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Abstract

Hybrid Bayesian networks have received an increasing attention during the last years.
The difference with respect to standard Bayesian networks is that they can host discrete
and continuous variables simultaneously, which extends the applicability of the Bayesian
network framework in general. However, this extra feature also comes at a cost: inference
in these types of models is computationally more challenging and the underlying models
and updating procedures may not even support closed-form solutions. In this paper we
provide an overview of the main trends and principled approaches for performing inference
in hybrid Bayesian networks. The methods covered in the paper are organized and discussed
according to their methodological basis. We consider how the methods have been extended
and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an
overview of established software systems supporting inference in these types of models.

1. Introduction

Probabilistic graphical models provide a well-founded and principled approach for perform-
ing inference in complex domains endowed with uncertainty. A probabilistic graphical model
is a framework consisting of two parts: a qualitative component in the form of a graphical
model encoding conditional independence assertions about the domain being modelled, and
a quantitative component consisting of a collection of local probability distributions adher-
ing to the independence properties specified in the graphical model. Collectively, the two
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components provide a compact representation of the joint probability distribution over the
domain.

Bayesian networks (BNs) (Pearl, 1988) are a particular type of probabilistic graphical
model that has enjoyed widespread attention in the last three decades. Figure 1 shows the
qualitative part of a BN representing the joint distribution of variables X = {X1, . . . , X5}.
We will use lowercase letters to refer to values or configurations of values, so that x denotes
a value of X and x is a configuration of the variables in X. When referring to the graphical
model, we will denote all nodes with an outgoing arc pointing into a particular node as
the parents of that node, for example is {X2, X3} the parent-set of X4 in Figure 1; we will
use the shorthand pa(Xi) to denote the parent-set of Xi. The family of Xi is defined as
fa(Xi) = pa(Xi) ∪ {Xi}. The co-parents of Xi wrt. some other variable Xj , coXi(Xj), is
defined as Xi’s parents except Xj , coXi(Xj) = pa(Xi)\{Xj}. All nodes that a node Xi has
outgoing arcs pointing into will be denoted the children of Xi, with the shorthand ch(Xi).
As an example, ch(X3) = {X4, X5} in Figure 1. Finally, the Markov blanket of a node Xi,
mb(Xi), are the parents, children, and the children’s co-parents wrt. Xi.

Attached to each node, there is a conditional probability distribution given its parents
in the network, and so the joint distribution factorizes as

p(x1, . . . , x5) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3).

In general, for a BN withN variables X = {X1, . . . , XN}, the joint distribution factorizes
as

p(x) =

N∏
i=1

p(xi|pa(xi)), (1)

where pa(xi) with the lower-case argument now denoting the configuration of the set of
parents of Xi in the network. Note how this factorization enforces several conditional
independence statements. For instance any variable in a Bayesian network is conditionally
independent of the other variables of the model given its Markov blanket, which we write
Xi⊥⊥X|mb(Xi) for short.

X1

X2 X3

X4 X5

Figure 1: A Bayesian network with five variables.

BNs constitute a versatile tool with applications in a wide range of domains (Pourret,
Naim, & Marcot, 2008). In practical applications, it is common to find scenarios that
involve discrete and continuous variables simultaneously. Such problems can be modelled
using so-called hybrid BNs, which are BNs where some of the variables are discrete and
others are continuous.
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The most common application of both Bayesian networks and hybrid Bayesian networks
involves belief updating (or inference): the calculation of the posterior marginal distribution
of a variable conditioned on the known values of a subset of the other variables in the model,
e.g., p(X1|X2, X5) in Figure 1. Inference in discrete BNs is, however, already a challenging
task, and additional problems arise when it comes to handling discrete and continuous
variables simultaneously (Murphy, 1998; Koller & Friedman, 2009, ch. 14).

In order to assist both practitioners and researchers dealing with hybrid Bayesian net-
work models, this paper gives an overview and illustration of the main methodological
trends for performing inference in these types of models. We also extend the discussions
to include dynamic domains (i.e., domains that evolve over discrete time) and provide an
overview of established software systems facilitating inference in hybrid models.

As a starting-point we will look at the most prominent techniques for inference in discrete
BNs in Section 2. In Section 3 we review the existing literature on inference in hybrid BNs
related to static domains, that is, domains that do not evolve over time. Section 4 reports
on dynamic BNs, where the time component is taken into account. A short overview of
available software packages is given in Section 5 and the paper ends with conclusions in
Section 6.

2. Inference in Discrete Bayesian Networks

Given a set of observed variables XE ⊂ X and a set of variables of interest XI ⊆ X \XE ,
the most common type of probabilistic inference, also called probability propagation or belief
updating, consists of computing the posterior distribution p(xi|xE) = p(Xi = xi|XE = xE)
for each i ∈ I. In this section we shall present the most-used techniques for performing
inference in discrete Bayesian networks, and return to the situation of hybrid BNs in the
next section.

The goal of inference can now be formulated as computing

p(xi|xE) =
p(xi,xE)

p(xE)
=

∑
x∈ΩX\{XE∪Xi}

p(x,xE)

∑
x∈ΩX\XE

p(x,xE)
, (2)

where ΩX stands for the set of possible values of a set of variables X and p(x,xE) is the
joint distribution over X, where the observed variables XE are instantiated to their observed
values xE . Notice that since X is discrete, ΩX is countable, and the sums exist. A brute
force algorithm for carrying out the inference could be as follows:

1. Obtain the joint distribution p(x) = p(x1, . . . , xn) using Equation (1).

2. Restrict p(x) to the value xE of the observed variables XE . This results in p(x,xE).

3. Compute p(xi,xE) from p(x,xE) by marginalizing out every variable different from
Xi using Equation (2).

The problem of this straight-forward method is that the joint distribution is usually
unmanageably large. For instance, assume a simple case in which we deal with 10 quali-
tative variables, each having three possible states. Representing the joint distribution for
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Salmerón, Ruḿı, Langseth, Nielsen & Madsen

those variables would require a table with 310 = 59, 049 probability values. The size of
the distribution grows exponentially with the number of variables, hence the size of the
corresponding table would soar up to 311 = 177, 147 for 11 variables, and so on.

The inference problem can be simplified by taking advantage of the factorization of the
joint distribution encoded by the structure of the BN, which enables the design of efficient
algorithms for this task. For instance, consider the network in Figure 1, and assume our
variable of interest is X5, i.e. we want to compute p(x5). Further, we assume that XE = ∅
for this example. Starting off from the joint distribution, we find that

p(x5) =
∑

x1,...,x4

p(x1, x2, x3, x4, x5)

=
∑

x1,...,x4

p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3)

=
∑

x1,x2,x3

∑
x4

p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3)

=
∑

x1,x2,x3

p(x1)p(x2|x1)p(x3|x1)p(x5|x3)
∑
x4

p(x4|x2, x3)

=
∑

x1,x2,x3

p(x1)p(x2|x1)p(x3|x1)p(x5|x3)h(x2, x3) ,

where h(x2, x3) =
∑

x4
p(x4|x2, x3). Therefore, we have reached a similar problem as ini-

tially, but with one variable less.1 The operation illustrated in this example is called the
elimination of variable X4. Repeating the same procedure for each variable except X5 would
lead us to the desired result. This procedure is known as the variable elimination algorithm
(Dechter, 1999; Li & D’Ambrosio, 1994; Zhang & Poole, 1996), where the key idea is to
organize the operations among the conditional distributions in the network, so that we do
not produce unnecessarily large intermediate distributions.

