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Aquaculture production of finfish has seen rapid growth in production volume and eco-

nomic yield over the last decades, and is today a key provider of seafood. As the scale of

production increases, so does the likelihood that the industry will face emerging biological,

economic and social challenges that may influence the ability to maintain ethically sound,

productive and environmentally friendly production of fish. It is therefore important that

the industry aspires to monitor and control the effects of these challenges to avoid also

upscaling potential problems when upscaling production. We introduce the Precision Fish

Farming (PFF) concept whose aim is to apply control-engineering principles to fish pro-

duction, thereby improving the farmer's ability to monitor, control and document biolog-

ical processes in fish farms. By adapting several core principles from Precision Livestock

Farming (PLF), and accounting for the boundary conditions and possibilities that are

particular to farming operations in the aquatic environment, PFF will contribute to moving

commercial aquaculture from the traditional experience-based to a knowledge-based

production regime. This can only be achieved through increased use of emerging tech-

nologies and automated systems. We have also reviewed existing technological solutions

that could represent important components in future PFF applications. To illustrate the

potential of such applications, we have defined four case studies aimed at solving specific

challenges related to biomass monitoring, control of feed delivery, parasite monitoring and

management of crowding operations.

© 2017 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction: a technological journey from

terrestrial animal production to intensive fish
farming

1.1. Modern intensive fish farming

Modern intensive fish aquaculture comprises all life stages of

the fish from brood-stock/eggs to fully-grown adults. The

hatchery phase is typically conducted in indoor tanks, where

one is able to control the environmental conditions and other

external factors affecting the fish. While some species are

raised in tanks all the way to marketable size, most industri-

ally farmed finfish species are transferred to outdoor ponds or

sea-cages for the final ongrowing phase. This is because the

volume of water required by a fish depends strongly on its

size, and a gradual scaling of the production unit volume as

the fish grow is easier to facilitate in the sea or ponds than in

indoor tanks. Sea-based fish farming also exposes fish to

natural fluctuations in important features of the production

environment (e.g. water flow, temperature and light in-

tensity). Although this limits the farmer's ability to control the

production conditions, and increases the chance that

stressors such as pollutants, pathogens and parasites are

introduced into the population, the simplicity and cost-

effectiveness of open systems makes this approach more

competitive today (Iversen, Andreassen, Hermansen, Larsen,

& Terjesen, 2013).

Currently, Atlantic salmon (Salmo salar L.) are the most

significant farmed sea-based finfish species with more than

2.3 Mt produced globally in 2014 (FAO, 2016). In Norwegian

salmon production, ongrowth is conducted in flexible sea-

cages located in sheltered coastal areas, or at locations more

exposed to environmental forces (Bjelland et al., 2015, pp.

1e10). As with many other industries, salmon farming has

sought to reap the benefits of economies of scale, meaning

that both farm size and the size of individual cages has

increased with the intent of producing more fish per

employee, leading to increased profitability (Hallam, 1991). As

a result, production cages at current Norwegian salmon farms

often have a circumference of up to 157m, contain a volume of

approximately 40,000 m3, and hold up to 200,000 individual

fish. Considering that a typical fish farm consists of 8e16

separate cages, this means that each farming crew (typically

5e10 people in total) may be responsible for several million

animals, amounting to a biomass of up to 15,000 t. Sea-based

production of salmon is therefore a very large-scale intensive

form of seafood production.

Much of the human historical knowledge on animal hus-

bandry has been built on a direct relationship between farmer

and animal. However, such relationships are not possible to

establishwith a population consisting ofmillions of individual

animals living under water, making it almost impossible to

evaluate the animals and collect information on the status of

the population through direct observation. This challenge will

be further amplified by the present trend towards moving

aquaculture operations to more environmentally exposed

areas, which will render the farms less accessible to farmers

(Bjelland et al., 2015, pp. 1e10). Due to these factors, a regime

based on direct observation alone may be insufficient to
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acquire the levels of knowledge, monitoring and control

required to tackle the challenges of modern fish farming.

Instead, what is required for modern large-scale fish farming

are technological tools that enable remote monitoring of large

populations of fish in a manner that yields data that can be

used to adjust and modify day-to-day operations to optimise

the growth and survival of the fish. The idea of applying such

principles to commercial fish production may be traced back

to the original thoughts and philosophies of Jens Glad Balchen

(Balchen, 1979).

1.2. Precision Livestock Farming

Livestock production is the second largest supplier of food for

human consumption behind vegetable/cereal agriculture.

Although there have been several initiatives concerning auto-

mated sensing and detection of farm animal responses (e.g.

Van der Stuyft, Schofield, Randall, Wambacq, & Goedseels,

1991; Maatje, De Mol, & Rossing, 1997), and mathematical

modelling of animal behavioural and physiological dynamics

(e.g. Bastianelli& Sauvant, 1997; Kristensen&Kristensen, 1998)

in the 80's and 90's, the first conceptual framework of Precision

Livestock Farming (PLF) was not established until the turn of

the millennium by Berckmans (2004). While the general prin-

ciple of using technology and automation to improve precision

in industrial production is directly transferrable from the pro-

cess and manufacturing industries to PLF, the transition of

focus from inert products to live animals introduces the

following additional complications that need to be taken into

account when developing PLF methods:

� Observation and monitoring is more challenging, as ani-

mals at times exhibit complex behaviour that may be

difficult to observe and interpret.

� Animals may move and are not always willing or able to

cooperate with the farmer, making the implementation of

automated actions more difficult.

� In addition to covering the basal requirements for survival,

animal needs are also linked with their ability to exhibit

certain behaviours, and maintain a certain perceived

quality of life, or welfare.

Berckmans (2004) stated three distinct conditions that a

systemwould need to fulfil if it was to achieve sufficient levels

of monitoring and control to be considered a PLF system:

1) Animal variables (i.e. parameters related to the behavioural

or physiological state of the animal) need to be measured

continuously with cost-effective robust sensor technology,

2) a reliable model for predicting (expectation of) how Animal

variables will dynamically vary in response to external

factors at any moment must be available, and

3) predictions and on-linemeasurements are integrated in an

analysing algorithm for automatic monitoring and/or

control.

PLF methods are often defined using a common terminol-

ogy denoting the different components in a PLF-system

(Table 1).
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Technological advances over the last decades have enabled

the development of several PLFmethods and application areas,

including the use of modern sensor technologies to monitor

animal variables (e.g. Darr & Epperson, 2009; Tebot et al., 2009),

using methods from information technology and modelling to

synthesise and combine different types of data (e.g. Milner-

Gulland, Kerven, Behnke, Wright, & Smailov, 2006; Terrasson,

Llaria, Marra, & Voaden, 2016), and the application of control

theory to increase the level of autonomy (see Johnson et al.,

2011 on different autonomy levels) of the production process

(Frost et al., 2003).Whilemost of these applications have arisen

from research activities, the long-term goal of PLF is to provide

industrial methods and tools that contribute to improving

animal health and welfare while increasing productivity, yield

and environmental sustainability. This is generally achieved

through the combination of hardware and intelligent software

(Berckmans, 2014). Examples of successful PLF applications in

the livestock production industry include the automated

monitoring of pig health through cough analysis with micro-

phones (Berckmans, Hemeryck, Berckmans, Vranken, & van

Waterschoot, 2015), the utilisation of automated milking ro-

bots on cows (John et al., 2016), and the use of computer vision

methods to automatically monitor real time positions of ani-

mals (Sloth & Frederiksen, 2015).

Aquaculture fish production faces many of the same chal-

lenges as modern terrestrial meat production, and some as-

pects of PLF can therefore be adapted directly to intensive fish

farming. However, aquaculture also faces additional chal-

lenges that add to the complexity of the farming operations:

� The feed consumed by the fish in fish farms is exclusively

provided by the farmer, leading to a strong dependency on

farming management.

� Feeding and most other operations are enacted on the

entire cage population, as opposed to on individual or

small group levels.

� The number of individual animals in fish farms (millions)

exceeds what is common in most terrestrial livestock

farms.

