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Summary

As industries are getting more automated the demand for new sensor technologies and
algorithms increases. Industrial manipulators have for instance been equipped with
more sensors to handle increasingly complex tasks to further automate manufacturing.
Particularly there is now a desire to handle objects with undetermined movements in
real-time.

This thesis will present a way to estimate the position, orientation and velocities of a
suspended object. This is accomplished by using a particle filter on image data to get
the most likely estimates.

Some issues such as open-loop control and the sheer amount of particles needed for the
filter have been tried mitigated through optimization. As the system is heavily dependent
on camera calibration a new calibration routine and optimization was proposed and the
particle filter was efficiently implemented on a graphical processing unit.

The proposed calibration optimization have been substantiated, through real-world ex-
periments, to be less accurate than a usual form of calibration even though simulations
proved it better. Luckily the traditional calibration was seen to have satisfactory accu-
racy. The filter have no problems running with 500 000 particles between frame captures
at 33fps, which points to an efficient implementation.

To test the validity of the approach a case study was planned where the particle filter
estimates was to be fed on-line to an industrial manipulator to follow a moving object
with a fixed pose relative to the object itself. Tests showed that as long as the object
is unique enough in the images it can be tracked with decent accuracy by the particle
filter, they also showed that an industrial manipulator could be controlled smoothly by
simulated filter output. The complete experiment was on the other hand never conducted
due to time limitations and safety concerns.

Since the local coordinate system has been shown to be known and followed it is plausible
that work could be done on the swinging and otherwise moving object as if it was at rest.
With further improvements applications for this range from picking suspended parts of
conveyors to complex tasks performed on the object while it is suspended on an assembly
line.
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Sammendrag

Behovet for nye algoritmer og sensorteknologier øker stadig ettersom flere og flere arbeid-
soppgaver ute i industrien blir automatisert. For eksempel har robotarmer blitt utrustet
med flere sensorer for å h̊andtere mer komplekse oppgaver for videre automatisering. Et
mye ønsket bruksomr̊ade for roboter er å h̊andtere fritt bevegelige objekter i sanntid.

Denne avhandlingen presenterer en m̊ate å estimere posisjon, orientering og hastigheter
av et objekt med et enkelt opphengspunkt. Et partikkelfilter blir benyttet p̊a bildedata
for å finne de mest sannsynlige tilstandene av systemet.

Enkelte hindringer slik som åpen regulering og det store antallet partikler er forsøkt
redusert ved hjelp av optimaliseringer. Systemet er svært avhengig av god kalibrering
og en automatisk kalibreringsrutine og en ny optimalisering har derfor blitt utarbeidet.
I tillegg har partikkelfilteret blitt implementert og optimalisert for kjøring p̊a grafikkort.

Gjennom eksperimenter har den foresl̊atte kalibreringen blitt sannsynliggjort til å være
d̊arligere enn en typisk fremgangsm̊ate tatt i dag, dette til tross for lovende simuler-
ingsresultater. Heldigvis har den tradisjonelle kalibreringen vist seg å være tilstrekkelig
god. Det implementerte partikkelfilteret har heller ingen problemer med å bruke 500
000 partikler for estimering mer enn 33 ganger per sekund, noe som viser til en effektiv
implementasjon.

For å teste bruksverdien av den gitte fremgangsm̊aten ble det planlagt et forsøk hvor rob-
otarmen skulle følge et bevegelig objekt med en konstant posisjon og orientering relativt
til objektet. Resultatene av testene viste at s̊a lenge objektet kunne gjenkjennes godt
i bildet kunne det følges med tilfredsstillende nøyaktighet av partikkelfilteret. Testene
viste ogs̊a at en robotarm kunne bli kontrollert on-line av simulerte filter estimater. Det
komplette systemet ble i midlertid aldri testet p̊a grunn av tidsmangel og sikkerhetshen-
syn.

Siden det lokale koordinatsystemet til objektet kan bli fulgt er det sannsynlig at arbeid
kan bli utført som om objektet stod stille til tross for svingende og lineære bevegelser.
Ved videre forbedringer kan systemet benyttes til alt fra plukking av opphengte deler til
mer komplekse arbeidsoppgaver p̊a et objekt mens det henger p̊a et samleb̊and.
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1. Introduction

As technology advances the production in different industries become more automated.
Today robotic manipulators is in widespread use in many instances of society and a
cornerstone in cost-effective manufacturing for many organizations.

Use of industrial manipulators are steadily increasing and new solutions are needed to
accommodate the new found demand. For instance is adding visual sensing to industrial
equipment becoming more and more common in applications like robotic welding and
inspection. One of the desirable extensions to a manipulator is to handle moving objects
which gives nearly endless possibilities for new uses. By adding tracking capabilities to
a manipulator it is now possible to deal with moving or complex objects in new ways.

Object tracking in computer vision is a vast field[2] which still see regular breakthroughs.
Popular algorithms for robust tracking include the extended Kalman filter[13] and parti-
cle filters[24]. Filters allow for the pose as well as velocities of an object to be estimated
for each frame of an image sequence. Using these estimates an industrial manipulator
should be able to perform work on the object as if it was at rest.

To demonstrate the idea a case study of a hanging conveyor is considered with the
purpose of picking suspended parts from a moving production line. The problem at hand
is rooted in a real industrial need which could open for more automation in manufacturing
applications which are now dominated by manual labor. This master thesis will present
a way to track and compensate for movements of an object, suspended from a moving
conveyor in a single point, using a particle filter. It is an extension of the work done by
Torstein Myhre[20],[28] by adding movement of the pivot in 3D space.

The problem to be solved is first presented together with the proposed solution, later a
thorough explanation on how the particle filer works and the steps taken to implement
it on a graphical processor is given. Next the focus shifts to camera calibration where
an automatic routine as well as a novel optimization technique is proposed. Finally the
results of both calibration and tracking are presented by simulations as well as real world
experiments.
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2. Objective and proposed solution

The objective of this thesis is to accurately estimate the position and orientation (pose)
as well as the velocities of an objects local coordinate system, later referred to as the
pivot frame, with respect to a fixed world frame. The estimates are then to be used by
an industrial manipulator to compensate/follow the motion of the object. An integral
part of the system is the estimation by visual sensing.

A tried and true method of using computer vision in robotics is visual servoing[3], either
eye-in-hand or eye-to-hand which are closed-loop and open-loop systems respectively.
The image information is typically used to minimize the error between a desired pose
on the object and the end-effector of the robot. Image based servoing simply minimizes
the error to the feature in the image plane and can therefor be robust, yet limiting in its
application. Position based servoing, where the pose of the object is estimated by the
camera, gives greater freedom as the manipulator can move to any pose relative to the
object but often lacks the robustness of closed-loop feedback. Position based servoing
often rely on computation on extracted features of the image which can also be prone
to noise.

The wider range of applications for a position based approach makes it desirable, and an
alternative to feature extraction and calculations are filters. Filters are a probabilistic
way of determining the implicit states of a system using explicit measurements. Kalman
filters[30] assume a Gaussian distribution of the states to calculate an analytic solution
to the most likely estimate given a set of measurements. Particle filters[5] on the other
hand takes a more general approach by introducing several hypothesis and weighting
them according to the measurements which lets it represent arbitrary distributions.
The generality of the particle filter is an attractive but more computationally expensive
property, however as computational power increases this issue diminishes.

Even though the filters are capable of estimating the states directly the drawback of
an open-loop system is still present and therefore great care must be taken to calibrate
the cameras accurately. It is here proposed to calibrate the cameras with respect to
the base frame of the manipulator performing the work, this allows for automatic and
simultaneous calibration of both cameras. The tracking will also be performed with
respect to the same base.
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To estimate the pose and velocities a particle filter was chosen for robust and general
tracking. Particle filters have the nice property of being widely applicable with no
limitations or assumptions such as linearity or uni-modal distributions. The particle
filter presented in this thesis will be based on sequential importance sampling (SIR)
with resampling and will estimate the most likely state vector

x =
[
x y z ẋ ẏ ż α β γ α̇ β̇ γ̇

]
(2.1)

where x, y, z are the Cartesian coordinates in a three dimensional space while α, β, γ are
the XYZ-euler angles for minimal representation of the orientation. The dot-notation
represents the time derivative of the marked entity; linear and rotational velocities re-
spectively. All states are with respect to the base frame of the manipulator performing
the work. The estimates are to be calculated in real-time on images taken at 30-60fps
and a predictive model used to achieve a suitable refresh rate to update the configuration
of a 6DOF manipulator.
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3. Particle filter

The premise of a particle filter is the ability to represent a probability density function
(pdf) by a set of weighted samples (particles). If each particle holds a hypotheses for
the state and can be weighted based on sensor data the represented pdf can give the
expected, most likely, value of the states. This stands in contrast to the Kalman filter
which assumes Gaussian distribution to calculate a single analytic solution.

The Kalman filter has seen many attempted improvements to handle non-linear problems
such as the extended Kalman filter[30] which linearises the problem beforehand. However
one inherent limitation of the Kalman filter is that it expects a single bell-curve and can
therefore only represent a single hypotheses making it less robust when several states
have high probabilities.

Using particles as a pdf representation allows for arbitrary, multi-modal distributions
which handles all the limitations of the Kalman filter in a simple manner. This off-
course comes at a cost, and a large amount of particles is often needed to represent a
high-dimensional problem.

To advance the particles to the next step a motion model, also known as a dynamic
model, must be used. The motion model incorporates the known behavior of the system
to predict the next state. To evaluate the likelihood/quality of the predicted state
the observation model which incorporates sensor data is used to weight each particle.
The particle filter described in this thesis is the sequential importance sampling with
re-sampling (SIR) scheme:

Begin: with weighted samples from step n-1 p(xn|yn−1)

Drift: Apply motion model (no noise) to every particle to predict

Diffuse: Apply noise to spread particles and account for inaccuracy of the motion
model or random movement

Measure: Assign weights using the likelihood/observation model on each hypoth-
esized state (particle) p(yn|xn).

4



Resample: Draw samples, with replacement, from the previous set according to
these weights (small weighted particles will most likely be discarded)

Finish: Estimate density/expectation and repeat.

3.1. The motion model

Since the conveyors have hangers fixed in one rotating point a natural thing to do is using
its center of mass and model it as a spherical pendulum with a moving pivot. Friction
in the joint, air resistance and any other force other than gravity is not accounted for
and so must be compensated for by adding (Gaussian) noise.

The orientation of the center of mass is estimated beforehand (see section 3.1.4) as
angular offsets around the pivot frames x- and y-axis, θα, θβ respectively. While the
length to the pivot origin is estimated as l. Now consider the position and orientation
of the pivot frame to be found with respect to a fixed world frame, W. The mass center
is then found in W by applying α = αstate + θα, β = βstate + θβ to the Euler angles
estimated by the particle filter. The position of the pivot in W is

t =
[
xstate ystate zstate

]T
=
[
x y z

]T
(3.1)

while the orientation of the mass center is

RX(α)RY (β)RZ(γ) =
[
r1 r2 r3

]
=

 cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

 (3.2)

Here the rotation matrix is given as the X-Y-Z Euler angles where sφ and cφ is short for
sine and cosine of an arbitrary variable φ. The directional cosine r3 gives the orientation
of the mass center z-axis which is assumed to point in the same general direction as the
fixed z-axis in W ( β ∈ (−π/2, π/2) ). The position of the mass center can then be
expressed as

pm = t− l · r3 (3.3)

where l is the known, constant, length of the pendulum. Likewise the velocity of the
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mass center is

ṗ = ṫ− l · ṙ3

=

ẋẏ
ż

− l
 β̇cβ

β̇sαsβ − α̇cαcβ
−(α̇sαcβ + β̇cαsβ)

 (3.4)

Assuming the gravitational force is aligned with the fixed z-axis, i.e g = −gk, the
potential energy of the pendulum is

U = mgh = mg(l − lrT3 k) = mg(l − lcαcβ) (3.5)

While the kinetic energy is

T = 1
2mv

2 = 1
2mv

Tv

= 1
2m

((
ẋ− l(β̇cβ)

)2
+
(
ẏ − l(α̇cαcβ − β̇sαsβ)

)2
+
(
ż + l(α̇sαcβ + β̇cαsβ)

)2
)

= 1
2m

(
ẋ2 + ẏ2 + ż2 + 2l

[
α̇cβ(ẏcα + żsα)− β̇sβ(ẏsα − żcα)− β̇ẋcβ

]
+ l2(β̇2 + α̇2c2

β)
)

= 1
2m

(
ṫT ṫ+ 2l

[
α̇cβ(ẏcα + żsα)− β̇sβ(ẏsα − żcα)− β̇ẋcβ

]
+ l2(β̇2 + α̇2c2

β)
)

(3.6)

Having the potential and kinetic energy the Lagrangian can be built as

L = T − U

= 1
2
(
ṫT ṫ+ 2l

[
α̇cβ(ẏcα + żsα)− β̇sβ(ẏsα − żcα)− β̇ẋcβ

]
+ l2(β̇2 + α̇2c2

β)
)