We will now briefly discuss some other main types of inference algorithms that work for
discrete BNs, before moving on to inference in hybrid Bayesian networks in Section 3.

2.1 Inference Based on Message Passing Schemes

One limitation of the variable elimination algorithm as formulated above is that is has to be
repeated once per variable we are interested in. This limitation can be overcome by using
message passing schemes.

2.1.1 Join Tree Algorithms

Join tree algorithms organize the calculations over an auxiliary structure called a join tree
or junction tree (Lauritzen & Spiegelhalter, 1988), which is an undirected tree constructed
from the original BN, where the nodes are the cliques of a triangulated graph obtained
from the BN. Figure 2 shows a join tree constructed from the BN in Figure 1. The join tree
satisfies the following two properties (Shenoy & Shafer, 1990b):

1. As a side-comment, we note that since h(x2, x3) =
∑

x4
p(x4|x2, x3), we know without making the

calculation that h(x2, x3) = 1 for all configurations (x2, x3). This is a consequence of X4 being a barren
node in this particular model. Utilizing such simplifications is also part of the lazy propagation inference
scheme (Madsen & Jensen, 1999a).
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1. Each family in the original Bayesian network is contained in at least one clique. This
ensures that each conditional distribution can be attached to a clique, and thus the
joint distribution over the join tree is the same as the joint distribution of the original
network.

2. The tree meets the running intersection property, which means that if a variable is
contained in two different cliques, it is also contained in each clique on the path
connecting them. This property ensures that the relevant knowledge for each variable
can be obtained by transferring information between adjacent cliques. More precisely,
by transferring information relating to the variables shared between the two cliques.

X1, X2, X3 X2, X3, X4 X3, X5

Figure 2: A join tree constructed from the BN in Figure 1.

One of the fundamental schemes for carrying out inference over trees of cliques is the
algorithm developed by Shenoy and Shafer (1990b). This algorithm performs the inference
by sending messages between neighboring nodes in the tree, in order to collect and distribute
the information contained in the different parts of the tree. The message from a node Vi to
one of its neighbours, Vj , is computed as

φVi→Vj = φVi

∏
Vk∈nb(Vi)\Vj

φVk→Vi , (3)

where φVi is the initial probability potential on Vi, φVk→Vi are the messages from Vk to Vi
and nb (Vi) are the neighboring nodes of Vi in the join-tree. The initial potential assigned
to a node is the product of the conditional distributions that have been attached to it,
and a function constantly equal to 1 if no conditional density has been assigned to it. In
either case, it is defined as a function with domain equal to the combined state-space of the
variables in the clique.

The complexity of this scheme is determined by the computation of the messages, which,
as can be seen in Equation (3), involves the combination of the incoming messages with the
function stored in the node that is sending the message. The result of this operation is a
potential with size equal to the product of the number of states of the variables contained
in the node which sends the message. The complexity is therefore related to the size of
the largest node in the tree of cliques. In general, the computational complexity of both
exact and approximate inference in BNs is NP-hard (Cooper, 1990; Dagum & Luby, 1993),
but many real-world applications can nonetheless be solved efficiently by state-of-the-art
inference algorithms (Shafer & Shenoy, 1990; Madsen & Jensen, 1999a; Darwiche, 2001,
2003).

Although one cannot in general hope to achieve polynomial time performance when
designing and adapting inference algorithms, we can still aim for polynomial or even lin-
ear complexity that will allow for the evaluation of more complex domains. One approach
for achieving this is to exploit parallel architectures, where several processors/cores can be
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used to simultaneously solve different parts of the problem and afterwards obtain a global
solution by combining the solutions of the parts (Dı́ez & Mira, 1994; Kozlov & Singh, 1994,
1996; Pennock, 1998; Madsen & Jensen, 1999b; Namasivayam & Prasanna, 2006; Nikolova
et al., 2009). However, the reduction in complexity is limited by the amount of computing
resources allocated. It is also possible to adopt simplified models either by following mod-
elling tricks (Dı́ez & Druzdzel, 2006) or by using fixed structures, especially if the model is
aimed at specific problems like classification (Friedman et al., 1997). Complexity reduction
can also be attained by simplifying the structure of the network (Kjærulff, 1994; van En-
gelen, 1997) or even by using compact representations of the probability potentials in the
network (Cano et al., 2000).

2.1.2 Loopy Belief Propagation

The computational cost of the junction tree algorithm is exponential in the number of
nodes in the largest clique, and it may therefore not be feasible to employ this algorithm
for large and/or densely connected networks. An alternative is the loopy belief propagation
algorithm (Pearl, 1988; Peot & Shachter, 1991), for which messages are sent along the
edges in the Bayesian network, and where the cost of inference is exponential only in the
number of nodes of the largest family. A downwards message from a parent Ui to its child
X is denoted πX(ui) and from the child Yj to X is λYj (x). Their interpretations are that
πUi(x) = P (X = x, eUi) and λYj (x) = P (eYj |X = x), where eUi (resp. eYj ) denotes evidence
that is upstream (resp. downstream) of X. Notice that if the network has a tree-structure,
we can recover the posterior probability exactly; P (X = x|e) ∝ λ(x)π(x), where λ(x) =
λX(x)

∏
j λYj (x), λX(x) is the evidence on X and π(x) =

∑
u P (X = x|U = u)

∏k
i=1 πX(ui)

with U = {U1, . . . , Uk} being the parents of X. When the network is not tree-structured,
an iterative scheme can nevertheless be attempted, and although guarantees are not given,
it is often seen to converge in practice (Murphy, Weiss, & Jordan, 1999).

2.1.3 Variational Inference

Variational inference (Jordan, Ghahramani, Jaakkola, & Saul, 1999; Attias, 2000) is a deter-
ministic approximate inference technique, where we seek to iteratively optimize a variational
approximation to the posterior distribution of interest (Attias, 2000). Let Q be the set of
possible approximations; then the variational approximation to a posterior distribution
p(x|xE) is defined as

q∗xE
(x) = arg min

q∈Q
D ( q(x) ‖ p(x|xE) ) , (4)

where D ( q ‖ p ) is the Kullback-Leibler (KL) divergence from q to p.

