




























non-symmetric vibration modes are excited. Measuring the presence, form and frequency at
which all these vibration patterns occur, provides helpful feedback in the CMUT development
process. It can for example provide information about the performance of the design, fabrica-
tion accuracy and material parameters.

4.3. Array uniformity

To get an overview of the uniformity of the main resonance frequency, the amplitude of all
104× 72 CMUTs in the array were measured for excitation frequencies ranging from 29 to
36MHz with a frequency step of 0.5MHz. The vibration amplitude at the center of each CMUT
was measured while exciting with a DC voltage of 20V and an RMS AC voltage of 5mV. The
results indicated a regional dependence of the main resonance across the array. This depen-
dence is best illustrated by the measurements at 33.5 and 35.5MHz, which are shown in Fig. 11.
Each pixel in these figures represents the amplitude of one CMUT. Due to space constraints,
measurements performed at other frequencies are not shown. Figure 11(a) shows highest ampli-
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Fig. 11. Vibration amplitude at the center of all CMUTs in the array for two excitation
frequencies. The x− and y-axes and the color scale are identical for both plots. Note that
the color scale is logarithmic.

tudes close to the bottom and side edges of the array, while Fig. 11(b) shows highest amplitudes
close to the center and the top edge. This indicates that the resonance frequency is lower close
to the bottom and side edges compared to the center and close to the top edge. Such a region-
ally dependent resonance might be due to non-uniform stress or thickness gradients in the wafer
bonded top plate. Figure 11 also indicates four rows with significantly weaker amplitude, which
is due to faulty wire bonding. The high vibration amplitudes of some of the CMUTs in these
lines indicate that acoustic cross coupling from neighboring rows is able to notably excite these
rows close to their resonance. In addition to the regional dependence of the resonance frequency
the plots in Fig. 11(b) indicate random variations. This might be because their resonances have
fluctuations similar to the one in Fig. 9(b). Some of the CMUTs could then have a low response
at the excitation frequency despite it being close to their resonance.

4.4. Top plate adhesion

Several vibration patterns similar to Fig. 8 have been measured, and Fig. 12 shows one from
a CMUT cell that is close to the lower edge of the array. As for the measurement depicted in
Fig. 8, the excitation frequency, Fa, was 21MHz, the DC voltage was 20V, and the AC RMS
voltage was 5mV. In contrast to the vibration pattern in Fig. 8, the measurement indicates
notable amplitude at the center of the CMUT cell, which is out of phase with the vibrations on

#191049 - $15.00 USD



A
m

pl
itu

de
 [p

m
]

0.01

 0.1

   1

  10

 x [µm]

 y
 [

µm
]

 

 

−10 −5 0 5 10

−10

−5

0

5

10
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(b) Vibration phase

Fig. 12. Vibration amplitude and phase of a CMUT cell near the lower edge of the array.
(a) plots the amplitude with logarithmic color scale and (b) plots the phase.

the CMUTs. This implies that the top plate is not fixed at the center of the cell, but is loose and
pivots along the edge of the support structure at the center. Figure 12 also indicates out of phase
vibration in the area outside the CMUT cell, which could indicate a loose top plate also here.
However since the amplitude is low, the cause might also be vibrations in the substrate.

5. Discussion

The presented measurements have provided precise information about the CMUT array under
investigation. The sensitivity of the heterodyne interferometer was measured to be 7.1fm/Hz1/2

at 21MHz. This is 70% higher than a purely shot noise limited system which means that also
other noise sources contribute. Taking into account the thermal amplifier noise mentioned in
Section 2.5 only reduces the theoretical to measured discrepancy to 56%. It is believed that
much of this noise is generated in the signal generators and is inserted into the signal path
through the AOMs and the mixer for the RI-signal in Fig. 2. Tests with signal generators of
lower quality used as the local oscillator for this mixer have resulted in significantly higher
noise levels. In addition the detector signal spectrum with only the reference beam incident on
the photodiode has indicated elevated noise in the frequency band ∼ 0 - 50MHz. The laser is
not a likely origin of this noise since it has not been observed in the same spectrum when only
the object beam was detected. This can be a relevant noise source for many optical systems that
use some sort of signal generator driven modulator. Such a modulator can for example be a part
of heterodyne interferometers or systems that utilize some sort of beam chopping combined
with lock-in techniques. The minimum detectable amplitude of measurement systems can be
limited by systematic errors which are not reduced by decreasing the MBW . Since the sensi-
tivity measurement was performed with MBW = 1Hz, it is clear that such errors do not inhibit
measurements at 7.1fm.

