > 0, the
absolute value can be applied to both sides of (4.13) to obtain

𝑍𝑐 = 𝑠𝑐𝑓
∣𝑋𝑐

2 − 𝑋𝑐
1∣

∣𝑢2 − 𝑢1∣ (4.14)

where ∣𝑋𝑐
2 − 𝑋𝑐

1∣ [m] is a known real-world distance and ∣𝑢2 − 𝑢1∣ [pixel] is the
corresponding discrete distance in the image plane. The derivation used to arrive at
(4.14) holds for a set of points on a vertical line in the 𝑣 direction (𝑢, 𝑣1), (𝑢, 𝑣2),
(𝑋𝑐, 𝑌 𝑐

1) and (𝑋𝑐, 𝑌 𝑐
2) where one obtains

𝑍𝑐 = 𝑠𝑐𝑓
∣𝑌 𝑐

2 − 𝑌 𝑐
1 ∣

∣𝑣2 − 𝑣1∣ (4.15)

Instead of considering only two points, consider generalized versions of (4.14) and
(4.15). Suppose the contour filter in section 4.1.3 has been applied and the contours
of the nested circles is figure 4.1 has been found. Let

𝑢𝑚𝑖𝑛
𝑖 = min

𝑢
(C𝑏𝑙𝑜𝑏

𝑖), 𝑢𝑚𝑎𝑥
𝑖 = max

𝑢
(C𝑏𝑙𝑜𝑏

𝑖) (4.16)

𝑣𝑚𝑖𝑛
𝑖 = min

𝑣
(C𝑏𝑙𝑜𝑏

𝑖), 𝑣𝑚𝑎𝑥
𝑖 = max

𝑣
(C𝑏𝑙𝑜𝑏

𝑖) (4.17)

36

Chapter 4. Vision System 37 4.2. Position Estimation

where (𝑢𝑚𝑖𝑛
𝑖 , 𝑣), (𝑢𝑚𝑎𝑥

𝑖 , 𝑣), is the minimum and maximum pixel coordinates of the

𝑖’th contour in the 𝑢 direction, and (𝑢, 𝑣𝑚𝑖𝑛
𝑖), (𝑢, 𝑣𝑚𝑎𝑥

𝑖) is the is the minimum
and maximum pixel coordinates of the 𝑖’th contour in the 𝑣 direction as shown in
figure 4.2. Next, the geometric simplicity of the target can be exploited. There is a
corresponding real world distance 𝑑𝑟𝑒𝑎𝑙 to

𝑑𝑢,𝑚𝑖𝑛
1 = |𝑢𝑚𝑖𝑛

1 − 𝑢𝑚𝑖𝑛
2 |

which can be obtained by simply measuring the corresponding real world distance on
the target between the points 𝑢𝑚𝑖𝑛

1 and 𝑢𝑚𝑖𝑛
2 . In fact, due to the symmetry of the

target, this real world distance is the same for all discrete distances on the form

𝑑𝑢,𝑚𝑖𝑛
𝑖 = |𝑢𝑚𝑖𝑛

𝑖 − 𝑢𝑚𝑖𝑛
𝑖+1 |, 𝑑𝑢,𝑚𝑎𝑥

𝑖 = |𝑢𝑚𝑎𝑥
𝑖 − 𝑢𝑚𝑎𝑥

𝑖+1 | (4.18)
𝑑𝑣,𝑚𝑖𝑛

𝑖 = |𝑣𝑚𝑖𝑛
𝑖 − 𝑣𝑚𝑖𝑛

𝑖+1 |, 𝑑𝑣,𝑚𝑎𝑥
𝑖 = |𝑣𝑚𝑎𝑥

𝑖 − 𝑣𝑚𝑎𝑥
𝑖+1 | (4.19)

which can be seen from figure 4.2.

umin
umin

umin
umin

umaxumax
umaxumax

vmin

vmin

vmin

vmin

vmax

vmax

vmax

vmax

1

2

3

4

1234

1

2

3

4

1234

u

v

Figure 4.2: Illustration of what feature points the algorithm looks for. For each distance on the
form (4.18) or (4.19), there is a corresponding real world distance 𝑑𝑟𝑒𝑎𝑙, which is obtained by

simply measuring it on the physical target.

37

Chapter 4. Vision System 38 4.2. Position Estimation

Now, assuming a target similar to figure 4.1 is used, a proposed generalization for
(4.14) and (4.15) is

𝑍𝑐
𝑢 = 𝑠𝑐𝑓𝑑𝑟𝑒𝑎𝑙

2(𝑁 − 1)
𝑁−1
∑
𝑖=1

(1
∣𝑢𝑚𝑖𝑛

𝑖 − 𝑢𝑚𝑖𝑛
𝑖+1 ∣ + 1

∣𝑢𝑚𝑎𝑥
𝑖 − 𝑢𝑚𝑎𝑥

𝑖+1 ∣) (4.20)

𝑍𝑐
𝑣 = 𝑠𝑐𝑓𝑑𝑟𝑒𝑎𝑙

2(𝑁 − 1)
𝑁−1
∑
𝑖=1

(1
∣𝑣𝑚𝑖𝑛

𝑖 − 𝑣𝑚𝑖𝑛
𝑖+1 ∣ + 1

∣𝑣𝑚𝑎𝑥
𝑖 − 𝑣𝑚𝑎𝑥

𝑖+1 ∣) (4.21)

where 2𝑁 is the number of points found in each direction (𝑁 max points plus 𝑁
min points), and 𝑑𝑟𝑒𝑎𝑙 has simply been factored out.

Next, 𝑍𝑐 can be expressed as the average of (4.20) and (4.21)

𝑍𝑐 = 𝑍𝑐
𝑢 + 𝑍𝑐

𝑣
2 (4.22)

The reasoning behind using (4.22) instead of just (4.14) or (4.15) is that the cir-
cles detected might be slightly deformed, potentially causing inaccuracies if a single
distance pair ∣𝑋𝑐

2 − 𝑋𝑐
1∣, ∣𝑢2 − 𝑢1∣ is used.

Next, the target center and the optical center should be calculated, as it is required
to find 𝑋𝑐 and 𝑌 𝑐. The target center (𝑢𝑡𝑎𝑟𝑔𝑒𝑡, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡) is calculated as

𝑢𝑡𝑎𝑟𝑔𝑒𝑡 = 1
2𝑁

𝑁
∑
𝑖=1

(𝑢𝑚𝑎𝑥
𝑖 + 𝑢𝑚𝑖𝑛

𝑖) (4.23)

𝑣𝑡𝑎𝑟𝑔𝑒𝑡 = 1
2𝑁

𝑁
∑
𝑖=1

(𝑣𝑚𝑎𝑥
𝑖 + 𝑣𝑚𝑖𝑛

𝑖) (4.24)

and the optical center (𝑢0, 𝑣0) is calculated as

𝑢0 = 𝑈
2 , 𝑣0 = 𝑉

2 (4.25)

where 𝑈 [pixel] is the image width and 𝑉 [pixel] is the image height.

38

Chapter 4. Vision System 39 4.2. Position Estimation

Once 𝑍𝑐, (𝑢𝑡𝑎𝑟𝑔𝑒𝑡, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡) and (𝑢0, 𝑣0) is known, 𝑋𝑐 and 𝑌 𝑐 can be found by re-
arranging (4.11) and (4.12) into

𝑋𝑐 = 𝑍𝑐 (𝑢𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑢0)
𝑠𝑐𝑓 (4.26)

𝑌 𝑐 = 𝑍𝑐 (𝑣𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣0)
𝑠𝑐𝑓 (4.27)

which means that P𝑐 can be found by calculating (4.22), (4.26) and (4.27), using
information extracted from the image plane and a set of known distances in the real
world.