A common approach is to employ a variational mean-field approximation of the poste-
rior distribution, meaning that Q is constrained to functions that factors over the individual
variables involved, i.e., q∗xE

(x) =
∏

i∈I q
∗
xE

(xi). During the optimization of the variational
mean-field one performs a coordinate ascent, where we iteratively update the individual
variational distributions while holding the others fixed (Smı́dl & Quinn, 2006; Jaakkola &
Qi, 2006). Updating a variational distribution involves calculating the variational expecta-
tion of the original log joint distribution function of the model, so for a variable Xi 6∈ XE
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we have

q∗xE
(xi) ∝ exp (Eq[ln p(x,xE)]) , (5)

where the expectation is taken wrt. all Xj ∼ q∗xE
(·), j 6= i (Smı́dl & Quinn, 2006). Using

the factorization of the variational distribution it follows that q∗xE
(xi) is determined by the

variational moments2 of the variables in mb(Xi), which invites an iterative solution strat-
egy that is guaranteed to converge to a local optimum (Smı́dl & Quinn, 2006). Variational
inference can thus be seen as a message passing scheme where a variable receives the mes-
sages from all variables in its Markov blanket, before updating its distribution according to
Equation (5), and distribute its updated moments to all the variables in the Markov blanket.
We will later return to variational inference to see how this algorithm can be implemented
efficiently for a certain distributional family.

An alternative is to focus on minimizing D ( p ‖ q ), which has the advantage of being
convex with respect to q if q is a factorizing distribution (Haft, Hofmann, & Tresp, 1999), and
therefore there is only one optimum approximating distribution q. However, the problem of
D ( p ‖ q ) is that the expectation is computed with respect to p instead of the less complex
approximate distribution q.

A popular algorithm based on this approach is expectation propagation (Minka, 2001).
It computes an approximate q by iteratively inserting factors of p into q minimizingD ( p ‖ q ).

Even if the variational mean-field approximation shares many commonalities with ex-
pectation propagation, the two differ by the former having the interpretation that q∗xE

(x)
is chosen as to maximize a lower-bound of the data likelihood p(xE) while the latter does
not.

2.2 Monte Carlo-Based Methods

We next turn to sampling methods. The idea is to approximate the probability p(xi|xE) (or
alternatively p(xi,xE)) by generating random samples, and approximating the requested
probability by a function over the samples. In case p(x|xE) > 0 ∀x ∈ ΩX, and p(xi|pa(xi))
is easy to sample from for all Xi ∈ X \ XE , we can do forward sampling. For ease of
notation assume that the variables Xi are labelled so that pa(Xi) ⊆ {X1, . . . , Xi−1}. Then

proceed to sample Xi in sample t in the following way: If Xi is observed, then x
(t)
i is set

to its observed value; otherwise it is drawn from the conditional distribution p(Xi|X1 =

x
(t)
1 , , . . . , Xi−1 = x

(t)
i−1). When a sufficient number of samples have been obtained, the

estimation of p(xi|xE) can be found from a sample mean estimator.

2.2.1 Importance Sampling

A limitation of forward sampling is that it can yield samples incompatible with the observed
values xE . As an example, consider a network with two binary variables X1 and X2, where
X1 is parent of X2, parameterized by p(X1 = 0) = 0.99 and p(X2 = 0|X1 = 0) = 0. Assume
that it has been observed that X2 = 0. Then, 99% of the times forward sampling will
obtain the configuration (X1 = 0, X2 = 0), while p(X1 = 0, X2 = 0) = p(X1 = 0)p(X2 =
0|X1 = 0) = 0 and therefore, should not be obtained. A solution to this limitation would be

2. The term “moment” is used loosely; the messages are determined by the distributional families in play,
and one will typically see quantities like Eq[Xj ], Eq[X2

j ], and Eq[log(Xj)] being received.
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to sample each variable from a distribution conditional on the observed values xE . In this
example, that amounts to sample X1 from p(x1|X2 = 0). In a general setting, conditioning
on the observations is equivalent to carrying out exact probabilistic inference.

Importance sampling (Hammersley & Handscomb, 1964) is a versatile simulation tech-
nique that in the case of inference in BNs amounts to transforming the numerator in Equa-
tion (2) by multiplying and dividing by a distribution p∗. The point of doing this is that
sometimes it may be computationally expensive to generate samples from p(·), as illustrated
in the example above. We instead utilize p∗ as a proxy. We require that p∗(x) > 0 whenever
p(x) > 0. Then, p(xi,xE) can be written as

p(xi,xE) =
∑
x∈ΩX

p(x, xi,xE) =
∑
x∈ΩX

p∗(x, xi,xE)
p(x, xi,xE)

p∗(x, xi,xE)
(6)

= Ep∗

[
p(x, xi,xE)

p∗(x, xi,xE)

]
,

where the expected value is computed with respect to p∗. Therefore, the problem is again
mapped to estimating an expected value, which can be naturally done using the sample
mean estimator. Samples from p∗ can be generated using the forward sampling technique.
Let us denote by p̂(xi,xE) the sample mean estimator of p(xi,xE). The convergence of
p̂(xi,xE) is determined by its variance, that for a sample of size T is

Var(p̂(xi,xE)) =
1

T
Var

(
p(x, xi,xE)

p∗(x, xi,xE)

)
.

Therefore, the way to speed up convergence is to choose p∗ so that p(x,xi,xE)
p∗(x,xi,xE) ≈ 1 for all x.

2.2.2 Markov Chain Monte Carlo

While importance sampling often has good convergence results in practice and has the
benefit that it scales well because the sampling is embarrassingly parallel, it may require
many samples to converge in certain cases. An alternative sampling-based approach is
Markov Chain Monte Carlo (MCMC), where a Markov Chain is generated, so that it has
p(x|xE) as its stationary distribution. A very popular approach in this class of algorithms is
the Gibbs sampler (Geman & Geman, 1984; Hrycej, 1990). The key idea is that a variable
Xi is independent of all other variables in the BN given its Markov blanket mb(Xi), thus
one can sample each variable in turn conditional on the sampled variables in the Markov
blanket. This can be efficient if p(xi|mb(xi)) is easily determined and sampled from for all
variables in the domain.

An alternative MCMC approach is the Metropolis-Hastings algorithm (Hastings, 1970).
In this algorithm, a configuration over X in sample t, x(t), is generated from a so-called
proposal function g(·|x(t−1)); note that the proposal distribution is conditional on the con-
figuration of sample t− 1. The sampled proposal is accepted with a given probability that
is determined by p(·) and g(·|·). If it is not accepted, x(t) is set equal to x(t−1). While the
stationary distribution of this Markov Chain is guaranteed to be p(x|xE) under only mild
regularity conditions, the choice of proposal function has an impact on the convergence

806



A Review of Inference Algorithms for Hybrid Bayesian Networks

speed and the mixing rate, that is, the number of samples required before new samples
approximately follow the the target distribution.

Since MCMC algorithms generate samples from a Markov chain, these samples are
necessarily dependent, and auto-correlation of the samples should be monitored in practice.

3. Inference in Static Hybrid Bayesian Networks

Traditionally, Bayesian networks have been defined for domains where the entities of interest
are modelled by discrete variables. However, this requirement imposes severe restrictions,
as many domains contain entities that are more appropriately modelled by variables with
continuous state spaces. To extend BNs with support for continuous variables, research has
pursued various directions, which we review in the next sub-sections.