In the sensitivity measurement in Fig. 7 the setup used on average 2.3s per measurement
point which is 1.3s more than was needed by the signal processing system. This additional
time was used for GPIB communication, computation and settling of the signal generators after
changing their settings. The settling time was most likely higher than required since the soft-
ware not was optimized for a scan of AC voltage. It is reasonable to assume that this additional
time can be significantly reduced by using more dedicated and integrated electronics.

The RN signal level plotted in Fig. 9(c) indicated that the AOM deflection control technique
described in Section 2.2.3 performed well. The signal level at the highest frequency was∼ 41%
of the peak, which can be attributed to the reduced conversion efficiency of the AOMs. This
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reduction does not affect the calculated vibration amplitude because it is determined by the ratio
between RI and RN , but it implies that the sensitivity to some extent is reduced. Measurements
were performed above the frequency limits of the AOMs, indicating that the actual overlap
between the configurations in Table 2 can be stretched further than the table states. A potential
improvement can be to reflect the beam out of the lens L3 in Fig. 1 back towards the AOMs.
The light would then retrace itself back and double the total frequency shift, and the beams
would recombine on the PBS and could interfere on eg. a 45◦ polarizer. As the combined
frequency shift would double, so would the frequency range of all the configurations in Table 2.
Alternatively the setup could be based on a fixed frequency shift in the reference beam and
instead a variable ∆F in Eqs. (6) and (7). That would allow a simpler AOM configuration
at the cost of losing the inherent resilience against frequency dependent RF components in
the absolute amplitude calculations. Calibration of such frequency dependence is possible, but
at least calibration of the photodiode, requires advanced equipment and the calibration might
be invalidated by simple modifications such as cable replacements. Another advantage of the
variable frequency shift is that it allows measurements at frequencies that are approximately
twice as large as the maximum frequency in the electrical setup in Fig. 2.

6. Conclusion

The heterodyne interferometer has proven a viable tool for characterizing detailed properties
of ultrasonic transducer arrays. A noise floor of 7.1fm/Hz1/2 was demonstrated where the
measurement bandwidth is the inverse of all time needed for filter settling and signal sam-
pling. The most significant noise sources are believed to be shot noise and noise generated
by three of the signal generators and injected into the signal path by the AOMs and one of
the mixers. The sensitivity was achieved by optimizing the signal sampling and processing,
and by increasing the efficiency of the AOMs by focusing the input light. The latter caused
the most significant improvement and simultaneously made it easier to maintain interferometer
alignment while scanning the optical frequency shift. This was demonstrated by measuring the
frequency response of a transducer in a CMUT array. The measurements revealed the presence
of two strongly excited higher order vibration modes at 68.80 and 103.55MHz. By swapping or
rotating one of the AOMs, the interferometer is able to measure vibrations up to 1.3GHz. The
interferometer has also proved to be a great tool for quality control in the pre-manufacturing
phase by revealing faulty adhesion between the substrate and the top plate in the center of a
CMUT cell.

Appendix A. Signal processing

A.1. Introduction

This appendix describes the details of the signal processing steps used to estimate the vibration
amplitude. Understanding and modeling this process accurately is important to understand the
noise sensitivity of the setup and to optimize signal acquisition. First the signal flow is modeled
to find an expression for its equivalent noise bandwidth, ENBW . This is used to optimize lock-
in amplifier (LIA) settings and measurement procedures for minimizing ENBW for a given
measurement bandwidth, MBW . The model is specific for the heterodyne interferometer pre-
sented in this paper, but most of the derivations are general to systems that acquire signals using
LIAs.

