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Preface

This thesis is the final work of the two year master programme Industrial Cybernetics
at the Department of Engineering Cybernetics at the Norwegian University of Science
and Technology. The work in this thesis has been carried out during the spring of
2018.

The purpose of the thesis is to look into visual feedback for an additive manufacturing
process being developed at the Department of Engineering Cybernetics. The aim of
the project is to use a Cold-Metal-Transfer welding method for additive manufacturing,
and this thesis is supposed to highlight requirements and insight into what is needed
for such a process.

For this purpose some equipment have been made available. The six degree-of-freedom
industrial robot arm IRB-140 from ABB will be used for testing, together with a
pneumatic caulking gun for extrusion of material. Two Structured light 3D-cameras,
Intel SR-300 and the ASUS Xtion Pro, were also made available.

No software was provided by my supervisors, so most of the software have been found
during the course of thesis. The project thesis this fall used Matlabs Computer Vision
Toolbox, but was found lacking in features to deal with 3D point-cloud data. The open-
source software suite Point-Cloud Library was proposed as an alternative because
of its range of algorithms and datastructures created specifically to work with point
clouds, but installation problems and compatibility with the 3D-cameras introduced
plenty of frustration and wasted time. I was not very familiar with computer vision
and the methods used in this field of study, lacking the required subjects, and thus
some time was used in the wrong corners of the computer vision field.

During the experiment phase of the thesis there were problems calibrating the robot
to be aligned with the working table and figuring out how to control the robot, since
the aim of the thesis was to focus on the computer vision part some time was used
outside of the scope of the thesis.
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My supervisors on this project have been Jan TommyGravdahl with co-supervisor Linn
Danielsen Evjemo. I have had regular meetings with them throughout the semester
and Linns knowledge of the ABB robot have been invaluable.

Trondheim, June 11th 2018
Jørgen Jackwitz
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Abstract

Large-scale Additive Manufacturing is blossoming and brings new challenges to the
Additive Manufacturing scene. For larger constructions, material deformation from
weight, environmental disturbances and extrusion may disturb the AM process. This
thesis looks for a way to measure these errors. A proof of concept software workflow
has been created to measure road-width and height of the extruded material directly
after extrusion using a simple edge detection algorithm. Testing the workflow on a
life-size robot arm and a practical extrusion test shows promise for future applications
and improvements.

Sammendrag

Stor-skala additiv produksjon blomstrer og setter lys på nye utfordringer innen ad-
ditiv produksjon. For større konstruksjoner spiller materialdeformasjon fra vekt,
forstyrrelser fra miljø og ekstrudering større rolle for indusering av feil. Denne opp-
gaven ser på forskjellige metoder å måle disse feilene på. Et førsteutkast på en pro-
gramvareflyt for måling av bredde og høyde på det ekstruderte materialet rett etter
ekstrusjon ved bruk av en enkel kantdetekjsonsalgoritme er vist frem. Vi fikk se at
metoden fungerte ved å teste denne programflyten på en virkelig robot og med en
praktisk ekstrusjonstest, men metoden trenger forbedringer.
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Chapter 1

Introduction

Additive Manufacturing (AM), also known as 3D-printing, has flourished in the home
and hobby market in the last decade after the release of the open-source RepRap
project [2]. Because of the open-source nature of the RepRap project, hobbyists and
manufacturers were able to rapidly improve and contribute to better and cheaper
parts and methods. While small-scale AM is interesting for rapid prototyping, large-
scale 3D-printing has not flourished in the same way. As AM usually produces parts
layer-for-layer, a larger object will require a much longer manufacturing period than
a smaller one, if the same quality is wanted. To make large-scale AM feasible new
materials and methods must be developed. A survey and proof of concept of large-scale
AM were outlined in [3]. Large-scale AM can have a great impact on affordable and
more environmental friendly housing, by reducing manufacturing waste and human
labour. When new buildings can be built with reduced human labour, the cost is
reduced proportionally.

The Department of Engineering Cybernetics at NTNU have recently established a
project for large-scale Additive Manufacturing. The long-term goal is to use a sizeable

1



6-Degree-of-Freedom robot manipulator with a Cold Metal Transfer (CMT) welding
method as the material extrusion. Traditional AM methods do not use any feedback or
control-loops further than servo-control to control the printing process. These pro-
cesses can control their position correctly, but deformation or unwanted imperfections
in the deposited material are unknown. Large-scale AM by 6-DOF will have more
freedom of movement and a more significant printing volume than traditional AM and
effects such as deformation of hanging structures may occur.

Introducing a feedback system can go a long way in improving the results and detecting
error states that a open loop system is not able to. I have thus conducted a study into
how best to implement a feedback system The scope of this thesis is as follows:

1. Do a literature review on current research and solutions for live feedback in
additive manufacturing (AM).

2. Discuss what kinds of sensors, software and algorithms that are necessary to
get sufficient feedback from extrusion based AM with 6-DOF robot manipulator
when trying to compare the actual build with the desired structure. Discuss if
any existing solutions are suitable for this.

3. Test mapping of a simple geometry with an available sensor, for example, a
3D-camera. Discuss and evaluate how suitable this sensor is for live monitoring
of an AM process, and what the greatest limitations and challenges are. Make
suggestions for future work.

1.1 Abbreviations

Often used Abbreviations in the article.

• SDK = Software Development Kit

2



• TOF = Time Of Flight

• FPS = Frames Per Second

• RGB = Red Green Blue, color image

• AM = Additive Manufacturing

• DOF = Degrees of Freedom

3
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Chapter 2

Background

In this chapter we will look at the most relevant related work regarding feedback for
additive manufacturing as well as error modes and process parameters that have an
effect on the finished manufactured part. An overview of technologies used for three
dimensional data capture is also looked at.

2.1 Process Parameters and Quality Control in Addi-
tive Manufacturing

An overview of quality control in additive manufacturing is conducted in [4]. This
article describes a range of process and quality parameters that are important for Field
Deposition Modeling, but the parameters can be applied to any additive manufacturing
technique.

Process parameters are classified as machine specific parameters, such as nozzle
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Figure 2.1: General principle of additive manufacturing using filament

diameter, filament diameter, top speed of actuators and so on. There is also operation
specific parameters and these are controllable parameters used during manufacturing,
these can be layer thickness, road width, fill pattern and so on. Finally there is material
specific parameters, examples of these are viscosity, stiffness and thermal conductivity.
All these process parameters are affecting the end quality of the manufactured part.
figure 2.1 gives an overview of where we find certain process parameters.

The quality of the part can be described by a few quality parameters. These are profile
specific: dimensional accuracy, surface roughness and mechanical property, and defect
specific: underfill area and overfill area.

Under- and overfill are errors where the extruders material flow is too large or too small
and the road width ends up either too wide or too narrow as illustrated in figure 2.2.
With underfill you will get gaps between parallel paths reducing the surface quality.
With overfilled parallel paths you will get ridges where the parallel paths connect.

Under- and overfill along parallel paths can be countered by tuning the feed-rate of the

6



Figure 2.2: Under- and overfill errors along parallel paths

filament manually or by use of feedback. A method to counteract under and overfill
error along parallel paths was proposed in [5]. They used color cameras with high
magnification and a support vector machine to classify pictures of the surface into
overfilled, underfilled and good layers and used a discretized PID-controller to change
the filament feed rate between each layer.

This problem also arises in tight corners of the paths as explained in [6]. In the same
article they try to reduce this problem by using a better path planning algorithm.
Underfill areas are usually sharp edges and corners of 3d-models where the radius of
the nozzle and road width are the limiting factor for the accuracy of the manufactured
part.

Control of the layer height of a laser metal-wire deposition additive manufacturing
technique was explored in [7]. They used a 2d laser triangulation sensor to scan each
layer after its manufacture and then used an Iterative Learning Controller to control
the feed rate of the wire for the next layer.

A wide range of sensors were used in [8], for a process using FDM and ABS plastic. Sen-
sors used were accelerometers for vibrations in the tool head and frame, temperature
sensors for the build table, extruder, ambient temperature and melt pool temperature,
as well as a video camera. The video however was only used for manual observations.

7



These sensors were then combined using statistical sensor fusion methods to find
a correlation between the process parameters feed/flow rate ratio, layer height and
extruder temperature with the end goal of increasing the quality of the surface of the
manufactured part. Their real-time system was also able to distinguish between if the
print was behaving as normal or if an error state, such as nozzle clogging took place.

2.2 Additive Manufacturing Software-Toolchain

There are several different types of additive manufacturing methods[9] such as stere-
olithography, Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Elec-
tron BeamMelting (EBM), and Direct Metal Deposition (DMD). These are very different
in the way they manufacture the resulting part, but they have one thing in common
and that is the software-toolchain. figure 2.3 gives and overview of the general flow
from design to manufacturing. We start with a 3D-model created in CAD software
then convert it to an STL file by reducing the highly detailed CAD-model into triangles.
This lower detailed model is then fed into the preprocessing environment where we
orient the part (design intent) based on the way the manufacturing method will realize
the part and the desired mechanical properties this realization imbues into the part.
Then the slicer, based on the process parameters such as layer height, nozzle diameter,
actuator speed and material properties, generates a path for the AM-machine. This
toolpath is then exported to the machine for manufacturing.

2.3 Consumer 3D-Printing

This section taken from project thesis [10]
The closest thing to feedback in the consumer additive manufacturing(3d-printer)
market is the Unified Bed Leveling system of the Open Source 3D-printer firmware
Marlin[11], which uses a preprocessing step to calibrate its coordinate axis to the
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Figure 2.3: General Software-toolchain for Additive Manufacturing process

printing beds orientation mathematically. The firmware requires the 3D-printer to be
fitted with a distance sensor so it can detect the build plate. The process mathematically
projects a grid over the build area and moves the print head to each intersection in the
grid and measures the height to the build plate. After this preprocessing is done, the
3D-printer will follow the trajectory for the 3D-model and offset the trajectory by the
preprocessed grid. This only works for small deviations and is not necessary if you
are able to calibrate the levelness of the build plate physically. This method is useful
however if your build plate is warped or not wholly level by itself.

2.4 Capturing Model Data

This section taken from project thesis [10]
There are many different methods of capturing 3D measurements. Both contact
measurements and non-contact measurements are available, but for our purpose, non-
contact measurements are most suited. For non-contact measurements, there are two
sub-classes: Passive and Active technologies.
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2.4.1 Passive Techniques

Passive techniques use the ambient radiation of the environment like light and usually
use normal cameras and video-cameras to capture the environment[12]. The main
categories of passive techniques are stereoscopy and photogrammetry. The basic
principle of both of these methods is that we have multiple pictures of the object or
scene to be measured from different locations and that these locations are known.

2.4.1.1 Stereoscopy

Stereoscopy uses two parallel cameras with a known separation distance which capture
the object or scene simultaneously, and we use software to triangulate pixels found in
both pictures[13]. The cameras are also usually angled slightly to increase the overlap
of their respective field of views. Stereoscopy does not work if the two cameras do not
have any overlapping.

2.4.1.2 Photogrammetry

Photogrammetry uses the same principle as stereoscopy, but here the pictures are
captured by a single camera at different locations often separated in time.