Let us consider again the domain X, but now with both continuous and discrete vari-
ables; we again assume that XE ⊂ X has been observed. As before we are interested in
calculating p(xi|xE) for each Xi ∈ XI , where XI ⊆ X \XE is some subset of interest. We
denote by XC and XD the set of continuous and discrete variables in X \XE , respectively.
The goal of probabilistic inference in a hybrid domain can then be formulated as

p(xi|xE) =
p(xi,xE)

p(xE)
=

∑
xD∈ΩXD\{Xi}

∫
xC∈ΩXC\{Xi}

p(x,xE)dxC

∑
xD∈ΩXD

∫
xC∈ΩXC

p(x,xE)dxC

. (7)

Notice the relation to Equation (2). In principle the only complication when one works in
hybrid domains is that the continuous variables that are not in XE need be integrated out,
whereas we previously marginalized variables out using summation.

So far considerations about inference complexity have been made assuming discrete
variables whose distribution can be represented by a table of probability values. This repre-
sentation is very convenient from an operational point of view, as the operations required for
inference (restriction, combination, and marginalization) are closed for probability tables. It
means that all the operations required during the inference process can be carried out using
only one data structure. The problem may turn more complex when we perform inference
involving continuous variables. For instance, consider a BN with two continuous variables
X1 and X2 where X1 is the parent of X2. Assume X1 is a standard normal variable, i.e.,
its density is

p(x1) =
1√
2π
e−x

2
1/2, −∞ < x1 <∞ ,

and X2 has the following density:

p(x2|x1) =

{
3x2

2 if x1 < 0, 0 < x2 < 1,

2x2 if x1 ≥ 0, 0 < x2 < 1.

These two densities require different data structures to be handled: The first one requires
a data structure able to deal with exponentials of quadratic functions, while the second
requires the use of polynomials. Moreover, the combination of the two would require the

807



Salmerón, Ruḿı, Langseth, Nielsen & Madsen

manipulation of functions that are the product of a polynomial and an exponential of a
quadratic function. The problem can be even more complex if we consider hybrid networks,
in which densities that are defined for discrete and continuous variables simultaneously are
required (Langseth, Nielsen, Rumı́, & Salmerón, 2009).

We will now consider how the algorithmic families presented in Section 2 have been
adapted to hybrid domains. We will give the presentation in increasing order of model com-
plexity: We start with models containing only Gaussian and discrete variables. Thereafter,
we turn to models supporting distributions belonging to the conjugate exponential family,
before we end up discussing models containing general (unconstrained) distributions.

3.1 Algorithms Based on the Gaussian Assumption

One may choose to carefully construct the hybrid model such that the exact inference
algorithms developed for discrete models can be applied after only simple modifications. For
instance, exact inference based on join trees is possible whenever the joint distribution over
the variables of the domain is from a distribution-class that is closed under the operations
required for inference (Shenoy & Shafer, 1990a). A class of models constructed in this way
is the set of Conditional Linear Gaussian (CLG) distribution (Lauritzen & Wermuth, 1989)
models.

3.1.1 Conditional Linear Gaussian Models

In the CLG model, discrete variables are not allowed to have continuous parents. The
conditional distribution of each discrete variable X ∈ XD given its parents is a multinomial,
whilst the conditional distribution of each continuous variable Z ∈ XC with discrete parents
ZD ⊆ XD and continuous parents ZC ⊆ XC , is given by

f(z|pa(z) = {zD, zC}) = N (z;α(zD) + β(zD)TzC , σ
2(zD)) , (8)

for all zD ∈ ΩZD
and zC ∈ ΩZC

, where α and β are the coefficients of a linear regression
model of Z given its continuous parents; this model can differ for each configuration of the
discrete variables ZD. After fixing any configuration of the discrete variables XD, the joint
distribution of any subset of the continuous variables XC is a multivariate Gaussian.

The first attempt at developing an exact method over join trees following this approach
was introduced by Lauritzen (1992) and later revised by Lauritzen and Jensen (2001).
The algorithm is able to carry out exact inference in hybrid BNs, as long as the joint
distribution is a CLG. Instead of join trees, a more restrictive structure, called strong
junction trees (Cowel, Dawid, Lauritzen, & Spiegelhalter, 1999), is used. A strong junction
tree is a join tree that has at least one distinguished clique R, called a strong root, such that
for each pair (C1, C2) of adjacent cliques in the tree, with C1 closer to R than C2, it holds
that C2 \C1 only contains continuous variables or C2 ∩C1 only contains discrete variables.
Consider again the model in Figure 1, and define XD = {X1, X3}, XC = {X2, X4, X5}.
Now the junction tree in Figure 2 is a strong junction tree with strong root {X1, X2, X3}.
A numerically more stable algorithm that operates under the CLG framework is given by
Cowel (2005). It operates with univariate regressions on the continuous variables, avoiding
matrix manipulations and the possible numerical errors entailed by these manipulations.
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A more efficient algorithm for exact inference in CLG networks is given by Madsen
(2008). It is based on lazy propagation (Madsen & Jensen, 1999a), that uses factorized
potentials in the cliques as well as in the separators of the join tree. Semantic knowledge
is used to produce a refined version of the algorithm, that takes advantage of the nature of
the potentials (conditional densities or not) involved in the calculations (Zhu et al., 2012).

3.1.2 General Models of Gaussian and Discrete Variables

The CLG model does impose certain limitations on the domain being modelled: discrete
variables cannot directly depend on a continuous variable and each continuous variable must
follow a conditional linear Gaussian distribution. Furthermore, inference in CLG models is
in general harder than in models that are fully discrete or fully Gaussian. Even in simple
models like poly-trees, where exact inference is linear in the size of the model in the pure
Gaussian case, approximate inference is NP-hard for CLGs (Lerner & Parr, 2001).

In order to overcome the structural restrictions mentioned above, Lerner, Segal, and
Koller (2001) introduced the so-called augmented CLG networks, in which conditional den-
sities of discrete nodes with continuous parents are modelled using the soft-max function.
The drawback is that the algorithm is not able to provide exact inference results, as the
product of Gaussian and soft-max functions is only approximated by a Gaussian. The
scheme is similar to the method previously proposed by Murphy (1999), where augmented
CLG networks are also used, and the product of a logistic and Gaussian function is approx-
imated by a Gaussian.

An approximation scheme of a different nature is followed by Heskes and Zoeter (2003),
where general belief propagation over augmented CLG networks is utilized. The algorithm
is based on loopy belief propagation (cf. Section 2.1.2) with weak marginalization, which
means than only the first two moments are kept after marginalization, instead of the full
density. The posterior density for the variables of interest is computed by minimizing the
Kikuchi energy (Yedidia, Freeman, & Weiss, 2001).

Approximate inference in CLG networks has also been approached using Monte Carlo
methods. An algorithm based on adaptive importance sampling is proposed by Sun and
Chang (2005), cf. Equation (6). The idea is that each variable is sampled from a condi-
tional density given its parents in the network that is dynamically updated as the sampling
process progresses. The sampling order is therefore from parents to children. The sampling
conditional densities are modelled using CLG functions.