4.2.2. CAM Frame to NED Frame

Recall the full map from a arbitrary world point P to a discrete image point p𝑝 in
(2.23). Consider its re-written version

[P𝑝

1] = 𝜆K3×3(RP + T) ⇒ 1
𝜆K−1

3×3 [P𝑝

1] = (RP + T) (4.28)

Since P is in an arbitrary reference frame P = P𝑛 be a point in the NED frame.
Next, observe that

P𝑐 = 1
𝜆K−1

3×3 [p𝑝

1]

Also, note that the cameras position in the world is given by [32, p.11]

C = −R𝑇 T (4.29)

where R, T are the extrinsic parameters. Now, (4.28) becomes

39

Chapter 4. Vision System 40 4.3. Algorithm Overview

⇒ P𝑐 = R𝑐
𝑛P𝑛 + T𝑐

⇒ T𝑐 = P𝑐 − R𝑐
𝑛P𝑛

⇒ (R𝑐
𝑛)

𝑇
T𝑐 = (R𝑐

𝑛)
𝑇

P𝑐 − (R𝑐
𝑛)

𝑇
R𝑐

𝑛P𝑛

⇒ −(R𝑐
𝑛)

𝑇
T𝑐 = −(R𝑐

𝑛)
𝑇

P𝑐 + (R𝑐
𝑛)

𝑇
R𝑐

𝑛P𝑛

applying (4.29) ⇒ P𝑛
𝑐𝑎𝑚 = −(R𝑐

𝑛)
𝑇

T𝑐 = P𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 − R𝑛

𝑐 P𝑐

⇒ P𝑛
𝑐𝑎𝑚 − P𝑛 = −R𝑛

𝑐 P𝑐 (4.30)

Now, recall that in section 2.1, it was established that O𝑐 = O𝑏, meaning that
P𝑛

𝑐𝑎𝑚 is effectively the UAV’s position in the NED frame. Therefore, for clarity, let
P𝑛

𝑢𝑎𝑣 = P𝑛
𝑐𝑎𝑚. Then, (4.30) becomes

P𝑛
𝑢𝑎𝑣 − P𝑛 = −R𝑛

𝑐 P𝑐

The goal is to obtain the UAV’s position relative to the target. Let P𝑛 = P𝑛
𝑡𝑎𝑔𝑒𝑡,

where P𝑛
𝑡𝑎𝑔𝑒𝑡 is the center of the target in the NED frame . Additionally, the rotation

R𝑛
𝑐 is decomposed into R𝑛

𝑐 = R𝑛
𝑏 R𝑏

𝑐. Then, the UAV’s relative position to the
target is

P𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 = P𝑛

𝑢𝑎𝑣 − P𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 = −R𝑛

𝑏 (R𝑏
𝑐P𝑐) (4.31)

where P𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 = O𝑛 based on the NED definition in section 2.1, R𝑛

𝑏 can be computed
using (2.6) and the on-board IMU data, P𝑐 can be obtained based on the equations
derived in section 4.2.1, and R𝑏

𝑐 is the transpose of (2.8).

4.3. Algorithm Overview
This section is an attempt to essentially summarize the entire chapter. The steps of
the envisioned algorithm is given below

1. Capture RGB image.

40

Chapter 4. Vision System 41 4.3. Algorithm Overview

2. Search for red pixels using one of the methods in 4.1.2.

3. Extract contours from the binary image.

4. Apply the contour filter from section 4.1.3.

5. If the number of contours found after the contour filter is greater than 2 (the
algorithm needs at least 2 nested circles from the target), go to the next step.
Otherwise, go to search mode (section 3.2.1.)

6. Extract feature points. See figure 4.2 for a visual representation of the feature
points.

7. Using the extracted feature points, compute P𝑐 according to (4.22), (4.26)
and (4.27).

8. Using IMU-data, and the known rotation from the CAM frame to the BODY
frame, compute the relative position according to (4.31).

41

Chapter 5

Experiments

5.1. Hardware
For the experiments in this chapter, the Raspberry Pi Camera Module v2 (see table
5.1) and the Raspberry pi Model 3B was used, both of which can be seen in figure
5.15a. The reason for choosing this particular combination of hardware was mainly

• Ease of use: The author was already familiar with the raspberry pi, mean-
ing that it did not require substantial effort to become familiarized with the
hardware.

• Instant availability: NTNU has a student-driven electronics shop called Omega
Verksted which sells multiple raspberry pi products. This means that this par-
ticular combination of hardware was instantly available.

• Online documentation and support: Raspberry pi offers detailed online doc-
umentation and a large online community with for additional support.

The author fully acknowledges that there exists other (potentially better) combina-
tions of hardware for the purpose of an autonomous vision-based landing system, but
the raspberry pi was deemed sufficient for the scope of this thesis.

5.2. Software

43

Chapter 5. Experiments 44 5.2. Software

Camera Module v2

Price $25

Weight 3g

Still resolution 8 Megapixels

Sensor image area 3.68mm × 2.76mm

Pixel size 1.12 𝜇m × 1.12 𝜇m

Horizontal FOV 62.2 °

Vertical FOV 48.2 °

Table 5.1: Key specifications for the raspberry pi camera used in this thesis. All values are taken
from [7], where the full table can be found.

Matlab

Matlab was used for the prototype implementation of the vision system described in
chapter 4. It was chosen primarily for its visualization capability, ease of use (the
author is very familiar with Matlab), a wide section of built in and relevant functions,
and a large online community offering additional support.

Mission Planner

In order to read relevant data from the on-board UAV systems, the Ardu Pilot Mission
Planner (see figure 5.1) was used. It communicates with the UAV using the Micro
Air Vehicle Link 1 (MAVLink) protocol.

Despite having access to the on-board GPS when using the Mission Planner in con-
junction with the UAV, it was deemed unwise to attempt to use it for position ground
truth measurements, as the signal quality suffered indoors.

1A communications protocol specifically designed for communication with small aerial vehicles.

44

Chapter 5. Experiments 45 5.3. Error Metrics

Figure 5.1: The Mission Planner interface. The ”Status” page shown on the right allows quick and
easy access to some of the most mission critical data. The UAV’s orientation, roll, pitch and yaw,

are highlighted by the red bounding box.

5.3. Error Metrics
Two common error metrics are presented here. Let 𝑝𝐺𝑇 [m] denote the ground truth
and 𝑝𝐸𝑆𝑇 [m] be the corresponding estimate of 𝑝𝐺𝑇 . Then

𝑒𝑚
𝑎𝑏𝑠 = ∣|𝑝𝐺𝑇 | − |𝑝𝐸𝑆𝑇 |∣ (5.1)

𝑒%
𝑎𝑏𝑠 = 100% ⋅ 𝑒𝑚

𝑎𝑏𝑠
|𝑝𝐺𝑇 | (5.2)

The reason for the nested absolute value signs in (5.1) is that some ground truth
values and estimates can be negative. This is also the reason for applying the absolute
value sign to 𝑝𝐺𝑇 in (5.2).

5.4. Robustness
The robustness of the visual system in this thesis is mainly concerned with the fol-
lowing:

1. It must be able to correctly identify the target under varying light-conditions.

45

Chapter 5. Experiments 46 5.4. Robustness

2. It must be able to correctly identify the target with visual noise present in the
binary image.

Put simply, the UAV should be able to land if its sunny, cloudy, etc., and the vision
system should be able to handle a red piece of plastic that happens to drift into view.

This section presents some preliminary tests that attempts to achieve these goals.

5.4.1. Illumination Invariance

Goal

The goal of this section is to test the robustness of the two color spaces presented
in section 2.3.2 with respect to illumination invariance.

More specifically, the goal is to find threshold values for the thresholding methods
proposed in section 4.1.2, meaning, 𝑇1, 𝑇2 for Normalized RGB and T𝐻 , T𝑆, T𝑉
for HSV. This is important, as adverse light conditions could potentially cause the
binary target to become deformed, as shown in figure 5.2.

(a) Original RGB image. (b) Binary output.

Figure 5.2: Example of how light conditions can deform the binary output of the thresholding.
Even though the target is the only red object and the target is not physically obstructed as shown
in (a), the light conditions can still cause the thresholding to produce a deformed output shown in

(b).

Setup

Images was taken of target the target shown in figure 4.1 at a fixed distance, under
varying light conditions. A sample of these light conditions can be seen in figure 5.3.
There were 12 images in total in this test set.

46

Chapter 5. Experiments 47 5.4. Robustness

Normal Light Conditions

(a) Normal Light conditions.

Dark Light Conditions

(b) Dark Light conditions.
Normal Light Conditions: Partially Illuminated

(c) Normal Light conditions: Target
partially illuminated.

Dark Light Conditions: Partially Illuminated

(d) Dark Light conditions: Target
partially illuminated.

Figure 5.3: A sample of the data-set used to test the color-spaces in section 2.3.2 for illumination
invariance.