� The fish live in a complex 3D environment and all farming

operations associated with the fish are at least partly
Table 1 e Some of the main terms used to define PLF methods a

Term

Complex, Individual and Time-variant (CIT) system A com

living

Bio-response The bi

Animal variable Any p

anima

acquir

Feature variable Variab

that d

Berckm

Target variable Variab

object

are us

Gold standard Reliab

Target

expen

PLF m
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conducted in the subsurface environment, which is

generally more challenging than terrestrial farming.

� The exposure of the fish to external stressors such as

pathogens/diseases (McVicar, 1987), parasites (Grimnes &

Jakobsen, 1996), chemical pollutants (e.g. Brodin, Fick,

Jonssom, & Klaminder, 2013) and microplastics (Wright,

Thompson, & Galloway, 2013) is largely determined by

the ambient environmental conditions and outside of

human control.

1.3. Scope of this study

We have developed the Precision Fish Farming (PFF) concept

that is based on PLF and hence accommodates the features

therein, while also addressing the additional challenges of

farming animals in water. In this article, we will present the

PFF framework by first defining the boundary conditions and

possibilities of precision farming in the aquatic environment,

then defining the PFF concept in brief terms, and then going

through the status of PFF today, within the framework of

research and industry. Following this, we will address the

potential industrial impacts of PFF exemplified by four specific

case studies, before we conclude and recommend future

research directions we deem important for the continued

development of the PFF concept. We will primarily use ex-

amples related to Atlantic salmon farming, because this is a

segment of industrial fish farming that has a high technology

level, is under rapid development, and hence will be very

receptive with respect to PFF-methods. However, we believe

that the applications of PFF we suggest will be transferrable to

other aquatic farmed species.
2. Adapting precision farming to the aquatic
environment: boundary conditions and
possibilities

Over the millennia that terrestrial livestock farming has been

a part of human culture, the interaction between man and

animal has produced a vast body of veterinary, ethological

and physiological knowledge on farm animals. Through such
nd that hence form the foundation of the PFF terminology.

Explanation

plex, individually different and time-variant system. Applies to all

organisms, including animals (Berckmans, 2004; 2013).

ological response of an animal when exposed to external stimuli.

arameter related to the behavioural or physiological state of the

l, e.g. weight, activity, feed intake (Berckmans, 2004). Typically

ed in the field.

le that may be calculated based on measured Animal variables and

escribes the bio-response of interest (Berckmans, 2013; Norton &

ans, 2017).

le that is derived from Feature variables and that relates to the final

ive of the PLF method (Norton & Berckmans, 2017). Target variables

ed as foundations for making management decisions.

le and/or generally accepted method of measuring or observing

variables (Norton & Berckmans, 2017). Gold standards may be

sive, complex and difficult to assess, but are necessary to verify that a

ethod provides reliable outputs.
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knowledge, humans have been able to identify how observ-

able traits and bio-responses exhibited by animals may be

linked with management outcomes such as growth (e.g.

Tedeschi, Fox, & Guiroy, 2004), health/survival (e.g.

Berckmans et al., 2015) and milk production (e.g. John et al.,

2016). This process is analogous to the system identification

methods used in control engineering to determine relation-

ships between system inputs and system outputs when

lacking a complete mechanistic description of key sub-

systems (�Astr€om & Eykhoff, 1971). Establishing an under-

standing of such relationships is a prerequisite for being able

to derive the sequence from an observed bio-response,

through Animal and Feature variables, to Target variables

that lies at the core of the PLF concept. Moreover, a thorough

understanding of the system dynamics is also key in identi-

fying possible Gold Standards to validate such methods.

Direct man and animal interaction is more difficult in fish

farming than in its terrestrial counterpart, and the population

sizes in fish aquaculture make interactions with specific in-

dividuals very difficult. Furthermore, intensive cage-based

fish farming has a comparatively shorter industrial history

(decades) than terrestrial livestock production (millennia). As

a result, knowledge about the bioprocesses occurring in in-

dustrial fish farming is very limited compared with terrestrial

farming; this makes proper system identification a more

challenging task. Moreover, it means that the identification of

both relationships between bio-responses and Target vari-

ables and proper Gold Standards will often be more difficult

and likely to be based on aweaker foundation in a fish farming

situation.

In addition to influencing the knowledge foundation for

deriving PFF methods, the aforementioned factors also

complicate the operational aspects of implementing such

methods. For instance, it is generally challenging to continu-

ously monitor animals and achieve sufficient information for

PFF applications in the aquatic environment. While such in-

formation may be obtained using direct observation or low-

end technological equipment on land, more advanced tech-

nical solutions are required to achieve a similar knowledge

basis in fish farms, where one needs to cope with the unfor-

giving conditions of the subsurface environment at increas-

ingly exposed sites, and the large number of animals at each

farm. Moreover, the establishment of Gold Standards may be

complicated by the difficulties in directly interacting with in-

dividuals. Many Gold Standards used in terrestrial farming

require veterinarians or farmers to directly observe and/or

interact with the animals, an ability that may be rendered

near impossible in commercial fish farms. In spite of all these

challenges, the technologies used today by farmers to observe

the fish represent good foundations for developing future PFF

applications, and often entail already established technical

infrastructures for communication and power supply.

Furthermore, since farmers are already accustomed to

employing technical solutions in their everyday work tasks,

the introduction of new technology based upon PFF methods

will not represent a completely new concept.

As fish farms increase in size and complexity, the size and

designs of fish cages evolve, and new location types are taken

into use (e.g. Bjelland et al., 2015, pp. 1e10), more sophisti-

cated technological solutions will be required to provide
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sufficient knowledge and information to monitor and/or

control the biological production process. Furthermore, a side

effect of the increases in scale occurring within the industry is

that risks associated with day-to-day operations are also

increasing (Kalogerakis et al., 2015). Larger structures sustain

larger loads, making handling and manipulation of structural

components such as the net or sinker tubes more precarious

activities (Lader, Dempster, Fredheim, & Jensen, 2008). In the

event of component breakdown during such operations, the

forces released in modern fish farms are more likely to cause

serious injuries than was the case decades ago. Moreover,

with larger populations in each cage, potential negative con-

sequences of suboptimal animal handling such as escapes

(Jensen, Dempster, Thorstad, Uglem, & Fredheim, 2009) and

impaired welfare (Pettersen et al., 2014) will also increase.

Using technology to automate or otherwise increase the se-

curity of such operations could thus lead to vast improve-

ments in riskmitigation around commercial fish farms, which

might be one of themost important outcomes of using the PFF

approach.

In addition, the Norwegian government presently has an

arrangement where salmon production companies are awar-

ded new fish production permits (so-called development

permits) if they develop new concepts for sustainable pro-

duction of salmon. How the fish will respond to and grow in

new and untested production concepts is largely unknown.

Furthermore, many of these concepts include larger fish

populations being kept in each production unit (i.e. cages or

tanks). Although such concepts also include increasing the

volumes of the production units accordingly to achieve com-

parable stocking densities to those commonly used today, the

surface area of the cage facing the upstream current does not

scale with the same factor. For example, if the population and

correspondingly the production unit volume is upscaled by a

factor of five, the upstream facing cage area will scale by a

factor of less than three. As a consequence, the water ex-

change rate does not scale properlywith the population (Lader

et al., 2008). Thismay lead to hypoxic conditions in the cage as

the oxygen consumption of the fish may then exceed the ox-

ygen replenishment through incoming water. Poor dissolved

oxygen conditions reduce the appetite and subsequent growth

rates of fish (Remen, Sievers, Torgersen, & Oppedal, 2016).

This development emphasises the need for better methods to

manage and monitor the populations in commercial fish

production systems. We thus argue that the potential indus-

trial impact of PFF may equal or even exceed that of PLF.
3. Precision Fish Farming (PFF)

3.1. Precision Fish Farming and the different elements of
the fish farming process

The overarching aims of Precision Fish Farming (PFF) are to: 1)

improve accuracy, precision and repeatability in farming op-

erations; 2) facilitate more autonomous and continuous

biomass/animal monitoring; 3) provide more reliable decision

support and; 4) reduce dependencies on manual labour and

subjective assessments, and thus improve staff safety.

Through these means, PFF will improve animal health and
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welfare while increasing the productivity, yield and environ-

mental sustainability in commercial intensive aquaculture.