2.4.2 Active Techniques

Active techniques use radiation from the sensor to the object and process the reflected
signal returned from the object or environment. Laser scanning is an active technique
widely used to capture 3D data. Laser scanning is based on emitting some light wave to
the object and recording the delay before the reflected wave is received. [1] describes
the three primary methods of laser scanning. These are time-of-flight, triangulation
and phase shift measurement.
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2.4.2.1 Time-of-flight

Time-of-flight measurement uses a highly accurate timer to measure the distance to
the object to be measured. This is possible because the propagation velocity of light is
known. By measuring the round-trip time of a light pulse from the source, the scanner,
to the reflective surface of the object to be measured, and back to the source, we can
calculate the distance d . Equation (2.1)[1] shows us the relationship.

d =
cmτ

2
(2.1)

The constant cm is the speed of light in the current medium, and τ is the round-trip
time of the light wave. In a vacuum, light will travel one millimetre in 3.3 picoseconds
so for high accuracy measurements a very accurate timing device is needed.

2.4.2.2 Triangulation

Triangulation uses the proportions of a triangle to measure the distance to the object[1].
Figure 2.4 shows the basic principle. A laser emits a beam of light on to the target
surface. This light is reflected back to the scanner with the same, but opposite, angle
as the emitting laser. A strategically placed position-sensitive detector can measure
the deflection of the beam of light. The distance from the scanner to the object, Z, can
be found by the following equation:

Z =
Bf0

p + f0tan(α)
(2.2)

where B is the distance between the emitting laser and the optical centre of the scanner,
f0 is the distance from the optical centre, and the position-sensitive detector and p is
the position on the detector. The angle α is the angle of the laser emitter to the normal
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Figure 2.4: Basic principle of distance measurement using triangulation, from [1]

of the plane of the contact point between the light beam and object. See figure 2.4 for
a visual representation.

2.4.2.3 Phase Shift

Phase shift measurement works by looking at the difference in phase between the
emitted light and reflected light[1]. By inserting equation (2.3a) into equation (2.1) we
get the distance to the surface. The underlying problem of phase shift measurement is
that the measured δϕ cannot be greater than one period of the light wave, assuming a
sine wave. This is because a non-modulated light wave is identical for every period
of the signal. This distance is the ambiguity interval and is given by equation (2.3c).
Equation (2.3b) gives us the range uncertainty of the measured sine wave, where SNR
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is the signal-to-noise ratio.

τ =
∆ϕ

2π
λm
cm

(2.3a)

δr−AM ≈
1
4π

λm
√
SNR

(2.3b)

dmax =
λm
2

(2.3c)

There are several solutions to this problem. One solution mentioned in [1] is to use
a two-tone AM system, with, e.g. 10 MHz and 150MHz light waves. By employing
equation (2.3c) on the lowest frequency signal and equation (2.3b), with SNR = 1000,
on the high frequency signal we get an ambiguity of 15m and range uncertainty of
5mm.

Another method to remove this ambiguity is based on frequency modulation. The
frequency of the laser beam is changed continuously over a specified period in either
a triangular or saw-tooth pattern. This modulation period Tm can last up to several
milliseconds. From [14] we have that the distance to the object is found by measuring
the beat frequency and applying equation (2.4a). The expression α(∆λ) is the slope of
the linear change in frequency of the saw-tooth pattern. The range uncertainty can
be found from the Signal-to-noise ratio, SNR, and frequency range, ∆f , as described
in equation (2.4b). The ambiguity interval is a function of the modulation period, as
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described in equation (2.4c).

d =
fb
fs

λ2

∆λ
=

fb
α(∆λ)

(2.4a)

δr−FM ≈

√
3

2π
cm
∆f

1
√
SNR

(2.4b)

dmax−FM =
cm
4
Tm (2.4c)

These are the standard principles for measuring single point distances to 3D objects
using light. To capture whole 3D-scenes, we have to capture a series of points across
the whole scene. This can be done by moving the sensor manually or use moving
mirrors.

An example of moving the entire sensor is, e.g. spinning an array of ToF-sensors
360°capturing a cone-shaped cross-section of the area around the sensor. These are
often called LiDaR, Light Detection and Ranging, and often come with an array of 16
to 32 ToF-sensors. An example is the Velodyne Lidar VLP-16 [15], offering 16 channels
and a rotational frequency of 5-20Hz. These do however have a rather low accuracy
in depth. This particular sensor has a range uncertainty of ±3centimetres. Most lidar
systems are made for extended range mapping and surveying and do not come with
any accuracy better than a few centimetres and are thus not suited for our purpose.

2.4.2.4 Structured Light 3D - Cameras

3D- or RGB-Depth-cameras are cameras able to output a continuous stream of both
depth and colour data of a whole scene for each sample time. The result is a picture with
pixels with both RGB data and depth information. The difference between measuring
a single point as described earlier and a whole grid is that the RGB-d cameras project
whats called a structured- or coded light pattern on the screen. The reflected pattern
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will wrap around the object to be measured, and a distorted pattern will be reflected
back.

Most 3D cameras like Microsoft Kinect[16], Asus Xtion Pro[17] and Intel SR300[18]
uses infrared structured- and coded-light which is invisible to the human eye. The
depth information is achieved by triangulation, but with a 2d grid of sensors instead
of the one-dimensional solution as described in section 2.4.2.2. By combining the
triangulated IR-image of the scene with the known projected pattern, a depth image is
created.

3D - Cameras suffer from systematic depth errors and non-systematic depth errors[19].
Systematic errors can usually be mitigated by calibration, while filtering can mitigate
non-systematic errors.

Systematic errors are depth distortion, integration time error, pixel-related errors,
amplitude ambiguity, and temperature error.

Depth distortion error is how the infrared light emitter is not able to reproduce the
infrared light precisely as wanted[19]. In our case, we have an infrared pattern, and the
difference between the analytic pattern used for calculation and the actual projected
pattern could be a detriment to our depth calculation. Integration time errors appear
when the sensor is not measuring the reflected light for long enough. Amore prolonged
integration period increases the signal-to-noise ratio, reducing the depth errors[20]. A
change in integration period directly affects the frame rate of the camera. A higher
frame rate decreases the integration period and while the opposite increases the frame
rate. Pixel-related errors deal with manufacturing errors between neighbouring pixels
where two pixels outputs different values of depth for a similar real depth. Other pixel-
related errors are time-delay in capacitors. These faults are usually fixed with a table
with correction values for each pixel[19]. Amplitude ambiguity is how the amplitude
of the reflected infrared light varies with distance to the object to be captured, the
colour of the object and wherein the scene the object is situated. The infrared light will
not reach the whole scene uniformly, and objects in the periphery of the scene will
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therefore not be illuminated as much as the centre[19]. Temperature-related errors
appear because the temperature of the depth sensor affects the accuracy of the depth
processing[19].

Non-systematic Errors are low Signal-to-noise ratio, Multiple light reception errors,
Light scattering and Motion blur[19].

Signal-to-noise ratio distortion is found in areas that are poorly lit by infrared light.
In scenes with a substantial difference in depths, the areas furthest from the camera
will be more prone to noise than other areas. Multiple light reception errors happen
when pixels in the sensor is hit by more than one beam of light. This usually happens
because of concavities or sharp edges on the geometry of the captured object. The
light will reflect from multiple surfaces and will thus create errors[19]. Light scattering
errors are light reflected between the lens and the pixel array of the sensor[19]. This
is because the pixel array is reflective and the light hitting a pixel can bounce back
up to the lens and down to its neighbouring pixels increasing the infrared intensity
there. Motion blur is found in both 3D-cameras and conventional cameras. This effect
appears when objects are captured in motion. If the object or scene moves during the
integration time, motion blur will appear.

2.5 Point Cloud Manipulation

Point clouds are collections of points within a shared coordinate frame. Most distance-
sensor as talked about in section 2.4 describe their measurements as discrete points in
three dimensions and outputs a point cloud every sampling period.
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2.5.1 Transformation of Point Clouds

When analysing data from point clouds it is useful to have a common reference point
or use a coordinate system more intuitive than what the raw capturing device outputs.
The SR-300 3d-camera outputs point clouds with the center of the camera as its origo (0,
0, 0). To transform the points into a desired coordinate framewe can use transformation
and rotation matrices. [21]

A rotation matrix describes the rotation of a coordinate frame with respect to some
other frame. A point in frame a, pa , described as a vector with Cartesian coordinates
can be rotated to frame b by

pb = Rbap
a (2.5)

where Rba is then the rotation by some angle between frame a and b, and pb is the
coordinates of pa in frame b.

The rotation about a principle axis, the x-axis, y-axis and z-axis, are called simple
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rotations and can be done by

Rx (ϕ) =


1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ


(2.6a)

Ry (θ ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ


(2.6b)

Rz (ψ ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1


(2.6c)

.

The rotation of any point can be done by a combination of the simple rotations, this is
called composite rotations. Say we want to rotate from frame a to a new end frame c,
and this rotation is not a simple rotation about any of a’s principle axis, we can then
combine i.e. a rotation about one of frame a’s principle axis and a rotation of one of
the principle axis of an intermediate coordinate system, frame b. An example

pc = Rcap
a (2.7a)

Rca = RcbR
b
a (2.7b)

Rcb = Rzb ,ψ (2.7c)

Rba = Rxa,ϕ (2.7d)

.
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Rotation matrices are only able to describe rotations, with the frames cenceptually
sharing an origo point. By combining the rotation matrix with the position distance
between the frames we get a homogeneous transformation matrix. The position of the
origin of frame b in frame a is described by

raab =
[
xa ya za

]T
(2.8a)

T a
b =


Ra
b raab

0T 1

 (2.8b)

,

with the homogeneous transformation matrix in Equation (2.8b) describing both the
position and orientation of frame b in frame a.

2.5.2 Filters

2.5.2.1 Radius Outlier Removal

Outliers are points in a point cloud that are not part of the measured surface. They
appear randomly or as a consequence of errors in the capturing device. They are
usually unwanted as they make statistical analysis on the real points harder. They are
often found farther away from other points than the real points and will often have
fewer neighbours. One way to remove such points is to use a Radius Outlier Removal
algorithm. First we have to specify a number of neighboring points that have to be
within a certain radius of each point. The algorithm, as implemented by PCL, then
iterates through all points in the point cloud once and removes the points that do not
satisfy the specified number of neighboring points within a certain radius.
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2.5.2.2 Range Filter

A range filter is a very simple filter that removes points that go outside some specified
range in any combination of x, y or z direction.

2.5.3 Edge Detection

Edge detection is a range of mathematical methods to identify points in digital imagery
or similarly structured data where, in images, the brightness or colour changes rapidly.
Classic edge detection methods like the Canny edge detector [22] use the derivative of
the brightness of the points in the image, as well as a thresholding scheme to find the
points that are edges. The wanted output of an edge detection algorithm is a copy of
the image with a binary value representing if the point is an edge or not.

Images are typically ordered in a two-dimensional n-by-m matrix where n is the
horizontal resolution and m is the vertical resolution of the image. The fields at
each coordinate are RGB data, for colour images, or brightness for gray scale images.
Classical image edge detection algorithms can be used on point clouds that are ordered.
This ordering relates to where the points are located in a datastructure related to its
spatial information. Ordered point clouds have a relationship between two of its three
variables for each point related to the data structure. For a point cloud captured by a
structured light camera, like the SR-300, we get a "picture" of 640x480 points where
the "brightness" of the pixels are z-distance from the camera to the object. The x and
y values are also calculated to real world coordinates in meters, but the relationship
between the points are kept.