+ glcαcβ

(3.7)

where the shared constant m and the constant term −gl are removed since they are of
no interest in further calculations. The Euler-Lagrange equations of motion

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0, φ = α, β (3.8)

can then be used to find the angular accelerations.
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3.1.1. Pendulum acceleration

Using (3.8) on (3.7) with respect to α, α̇ yields

∂L

∂α
= l

(
α̇cβ(żcα − ẏsα)− β̇sβ(ẏcα + żsα)− gsαcβ

)
∂L

∂α̇
= lcβ (ẏcα + żsα + α̇lcβ)

d

dt

(
∂L

∂α̇

)
= ∂L

∂α
+ glsαcβ + lcβ

(
α̈lcβ + ÿcα + z̈sα − α̇β̇ · 2lsβ

)
⇒ lcβ

(
α̈lcβ + ÿcα + z̈sα − α̇β̇ · 2lsβ + gsα

)
= 0

⇔ α̈ = 2α̇β̇ tan β − ÿcα + z̈sα + gsα
lcβ

(3.9)

Doing the same for β, β̇ gives

∂L

∂β
= l

(
β̇ẋsβ − α̇sβ(ẏcα + żsα)− β̇cβ(ẏsα − żcα)− α̇2lsβcβ + gcαsβ

)
∂L

∂β̇
= l

(
β̇l − ẋcβ − sβ(ẏsα − żcα)

)
d

dt

(
∂L

∂β̇

)
= ∂L

∂β
+ α̇2l2sβcβ + glcαsβ + l

(
z̈cαsβ − ẍcβ − ÿsαsβ + β̈l

)
⇒ l

(
α̇2lsβcβ + gcαsβ + z̈cαsβ − ẍcβ − ÿsαsβ + β̈l

)
= 0

⇔ β̈ = ẍcβ + (ÿsα − (z̈ + g)cα) sβ
l

− 1
2 α̇

2 sin(2β) (3.10)

3.1.2. Pivot acceleration

Since the pivot is fixed on a conveyor it is assumed that motion of the mass-center will
not affect the pivot. Further more the conveyor has close to constant speed; the only
acceleration comes from gradual changes in direction compensated for as noise only.
From the angular acceleration expressions it is seen that this simplifies to the case of a
static pivot as expected.

3.1.3. Velocities and pose

To get the new states based on the prior ones, both pose and velocities, numerical
integration is applied to the acceleration expressions outlined above. Since the time
interval to integrate over is known to be small (ideally 1/60s for 60 frames per second)
a small step size can be chosen while keeping a manageable amount of iterations. The
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need for higher order integration techniques for accuracy is then reduced. Couple this
with the fact that the solution is not directly applied as the final state estimate it is
proposed to only use a simple numerical integration scheme for speed purposes. One
simple, first order, form of numerical integration is the forward Euler method which runs
with a complexity O(N). It uses the finite difference approximation to the derivative:

g′(t) ≈ g(t+ ∆t)− g(t)
∆t ⇔ g(t+ ∆t) ≈ g(t) + ∆tg′(t)

where ∆t is the time step. The linear accelerations are all assumed zero which gives the
trivial results

ẋk+1 = ẋ0 (3.11)
ẏk+1 = ẏ0 (3.12)
żk+1 = ż0 (3.13)

at step k + 1. At the same time the position coordinates are

xk+1 = xk + ∆tẋ0 = x0 + (k + 1)∆tẋ0 (3.14)
yk+1 = yk + ∆tẏ0 = y0 + (k + 1)∆tẏ0 (3.15)
zk+1 = zk + ∆tż0 = z0 + (k + 1)∆tż0 (3.16)

The more interesting case is the angular velocities and orientation:

α̇k+1 = α̇k + ∆tα̈ = α̇k + ∆t
(

2α̇kβ̇k sin βk −
g

l
sinαk

) 1
cosβk

(3.17)

β̇k+1 = β̇k + ∆tβ̈ = β̇k + ∆t
(
g

l
cosαk − α̇2

k cosβk
)

sin βk (3.18)

γ̇k+1 = γ̇k = γ̇0 (3.19)

With the expressions from (3.9) and (3.10) substituted for the angular accelerations.
The Euler angles are

αk+1 = αk + ∆tα̇k (3.20)
βk+1 = βk + ∆tβ̇k (3.21)
γk+1 = γ0 + (k + 1)∆tγ̇0 (3.22)

The choice of step size depends on the desired accuracy, but it is also important to note
that the round-off error of the floating point numbers will contribute to the inaccuracy
of the result, its error is approximately given as ε√

∆t where ε is the machine precision
(for a single precision this is around 10−8). This means that too small step sizes will not
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have the increase in accuracy as intended. The effect of step size can be seen in Fig. 3.1.
While the much used 4’th order Runge-Kutta method converges close to the analytic
solution already at a step size of 1 the forward Euler method follow suit when the step
size is reduced.

Figure 3.1.: Numerical integration of sin(t), t ∈ [0, 2π] using 4’th order Runge-Kutta and
the forward Euler methods.

It is seen (and quantitatively verified) that there is almost no difference between a step
size of 10−2 and 10−3, but this is problem specific. Doing the same comparison with the
expressions for α, β, α̇, β̇ using the Runge-Kutta 4th order method with a small step size
as ground truth reveals pretty much the same convergence. This can be seen in Fig. 3.2;
the Euler method only starts behaving badly as time progresses way past the expected
interval.

Figure 3.2.: Numerical integration with different step sizes for the Euler method at 1Hz.

A step size between 10−2 and 10−3 seems reasonable, therefore a step size of ∆t = 3·10−3
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is chosen and the number of iteration in the ideal case becomes

1/60
∆t = 5.56

Six to twelve iterations is therefore the expected outcome, which is pretty fast. In
contrast choosing the step size only slightly smaller, say 10−3, results in 3 times as many
iterations. The effects of the different step sizes over a 33fps interval are shown in Fig.
3.3.

Figure 3.3.: Close up of numerical integration using different step sizes for the Euler
method at 1Hz.

It is seen that the Euler angles are spot on while the angular velocities have an inaccuracy
well below a degree per second for ∆t = 0.003, the worst case scenario. This is more
than acceptable for a probabilistic measure. It is noted that the constant velocities let
8 of the 12 state parameters be found without integration as

φ̇′ = φ̇

φ = φ+ t12φ̇

Where φ̇′ and φ′ denote the new value of an arbitrary variable φ̇ and φ respectively
while t12 is the time interval between state estimates. Finally the state parameters are
updated to reflect the orientation of the pivot instead of the center of mass using

αstate = α− θα
βstate = β − θβ

10



3.1.4. Parameter estimation

To properly use the motion model the static parameters θα, θβ and l describing the
position of the center of mass in the pivot frame must be known with some certainty.
There are numerous ways of estimating the center of mass of an object in the literature,
[18] and [19] even describes how a particle filter can be utilized on a dynamical system
closely related to that of this thesis.

As tempting as it might be to add the three parameters to the state vector of the particle
filter it is not recommended. For one the added length of the already large state vector is
undesirable and will definitively add considerably to the amount of particles needed. The
main problem however is that the parameters are static; no dynamics/update equation
exists. Off course a random walk can and has been used in such instances. On-line
methods for static parameter estimation typically use expectation maximization of the
smoothed filter output such as in [26] or stochastic gradient search methods as in [23]
according to [15],[20].

Since the experiments in this thesis where performed on a simple hanger with constant
parameters it was opted to use predetermined parameters found by the simplest means
possible to reduce the scope of the work.

Angular offsets

The proposed particle filter when finished already provides a method to determine θα, θβ.
When the object is kept at rest and the filter converges on it the offset in αstate and
βstate from 0 is simply θα and θβ respectively. One can argue that utilizing the particle
filter this way produces the best parameters possible as it is more important to get good
compliance with the filter rather than the actual values.

Length

To get information on the arm between pivot and center of mass the object must the
moving. Since the system is modelled as a spherical pendulum it is sufficient to do a
simple analyses on the period of oscillation to determine the length of the arm. To gain
the most simple form the movement of the pendulum can be restricted to a single axis
resulting in 1 degree of freedom. The small-angle approximation can then be used to
get Huygens’s law of the period:

T0 = 2π
√
l

g
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where T0 is the initial period of the oscillating motion. The aforementioned equation
yields the approximation

l ≈ T 2
0
4 (3.23)

As g
π2 ≈ 1. Thus a simple measurement of the period is sufficient to determine the

length of the pendulum to an acceptable accuracy.

Further exploration of parameter estimation is not provided in this thesis but it should be
noted that in a changing system, such as loading and unloading of hanging conveyors, a
proper way of performing estimation on-line will most likely be needed to ensure reliable
tracking.

3.2. Observation model

When the particles have been moved based on the prediction of the motion model and
noise has been added each particle can be evaluated against the measured data. There are
two types of observation models: discriminate and generative. The discriminate model
will use features and classifiers to find the object in the image while the generative one
will look for the most similar region to a model/template. For simplicity the generative
model is chosen here.

The task is then to build the object on the image plane in the predicted pose and
check if it matches up with the image information. There are several ways of doing
this, for instance the original CONDENSATION paper [14] finds an initial contour in
the image and performs affine transformations on it using the states of each particle.
Another way is to project the geometry of the object onto the image according to the
camera parameters and the pose contained in each particle. The availability of the (3D)
geometry to the tracking object and being the more direct route makes the last approach
the most attractive.

3.2.1. Projecting a 3D object

Taking an image is the process of projecting a world point onto the image plane parallel,
and with a distance f , to the xy-plane of the camera frame. f is often referred to as the
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focal length. This can be modeled as

x = K[I | 0]Xc = P cXc, K =

fu s u0
0 fv v0
0 0 1


Here K is the upper triangular camera calibration matrix dependent on intrinsic values
of the camera found from camera calibration. fu and fv is the focal length expressed
in the units of pixel width and height respectively. The effect of non-square pixels is a
different scaling in the two directions. u0 and v0 is the translation from the principal
point (where the z-axis of the camera frame intersect the image plane) to the image
frame, also they are given in pixel units.

P c = K[I|0] is a 3 × 4 matrix that will project the homogeneous 3D point Xc given
with respect to the camera frame. The projection of a world point, X, given in a world
coordinate system, w, is therefore a Euclidean transformation away:

x = P cT cwX = P c

[
Rc
w −Rc

wt
w
wc

0T 1

]
X = PX

⇒ P = KR[I| − t] (3.24)

Where R = Rc
w and t = twwc gives the pose of the camera in the world frame which can

be found through camera calibration. Each particle will speculate over a pose of the
pivot frame which the object can be placed in by known measurements, it is then only
a question of measuring discrete points of the image where the object is hypothesized to
be.

3.2.2. Sampling the object

To be able to discretize the object N samples must be drawn from it. An object described
by straight line segments is considered from here on. Line segment i = 1, . . . , n is given
by the two homogeneous endpoints in the pivot frame

Ai,Bi ∈ P3(R3), i = 1, 2, . . . , n (3.25)

Going via the world frame the points can be found in the image plane as the homogeneous
coordinates

ãi =
[
a1 a2 a3

]T
= PTwp Ai, b̃i =

[
b1 b2 b3

]T
= PTwp Bi
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where Twp takes the points from the local pivot frame to the fixed world frame, this
comes from the state estimate of the particle. In non-homogeneous pixel coordinates
this equates to

ai =
[
a1/a3
a2/a3

]
, bi =

[
b1/b3
b2/b3

]
(3.26)

assuming that the points are not at infinity, i.e a3 6= 0. A step vector for uniform
sampling can then be constructed as(

1− j

mi + 1

)
ai + j

mi + 1bi, j = 1, 2, . . . ,mi (3.27)

Where mi is the total number of samples along the line and j is the sample number. mi,
can be predetermined and chosen explicitly for each line segment.

In the case of rotations, edges farther from the axis of rotation moves a greater distance
and gives a larger source of information to the edge detectors than those close to it
and should therefore count more. To account for this either the edge response could
be weighted or the number of samples for each edge, mi, could be chosen accordingly.
Although the latter option seems more desirable to reduce the computations it may not
be the best option for parallel execution due to the GPU architecture. A number of
samples of each edge as a multiple of warp size (section 4.2) is the best option in that
case.

One simple weighting algorithm is to use the mean distance, i.e the mid-point on the line,
to the pivot so that the weights are determined at compile-time/startup. The weight on
edge i is

l̂i =
∥∥∥∥1

2 (Bi +Ai)
∥∥∥∥

When normalized by

li = l̂i∑
k l̂k

If a variable number of samples is desired it can be used to give each line segment a
integer fraction of the (nominal) total number of samples Nsamples using

mi = round(li ·Nsamples) (3.28)
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The normal vector of line segment in the image can be found as (bi−ai)Tni = 0 giving

ni =
[
a2
a3
− b2

b3
b1
b3
− a1

a3

]
(3.29)

Which of course can be normalized by ni/ ‖ni‖ and will become useful in the next
section.