Error Metric

The error metric used here is conceptually similar to (5.2), but is stated explicitly
here for clarity. A practical way of comparing different threshold value is needed,
as inspecting 12 binary outputs for each set of threshold values can quickly become
ineffective. Therefore, a simple error metric was used. First, as a reference point,
the light conditions seen in figure 5.3a was defined as normal light conditions, which
will be used as a reference when testing the thresholding values under varying light
conditions. With that in mind, the error metric was defined as follows:

1. Given one of the two methods described in section 4.1.2 and a set of corre-
sponding thresholding values, threshold image (5.3a) and visually inspect the
output to ensure that the reference is not deformed.

2. Place a bounding box around the target as shown in figure 5.4.

47

Chapter 5. Experiments 48 5.4. Robustness

3. Count the number of 1’s inside the bounding box and call this number Number
of red pixels reference, 𝑁𝑝𝑖𝑥𝑒𝑙

𝑟𝑒𝑓 .

Next, a method can then be tested on a set of images as follows

1. Given one of the two methods described in section 4.1.2 and a set of corre-
sponding thresholding values, threshold the current test image.

2. Place a bounding box around the target as shown in figure 5.4.

3. Count the number of 1’s inside the bounding box and call this number Number
of red pixels found 𝑁𝑝𝑖𝑥𝑒𝑙

𝑓𝑜𝑢𝑛𝑑.

4. Compute the Absolute Error metric as shown in (5.3).

5. Repeat steps 1-4 until all images has been tested.

𝑒%
𝑎𝑏𝑠 = 100% ⋅ ∣1 − (𝑁𝑝𝑖𝑥𝑒𝑙

𝑓𝑜𝑢𝑛𝑑/𝑁𝑝𝑖𝑥𝑒𝑙
𝑟𝑒𝑓)∣ (5.3)

Figure 5.4: Bounding box used to define Number of pixels reference in (5.3). The binary output
shown is based on image (5.3a).

The main idea underpinning the metric in (5.3), is that the number of pixels inside
the bounding box in figure 5.4 should stay somewhat constant, regardless of light
conditions if the thresholding values are good with respect to illumination invariance.
For example, the deformed output in image (5.2b) would have an absolute error of
roughly 35% due to a large number of ”missing” pixels.

48

Chapter 5. Experiments 49 5.4. Robustness

Results: HSV

Seven different sets of thresholding values for the HSV-based method proposed in
section 4.1.3 are presented in table 5.2. It proved quite difficult to find a set of
HSV thresholding values which yielded a good response with respect to the metric
in (5.3), as shown in figure 5.5. The general approach was to let T𝑆 and T𝑉 have a
fairly large range to allow for tolerance of different shades of red (i.e red mixed with
different amounts of white and black).

Threshold Value Sets (HSV) T𝐻 T𝑆 T𝑉

A [0.05 0.97] [0.3 1] [0.01 1]

B [0.01 0.97] [0.3 1] [0.01 1]

C [0.05 0.97] [0.4 1] [0.02 1]

D [0.05 0.97] [0.5 1] [0.03 1]

E [0.01 0.50] [0.6 1] [0.04 1]

F [0.00 0.97] [0.3 1] [0.01 1]

G [0.03 0.97] [0.3 1] [0.01 1]

Table 5.2: Threshold value sets used to generate the output in figure 5.5.

The responses from sets B (seen in figure 5.5a), E and F (seen in figure 5.5b) were
visually inspected due to the extremely high error. All of them produced severely
deformed targets. Looking at their corresponding values in table 5.2, it was difficult
to establish a clear pattern answer as to why they preformed so poorly, but they were
scrapped based on their poor responses.

The responses of sets A, C, D (seen in figure 5.5a) and G (seen in figure 5.5b) ,
preform reasonable well compared with B, E and F for samples 𝑠 ∈ [1, 11], but all
have a significant error spike for sample 𝑠 = 12. This could imply that A, C, D and
G might produce severely deformed targets when exposed to certain light conditions.

Based on these tests, all the tested HSV threshold values are considered non-robust,
at least within the scope of these tests.

49

Chapter 5. Experiments 50 5.4. Robustness

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

10

20

30

40

50

60

70

80

90

100

A
b

s
o

lu
te

 E
rr

o
r

[%
]

HSV thresholding responses

A

B

C

D

(a) HSV thresholding responses for
thresholding value sets A-D

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

10

20

30

40

50

60

70

80

90

100

A
b

s
o

lu
te

 E
rr

o
r

[%
]

HSV thresholding responses

E

F

G

(b) HSV thresholding responses for
thresholding value sets E-G

Figure 5.5: Absolute error responses for different threshold value sets for the HSV method. The
results are partitioned into 2 plots for readability.

Results: Normalized RGB

Seven different sets of thresholding values for the normalized RGB method proposed
in section 4.1.3 are presented in table 5.3. Compared to the HSV method, it proved
much easier to find a set of RGB thresholding values which yielded a decent response
with respect to the metric in (5.3), as shown in figure 5.6. A possible explanation
might be that the RGB method only requires tuning of 2 parameters, whereas the
HSV method requires tuning of 6. Recall the conditions (4.1) and (4.2). The first
parameter to be considered is 𝑇1 in (4.1). Increasing it will lessen the tolerance for
the amount of green and blue present, and conversely, decreasing it will increase
the tolerance for the the amount of green and blue present. Finding the balance
between the two is key. The second parameter to be considered is 𝑇2 in (4.2). If
𝑇2 is increased it will lessen the tolerance for the amount of green or blue present,
and conversely, if it is decreased it will increase the tolerance for the amount of
green or blue present. The other parameter 𝑇1 works slightly differently, increasing
it will lessen the tolerance for the amount of green and blue present, and conversely,
decreasing it will increase the tolerance for the the amount of green and blue present.
Finding the balance between the two is key.

By inspecting figure 5.6a, it is clear that the values for set A can immediately be
discarded., due to a massive ≈ 45% error spike for 𝑠 = 2. This is likely due to
the relatively low value of 𝑇2, which is why 𝑇2 is higher in table 5.3 for all other
thresholding value sets. The responses from sets B (seen in figure 5.6a) and E (seen
in figure 5.6a) have, compared to sets C, D, F and G a higher error in 𝑠 = 2 and

50

Chapter 5. Experiments 51 5.4. Robustness

Threshold Value Sets (RGB) 𝑇1 𝑇2

A 1.165 0.51

B 1.165 0.61

C 1.165 0.71

D 1.165 0.81

E 1.2 0.61

F 1.25 0.61

G 1.3 0.71

Table 5.3: Threshold value sets used to generate the output in figure 5.6.

𝑠 = 12. Based on this, the general trend was that increasing 𝑇1 and 𝑇2 produced
error responses closer to 0%, which is why 𝑇1 and 𝑇2 increases for sets C, D, F and
G in table 5.3.

The sets C, D and G were the final candidates. Both C and D had a higher average
error than G, as did all of the values tested for the HSV method. Therefore, the
final choice, based on figure 5.6 and 5.5, was normalized RGB with 𝑇1 = 1.3 and
𝑇2 = 0.71. Its performance on the full illumination invariance data-set is seen in
appendix A.

Remarks

There are a several important remarks with respect to the illumination invariance
tests.

1. Only two color-spaces were tested, based on the findings from the literary
review. There could be other color representations even better suited for illu-
mination invariance which the literary review did not reveal.

2. Only one thresholding scheme per color space were tested. Conceivably, there
could exist other, better, thresholding schemes for both HSV and normalized

51

Chapter 5. Experiments 52 5.4. Robustness

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

5

10

15

20

25

30

35

40

45

50

A
b

s
o

lu
te

 E
rr

o
r

[%
]

Normalized RGB thresholding responses

A

B

C

D

(a) Normalized RGB thresholding
responses for thresholding value sets

A-D

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

5

10

15

20

25

30

35

40

45

50

A
b

s
o

lu
te

 E
rr

o
r

[%
]

Normalized RGB thresholding responses

E

F

G

(b) Normalized RGB thresholding
responses for thresholding value sets

E-G

Figure 5.6: Absolute error responses for different threshold value sets for the normalized RGB
method. The results are partitioned into 2 plots for readability.

RGB.

3. A limited set of thresholding values were tested. This was mainly due to the
limited time-scope of this thesis, where it was necessary to eventually make
a decision. However, the author fully acknowledges that better thresholding
values could exists.