To help in defining PFF, it is useful to envision fish farming as

several cyclical operational processes realised in four phases

where bio-responses in the cage are observed (Observe phase)

and interpreted (Interpret phase), resulting in a foundation for

making decisions (Decide phase) on which actions to enforce

(Act phase) that in turn elicit a bio-response in the fish (Fig. 1).

Similar cyclic concepts have been used to describe processes

and products in other manufacturing industries, one of the

most notable examples of which is the Plan-Do-Check-Act

(PDCA) philosophy (Deming & Edwards, 1982) that has been

popular within e.g. the automotive industry (Rother, 2010).

This approach also resembles the OODA (Observe, Orient,

Decide, Act) cycle, which is a concept for decision making in

military strategy (Boyd John, 1987).

Today, most tasks pertaining to the different phases are

conductedmanually (i.e. close to the centre in Fig. 1). First, the

farmer observes the fish via direct visual observation or with

data acquisition tools such as cameras, the outcome of which

is qualitative or quantitative information on the bio-responses

of the fish. The farmer then uses primarily subjective experi-

ence to interpret this information, yielding a perception of the

current state and condition of the fish. These interpretations

are then used as a foundation for making decisions concern-

ing farming operations and management, which are then put

into action by manually induced actions on the cage. Such

decisions may be made based on the estimated present states

or expected future states of the system, representing manual
Fig. 1 e A cyclical representation of PFF where operational

processes are considered to consist of four phases:

Observe, Interpret, Decide and Act. The inner cycle

represents the present state-of-the-art in industry, with

manual actions and monitoring, and experience-based

interpretation and decision-making. The outer cycle

illustrates how the introduction of PFF may influence the

different phases of the cycle. Figure credits: Andreas

Myskja Lien, SINTEF Ocean.
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versions of the feedback and feed-forward principles in con-

trol engineering respectively.

Methods and tools for fish farming that apply technological

solutions and/or automation principles to one, several or all

the different phases of farming operations may be considered

PFF approaches. The ultimate result of applying PFF to a

particular operationwill therefore be that the elements in that

operation belonging to the different phases of fish farming

operations are shifted from an experience-based to a

knowledge-based regime (i.e. by moving from the centre to-

wards the outer edge in Fig. 1).

3.2. Status of Precision Fish Farming in present industry
and research

Although the PFF concept has not previously been defined,

many technological research efforts and equipment in-

novations for the fish aquaculture industry can be considered

tools or components for developing PFFmethods, and in a few

cases are already PFF methods in their own right. Here, we

provide an overview of the present status in this area,

covering both industrial applications and research activities.

Most relevant methods or concepts included here address a

single phase in fish farming operations (Fig. 1), hence a status

will be given separately for each phase.

3.2.1. Observe: Animal variables describing bio-responses
The general inability to use direct observation to make

representative assessments of individual and population

states under water in fish farms means that fish farmers

already depend on using technological solutions to monitor

their animals. Submerged cameras are the most common

tools found on fish farms today, and are used to observe the

fish during production, with operators manually, and subjec-

tively, analysing behaviour. Camera systems are useful plat-

forms for automated fish monitoring by applying computer

vision algorithms to the video stream. The possibilities within

computer vision techniques are expanding rapidly, both due

to the development of enabling hardware such as camera and

computer technology, and to the increased application of

these technologies within the consumer electronics market.

Computer vision methods can quantify several different An-

imal variables in a fish farm setting, including clustering and

movement (e.g. Eguiraun, L�opez-de-Ipi~na, & Martinez, 2014),

skin status (e.g. Wallat, Luzuriaga, Balaban, & Chapman,

2002), fish size (e.g. Hao, Yu, & Li, 2016), sea-lice infestation

levels (e.g. Tillett, Bull,& Lines, 1999) and behavioural changes

due to exposure to chemicals (e.g. Eguiraun, & Martinez,

2015b; Eguiraun, Lopez de Ipi~na, & Martinez, 2016). In addi-

tion, computer vision methods could monitor important

properties of the physical environment, such as feed pellet

quantities (Skøien, Alver, & Alfredsen, 2014), and behavioural

expressions observable above the water line such as surface

activity (Jovanovi�c, Risojevi�c, Babi�c, Svendsen, & Stahl, 2016).

While the variation in technologies used to observe live fish

in industry is limited, the methodological diversity within

research is large, as researchers are constantly looking into

new methods for collecting scientific data. In addition to

cameras, active hydroacoustic devices are the most common

technological tools used to study fish in aquaculture research.
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Themost frequent application of this technology has been the

use of echo sounders to obtain echograms describing the

vertical fish distribution and schooling density in the cage

(Oppedal, Dempster, & Stien, 2011), which are Animal vari-

ables that may be used to quantify the bio-response of fish to

some treatment (e.g. Bui, Oppedal, Korsøen, Sonny, &

Dempster, 2013; Johansson et al., 2006; Oppedal, Juell, &

Johansson, 2007). While conventional echo sounders are

limited to producing echograms, more advanced hydro-

acoustic devices are already in use within other marine in-

dustry segments, and could obtain additional Animal

variables from caged fish populations. For instance, split-

beam sonars can estimate swimming speeds and directions

of individual fish within their sonar beam (e.g. Arrhenius,

Benneheij, Rudstam, & Boisclair, 2000; Huse & Ona, 1996;

Knudsen, Fosseidengen, Oppedal, Karlsen, & Ona, 2004),

while multibeam sonar systems can produce data on the 3D

distribution and movements of the fish (e.g. Melvin, 2016;

Tenningen, Macaulay, Rieucau, Pe~na, & Korneliussen, 2016).

In addition, sonar based systems may be used to assess indi-

vidual fish sizes, given that it is possible to establish a rela-

tionship between the target strength (TS) of the fish and its

mass or length (Knudsen et al., 2004; Soliveres et al., 2017).

Passive hydrophones have also been used to provide infor-

mation on Animal variables related to the behaviour of several

fish species including salmonids by recording the sounds

emitted or generated by the fish (Kasumyan, 2008; 2009).

Considering that hydroacoustic devices (unlike cameras) are

impervious to visibility conditions, this group of technologies

could provide a useful foundation for PFFmethods designed to

acquire behaviour-related Animal variables for farmed fish

populations.

Despite the considerable population sizes featured in

modern fish farming, indicators of individual fish behaviour

may prove equally important in fish farming as population or

group level Animal variables. Acoustic fish telemetry is a

method for remote sensingwhere individual fish are equipped

with electronic transmitters containing sensors that measure

some property in or near the fish, and that transmit raw or

post-processed data wirelessly to submerged stationary

receiver units using acoustic signals (i.e. sound waves). This

technology is widely used for wild fish research (e.g. Finstad,

Økland, Thorstad, Bjørn, & McKinley, 2005; Hedger et al.,

2011; Urke, Kristensen, Ulvund, & Alfredsen, 2013), but is

also seeing increased usage within aquaculture-related

research (e.g. Baras & Lagard�ere, 1995; Rillahan, Chambers,

Howell, & Watson, 2009). Animal variables observed using

this technology in a culture setting include individual depth

movements (e.g. Føre, Alfredsen, & Gronningsater, 2011; Føre,

Frank, Dempster, Alfredsen, & Høy, 2017), 3D-positions (e.g.

Rillahan et al., 2009; Ward, Føre, Howell, & Watson, 2012),

swimming activity levels (e.g. Kolarevic et al., 2016), muscle

activity levels (e.g. Cooke, Thorstad, & Hinch, 2004) and

respiration rates/feed intake (e.g. Alfredsen, Holand, Solvang-

Garten, & Uglem, 2007). The deployment of acoustic telemetry

systems requires handling of the fish that often includes

surgery, and hence has a certain risk of influencing the states

of the fish, and the bio-responses they exhibit. However, at

present, acoustic telemetry is the only viable technique for

obtaining continuous data series from individual fish in
Please cite this article in press as: Føre, M., et al., Precision fish far
Biosystems Engineering (2017), https://doi.org/10.1016/j.biosystemseng
commercial sea-cages, making this technology an attractive

candidate for future PFF methods. Furthermore, while other

methods for subsurface fish observation (e.g. cameras and

sonars) are largely limited to deriving behaviour-based Ani-

mal variables, acoustic telemetry may be used to monitor fish

physiology (e.g. heart rate, blood composition) since the

transmitters units are placed in or on the fish.