3.2.3. Detecting an object

There are several ways of describing if the object is at hypothesized position in the
image, some examples include keypoints, colors, templates and edges. A simple robust
descriptor is an edge which is more invariant to changes in lighting and texture than
many other methods. A very common way to perform edge detection is the Sobel filter.
A Sobel filter works by applying a kernel, M , and its transpose on points centered
around x

M =

1 0 −1
2 0 −2
1 0 −1


M and MT will weight and sum the intensities and it is seen that a mostly uniform
intensity area results in small responses, ev, eh. Normally M is applied to find vertical
peaks while MT mark the horizontal ones, the real edge is then characterized by the
Pythagorean theorem, i.e

√
e2
v + e2

h. For an oriented kernel a single kernel turned θ

degrees is sufficient: M̂ = MT cos θ +M sin θ. Recognizing that the coefficients is the
elements of the unit normal of an edge n = [n1, n2]T a simple oriented kernel can be
constructed as

M̂ = MT · n1 +M · n2

=

 n1 2n1 n1
0 0 0
−n1 −2n1 −n1

+

 n2 0 −n2
2n2 0 −2n2
n2 0 −n2

 =

 n1 + n2 2n1 n1 − n2
2n2 0 −2n2

−(n1 − n2) −2n1 −(n1 + n2)


A less computationally expensive way was proposed by Myhre[28]; Measure the image
intensity where the edge point is believed to be, and ca λ pixels away normal to the
edge. If the difference in intensity is large it is more likely to be an edge. This way a
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cost function can be formulated for mi samples of edge i = 1, . . . , N

ci = wi

mi∑
j=1

(I(pj)− I(pi − λnj))2

where I(p) represents the intensity at position p, found along the step vector (3.27)
and wi is the edge weight (3.28). Myhre reports λ = 5 to be a reasonable value. The
cost function lets all discrete measuring points quickly rate the particle, it should be
noted that the cost function is bias to contrast rich edges, especially because of the
squaring term. It can also be sensitive to noise in the image since single pixels are
compared, hitting white noise would for instance contribute heavily to the cost in most
circumstances. The hope is that taking enough measurements will compensate for single
miss-represented edge points.

An arguably better variant closer to the Sobel filter would be

ci = wi

N∑
j=1

(I(pj + λni)− I(pj − λni))2 (3.30)

Which makes a measurement on each side of the edge.

3.2.4. Projective ambiguity

Even for a calibrated camera the properties in the image can only be determined up to
a similarity transform for a single image[10]. Since the geometry of the object is known
there is enough extra information to reproduce the image in the correct scale as well, in
theory. There is however a problem with accuracy in the single camera approach.

Consider for instance the case when a planar object is rotated around the cameras
x- and y-axis. For moderate rotations the protective property (making parallel lines
cross) is rather small and the object will still appear to be an orthogonal projection only
slightly smaller. This reintroduces the scaling issue some what as particles hypothesizing
the object to be farther from the camera instead of rotated will also produce a likely
observation.

A small ambiguity in scale can pose convergence problems for the filter making it less
efficient and robust. A good solution to minimize this issue is utilizing more cameras from
different viewpoints to reduce the observation response of bad particles that appear good
from a single point of view. An added bonus of using more viewpoints is the possibility
of increasing the frame-rate.
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3.3. Hidden Markov Models (HMM) and Bayesian inference

Given the same motion -and observation model for each particle there is now a need of
a mathematical framework to take advantage of this information. The bootstrap/SIR
particle filter framework was first introduced in [8] and a tutorial is given in [5]. Say
a large number of particles all share the same motion model, in the application case it
uses the equations of motions which is only dependent on the previous state making it
a Markov process. This is described by a random variable and the realization of the
previous state as

Xn|(Xn−1 = xn−1) ∼ f(xn|xn−1) (3.31)

Distributed by the state transition function/pdf f(xn|xn−1). The problem is that this
distribution is only implicitly measured through the realization of the observation model

Yn|(Xn = xn) ∼ g(yn|xn) (3.32)

Distributed according to g(yn|xn). This is therefore called a Hidden Markov model.

The system has an initial state X1 distributed according to a probability density function
µ(x1). As it stands (3.31) defines the prior distribution of the current state Xn with

p(x1:n) = µ(x1)
n∏
k=2

f(xk|xk−1) (3.33)

While (3.32) define the likelihood function

p(y1:n|x1:n) =
n∏
k=1

g(yk|xk) (3.34)

To merge the two expressions the Bayesian formula can be used to calculate the posterior
distribution as

p(x1:n|y1:n) = p(x1:n)p(y1:n|x1:n)
p(y1:n) (3.35)

where p(y1:n) is the normalizing factor
∫
p(x1:n)p(y1:n|x1:n) dx1:n.

The Bayesian gives a probability of all states up to the current time step given the obser-
vations at each step. Substituting (3.33) and (3.34) into (3.35) the posterior distribution
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can be expressed recursively

p(x1:n|y1:n) = p(x1:n−1|y1:n−1)f(xn|xn−1)g(yn|xn)
p(yn|y1:n−1) (3.36)

with p(yn|y1:n−1) =
∫
p(xn−1|y1:n−1)f(xn|xn−1)g(yn|xn) dxn−1:n. It can be seen that

p(xn|y1:n) =
∫
p(x1:n|y1:n) dx1:n−1 =

∫
p(xn−1|y1:n−1)f(xn|xn−1) dxn−1

g(yn|xn)
p(yn|y1:n−1)

where the integral is recognized as p(xn|y1:n−1), the prediction carried out by the mo-
tion model, which is updated by the observation g(yn|xn) and normalization factor

1
p(yn|y1:n−1) . The target distribution, also called the posterior, πn = p(xn|y1:n) can be
described by

πn = γn
Zn

, γn = p(xn|y1:n−1)g(yn|xn), Zn = p(yn|y1:n−1) (3.37)

where mainly the normalizing constant Zn is unknown and γn can be approximated by
the particles (samples) and their weights as seen next.

3.4. Monte Carlo Methods and importance sampling

3.4.1. Monte Carlo

Monte Carlo methods are a way to approximate a distribution and following expected
values. πn(xn) can be Monte Carlo approximated using N samples from πn(xn) as

π̂n(xn) = 1
N

N∑
i=1

δXi
n
(xn) (3.38)

where δXi
n

is the Dirac-Delta function at sample i, effectively counting the relative fre-
quencies of the particular realizations xn. In turn the expectation of a function ϕn can
be approximated directly as

En(ϕn(xn)) ≈
∫
ϕn(xn)π̂n(xn) dxn = 1

N

N∑
i=1

ϕn(Xi
n), Xi

n ∼ πn(xn)

In a particle filter one often seeks the expected value of the state and so the value of
Monte Carlo methods are obvious, however πn(xn) is not known or complex to sample
from. This is where importance sampling comes in.
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3.4.2. Importance sampling

It is seen that

πn(xn) = γn(xn)
Zn

= γn(xn)
Znqn(xn)qn(xn) = wn(xn)qn(xn)

Zn

With wn(xn) = γ(xn)
qn(xn) being the un-normalized weight function and qn(xn) a chosen

importance distribution with the only requirement of being positive wherever πn(xn) > 0.
The normalizing constant is

Zn =
∫
γn(xn) dxn =

∫
γn(xn)
qn(xn) qn(xn) dxn =

∫
wn(xn)qn(xn) dxn

Which means that it can be Monte Carlo approximated by drawing samples from qn(xn):

Zn ≈
1
N

N∑
i=1

wn(Xi
n), Xi

n ∼ qn(xn)

Then the expectation of a function ϕn(xn) using the target distribution become

En(ϕn(xn)) = 1
Zn

∫
ϕn(xn)w(xn)qn(xn) dxn ≈

N∑N
i=1wn(Xi

n)

∫
ϕn(xn)wn(xn)qn(xn) dxn

which off-course can be approximated further using a second Monte Carlo simulation

En(ϕn(xn)) ≈ N∑N
i=1wn(Xi

n)
1
N

N∑
i=1

ϕ(Xi
n)wn(Xi

n), Xi
n ∼ qn(xn)

≈
N∑
i=1

ϕ(Xi
n)Wn(Xi

n), Wn(Xi
n) = wn(Xi

n)∑N
i=1wn(Xi

n)
(3.39)

The only remaining question is how qn(xn) is chosen. There might be choices which
will minimize the variance for a specific ϕ(xn) but to keep a constant computational
complexity the sequential importance sampling was introduced.

3.4.3. Sequential Importance Sampling

Generally whenever a new observation yn+1 is done one must recompute the weights
based on all the previous steps. However by letting the importance density be dependent
of the density of the previous state the density as well as the weights can be calculated
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recursively. That is

qn(xn) = qn−1(xn−1)qn(xn|xn−1) (3.40)

The first importance density can for instance be a uniform distribution while the rest
are determined recursively dependent on the previous sample. The only choice is then
qn(xn|xn−1), a popular choice is using the transitional density f(xn|xn−1) such that the
recursive weights simply become

wn(xn) = γn(xn)
qn(xn)

= γn−1(xn−1)
qn−1(xn−1)

γn(xn)
γn−1(xn−1)qn(xn|xn−1)

= wn−1(xn−1) · γn(xn)
γn−1(xn−1)f(xn|xn−1)

= wn−1(xn−1) · g(xn|yn)

(3.41)

In practise this means applying the motion model to the states drawn (with replacement)
from the the previous step to get N new samples, and then updating the weight of each
particle by its likelihood from the observation model.

3.4.4. Resampling

It can be shown that as long as the importance density qn 6= πn the variance of the
weights will increase with time. The result of this is that the weight of a single particle
will tend to one while the others will be negligible. As a consequence a large number of
useless particles will be carried forward in the calculations while only a small fraction of
them actually matter after some time. This is known as degeneracy.

A measure of degeneracy is the number of effective particles:

Neff = 1∑N
i=1 (W i

n)2 (3.42)

Effectively measuring the variance of the weights, Neff will be small if some particles
holds significantly more weight than others. When degeneracy is detected for a set
threshold Neff < Nthreshold so-called resampling can be performed to correct it. The
threshold could for instance be set to half the number of particles. A simulated test
showed that resampling was needed 11% of the time on average over 400 frames and
that the ratio increased as the particles converged using this threshold.
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Another option is to perform resampling every iteration, that way a threshold is not
needed while the execution remains more deterministic. The expected states can then
be calculated by summation and a single division by Np, the number of particles, since all
weights are the same. This stands in contrast to the matrix-vector product of NstatesN

2
p

multiplications additionally needed otherwise. The matrix operation can admittedly be
performed quite fast using an optimized linear algebra library such as BLAS.

Another small aspect of consistent resampling is that (3.41) reduces to g(xn|xn−1) since
the previous weight is constant and removed in the normalizing step. The result is one
less memory load and multiplication per particle.

The net cost will most certainly be higher when performing resampling each time, but
the particle filter has to meet the deadlines even when performing resampling anyway
making it less important.

Systematic resampling

One of the most used resampling strategies is systematic resampling[1]:

1. Uniformly sample U1 ∈ [0, 1/N ].

2. For particle i = 2, . . . , N define Ui = U1 + i−1
N

3. Ui will land between two values of the cumulative sum of the (normalized weights).

4. The new sample should then be particle j where j is the upper bound index of this
interval.

This is very closely related to sampling from the particles cumulative distribution using
uniform sampling other than using a single random number as a seed instead of sep-
arate samples. Resampling will focus the computations on regions of high probability
while avoiding degeneracy, the weights are all reset and the particle distribution is now
represented by the number of occurrences of a particle instead of weights. Since the
cumulative sum is pre-sorted a binary search can be performed for the correct interval
in logarithmic time, making it quite efficient. Even better the lowest index possible will
always be bounded by the previous j narrowing the search space for each iteration i

performed.
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Rejection sampling

Systematic resampling relies on a cumulative distribution as well as a binary search, both
of which are not GPU friendly. The binary search can cause excessive warp divergence
(see 4.2) since it relies on branching and making a cumulative array is a highly sequential
operation.

One such alternative sampling strategy was proposed in [17] noting that rejection sam-
pling is only dependent on pairwise comparisons of weights. Rejection sampling is per-
formed for particle i = 1, . . . , N by

1. Initialize a candidate particle j = i.

2. Draw a uniform sample U ∈ [0, 1].

3. While u > wj

wmax
pick a new candidate j ∈ [1, N ] as well as a new sample U ∈ [0, 1]

uniformly.

4. The first candidate j which satisfy U ≤ wj

wmax
is to replace particle i.