A.2. Signal flow

The LIAs used in the setups are Stanford Research System model SR830. These are dual LIAs
meaning they have two outputs driven by individual mixers that operate in quadrature. The
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complex amplitude of the input, with phase relative to the reference frequency, is found using
the two outputs as real and imaginary parts. Since the mixers inside the LIAs are digital, they
do not suffer from typical analog mixer limitations such as DC offset and nonlinear behavior.
A block diagram of the signal processing following the mixers in the LIAs is shown in Fig. 4.
Note that all the signals in Fig. 4 are complex where the real and imaginary parts originate from
the two mixers that operate in quadrature. The signals between the different blocks are denoted
by a lower case x with appropriate indices. Upper case X with the same indices will, in the
following sections, be used to denote the Fourier transform of the same signals. The Fourier
transform of the digital signals is based on Fourier transform of discrete time signals as defined
in [14], but scaled such that the level matches the time continuous Fourier transform of the
signal before sampling. The physical frequency F with unit cycles per second is used instead
of the normalized frequency f [14] with unit cycles per sample. The resulting definition of the
Fourier transform of a sampled signal x(Tsn) where Fs = 1/Ts is the sampling frequency is

X(F) =
1
Fs

∞

∑
n=−∞

x(Tsn)e−i2πn F
Fs (13)

where n is the sample number. After down converting the inputs at the frequency FLIA to DC
by the LIA mixers, the LIAs low pass filter the result. The filters, which are the first blocks in
Fig. 4, remove the mirror frequency at 2FLIA and also much of the noise. Our LIAs can have
up to four cascaded filters with a time constant τ . The resulting filter transfer function [15]
becomes

HLIA(F) =
XI f (F)

XIm(F)
=

XN f (F)

XNm(F)
=

(
1

1+ i2πFτ

)p

(14)

where p is the number of cascaded filters. Equation (14) has the form of a continuous time filter
transfer function. It is used although the filters actually are time discrete. The error caused by
this approximation is insignificant because the interesting part of the frequency spectrum is well
below half the internal sampling frequency used in the LIAs which is 256kHz. After filtering
the signals are down sampled before being sent to the computer. The down sampling step can,
for the same reason, be regarded as a regular sampling step. The resulting down sampled signal,
xIs(Tsn), is the output of the corresponding LIA and has the spectrum [14]

XIs(F) =
∞

∑
l=−∞

XI f (F−Fsl). (15)

A similar expression can be made for the spectrum of the output of the other LIA. As illustrated
in Fig. 4, the ratio between the samples of the two complex signals is determined after the
signals are transferred to the computer. This is part of the vibration amplitude calculation in Eq.
(5). The ratio is independent of phase fluctuations due to changes in the optical path length and
to level fluctuations caused by variations in laser intensity and object reflectivity. This is shown
and discussed in more detail in [5]. The exact treatment of the statistical properties of a ratio
between random variables is very complicated. Since the RN-signal will in this case, be much
stronger than both the RI-signal and the noise, it will be treated as a constant in the statistical
calculations. The result will therefore be a scaled version of the RI-signal.

The two blocks following the ratio block in Fig. 4 model the averaging of a specific number
of samples. The result is used to calculate the vibration amplitude in the last block of the figure.
Accurate modeling of the averaging process is achieved by regarding it as a finite impulse
response (FIR) filter [14] followed by a down sampling that only leaves one sample for the
averaging period. The filter is formed by uniformly weighting a finite number of consecutive
samples and weighting the rest by zero resulting in a rectangular impulse response. For an
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averaging period Ta the number of averaged samples is Ma = TaFs and the filter transfer function
Havg(F) of the averaging filter becomes

Havg(F) =
Xsavg(F)

Xr(F)
=

1
Ma

sin
(

πMa
F
Fs

)
sin
(

π
F
Fs

) e−iπ(Ma−1) F
Fs . (16)