Farming operations at sea are subject to natural conditions

at the site, as fish kept in sea-cages are exposed to conditions

strongly influenced by the ambient environment (e.g.weather,

water currents, sea states, temperatures, oxygen saturation,

light levels and pollutants). Since many of these factors affect

the growth, development and welfare of fish, data on the local

ambient environment is important when selecting farming

sites for salmon production. Furthermore, farmers increas-

ingly want to monitor such conditions at their site also during

production, as this information may be used as a foundation

for making decisions concerning farm management, such as

avoiding net manipulations when currents are strong, or

reducing feeding when temperature decreases. Such data will

be useful auxiliary data for deriving PFFmethods, as it is often

necessary to view an observed Animal variable relative to

prevailing environmental conditions to derive desired Feature

variables. For instance, temperature and light strongly affect

the vertical movements of salmon (Johansson et al., 2006).

Evaluating the levels of these factors is critical when seeking

Feature variables that are based on depthmovements, such as

responses to feeding events (Føre et al., 2011).

Table 2 Summarises some of the most common sensors

and monitoring methods used to observe salmon in sea-cages

today, including both industrially applied systems and solu-

tions primarily used in research. Figure 2 illustrates how a

selection of these systems would be applied in a commercial

cage.

3.2.2. Interpret: Feature variables from animal variables
In the fish farming industry, the interpretation of animal ob-

servations is mainly conducted by individual farmers based

on personal experience. Although ongoing innovations aspire

to automate this process (e.g. systems for remote feeding

operations that aggregate and present relevant data from

different sources), the existing industrial foundation for

automated interpretation of Feature variables is less estab-

lished than it is for the acquisition of Animal variables.

However, this also means that the unreleased potential for

developing new PFF methods in this area is considerable.

As production from the cage-based fish farming industry

has increased, so has the extent of the research into obtaining

a better understanding of the processes occurring in farmed

populations. Aggregated knowledge on the different sub-

mechanisms and bioprocesses occurring in commercial sea-

cages is therefore rapidly expanding. However, before this

knowledge can be put to use for decision support on a cage

level, it needs to be structured to provide information relevant

for the processes occurring in the cage. Mathematical

modelling of systems dynamics is a tool commonly used for

such inference, structuring and aggregating knowledge by

synthesising information from different subsystems into a

complete system representation. A mathematical model of a

dynamic system can often predict how the system will
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Table 2 e Sensor systems and monitoring methods commonly used to observe Animal variables in aquaculture industry
and research, and some properties of these systems.

Sensor type Sensor
implementation

Animal variables Information level Sensing range

Sonar Single beam sonar Biomass depth distribution within beam Group 1 - 200 m

Split-beam sonar Biomass depth distribution

Movement dynamics (position, speed) within beam

Individual based group 1 - 200 m

Multibeam sonar Biomass depth distribution

Movement dynamics (position, speed) within entire

cage volume

Feed pellet detection

Group 1 - 200 m

Hydroacoustic

Telemetry

Individual fish tags E.g. depth, position, acceleration and spatial

orientation

Individual history 0 - 1000 m

Passive

hydroacoustic

sensing

Hydrophone Sound emitted from fish population, general

soundscape

Group 0 - 50 m

Camera Surface camera Surface activity (jumping/splashing) Group 0.5e30 m

Feeding camera

(submerged)

Sea-lice count

Skin characteristics (scratches, wounds)

Behavioural characteristics (e.g. systematic vs.

chaotic swimming patterns, normal vs. unexpected

behaviour)

Species identification

Individual based group 0.5e25 m

Stereo camera

(submerged)

Sea-lice count

Skin characteristics (scratches, wounds)

Behavioural characteristics (e.g. systematic vs.

chaotic swimming patterns, normal vs. unexpected

behaviour)

Species identification

Swimming speed and direction

Size estimation

Individual based group 0.5e25 m

Hyperspectral

imager

Skin spectral characteristics

Sea-lice detection and -count

Individual based group 0.5e25 m

Multispectral imager Detection of spectral signatures

Sea-lice count

Individual based group 0.5e25 m

Fig. 2 e Illustration of how four systems based on different monitoring principles could be deployed in a commercial cage to

observe the fish. While the surface camera (1), underwater stereo video camera (2) and sonar system (3) produce data on the

fish within a sub-volume in the cage (delimited by dashed lines for each system), the acoustic telemetry system (4) may

collect data on the individual fish carrying acoustic transmitters irrespective of their location in the cage.
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respond given a specific set of inputs, and may estimate fea-

tures of the system that are difficult or impossible to measure

directly. In aquaculture research, mathematical models exist

to estimate fish growth (e.g. Bar, Sigholt, Shearer, & Krogdahl,

2007; Dumas, France, & Bureau, 2010; Føre et al., 2016; Olsen &

Balchen, 1992) and behaviour (Føre, Dempster, Alfredsen,

Johansen, & Johansson, 2009). Such models are good candi-

dates as a foundation for PFF-methods aimed at interpreta-

tion, as they could predict or estimate properties of the fish

based on measured inputs. These inputs will often include

various types of auxiliary data (e.g. environmental measure-

ments, feed delivery and feeding schedules) required to drive

the model dynamics, but may also include measured Animal

variables that the model could then convert into Feature

variables more useful for decision support. For instance, a

recent study sought to estimate the economic yield of a pro-

duction operation by combining a model of sea bream growth

with temperature as input with simulations of sales plans and

strategies (Estruch, Mayer, Roig, & Jover, 2017). Another

example of such use ofmathematical models could be to use a

mathematical model to estimate Feature variables such as the

feeding activity of the fish, the distribution of waste material

in the water, or vertical fish swimming speeds based on Ani-

mal variables such as vertical distribution obtained with an

echo sounder as input. Mathematical models representing

elements of the environment in production units also exist,

covering subjects such as spatial and temporal feed distribu-

tion in sea-cages (Alver, Alfredsen,& Sigholt, 2004; Alver et al.,

2016). If provided with sufficiently good input data, such

models could estimate Feature variables not directly associ-

ated with the fish but rather with the production

environment.

The use of mathematical models to estimate unobserved

states in complex systems has a long history within control

engineering, and is realised by including the mathematical

model into an observer structure, either based on statistical

methods such as Kalman filtering (Brown & Hwang, 1997) or

by using non-linear observer methods (Fossen, 2002). Such

applications allow the combination of existing knowledge

(through mathematical models) with real-time data from

sensors to provide better estimates than it is possible to obtain

with either sensors or models alone. Estimation techniques

are useful for a wide range of industrial applications,

including vessel guidance and navigation (e.g. Fossen& Perez,

2009), oil and gas production (e.g. Geir, Mannseth, & Vefring,

2002) and the automotive industry (e.g. Wenzel, Burnham,

Blundell, & Williams, 2007), and are well-established

methods in all of these fields. Since caged fish production is

a predominantly biological process, it is more difficult to

measure the different states and processes directly than in

more technically-oriented industries. By this reasoning, it is

likely that extensive use of estimators based onmathematical

models will be necessary components when deriving the PFF

methods of the future, as precision farming will require a

better foundation for information than is available through

present monitoring methods.

3.2.3. Decide: Target variables from feature variables
All important decisions in present day fish aquaculture are

made by humans based on the interpretation of observations
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of the fish and other cage processes based on personal expe-

rience, and the use of protocols, legislation and recommen-

dations on farm management. This will probably still be the

case in the near future for fish farming operations, as making

the “right” decision is a complex task that is difficult to assign

to computer-based systems without running a risk of un-

foreseen and potentially undesirable side effects (e.g. sub-

optimal feeding due to limited data on fish responses). How-

ever, when fish farming operations are moved to more

exposed and remote areas, limited human accesswill increase

the need for autonomy in central tasks such as feeding

(Bjelland et al., 2015, pp. 1e10). Limited human presence also

means that decision-making processes need to be at least

partly automated. Although there exist no systems for auto-

mated decision making or decision support that are operative

within the aquaculture industry, advances in artificial intel-

ligence and information technology have led to the develop-

ment of Decision Support Systems (DSS). A DSS is a computer

tool that for a given situation or problem combines inputs (e.g.

from sensors or mathematical models) and historical user

experiences (i.e. from similar situations or problems previ-

ously experienced) into compound output values. These

output values are used by the DSS as a foundation onwhich to

suggest an appropriate decision, and are in fact Target vari-

ables within the PLF/PFF terminology. DSS methods are used

in several industries, including oil and gas (e.g. Gundersen,

Sørmo, Aamodt, & Skalle, 2012), finance (e.g. Ravisankar,

Ravi, Rao, & Bose, 2011) and medicine (e.g. Montani et al.,

2003).