The distribution of the particle weights are scaled by 1
wmax

such that the proposal distri-
bution (simply 1) is greater than or equal to the weight distribution for all particles. A
particle, j, is drawn at random and a sample u is taken between zero and the proposal
probability at j, i.e 1. If the sample is less than the (scaled) particle weight, j is accepted
as being a sample from the weight distribution. The probability of accepting is higher
whenever the weights are high, which is the goal of resampling; to carry on the good
particles and still represent the weight distribution.

Note that there is no need to normalize the weights but the largest weight needs to be
found which can be done quite effectively on a GPU. There is also the non-deterministic
number of iterations until a sample is accepted and due to the GPU architecture 32
threads/particles at a time will have the same duration as the longest one of that set.

22



4. Particle filter implementation

There are countless ways of implementing a particle filter, given the short deadlines of
the application some effort must be used to identify and improve time consuming areas
of the code. Most importantly the parallel structure and control must be establish. To
find the fastest solutions iterative improvement was performed on the slowest parts of the
code until satisfactory run-times where met. Since the particle filter has a fair amount
of states to estimate a goal to handle 50000 particles in 60fps (16.67ms per iteration)
was established.

4.1. CPU optimization

As a start the particle filter was implemented in a usual object oriented (OO) way in
C++ on a single threaded CPU only (Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz).
Each particle had its own object accessed through a member vector in the filter class with
its own set of states and weights. Every step of the filter where performed sequentially
for each particle and the results where gathered in the filter class. The execution times
stays fairly consistent and so single measurements are assumed to be representative
from there on. The run-time results for 50000 particles with and without the compiler
optimization flag -O3 is shown in tab 4.1.

Dataset OO-filter [ms] OO-filter -O3 [ms] Speed-up

Motion 50.90 33.89 1.5
Observation 211.29 131.52 1.6
Resample 29.74 2.74 10.8
Mean 28.33 2.78 10.2

Total 320.26 170.93 1.9

Table 4.1.: Execution time for each step of the filter with 50000 particles using particle
objects.

This implementation was kind of convoluted and the separated memory of the states as
well as the weights had its drawbacks on cache utilization and performance. Therefore
the particle class was discarded altogether and the states of each particle was stored
continuously in a member array of the filter class, the same was done for the weights.
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The results of 4.2 shows significant improvements over the prior implementation.

Dataset Memory-filter [ms] Memory-filter -O3 [ms] Speed-up

Motion 48.49 33.03 1.5x
Observation 102.00 64.31 1.6x
Resample 19.61 3.13 6.27x
Mean 1.50 0.30 5.0x

Total 171.58 100.77 1.7

Table 4.2.: Execution time for each step of the filter with 50000 particles using continuous
memory.

Already before compiler optimization it is seen that the new implementation runs as
fast as the optimized object oriented one, a witness of better performing code. This
may also be seen by the lower speed-up gained by compiler optimization on the second
version hinting at better code to begin with. Although the performance was improved
by 319% using better memory access and compiler optimization there is still a need for
a 6x speed-up to reach the required deadline even before other processing is considered,
this can only be achieved by parallelization.

4.2. The CUDA architecture

CUDA is a platform for parallel computing created by the graphics processing units de-
signer and supplier NVIDIA1. It allows for GPU programming using C/C++ like syntax
and supplies a compiler for full integration with the C++ language. To effectively pro-
gram on the GPU it is imperative to know its architecture to understand the limitations
and how to circumvent them.

4.2.1. Parallel execution

A subroutine executed on the device (GPU) is called a kernel. The purpose of a graphical
processor is to run a large number of threads of the same kernel at a time, for instance
if the body of a for-loop is independent of the previous iteration it can just as well be
executed concurrently with one thread for each iteration.

At the hart of a graphics card there are many parallel processors grouped into several
streaming multiprocessors known as SMs, an SM has several cores which each executes
the same instructions (in lock-step) 32 threads at a time, this is called a warp.

1https://developer.nvidia.com/cuda-zone
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Since a warp executes all its instructions in lock-step all the 32 threads will be performing
every branch of the program regardless if the individual threads needs it or not. An
example of this is conditional statements such as if-else statements where each thread
will perform both the if and else body even though only a single thread evaluates the
condition differently. This is known as divergence and can lead to severe performance
hits.

A typical SM can execute 32 warps at a time, stemming from several blocks. A block is
a gathering of warps and is a logical division of the threads chosen by the programmer.
Blocks are needed to ensure all the warps/threads grouped by the programmer are run
on the same SM, which let the threads of a block share the same (fast) memory on the
SM and cooperate on computations.

To launch a kernel the number of threads and blocks has to be specified, for max uti-
lization of the SM the number of threads in each block should be a multiple of the warp
size. A sub-optimal launch configuration could for instance be 385 (3 · 32 + 1 threads
per block; in the worst case resulting in 127 · 32 vacant threads on the SM since 4 warps
would be needed to compute each block.

For good performance the ratio of active threads/warps, also called occupancy, on the
SM should be high (> 60%).

4.2.2. Memory model

Ignoring cache patterns there is still considerations to be done to get effective memory
operations on the GPU.

A GPU typically has a considerable amount of DRAM called global memory because it
is reachable by both the CPU and GPU. Although fast a global memory load can take
several hundred cycles and be a significant bottleneck in execution speed.

It is practically impossible to eliminate the use of global memory as it is the only thing
the CPU can see but it should be reduced as much as possible. Another key insight
is that a load can be of a fixed byte size (e.g 32) in a SIMD fashion, even though a
single 4 byte float was needed by a specific thread. It is done this way to utilize the
whole bandwidth and benefit the surrounding threads which also needs data for the same
instruction.

To perform as few operations as possible the data used by each thread should be close
to each other to take advantage of the SIMD/SIMT architecture. This is known as
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memory coalescing. If this is not done the superfluous data read is simply discarded and
the bandwidth sees no benefit of the multiple data approach.

Another form of memory on the GPU is that integrated in the SMs which makes for
much quicker access than the global case. Every thread of a block can utilize the same
allocated SM memory and it is therefor named shared memory. Shared memory can
for instance be used to reduce the global memory loads if many threads needs the same
data.

In addition to shared memory each SM also has a number of registers available to each
thread. Both shared memory and registers are a spare resources and could limit the
number of warps that fits in the SM at the same time. As an example consider an SM
with 64K registers, if 2048 threads uses 33 registers each the register requirement is
exceeded and the SM can only process 30 warps instead of 32.

The last form of memory on a GPU is textured memory. Initially made for texturing
polygons it is optimized for random access with a dedicated cache. For many applications
having random access patterns the use of texture memory could give good performance
boosts, it is however read only which limits its usage.

4.3. Exposing parallelism

In order to run as fast as possible parallel computation must be utilized where appropri-
ate. The criteria for good performance is a nice balance between parallel computation
and the related bottlenecks and overhead. Examples of limitations when using GPUs are
the relative slow memory transfer and also the overhead of launching parallel kernels.

The GPU and CPU have different physical memory which means that for one processing
unit to give input/output to the other the data must be transferred over the PCIe-bus
limiting the datarate to a theoretical maximum of 8-16GB/s dependent on the version
used. Although fast this is several orders of magnitude slower than the modern day
processing units making it a bottleneck in the pipeline. Memory transfer should therefore
be held to a minimum.

Another issue is the overhead related to launching new threads on the GPU; a small
number of procedures of moderate size might not see any performance benefit of being
run in parallel because the overhead of launching the kernels outweighs the speed-up seen
from concurrent computation. This is especially true for nested/dynamic parallelism on
the GPU where memory transfer is not the limiting factor.
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These limitations especially effects the way the program should be written; a good
parallelization should be able to run without much CPU interaction and warrant the use
of overhead. A top-down approach was used to find routines that could be parallelized
and each found case was considered based on this criteria.

Particles

Since the particle filter consists of a large number of independent particles it is only
natural that routines performed for every particle run in its own GPU thread. This is
where the largest performance savings will be seen and the focus should be on making
it as CPU independent as possible.

The motion model relies on numerical integration which is inherently sequential and so
each particle thread performs the dynamic calculation for the motion model.

The observation model is also performed on each particle’s states and in addition per-
forms a number of measurements in the image that does not depend on each other.
There is in other words more potential for concurrent execution by separating the mea-
surements in stead of performing them sequentially for each particle.

Resampling and mean

The last steps of the filter is tricky; as seen by the CPU tests they have little impact on
the execution time, but needs all the hypothesized states and weights to be performed.
That is: a large memory transfer has to be done (2.4MB for 12 states and 50000 particles
using single precision) to perform the sub-routines on the CPU. In the numerical example
this equates to 3ms on a fully utilized PCIe.v2-bus which can quickly become more, that
is more than the sub-routines take to execute in and of themselves on the CPU in 4.1
and nearly 20% of the deadline. Ideally all the data needs to stay in the GPU until the
expected states (mean) can be transferred back.

4.4. GPU optimization

To optimize the parallel parts of the code the Assess, Parallelize, Optimize, Deploy(APOD)
design cycle was used. That is; the limiting factor (bandwidth, compute throughput or
latency) was identified and improved until the deadline was met with good margin. The
optimization was performed with the help of NVIDA Visual Profiler where all kernel
measurements also stems from, the profiler is a nice visual tool that display occupancy,
memory usage, concurrency and the limiting factors of the kernels.
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The measurements where taken from the code running on a low-end graphics card,
namely Nvidia GeForce 940MX.

4.4.1. Motion model

To get good memory coalescing the states where placed in a one-dimensional array
sectioned as a Nstates ×Nparticles matrix. The states of each particle was first read into
thread memory and only copied back to global memory after all calculations where
completed to minimize memory transfer. By using dedicated CUDA math operations,
e.g sincosf, the hardware computations of the operations could be used. The compiler
flag --usefastmath trades a little accuracy for extra speed by not refining the hardware
result further as is usually done.

In the end the duration of the motion kernel was reduced to 0.71ms from the original
33.03ms on the CPU at 50000 particles, a 46x speed-up. It should be noted that the
speed-up is dependent on the number of particles and can be changed almost arbitrarily
by just changing the sample size. The only thing to take away from the speed-up is that
running a particle filter on the GPU is highly effective compared to the CPU for a large
number of particles.

4.4.2. Observation model

A large limiting factor of the observation kernel, and GPU execution in general, is the
memory operations. Other than using the principles of the motion model the constant
variables such as the world points describing the object and the camera matrix where
placed in shared memory. Each thread read a piece of the constant variables and placed
it in shared memory for all the threads of a block to use.

A problem of the observation model is the many memory reads done on the image. In
fact removing the image reads makes the kernel execute an order of magnitude faster.
Early tests showed a good performance boost by reading the image through the texture
cache of the GPU designed for random access.

In its first version the observation model was given a thread per particle, allowing the
motion and observation kernel to be merged which lets the observation model take
advantage of the motion model’s results directly. The disadvantage to this approach is
the sequential measurements of the image which halt the execution of the kernel for each
reading.

To remedy the sequential reads an attempt of using dynamic parallelism was tried next.
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The parent thread representing the particle was to launch its own kernels in a different
GPU stream to hide the image read latencies. As tests actually showed worse perfor-
mance the idea was discarded. Dynamic parallelism can be challenging to get right and
programming errors can admittedly be the reason for bad performance. Other than
that the restrictive nature of a nested kernel execution called for several kernel launches
which might impose an overhead penalty.

The second version of the observation model launched a block for each particle and
let each thread be a single image measurement. This let the threads take advantage
of the variables shared by each particle including states, world points, camera matrix
and projected image points while hiding the latency by performing context switching on
inactive warps. After tweaking the observation kernel had a duration2 of about 6.5ms,
nearly a 10x speed-up compared to the CPU version.

4.4.3. Resampling and mean

Systematic resampling is best suited for the CPU with its sequential nature and branch-
ing binary search. To use this resampling method a rather large memory transfer must
be performed, in the very least the weights of each particle. For this reason other re-
sampling techniques was also tested and measured against the CPU alternative.

An alternative resampling method tested as rejection sampling, however in a simple test
of a typical filter run, the reprojection resampling required on average 22 iterations per
particle, including the initial read and fetching of the pseudo random state. That is 24
memory reads from global memory per thread.

Resampling using rejection sampling on the GPU took 1.7x as long as copying the weights
to the CPU and using systematic resampling. It does not scale better than systematic
resampling either; doubling the amount of particles results in a 2.8x increase for rejection
sampling while systematic resampling on the CPU only increases by 2.3x. The multipro-
cessors are already at satisfactory occupancy so the performance is mainly dependent of
memory latency. The large memory dependency of parallel rejection sampling excludes
it from being viable in the current application.