4. It is difficult to cover every lighting condition scenario and the data-set in
appendix A is likely lacking in this respect.

As a summary, the results in this section should not be interpreted as anything other
than a tentative conclusion, where the best performance found was for the proposed
normalized RGB thresholding scheme.

5.4.2. Contour Filter

Since the illumination invariance tests presented in section 5.4.1 are mainly concerned
with not producing deformed targets, it is important that the algorithm can lock on
to the target, even with visual noise is present.

Visual noise, in this context, refers to binary blobs that has passed the red-pixel search
which is not the actual target. Consider figure 5.7 as an example, where additional
red blobs has been added.

52

Chapter 5. Experiments 53 5.4. Robustness

RGB Image With Visual Noise Added

(a) RGB image.

Binary Output

(b) Binary output with visual noise.

Figure 5.7: Example of visual noise. The red pixel search cannot reasonably be expected to filter
out the additional blobs, which implies the need for a robust way to separate the target from the

added blobs.

Now, consider what would happen if an unfiltered contour search was applied to
image (5.7b). The result can be seen in image (5.8a) in figure 5.8. Another example
can be seen in figure 5.9.

Unfiltered Contour Detection

(a) Unfiltered contour search.

Filtered Contour Detection

(b) Filtered contour search.

Figure 5.8: Example of a unfiltered and filtered contour search.

Due to the noise in images (5.8a) and (5.9a), the equations (4.20) and (4.21) would
be fed a huge number of discrete distances in the image plane for which there are no
corresponding known real world distances, likely resulting in complete failure when
attempting to estimate 𝑍𝑐 in (4.22) and by extension 𝑋𝑐 and 𝑌 𝑐 in (4.26) and (4.27)
respectively.

The contour filter this section is referring to, consists of taking all detected contours
in image (5.8a) and applying the conditions (4.4), (4.7), (4.8) and (4.9).

53

Chapter 5. Experiments 54 5.5. Position Estimation

Image (5.8b) is the output of applying the contour filter. Its parameters can be seen
in table 5.4.

Parameter 𝑘1 𝑘2 𝑘3 𝑘4 𝑇𝑐𝑏𝑙𝑜𝑏
𝛼𝑚𝑖𝑛 𝛼𝑚𝑎𝑥

Value -0.5416 0.0656 0.0079 5𝑘3 100 (0.1/100) (20/100)

Table 5.4: Numerical values for the parameters of the contour filter.

Unfiltered Contour Detection

(a) Unfiltered contour search.

Filtered Contour Detection

(b) Filtered contour search.

Figure 5.9: Another example of a unfiltered and filtered contour search. This image was taken
from inside the UAV with the camera mounted as shown in figure 5.15 with sunlight streaming

into the room. There were no other red objects in the image, but there was still a number of false
positives. Even with a large amount of visual noise, the contour filter still manages to correctly

identify the target.

Remarks

Despite the approximately uniform blue background the ocean will provide, it is still
possible that an image will be contaminated by noise due to varying light conditions.
Recall that the illumination invariance scheme proposed in section 5.4.1 is mainly
concerned with preserving the integrity of the target, meaning that it is possible that
the red pixel threshold can produce false positives. Therefore, a contour filter is
added as an additional layer of robustness.

5.5. Position Estimation
Before any actual flight test can be conducted, the proposed position estimation
scheme must be tested under controlled conditions. The main goal of these tests is

54

Chapter 5. Experiments 55 5.5. Position Estimation

to verify that the algorithm gives reasonable results.

The methodology for generating test-data on some range [𝑎, 𝑏] [m] can be outlined
as follows:

1. Set the camera to some position 𝑝𝐺𝑇 = 𝑎 relative to the target.

2. Capture an image and note 𝑝𝐺𝑇 .

3. Increment 𝑝𝐺𝑇 to 𝑝𝐺𝑇 ← 𝑝𝐺𝑇 + Δ

4. Repeat steps 2-3 up to and including 𝑝𝐺𝑇 = 𝑏.

Test data refers to images taken at 640×480 resolution. Once the data was gathered,
it was fed to a Matlab implementation consisting of the following steps

1. Apply the red pixel search scheme chosen in section 5.4.1.

2. Detect contours and apply the contour filter from section 5.4.2.

3. Extract discrete image plane distances from the filtered contours.

4. Compute P𝑐 according to (4.22), (4.26) and (4.27) using the extracted discrete
image plane distances and their corresponding known real world values.

Finally, for these tests, the platform is assumed to be completely stationary meaning
no surge, sway or heave and no angular motion in any direction.

5.5.1. Conditions

These tests were conducted under the condition that the CAM frame was aligned
directly with the NED frame, meaning that the body frame was ignored for these
tests (these tests were not done with the actual hexacopter). This means

R𝑛
𝑏 = R𝑏

𝑐 = I3×3 (5.4)
where I3×3 is the 3 × 3 identity matrix which reduces (4.31) to

P𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 = −P𝑐

55

Chapter 5. Experiments 56 5.5. Position Estimation

5.5.2. Vertical Position Estimation

A simple test rig was constructed for testing the vertical position estimation. It
consisted of the actual raspberry pi camera mounted on a simple rig, facing the target
attached to a wall as seen in figure 5.10. The rig was built so that 𝑋𝑐 ≈ 𝑋𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 = 0
and 𝑌 𝑐 ≈ 𝑌 𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 = 0. Next, a measurement interval Δ [m] was defined. For the
vertical translation tests, Δ = 0.1𝑚. The camera was then moved on the range
[𝑎, 𝑏] = [0.2, 2𝑚] in Δ increments, generating a total of 19 samples (𝑠 ∈ [1, 19]),
consisting of 20 images.

Figure 5.10: Simple sketch of the test rig for vertical position estimation. The camera can be
moved along the 𝑍𝑐 axis in ∆ delta increments.

The result of the vertical position estimation and can be seen in figure 5.11. Note
that technically, it is ∣P𝑛

𝑢𝑎𝑣,𝑟𝑒𝑙∣ that is shown, since the sign of P𝑛
𝑢𝑎𝑣,𝑟𝑒𝑙 is irrelevant

for this specific test.

Based on figure 5.11b and 5.11b, it would seem that the overall trend seems to be
that the error grows as the distance grows. While the error is < 6% on the range
[0.1𝑚, 2𝑚], it is worth noting that this test is, of course, very idealized, in the sense
that there is no platform motion or rotation.

56

Chapter 5. Experiments 57 5.5. Position Estimation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sample (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
o

s
it
io

n
 [

m
]

Estimated Position

Ground Truth

Estimated

(a) Vertical position estimation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sample (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

o
r

[m
]

Absolute Error [m]

Absolute Error

Mean

(b) Absolute error [m].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sample (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

E
rr

o
r

[%
]

Absolute Error [%]

Absolute Error

Mean

(c) Absolute error [%].

Figure 5.11: Result of the vertical position estimation in the 𝑧-direction.

5.5.3. Horizontal Position Estimation

A simple test rig was constructed for testing the horizontal position estimation as
well. Since these tests encompassed both the 𝑋𝑐 and 𝑌 𝑐 direction, the rig was
constructed so that the camera could be rotated to allow for displacement in both
horizontal directions. It consisted of the actual raspberry pi camera mounted on
a simple rig, facing downwards towards the target on the ground as seen in figure
5.12. The rig was built so that |𝑍𝑐| was fixed, i.e |𝑍𝑐| ≈ 0.8𝑚 = 𝑐𝑜𝑛𝑠𝑡. Next,
a measurement interval Δ [m] was defined. For the horizontal translation tests,
Δ = 0.05𝑚. The camera was then moved on the range [𝑎, 𝑏] = [−0.3𝑚, 0.3𝑚] in
Δ increments, generating a total of 12 samples each for the 𝑋𝑐 and 𝑌 𝑐 direction
(𝑠 ∈ [1, 12]).