Rao-Blackwellization is used by Paskin (2004) as the core of an algorithm that combines
Gibbs sampling with exact computations in a join tree. The idea is that in CLGs, inference
over the continuous variables is tractable when the discrete variables are observed. Then,
the posterior densities are estimated by sampling on the discrete variables and manipulating
the conditional densities given the sample. Rao-Blackwellization combined with importance
sampling is used by Gogate and Dechter (2005) to carry out inference on hybrid Bayesian
networks with CLG distribution and discrete constraints.

Scalability is addressed by Sun, Chang, and Laskey (2010). The algorithm only provides
exact results in CLG networks with poly-tree structure. Otherwise, mixture of Gaussian
approximations are used. Recently, a parallel algorithm based on importance sampling has
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been proposed by Salmerón et al. (2015). It is based on an adaptation of the Evidence
Weighting algorithm (Fung & Chang, 1990) to CLG networks.

3.2 The Conjugate Exponential Family

We will now turn to the conjugate exponential family models, which have received a lot of
interest lately. Under this model, each conditional distribution in the model belongs to the
exponential family. Recall that if a univariate variable X is in the exponential family, its
distribution can be written as

ln p(x) = lnh(x) + ηTs(x)−A(η),

where the scalar functions h(x) and A(η) are the base measure and the log-normalizer,
respectively; the vectors η and sX(·) are the natural parameters and the sufficient statistics
vectors, respectively. The exponential family of distributions include many commonly used
distributions, including both the Gaussian and the multinomial as special cases.

For the conjugate exponential family models we require that all distributions are of the
following form:

ln p(xi|pa(xi)) = lnhXi + ηXi
(pa(xi))

TsXi(xi)−AXi(ηXi
(pa(xi))), (9)

where the natural parameters depend on the configuration of the parents pa(xi). The
subscript Xi means that the associated functional forms may be different for the different
factors of the model. Since the distributions are conjugate, the posterior distribution for
each variable in the model has the same functional form as its prior distribution, and
probabilistic inference only changes the values of the parameters of the model rather than
the functional form of the distributions.

Inference can be done efficiently and in closed form when the distributions involved are
conjugate-exponential (Beal, 2003). In particular, this scheme is useful for the mean-field
approximation (see Section 2.1.3). For this situation, a general architecture for supporting
variational message passing in graphical models was presented by Winn and Bishop (2005),
highlighting how distributions that are conjugate-exponential families (Attias, 2000; Beal,
2003; Winn & Bishop, 2005) can be utilized to efficiently represent the messages by the
expected natural statistics. The key insight is to express the functional form of p(x|pa(x))
in terms of the sufficient statistics sZ(z) of any of the parents Z ∈ pa(X):

ln p(x|pa(x)) = lnhZ + ηXZ(X, coZ(X))TsZ(x)−AZ(ηXZ(x, coZ(X))),

where coZ(X) denotes the coparents of Z with respect to X. This leads to the relationship

ηX = Eq(ηX(pa(X))) +
∑

Y ∈ch(X)

Eq(ηXY (Y, coX(Y ))),

and, since ηX(·) and ηXY (·, ·) are multi-linear in their arguments (Winn & Bishop, 2005),
an efficient message passing scheme can be constructed.

Efficient implementations of variational message passing under the mean-field assump-
tion is currently a hot research topic. For instance, a scalable solution called distributed
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variational message passing has been developed by Masegosa et al. (2016, 2017), based on
approaching variational message passing as a projected natural gradient ascent algorithm.
The method is designed following the Map-Reduce paradigm.

An extension of the mean-field approximation is the so-called structured variational
Bayes (Jordan et al., 1999). It relaxes the mean-field approximation by assuming a fac-
torization of the variational approximation involving factors containing more than single
variables, thereby increasing the ability to represent the complexity of the posterior belief
state. Unfortunately, structured variational Bayes solutions must be tailor-made to the
problem at hand, as, e.g., the solution given by Ghahramani and Jordan (1997).

Similar schemes can also be deployed for expectation propagation (Minka, 2001), but
there relying on a transformation between the exponential family representation’s expected
sufficient statistics and the distribution’s moments. The method introduced by Heskes,
Opper, Wiegerinck, Winther, and Zoeter (2005) is an approximate algorithm that works
for models within the exponential family. It is based on expectation propagation and is
formulated for the general context of factor graphs, which contain Bayesian networks as
special cases.

3.3 General Distribution Families

The most common idea for inference in general distribution families is to “translate” the
original model into an approximate model, for which efficient exact or approximate inference
algorithms can be easily applied. Other solutions consists of adopting general algorithms
of approximate nature, or use different model representations.

3.3.1 Translation Procedures

A model can for instance be translated by discretizing the continuous variables. Inference
can then be carried out using techniques developed for discrete models.

For a continuous variable Xk without parents, discretization is in essence to approxi-
mate the density function p(xk) by a piecewise constant function. The discretization pro-
cess amounts to selecting an appropriate set of pieces in the approximating distribution,
observing the tradeoff between loss of accuracy and increase in computational cost. For a
continuous variable Xi with continuous parents pa(Xi) ⊆ XC , the domain of the parents,
Ωpa(Xi), is split into disjoint hypercubes P1, . . . ,Pri . For each hypercube P` the condi-
tional distribution is approximated by a function q`(·) so that p(xi|pa(xi)) ≈ q`(xi) for all
pa(xi) ∈ P`. Thereafter, each q`(xi) is discretized as if it was an unconditional distribution,
while choosing the same split-points for all the hypercubes ` = 1, . . . , ri. For computational
reasons, the separating of Ωpa(Xi) into hypercubes is defined using the same split-points as
was used when Xj ∈ pa(Xi) was discretized as the head of its conditional distribution.

The method proposed by Kozlov and Koller (1997) performs the discretization by min-
imizing an upper bound of the Kullback-Leibler divergence between the true and the dis-
cretized density. The minimization is done dynamically on the join tree. This is, however,
a computationally costly method that even requires a specific data structure, the so-called
BSP-trees. A more efficient approach is proposed by Neil, Tailor, and Marquez (2007).
The key idea here is that it is the individual posterior densities that are discretized, in-
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stead of dynamically discretizing the densities in the join tree. This approach to dynamic
discretization can therefore be implemented on top of any discrete inference scheme.

More sophisticated approaches use translations with higher expressive power than dis-
cretisation. These include mixtures of truncated exponentials (MTEs) (Moral, Rumı́,
& Salmerón, 2001) and mixtures of polynomials (MoPs) (Shenoy & West, 2011a). The
mixtures of truncated basis functions (MoTBFs) framework (Langseth, Nielsen, Rumı́, &
Salmerón, 2012b) aims to combine these. The key idea for the MoTBF framework is that
q`(xi) is now approximated by a sum of basis-functions, i.e., a set of functions that are closed
under the operations needed for probabilistic inference. That is, q`(xi) =

∑k
r=0 θ`,rψr(xi),

where ψr(·) are the pre-defined set of basis functions and θ`,r the parameters. While piece-
wise constant basis-functions lead to discretization, more interesting examples include poly-
nomials (leading to the MoP framework) and exponentials (leading to the MTE framework).
There is no general rule for determining which kind of basis function (e.g., exponential or
polynomial) is preferable, and successful applications of both polynomials and exponentials
can be found in the literature. A procedure for efficiently finding an MoTBF approximation
to any density function was described by Langseth, Nielsen, Rumı́, and Salmerón (2012a).