2.5.3.1 Detection of Potential Edge Points

As mentioned earlier the derivative of the brightness can be used to find edges. Both
first-order and second-order derivatives can be used for edge detection[23]. We can
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see the general connection between the intensity of the image and the first and second
derivatives in figure 2.5. What we see is that for an uniform increase in intensity
from left to right we get a steady state positive first order response. If the intensity
decreased the sign of the gradient would be negative. The second order gives a sharp
response at the start of the increasing intensity and a sharp negative response when
the intensity stops increasing. In the middle of the increase we get a zero-crossing
point. This zero-crossing point can be used to find very sharp edges.

A tool for finding the edge strength and direction is the first order gradient ∇f which
is defined as a vector

∇f = дrad(f ) =


дx

дy

 =

∂f
∂x
∂f
∂y

 (2.9)

this vector points in the direction of the greatest rate of change of f at the location
(x ,y). To find the absolute magnitude, M, of the rate of change at (x ,y) we can use the
pythagoras theorem

M(x ,y) =maд(∇f ) =
√
д2x + д

2
y (2.10)

the angle of the greatest rate of change is given by

α(x ,y) = tan−1

дx

дy

 (2.11)

To calculate the partial derivatives of every pixel in the image we can us a approximate
with a discrete method. The following equations give us the edges in vertical and
horizontal direction
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Figure 2.5: General connection between intensity, first order and second order deriva-
tives
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дx =
∂ f (x ,y)

∂x
= f (x + 1,y) − f (x ,y) (2.12)

дy =
∂ f (x ,y)

∂y
= f (x ,y + 1) − f (x ,y) (2.13)

To capture vertical, diagonal and horizontal edges there are two famous masks, Prewitt
and Sobel.

Prewitt: 
−1 −1 −1

0 0 0

1 1 1



−1 0 1

−1 0 1

−1 0 1


(2.14)

Sobel: 
−1 −2 −1

0 0 0

1 2 1



−1 0 1

−2 0 2

−1 0 1


(2.15)

The main difference between Prewitt and Sobel is the 2 in the middle aisle. This gives
a smoothing effect suppressing noise better. To apply these masks over the image
or point cloud an operation called convolution is applied. The implementation of
convolution is to let the current coordinate be the centre of the mask and then multiply
the neighbouring points with the corresponding value in the mask and then add them
together.

Consider the image Z with 3x3 pixels
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Z =


z1 z2 z3

z4 z5 z6

z7 z8 z9


(2.16)

then we apply the Sobel mask on point z5

дx =
∂ f (z5)

∂x
= (z7 + 2z8 + z9) − (z1 + 2z2 + z3) (2.17)

дy =
∂ f (z5)

∂y
= (z3 + 2z6 + z9) − (z1 + 2z4 + z7) (2.18)

2.5.3.2 RANSAC - Algorithm

The RANSAC (RANdom SAmple Consensus) - algorithm was outlined in [24]. The
algorithm tries to fit a mathematical model of geometric shape, such as a plane, cone,
sphere, line, circle or cylinder to a set of observed data. The algorithm assumes there
are some "inliers", which fit the geometric shape, and "outliers" which are points that
do not fit the model.

To find the best mathematical model the algorithm will choose a set number of points
from the data set at random, then it will fit the mathematical model to these points.
Then it will iterate over every point in the data set and if the point fits the model
within a threshold value it will be added to the set of points that fit the model. After all
the points have been tested the algorithm checks if the amount of points fitted to the
model is over some threshold. If the threshold is reached it will check every point in
the fitted points and get the error between the model and the points found. When the
error is recorded it will do the whole algorithm again with a new set of randomised
starting points. The algorithm will iterate as many times as you want and after each
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iteration compare its current error with the smallest error found so far. When the
iterations are over you can extract the best model the algorithm was able to find. The
longer you let the algorithm run the more certain you can be that you have found the
best fit for you model.

2.5.4 Registration of Point Clouds

This section taken from project thesis [10]
The problem of matching two 3D models represented by point clouds is called regis-
tration. This is a broad field with many algorithms. [25] presents an overview of the
different algorithms and methods used to register 3D models. This article mentions
two classes of registration, rigid and non-rigid. Rigid registration is where the two 3D
models to be matched have the same dimensions, and the proportions of the features
are equal. Non-rigid registration, on the other hand, deals with matching a deformed
model with the original model. Deformed models could be soft objects like biological
organs or trying to match a folded piece of cloth with an unfolded piece. Any object
that does not have static proportions needs to use non-rigid registration techniques.

2.5.4.1 Algorithms

Registration algorithms have much in common with the field of data fitting. Thus
Registration problems are often proposed as optimisation problems. The most widely
used rigid registration algorithm is the ICP(Iterative Closest Point)-algorithm[26]. The
ICP-algorithm tries to minimize the cost function equation (2.19), qi and pi are points
in the two point clouds we want to register. R and t are Rotation and Translation
matrices. The algorithm works by first finding the closest points in P , the static point
cloud, to the points in Q , the point cloud to be matched. Then the algorithm finds the
best transformation and rotation to bring the points in Q closer to its closest point
in P . If This translation and rotation are smaller than a set threshold, the algorithm
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will finish, if not it translates and rotate the points to the new position and do the
algorithm all over again.

E(R, t) =minR,t
∑
i

| |qi − (Rpi + t | |
2 (2.19)

2.5.4.2 Implementation

To implement the ICP algorithm, there are two reasonable possibilities. The Com-
puter Vision Toolbox System in MATLAB[27] or the open source Point Cloud Library
(PCL)[28]. There is only one registration algorithm in the MATLAB toolbox with some
helper functions like denoising and downsampling of the point clouds. The PCL is
widely used in more advanced academia and the computer vision industry[29] and
offers many different registration algorithms and filtering options. MATLAB is also
able to use PCL’s point cloud file format ".pcd"[27].
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Chapter 3

Post Processing

The main goal of the post-processing is to extract the relevant geometric data from the
captured point clouds. The parameters we are trying to extract are the height, road
width and center point of the extruded material.

3.1 Transforming the Point Cloud

The first step is to calibrate the captured point cloud and transform it so that the
points are aligned with the world coordinates. Figure 3.1 gives an overview of the
difference between the world aligned coordinate system t and the coordinate system of
the capture points from the camera c . Using calipers the necessary measurements were
measured on the camera and extruder and combined with a 180° rotation about the
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x-axis and inserted into the transformation matrixT t
c as described in equation (3.1).

T t
c =


Rt
c

dX

dY

dZ + dH

0 1


(3.1a)

Rt
c = Rx (180°) =


1 0 0

0 cos(180°) −sin(180°)

0 sin(180°) cos(180°)


(3.1b)

T t
c =



1 0 0 0

0 −1 0 0.101

0 0 −1 0.199 + dH

0 0 0 1


(3.1c)

This single translation would be enough if the camera mount was completely rigid,
but because of slack in the mounting equipment a certain error was observed after
transforming to world coordinates. The mechanical construction of the cameras
built-in tilt hinge was also not rigid enough for perfect positioning, both figure 3.2
and figure 3.3 show the coordinate frame floating above the points. To remedy this
problem a solution based on plane fitting using the RANSAC-algorithm, explained in
section 2.5.3.2, was used. The RANSAC algorithm outputs a model of a plane described
by its surface normal and distance from origin. The surface normal is described in
relation to the fixed coordinate system by a vector, for experiment 2 we get the vector
in equation (3.2a). From [30] we have that a vector can be described by two angles α
and β . These angles can be inserted in rotations about theZ andY -axis, equation (3.2d),
to rotate the plane into our preferred coordinate system. By also translating the point
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cloud by d we get a good registration with the world coordinate system, as seen in
figure 3.4. After the transformation to world coordinates the z value of all points
should be the height above the work table.

N t
p =



kx

ky

kz

d


=



−0.0224

0.0149

0.9996

0.0030


(3.2a)

sinα =
ky√

k2x + k
2
y

cosα =
kx√

k2x + k
2
y

(3.2b)

sinβ =
√
k2x + k

2
y cosβ = kz (3.2c)

Rt
p = Rz,αRy,−βRz,−α (3.2d)

T t
c =


Rt
p

0

0

d

0 1


(3.2e)

3.2 Filtering

The depth frame output from the SR-300 camera has a resolution of 640*480 which
results in 307200 points in the resulting point cloud. This covers a large area of the
work table while we are mostly interested in what is directly behind the nozzle of the
extruder for online, real-time, geometric information. This means that we have a lot
of unnecessary information that we can remove to ease up calculation time.
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Figure 3.1: Relation between coordinate frame of the camera and the extruders coordi-
nate frame
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Figure 3.2: Point cloud of work surface before extrusion. The displayed coordinate
frame is in origo (0,0,0) of the cloud.

Figure 3.3: Plane fitted to the captured point cloud coloured in orange.
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Figure 3.4: Transformed point cloud with the surface of the work table as zero in
z-direction. We see that the surface of the point cloud fits the displayed coordinate
frame.
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Table 3.1: Comparison between full and filtered point clouds

Nr. of points Time to Range Filter (ms) Time to Remove Outliers (ms) Time to transform (ms) Total time (ms)
307200 0 5150.5 272.5 5445
2883 5.4 5.8 2.6 13.8
Percent reduction - ∼99.9% ∼99% ∼99.75%

There are two primary filters we use for our point clouds; a simple range filter and an
outlier removal filter, as described in section 2.5.2. Table 3.1 shows a quick comparison
between working with the full point cloud and a smaller one. If we only look at a small
area around the extruder we can remove about 99% of our point cloud, which reduces
the total filtering and transformation time by 99.75%.

3.3 Edge Detection for Extracting Geometric Data

Building on the principles from section 2.5.3 a simple edge detection algorithm was
implemented. The method implemented uses a 3-by-3 Gaussian filter, the gradient is
calculated using either the Prewitt or Sobel mask and a simple algorithm that looks for
the largest gradients was created to choose the edges. Before testing the algorithm on
real world data its viability was tested on ideal point clouds with known dimensions.
The ideal point clouds were sampled with the same distance between the XY-points
as observed from the experimental data. The distance observed from i.e. figure 4.3,
was found to be approximately 0.5mm. The points are also generated as if they were
seen from above, so only "visible" points are created. Three different cases were
considered, a straight line, a straight line with incremental offset of the centre point
and an incremental increase in width. The edge detection was tested first on a noiseless
point cloud and then with added noise. The noise added was normally distributed with
a standard deviation of 0.1mm. This noise was applied as an offset to the centre point
and to the height value of each point in the cloud.

Points in the point clouds used in this section will be coloured by their gradient
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Figure 3.5: Straight line as a point cloud. Unfiltered to the left, Smoothed out by
Gaussian kernel to the right. There is only a slight visible smoothing of the edges
closest to the "floor".

intensity from black, zero intensity, through red, orange, yellow to white as the highest
intensity.

3.3.1 Straight Line

The first test was a simple straight line with height of 3mm and 7mm width. These
dimensions are quite similar to the real world experiments conducted earlier. With no
noise all the gradient kernels gave the same result, giving the correct width as seen in
table A.1. This first test with no noise is also perfectly centered and the outer edges of
the line coincides with the resolution of the point cloud giving a point exactly on the
edge. Figure 3.5 gives an overview of how the straight line with no noise looks, both
smoothed out and raw data. figure 3.6 show the gradient of the points colour coded.
When we add noise we can see from table A.5 and table A.4, that Sobel have an error
of 7.14% on two measurements. Prewitt gives us the same result as well but only after
first being filtered.
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Figure 3.6: Calculated gradient with Sobel operator. Unfiltered to the left, Smoothed
out by Gaussian kernel to the right.