The down sampling block removes all but one sample per Ma original samples. With Fs = 1/Ts
still being the sampling frequency before the down sampling, the resulting spectrum becomes

Xavg(F) =
Ma−1

∑
l=0

Xsavg(F−
Fs

Ma
l). (17)

Combining all the blocks in Fig. 4 leads to the expression for the measured vibration amplitude
spectrum

A(F) =
λ

2πX∗N f (0)

[
Ma−1

∑
l=0

Havg(F−
Fs

Ma
l)

∞

∑
k=−∞

XIm(F−
Fs

Ma
l−Fsk)HLIA(F−

Fs

Ma
l−Fsk)

]∗
.

(18)
If xIm(t) is constant and noise free, XIm(F) has all its power at F = 0 and Eq. (18) becomes Eq.
(5). This relies on xIm(t) and xNm(t) having equal scaling to RI and RN , respectively.

A.3. Equivalent noise bandwidth

The ENBW of the system is determined by the filters HLIA and Havg as well as the sampling
frequency Fs. In the limit where the actual vibration amplitude is zero, the measured value is
determined by noise. Using Eq. (18) and assuming that the noise at the input of the RI-branch in
Fig. 4 has power spectral density [14] NIm, then the power spectral density of the measurement,
Na(F), becomes

Na(F) = NIm

∣∣∣∣ λ

2πXN f (0)

∣∣∣∣2
[

Ma−1

∑
l=0

∣∣∣∣Havg(F−
Fs

Ma
l)
∣∣∣∣2 ∞

∑
k=−∞

∣∣∣∣HLIA(F−
Fs

Ma
l−Fsk)

∣∣∣∣2
]
. (19)

The bracketed factor can for such noise be regarded as an effective filter. The ENBW is the
width of a rectangular filter that results in the same total noise power at the output as the
effective filter in Eq. (19). Referred to the photodiode current, the ENBW is twice as large
because the mixers in Fig. 2 down convert the noise at both ±FLIA frequency offset from the
local oscillators to FLIA. The resulting ENBW therefore becomes

ENBW = 2

Fs
2∫

F=− Fs
2

∣∣Havg(F)
∣∣2 ∞

∑
k=−∞

|HLIA(F−Fsk)|2 dF. (20)

Note that the integration is performed over both negative and positive frequencies despite that
noise equations like Eq. (8) are scaled for single sided integration. This is because the complex
mixing process in the LIAs shift the signal and noise power around F =+FLIA down to F = 0.
The negative side therefore corresponds to positive frequencies just below +FLIA in the LIA
input signal, and should therefore be included in the integral.

#191049 - $15.00 USD Received 23 May 2013; revised 27 Jun 2013; accepted 27 Jun 2013; published 16 Aug 2013
(C) 2013 OSA 26 August 2013 | Vol. 21,  No. 17 | DOI:10.1364/OE.21.019900 | OPTICS EXPRESS  19918



A.4. Lock-in amplifier parameters

The expression in Eq. (20) can be used to find a suitable filter time constant τ and sampling
frequency Fs for the lock-in amplifiers. For an averaging time Ta significantly longer than the
time constant τ , Eq. (20) can be approximated to

ENBW ≈ 2
∞

∑
k=−∞

|HLIA(Fsk)|2
Fs
2∫

F=− Fs
2

∣∣Havg(F)
∣∣2 dF =

2
Ta

∞

∑
k=−∞

|HLIA(Fsk)|2 . (21)

It is assumed that |Havg(F)| has a sharp peak at F = 0, and that it is otherwise small. The
approximation is true in the limits where |Havg(F)| approaches a dirac delta function or where
the series approaches a constant in the integral. The zeroth term in the series in Eq. (21) must
be 1 to not affect the measurement, but all other terms should be as small as possible. In the
limit where these approach zero and if q > 1 in Eq. (14) only the k =±1 terms are sufficiently
large to notably contribute to the total series, leading to the requirement that