The first inference algorithm specifically designed for MTEs was proposed by Cobb
and Shenoy (2006a). It is based on the Shenoy-Shafer scheme (Shenoy & Shafer, 1990a).
An approximate inference scheme was proposed by Rumı́ and Salmerón (2005), where the
Penniless propagation algorithm (Cano et al., 2000) is adapted to MTEs. A more recent
proposal for inference in hybrid BNs with MTEs (Fernández, Rumı́, & Salmerón, 2012)
is based on importance sampling with approximate pre-computation (Salmerón, Cano, &
Moral, 2000), where the sampling distributions are obtained following a variable elimi-
nation scheme (Zhang & Poole, 1996) and the distributions are represented using mixed
trees (Moral, Rumı́, & Salmerón, 2003). The instantiation of the Shenoy-Shafer architec-
ture to MoPs was reported by Shenoy and West (2011a). The most general proposal for
exact inference within this framework is given by Langseth et al. (2012a). The scheme
is based on postponing the combination and addition of potentials as much as possible,
adopting a lazy scheme (Madsen & Jensen, 1999a). It is valid for MoTBFs in general.

The main drawback of translation procedures is that conditional densities are defined by
splitting the domain of the parents into hypercubes, which means that the approximating
distributions are piecewise defined functions. Hence, their combination may result in an
increase of the size of the result similar to the one produced when combining probability
tables. In addition to that, the combination of mixture distributions usually results in an
increase in the number of terms. This fact limits its efficiency compared to exact inference
in CLG models or variational methods for exponential family models.

A recent proposal (Cortijo & Gonzales, 2017) succeeds in keeping the complexity of
inference comparable to that for discrete networks. The idea is to discretize the continuous
variables and add an artificial continuous variable for each one of them. The conditional
distribution of each extra variable is modeled using a conditionally truncated density. Since
these variables do not have children, inference cam be carried out efficiently.

A related scheme has been recently introduced by Mori and Mahalec (2016). Inference is
carried out over a representation of the probability distributions based on decision trees. It
is equivalent to discretizing the continuous variables whenever they appear in internal nodes
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of the tree. The distributions stored in the leaves are either Gaussian (for the continuous
variables) or multinomial (for the discrete variables).

Another approach consists of approximating the conditional densities by kernels (Wand
& Jones, 1995). However, given the complexity of kernels, the idea has only been applied
to restricted BN structures used in Bayesian classifiers (Pérez, Larrañaga, & Inza, 2009).

The use of multivariate mixtures of Gaussians as a proxy has been explored by Hanea,
Morales-Napoles, and Ababei (2015) and Ickstadt et al. (2010). Both works are based on
the fact that mixtures of multivariate Gaussians can approximate any density arbitrarily
well in Rk using a sufficiently large number of components (Wu & Ghosal, 2008). The
resulting models are called nonparametric Bayesian networks. In comparison with CLGs,
nonparametric BNs sidestep both the Gaussian assumption and the linearity assumption, as
the relation between a node and its parents is, in this case, a mixture of linear models rather
than a single linear model. The underlying idea is very similar to the procedure for learning
mixtures of Bayesian networks given by Thiesson, Meek, Chickering, and Heckerman (1998)
and a similar idea was also pursued by Shenoy (2006). Shenoy works with augmented CLG
networks, and the structure of the network is modified using arc reversals in order to make
it compatible with the exact algorithm of Lauritzen and Jensen (2001). The result of the
inference is approximate, as the conditional densities resulting from the arc reversal process
are approximated by mixtures of Gaussians. A general algorithm for inference in hybrid
BNs was also proposed by Cinicioglu and Shenoy (2009). The fundamental idea is based
on arc reversal and approximation by mixture of Gaussians of the densities in the network,
incorporating the ability of dealing with deterministic conditionals.

3.3.2 General Algorithms

The next group of algorithms is also able to operate over general densities. All of them are,
however, of approximate nature. Examples of general approximation schemes include the
Gibbs sampler (Geman & Geman, 1984; Hrycej, 1990), variational inference (Attias, 2000;
Jordan et al., 1999), and expectation propagation (Minka, 2001).

The scheme proposed by Koller, Lerner, and Anguelov (1999) is based on the Shenoy-
Shafer architecture, where the approximation is two-fold. First, messages over the join tree
are approximated in order to reduce their complexity, and afterwards sampling is performed
in each clique. The posterior densities are estimated from the samples.

Importance sampling is the methodology underlying the proposal presented by Yuan
and Druzdzel (2007b). It is valid for any density representation that allows sampling.
The posterior densities are given in terms of mixtures of Gaussians. A similar approach
enhanced with the ability to deal with deterministic conditionals is given by Yuan and
Druzdzel (2007a). Mixtures of Gaussians are the underlying model in the so-called mix-nets
(Davis & Moore, 2000), where the authors propose to carry out inference using sampling
or variational approximations, given that exact inference is not possible.

The so-called nonparametric belief propagation (Sudderth, Ihler, Isard, Freeman, & Will-
sky, 2010) also operates over general hybrid BNs. It is based on approximating densities
by sampling and then fitting a kernel to the sample. The drawback is that kernels are not
efficient representations for large samples or in complex models.
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When using variational inference (cf. Section 3.2) for distributions that fall outside the
family of conjugate-exponential models, one has for instance resorted to developing tight
lower bounds to commonly occurring functions (Jordan et al., 1999; Jaakkola & Jordan,
2000) or apply stochastic optimization for calculating the required expectations (Paisley,
Blei, & Jordan, 2012; Hoffman, Blei, Wang, & Paisley, 2013). Recently, stochastic ap-
proximation methods have been devised for direct optimization of the variational bound.
First, assume the variational distribution q ∈ Q is parameterized by ν. Then, observe
that the optimization in Equation (4) can equivalently be written as the maximization of
L(qxE (xI |ν)), where (Jordan et al., 1999)

L(qxE (xI |ν)) = Eq [log(p(x))− log(qxE (xI |ν))] . (10)

This leads to an iterative gradient-based updating scheme over ν, where, at iteration t, ν
is updated as

νt ← νt−1 + ρt∇νL(q(x|νt−1)),

where ρt is a sequence of learning rates fulfilling the Robbins-Monro conditions (Robbins
& Monro, 1951). For nonconjugate-exponential models, the expectation in Equation (10)
cannot be calculated in closed form. Instead, Ranganath, Gerrish, and Blei (2014) exploit
that ∇νL(q(x|ν)) can be calculated as

∇νL(q(x|ν)) = Eq [∇ν log(qxE (xI |ν)) [log(p(x))− log(qxE (xI |ν))]] , (11)

which leads to black-box variational inference, where the gradient in Equation (11) is ap-
proximated by sampling from q(x|νt−1). Hence, black-box variational inference is flexible
in the sense that the only constraints that should be satisfied is that one needs to be able
to sample from the variational distribution and be able to calculate ∇ν log(qxE (xI |ν)) as
well as log(p(x)) and log(qxE (xI |ν)). Due to the sampling component, the efficiency of the
method is influenced by the variance of the estimated gradient. Measures to reduce this
variance include the use of Rao-Blackwellization and control variates.