The results for the position estimates in the 𝑥-direction can be seen in figure 5.13a
and the results of the position estimates in the 𝑦-direction can be seen in figure
5.14a . The order of magnitude of the absolute error in figure 5.13b and 5.14b is

57

Chapter 5. Experiments 58 5.5. Position Estimation

Figure 5.12: Simple sketch of the test rig for horizontal position estimation. The camera can be
moved along the 𝑋𝑐 or 𝑌 𝑐 axis (depending on the camera’s orientation) in ∆ delta increments.

roughly 10−3 (with a couple of exceptions for the 𝑦-direction), which is quite precise.
However, generally speaking, the percentage error from (5.2) for the 𝑦-direction is
much more spread out than in the 𝑥-direction, showing ≈ 6.2% for sample 𝑠 = 9 in
figure 5.14c. Possible sources for this error will be discussed in section 5.5.4.

The results in figure 5.13 and 5.14, while good, should be seen in the context of the
test setup which was very idealized. Additionally, the range was only [−0.3𝑚, 0.3𝑚].
As seen with the vertical position estimation in figure 5.11, the trend is that the error
grows as the distance grows, meaning that it is conceivable that larger error margins
would be present for larger ranges.

5.5.4. Sources of Error

There are several possible sources of error for the results in figure 5.11 5.13 and
5.14. Even though the test rigs shown in figure 5.10 and 5.12 are theoretically
ideal, there might still be construction errors leading to the assumption in (5.4) not

58

Chapter 5. Experiments 59 5.5. Position Estimation

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

P
o

s
it
io

n
 [

m
]

Estimated Position

Ground Truth

Estimated

(a) Horizontal (x) position
estimation.

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

0

1

2

3

4

5

6

7

E
rr

o
r

[m
]

10-3 Absolute Error [m]

Absolute Error

Mean

(b) Absolute error [m].

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

E
rr

o
r

[%
]

Absolute Error [%]

(c) Absolute error [%].

Figure 5.13: Result of the horizontal position estimation in the 𝑥-direction. The discontinuity in
𝑠 = 7 in (5.13c) is due to the ground truth being 0 for sample 7, meaning it cannot be calculated

by the metric in (5.2)

being completely accurate. Additionally, the ground truth measurements was done
manually by the author, leading to some uncertainty. Since the measuring tape had
a resolution of 1𝑚𝑚, the order of magnitude of this uncertainty is likely 10−3𝑚, but
human error could conceivably lead to much larger errors.

Additionally, for the horizontal measurements, the rig was physically rotated 90° after
conducting the tests in the 𝑥-direction to allow for testing in the 𝑦-direction. It is
possible that this movement caused some minor physical displacement of the camera,
causing the larger error margins seen in figure 5.14c compared to figure 5.13c.

59

Chapter 5. Experiments 60 5.6. Attitude Compensation

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
o

s
it
io

n
 [

m
]

Estimated Position

Ground Truth

Estimated

(a) Horizontal (y) position
estimation.

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

0

0.002

0.004

0.006

0.008

0.01

0.012

E
rr

o
r

[m
]

Absolute Error [m]

Absolute Error

Mean

(b) Absolute error [m].

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample (s)

0

1

2

3

4

5

6

7

E
rr

o
r

[%
]

Absolute Error [%]

(c) Absolute error [%].

Figure 5.14: Result of the horizontal position estimation in the 𝑦-direction. The discontinuity in
𝑠 = 7 in (5.14c) is due to the ground truth being 0 for sample 7, meaning it cannot be calculated

by the metric in (5.2)

5.6. Attitude Compensation
After the position estimation system were shown to preform reasonably well with no
rotation in section 5.5, the next step was to include rotation to see how the system
preformed.

In order to achieve this, three simple trials were devised, involving pitch and roll (yaw
was excluded due to reasons stated in section 5.6.1). Each trial consisted of letting
the roll and pitch vary over some pre-determined interval [𝑎𝜙, 𝑏𝜙] [deg] for the roll,
and [𝑎𝜃, 𝑏𝜃] [deg] for the pitch. Each trial also had a set of measurement increments
𝛿𝜙 [deg] for the roll, and 𝛿𝜃 [deg] for the pitch. Each trial can be summarized as

Trial 1: Test the systems ability to compensate for roll. Let [𝑎𝜙, 𝑏𝜙] ≈ [−25°, 25°]
and 𝛿𝜙 ≈ 5°. Keep the pitch angles small, [𝑎𝜃, 𝑏𝜃] ≈ [−3°, 3°] and let 𝛿𝜃 = 0.

60

Chapter 5. Experiments 61 5.6. Attitude Compensation

Trial 2: Test the systems ability to compensate for pitch. Let [𝑎𝜃, 𝑏𝜃] ≈ [−25°, 25°]
and 𝛿𝜃 ≈ 5°. Keep the roll angles small, [𝑎𝜙, 𝑏𝜙] ≈ [−3°, 3°] and let 𝛿𝜙 = 0.

Trial 3: Test the systems ability to compensate for roll and pitch. Let [𝑎𝜙, 𝑏𝜙] ≈
[−25°, 25°], 𝛿𝜙 ≈ 5° and [𝑎𝜃, 𝑏𝜃] ≈ [−25°, 25°], 𝛿𝜃 ≈ 5°.

This methodology was used to produce the data shown in 5.5 (Trial 1), 5.6 (Trial 2)
and 5.7 (Trial 3). As a final note, due to the nature of the setup, it proved difficult
to match the proposed intervals and measurement increments exactly. Therefore,
the intervals and increments proposed in the three trials listed above are only approx-
imations, and does not match the exact values seen in table 5.5, 5.6 and 5.7.

5.6.1. Conditions

In this case the rotation matrix in (4.31) is used as is, with one exception. The testing
was done indoors at the NTNU UAV-lab, meaning that the on-board magnetometer
produced false yaw measurements. This was remedied by setting 𝜓𝑛𝑏 ≈ 0 in (2.6).

5.6.2. Setup

The camera and raspberry pi was mounted inside the UAV as shown in figure 5.15.
A power supply was used to power the UAV’s on-board systems, while the raspberry
pi had its own separate power supply for these tests.

Since the UAV was not flying, a simple method for inducing roll and pitch was used,
namely, displacing the uav as shown in figure 5.16. The target was then placed on
the floor beneath the UAV. For these tests, a laser range finder was available, making
the process of finding ground truth measurements much easier than if a ruler was
used.

5.6.3. Results

The results for (Trial 1) is seen in table 5.5 with corresponding error metrics seen
in figure 5.17, the results for (Trial 2) is seen in table 5.6 with corresponding error
metrics seen in figure 5.6 and the results for (Trial 3) is seen in table 5.7 with
corresponding error metrics seen in figure 5.7.

The 𝑍𝑛 error in terms of meters for both Trial 1 in figure 5.17a and Trial 2 in
figure 5.18a are quite large compared to the other two directions. Recall the results

61

Chapter 5. Experiments 62 5.6. Attitude Compensation

(a) Raspberry pi camera mounted. (b) Sideways view.

Figure 5.15: The raspberry pi camera was mounted as shown in (a), and was then covered by the
plastic dome shown in (b).

presented in figure 5.11 in section 5.5. There, the [%] error for the 𝑍𝑛 direction
never exceeds ≈ 5% while it exceeds ≈ 7% for both Trial 1 and Trial 2 as shown
in figure 5.17b and 5.18b respectively. This confirms (perhaps not surprisingly) that
introducing roll and pitch has an adverse effect on the distance estimation in the
𝑍𝑛 direction. This is important to note, as the error in 𝑍𝑐 will propagate to the
estimation of 𝑋𝑐 and 𝑍𝑐 (recall (4.26) and (4.27)), and, by extension 𝑋𝑛 and 𝑌 𝑛.
The [%] based absolute error seen in figure 5.17b for Trial 1 and 5.18b for Trial 2
captures this effect better than the meter based absolute error, as both 𝑋𝑛 and 𝑌 𝑛

are much closed to 𝑍𝑛 in terms of [%] error for both trials.

For Trial 1, the 𝑋𝑛 absolute error in terms of meters seen in figure 5.17a is, relative
to the 𝑌 𝑛 and 𝑍𝑛 error, fairly small. This is likely due to a couple of reasons. First,
the magnitude 𝑋𝑛 is quite small (≈ 0.1𝑚), and in section 5.5 the general trend
found was that the error grows as the distance from the target grows. Second, by
inspecting the rotation matrix in (2.6), one can see that the roll does not have a
huge impact on the 𝑋𝑛 direction, i.e the roll angle does not ”distort” the distances
seen by the camera in the 𝑋𝑛 direction. This reasoning also seems to apply to Trial
2, where is 𝑌 𝑛 error in 5.18a is quite small, relative to the 𝑋𝑛 and 𝑍𝑛 error. Here,
the pitch does not distort the distances seen in the 𝑌 𝑛 direction.