3.3.2 Incremental Offset

The second test increments an offset of the center of the line by 0.125mm every 5mm.
From table A.2 we see that we get the same error of 7.14% for all offset values that
are not equal the sampling distance. When adding noise we see from table A.6 and
table A.7, that we get the same error of 7.14% except for a few cases. The cases where
we get 0.0% error is when the applied offset noise pushes the model so that it fits
between the sampling distances.

3.3.3 Incremental Change in Width

In the third experiment the width of the line was increased from 6mm to 8.25mm
with an increment of 0.25mm every 5mm. Looking at the data from the noiseless test,
table A.3, we see that every width is rounded down, floored, to closest millimetre. The
tests with added noise, table A.8 and table A.9, show actually a better results in width
accuracy. This can be attributed to the noise induced as an offset in the x-direction
and this added noise may push the profile of the line better aligned with the sampling
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distances.

3.3.4 Summary of Edge Detector on Ideal Cloud

The proposed edge detection algorithm finds the edges in the tested ideal cloud, but
we are inherently limited by the resolution of the capturing device. Figure 3.7 gives a
visual representation of the quantization errors that have been found by this analysis.
With the top example giving us the best possible result with the edges of the object
aligning with the sampling distance of the capture device. The worst possible result
gives us an error close to two times the sampling distance, as seen from lower example
in figure 3.7.

3.3.5 Proposed Algorithm

Initialization:

• Use the transformation from camera coordinate system to transform the first
point cloud into world coordinates.

• Use the RANSAC-algorithm to find the normal vector of the plane through the
points in the point cloud transformed to world coordinates.

• Use the normal vector to find a calibration transformation to complement the
camera transformation which will align the points with the world coordinates.

Online:

• Remove 99% of the points, only keeping the points in a box around the nozzle of
the extruder.
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Figure 3.7: Quantization errors for a scanner with resolution of 1.
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• Transform this reduced point cloud into world coordinates using the camera
transform combined with the calibration transform.

• Remove every point closer to the camera than the nozzle.

• Transform the smaller cloud to world coordinates.

• Optionally do a Gaussian filter to remove noise.

• Calculate the gradient for every point in the smaller cloud.

• Calculate the average gradient for every point a certain distance from the y-axis
back to the last sample. This distance along the y-axis is equal to the product of
velocity and time since last sample.

• Choose the distance from y-axis with highest average gradient both in positive
and negative x-direction. These are our positive and negative edges.

• The height is found by taking the average of the points between the two edges
with an offset of 1/4th of the width between the edges

38



Chapter 4

Experiments

The aim of the experiments is to validate the use of the Intel SR-300 as a capture device
of point clouds as well as test the proposed post-processing pipeline with the end goal
of extracting an error between the desired trajectory and real world geometric data.
The experiments will also highlight positional requirements of the capture device for
best possible quality of the captured point clouds. We will also see if we are able to
detect some of the common errors mentioned in the background chapter.

4.1 Experiment Setup

The experiment setup is based on the proof of concept experiment conducted in [3].
Here the robot arm was mounted with an pneumatic caulking gun using a type of
fast-curing construction glue, STP Quickfast from Würth. This material and method
was chosen over traditional 3D-printing methods because of the extrusion volume
required by the larger scale this project focuses on and its ease of use. The material is
extruded by compressed air controlled by a manual valve with a variable flow rate.
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(a) IRB-140 robot by ABB (b) Manual extrusion using the chaulking gun

For the testing an industrial robot made by ABB was available. The robot in question
is the IRB-140 [31]. This is a six-degrees of freedom multipurpose robot arm able to
lift 6kg with good repeatability and speed. The robot is controlled either manually via
an ABB Flexpendant or by a pre written program either running on the FlexPendant
or on a PC connected with a TCP/IP-connection. The programming language used by
ABB is called RAPID.

4.1.1 Capturing Software

For capturing the point clouds a program written in C++ using the Intel SR-300’s
Software Development Kit [32] and the Point Cloud Library [29] was used. This
program took ten pictures a second saving them to the harddrive with a timestamp.
This enabled us to try different post-processing schemes after the experiments and
not having to rely on the real-world robot at all times.

4.1.2 Camera Mount and Positioning

The camera was mounted as seen in figure 4.1b pointed vertically down towards the
table. From this distance the mean distance between the points was 0.45mm.

40



4.2 Creating the Test Samples

To test the method of visual feedback we wanted to do a few straight lines with
different height and size profiles, while capturing point clouds of the extruded material
along the path. These would later be post-processed to extract the relevant geometric
information. From some initial trials with the manual caulking gun and robot setup
three different height profiles were chosen; 3mm, 4mm and 5mm. . The first experiment
was just one layer while the second experiment was two layers stacked on top of each
other. A final test was conducted to see if the camera was able to capture the error
states of over- and underfill. After some initial trials with the caulking gun and different
velocities of the tool-head a velocity of 25mm/s was chosen for best possible quality of
the extruded material.

4.3 Measuring the Test Samples

The width and height of the samples were measured by hand using a pair of digital
calipers. The calipers were accurate down to a hundredth of a millimetre, but the
measurements are only certain to ±0.2mm. This is because the extruded material was
very soft after extrusion and the measurement jaws of the calipers were very sharp.
This meant that the jaws of the calipers very easily dug into the material. It was up to
human dexterity and eyesight to determine when the calipers were in direct contact
and as such the full accuracy of the measuring tool were not possible to utilise. We use
the method proposed in section 3.3.5 to record the width and height of the extruded
material. With a velocity of 25mm/s and 10Hz the tool-head moves 2.5mm per sampled
point cloud. The algorithm will look at the edges 2.5mm along the trajectory and
average the gradients and heights and combine to one measurement for each sample.
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Figure 4.2: View of the three pairs of different single layer tests, with 3mm at the top
and 5mm at the bottom.
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Figure 4.3: View of one extruded line with the the extruder tool tip set to 3mm above
the table. Extruding from right to left. Point cloud captured at end of line extrusion.

4.4 Quality of Captured Point Cloud

The quality of the captured clouds varied quite a bit with the height of the extruded
layers. For the very low height at 3mm we can see from experiment 2, figure 4.4, that
the edges are very smooth and averages out. Increasing the height to 5mm we see that
in experiment 5, figure 4.5, the edges become more distinct and we begin to see a bias
to the left edge of the extruded lines. This bias is even more prevalent in experiment
14 set to 8mm, as seen in figure 4.6.

4.5 Straight Line

For each height profile two extrusions were completed to increase the likelihood of a
good result, resulting in six experiments. Figure 4.2 show the three pairs of test lines
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Figure 4.4: Experiment 2 at 120mm, gradient to the left and the edges and area used
for height shown to the right.

Figure 4.5: Experiment 5 at 120mm, gradient to the left and the edges and area used
for height shown to the right.
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Figure 4.6: Experiment 14 at 120mm, gradient to the left and the edges and area used
for height shown to the right.

at 3, 4 and 5mm height. Figure 4.3 gives an overview of how a fully extruded line looks
like in point cloud form. A

4.5.1 Height

First of all we can see from table 4.1 that the real height of the extruded material is
lower than desired. The height from the nozzle to the table was checked before every
test, but the extruder was actually a bit loose in its mounting and this may have caused
the problem. Since the extruder had to be operated manually the error could have
been induced by the weight of the operators arm. The error is however quite stable
and can be seen to be approximately the same for each pair of experiments.

The raw height data can be seen in the height-plots in the appendix, figure B.1 to
figure B.11. They look erratic, but they seem to be quantization errors. They are not
perfect quantization errors as they are an average of many measurements, but if we
look at the averages in table B.1, we see that most of the measurements have a standard
deviation close to 0.1mm indicating. The height plots for the different experiments also
show a sawtooth pattern around its average value, indicative of quantization errors.
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4.5.2 Width

We see quite a lot of the same behaviour with the width measurement. The values in
figure B.2 to figure B.12 are also fluctuating the same way as the height measurement,
but with a larger error. If we compare the average values with the quantization errors
visualized in figure 3.7, we see that with a mean distance between the points of 0.45mm
and a maximum error of just shy of 2 ∗ 0.45 = 0.9mm is quite close to what we see in
table B.2.

4.6 Straight Line, 2 Layers

The straight line with two layers was conducted the same as the single layer experiment,
but the height of the extruder was incremented by the desired layer height for a second
pass. A total of 10 experiments were done, with the same layer heights as the first
set of experiments. We did run out of material for the last 5mm height experiment
and thus theres only one two-layer 5mm experiment. One other problem with the
manual measurements was that they were conducted after the two layers had been
extruded, and we see that the width of the first layer for each two layer experiment is
much wider than its corresponding experiment in the single layer experiments. This
is because the first layer was still soft and sticky when the second layer was applied,
this pushed the first layer down into the table and out to the sides.

When looking at the resulting plots for width and height, figure B.13 to figure B.32,
we see much of the same behaviour as in the first series of experiments. The errors
are in the same ballpark as the single line experiments. The exception being the first
layers of the two layer test (odd numbered experiments. e7, e9 and so on), since they
were measured after the second layer was extruded.
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Table 4.1: Results from single layer experiment

Experiment Target Height (mm) Measuring Position (mm) Measured Height (mm) Measured Width (mm)

1 3.0
50
120
180

1.8
1.8
1.8

5.7
7.8
8.7

2 3.0
50
120
180

2.0
1.8
1.9

7.7
8.5
8.4

3 4.0
50
120
180

2.4
2.5
2.5

5.5
6.7
7.6

4 4.0
50
120
180

2.5
2.5
2.5

6.7
7.8
8.4

5 5.0
50
120
180

3.1
3.2
3.2

6.4
7.0
7.8

6 5.0
50
120
180

3.2
3.3
3.3

7.2
7.6
8.0

4.7 Under-, Over- and Normally Filled

The under, over and normally filled test was done by extruding five parallel lines with
constant pressure in the caulking gun for each test case. They were separated by 5mm
and the length was the same as earlier experiments, for underfilled the pressured was
lowered to reduce the flow rate of the material, it was then increased for the normally
filled test and then increased even further for the overfilled test. We can see the gaps
between the extruded lines in figure 4.8 for the underfilled test. The normally filled
test, figure 4.7, show a quite smooth surface with small grooves between the lines. The
overfilled experiment, figure 4.9, show a very rough surface.
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Table 4.2: Results from double layer experiment

Experiment Target Height (mm) Measuring Position (mm) Measured Height (mm) Measured Width (mm)

7 3.0
50
120
180

2
1.8
1.8

10.2
10.7
11

8 6.0
50
120
180

4
3.9
3.9

7.8
8.8
9.7

9 3.0
50
120
180

1.8
1.8
1.8

10.7
12
12.1

10 6.0
50
120
180

3.9
4
3.8

7.8
9
10

11 4.0
50
120
180

3
3
3.2

9.6
11.3
12

12 8.0
50
120
180

6.8
6.8
7

7.8
8.5
9.3

13 4.0
50
120
180

3
3
3

11.5
12.7
12.9

14 8.0
50
120
180

6.8
6.7
6.2

8.5
9.4
9.7

15 5.0
50
120
180

3
3.7
4

7.8
10.5
10.1

16 10.0
50
120
180

7.9
7.8
7.9

6.7
6.5
6
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Figure 4.7: Normally filled extrusion.