3.3.3 Other Representations

Probabilistic inference in hybrid models has also been studied from the perspective of other
graphical models related to Bayesian networks. Of special interest are the probabilistic
decision graphs (PDGs) (Jaeger, 2004), which are particularly designed to support efficient
inference. A convenient feature of PDGs is that any discrete BN can be transformed into
a PDG (Jaeger, 2004). It is also known that CLG models can be represented as PDGs
(Nielsen, Gámez, & Salmerón, 2012) and therefore inference on such hybrid models can be
efficiently performed over them. Recently, it has been shown that MoTBFs can also be
represented as PDGs, though so far they have only been tested in practice in supervised
classification problems (Fernández, Rumı́, del Sagrado, & Salmerón, 2014).

4. Inference in Dynamic Bayesian Networks

Many domains have strong internal structure that can often be appropriately described
using an object oriented language, either due to repetitive substructures or substructures
that can naturally be ordered in a superclass–subclass hierarchy (Koller & Pfeffer, 1997;
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Neil, Fenton, & Nielson, 2000). For instance, in temporally evolving (or dynamic) domains
we often see the same type of object repeated over time (for an unbounded number of
steps). Bayesian networks extended to such dynamic domains are called Dynamic Bayesian
networks (Dean & Kanazawa, 1989; Kjærulff, 1992; Murphy, 2002) and encode the temporal
dynamics of the system explicitly in the model (these models can therefore also be seen as
special cases of OOBNs).

For regular types of dynamic Bayesian networks we usually assume that observations
are made at a fixed time-frequency and that the probability distribution underlying the
transition model and the observation model are invariant over time. Most dynamic Bayesian
networks used in practice are also assumed to follow a first order Markov process, adhere
to the sensor Markov assumption, and be stationary. A special type of dynamic Bayesian
network is the hidden Markov model (HMM) (Rabiner, 1989). In these models, a latent
(vector) variable Xt is used to represent the belief state at time t and the (vector) variable Et

the observations. The dynamic aspect of the model is conveyed only through the connection
of the belief states over time. Smyth (1994) presents a simple dynamic model of this type
for detecting both known and unknown failure states of a system, and he also demonstrates
the necessity of modelling temporal dynamics in order to achieve high prediction accuracy.
The Input-Output HMMs (Bengio, 1999) extend the HMMs by explicitly modelling “input”
variables Ut that are controlled externally, resulting in an effect on the “output” variables
Et. An example of a three time slice input-output HMM is shown in Figure 3. The
assumption of having a fixed observation-frequency underlying the above model classes is
dropped in the continuous time Bayesian networks, which can be seen as the limit model
when the length of the time-interval encoded in the DBN approaches zero (Nodelman,
Shelton, & Koller, 2002).

U0

X0

E0

U1 U2

X1 X2

E1 E2

Figure 3: A three time slice input-output HMM.

Inference in dynamic Bayesian networks obviously share the computational difficulties of
regular Bayesian networks, but in the dynamic case we are also often faced with additional
problems. One is the entanglement problem, where after a certain time step, all variables
xt describing the belief state have become dependent after observing {u1:t, e1:t}. Conse-
quently, we cannot represent the exact belief state p(xt|e1:t,u1:t) in factorized form (Boyen
& Koller, 1998, 1999). As an example, Figure 4 illustrates a dynamic Bayesian network,
where all variables used to encode the belief state at time t = 2, i.e., X1

2 , X2
2 , and X3

2 , have
become dependent after observing the evidence {e0, e1, e2}. Rather than dealing with this
fully correlated belief state one often employs approximate methods including approximate
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factorizations of the joint probability distribution describing the system state (Boyen &
Koller, 1998) as well as sampling based techniques in the form of particle filtering (Doucet,
De Freitas, Murphy, & Russell, 2000). An important specialization of the HMMs, which
enforces internal structure on the belief state during specification, is the factorial HMMs
(Ghahramani & Jordan, 1997), and its later extension to infinite factorial HMMs (Van Gael,
Teh, & Ghahramani, 2009) that is further generalized by Doshi, Wingate, Tenenbaum, and
Roy (2011). Inference in the two latter model classes is performed using sampling.

X1
0

X2
0

X3
0

E0

X1
1

X2
1

X3
1

E1

X1
2

X2
2

X3
2

E2

Figure 4: A three time slice dynamic Bayesian network. All variables used to describe the
belief state (i.e. X1

2 , X2
2 , and X3

2 ) have become correlated at time t = 2.

Similar to the extension of the static Bayesian network model to hybrid domains, dy-
namic Bayesian network models have likewise been extended to continuous and hybrid
domains (Lerner, Moses, Scott, McIlraith, & Koller, 2002). In purely continuous domains,
where the continuous variables follow linear Gaussian distributions, the dynamic Bayesian
network corresponds to (a factorized version of) a Kalman filter (1960). In these types
of models, the dynamics of the process are assumed to be linear, and exact inference can
be performed efficiently. When modeling non-linear domains, the dynamics and observa-
tional distributions are often approximated through, e.g., the extended Kalman filter or the
unscented Kalman filter (Julier & Uhlmann, 1997).

In hybrid domains where the continuous variables follow a conditional linear Gaussian
distribution, the model is also known as a switching dynamical linear system (SDLS), where
changes in the discrete variables cause the continuous linear dynamics to switch. A par-
ticular problem with an SDLS model is that the marginal distribution over the continuous
variables (at a certain point in time) is a mixture of multivariate Gaussian distributions,
and the number of mixture components grow exponentially and unboundedly over time. In
order to ensure that the mixture of Gaussians does not grow too large several approximate
solution techniques have been proposed. For example, Barber (2006) collapses a mixture
of Gaussians into a single Gaussian in order to avoid the exponential blow-up in the num-
ber of mixture components. Alternatively, one could also apply discretization approaches
(Straub, 2009; Vinh, Chetty, Coppel, & Wangikar, 2012; Zhu & Collette, 2015) or restrict
the model to only cover the k most recent observations, thereby effectively limiting the
number of mixture components. Solutions based on Markov Chain Monte Carlo have also
been explored (Iamsumang, Mosleh, & Modarres, 2014, 2015).
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Variational approximations have also been used in this setting (see, e.g., the work
by Ghahramani & Hinton, 2000), but as noted by, e.g., Turner and Sahani (2011), the
compactness-property of variational inference (which is a consequence of the calculation
scheme’s built-in preference for approximations q(x) that are strictly positive only when
the true distribution p(x) is strictly positive) can lead to a failure to propagate uncertainty
in time, thus limiting the usefulness of the calculated belief states. Alternatives include
Expectation propagation (Zoeter & Heskes, 2011) and structured variational Bayes (Jordan
et al., 1999), where the model complex factors defined by the latter increases the ability to
represent the complexity of the posterior belief state.