62

Chapter 5. Experiments 63 5.6. Attitude Compensation

(a) Inducing roll. (b) Inducing pitch.

Figure 5.16: The (very simple) method for inducing roll (a) and pitch (b).

In Trial 3 (table 5.7 and figure 5.19), both roll and pitch is increased. Compared to
Trial 1 and Trial 2, the mean error has increased for both error metrics in all three
directions. This is not completely unexpected, as the system now has to account for
large pitch and roll values simultaneously. As seen in figure 5.19, the overall trend is
that the error metrics decrease towards the middle. Coupling this observation with
the data from table 5.7, the data confirms that the vision system’s performance is
adversely affected by larger Euler angles and larger distances to the target.

These are important considerations when envisioning the complete system in chapter
3. The tracking mode presented in section 3.2.2 will use a GPS-based height estimate
𝑍𝑡𝑟𝑎𝑐𝑘 to align the UAV with the platform, i.e 𝑋𝑛

𝑛,𝑟𝑒𝑙 and 𝑌 𝑛
𝑛,𝑟𝑒𝑙 will depend on 𝑍𝑡𝑟𝑎𝑐𝑘

(recall (4.26) and (4.27)). As briefly discussed in the literature review, the GPS-based
height estimate can be subject to quite large errors in the vertical direction (recall
that the one found in [9], with vertical error ±5𝑚). Now, if the UAV couples an
uncertain estimate of the altitude (𝑍𝑠𝑒𝑎𝑟𝑐ℎ) with large Euler angles, aligning the UAV
according to (3.5) could prove difficult as 𝑋𝑛

𝑛,𝑟𝑒𝑙 and 𝑌 𝑛
𝑛,𝑟𝑒𝑙 would (as suggested by

the results in figure 5.17b, 5.18b and 5.19b) presumably have a [%] based error
relatively close to 𝑍𝑠𝑒𝑎𝑟𝑐ℎ. Therefore, it could be wise to constrain the roll and pitch
in the tracking mode, so that the UAV error introduced by the Euler angles is kept

63

Chapter 5. Experiments 64 5.6. Attitude Compensation

Sample (s) Angles [deg] EST [m] GT [m]

s Roll (𝜙) Pitch (𝜃) 𝑋𝑛 𝑌 𝑛 𝑍𝑛 𝑋𝑛 𝑌 𝑛 𝑍𝑛

1 -25.043 2.571 0.101 0.459 -1.022 0.104 0.481 -1.096

2 -20.141 2.603 0.125 0.464 -1.131 0.121 0.445 -1.071

3 -14.616 1.78 0.118 0.424 -1.016 0.115 0.436 -1.053

4 -10.403 2.637 0.113 0.372 -1.065 0.117 0.359 -1.035

5 -5.119 1.453 0.135 0.332 -1.069 0.131 0.319 -1.026

6 0.821 2.151 0.103 0.265 -0.984 0.101 0.258 -1.016

7 0.911 3.076 0.113 -0.246 -1.050 0.111 -0.253 -1.019

8 4.874 2.889 0.109 -0.335 -1.059 0.112 -0.324 -1.023

9 10.131 1.344 0.102 -0.377 -0.980 0.106 -0.361 -1.031

10 14.762 1.391 0.133 -0.454 -1.097 0.129 -0.438 -1.046

11 20.095 2.36 0.105 -0.463 -1.122 0.108 -0.449 -1.067

12 24.533 2.324 0.107 -0.472 -1.015 0.111 -0.496 -1.094

Table 5.5: Results for trial 1. Here, the roll is gradually increased while keeping the pitch angles
small. The corresponding error metrics can be seen in figure 5.17.

beneath a certain percentage. A possible general form for such a bound could simply
be

|𝜙𝑐𝑚𝑑| ≤ 𝜙𝑏𝑜𝑢𝑛𝑑 = 𝑐𝑜𝑛𝑠𝑡, |𝜃𝑐𝑚𝑑| ≤ 𝜃𝑏𝑜𝑢𝑛𝑑 = 𝑐𝑜𝑛𝑠𝑡

where 𝜙𝑐𝑚𝑑 and 𝜃𝑐𝑚𝑑 are the commands to the control system and 𝜙𝑏𝑜𝑢𝑛𝑑 and 𝜃𝑏𝑜𝑢𝑛𝑑
are some sensible values in degrees. While it is tempting to suggest concrete values
for 𝜙𝑏𝑜𝑢𝑛𝑑 and 𝜃𝑏𝑜𝑢𝑛𝑑 based on the error margins in figure 5.17, 5.18 and 5.19, it
might be inappropriate, since the ground truth distances considered in table 5.5, 5.6
and 5.7 are relatively small compared to what might be encountered in a ”real world”

64

Chapter 5. Experiments 65 5.6. Attitude Compensation

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
b
s
o
lu

te
 E

rr
o
r

[m
]

Absolute Error [m]: Trial 1

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(a) Absolute Error [m].

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

1

2

3

4

5

6

7

8

9

10

A
b
s
o
lu

te
 E

rr
o
r

[%
]

Absolute Error [%]: Trial 1

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(b) Absolute Error [%].

Figure 5.17: Error metrics for the results seen in table 5.5.

scenario.

5.6.4. Sources of Error

Potential sources for the error margins seen in figure 5.17, 5.18 and 5.19, are listed
below

• Consider the mounting of the raspberry pi camera as seen in figure 5.15a. Due
to time constraints, a proper fastening mechanism was not devised. While
saving time, it could cause a discrepancy in the alignment between the BODY
and CAM frame. Specifically, it could quite possibly perturb the angles seen in
(2.7), causing the rotation in (4.31) to be slightly off.

• The IMU values were manually read to only three decimal points from the
Mission planner interface seen in figure 5.1. Even when the UAV stood still,
the values fluctuated. The angle values presented in table 5.5, 5.6 and 5.7 are
therefore approximations of the actual IMU values.

• Human error could also have influenced the results. The laser range finder used
was hand-held, so it is conceivable that the measurements are slightly off.

65

Chapter 5. Experiments 66 5.6. Attitude Compensation

Sample (s) Angles [deg] EST [m] GT [m]

s Roll (𝜙) Pitch (𝜃) 𝑋𝑛 𝑌 𝑛 𝑍𝑛 𝑋𝑛 𝑌 𝑛 𝑍𝑛

1 0.981 -24.957 0.529 0.101 -1.292 0.505 0.098 -1.207

2 2.712. -19.887 0.459 0.105 -1.095 0.478 0.100 -1.161

3 2.432 -14.928 0.455 0.105 -1.162 0.441 0.108 -1.112

4 1.816 -10.223 0.355 0.098 -1.132 0.364 0.096 -1.098

5 2.439 -5.261 0.328 0.096 -1.028 0.318 0.099 -1.076

6 3.787 0.53 0.273 0.101 -1.052 0.265 0.103 -1.018

7 2.987 0.81 -0.250 0.106 -1.045 -0.257 0.109 -1.015

8 1.939 4.941 -0.328 0.104 -1.139 -0.316 0.107 -1.081

9 1.029 9.872 -0.352 0.108 -1.033 -0.367 0.104 -1.096

10 2.345 15.113 -0.441 0.098 -1.068 -0.422 0.095 -1.119

11 3.011 20.106 -0.476 0.106 -1.098 -0.459 0.109 -1.172

12 2.631 25.098 -0.524 0.110 -1.116 -0.502 0.105 -1.201

Table 5.6: Results for trial 2. Here, the pitch is gradually increased while keeping the roll angles
small. The corresponding error metrics can be seen in figure 5.18.

66

Chapter 5. Experiments 67 5.6. Attitude Compensation

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
b
s
o
lu

te
 E

rr
o
r

[m
]

Absolute Error [m]: Trial 2

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(a) Absolute Error [m].

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

1

2

3

4

5

6

7

8

9

10

A
b
s
o
lu

te
 E

rr
o
r

[%
]

Absolute Error [%]: Trial 2

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(b) Absolute Error [%].

Figure 5.18: Error metrics for the results seen in table 5.6.

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

A
b
s
o
lu

te
 E

rr
o
r

[m
]

Absolute Error [m]: Trial 3

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(a) Absolute Error [m].