Figure 4.8: Underfilled extrusion.
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Figure 4.9: Overfilled extrusion.

Figure 4.10: Normally filled extrusion at 50mm

4.7.1 Normally filled

If we look at figure 4.10 we see the same results as in the straight line experiments.
If we then look at the subsequent lines in figure 4.11 we see that we are not able to
recognise any features in the surface. We get the high gradient at the edges as we
expect from the straight line experiments, but we are not able to distinguish any other
lines.
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Figure 4.11: Normally filled extrusion at 120mm, line 2 to the left and line 4 to the
right.

Figure 4.12: Underfilled straight line at 50mm, second line

4.7.2 Underfill

In the underfilled test we see much the same as in the normally filled. The capture
device have trouble representing the fine details of the gaps seen in section 4.7. The
surface of the extruded lines are however flatter than seen in figure 4.11. In line two
seen in figure 4.12, we can also see a small dip between the two lines to the left, which
is captured in the visualization of the edges to the right. There are indications of a dip
in the right picture in figure 4.13 as well.
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Figure 4.13: Underfilled extrusion at 120mm, line 2 to the left and line 4 to the right.

Figure 4.14: Overfilled straight line at 50mm, second line

4.7.3 Overfill

We see much the same qualitities as seen in the normally filled test. With no discernible
or trustworthy edges in figure 4.14, we also see in figure 4.15 that the more lines we
add the bigger the concavity of the surface increase.
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Figure 4.15: Overfilled extrusion at 120mm, line 2 to the left and line 4 to the right.
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Chapter 5

Discussion

5.1 Capture Quality and Sensor

In the experiments the Intel SR-300 3D-camera was used. This camera outputs point
clouds with a refresh rate of 30Hz and is quite suitable for real time depth perception,
however we have found that it is not quite suitable for the purpose proposed in this
thesis. The distance between the points in the xy-plane is too large to get a very
accurate reading as seen through the results of the experiments. The resolution of
0.5mm is close to 10% of the width of the objects we measured and is dominating our
errors as shown in figure 3.7. The depth-resolution however is quite good and as can
be seen from many of the experiments seem to be close to 0.1mm. Another prevalent
error is smoothing of the depth around objects, this reduces the accuracy of the edges
at low changes in depth and reduces accuracy when dealing with error modes such as
underfill and finding edges in normally filled extrusions. This smoothing also smooths
out the overfill errors and makes them hard to capture.
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Figure 5.1: Working Principle of Structured Light Camera.

The smoothing error is a consequence of how the SR-300 camera functions, figure 5.1
gives an overview of how the infrared projector and camera is mounted relative to each
other. The same orientation of projector and camera is the same in our experiment as
in the figure and we see that the projector gets a small shadow on the right side of the
extruded line. This problem could be alleviated by mounting the camera further to the
right, but then the same error may appear in the camera.

For further testing with the main project and Cold-Metal-Transfer welding a high
precision, high quality laser profile sensor from Micro-Epsilons scanControl product
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line may be advisable [33]. The additive manufacturing process using a laser metal-
wire deposition technique mentioned in the background chapter had some trouble
with welding and getting good readings with their laser sensor from the very hot
glowing metal. Micro-Epsilon has a version of their laser profile sensor that uses a
blue shorter wave-length light that they suggest should be better for such a purpose.
These sensor are also very accurate with down to 2µm accuracy.

Regardless of sensor, with the type of feedback strategy tested in this thesis, the sensor
have to be directly tangential to the trajectory to be able to capture the width and height
of the extruded material immediately after extrusion. This might become impractical,
because of the solutions this requires. One solution requires multiple sensors around
the tool-head to be able to capture the extruded material in all axis of movement.
Another solution is to have the tool-head rotating with a fixed capturing device or
having the capturing device on a rotating mount that keeps it always tangential to
the trajectory. This is also why we only tested straight extrusions in the experiments,
the way the tool-head was mounted on the robot arm blocked it from rotating with a
curved trajectory in the xy-plane.

5.2 Edge Detection Algorithm

The edge detection algorithm used in the experiments used the first order gradient of
the height, this seemed to be fine at least for the ideal point clouds in section 3.3. The
problem arises when we want to find sharp valleys or tops in our point clouds which
might be necessary for detecting under- and overfill. This can be seen in figure 5.2
where a perfect normally filled layer would look something like the one to the right. In
the same plot the edges found by using our proposed algorithm are coloured in white.
We can see that the right edge is found correctly as before but the edge where the two
parallel lines connect have a slight offset in the narrow underfill example. We would
like the left edge to be in the bottom of the valley.
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Figure 5.2: Wide underfill valley to the left, narrow underfill to the right.

In this thesis we have worked primarily with the Sobel operator which is a first order
convolutional kernel. A second order method called the LaPlacian of Gaussian was
proposed by [34], this method combines a Gaussian filter with the second derivative, a
discrete 3x3 kernel can be approximated by


0 −1 0

−1 4 −1

0 −1 0


(5.1)

which looks at zero-crossings of the second derivative in a 3x3 neighbourhood. A test
with the ideal underfilled point clouds in figure 5.2 using both the Sobel and LoG-kernel
was conducted. A cross section of the resulting first-order and second-order values
along the x-axis is plotted in figure 5.3 and figure 5.4. We can see that for a narrow
gap both the Sobel and the LoG value are small in the valley of interest while for a
wide gap the gradient is equal to the right hand side and the LoG value is quite large.
A better algorithm for choosing edges might not only look at the largest gradient but
also look at the size of the gradient compared to the largest gradient. If the ratio is
rather small and we see that there is both a LoG peak and a gradient bottom close by
we might choose the point where both of these are located as the edge point.
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Figure 5.3: The first order Sobel operator versus the LaPlacian of Gaussian operator
on the wide underfill valley.

Figure 5.4: The first order Sobel operator versus the LaPlacian of Gaussian operator
on the narrow underfill valley.
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Figure 5.5: Wide underfill valley to the left, narrow underfill to the right.

The same consideration can be done for the overfill case. If we compare figure 5.6 and
figure 5.7 with the underfill plots figure 5.3 and figure 5.4. We can see that the gradient
increases when we see an overfilled peak and decreases when we reach a valley. This
is direction dependant and the described case is only if we move from right to left, the
signs are switched if we go from left to right. This observation can also be used to
classify over and underfill from each other.

The edge detection algorithms we have looked at only classifies the points as edges,
but there are algorithms that are able to extract edges with sub-pixel accuracy such as
[35] which uses the LaPlacian of Gaussian convolution. Machine Learning and Neural
Networks can also be used for edge detection[36].

5.3 Timing and Efficiency

Even though the point clouds for the experiment were capture first then post-processed
later, some of the goal was to get the algorithm to run in real time. The point clouds
in the experiment were captured at 10Hz and then saved. While applying the edge-
detection algorithm the duration of all the operations were tracked. The average
duration of the operations can be found in table 5.1. The major time sink is the
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Figure 5.6: The first order Sobel operator versus the LaPlacian of Gaussian operator
on the wide overfill peak.

Figure 5.7: The first order Sobel operator versus the LaPlacian of Gaussian operator
on the narrow overfill peak.
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Table 5.1: Average Duration of the main computations in the Algorithm

Operation Time (seconds) Percent of total %

Range Filter 0.0079 8.67%
Transform: 0.0058 6.36%
Trimming Filters: 0.0065 7.17%
Gaussian blur: 0.0073 7.97%
Calcultate gradient: 0.0631 69.29%
Find Edges: 0.0003 0.37%
Calculate Height: 0.0002 0.18%

Total 0.0911
Frequency 11.0

calculation of the gradient with 70% of the total time. This is no surprise since this
algorithm had to be programmed from scratch and certain choices during programming
was less than optimal. With these operations and setup we are able to get a frequency
of 11Hz which is slightly faster than the 10Hz picture frequency.

The size of the cloud that the gradient calculation needed to work on was also quite a
bit bigger than strictly needed, for visualization purposes. We are really only looking
at a 2.5mm x 15mm slice of the cloud for width and height information compared to
the 25mm x 30mm seen in all the figures. If we removed everything except this slice
we would go from 3000 points to 150 which would reduce the calculation time of the
gradient by 95%, which again would reduce the total time from 0.0911 seconds to 0.03
seconds, increasing the frequency up to 35Hz.
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5.4 Software

The Point Cloud Library(PCL)[29] and librealsense SDK[32] was the primary software
used during this thesis. The PCL-implements many algorithms for handling point
clouds and 3d-data. PCL is very powerful, but is also quite complicated if you need to
do things that are not already implemented. There are also no tutorials on the more
advanced algorithms for manipulation of point clouds and you need to know what the
algorithms do before trying to use PCL, since PCL only implements the algorithm.

Because of some interface-problems between librealsense and PCL some of the benefi-
cial structure of the data from the camera was lost in converting from librealsense-data
to PCL-data. This complicated the implementation of the edge detection algorithm.

5.5 Alternative Feedback Strategy

In this thesis a direct measurement of the control parameters road-width and height
were attempted with partial success. In my project thesis[10] a strategy to do real time
3D-scanning was attempted, but was deemed too complicated. After further thought
during this semester i believe for a 6-degree-of-freedom robot arm with, perhaps in
the future, a more complicated path-planning-scheme might need the wider overview
a 3D-camera is able to provide. This is if the more complicated path-planning moves
away from extruding simple lines and layers. 3D-scanning is a complicated field and
maybe a partnership with a commercial actor would be advisable.

5.6 Conclusion and Future Work

The literature is quite sparse in regards to practical feedback systems for additive
manufacturing. The most direct examples are not in real time, but after each layer
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of extrusion either using colour cameras or laser triangulation sensors. A proof of
concept for feedback for an additive manufacturing process using a robot arm has been
conducted on a simple test geometry. Using the structured light camera, Intel SR-300,
we have extracted geometric information and determined the usefulness and quality
of this camera. A simple edge-detection algorithm has been programmed and tested
with the data from the camera. The algorithm proposed is possible to run in real time
with a sampling frequency of 11Hz with the current setup, with up to 35Hz possible
with some simple optimisation. The algorithm was able to extract edge information
from the data, but with quite a large error. With the quality of the camera and sub-par
algorithm we were also not able to extract the error cases under- and overfill. The
camera has been deemed to be too inaccurate and unsuited for the particular solution
and further work should use a better product.

In conclusion, the accuracy of equipment and efficiency of algorithms are crucial
for an effective feedback system. Mechanical and practical considerations must also
be considered and the requirements of the positioning of the capturing device may
prohibit adoption of this particular feedback system.

5.6.1 Future Work

Based on my findings I would recommend the following topics for future study:

• For edge-detection a smarter algorithm should be tested together with a better
capturing device. An algorithm looking at the second derivative or a survey into
edge detection with machine learning could be interesting.

• A survey into closed loop control of the actual welding operation should be
considered to find connection between quality parameters such as surface rough-
ness, road-width and height, with the control parameters feedrate, temperature
and actuator speed. I would recommend using a high precision laser profile
sensor such as the ones from Micro-Epsilon[33] and perhaps a non-contact
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temperature sensor, since temperature is important in CMT-welding quality[37].