2|HLIA(Fs)|2 << 1. (22)

This means that the HLIA(Fs)-filter must significantly attenuate the signal and noise at F = Fs,
which is a less restrictive requirement than the ordinary sampling theorem [14] stating that all
the signal and noise power for F > Fs/2 must be eliminated. The reason for this difference is
that a slight violation of the sampling theorem will only affect frequencies that subsequently are
attenuated by Havg. Figure 13 compares the exact ENBW from Eq. (20) to the approximations
which Eq. (22) is based on, and indicates that they are acceptable for the purpose of tuning the
LIA-settings when Eq. (22) is fulfilled.
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Fig. 13. Plots of the ENBW as a function of Fs for τ equal to 1ms and 3ms, Ta = 1s, and
q = 3. The solid lines are numerical calculations of Eq. (20), and the dashed lines are from
the approximation in Eq. (21) using only the terms k =−1,0,1 in the series.

A.5. Measurement time and MBW

This section looks at the time needed by the signal processing system to perform one measure-
ment, and compares the two filters HLIA(F) and Havg(F) to determine which is the most ef-
ficient at reducing the total ENBW for a given measurement time. Finally a relation between
the system ENBW and the MBW is established. The effects of sampling will be ignored which
is reasonable when Eq. (22) is sufficiently satisfied. The measurement time is here defined as
the time needed after complete settling of the mechanical positioning system and the stimuli
circuits, until the measurement is complete. It is therefore determined by the time response of
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the filters HLIA(F) and Havg(F) as it includes both the actual averaging time Ta in addition to
the necessary filter settling time, Tw, needed before the averaging can start.

The time domain impulse response from HLIA(F) is

hLIA(t) =
t p−1e

−t
τ

τ p(p−1)!
u(t) (23)

where t is time in seconds and u(t) is the unit step function. Here Tw is defined by demanding
that the input signal before the waiting time starts, is damped by a factor of 1000. This is
equivalent to satisfying the equation

∞∫
t=Tw

hLIA(t)dt =
1

1000
(24)

The solution for Tw to this equation and the corresponding ENBW for the HLIA(F)-filter alone
are stated in Table 3 for different values of p. The ENBW is found by setting |Havg(F)| = 1
in Eq. (20). The table also includes a figure of merit namely the product Tw×ENBW , which
indicates how effective the filter is at reducing ENBW per unit of time. By replacing the series

Table 3. Solutions to Eq. (24), the ENBW of HLIA(F) alone, and the figure of merit Tw×
ENBW

p Tw ENBW Tw×ENBW
1 6.9τ 1/τ 6.9
2 9.2τ 1/(2τ) 4.6
3 11.2τ 3/(8τ) 4.2
4 13.1τ 5/(16τ) 4.1

in Eq. (20) with 1, the ENBW of the averaging filter can be found to be 2/Ta. Since the total
waiting time is Ta, the equivalent figure of merit becomes 2. This means that the averaging
filter is more efficient at limiting the ENBW for a given measurement time. It is therefore
beneficial that the averaging filter dominates the ENBW -limiting system, and that the filter
time constant τ is as small as possible without violating Eq. (22). The total measurement time
Tm is approximately the sum of the contributions of the two filters

Tm = Ta +Tw (25)

and the measurement bandwidth becomes

MBW =
1

Ta +Tw
≈ 1

2
ENBW. (26)

The approximation is valid when the averaging filter is dominating (Ta >> Tw) and Eq. (22) is
sufficiently satisfied. Rearranging the exact version of Eq. (26) leads to an expression for the
required averaging time Ta to achieve a specific MBW

Ta =
1

MBW
−Tw. (27)

For the chosen τ = 3ms and q = 3, Tw becomes 33.6ms. If an MBW of 1Hz is desired, the
required averaging time Ta becomes 0.9664s, and ENBW becomes 2.07Hz according to Eq.
(20). The approximation in Eq. (26) would instead result in Ta = 1s and ENBW = 2Hz.
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