As nearly 70% of the resampling time is spent on performing binary searches sequentially
the question arise if parallel searches would be beneficial despite the many memory reads
it introduces. A non-branching binary search can be implemented as

2Worst case scenario with all measurements within the image bounds
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1 int findInterval ( float val , const float *arr , int arrSZ )
2 {
3 int idx = 0;
4

5 // find closest power of 2 rounded down
6 int n = floor_pow_2 ( arrSZ );
7

8 // compensate for non -power of two list
9 idx += ( arr[ n ] <= val )*( arrSZ - n );

10

11 // branchless binary search
12 for (int i = n/2; i >1; i/=2)
13 idx += (arr[ idx+i ]<= val)*i;
14

15 // returns index of the last element smaller than val
16 return idx;
17 }

Even though it increases the complexity to a constant log2(N) trials, which is worst case
for a binary search, it is beneficial performance wise as warp divergence is eliminated.
Care must be taken to ensure the operations are compiled to non-branching instructions,
for instance will idx = (arr[ 4 ]<= val ) ? 4 : 0; compile to 4.1

Figure 4.1.: NVCC uses branching instead of conditional move.

by the NVCC compiler, this is a conditional jump instead of the desired move. The correct
option is therefore to use idx = (arr[ 4 ]<= val )*4; as shown in 4.2

Figure 4.2.: A multiplication replaces the jump.
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To make the sampling process fully parallelizable systematic resampling which starts
with a single seed was replaced with a true resampling drawing a random index for
each particle. Eliminating the data transfers and running the binary searches in parallel
resulted in a 1.17x speedup over CPU resampling. Not a huge improvement but at
least now the whole particle filter is contained on the GPU which frees up the CPU for
asynchronous processing until the results are copied back.

4.4.4. Hiding latency

As already mentioned the bottleneck of many GPU implementations are the memory
transfers between host and device. One such instance for this thesis’ application is the
image transfer which first reaches the CPU and must be copied to the GPU for the
observation model to do its measurements.

There is little that can be done to improve the transfer speed in itself, but it just so
happens that before the observation model needs the image the motion model must be
performed in its entirety. Since CUDA allows for asynchronous memory transfers the
image can be copied while the motion model is executing. This is shown in the Gantt
chart of figure 4.3 where most of the latency due to image transfer is eliminated.

Figure 4.3.: The image transfer (top) is being performed at the same time as the motion
model (bottom).

Unfortunately the rest of the particle filter is strictly sequential which make further
concurrent kernel executions impossible.

4.4.5. Finishing words on the GPU implementation

Figure 4.4 shows the execution scheduling for each filter module on the GPU in a Gantt
chart. It is without a doubt the observation model which impact the execution time
the most. It also has a wide range of possible implementations and the best one is not
obvious.

Figure 4.4.: Gantt chart of the filter modules executing on the GPU.

Most of the duration of the observation model is spent on memory reads of the image
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which makes it hard to improve much further at this point. The extensive experimen-
tation on the observation model in combination with the various other improvements
resulted in a typical execution time of 10ms per image, well within the (soft) real-time
requirement of 16.67ms.

Table 4.3 details the improvements made to the best CPU implementation. The fin-
ished GPU filter has a 10x speed-up from the best CPU implementation, a considerable
improvement.

Dataset Filter CPU [ms] Filter GPU [ms] Speed-up

Motion 33.03 0.71 46.5x
Observation 64.31 6.55 9.8x
Resample 3.13 2.48 1.3x
Mean 0.30 0.23 1.3x

Total 100.77 10.41 9.7x

Table 4.3.: Execution time for each step of the filter with 50000 particles on the CPU
vs. the GPU.

Note that there is a 0.44ms discrepancy between the sum of module times and the
measured total of the GPU implementation due to miscellaneous overhead.

Since the CUDA code where measured and optimized based on the measurements from
a low-end graphics card (GTX 940MX) it comes as no surprise that the results where
improved significantly by deploying on better hardware. The actual experiments where
performed on a Titan X with 10 times as many cores and 5 times the memory clock rate
which resulted in a further 10x speed-up with run-times below 1ms at the same amount
of particles.

32



5. Camera calibration

Since the proposed solution can be regarded as an open-loop regulator it is of utmost
importance that the transformations from the base-frame to the cameras as well as the
intrinsic camera parameters have good estimates. The lack of feedback is one of the
most severe criticisms of the system as a wrongful estimate of the constant parameters
never will be detected nor compensated for by the routine.

5.1. Intrinsic and extrinsic calibration

A traditional way of calibrating a single camera is using a planar pattern of known dimen-
sions in several poses to estimate both intrinsic and extrinsic parameters[12]. The intrin-
sic parameters are calculated first through linear equations using the pin-hole model of
a camera. The reprojection error of all the parameters is then minimized through a non-
linear optimization[31] usually involving the iterative methods Levenberg-Marquardt or
Newton-Gauss[4].

Recently Gai et al.[6] shows improvement on the extrinsic parameter estimation by
initializing with Zhang’s method[31] and optimizing for 3D reconstruction. Accurate
estimates of the extrinsic parameters, that is the 3D poses of the planar pattern, plays a
crucial part in estimating the camera poses as will be evident in section 5.2. The methods
of both Gai[6], Zhang[31] was tested with respect to the particle filter application. A
third, more novel alternative was also constructed in the hunt for accurate parameters.

5.1.1. Initial linear calibration

All the tested methods where initialized using Zhang’s approach. The projection, x, of
a homogeneous point X is given in (3.24) as

x = PX = K[R | t]X

For a planar point - with z-coordinate 0 - the projection can be seen as a transformation
from plane to plane by

H = K
[
r1 r2 t

]
=
[
Kr1 Kr2 Kt

]
=
[
h1 h2 h3

]
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where ri, i = 1 . . . , 3 denotes the column vectors of R. H can be least-squares esti-
mated by the direct linear transform[10, section 4.1]. The orthogonality of R gives two
constraint in the form of

rT1 r2 = 0⇔ hT1K
−TK−1h2 (5.1)

rT1 r1 = rT2 r2 ⇔ hT1K
−TK−1h1 = hT2K

−TK−1h2 (5.2)

Noting that B = K−TK−1 is a symmetric matrix since K is upper triangular reveals 6
degrees of freedom. As each homography supplies 2 constraints a minimum of 3 different
configurations of the calibration pattern is needed to determine K.

Using the unique elements of B in a six-dimensional vector b lets the constraints of
configuration j be reformulated as aT1,jb = 0,aT2,jb = 0 where

a1,j =



h12h11
h12h21 + h11h22

h22h21
h12h31 + h32h11
h22h31 + h32h21

h32h31


a2,j =



h2
11 − h2

12
2(h11h21 − h12h22)

h2
21 − h2

22
2(h11h31 − h12h32)
2(h21h31 − h22h32)

h2
31 − h2
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For

B =

b1 b2 b4
b2 b3 b5
b4 b5 b6


The constraints of the n configurations can then be gathered in

A =



aT1,1
aT2,1

...
aT1,n
aT2,n


(5.3)

To solve Ab = 0 by least-squares using the singular value decomposition A = UΣV T

where b is the last column of V . Having found B, K−1 can be determined by Cholesky
decomposition which gives K through inversion, K is scaled such that its last element,
k33 is 1.

Once K is known the extrinsic parameters is easily calculated since r1 = λK−1h1, r2 =
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λK−1h2, t = λK−1h3 and r3 = r1 × r2 where λ =
∥∥K−1h1

∥∥ scales the homography
so that ‖ri‖ = 1. Note that the following rotation matrix must be corrected to ensure
detR = 1, this is done by setting R = UV T where U ,V stems from the singular value
decomposition of the initial matrix estimated from ri, i = 1, 2 1.

5.1.2. Initial transformation between cameras

Let the j’th (homogeneous) point of the calibration pattern be denoted Xo
j in its object

frame, the same point is then

X l
i,j = T l,io X

o
j , Xr

i,j = T r,io X
o
j

In the left and right camera respectively where T l,io represent the i’th pose of the object
frame in the left camera frame and likewise for the right. It follows that all the points
of the left camera can be placed in the right reference frame through

Xr
i,j = T r,io

(
T l,io

)−1
X l
i,j (5.4)

The point sets {X l
i,j , i = 1, . . . , n, j = 1, . . . ,m}, {Xr

i,j , i = 1, . . . , n, j = 1, . . . ,m} can
thus be used to find a transformation between the two camera coordinate systems, T lr .
First the point-clouds are translated to have their centroids as origin, then there is only
a rotation separating them. The optimal rotation matrix is the one which minimizes

min
R

C =
n∑
i=1

m∑
j=1

(∥∥∥RX̂r
i,j − X̂ l

i,j

∥∥∥) (5.5)

where X̂ denotes a non-homogeneous point translated to have origin at the centroid.
This is the orthogonal Procrustes problem. An alternative expression of the cost C can
be obtained by utilizing the Frobenious norm

min
R

C =
∥∥∥RX̂r − X̂l

∥∥∥2

F
= trace(X̂rX̂

T
r ) + trace(X̂lX̂

T
l )− 2 trace(RX̂rX̂

T
l ) (5.6)

where X̂l =
[
X̂1
l . . . X̂k

l

]
and X̂r =

[
X̂1
r . . . X̂k

r

]
contains the coordinates of the

left and right point sets. It is seen that minimizing the cost is equivalent to maximizing
trace(RX̂rX̂

T
l ) = trace(RTM).

As Golub[7, 12.4.1] points out; if Z = V TRTU , M = UΣV T then Z is orthogonal

1see (5.7) and (5.9) for why this is.
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and it follows that R = V ΣUT which yields

trace (RM) = trace
(
V ZUTUΣV T

)
= trace (ZΣ) =

3∑
i=1

ziiσi ≤
3∑
i=1

σi

where the upper bound is found when R = V UT such that Z = I. Note however that
this only requires RX to be orthogonal, not SO(3) with detRX = 1. Umeyama [29]
proposes a solution to ensure an optimal rotation matrix. Consider

R = V SUT

where S is a diagonal matrix with elements of absolute value 1, then

detR = detS det
(
UV T

)
Constructing S so that its determinant has the same sign as det

(
UV T

)
ensures detR =

1. To make the solution optimal, that is maximize trace(RM) under the new restriction,
one has to maximize trace(V SUTUΣV T ) = trace(SΣ) =

∑m
i siσi when changing the

sign of an element si. Since the singular values are sorted as σ1 ≥ σ2, . . . , σm ≥ 0 the
least effect is made if the last element of S, s3, changes sign.

The optimal rotation matrix is therefore

R = V SUT , S = diag
(
1, 1, det(UV T )

)
(5.7)

where M = X̂rX̂
T
l = UΣV T . After determining the rotation matrix finding the trans-

lation vector from left to right is then the simple case of using the computed centroids

t = X̄r −RX̄ l (5.8)

Recognizing that R = RrR
T
l and t = tr −RrR

T
l tl from (5.4) an equivalent alternative

circumventing the world points is to perform an averaging of these parameters for every
extrinsic pair. To see this consider minimizing

n∑
i=1

dc(Ri,R)2 =
n∑
i=1

trace(2I − 2RRT
i ) = 2n · 3− 2 trace(R

n∑
i=1
RT
i ) (5.9)

where dc(Ri,R) = ‖Ri,R‖F is the chordal distance[9] between the calculated rotation
matrix between the cameras at the i’th configuration and the optimal rotation matrix.
Substituting M =

∑n
i=1R

T
i = UΣV T results in the same Procrustes solution as (5.7).
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5.1.3. Zhang’s cost function

As [31] was meant for a single camera its cost function must be tweaked to accomodate
for a dual camera setup. In its original format the cost function is simply the square
sum of the reprojection error:

C1 =
n∑
i=1

m∑
j=1
‖xi,j − x̂i,j‖2 (5.10)

where x̂i,j is the projection of the j’th calibration point using the optimized calibration
parameters of image i. The two camera extension simply involves adding the reprojection
error of the second image:

C2 =
n∑
i=1

m∑
j=1

(∥∥∥xli,j − x̂li,j∥∥∥2
+
∥∥∥xri,j − x̂ri,j∥∥∥2

)
(5.11)

Which can be viewed as minimizing the mean reprojection error. It is seen that despite
the information added by using two cameras the extension to Zhang’s method does not
really take advantage of it.