1 2 3 4 5 6 7 8 9 10 11 12

Sample (s)

0

1

2

3

4

5

6

7

8

9

10

11

A
b
s
o
lu

te
 E

rr
o
r

[%
]

Absolute Error [%]: Trial 3

Absolute Error (X
n
)

Mean (X
n
)

Absolute Error (Y
n
)

Mean (Y
n
)

Absolute Error (Z
n
)

Mean (Z
n
)

(b) Absolute Error [%].

Figure 5.19: Error metrics for the results seen in table 5.7.

67

Chapter 5. Experiments 68 5.6. Attitude Compensation

Sample (s) Angles [deg] EST [m] GT [m]

s Roll (𝜙) Pitch (𝜃) 𝑋𝑛 𝑌 𝑛 𝑍𝑛 𝑋𝑛 𝑌 𝑛 𝑍𝑛

1 -25.142 -25.341 0.535 0.521 -1.314 0.507 0.501 -1.223

2 -20.091 -19.193 0.441 0.428 -1.109 0.463 0.452 -1.178

3 -14.908 -15.012 0.451 0.424 -1.177 0.429 0.439 -1.119

4 -10.115 -9.891 0.350 0.337 -1.037 0.368 0.348 -1.088

5 -4.776 -5.075 0.335 0.347 -1.086 0.321 0.357 -1.047

6 0.982 1.124 0.242 0.256 -0.987 0.251 0.248 -1.020

7 1.182 1.028 -0.262 -0.250 -0.978 -0.271 -0.258 -1.015

8 5.107 5.055 -0.346 -0.353 -1.123 -0.359 -0.341 -1.059

9 10.111 9.937 -0.359 -0.371 -1.046 -0.376 -0.353 -1.111

10 15.075 15.066 -0.431 -0.463 -1.112 -0.411 -0.449 -1.169

11 19.871 20.776 -0.465 -0.494 -1.276 -0.487 -0.470 -1.201

12 25.167 25.123 -0.542 -0.478 -1.316 -0.514 -0.513 -1.229

Table 5.7: Results for trial 3. Here, both the pitch and roll is gradually increased. The
corresponding error metrics can be seen in figure 5.19.

68

Chapter 6

Conclusion

A possible high-level solution for allowing an UAV to autonomously return to a landing
platform from a set of arbitrary GPS coordinates has been presented. As a part of
this system, a detailed proposition of a vision-based landing algorithm has also been
presented. Within said algorithm, an attempt has been made to account for varying
light conditions, robust target detection through filtering of visual noise and ensuring
a reliable 3D position estimation with attitude compensation.

The illumination invariance method chosen was tested on a set of 12 images which
displayed varying light conditions. From figure 5.6b it can be see that the method
performed with < 6.5% error for 𝑠 ∈ [1, 11], but shoved an error spike of ≈ 10%
for the last sample (see figure A.1x in appendix A for the binary output of 𝑠 = 12).
Any definitive conclusions regarding satisfactory performance would have to wait
until the system has been tested outdoors, but based on the results in appendix A,
the proposed scheme at least shows promise with respect to achieving illumination
invariance. The robust target detection method, consisting of the contour filter in
section 5.4.2, has been shown to be able to filter out visual noise (as it is defined in
section 1.1). Its parameters shown in 5.4 was found experimentally through trial and
error, but should not be considered immutable.

The position estimation scheme proposed was put through two test stages. First,
it was tested without rotation, where the goal was to validate the basic estimation
of P𝑐 as given by (4.26), (4.27) and (4.22). The [%] based absolute error seen in
figure 5.11, 5.13c and 5.14c never exceeded ≈ 7% for these tests, which was deemed
sufficient for further testing. Next, the system was tested with rotation at the NTNU
UAV-lab. Even when introducing both pitch and roll, the [%] based absolute error
is bounded by < 8% for all three directions as seen in figure 5.19b. However, the

69

Chapter 6. Conclusion 70 6.1. Future Work

average error metric also shown in figure 5.19b shows an increase in error for all three
direction when compared to 5.11, 5.13c and 5.14c. While it is difficult to precisely
define what would constitute satisfactory performance, it is argued that based on the
meter based absolute error seen in figure 5.19a, the system’s performance at least
deems it worthy of further real-world tests (an error of ≈ 3𝑐𝑚 in the 𝑋𝑛 and 𝑌 𝑛

direction is unlikely to cause the UAV to miss the platform entirely).

6.1. Future Work
There are several possibilities for future work regarding the system proposed in this
thesis. All suggestions here are intended to advance the development of the system
towards an actual flight test on the ocean.

• A sensible first step would be to implement the vision-system in a real-time
suited programming language. The author would propose C/C++, not only
for their excellent real-time performance, but also because they have open
source libraries such as OpenCV available to them, which provides a lot of useful
functionality for implementing the vision system proposed in this thesis. As a
concrete example, in order to extract the contours with Matlab, a function
called bwboundaries was used. OpenCV has an analogous function called
findCountours, simplifying the implementation process.

• The illumination invariance method proposed here should be tested outdoors.

• Conduct a manual flight with the algorithm running on-board. The algorithm
would have no actual control over the UAV here, but it would be possible to
inspect the results of the position estimation and attitude compensation in a
real world setting without risking that the algorithm crashes the UAV. The
main challenge for conducting such a test will be finding a reliable method
to measure the ground truth. One possibility is using the GPS, however, as
discussed earlier, the GPS may have non-trivial error margins which should be
taken into considerations.

• Care should be taken to synchronize IMU data and camera data, when actual
flight tests are conducted. If they are not synchronized, the algorithm will
be fed an image with a set of incorrect Euler angles, likely causing erroneous
position estimation. One possible method of synchronization is using matched
time-stamps for both the IMU data and the camera data.

70

Chapter 6. Conclusion 71 6.2. Lessons Learned

6.2. Lessons Learned
There were several lessons learning during the course of this thesis. Admittedly,
some can be considered obvious, but the author would like to list some of them in
the hopes that they can help another student who might happen to read this paper
in the future.

• Don’t underestimate the usefulness of the literature review. It can be incredibly
powerful for finding a sensible ”angle of attack” for the problem at hand. For
example, a very useful result produced by the literature review in this thesis
was that a common approach to vision-based pose estimation started with the
projection equations as discussed in section 1.2. This formed the basis for the
vision system proposed in chapter 4.

• Experiments will likely be much more time-consuming than first anticipated.
For example, while it may not be obvious, the data presented in table 5.5, 5.6
and 5.7 were the result of many, many hours of meticulous work at the UAV-
lab, due to the time-consuming process of gathering accurate ground truth
measurements.

• Testing parts of the system should be done in a careful and controlled manner.
Start by considering a simple case. For example, this is the reason for the
tests presented in section 5.5, where the system is tested with no attitude
compensation. The author initially tried to test the system with rotation, but
struggled to find the errors in the equations when the results produced were
nonsensical. When the simpler case in section 5.5 was considered, the culprit
was quickly identified as an erroneous expression for computing 𝑍𝑐 in the earlier
drafts of the vision system.

71

Appendices

73

Appendix A

Robustness Results

(a) Sample 𝑠 = 1. (b) Binary Output for 𝑠 = 1.

(c) Sample 𝑠 = 2. (d) Binary Output for 𝑠 = 2.

Figure A.1: Results of illumination invariance testing.

75

Appendix A. Robustness Results 76

(e) Sample 𝑠 = 3. (f) Binary Output for 𝑠 = 3.

(g) Sample 𝑠 = 4. (h) Binary Output for 𝑠 = 4.

(i) Sample 𝑠 = 5. (j) Binary Output for 𝑠 = 5.

(k) Sample 𝑠 = 6. (l) Binary Output for 𝑠 = 6.

Figure A.1: (Continued) Results of illumination invariance testing.

76

Appendix A. Robustness Results 77

(m) Sample 𝑠 = 7. (n) Binary Output for 𝑠 = 7.

(o) Sample 𝑠 = 8. (p) Binary Output for 𝑠 = 8.

(q) Sample 𝑠 = 9. (r) Binary Output for 𝑠 = 9.

(s) Sample 𝑠 = 10. (t) Binary Output for 𝑠 = 10.

Figure A.1: (Continued) Results of illumination invariance testing.