An example of research that aspires to go in the direction of

DSS for fish farming is found in the proposed concept of using

the fish as biological warning systems (BWS) for monitoring

seafood safety (Eguiraun, Izagirre, & Martinez, 2015a). Fish

would be monitored online using technological methods (e.g.

computer vision) to detect atypical behaviour or responses in

the fish that imply that the animals are affected by external

perturbations, possibly indicating e.g. the presence of noxious

substances. Another example of DSS-oriented research in fish

farming is given by Føre, Dempster, Alfredsen, and Oppedal

(2013) who used a mathematical model to predict how vary-

ing the depth of submerged artificial lights could be used to

steer the swimming depth of salmon. Combined with online

profiling of the temperature gradient at a site, such a model

could be used to suggest light placement depths with the

intent of optimising the thermal history of the fish, leading to

improved conditions for optimising fish growth. Controlling

fish swimming depth is also a strategy to prevent sea-lice in-

festations by selecting the light placement depths such that

the fish are steered away from the depth ranges in which the

majority of the sea-lice reside (Frenzl et al., 2014). This would

require indications of when the densities of copepodites in the

water are high, and at which depths (e.g. Oppedal et al., 2017).

Such methods could also be combined with automatically

submersible cages or other actions.

3.2.4. Act: manipulating system and eliciting desired bio-
responses
Most actions that incite bio-responses at fish farms are

manually controlled, and often include the manual operation

ofmechanical equipment (e.g. winches, cranes, crowding nets
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and ropes). The task of converting a specific decision into the

proper control signals or physical actions that elicit the

desired response is assigned to a human operator. An

important exception from this is the centralised feeding sys-

tems employed atmost commercial fish farms. These systems

are designed to convert decision level inputs such as cage

specific feeding rates and feeding time schedules into the

electrical signals (e.g. blower frequency, feed sluice opening

rate and feed hose selector) required for the feeding process to

achieve the desired system response.

In earlier days, most of the necessary underwater actions

at fish farms were conducted by divers. Today it has become

common to use Remotely Operated Vehicles (ROVs) for such

tasks, greatly reducing the risks of personnel injuries.

Although ROVs are most often controlled by human pilots,

recent research has demonstrated the possibility of using

acoustic positioning methods (Rundtop & Frank, 2016) and

computer vision-based systems (Duda, Schwendner, Stahl, &

Rundtop, 2015, pp. 1e6) to improve the navigation of ROVs

in and around cages, increasing the precision in remote op-

erations. The use of this type of technology could also be

extended to Autonomous Underwater Vehicles (AUVs) that

move without human interference, and that could in turn be

equipped to conduct minor repairs and other underwater

tasks autonomously. AUVs have been used for different pur-

poses within several industries, including hydrographic sur-

veys, inspections and prospecting for oil and gas applications,

ship hull inspections and military applications (Nicholson &

Healey, 2008).

3.2.5. Closed loop Precision Fish Farming applications
At present, there exist no examples of systems that may be

branded closed-loop PFF-applications in farm-based fish

aquaculture, encompassing the span from observing Animal

variables to actuation that elicits a bio-response in the fish.

However, as the general level of technology in the world in-

creases, the equipment commercially available to the fish

farming industry also becomes more technically advanced

and better able to handle more complex tasks. For instance,

devices such as biomass frames (e.g. the VAKI Biomass Daily

system, Pentair Aquatic Eco-systems Inc.) may be argued to

cover both the Observe and Interpret phases in the farming

cycle (Fig. 1), as they optically scan the fish, estimate indi-

vidual volumes based on the scanning data, and then estimate

weight distributions based on these numbers. However, there

are few examples of solutions that seek also to cover the

Decide and Act phases, which often entail human interven-

tion. This aspect is also reflected in the fact that the number

and diversity of systems pertaining to each of the different

phases as outlined above is higher for Observe and Interpret

than for the other two.

However, there are examples of such initiatives within

research on live feed production, where different cybernetic

methods (i.e. mathematical modelling, sensor technology and

automated control) have been successfully applied to auto-

matically control feeding, and hence culture growth (Alver,

Alfredsen, & Øie, 2007; Alver, Alfredsen, Øie, Storøy, & Olsen,

2010). Although this industrial segment differs greatly from

cage-based fish farming in both scale and facilities, both are

focused on the husbandry of live aquatic animals, and since
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suchmethods are possible to develop for live feed production,

similar approaches may apply to farm-based fish production.

This potential is even greater for land-based production of fish

in onshore tanks, where the ability to control core aspects of

the production environment (e.g. temperature, oxygen, flow)

is substantially higher than for cage-based production.

3.2.6. Challenges for industrialisation
Many of the technology principles that are potential tools in

the realisation of industrial PFF applications have been used

industrially and commercially in other market segments, and

several have also seen some use within aquaculture. Howev-

er, for many of these, there exist specific technical challenges

related to the basic physics of the subsurface environment,

properties pertaining to the selected sensing methods, or

limitations of communication protocols when used in a fish

farm setting. These challenges need to be overcome before a

full step towards commercial exploitation in aquaculture is

possible. Potential methods to handle such challenges may

range from the implementation of new product features,

through adjustment of system settings, to more strategic

equipment placement (Table 3).
4. Potential industrial applications of
Precision Fish Farming

To be of industrial value, a PFF method must positively affect

the day-to-day farming situation. PFFmethodsmust therefore

be evaluated to test their contributions to improving fish

welfare and health, reducing fish losses (e.g. through

handling, escapes and disease), improving production effi-

ciency and product quality, and/or reducing environmental

impacts of the farming operation, prior to launching innova-

tive actions with the intent of commercialisation. Although it

would be more practical to conduct proof of concept studies

for PFF methods in controlled laboratory conditions, demon-

strating their effects under full scale farming conditions is

critical, as culture scale effects modify fish performance

(Espmark, Kolarevic, �Asgård, & Terjesen, 2017; Føre et al.,

2016). Furthermore, as fish farming operations are primarily

conducted outdoors, any piece of equipment or system

located at the farming sitewill be exposed to the elements. PFF

methods should thus be tested for durability to prevent

equipment malfunction when used on commercial sites.

To illustrate the implementation of PFF methods, we

outline four concrete examples of PFF applications that are

realistic to implement given present technology readiness

levels, and could have a large impact within industrial fish

farming. The cases cover important areas in the salmon in-

dustry, ranging from biomass monitoring and feeding to

parasite management. Moreover, the examples illustrate how

PFF principles can be applied to continuous (i.e. throughout

the production cycle), regular (i.e. daily) or transient (i.e. oc-

casionally, on demand) time scales.

4.1. Case 1: automated biomass monitoring

Cage population properties such as total biomass, number of

fish and fish size distribution in a cage are key inputs to many
ming: A new framework to improve production in aquaculture,
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Table 3 e Technology principles that are industrially applied in other segments, and the main challenges of introducing
these to industrial aquaculture.