5.1.4. Reconstruction

Once the relation between the camera reference frames has been established the epipolar
geometry of the system is essentially known. The fundamental matrix, mapping image
points to lines in the other image plane, can be calculated as

F = K−Tr [t]×RK−1
l (5.12)

Where [.]× denotes the skew symmetric form of a vector. The known camera matrices
can be used to triangulate and reconstruct the 3D world points in the left reference
frame. The problem is already determined up to the unknown scale factors, ρl 6= 0 and
ρr 6= 0:

ρls
l
i,j = K−1

l xli,j = [I|0]X l
i,j = PlX

l
i,j

ρrs
r
i,j = K−1

r xri,j = [R|t]X l
i,j = PrX

l
i,j

where s =
[
s1 s2 1

]T
is the homogeneous normalized image coordinates. Recognizing

that sl × pl = 0 and sr × pr = 0 gives rise to 2 · 3 sets of equations of which 2 · 2 are
linearly independent. Choosing 4 linearly independent equations a linear problem can

37



be set up as 
sl1p

T
l,3 − pTl,1

sl2p
T
l,3 − pTl,2

sr1p
T
r,3 − pTr,1

sr2p
T
r,3 − pTr,2

X l
i,j = AX l

i,j = 0 (5.13)

where pTl,i denote the i’th row of Pl and likewise for Pr. This can for instance be
solved using the direct linear transform (DLT)[10, section 12.2] where the singular value
decomposition of A = UΣV T gives the solution as

X l
i,j = v3, V =

[
v1 v2 v3

]
(5.14)

Optimal triangulation can be obtained by first correcting the point correspondences,
xli,j ↔ xri,j , so that their rays stemming from the camera origins intersect in the three-
dimensional space. [10, Algorithm 12.1], [11] shows how this can be achieved by solving a
six-degree polynomial once the fundamental matrix is known. Note also that [4] undistort
the image points beforehand since the measured points x̂ might be affected by the lens
geometry typically modeled by [12]:

x̂li,j =
(
1 + kl1d(xli,j)2 + kl2d(xli,j)4

)
xli,j (5.15)

x̂ri,j =
(
1 + kr1d(xri,j)2 + kr2d(xri,j)4

)
xri,j (5.16)

where d(.) is the distance to the focal point (u0, v0) given by the intrinsic parameters and
kl1, k

l
2, k

r
1, k

r
2 are the radial distortion coefficients of the left and right camera respectively.

5.1.5. Gai’s Cost function

[4] chooses to assume that the calibration pattern transformed by the extrinsic parame-
ters T l,io are good enough even for the corrected points. The pattern is then transformed
to the left reference frame to make the cost function. [6] on the other hand re-calculates
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the transformation analogous to before, only now with known intrinsic parameters:

X l
i,j =

[
Rl,i
w tlw,i

0T 1

]
Xj
w

Y j
w

0
1

 =
[
rl,i1 rl,i2 tlw,i
0 0 1

]X
j
w

Y j
w

1


⇔

x̂li,j =
[
rl,i1 rl,i2 tlw,i

] X
j
w

Y j
w

1

 = Hxwj

(5.17)

where rk is the k’th column of a rotation matrix R, x̂li,j is the non-homogeneous version
ofX l

i,j which can be viewed as the normalized image coordinate with known scale ρl = 1.
All the points of image pair i can then be used to find a least-squares solution to H.
Since a rotation matrix R is orthogonal, that is RRT = I, it follows that r3 = r1 × r2
and the complete transformation T l,iw can be retrieved.

The triangulated points are then placed in the object frame by the calculated extrinsic
parameters to make the cost function

C =
n∑
i=1

m∑
j=1

(∥∥∥Xo
j − (T̄ l,io )−1X l

i,j

∥∥∥2
)

(5.18)

The parameters to optimize is then the rotation and translation between the cam-
eras R, t, the left extrinsic parameters Ri, ti, i = 1, . . . , n and the intrinsic parameters
Kl,Kr,kl,kr giving a total of 6+6 ·n+2(4+2) = 6(3+n) variables. The right intrinsic
parameters are determined as

Rr = RRl, tr = t+RrR
T
l tl

Which ensures compatibility with the epipolar geometry.

5.2. Finding the camera poses in the world frame

The robotic manipulator can be used to find the camera poses with respect to its base
(world) frame. To do so a chess board pattern with known geometry is mounted on its
end-effector which is detected by the cameras. Assuming the intrinsic parameters of the
camera is already known the transformation from the camera to the object frame holding
the calibration pattern, T co , can be calculated. Since the end-effector pose with respect to
the base frame, Twe , is known through forward kinematics there is only a single unknown,
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but constant, transformation between end-effector and calibration pattern, T eo . Finding
this means finding the transformation between base frame and camera:

Twc = Twe T
e
o (T co )−1 (5.19)

Since Twc is unchanged, two different poses, 1 and 2, of the chess board relate through

Twe1T
e
oT

o1
c = Twe2T

e
oT

o2
c

Or re-written the same relation is expressed as

T e2w T
w
e1T

e
o = T eoT

o2
c T

c
o1 (5.20)

Which is the transformation from end-effector pose 2 to pose 1 and pattern pose 2 to 1
transformed by T eo . For ease of notation the following is hereby used:

X = T eo (5.21)
Ai = T e2,iw Twe1,i (5.22)
Bi = T o2,ic T co1,i (5.23)

A solution to X is given in [22] when n ≥ 2 for Ai,Bi, i = 1, . . . , n. That is; if at
least two pairs of images have been taken of the chess board at different locations the
unknown transformation T eo can be found. Since the solution can use a least-squares
approach it is favorable to use more to reduce the effects of noise.

Consider the arbitrary homogenous transformations A and B, 5.20 can then be written

AX = XB[
RA tA
0 1

] [
RX tX
0 1

]
=
[
RX tX
0 1

] [
RB tB
0 1

]

which shows that

RARX = RXRB (5.24)
RAtX + tA = RXtB + tX (5.25)

First it is seen that finding RX first will yield a solution to tX . Fortunately it is
recognized that RA = RXRBR

T
X which is simply a transformation of the rotation

matrix RB to the coordinate system of X. This is the same as transforming the axis of
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rotation in B by RX :

θAkA = θBRXkB (5.26)

The best fitting RX is therefore the one which minimizes

n∑
i=1
‖θAikAi − θBiRXkBi‖2 = trace

(
KAK

T
A +KBK

T
B − 2RXKBK

T
A

)
(5.27)

Or equivalently maximizes trace
(
RXKBK

T
A

)
where KA =

[
θA1kA1 . . . θAnkAn

]
and

KB =
[
θB1kB1 . . . θBnkBn

]
. This is again the orthogonal Procrustes problem for

M = KBK
T
A solved by (5.7).

Having found the rotation matrix the translation can be expressed as

(RA − I) tX = RXtB − tA ⇔ Ctx = d

giving the normal equation for a least-squares solution

tX = (CTC)−1CTd, C =


RA1 − I

...
RAn − I

 , d =


RXtB1 − tA1

...
RXtBn − tAn

 (5.28)

The linear solution to X may be used as initialization for an iterative optimization
technique to reduce the effect of noise by minimizing

n∑
i=1
‖AiX −XBi‖2F (5.29)

Once X = T eo is found 5.19 can be used to average (5.9) the results of all the configu-
rations of Twe ,T co to retrieve the transformation from base to camera.

Note that Twc also could have been found directly[21] by rearranging (5.19) to the form

T eo = T ewT
w
c T

c
o (5.30)

which is also constant, meaning X = Twc can be found by taking the same steps as
before with

Ai = Twe2,iT
e1,i
w Bi = T co2,iT

o1,i
c

Then the optimization by (5.29) can be performed on Twc directly to reduce error prop-
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agation.

5.2.1. Minimizing error for a dual camera setup

As previously seen; two cameras share certain relationships which can be found in every
image pair. It is therefore important to retain the so called epipolar compatibility when
calculating the poses of each camera in the world frame. The transformation between
two cameras, given by R, t, can be passed by the world frame as

Twr = Twl T
l
r

To ensure correct epipolar geometry and transitively consistent matrices it was opted to
use the cost function

n∑
i=1

(
‖Al,iXl −XlBl,i‖F + ‖Ar,iXr −XrBr,i‖F

)2 (5.31)

Where Xr = XlT
l
r with optimization parameters of Xl and R, t. This is analogous to

the 1 camera instance of (5.29).

5.3. Calibration via the world frame

As the particle filter is dependent on projection and not 3D measurements it might seem
as though optimizing for reprojection error is the more correct method for the observation
model. However Gai’s method shows more accurate extrinsic results by optimizing for
reconstruction. The choice of optimization measure is not straight forward. For good
results it might be even be necessary to make an application specific calibration method.
Next one such method is introduced.

To keep the focus on good reprojection it is here proposed to optimize the transformation
between the calibration pattern and camera going via the world frame instead of the
extrinsic parameters directly like Zhang[31]. In fact, looking at the observation model it
is clear that the particle filter is only dependent on consistently good (re)projection via
the transformation from world frame to the respective cameras, not the accuracy of the
transformation itself.

There are three transformations between a camera and the calibration pattern; camera
to world frame, world frame to end-effector and lastly end-effector to calibration pattern.
The manipulator is assumed to produce accurate measurements of the end-effector pose
and so the real uncertainties lay in the two transformations estimated using the camera
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measurements.

First the transformations, camera to calibration frame, T co , and camera to world frame,
T cw are calculated using the approach presented in 5.2 and parameters estimated by
Zhang’s method. This includes non-linear minimization of (5.31). The proposed cost
function to be minimized can then be formulated:

C =
n∑
i=1

m∑
j=1

(∥∥∥xi,j − P1X
o
j

∥∥∥2
+
∥∥∥x′i,j − P2X

o
j

∥∥∥2
)

(5.32)

Where Pk = Kk[I | 0]T oc,k, k = 1, 2 is the k’th camera matrix constructed from the
optimized parameters Kk,T

w
c,1,T

e
o ,R, t and the constant transformation Twe to form

T oc,k = T oe T
e
wT

w
c,k. Note that Twc,2 is calculated from R, t to still ensure the intra-camera

dependencies.

The proposed optimization has the nice effect of optimizing a constant amount of pa-
rameters making it perfectly scalable for increased amounts of images/configurations.
In contrast to Gai’s method which optimizes 6(3 + n) variables where n is the number
of image pairs the new method uses only 6(3 + 2) = 36. The proposed method will in
other words always optimize on less parameters as n ≥ 3.

The better scalability and computationally cheaper cost function results in a significant
speed-up compared to Gai’s method, especially at a high number of image pairs.
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6. Experimental setup

To perform the experiments a robotics cell containing two large scale robotic manipula-
tors where rigged with a couple of industrial ethernet cameras as described in 6.1.

Figure 6.1.: The physical setup of the experiments.

6.1. Camera setup

Another aspect with the calibration dependence of the filter is that a slight change in
setup calls for complete re-calibration (except the intrinsic camera values). It is therefore
essential to have good, automatic calibration routines in place.
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6.1.1. Environment

The cameras where placed along the y-axis of the robots base frame and a calculated
distance from the trajectory to ensure that the hanger was within the image bounds at
all times. Fig. 6.2 shows the scene seen from above where l is the predetermined length
of the trajectory (red).

Figure 6.2.: The camera setup seen from above

α denotes the horizontal field of view (fov) dependent on the camera and image size.
It can be found using the intrinsic camera parameters where the focal length, fw, is
expressed in pixel units giving half the horizontal fov as

α

2 = arctan
(
W
2
fw

)
(6.1)

where W is the image width in pixels. The cameras where rotated 45◦ about the base
z-axis which makes β:

β = π

4 −
α

2 (6.2)

Having two angles and a distance of the fov triangle the law of sines can be used to find
h, the hypotenuse of the right triangle d,∆, h.

h = l · sin β
sinα (6.3)
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Which determines the distance to the trajectory d

d = h cosβ = l · sin β cosβ
sinα = l

2 ·
sin(2β)
sinα

= l

2 ·
sin
(
π
2 − α

)
sinα = l

2
1

tanα

= l

2 ·
1−

(
W

2fw

)2

2 W
2fw

= l

2 ·
(
fw
W
− W

4fw

)
= l

2 · (γ −
1

4γ )

(6.4)

and the placement of the camera from the trajectory start, ∆

∆ = d tan β = l

2 ·
(
fw
W
− W

4fw

) 1− W
2fw

1 + W
2fw

= l

2 ·
4f2
w −W 2

4fwW
(2f2 −W )2

4f2
w −W 2 = l

2 ·
(2f2 −W )2

4fwW

= l

2 ·
(
fw
W

+ W

4fw
− 1

)
= l

2 · (γ + 1
4γ − 1)

(6.5)

Choosing the distance to the trajectory this way gives a fixed vertical field of view with
a height of

dz = d · H
fh

(6.6)

Where H is the height of the image in pixels and fh is the focal length in (vertical)
pixels.

6.1.2. Calibration routine

Since the focal length needs to remain the same after calibration, that is have a fixed
focus, the calibration has to be performed in the operating space of the particle filter.

Figure 6.3.: Positions distributed
on a spherical cap
shown in blue.

For a good calibration the chessboard used should
exhibit a variety of orientations all over the image.
The proposed way to achieve this is to distribute
the chessboard positions on a spherical cap and aim
the board at a chosen point as seen in Fig. 6.3.

The dimensions of the spherical cap was deter-
mined by the hanger trajectory where the base ra-
dius of the cap was set to the trajectory length. Its
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height was chosen such that the angle hypotenuse
and base radius was about 10 degrees to restrict the
angle to the camera plane which already is 45 degrees to the horizontal. The cap was
also restricted in the z-direction to stay within image bounds. A set of board positions
in the calibration environment is shown in Fig. 6.4.

Figure 6.4.: A set of chessboard positions for calibration.