A Bayesian formulation of a stationary dynamic Bayesian network complicates the infer-
ence. Each model parameter, modelled as an (unobserved) latent variable, will have a child
in each time-step that effectively introduces new correlations over time. These variables,
denoted global hidden variables (Hoffman et al., 2013), require special attention using the
variational Bayes formulation (Ghahramani & Beal, 2000; Hoffman et al., 2013; Broderick,
Boyd, Wibisono, Wilson, & Jordan, 2013; Luttinen, 2013).

5. Software for Inference in Hybrid Bayesian Networks

Table 1 contains a list of available software products implementing inference in hybrid
Bayesian networks. Column “Models” refers to the type of distribution used. In that
sense, unconstrained means that they handle different types of distributions, but of course
inference in such cases is only carried out by means of Monte Carlo methods. The column
“Inference” indicates the type of inference algorithm used. The keys used in this column
are VE for variable elimination, VMP for variational message passing, EP for expectation
propagation, MCMC for Markov Chain Monte Carlo, and VB for variational Bayes (see
Section 3). Column “Open Source / Language” indicates if it is an open source product, in
which case its programming language is given. In the last column, API stands for application
programming interface and GUI for graphical user interface.

6. Conclusions

This document gives an overview of state-of-the art of inference in hybrid Bayesian networks.
While inference in static hybrid BNs has been widely studied, scalability has only received
limited attention. Given the complexity of the inference task, approximate algorithms are
of special interest.

The complexity of inference in dynamic models not only resembles the difficulties of the
static case, but the inclusion of the time component increases the magnitude of the problem
and emphasizes the need of approximate scalable algorithms. The problem is even more
complex if a Bayesian formulation of the inference problem is adopted.

As a general rule, exact inference is only feasible for models of moderate size. In such
case, if the normality assumption holds, CLG-related algorithms stand out as the right
choice. If the underlying process is not Gaussian, or the structure restriction imposed by
CLG models does not fit the problem under study, then the use of translation procedures
like discretization or MoTBFs constitute a clear alternative. In Table 2 we give an overview
of how the referenced inference methods support different distributional assumptions.
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Name Website Models Inference Free? Open
Source /
Language

Platform(s)

AgenaRisk http://www.agenarisk.com Discretised Join Tree No No All
AMIDST
toolbox

http://amidsttoolbox.com Conjugate
exponential

VMP, im-
portance
sampling

Yes Java 8 All

Analytica http://www.lumina.com Unconstrained Sampling No No Windows
Bayes
Server

http://www.bayesserver.com CG VE, Sam-
pling

No No API: all,
GUI:
Windows

BayesiaLab http://www.bayesia.com Discretised Join Tree No No All
BNT https://github.com/

bayesnet/bnt

CG Several Yes Matlab /
C

All

Dimple https://github.com/

AnalogDevicesLyri-

cLabs/dimple

Discretised Several Yes Matlab /
Java

All

Edward http://edwardlib.org/ Unconstrained MCMC,
VB

Yes Python All

Elvira http://leo.ugr.es/elvira/ MTE VE Yes Java All
gR https://cran.r-project.org/

web/views/gR.html

CG Join Tree Yes R All

Hugin
Expert

http://www.hugin.com CG Join Tree No No All

Infer.NET http://research.microsoft.com/

en-us/um/cambridge/

projects/infernet/

Conjugate
exponential

VMP,
EP,
Gibbs
sampling

Yes C# All

JAGS http://mcmc-

jags.sourceforge.net/

Unconstrained MCMC Yes Java All

Stan http://mc-stan.org/ Unconstrained MCMC,
VB

Yes C++ All

Vibes http://vibes.sourceforge.net Conjugate
exponential

VMP Yes Java All

Table 1: Software supporting inference in hybrid BNs.
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Methodological basis
Message passing Monte Carlo Variational inference Translation based

Discrete Lauritzen and Spiegel-
halter (1988), Shenoy
and Shafer (1990b),
Madsen and Jensen
(1999a), Murphy et al.
(1999), Shafer and
Shenoy (1990), Darwiche
(2001, 2003), Namasi-
vayam and Prasanna
(2006), Nikolova et al.
(2009)

Attias (2000), Smı́dl
and Quinn (2006),
Jaakkola and Qi (2006)

Kjærulff (1994), van En-
gelen (1997), Friedman
et al. (1997), Dı́ez and
Druzdzel (2006), Cano
et al. (2000)

GGM Lauritzen (1992), Cowel
et al. (1999), Cowel
(2005), Madsen (2008),
Lauritzen and Jensen
(2001), Nielsen et al.
(2012), Zhu et al. (2012),
Lerner and Parr (2001),
Lerner et al. (2001),
Yedidia et al. (2001),
Heskes and Zoeter
(2003), Sun et al. (2010)

Sun and Chang
(2005), Paskin
(2004), Gogate
and Dechter
(2005), Salmerón
et al. (2015)

Ghahramani and Jor-
dan (1997), Murphy
(1999)

CEF Winn and Bishop (2005) Attias (2000), Minka
(2001), Beal (2003),
Winn and Bishop
(2005), Heskes et al.
(2005), Paisley et al.
(2012), Hoffman et al.
(2013), Masegosa et al.
(2016, 2017)

GDF Koller et al. (1999) Hrycej (1990),
Davis and Moore
(2000), Yuan and
Druzdzel (2007b,
2007a), Sudderth
et al. (2010)

Jordan et al. (1999),
Minka (2001), Ran-
ganath et al. (2014)

Kozlov and Koller
(1997), Neil et al.
(2007), Moral et al.
(2001), Shenoy and
West (2011a, 2011b),
Cobb and Shenoy
(2006a, 2006b), Rumı́
and Salmerón (2005,
2007), Shenoy (2006),
Fernández et al. (2012),
Langseth et al. (2009,
2012a), Cinicioglu and
Shenoy (2009), Ickstadt
et al. (2010), Shenoy
et al. (2015), Hanea
et al. (2015), Mori and
Mahalec (2016), Cortijo
and Gonzales (2017)

Table 2: Classification of inference methods relative to distributional assumptions and infer-
ence principles. For the distributional assumptions we distinguish between purely
discrete distributions (discrete), general Gaussian models (GGMs) with discrete
and Gaussian distributed variables (this includes CLG models as a special case),
the conjugate exponential family (CEF), and general distribution families (GDF).
Note that methods listed for e.g., the CDF model class are also applicable to any
specialized model-subset within that class such as CLG models.
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When facing large problems, scalability turns out to be crucial. In such scenarios,
variational inference algorithms are the preferred alternative in the literature, for handling
models within the conjugate exponential family. Outside that family of distributions, one
has to resort to Monte Carlo algorithms or methods like black box variational inference.
This group of algorithms is receiving considerable attention in recent literature, and will
probably be the focus of future research.
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López, D., & Madsen, A. L. (2017). Scaling up Bayesian variational inference using
distributed computing clusters. International Journal of Approximate Reasoning, 88,
435–451.

824



A Review of Inference Algorithms for Hybrid Bayesian Networks

Masegosa, A., Mart́ınez, A., Langseth, H., Nielsen, T., Salmerón, A., Ramos-López, D.,
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