Technology
principle

Present industrial
applications

Main challenges in transfer to
industrial aquaculture

Suggested remedies

Sonar Seismic surveys,

stock assessment in

fisheries

Difficult to capture behavioural details on

high density populations

Use higher acoustic frequencies for higher spatial

resolution

Complex datasets that may be difficult to

visualise in relevant manners

Develop visualisation concepts customised to

applications (e.g. feeding)

Acoustic telemetry

tags

Fish conservation

and ecology studies

in relation to

hydroelectric dams

Complex and time consuming tag

deployment through surgery

Enable more efficient and simple tagging by e.g.

miniaturising tag sizes or using other principles

such as oral tagging

Low bandwidth of acoustic

communications channel

Improved communication protocols based on e.g.

chirp/sweep signals and TDMA principles

Difficult to ensure that tagged fish are

representative for the population

Increase percentage monitored fish through

more efficient tagging methods and higher

bandwidth

Passive acoustics Terrestrial livestock

production

Limited knowledge on relation between

sound and Animal variables of salmon

Long term monitoring in parallel with other

systems to generate new knowledge

Computer vision Medicine, robotics,

manufacturing and

mass- production

High turbidity caused by e.g. feed particles

or net cleaning particles

Strategic camera placement during feeding/

cleaning operations

Suboptimal lighting conditions during

winter/at night-time

UV lights invisible to fish

Remote controlled or

autonomous

vehicles (ROV/

AUV)

Oil and gas,

shipping, military

Risk of hitting structures/fish while

navigating cage volume

Equip vehicle with acoustic/computer vision

based navigation means, giving input to adaptive

mission planning systems

Risk of fish responding to presence of

vehicle

Incorporate control system features enabling the

vehicle to adapt to fish responses

Observers (Kalman

filtering, nonlinear

observers)

Vessel GNC, oil and

gas, automotive

Insufficient reliability and quality in

sensor data

Using more sensors and higher sampling rates

than deemed necessary from a theoretical

viewpoint

Lack of mechanisticmathematical models

of biological dynamics

Use system identification principles to derive

input/output relations

Decision Support

Systems (DSS)

Oil and gas, finance,

medicine

Insufficient reliability and quality in

sensor data

Increase robustness of instruments and

communication channels to prolonged

submersion in sea water

Difficulties obtaining detailed descriptions

of user experiences

Introduce routines for systematic registration of

metadata during farm operations
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important decisions in the salmon production process,

including the determination of medicinal dosages, assign-

ment of proper feed rations and estimation of total production

yield when selling the fish before slaughter. Although systems

exist to estimate individual fish sizes and fish size distribution

(e.g. biomass frames, stereo vision systems), these only pro-

vide data relevant for their location in the cage, and hence

cannot deliver representative data for the entire cage popu-

lation (Folkedal et al., 2012). This means that decisions where

the total biomass, biomass distribution or number of fish in a

cage are used as inputs partly need to rely on experience-

based estimates provided by farmers rather than on a

knowledge-based, objective source.

Due to their importance in central farm management de-

cisions, the ability to predict and quantify such population

properties in sea-cages has become a “holy grail” in the

salmon farming industry. One way of applying the PFF prin-

ciples to this challenge is to first identify the relevant Feature

variables. Feature variables in this case could be the total

biomass in the cage, the total number of fish in the population

and the individual size distribution of the population.

Although recent studies have demonstrated the potential of

using sonar-based solutions to monitor individual fish mass

(Soliveres et al., 2017), no existing technological solutions for
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salmon farming are able to provide data on all these Feature

variables directly. It is therefore necessary to develop solu-

tions that derive such data by combining data on different

Animal variables, possibly obtained with several different

technologies. One possible selection of Animal variables for

this purpose could be vertical distribution (sonar) and point

measurements of individual size distribution (biomass frames

and stereo vision systems). These variables could be com-

bined into a variable estimating the size distribution of the

population, by using echograms from the sonar to determine

the vertical distribution of biomass in the cage and biomass

frames and/or stereo vision systemsplaced at different depths

to observe vertical variations in individual fish size. However,

although this scheme would provide new knowledge on

population-wide variations in size and vertical variations in

biomass properties that are useful properties in their own

right, no combination of these two Animal variables can be

used to estimate the total number of fish or biomass in the

cage directly. One way of achieving such knowledge could be

to combine the incoming Animal variable data streams with

mathematical models of the behavioural and growth dy-

namics of salmon (e.g. Føre et al., 2016, Fig. 3) in an estimator

structure, such as a Kalman filter. If the model is fed suffi-

ciently detailed data on the external factors tied to the
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Fig. 3 e Example of comparison between numerical model

output (solid line) and experimental data obtained with

biomass frame and manual sampling (circles). The grey

dashed line marks the onset of PD-disease in the cage.

Figure is modified from Føre et al. (2016).
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environmental (e.g. temperature levels, sea-states) and

management-related (e.g. feed delivery rate) states in the cage

that influence fish growth, it can estimate the growth dy-

namics in the cage. By adjusting the estimated size distribu-

tion and vertical distributions based on themonitored Animal

variables, the estimator structure will ensure that the popu-

lation size and dynamics outputs from the estimator adhere to

both the historical knowledge included in the model and the

real-time data obtained from the sensors. Although this

approach is sensitive to both measurement errors and inac-

curacies in model equations and parameters, estimates will

probably be more reliable than those gained from standalone

model simulations.

Since several of the monitoring and simulation tools

required in the Observe and Interpret phases for this case

study already exist, achieving a closed loop PFF application

would primarily require more research into new methods to

integrate data from different sources with simulation data.

However, as Feature variables describing aspects of the

biomass contain information that is relevant for a wide vari-

ety of farming applications, it does not make sense to link

these to specific Target variables.

4.2. Case 2: automated feeding strategies and control

The objectives of feeding processes in commercial salmon

sea-cages are to ensure that every fish is provided with suffi-

cient feed tomaintain desired growth rates, and keep feed loss

to the environment at aminimum. Since these two aims often

conflict (i.e. overfeeding may give good growth rates but may

result in more feed spillage and vice versa for underfeeding),

this is an everyday trade-off in the industry that has conse-

quences for both fish welfare and farm economy. Feed cost

accounts for about 50% of total production costs from egg to

marketable fish and thus is the most significant single

expense in salmon production. Feeding strategies in salmon

production are largely based on feeding tables that suggest

feed amounts as a function of population size and tempera-

ture. In addition, farmers tend to use submerged cameras

aimed at the feeding area to manually monitor the feeding
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activity of the fish, and adjust the feeding rates accordingly if

they interpret the fish to be less responsive towards the feed

or otherwise indicate lowered appetite. Although this im-

proves the association between feed delivery and the biolog-

ical processes in the cage, the interpretation of the fish

responses is experience-based, and hence depends on the

experience and skills of the individual farmer. This method

has been demonstrated to occasionally lead to good growth

rates and feed conversion factors (i.e. kg fish produced per kg

feed), but the outcomeswill varymuch between operators and

sites. Furthermore, for locations in remote or exposed (with

regards to wind, current and waves) locations it may not be

possible for personnel to be present every day. For such lo-

cations, fully automated or remotely controlled feeding is

crucial for farm operation.

Better precision and monitoring tools in feed delivery to

salmon cages would improve the predictability and observ-

ability of feed consumption in the fish population, which in

turn could enable reductions in production costs and envi-

ronmental impacts while improving growth. This could be

solved by applying the principles of PFF to shift feeding

management from comprising largely experience-driven

processes to become a more knowledge-driven procedure.

Suitable Animal variables for this application could be vertical

distribution and movement (of individual fish and fish

groups), and individual swimming behaviour (e.g. speed and

direction), both of which are influenced by the feeding moti-

vation of the fish (Oppedal et al., 2011). Available technologies

to observe such variables include sonars (vertical distribution,

e.g. Bjordal, Juell, Lindem, & Femo, 1993, p. 203; the CageEye

system, Lindem Data Acquisition AS), computer vision tech-

niques (swimming speed, direction and acceleration through

optical flow and motion pattern analysis techniques, e.g.

Stahl, 2009; Stahl&Aamo, 2011; Stahl et al., 2012) and acoustic

telemetry (depth movements and activity levels, e.g. Føre

et al., 2011, Fig. 4). Although it is possible to derive Feature

variables reflecting the appetite or feeding motivation of the

fish based on the data provided by each of these technologies

alone, it is possible that a more reliable and precise indicator

would combine information gained from several technologies.

Moreover, the importance of efficient feed use for the overall

profitability of any salmon farming enterprise renders the

extra investments required to achieve a Feature variable that

combines several Animal variables from different sources

worthwhile, granted that the increased precision leads to

improved profits or reduced negative externalities. Such

compound Feature variables could, for instance, combine the

occurrence of shifts in the vertical distribution towards/away

from the feeding area with increases/decreases in individual

variability in swimming direction.