• Customised path-planning algorithms and commercial use cases for the project
may highlight new requirements for feedback. Perhaps real-time scanning and
registration of point clouds for 3D-reconstruction should be investigated later.
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Appendix A

Edge Detection Data

Table A.1: Result from Edge Detection: Straight Line, unfiltered and filtered, 0.5mm
distance between points. Identical result for Prewit and Sobel gradients and same for
both filtered and unfiltered

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.00500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.00750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.01000 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.01250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.01500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.01750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.02000 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.02250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.02500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
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Table A.2: Result from Edge Detection: Straight Line with incremental offset in x
direction, unfiltered and filtered, 0.5mm distance between points. Identical result for
Prewitt and Sobel gradients and same for both filtered and unfiltered

X: Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.000000 0.00250 0.00700 0.00700 0.00353 0.00350 -0.00348 -0.00350 0.00300 0.00300 0.00% 0.00% 7.14%
0.000125 0.00500 0.00700 0.00650 0.00365 0.00300 -0.00335 -0.00350 0.00300 0.00300 7.14% 0.00% 7.14%
0.000250 0.00750 0.00700 0.00650 0.00378 0.00300 -0.00323 -0.00350 0.00300 0.00300 7.14% 0.00% 7.14%
0.000375 0.01000 0.00700 0.00650 0.00390 0.00300 -0.00310 -0.00350 0.00300 0.00300 7.14% 0.00% 7.14%
0.000500 0.01250 0.00700 0.00650 0.00403 0.00250 -0.00298 -0.00400 0.00300 0.00300 7.14% 0.00% 7.14%
0.000625 0.01500 0.00700 0.00650 0.00415 0.00250 -0.00285 -0.00400 0.00300 0.00300 7.14% 0.00% 7.14%
0.000750 0.01750 0.00700 0.00650 0.00428 0.00250 -0.00273 -0.00400 0.00300 0.00300 7.14% 0.00% 7.14%
0.000875 0.02000 0.00700 0.00650 0.00440 0.00250 -0.00260 -0.00400 0.00300 0.00300 7.14% 0.00% 7.14%
0.001000 0.02250 0.00700 0.00700 0.00453 0.00250 -0.00248 -0.00450 0.00300 0.00300 0.00% 0.00% 7.14%
0.001125 0.02500 0.00700 0.00650 0.00465 0.00200 -0.00235 -0.00450 0.00300 0.00300 7.14% 0.00% 7.14%

Figure A.1: Incremental offset as a point cloud. Unfiltered to the left, Smoothed out by
gaussian kernel to the right.

Table A.3: Result from Edge Detection: Straight Line with incremental increase in
width, unfiltered and filtered, 0.5mm distance between points. Identical result for
Prewitt and Sobel gradients and same for both filtered and unfiltered

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00604 0.00600 0.003020 0.003000 -0.003020 -0.003000 0.00300 0.00300 0.66% 0.00% 8.28%
0.00500 0.00625 0.00600 0.003125 0.003000 -0.003125 -0.003000 0.00300 0.00300 4.00% 0.00% 8.00%
0.00750 0.00650 0.00600 0.003250 0.003000 -0.003250 -0.003000 0.00300 0.00300 7.69% 0.00% 7.69%
0.01000 0.00675 0.00600 0.003375 0.003000 -0.003375 -0.003000 0.00300 0.00300 11.11% 0.00% 7.41%
0.01250 0.00700 0.00700 0.003500 0.003500 -0.003500 -0.003500 0.00300 0.00300 0.00% 0.00% 7.14%
0.01500 0.00725 0.00700 0.003625 0.003500 -0.003625 -0.003500 0.00300 0.00300 3.45% 0.00% 6.90%
0.01750 0.00750 0.00700 0.003750 0.003500 -0.003750 -0.003500 0.00300 0.00300 6.67% 0.00% 6.67%
0.02000 0.00775 0.00700 0.003875 0.003500 -0.003875 -0.003500 0.00300 0.00300 9.68% 0.00% 6.45%
0.02250 0.00800 0.00800 0.004000 0.004000 -0.004000 -0.004000 0.00300 0.00300 0.00% 0.00% 6.25%
0.02500 0.00825 0.00800 0.004125 0.004000 -0.004125 -0.004000 0.00300 0.00300 3.03% 0.00% 6.06%
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Figure A.2: Calculated gradient with Sobel operator. Unfiltered to the left, Smoothed
out by gaussian kernel to the right.

Figure A.3: Incremental width as a point cloud. Unfiltered to the left, Smoothed out by
gaussian kernel to the right.
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Figure A.4: Calculated gradient with Sobel operator. Unfiltered to the left, Smoothed
out by gaussian kernel to the right.

Figure A.5: Straight line with noisy data. Unfiltered to the left, Smoothed out by
gaussian kernel to the right.
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Figure A.6: Straight line with noisy data. Calculated gradient with Sobel operator.
Unfiltered to the left, Smoothed out by gaussian kernel to the right.

Table A.4: Result from Edge Detection: Straight line using the Sobel Gradient. Unfil-
tered first then filtered, 0.5mm distance between points with noisy data.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.63% 7.14%
0.00500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 0.84% 7.14%
0.00750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 0.98% 7.14%
0.01000 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00301 0.00% -0.37% 7.14%
0.01250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00303 0.00% -0.94% 7.14%
0.01500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00301 0.00% -0.40% 7.14%
0.01750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00305 0.00% -1.69% 7.14%
0.02000 0.00700 0.00650 0.00350 0.00350 -0.00350 -0.00300 0.00300 0.00300 7.14% -0.07% 7.14%
0.02250 0.00700 0.00650 0.00350 0.00300 -0.00350 -0.00350 0.00300 0.00304 7.14% -1.29% 7.14%
0.02500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.81% 7.14%

0.00250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 1.06% 7.14%
0.00500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00299 0.00% 0.49% 7.14%
0.00750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.64% 7.14%
0.01000 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% -0.05% 7.14%
0.01250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00302 0.00% -0.73% 7.14%
0.01500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00302 0.00% -0.68% 7.14%
0.01750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00305 0.00% -1.72% 7.14%
0.02000 0.00700 0.00650 0.00350 0.00350 -0.00350 -0.00300 0.00300 0.00301 7.14% -0.42% 7.14%
0.02250 0.00700 0.00650 0.00350 0.00300 -0.00350 -0.00350 0.00300 0.00303 7.14% -1.03% 7.14%
0.02500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.56% 7.14%
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Table A.5: Result from Edge Detection: Straight line using the Prewitt Gradient.
Unfiltered first then filtered, 0.5mm distance between points with noisy data.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.63% 7.14%
0.00500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 0.84% 7.14%
0.00750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 0.98% 7.14%
0.01000 0.00700 0.00650 0.00350 0.00350 -0.00350 -0.00300 0.00300 0.00301 7.14% -0.30% 7.14%
0.01250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00303 0.00% -0.94% 7.14%
0.01500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00301 0.00% -0.40% 7.14%
0.01750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00305 0.00% -1.69% 7.14%
0.02000 0.00700 0.00650 0.00350 0.00350 -0.00350 -0.00300 0.00300 0.00300 7.14% -0.07% 7.14%
0.02250 0.00700 0.00650 0.00350 0.00300 -0.00350 -0.00350 0.00300 0.00304 7.14% -1.29% 7.14%
0.02500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.81% 7.14%

0.00250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00297 0.00% 1.06% 7.14%
0.00500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00299 0.00% 0.49% 7.14%
0.00750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.64% 7.14%
0.01000 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00300 0.00% -0.05% 7.14%
0.01250 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00302 0.00% -0.73% 7.14%
0.01500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00302 0.00% -0.68% 7.14%
0.01750 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00305 0.00% -1.72% 7.14%
0.02000 0.00700 0.00650 0.00350 0.00350 -0.00350 -0.00300 0.00300 0.00301 7.14% -0.42% 7.14%
0.02250 0.00700 0.00650 0.00350 0.00300 -0.00350 -0.00350 0.00300 0.00303 7.14% -1.03% 7.14%
0.02500 0.00700 0.00700 0.00350 0.00350 -0.00350 -0.00350 0.00300 0.00298 0.00% 0.56% 7.14%

Table A.6: Result from Edge Detection: Straight line with incremental offset in x
direction using the Sobel Gradient. Unfiltered first then filtered, 0.5mm distance
between points with noisy data.

X: Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.000000 0.00250 0.00700 0.00700 0.003525 0.003500 -0.003475 -0.003500 0.00300 0.00296 0.00% 1.21% 7.14%
0.000125 0.00500 0.00700 0.00700 0.003650 0.003500 -0.003350 -0.003500 0.00300 0.00299 0.00% 0.37% 7.14%
0.000250 0.00750 0.00700 0.00650 0.003775 0.003000 -0.003225 -0.003500 0.00300 0.00300 7.14% 0.11% 7.14%
0.000375 0.01000 0.00700 0.00650 0.003900 0.003000 -0.003100 -0.003500 0.00300 0.00299 7.14% 0.36% 7.14%
0.000500 0.01250 0.00700 0.00700 0.004025 0.003000 -0.002975 -0.004000 0.00300 0.00303 0.00% -0.94% 7.14%
0.000625 0.01500 0.00700 0.00700 0.004150 0.003000 -0.002850 -0.004000 0.00300 0.00300 0.00% 0.06% 7.14%
0.000750 0.01750 0.00700 0.00650 0.004275 0.002500 -0.002725 -0.004000 0.00300 0.00298 7.14% 0.76% 7.14%
0.000875 0.02000 0.00700 0.00650 0.004400 0.002500 -0.002600 -0.004000 0.00300 0.00299 7.14% 0.33% 7.14%
0.001000 0.02250 0.00700 0.00700 0.004525 0.002500 -0.002475 -0.004500 0.00300 0.00298 0.00% 0.55% 7.14%
0.001125 0.02500 0.00700 0.00650 0.004650 0.002000 -0.002350 -0.004500 0.00300 0.00299 7.14% 0.48% 7.14%
0.000000 0.00250 0.00700 0.00700 0.003525 0.003500 -0.003475 -0.003500 0.00300 0.00296 0.00% 1.49% 7.14%

0.000125 0.00500 0.00700 0.00700 0.003650 0.003500 -0.003350 -0.003500 0.00300 0.00299 0.00% 0.38% 7.14%
0.000250 0.00750 0.00700 0.00650 0.003775 0.003000 -0.003225 -0.003500 0.00300 0.00300 7.14% -0.14% 7.14%
0.000375 0.01000 0.00700 0.00650 0.003900 0.003000 -0.003100 -0.003500 0.00300 0.00299 7.14% 0.22% 7.14%
0.000500 0.01250 0.00700 0.00700 0.004025 0.003000 -0.002975 -0.004000 0.00300 0.00302 0.00% -0.72% 7.14%
0.000625 0.01500 0.00700 0.00700 0.004150 0.003000 -0.002850 -0.004000 0.00300 0.00300 0.00% -0.06% 7.14%
0.000750 0.01750 0.00700 0.00650 0.004275 0.002500 -0.002725 -0.004000 0.00300 0.00297 7.14% 0.97% 7.14%
0.000875 0.02000 0.00700 0.00650 0.004400 0.002500 -0.002600 -0.004000 0.00300 0.00301 7.14% -0.17% 7.14%
0.001000 0.02250 0.00700 0.00700 0.004525 0.002500 -0.002475 -0.004500 0.00300 0.00299 0.00% 0.34% 7.14%
0.001125 0.02500 0.00700 0.00650 0.004650 0.002000 -0.002350 -0.004500 0.00300 0.00297 7.14% 0.90% 7.14%
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Table A.7: Result from Edge Detection: Straight line with incremental offset in x
direction using the Prewitt Gradient. Unfiltered first then filtered, 0.5mm distance
between points with noisy data.