77

Appendix A. Robustness Results 78

(u) Sample 𝑠 = 11. (v) Binary Output for 𝑠 = 11.

(w) Sample 𝑠 = 12. (x) Binary Output for 𝑠 = 12.

Figure A.1: (Continued) Results of illumination invariance testing.

78

Bibliography

[1] A. Hodgson, N. Kelly, and D. Peel, Unmanned aerial vehicles (uavs) for sur-
veying marine fauna: a dugong case study, PloS one 8, e79556 (2013).

[2] I. I. Kaminer, O. A. Yakimenko, V. N. Dobrokhodov, M. I. Lizarraga, and A. M.
Pascoal, Cooperative control of small uavs for naval applications, in Decision
and Control, 2004. CDC. 43rd IEEE Conference on, Vol. 1 (IEEE, 2004) pp.
626–631.

[3] Image: Right-hand rule, https://en.wikipedia.org/wiki/File:Right_
hand_rule_Cartesian_axes.svg (2008), [Online; accessed 25-March-2018].

[4] Image: RGB color-space, https://commons.wikimedia.org/wiki/File:
RGB_color_solid_cube.png (2008), [Online; accessed 1-April-2018].

[5] Image: HSV color-space, https://commons.wikimedia.org/wiki/File:
HSV_color_solid_cylinder.png (2008), [Online; accessed 1-April-2018].

[6] Image: Red bullseye target, http://www.targets.ws/bullseye-targets.
htm (2018), [Online; accessed 14-March-2018].

[7] Raspberry Pi Camera Module V2, https://www.raspberrypi.org/
documentation/hardware/camera/README.md (2016), [Online; accessed
12-March-2018].

[8] P. Castillo, R. Lozano, and A. Dzul, Stabilization of a mini rotorcraft with four
rotors, Control Systems, IEEE 25, 45 (2005).

[9] F. Kendoul, K. Nonami, I. Fantoni, and R. Lozano, An adaptive vision-based
autopilot for mini flying machines guidance, navigation and control, Autonomous
Robots 27, 165 (2009).

79

https://en.wikipedia.org/wiki/File:Right_hand_rule_Cartesian_axes.svg
https://en.wikipedia.org/wiki/File:Right_hand_rule_Cartesian_axes.svg
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
http://www.targets.ws/bullseye-targets.htm
http://www.targets.ws/bullseye-targets.htm
https://www.raspberrypi.org/documentation/hardware/camera/README.md
https://www.raspberrypi.org/documentation/hardware/camera/README.md

Bibliography 80 Bibliography

[10] S. Saripalli, J. Montgomery, and G. Sukhatme, Visually guided landing of an
unmanned aerial vehicle, Robotics and Automation, IEEE Transactions on 19,
371 (2003).

[11] K. Nordberg, P. Doherty, G. Farnebäck, P.-E. Forssén, G. Granlund, A. Moe,
and J. Wiklund, Vision for a uav helicopter, in International Conference on
Intelligent Robots and Systems (IROS), workshop on aerial robotics. Lausanne,
Switzerland (2002) pp. 29–34.

[12] A. D. Wu, E. N. Johnson, and A. A. Proctor, Vision-aided inertial navigation
for flight control, Journal of Aerospace Computing, Information, and Commu-
nication 2, 348 (2005).

[13] P. Smith, B. Sridhar, and B. Hussien, Vision-based range estimation using
helicopter flight data, (IEEE Publishing, 1992) pp. 202–208.

[14] J. Hintze, Autonomous landing of a rotary unmanned aerial vehicle in a non-
cooperative environment using machine vision, (2004).

[15] C. Xu, L. Qiu, M. Liu, B. Kong, and Y. Ge, Stereo vision based relative pose
and motion estimation for unmanned helicopter landing, Information Acquisition,
2006 IEEE International Conference on , 31 (2006).

[16] V. Dobrokhodov, I. Kaminer, K. Jones, and R. Ghabcheloo, Vision-based track-
ing and motion estimation for moving targets using small uavs, (IEEE, USA,
2006).

[17] T. Daquan and Z. Hongyue, Vision based navigation algorithm for autonomic
landing of uav without heading attitude sensors, Signal-Image Technologies and
Internet-Based System, 2007. SITIS ’07. Third International IEEE Conference
on , 972 (2007).

[18] M. Dunbabin, P. Corke, and G. Buskey, Low-cost vision-based auv guidance
system for reef navigation, (IEEE, USA, 2004) pp. 7–12.

[19] R. Lozano, Unmanned aerial vehicles: Embedded control (John Wiley & Sons,
2010).

[20] G. Chatterji, P. Menon, and B. Sridhar, Gps/machine vision navigation system
for aircraft, Aerospace and Electronic Systems, IEEE Transactions on 33, 1012
(1997).

[21] D. Hubbard, B. Morse, C. Theodore, M. Tischler, and T. Mclain, Performance
evaluation of vision-based navigation and landing on a rotorcraft unmanned
aerial vehicle, (IEEE, 2007) pp. 5–5.

80

http://contentdm.lib.byu.edu/ETD/image/etd359.pdf
http://contentdm.lib.byu.edu/ETD/image/etd359.pdf

Bibliography 81 Bibliography

[22] O. Amidi, An autonomous vision-guided helicopter, PHD Thesis (1996).

[23] I. N. Thiang, Dr.Lumaw, and H. M. Tun, Vision-based object tracking algorithm
with ar. drone, International Journal of Scientific & Technology Research 4, 135
(2015).

[24] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control,
(2011).

[25] G. D. Finlayson, B. Schiele, and J. L. Crowley, Comprehensive colour image
normalization, in Computer Vision — ECCV’98, edited by H. Burkhardt and
B. Neumann (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998) pp. 475–
490.

[26] A. Hanbury and J. Serra, A 3d-polar coordinate colour representation suitable
for image analysis, submitted to Computer Vision and Image Understanding
(2002).

[27] R. Hartley and A. Zisserman, Multiple view geometry in computer vision second
edition, Cambridge University Press (2000).

[28] Introduction to Computer vision by Georgia Tech (Free course), https://
www.udacity.com/course/introduction-to-computer-vision--ud810
(2011), [Online; accessed 25-March-2018].

[29] U. M. Office, Beaufort wind force scale, https://www.metoffice.gov.
uk/guide/weather/marine/beaufort-scale (2016), [Online; accessed 7-
March-2018].

[30] S. M. Esmailifar and F. Saghafi, Autonomous unmanned helicopter landing sys-
tem design for safe touchdown on 6dof moving platform, in Autonomic and
Autonomous Systems, 2009. ICAS’09. Fifth International Conference on (IEEE,
2009) pp. 245–250.

[31] L. Marconi, A. Isidori, and A. Serrani, Autonomous vertical landing on an oscil-
lating platform: an internal-model based approach, Automatica 38, 21 (2002).

[32] S. Shah, Real-time image processing on low cost embedded computers, Techincal
report No. UCB/EECS-2014–117 (2014).

81

https://doaj.org/article/ada212e1a7b7463b8928fc8f29168433
https://doaj.org/article/ada212e1a7b7463b8928fc8f29168433
https://www.udacity.com/course/introduction-to-computer-vision--ud810
https://www.udacity.com/course/introduction-to-computer-vision--ud810
https://www.metoffice.gov.uk/guide/weather/marine/beaufort-scale
https://www.metoffice.gov.uk/guide/weather/marine/beaufort-scale

	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Thesis Objectives
	Literature Review
	Thesis Outline

	Theory
	Reference Frames
	Rotation and Attitude
	Image Processing
	Binary Thresholding
	Color-spaces

	The Camera

	System Overview
	Assumptions
	Landing Procedure
	Search Mode (GPS)
	Tracking Mode
	Observation Mode
	Landing Mode

	Vision System
	Image Processing
	Landing Platform Characteristics
	Search for Red Pixels
	Target Detection

	Position Estimation
	Image Plane to CAM Frame
	CAM Frame to NED Frame

	Algorithm Overview

	Experiments
	Hardware
	Software
	Error Metrics
	Robustness
	Illumination Invariance
	Contour Filter

	Position Estimation
	Conditions
	Vertical Position Estimation
	Horizontal Position Estimation
	Sources of Error

	Attitude Compensation
	Conditions
	Setup
	Results
	Sources of Error

	Conclusion
	Future Work
	Lessons Learned

	Appendices
	Robustness Results