To design an automated algorithm (e.g. a DSS) that uses

selected Feature variables to provide advice on whether or not

the present feeding regime should be adjusted requires that

datasets for the chosen Feature variables be collected for both

feeding and non-feeding periods. The algorithm could then

compare present trends and state values of the Feature vari-

ables to those previously observed during different phases of

feeding (i.e. beginning, midway through and towards the end

of the feeding period), andwhile feed is unavailable to identify

which state the fish are in with regards to feeding response.
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Fig. 4 e Example data from acoustic telemetry describing the vertical positioning (a, b) and vertical movement speeds (c, d) of

two individual fish during feeding. Grey bars denote feeding periods. Figure is modified from Føre et al. (2011).
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This would represent the Target variable of this application

upon which the decisions of whether feeding rates should be

kept constant, reduced or increased to best accommodate the

fish are made. The Target variable could also include inputs

from mathematical models that predict the spatial and tem-

poral distribution of feed pellets (Alver et al., 2016) and/or

sonar solutions able to detect uneaten pellets in the water

column (Llorens, P�erez-Arjona, Soliveres, & Espinosa, 2017).

This could improve the quality of the decisionmaking process

by also accounting for the physical and hydrodynamic aspects

of feed distribution in cages.

Since automated feeding systems are used throughout the

salmon industry today, the final stage of PFF applications

aimed at feeding operations simply entails feeding the output

from the automated decision making algorithm into the

feeding system. As these systems typically rely on human

operators, the required inputs are in forms (e.g. feed amount

per time unit, total feed amounts) that are simple to derive

from Target variables. Considering that many of the sensor

solutions required to collect data relevant for this case study

in the Observe phase exist, obtaining a closed loop application

would therefore primarily require research into newmethods

to assimilate data from different sources into compound

Feature variables, and new algorithms to derive the proper
Please cite this article in press as: Føre, M., et al., Precision fish far
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Target variables from these. With the development of more

complex feeding systems, feed placement could also be opti-

mised spatially, based on derived Feature variables. Depend-

ing on the present location of fish within the sea cage,

direction and speed of the water flow, feed could then be

placed further upstream to reduce feed loss and increase

availability for the fish (Skøien, 2017).

4.3. Case 3: automated monitoring of sea-lice levels in
salmon farms

Norwegian salmon farms are legally required to regularly

report sea-lice levels in their cages. Sea-lice levels are

assessed manually by counting the number of lice attached to

a selection of individual fish retrieved from approximately

half the cages on the site, and then finding the average value

of the individual counts. If the average sea-lice number per

fish exceeds the legal limit, the farmermust promptly delouse

the farm. Apart from being labour intensive and costly, the

louse assessment process impacts some fish as they have to

be captured, handled and sedated prior to the actual counting.

Manual counting is also subject to variableweather conditions

and subjective bias, while small stages of sea-lice are difficult

to see and hence assumed to be strongly underestimated in
ming: A new framework to improve production in aquaculture,
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these counts. Furthermore, the fact that the fish need to be

captured to contribute to the dataset raises the question of

representability; are 10e20 individual fish retrieved near the

surface representative of the full population kept in the cage?

As recent data suggests that salmon with more sea-lice swim

deeper (Bui, Oppedal, Stien, & Dempster, 2016), present

counting methods are likely to underestimate lice levels.

Considering the costs and labour associated with sea-lice

counting, and the potential consequences of having inaccu-

rate lice counts, this operation is a good candidate for auto-

mation through PFF methods. The first step would be to

identify Animal variables that may serve as a foundation for

acquiring the desired Feature variable - sea-lice infestation

levels. With the precondition that fish handling should be

avoided, variables observable through opticalmethods appear

best suited. For instance, Furevik, Bjordal, Huse, and Fern€o

(1993) found that lice infestation levels could be expressed in

the jumping frequency of salmon in sea-cages, a behavioural

trait automatically detectable using computer vision methods

(Jovanovi�c et al., 2016, Fig. 5). This approach is attractive as it

applies video recorded using elevated cameras, making the

acquisition of useful and affordable camera solutions easier

than in the subsurface environment. Underwater video re-

cordings and computer vision might also detect sea-lice

directly. This could be done using spectral analysis to distin-

guish between sea-lice and salmon skin (Tillett et al., 1999) or

hyperspectral analyses to detect changes in skin texture and

colour caused by louse infestation (Nolan, Reilly, & Bonga,

1999). While these methods would probably require more

expensive equipment, they are more direct approaches to the

problem rather than using surface activity as a proxymeasure.

This principle is used to detect sea-lice in the commercially

available Stingray system (Stingray Marine Solutions AS).

An automated algorithm constantly evaluating the esti-

mated sea-lice numbers (Feature variable) against the legally

set maximum limits for sea-lice infestation could then be set

to alert the farmer when the detections approach levels that

require action (Target variable). The Feature variable of this

application could be combined with a mathematical model of

louse population dynamics (e.g. Stien, Bjørn, Heuch, & Elston,
Fig. 5 e Example of automatic detection of surface activity in salm

marks the detection of a splash be caused by fish. Reproduced

holder.

Please cite this article in press as: Føre, M., et al., Precision fish far
Biosystems Engineering (2017), https://doi.org/10.1016/j.biosystemseng
2005) in an estimator structure to better predict population

dynamics and enable better planning of delousing operations.

Since contemporary approaches to remove sea-lice from

salmon vary greatly in delousing principle (e.g. chemical,

freshwater, thermal, mechanical), equipment selection (e.g.

pump types, presence of skirts) and fish manipulation

methods (e.g. crowding, use of dip nets, well boats), an auto-

mated Action based on the Target variable could be difficult to

derive at present. However, given the costs of sea-lice to both

fish and farmers, just the ability to monitor sea-lice infesta-

tion levels automatically and continuously would be highly

useful. The Gold Standard required to validate this method

could be obtained by conductingmanual sea-lice assessments

in parallel with the applications of the technology. Assuming

the transition from Feature variable to Target variable is set by

legal limits, the main research challenges in deriving closed

loop PFF applications for this case study would lie in devel-

oping robust and representative methods to assess lice

numbers based on the aforementioned existing sensor sys-

tems, and in adapting different delousing procedures to the

resulting Target variable.

4.4. Case 4: automated crowding control during
delousing operations

The ability to delouse salmon cages efficiently when sea-lice

counts exceed legal limits is critical, as uncontrolled out-

breaks of sea-lice may lead to impaired fish welfare and

health, and have severe consequences for wild salmonids in

the environment near the farm. Common delousing methods

include immersing the fish in closed/semi-closed volumes

(either in the sea or in well boats) containing anti-louse

chemicals, the use of cleaner fish (e.g. wrasses, lump-

suckers) that eat the sea-lice, and the application ofmedicated

feeds. However, as sea-lice infestation numbers have recently

increased, so has the intensity of the treatment regimes at

salmon farms. Farmed salmon populations are now subjected

to a larger number of treatments during their life cycle than

was the case a decade ago. An unfortunate side effect of this

development is that sea-lice populations frequently exposed
on cages using computer visionmethods. Each red square

from Jovanovi�c et al. (2016) with permission of copyright
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to medicinal treatments have undergone a survival-driven

genetic selection for resistance against these substances,

which in turn has rendered many of the previously most

efficient anti-louse chemicals ineffective (Aaen, Helgesen,

Bakke, Kaur, & Horsberg, 2015). This has forced the industry

to search for alternativemethods of treating their fish and it is

today common to use non-medicinal treatmentmethods such

as freshwater, thermal or mechanical delousing. These

methods often require that the fish be first crowded at higher

than normal densities, then pumped from the cage, through a

barge or ship that contains the system used for delousing, and

back into a different section of the cage or into a new cage.

When fish are crowded at very high concentrations, they may

experience impaired culture conditions that induce negative

effects such as hypoxia, mechanical damage, and increased

stress levels. Crowding may subject the fish to lowered wel-

fare and lead to detrimental health and increased mortality,

adding to the potential negative welfare impacts caused by

the delousing process. This is a considerable challenge for the

salmon industry.