X: Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.000000 0.00250 0.00700 0.00700 0.003525 0.003500 -0.003475 -0.003500 0.00300 0.00296 0.00% 1.21% 7.14%
0.000125 0.00500 0.00700 0.00700 0.003650 0.003500 -0.003350 -0.003500 0.00300 0.00299 0.00% 0.37% 7.14%
0.000250 0.00750 0.00700 0.00650 0.003775 0.003000 -0.003225 -0.003500 0.00300 0.00300 7.14% 0.11% 7.14%
0.000375 0.01000 0.00700 0.00650 0.003900 0.003000 -0.003100 -0.003500 0.00300 0.00299 7.14% 0.36% 7.14%
0.000500 0.01250 0.00700 0.00700 0.004025 0.003000 -0.002975 -0.004000 0.00300 0.00303 0.00% -0.94% 7.14%
0.000625 0.01500 0.00700 0.00700 0.004150 0.003000 -0.002850 -0.004000 0.00300 0.00300 0.00% 0.06% 7.14%
0.000750 0.01750 0.00700 0.00650 0.004275 0.002500 -0.002725 -0.004000 0.00300 0.00298 7.14% 0.76% 7.14%
0.000875 0.02000 0.00700 0.00650 0.004400 0.002500 -0.002600 -0.004000 0.00300 0.00299 7.14% 0.33% 7.14%
0.001000 0.02250 0.00700 0.00700 0.004525 0.002500 -0.002475 -0.004500 0.00300 0.00298 0.00% 0.55% 7.14%
0.001125 0.02500 0.00700 0.00650 0.004650 0.002000 -0.002350 -0.004500 0.00300 0.00299 7.14% 0.48% 7.14%

0.000000 0.00250 0.00700 0.00700 0.003525 0.003500 -0.003475 -0.003500 0.00300 0.00296 0.00% 1.49% 7.14%
0.000125 0.00500 0.00700 0.00700 0.003650 0.003500 -0.003350 -0.003500 0.00300 0.00299 0.00% 0.38% 7.14%
0.000250 0.00750 0.00700 0.00650 0.003775 0.003000 -0.003225 -0.003500 0.00300 0.00300 7.14% -0.14% 7.14%
0.000375 0.01000 0.00700 0.00650 0.003900 0.003000 -0.003100 -0.003500 0.00300 0.00299 7.14% 0.22% 7.14%
0.000500 0.01250 0.00700 0.00700 0.004025 0.003000 -0.002975 -0.004000 0.00300 0.00302 0.00% -0.72% 7.14%
0.000625 0.01500 0.00700 0.00700 0.004150 0.003000 -0.002850 -0.004000 0.00300 0.00300 0.00% -0.06% 7.14%
0.000750 0.01750 0.00700 0.00650 0.004275 0.002500 -0.002725 -0.004000 0.00300 0.00297 7.14% 0.97% 7.14%
0.000875 0.02000 0.00700 0.00650 0.004400 0.002500 -0.002600 -0.004000 0.00300 0.00301 7.14% -0.17% 7.14%
0.001000 0.02250 0.00700 0.00700 0.004525 0.002500 -0.002475 -0.004500 0.00300 0.00299 0.00% 0.34% 7.14%
0.001125 0.02500 0.00700 0.00650 0.004650 0.002000 -0.002350 -0.004500 0.00300 0.00297 7.14% 0.90% 7.14%

Table A.8: Result from Edge Detection: Straight line with incremental increase in
width using the Sobel Gradient. Unfiltered first then filtered, 0.5mm distance between
points with noisy data.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00600 0.00600 0.003020 0.003000 -0.003020 -0.003000 0.00300 0.00298 0.00% 0.61% 8.33%
0.00500 0.00625 0.00600 0.003125 0.003000 -0.003125 -0.003000 0.00300 0.00298 4.00% 0.73% 8.00%
0.00750 0.00650 0.00600 0.003250 0.003000 -0.003250 -0.003000 0.00300 0.00298 7.69% 0.71% 7.69%
0.01000 0.00675 0.00700 0.003375 0.003500 -0.003375 -0.003500 0.00300 0.00303 -3.70% -1.12% 7.41%
0.01250 0.00700 0.00700 0.003500 0.003500 -0.003500 -0.003500 0.00300 0.00296 0.00% 1.20% 7.14%
0.01500 0.00725 0.00700 0.003625 0.003500 -0.003625 -0.003500 0.00300 0.00295 3.45% 1.70% 6.90%
0.01750 0.00750 0.00700 0.003750 0.003500 -0.003750 -0.003500 0.00300 0.00298 6.67% 0.67% 6.67%
0.02000 0.00775 0.00750 0.003875 0.003500 -0.003875 -0.004000 0.00300 0.00302 3.23% -0.66% 6.45%
0.02250 0.00800 0.00800 0.004000 0.004000 -0.004000 -0.004000 0.00300 0.00298 0.00% 0.70% 6.25%
0.02500 0.00825 0.00800 0.004125 0.004000 -0.004125 -0.004000 0.00300 0.00303 3.03% -1.12% 6.06%

0.00250 0.00600 0.00600 0.003020 0.003000 -0.003020 -0.003000 0.00300 0.00298 0.00% 0.63% 8.33%
0.00500 0.00625 0.00600 0.003125 0.003000 -0.003125 -0.003000 0.00300 0.00298 4.00% 0.68% 8.00%
0.00750 0.00650 0.00600 0.003250 0.003000 -0.003250 -0.003000 0.00300 0.00298 7.69% 0.70% 7.69%
0.01000 0.00675 0.00650 0.003375 0.003000 -0.003375 -0.003500 0.00300 0.00302 3.70% -0.76% 7.41%
0.01250 0.00700 0.00700 0.003500 0.003500 -0.003500 -0.003500 0.00300 0.00297 0.00% 1.12% 7.14%
0.01500 0.00725 0.00700 0.003625 0.003500 -0.003625 -0.003500 0.00300 0.00296 3.45% 1.38% 6.90%
0.01750 0.00750 0.00700 0.003750 0.003500 -0.003750 -0.003500 0.00300 0.00297 6.67% 0.90% 6.67%
0.02000 0.00775 0.00700 0.003875 0.003500 -0.003875 -0.003500 0.00300 0.00302 9.68% -0.76% 6.45%
0.02250 0.00800 0.00800 0.004000 0.004000 -0.004000 -0.004000 0.00300 0.00298 0.00% 0.65% 6.25%
0.02500 0.00825 0.00800 0.004125 0.004000 -0.004125 -0.004000 0.00300 0.00303 3.03% -0.86% 6.06%
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Table A.9: Result from Edge Detection: Straight line with incremental increase in width
using the Prewitt Gradient. Unfiltered first then filtered, 0.5mm distance between
points with noisy data.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00600 0.00600 0.003020 0.003000 -0.003020 -0.003000 0.00300 0.00298 0.00% 0.61% 8.33%
0.00500 0.00625 0.00600 0.003125 0.003000 -0.003125 -0.003000 0.00300 0.00298 4.00% 0.73% 8.00%
0.00750 0.00650 0.00600 0.003250 0.003000 -0.003250 -0.003000 0.00300 0.00298 7.69% 0.71% 7.69%
0.01000 0.00675 0.00700 0.003375 0.003500 -0.003375 -0.003500 0.00300 0.00303 -3.70% -1.12% 7.41%
0.01250 0.00700 0.00700 0.003500 0.003500 -0.003500 -0.003500 0.00300 0.00296 0.00% 1.20% 7.14%
0.01500 0.00725 0.00700 0.003625 0.003500 -0.003625 -0.003500 0.00300 0.00295 3.45% 1.70% 6.90%
0.01750 0.00750 0.00700 0.003750 0.003500 -0.003750 -0.003500 0.00300 0.00298 6.67% 0.67% 6.67%
0.02000 0.00775 0.00750 0.003875 0.003500 -0.003875 -0.004000 0.00300 0.00302 3.23% -0.66% 6.45%
0.02250 0.00800 0.00800 0.004000 0.004000 -0.004000 -0.004000 0.00300 0.00298 0.00% 0.70% 6.25%
0.02500 0.00825 0.00800 0.004125 0.004000 -0.004125 -0.004000 0.00300 0.00303 3.03% -1.12% 6.06%

0.00250 0.00600 0.00600 0.003020 0.003000 -0.003020 -0.003000 0.00300 0.00298 0.00% 0.63% 8.33%
0.00500 0.00625 0.00600 0.003125 0.003000 -0.003125 -0.003000 0.00300 0.00298 4.00% 0.68% 8.00%
0.00750 0.00650 0.00600 0.003250 0.003000 -0.003250 -0.003000 0.00300 0.00298 7.69% 0.70% 7.69%
0.01000 0.00675 0.00650 0.003375 0.003000 -0.003375 -0.003500 0.00300 0.00302 3.70% -0.76% 7.41%
0.01250 0.00700 0.00700 0.003500 0.003500 -0.003500 -0.003500 0.00300 0.00297 0.00% 1.12% 7.14%
0.01500 0.00725 0.00700 0.003625 0.003500 -0.003625 -0.003500 0.00300 0.00296 3.45% 1.38% 6.90%
0.01750 0.00750 0.00700 0.003750 0.003500 -0.003750 -0.003500 0.00300 0.00297 6.67% 0.90% 6.67%
0.02000 0.00775 0.00700 0.003875 0.003500 -0.003875 -0.003500 0.00300 0.00302 9.68% -0.76% 6.45%
0.02250 0.00800 0.00800 0.004000 0.004000 -0.004000 -0.004000 0.00300 0.00298 0.00% 0.65% 6.25%
0.02500 0.00825 0.00800 0.004125 0.004000 -0.004125 -0.004000 0.00300 0.00303 3.03% -0.86% 6.06%

Table A.10: Result from Edge Detection: Straight Line with incremental offset in x
direction using the Sobel Gradient. Unfiltered first then filtered, 0.25mm distance
between points.