Initially the calibration patterns reference system has its z-axis aimed at the center of
the sphere making up the spherical cap, the orientation is then given a random offset
restricted such that the angle to the cameras still are acceptable. This is to ensure a
wide range of orientation for calibration. The restriction was simply chosen to have a
linear relationship to the y-coordinate:

o(y) = 30− 25
ymax

|y|

To allow greater angles when the image planes where more aligned with the calibration
board (5◦ on the boundary, 30◦ in the center).

When each position and orientation of the board was calculated the joint configuration
of the robotic manipulator could be found using inverse kinematics. Some restrictions
where put in place to keep the manipulator out of the line of sight of the cameras.
Collision detection was also implemented to guarantee a clear view of the chessboard for
both cameras in each configuration, Fig. 6.5 demonstrates a collision free line of sight
as well as an occlusion by the manipulator.

The routine is very configurable with respect to the amount of calibration images and
guarantees a varied set of chessboard poses regardless. By using carefully calculated
joint configurations it also guarantees a free line of sight to the board at all times which
can be a challenge when using a robotic manipulator.
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Figure 6.5.: Collision free configuration (left) as well as an occlusion by the manipulator
(right) highlighted in red.

Fig. 6.6 shows a typical set of calibration poses of a chessboard seen from both camera
reference frames and in the images.

Figure 6.6.: A set of calibration poses seen from the camera perspectives and resulting
images.

6.2. Cameras

The cameras where of the type Proscilica GC1020; a small packet GigE camera delivering
1024 × 768 grayscale images at ∼ 33 fps. To interface the cameras the producers C++
SDK named Vimba was utilized.

The SDK, Vimba, handles the underlying transport layer and offer a straight forward
way of configuring and using the cameras over ethernet. To achieve synchronized time
stamps (for integration in the motion model) the time precision time protocol (PTP,
IEEE 1588-2008) where enabled to synchronize the 1GHz clocks of the cameras.

Further more to attain a high frame rate the cameras where put in continuous capture
mode running asynchronously to the main thread. This involves notifying a handler
when a new frame has arrived and deal with it accordingly. Despite best efforts it was
not accomplished to trigger the two cameras out of phase to each other through code.

A consequence of two cameras in sync is a total frame rate not much greater than what
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a single camera produces despite the theoretical possibility of over 60 fps. According
to the simulated results of 8.1 this will effect the accuracy of the filter negatively. In
further research timed hardware triggers may be the better option.

6.3. Manipulator

The industrial manipulators used in this thesis where the 120kg Kuka variant, KR 120
R2500. As they are of the previous generation the controllers of the manipulators has
limited on-line capabilities. Two ways of interfacing the manipulators where tested to
determine the best option.

6.3.1. KUKAVARPROXY (KVP)

KUKAVARPROXY[25] is a third party application which let one set internal variables
of the Kuka controllers using the TCP/IP protocol. In combination with a KRL (Kuka
robot language) program running on the controller using the same variables for move-
ment the manipulator can be driven to desired poses.

The advantage of KVP is the simplicity of sending a pose with location and ZYX-Euler
angles and letting the controller handle all safeties and inverse kinematics. After a few
tests however it became apparent that the end-effector of the manipulator must reach
the given pose before any new commands are handled, any poses set in between are
simply not used. In a constantly updating system as described in these experiments this
is detrimental to the ability to follow the object smoothly.

The use of KVP proved ideal when calibrating the cameras as setting poses and reading
the manipulator measurements through code was made considerably easier than other
options.

6.3.2. Robot sensor interface (RSI)

The robot sensor interface[16] is a much lower level form of interfacing the manipulators
developed by Kuka. The protocol depends on xml packets sent over UDP controlling the
manipulator through given joint angles or relative position updates. This means much
more dependence on the host computer which may handle everything from trajectory
planning to inverse kinematics. In addition RSI demands a constant update rate of
250Hz.

Since the particle filter delivers sporadic updates limited to the frame rate of the cameras

49



(max 60Hz) the required RSI refresh rate means prediction has to be applied in between
filter iterations. Fortunately the dynamic model of the system have already been derived
in 3.1 and the module handling the RSI updates can use numerical integration in a
separate thread to give intermediate poses until a new filter result is available.

A general header library for RSI communication was implemented in C++ using the
Orocos kdl library[27] for inverse kinematics. The RSI library allows for simple updating
of newly found poses while feeding the RSI line with poses in a manner defined by the
programmer between actual updates.

Figure 6.7 shows the deployment diagram of the finished system. Each module runs in
its own thread to allow for asynchronous updates from both cameras (vimba), particle
filter and RSI (robot).

Figure 6.7.: Deployment diagram of the system.

6.3.3. Regulating the manipulator input

To avoid jumps in acceleration when first starting out or a correction of the movement
is given it was decided to add a simple regulator in the joint space of the manipulator,
this is described by the block diagram of Fig. 6.8.

Figure 6.8.: Control block diagram of the regulator, courtesy of Prof. Olav Egeland.

The saturation ensures that no joint acceleration exceeds the limits of the manipulator
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while the rest of the diagram equates to the transfer function

q

qd
(s) = 1

1 + 2ζ s
ω0

+ s2

ω2
0

which gives the (non-saturated) acceleration

q̈ =
(
qd − (q + 2ζ

ω0
q̇)
)
ω2

0

The joint angle is then found through integration of q̈.

Figure 6.9.: The desired and regulated angle for each joint.

Fig. 6.9 shows desired and sent joint angles for a typical movement of a suspended
object. It is seen that the conservatively tuned regulator quickly caught up to the
desired joint angles for each separate joint. The regulator in fact proved very useful as
the manipulator showed tendencies to jerk and shut down easily for joint control over
RSI.
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7. Calibration results

To aid in the choice of calibration method some simple tests where performed. The three
methods: Zhang[31], Gai[6] and the novel approach of section 5.3 each represent a dif-
ferent objective. Zhang uses reprojection based on the intrinic and extrinsic parameters
in its optimization to get an all-round good calibration. Gai utilizes 3D reconstruction
in stead to use the constant camera relationship to better the extrinsic parameters. The
method developed in this thesis is even more application specific and tries to minimize
reprojection error via the world/base-frame to each camera.

As this thesis focuses on the particle filter application the testing criteria will reflect
this. Important to the observation model of the filter is the intrinsic parameters and the
camera to world frame transformation as seen in (3.24).

7.1. Simulation

To get simulated data a checkerboard pattern was generated with 3cm squares and
moved to 24 predefined poses1 with respect to each camera. The pattern was projected
at each configuration using typical camera parameters and the found image points was
perturbed by Gaussian noise with zero mean.

Each test was performed at different noise levels at intervals of 0.2 and to investigate
consistency the data was collected several times at each level to get an arithmetic mean.

7.1.1. Intrinsic results

In stead of opting for a geometric measure it was chosen to use a simple algebraic
difference between the estimated and ground truth calibration matrix to get a single
parameter for comparison. This only reveals a level of difference but will give grounds
for some comparison between the calibration routines. To achieve this the Frobenius
norm was used on each difference matrix to produce the metric

d =
∥∥∥K̂1 −K1

∥∥∥
F

+
∥∥∥K̂2 −K2

∥∥∥
F

(7.1)

1see chapter 6.1
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Where K̂ is the estimated calibration matrix and K the ground truth. The results of
10 iterations on each noise level are shown in Fig. 7.1

Figure 7.1.: Combined difference of the two intrinsic calibration matrices.

7.1.2. Epipolar relationship

While not important to the particle filter it is still interesting to see how the different cal-
ibration methods affect the estimated camera relationship R, t. To measure translation
difference to the ground truth the euclidean distance was used:

dt =
∥∥∥t− t̂∥∥∥ (7.2)

where t̂ is the estimated translation. For the orientation measure it was opted to use the
angular distance; the smallest angle between two orientations. The difference between
to rotation matrices is

Re = RR̂T

The angular distance is then defined as

dR(R, R̂) = dR(Re, I) = θe ∈ [0, π] (7.3)

where θe is the rotational element of the angle axis representation in radians. The
average error of the transformation between the cameras can be seen in Fig.7.2

A clear trend is seen for the intrinsic accuracy as noise increases. It looks as though the
proposed method performs roughly equal to the other methods at low noise levels but
has a significant advantage for noisy measurements. The non-liner optimization of the
transformations calculated by Zhang’s method and used in the new proposed one can
arguably be seen as reducing noise.

53



Figure 7.2.: Average error of the camera to camera transformation.

It is then important to note that the initialization for Gai’s method differed slightly from
the proposed method. Gai used the initial estimate from Zhang’s algorithm while the
proposed technique utilizes the camera to camera transformation found from optimizing
the camera to world transformations as seen in (5.31).

7.1.3. Camera to world frame transformation

As a measure of the correctness of the Euclidean transformation between the cameras
and the world frame the two same distance metrics as the previous section where used;
euclidean distance of the translation difference and angular distance between the orien-
tations. Both Twc,1 and Twc,2 where tested against the ground truth and their errors where
combined such that

dt =
∥∥∥twc1 − t̂wc1∥∥∥+

∥∥∥twc2 − t̂wc2∥∥∥ (7.4)

and

dR = dR(Rw
c1, R̂

w
c1) + dR(Rw

c2, R̂
w
c2) (7.5)

Figure 7.3 shows the results of averaging 10 runs of calibration at each noise level.

Again the proposed method performs better as the noise increases compared to the
other two. Gai’s method also does not showcase the promised results as seen in [6].
The calibration distances in the original experiments were much closer to the cameras
(albeit the baseline was also much shorter) which might have an effect as triangulation
generally become less accurate with increased depth.
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Figure 7.3.: Combined error of the camera to world transformations.

7.2. Experiment

After the cameras where placed according to the calibration routine of section 6.1 a total
of 25 images where taken of the chessboard in different poses which can be seen in Fig.
7.4. Out of the 25 images the calibration routine rejected 5 due to various reasons.

Figure 7.4.: A composite of the calibration images taken with the left and right camera
respectively.

Fig. 7.5 shows the results of the estimated extrinsics and reveals a close resemblance to
the set calibration poses of the routine.

Both the results of Zhang’s method and the proposed refinement where tested against
each other. A quick comparison of the output showed near identical calibration matrices,
then the only difference that remains is the placement of the cameras in the world frame.
Even this difference was rather small, about 2mm in each direction for the translation
of camera 1 and at most 10mm for that of camera 2.

The differences are so insignificant that in the typical work area of the filter the difference
are at most a couple of pixels when reprojecting. Such a small variation makes it difficult
to get any quantitative data in a straight forward manner. It was therefor opted to simply
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Figure 7.5.: The estimated poses of the chessboard and camera 2 relative to camera 1.

point at camera 2 (which showed the most difference) with the manipulator whose base
the camera was calibrated for. This gives a simple indication for which method is more
accurate with the stipulation that a 10mm deviation should be qualitatively noticeable.

Fig. 7.6 shows the results of pointing at camera 2 (with an +25mm offset in z) with
Zhang’s result and the proposed refinement. It is seen that Zhangs metod is closer to
the center of the lens where the focal point is assumed to be.

Figure 7.6.: The camera placement according to Zhang (purple) and the proposed
method (green).

The same difference is not really noticeable for the first camera because of the small
variations. Even though simulations pointed at the proposed method being better for
pretty much every noise level the same effect was not seen in the experiment.

It is not clear as to why the simulation and experiment disagree but the proposed
method does rely on accurate measurements of the end-effector pose, some noise in
these measurements coupled with low noise levels on the image measurements might
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help explain the inconsistency.

The difference shown in Fig. 7.6 was taken from by far the most telling angle. From
other directions, as well as for the other camera as a whole, it was much harder to decide
on the best result. As the other results where inconclusive it was decided to leave the
proposed method in favor of the tried and trusted one, but either way would probably
work due to relatively small differences.
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8. Filter results

8.1. Simulations

Figure 8.1.: Projection of
the simulated
hanger.

To test the particle filter under controlled conditions a se-
quence of simulated images made from ground truth states
was constructed. A fifteen second sequence of images at
60 fps was made by careful numerical integration of the
dynamic model and an initial set of states.

The initial states where selected as to be realistic for an
industrial scenario with orientations around the x- and y-
axis maxing out at about 15 degrees, the rotation around
the z-axis, γ, was kept to a minimum.

Fig. 8.1 shows the hanger (red) given in pivot frame
(green) coordinates projected onto the image plane. The
ground truth states represents the pose and velocities of
the pivot frame and the hanger is depicted accordingly.

Fig. 8.2 shows the projected hanger at different stages of
a sequence using integrated states.

Figure 8.2.: The hanger sequence.
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The deviation from the ground truth for each state variable was chosen as a test criteria
and the filter was initialized close to the initial states used in the creation of the sequence.
A run of 100 tests where performed to average the results and the effect of different
camera placement was also investigated.

8.1.1. Single camera head on

Placing the camera directly ahead of the hanger was tried first, that is the camera was
placed in the world origin with its z-axis aligned with the worlds y-axis to point at the
hanger. The periodic oscillations of the hanger means that the pivot frame will align
with the camera axes the most in this configuration.