A PFF application that automatically monitors the states of

the salmon before, during and after a delousing operation

would be a tool to reduce the risks associatedwith crowding of

farmed fish. This method could present alarm signals to the

farmer if the states of the fish imply that the crowding process

inflicts unacceptable stress levels or physical strains on the

fish. The first step of developing the method would be to

identify which technologies to use in the Observe phase.

Submerged cameras coupledwith computer vision algorithms

could detect motion-based Animal variables that hold infor-

mation about stress levels, such as swimming speeds and

respiration rates, and detect deviations in skin condition

implying damage or sores. Another alternative could be to use

sonar (e.g. Fig. 6). As for cameras, the information obtained via

sonar describes the responses of sub-groups in the popula-

tion. However, whereas the group size observable with optical
Fig. 6 e Echogram obtained with a split-beam sonar system des

commercial cage when the net bottom is raised from 18 m to 1

operation. Unpublished data, SINTEF Ocean.
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means is limited by visibility, sonars can cover larger sub-

volumes of the cage and provide data on larger groups of

fish (Table 2). Although the cost of this lies in the fact that the

level of detail in the resulting data is lower than when using

cameras, such systems can describe Animal variables such as

vertical movement and distribution patterns (e.g. Johansson

et al., 2006; Oppedal et al., 2007), and swimming speed and

direction for individuals when using split-beam technology

(Knudsen et al., 2004).

Another possible technology for this purpose is the wire-

less monitoring of individual fish through acoustic telemetry.

Although the fish need to be handled and subjected to surgery

when deploying telemetry transmitters, there are several

properties making telemetry attractive for this application.

First, while data from cameras and sonar describe fish states

on a group level, telemetry results in data histories for indi-

vidual fish, enabling a direct link to the states of the in-

dividuals that are the basic units of the fish population

system. Second, the detection range of acoustic telemetry

systems may extend from several 100 m to kilometres,

meaning that it is possible to obtain continuous datasets

spanning all stages of the process (i.e. crowding, delousing

andmoving the fish to a new cage)without having tomove the

acoustic receivers. In contrast, camera systems and sonar

need to be placed within the cage and removed during

delousing and crowding to avoid interference with cage

manipulation and other operations. Such systems will be less

able to capture responses during the operation and also have

to be moved to the new cage after transfer. Third, acoustic

transmitters may be equipped with a wide variety of different

sensors that are commercially available, enabling the direct

measurement of fish states to derive relevant Animal vari-

ables (e.g. accelerometers - activity levels, pressure sensors e

vertical movement speeds).

Irrespective of monitoring technology, a baseline dataset

describing the “non-stressed” states and response patterns of
cribing the changes in the vertical dynamics of salmon in a

1 m (raising occurs around 04:37:00) during a crowding

ming: A new framework to improve production in aquaculture,
.2017.10.014

https://doi.org/10.1016/j.biosystemseng.2017.10.014
https://doi.org/10.1016/j.biosystemseng.2017.10.014


b i o s y s t em s e n g i n e e r i n g x x x ( 2 0 1 7 ) 1e1 8 15
the fish is required to facilitate interpretation. The easiest way

to obtain such data is to monitor the fish for a period prior to

the operation using the same monitoring regime as planned

during crowding. Automated algorithms could then search for

deviations from the data values and trends seen for unper-

turbed fish in the non-crowding periods, and label these as

Feature variables that could imply increased stress levels. A

DSS could then evaluate these Feature variables against his-

torical data from previous delousing processes to provide a

recommendation of whether the operation should be

continued, halted or aborted, which would be the Target

variable of the application. The historical data used as the

basis for the decision making process would need to include

datasets describing the same Animal and Feature variables as

those assembled by the chosen method, together with meta-

data/information describing the impact the operation had on

fish welfare and/or mortality for each particular operation.

Such datasets could also represent Gold Standards withwhich

the method can be validated.

For this application, it would also be possible to implement

a method for directly operating actuators based on the Target

variable. This could be realised using automatically controlled

winches to raise the net bottom during crowding (e.g. winches

from the Midgard system, Aqualine AS). These winches could

be programmed to follow a pre-defined schedule of crowding

that gradually reduced the volume available for the fish. The

DSS could be set with the capability of overriding the winch

system, so that the crowding process is halted or reversed if

real time data implies a situation that may lead to impaired

welfare or increased mortality. This application would thus be

an example of a full closed loop PFF method. Considering the

commercial availability of relevant sensors for data collection

andwinches for net actuation, themain research challenges of

achieving closed loop PFF would in this case pertain to deriving

the relationships between observable Animal variables and

Feature variables suitable for decision support, and building up

the necessary knowledge foundation for the DSS to operate on.
5. Conclusion and recommended future
research efforts

Industrial fish farming is an important supplier of marine

protein for human consumption. The industry aspires to sup-

ply the increasing demand for seafood arising from the

growing world population. Due to factors such as increasing

scarcity of feed raw materials, limited availability of farming

locations suitable for today's technology level, increasing focus

and demands with respect to eco-friendliness, and space use

conflicts with other industries (e.g. fisheries, oil and gas,

tourism, shipping), this challenge is probably not possible to

counter by simply upscaling production volumes and applying

present production regimes. Future methods for fish farming

will therefore need to be more advanced and smarter, in the

sense that the industry needs to shift from experience-driven

to knowledge-driven approaches to better optimise produc-

tion. The present trends within the industry of farms produc-

ing greater volumes, and production per worker increasing on

each fish farm, highlight the need to monitor and control the

production process. Exploitation of technological tools will be
Please cite this article in press as: Føre, M., et al., Precision fish far
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central in addressing these challenges, and the Precision Fish

Farming concept seeks to harness this potential in represent-

ing a framework for the development of technologically foun-

ded methods for fish farming. PFF best practice requires that

methods be validated through Gold Standards before they are

released onto themarket. At present, there are few regulations

on introducing new technologies for the fish farming market,

and no formal or legal requirements for validation prior to

release. Through scientific documentation, PFF will allow

greater confidence in the usefulness and efficiency of

commercially available technologies.

Many components required to create PFF methods exist

today, either as commercially available solutions or as

research tools that can be converted into innovations. Pri-

marily, these solutions are aimed at the Observation phase of

fish farming operations (Fig. 1), meaning that they are

designed to produce data or information on the expressions of

bio-responses in the farmed fish. This is not surprising,

considering that the general challenges of observing animals

in the aquatic environment has been pushing the industry to

adapt new technologies to observe the fish. There are also

several candidate technologies for future innovations aimed

at the interpretation phase, primarily in the form of mathe-

matical models. Most of these are still research tools with

limited direct industrial applications, but models are likely to

become industrialised either on their own or as components

of a larger system. As production units increase in size, the

ability to monitor the states of the caged population through

sensors will decrease, implying that estimation through

mathematical models may be necessary to make the states of

the system observable. There are fewer examples of estab-

lished methods or tools in the Decide and Act phases of fish

farming. This is mainly because the realisation of PFF

methods at these stages will require well-established tools for

the Observe and Interpret phases. Hence, as new tools and

innovations aimed at the first two phases are realised, the

possibility of developing solutions extending all the way into

the Act phase will increase.

Continued research on technological applications within

all four phases of fish farming is necessary to realise the po-

tential of PFF in commercial aquaculture. One approachwould

be to target this effort towards specific use cases, meaning

that the motivation is to solve concrete challenges within the

industry using a PFF approach. The case studies of sea-lice

counting and crowding control outlined in this study are ex-

amples of this. Such methods are more case-specific than

generic, are founded in applied research, and more likely to

have a strong industry appeal. Alternatively, each phase can

be targeted separately, to solve technical challenges such as

refining sensor technologies for better observation of Animal

variables, industrialising mathematical models, developing

automated DSS methods and developing autonomous sys-

tems for cage manipulation. This will require a certain

amount of basic research to understand biological mecha-

nisms in the fish better, which may have a lower immediate

industrial appeal but stronger long-term effects in providing a

knowledge basis for the development of future methods.

Research in both these directions is necessary to usher in a

new paradigm of technologically oriented fish farming

through the Precision Fish Farming concept.
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