Figure 8.3.: The hanger seen from the front. Left shows the filter results overlayed in
white.

As seen by both Fig. 8.3 and table 8.1 the results seem pretty accurate with the exception
of the rotation around the z-axis, γ. This is to be expected as the current camera
configuration is not information rich with respect to this kind of rotation.

x y z ẋ ẏ ż

0.008 0.051 0.012 0.006 0.011 0.004

(a) Position [m] and linear velocities [m/s].

α β γ α̇ β̇ γ̇

0.504 0.544 5.184 1.597 1.798 1.093

(b) Orientation [deg] and angular velocities [deg/s].

Table 8.1.: RMSE of the filter states to the ground truth using a single camera head on.
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8.1.2. Single camera from an angle

Figure 8.4.: Camera at an
angle.

In stead of pointing head on the camera is now moved in
the world frame and pointed in the direction of the hanger
again. This yields images of the hanger sequence from the
side instead. The new camera configuration is shown in
Fig. 8.4.

The results in 8.2 shows good improvement from the head
on case with respect to the z-axis rotation and velocities.
The slightly worse deviations of the other states is a wit-
ness that there is no perfect camera placement. Compared to the head on camera there
is no doubt that having the camera viewing from the side is the favorable configuration
as far as accuracy goes.

x y z ẋ ẏ ż

0.031 0.051 0.022 0.010 0.012 0.005

(a) Position [m] and linear velocities [m/s].

α β γ α̇ β̇ γ̇

0.386 0.601 1.854 1.189 2.114 0.639

(b) Orientation [deg] and angular velocities [deg/s].

Table 8.2.: RMSE of the filter states to the ground truth using a single camera from an
angle.

8.1.3. Two cameras

Figure 8.5.: Two cameras.

For the last test a second camera was added in while keep-
ing the configuration of the first. Both cameras are now
watching the hanger from different point of views with the
first camera (blue) having a steeper angle to the hanger
as seen in Fig. 8.5.

The most noteworthy result of adding the second camera
is the depth improvement; a 51mm error is improved to
13mm at a 5m distance.

At first glance the single camera from an angle could almost rival the double camera
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configuration but this imposes two problems; how can one ensure to always view the
hanger from an angle, secondly this conclusion rests on the assumption that a single
camera can deliver the same frame rate as two cameras.

x y z ẋ ẏ ż

0.008 0.013 0.022 0.007 0.007 0.004

(a) Position [m] and linear velocities [m/s].

α β γ α̇ β̇ γ̇

0.300 0.429 1.964 1.054 1.608 0.774

(b) Orientation [deg] and angular velocities [deg/s].

Table 8.3.: RMSE of the filter states to the ground truth using two cameras.

8.1.4. Effect of frame-rate

An industrial camera typically deliver ∼ 30 fps. A new test with a single camera at an
angle at this frame rate shows worse performance than the double camera setup as seen
in 8.4

x y z ẋ ẏ ż

0.123 0.213 0.047 0.018 0.028 0.009

(a) Position [m] and linear velocities [m/s].

α β γ α̇ β̇ γ̇

0.749 0.745 3.198 2.322 2.550 0.693

(b) Orientation [deg] and angular velocities [deg/s].

Table 8.4.: RMSE of the filter states to the ground truth using a single camera at an
angle at 30fps.

Note also that compensating with a smaller step size for the numerical integration in the
filter had negligible effect on these results. It is concluded that viewing the hanger from
more than one position is necessary to get better positional accuracy while keeping the
frame rate high is equally important.
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8.2. Filter convergence

The first thing to check in a real world application of the particle filter is naturally that
the filter detects the object properly. To do so the hanger was placed stationary in the
field of view of both cameras, the filter was then run until its output seemed to converge.
Reprojecting the filter poses onto the images taken gave a good indication if the filter
had converged on the right object or not.

Despite a close initialization it soon became apparent that adding the extra freedom of
3D movement let the filter find any high contrast area in stead of the actual object as
can be seen in Fig. 8.6.

Figure 8.6.: The particle filter failed to detect the correct object due to background
clutter.

In some cases the filter did not converge and the number of particles was pushed to 500
000 without luck. The observation model of the filter is clearly too simplistic for robust
detection. In theory the filter can hypothesize the object to be anywhere it finds most
contrast with the added degree of freedom, this puts extra burden on the uniqueness of
the object to be picked up on. To help with the problem white paper was added to the
hanger to enrich the contrast response, this proved quite effective as seen in Fig. 8.7

Figure 8.7.: The particle filter now detects the object correctly due to added contrast
around the hanger.

This simple experiment highlighted the problem of increasing the state vector; the object
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is no longer restricted to a certain position and it is therefore much more susceptible
to clutter in the background. The only way that seem to get around the problem is
highlighting the object in some way or do a rework of the observation model.

8.3. Linear tracking

As [28] already shows the effectiveness of tracking a swinging motion it was only natural
to check the accuracy of the added states, namely the position in 3D space. To do so
a hanger was suspended on a manipulator with a calibrated tool for the pivot point.
The end-effector was then sent in linear paths along the work area of the filter while
measurements where taken by both the filter and the manipulator. Since the particle
filter was calibrated for the base of the manipulator in question the results are directly
comparable. A velocity of about 0.06m

s was chosen to mimic an industrial pick and place
operation.

To accompany the findings of section 8.2 the backside of the hanger was covered in white
paper in hope that the detection would improve without affecting the dynamics much.
The filter proved sensitive to initialization of the velocities and the best results where
accomplished by letting the filter converge on the hanger while the pivot was still at rest
in the x,y and z directions. Fig. 8.8 shows the filter estimates and the measured, ground
truth, positions. It is seen that the filter tracks the linear movement with overall decent
accuracy.

Figure 8.8.: The particle filters estimates superimposed on the measured position.
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As expected the worst accuracy lies in the depth direction (here x). Eliminating the
depth states, both coordinates and velocity, would about halve the error to below 1cm.
This is possible in many industrial applications where the environment could be con-
structed to support the 2D case. Additionally constraining the states would most likely
help with the convergence/detection problem of the filter discussed in section 8.2.

Table 8.5 shows the mean error of each dimension after the movement was started1.

x y z

0.019 0.008 0.004

Table 8.5.: RMSE of the position estimates [m] using two cameras.

The depth error is, unsurprisingly, slightly larger than the simulated ones. Even though
the object is closer in the real world experiment (about 1.5m) the frame rate was worse
and therefore worse results may be expected. However; the vertical and horizontal
accuracy are equal to or better than the simulation hinting at the frame rate having a
smaller effect than first suspected, at least at close range.

The simulations where performed with testing the limits of the particle filter in mind
and although this was not possible to recreate in the real world experiments a nice
consistency was observed between the two tests.

Even though not measured directly it is still assumed that the orientation estimates
where tracked well based on the smooth sinusoidal looking output of the filter shown in
Fig. 8.9.

Figure 8.9.: The particle filters angular estimates of α and β.

One of the most interesting results to take away from 8.8 is the larger deviation when the
1To be comparable to the simulated results
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parameters are static for the first few seconds; the figure clearly shows that the accuracy
increases when the pivot is moving.

The test where also performed with an increase from 100k to 500k particles with no
positive change in accuracy. A few tests at 50% increased speed was also conducted with
little noticeable change in accuracy, higher speeds could not be tested due to limitations
of the test setup.

Finally it is noted that the deviations seen are worst case in that the calibration of the
pivot point where tricky. Some of the seemingly constant offsets in the depth direction
especially could very well be due to poor calibration or slightly wrong measurements of
the hanger.

8.4. Motion compensation

The final experiment consisted of simply testing the system as a whole. The objective of
this thesis has been to accurately estimate the pose (and velocities) of a swinging object
and handle it as if it was at rest.

Due to time restrictions it was not accomplished to test the particle filter output directly
on the robotic manipulator safely. Any safety, excluding motor/joint limitations, had
to be implemented server side, for such a large and powerful manipulator this was not
something to take lightly.

Even though the joint movements are regulated through code they could still be very
fast and violent given the wrong input. This was a limitation of the implementation
between filter and manipulator rather than the concept in it self.

Nevertheless it was demonstrated how the KUKA manipulator could be programmed
on-line to run smooth paths with typical movements of the spherical pendulum with a
moving pivot. The only difference to the complete system is that the poses given to the
controller where generated by the dynamic equations presented in 3.1 rather than the
estimates of the particle filter.

The implemented robot controller showed great response and had no problems with
accelerating up to and keeping track with given poses2.

2A small video-snippet is given among the attached files.
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9. Concluding remarks

In this thesis a way of implementing and using a particle filter to track an object sus-
pended in a single pivot was given. Further a small study on camera calibration together
with a new optimization was presented. Lastly the particle filters linear tracking abilities
where quantitatively tested and a way of controlling KUKA manipulators for the desired
system was demonstrated.

In section 8.3 the particle filter showed acceptable accuracy in tracking and estimating
the Cartesian position of the pivot from 1.5-2m away with a mean deviation of about
20mm. None of the tests indicated that the filter was near its maximum capabilities
with respect to both speed and distance.

However it is important to note that the most inaccurate dimension was depth and it
was also found that static parameters resulted in worse estimates. In section 8.2 there
where also discovered problems with the uniqueness of the object given the simplicity of
the observation model to the particle filter; a correct convergence was hard to achieve
when the object was allowed to move in 3D space.

The takeaway from this is that, if possible, the movements of the tracked object should
be restricted to avoid parameters of little motion to better the convergence as well as
the robustness of the particle filter.

The proposed optimization of the camera calibration was shown in 7.2 to have poorer
accuracy than its traditional counterpart despite promising simulations in 7.1. Both
methods did however give very decent results when paired with an automatic calibration
routine utilizing most of the cameras field of view.

A case study of moving a robotic manipulator using the estimates of the particle filter
was planned but never fully reached due to being restricted on time and therefor the
inability to perform safe tests. Section 8.4 did however demonstrated how the controller
of 6.3.2 smoothly controls a KUKA manipulator on-line suitable for the desired purpose.

It is the authors strong belief that with some further work the proposed system should be
able to perform pick-and-place operations on a swinging conveyor with a moving pivot.
The preliminary results are promising enough to warrant further investigation.
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10. Future work

As this thesis simply outlines a particular and limited way of achieving the desired goals
there are many ways to proceed. Some issues not addressed here include initialization
of the particle filter, live parameter estimation and occlusions of the object.

Both initialization and parameter estimation may very well have to be handled automat-
ically in an industrial application and are natural progressions from the current system.
Parameter estimation may or may not be necessary dependent on the variation of parts
and if loading/unloading (which changes the center of mass significantly) takes place.

In addition it was seen how more degrees of freedom made convergence more difficult,
an issue not seen in [20]. Some more research must be spent on mitigating the conver-
gence problems: either by improving the observation model of the filter, reducing the
dimensions the object can travel in, or by some other means. Incidentally this also ties
in with the initialization problem and could be regarded as a logical place to pick up
first.
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Appendices
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A. Source code

As this thesis had a significant amount of programming in it, and to further future
research, the entirety of the source code1 is attached and a simple usage documentation
is given here.

The main file in the base directory, although mostly untested, gives the construction and
usage of the complete system. Almost everything needs to be compiled with the NVCC
compiler of CUDA, local Makefiles shows the flags and dependencies used.

Calibration

Contains the automatic calibration routine written in MATLAB which store the end-
effector poses in a text file. The main C++ program then moves the manipulator via
KUKAVARPROXY while capturing images at each halt. The second MATLAB script
can be used to estimate the camera matrices in the manipulators base frame, the results
are stored in a formatted text file marked by the cameras serial numbers.

Camera

Contains C++ camera convenience classes for the Vimba API to use either as single
frame capture or continuous, asynchronous captures.

Data

Mostly contain automatically generated text files to store camera matrices and test
results. One important exception is the config file which contain the 3D points of line
segments given in the pivot frame. Points farther down the file are weighted more.

Filter

Contains the CUDA class to run the models of the particle filter. The configuration
such as number of particles, noise levels and center of mass placement is done through

1Complete source can also be found at https://github.com/HakonHystad/motion_compensation
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a separate header file.

Robot

The robot class is a simple C++ header wrapper over an existing KUKAVARPROXY
implementation to move the manipulator from A to B giving the pose in either meter
and XYZ-euler angles in radians or millimeters and ZYX-euler angles in degrees.

The RSI class is meant as a C++ base (header) class for handling the multithreaded RSI
communication, inheritance can then be used to override the update function so that
the prediction between given poses/states can be implemented after ones desire. This is
exemplified through the integration of the dynamic equations of a spherical pendulum.

Static test

A single CUDA main file to either test the convergence of the filter on a static object or
logging the filter output together with measurements of the manipulator to test tracking
capabilities. A little quirk: To get correct file placement the executable needs to run
from the base directory of the project.
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