X: Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.000000 0.00250 0.00700 0.00700 0.00351 0.00350 -0.00349 -0.00350 0.00300 0.00301 0.00% -0.34% 3.57%
0.000125 0.00500 0.00700 0.00675 0.00364 0.00325 -0.00336 -0.00350 0.00300 0.00300 3.57% -0.02% 3.57%
0.000250 0.00750 0.00700 0.00700 0.00376 0.00325 -0.00324 -0.00375 0.00300 0.00299 0.00% 0.26% 3.57%
0.000375 0.01000 0.00700 0.00700 0.00389 0.00325 -0.00311 -0.00375 0.00300 0.00300 0.00% -0.06% 3.57%
0.000500 0.01250 0.00700 0.00700 0.00401 0.00300 -0.00299 -0.00400 0.00300 0.00301 0.00% -0.24% 3.57%
0.000625 0.01500 0.00700 0.00675 0.00414 0.00275 -0.00286 -0.00400 0.00300 0.00299 3.57% 0.33% 3.57%
0.000750 0.01750 0.00700 0.00675 0.00426 0.00250 -0.00274 -0.00425 0.00300 0.00301 3.57% -0.25% 3.57%
0.000875 0.02000 0.00700 0.00725 0.00439 0.00275 -0.00261 -0.00450 0.00300 0.00300 -3.57% -0.09% 3.57%
0.001000 0.02250 0.00700 0.00700 0.00451 0.00250 -0.00249 -0.00450 0.00300 0.00301 0.00% -0.35% 3.57%
0.001125 0.02500 0.00700 0.00675 0.00464 0.00225 -0.00236 -0.00450 0.00300 0.00301 3.57% -0.23% 3.57%

0.00000 0.00250 0.00700 0.00700 0.00351 0.00350 -0.00349 -0.00350 0.00300 0.00301 0.00% -0.23% 3.57%
0.00013 0.00500 0.00700 0.00675 0.00364 0.00325 -0.00336 -0.00350 0.00300 0.00300 3.57% 0.09% 3.57%
0.00025 0.00750 0.00700 0.00700 0.00376 0.00325 -0.00324 -0.00375 0.00300 0.00299 0.00% 0.33% 3.57%
0.00038 0.01000 0.00700 0.00700 0.00389 0.00325 -0.00311 -0.00375 0.00300 0.00300 0.00% -0.17% 3.57%
0.00050 0.01250 0.00700 0.00700 0.00401 0.00300 -0.00299 -0.00400 0.00300 0.00300 0.00% -0.14% 3.57%
0.00063 0.01500 0.00700 0.00675 0.00414 0.00275 -0.00286 -0.00400 0.00300 0.00299 3.57% 0.32% 3.57%
0.00075 0.01750 0.00700 0.00675 0.00426 0.00250 -0.00274 -0.00425 0.00300 0.00301 3.57% -0.21% 3.57%
0.00088 0.02000 0.00700 0.00700 0.00439 0.00275 -0.00261 -0.00425 0.00300 0.00301 0.00% -0.23% 3.57%
0.00100 0.02250 0.00700 0.00700 0.00451 0.00250 -0.00249 -0.00450 0.00300 0.00302 0.00% -0.53% 3.57%
0.00113 0.02500 0.00700 0.00675 0.00464 0.00225 -0.00236 -0.00450 0.00300 0.00300 3.57% -0.14% 3.57%
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Table A.11: Result from Edge Detection: Straight Line with incremental offset in x
direction using the Prewitt Gradient. Unfiltered first then filtered, 0.25mm distance
between points.

X: Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00000 0.00250 0.00700 0.00700 0.00351 0.00350 -0.00349 -0.00350 0.00300 0.00301 0.00% -0.34% 3.57%
0.00013 0.00500 0.00700 0.00675 0.00364 0.00325 -0.00336 -0.00350 0.00300 0.00300 3.57% -0.02% 3.57%
0.00025 0.00750 0.00700 0.00700 0.00376 0.00325 -0.00324 -0.00375 0.00300 0.00299 0.00% 0.26% 3.57%
0.00038 0.01000 0.00700 0.00700 0.00389 0.00325 -0.00311 -0.00375 0.00300 0.00300 0.00% -0.06% 3.57%
0.00050 0.01250 0.00700 0.00700 0.00401 0.00300 -0.00299 -0.00400 0.00300 0.00301 0.00% -0.24% 3.57%
0.00063 0.01500 0.00700 0.00675 0.00414 0.00275 -0.00286 -0.00400 0.00300 0.00299 3.57% 0.33% 3.57%
0.00075 0.01750 0.00700 0.00700 0.00426 0.00275 -0.00274 -0.00425 0.00300 0.00301 0.00% -0.21% 3.57%
0.00088 0.02000 0.00700 0.00700 0.00439 0.00275 -0.00261 -0.00425 0.00300 0.00301 0.00% -0.18% 3.57%
0.00100 0.02250 0.00700 0.00700 0.00451 0.00250 -0.00249 -0.00450 0.00300 0.00301 0.00% -0.35% 3.57%
0.00113 0.02500 0.00700 0.00675 0.00464 0.00225 -0.00236 -0.00450 0.00300 0.00301 3.57% -0.23% 3.57%

0.00000 0.00250 0.00700 0.00700 0.00351 0.00350 -0.00349 -0.00350 0.00300 0.00301 0.00% -0.23% 3.57%
0.00013 0.00500 0.00700 0.00675 0.00364 0.00325 -0.00336 -0.00350 0.00300 0.00300 3.57% 0.09% 3.57%
0.00025 0.00750 0.00700 0.00700 0.00376 0.00325 -0.00324 -0.00375 0.00300 0.00299 0.00% 0.33% 3.57%
0.00038 0.01000 0.00700 0.00700 0.00389 0.00325 -0.00311 -0.00375 0.00300 0.00300 0.00% -0.17% 3.57%
0.00050 0.01250 0.00700 0.00700 0.00401 0.00300 -0.00299 -0.00400 0.00300 0.00300 0.00% -0.14% 3.57%
0.00063 0.01500 0.00700 0.00675 0.00414 0.00275 -0.00286 -0.00400 0.00300 0.00299 3.57% 0.32% 3.57%
0.00075 0.01750 0.00700 0.00675 0.00426 0.00250 -0.00274 -0.00425 0.00300 0.00301 3.57% -0.21% 3.57%
0.00088 0.02000 0.00700 0.00700 0.00439 0.00275 -0.00261 -0.00425 0.00300 0.00301 0.00% -0.23% 3.57%
0.00100 0.02250 0.00700 0.00700 0.00451 0.00250 -0.00249 -0.00450 0.00300 0.00302 0.00% -0.53% 3.57%
0.00113 0.02500 0.00700 0.00675 0.00464 0.00225 -0.00236 -0.00450 0.00300 0.00300 3.57% -0.14% 3.57%

Table A.12: Result from Edge Detection: Straight Line with incremental increase in
width using the Sobel Gradient. Unfiltered first then filtered, 0.25mm distance between
points.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00705 0.00700 0.00352 0.00350 -0.00352 -0.00350 0.00300 0.00299 0.64% 0.21% 3.55%
0.00500 0.00750 0.00725 0.00375 0.00375 -0.00375 -0.00350 0.00300 0.00300 3.33% -0.05% 3.33%
0.00750 0.00800 0.00775 0.00400 0.00375 -0.00400 -0.00400 0.00300 0.00301 3.13% -0.46% 3.13%
0.01000 0.00850 0.00850 0.00425 0.00425 -0.00425 -0.00425 0.00300 0.00301 0.00% -0.48% 2.94%
0.01250 0.00900 0.00900 0.00450 0.00450 -0.00450 -0.00450 0.00300 0.00299 0.00% 0.30% 2.78%
0.01500 0.00950 0.00950 0.00475 0.00475 -0.00475 -0.00475 0.00300 0.00299 0.00% 0.38% 2.63%
0.01750 0.01000 0.01000 0.00500 0.00500 -0.00500 -0.00500 0.00300 0.00300 0.00% 0.05% 2.50%
0.02000 0.01050 0.01025 0.00525 0.00525 -0.00525 -0.00500 0.00300 0.00302 2.38% -0.60% 2.38%
0.02250 0.01100 0.01100 0.00550 0.00550 -0.00550 -0.00550 0.00300 0.00300 0.00% -0.14% 2.27%
0.02500 0.01150 0.01150 0.00575 0.00575 -0.00575 -0.00575 0.00300 0.00300 0.00% 0.15% 2.17%

0.00250 0.00705 0.00700 0.00352 0.00350 -0.00352 -0.00350 0.00300 0.00299 0.64% 0.17% 3.55%
0.00500 0.00750 0.00725 0.00375 0.00375 -0.00375 -0.00350 0.00300 0.00300 3.33% -0.04% 3.33%
0.00750 0.00800 0.00775 0.00400 0.00375 -0.00400 -0.00400 0.00300 0.00301 3.13% -0.37% 3.13%
0.01000 0.00850 0.00850 0.00425 0.00425 -0.00425 -0.00425 0.00300 0.00301 0.00% -0.39% 2.94%
0.01250 0.00900 0.00900 0.00450 0.00450 -0.00450 -0.00450 0.00300 0.00299 0.00% 0.32% 2.78%
0.01500 0.00950 0.00950 0.00475 0.00475 -0.00475 -0.00475 0.00300 0.00299 0.00% 0.33% 2.63%
0.01750 0.01000 0.01000 0.00500 0.00500 -0.00500 -0.00500 0.00300 0.00300 0.00% -0.01% 2.50%
0.02000 0.01050 0.01025 0.00525 0.00525 -0.00525 -0.00500 0.00300 0.00302 2.38% -0.60% 2.38%
0.02250 0.01100 0.01100 0.00550 0.00550 -0.00550 -0.00550 0.00300 0.00300 0.00% -0.03% 2.27%
0.02500 0.01150 0.01150 0.00575 0.00575 -0.00575 -0.00575 0.00300 0.00300 0.00% 0.10% 2.17%
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Table A.13: Result from Edge Detection: Straight Line with incremental increase
in width using the Prewitt Gradient. Unfiltered first then filtered, 0.25mm distance
between points.

Y: Real Width: Est Width: Real P edge: Est P edge: Real N edge: Est N edge: Real Height: Est Height: Width Error % Height Error % Stepsize Error %

0.00250 0.00705 0.00700 0.00352 0.00350 -0.00352 -0.00350 0.00300 0.00299 0.64% 0.21% 3.55%
0.00500 0.00750 0.00725 0.00375 0.00375 -0.00375 -0.00350 0.00300 0.00300 3.33% -0.05% 3.33%
0.00750 0.00800 0.00775 0.00400 0.00375 -0.00400 -0.00400 0.00300 0.00301 3.13% -0.46% 3.13%
0.01000 0.00850 0.00850 0.00425 0.00425 -0.00425 -0.00425 0.00300 0.00301 0.00% -0.48% 2.94%
0.01250 0.00900 0.00900 0.00450 0.00450 -0.00450 -0.00450 0.00300 0.00299 0.00% 0.30% 2.78%
0.01500 0.00950 0.00950 0.00475 0.00475 -0.00475 -0.00475 0.00300 0.00299 0.00% 0.38% 2.63%
0.01750 0.01000 0.01000 0.00500 0.00500 -0.00500 -0.00500 0.00300 0.00300 0.00% 0.05% 2.50%
0.02000 0.01050 0.01025 0.00525 0.00525 -0.00525 -0.00500 0.00300 0.00302 2.38% -0.60% 2.38%
0.02250 0.01100 0.01100 0.00550 0.00550 -0.00550 -0.00550 0.00300 0.00300 0.00% -0.14% 2.27%
0.02500 0.01150 0.01150 0.00575 0.00575 -0.00575 -0.00575 0.00300 0.00300 0.00% 0.15% 2.17%

0.00250 0.00705 0.00700 0.00352 0.00350 -0.00352 -0.00350 0.00300 0.00299 0.64% 0.17% 3.55%
0.00500 0.00750 0.00725 0.00375 0.00375 -0.00375 -0.00350 0.00300 0.00300 3.33% -0.04% 3.33%
0.00750 0.00800 0.00775 0.00400 0.00375 -0.00400 -0.00400 0.00300 0.00301 3.13% -0.37% 3.13%
0.01000 0.00850 0.00850 0.00425 0.00425 -0.00425 -0.00425 0.00300 0.00301 0.00% -0.39% 2.94%
0.01250 0.00900 0.00900 0.00450 0.00450 -0.00450 -0.00450 0.00300 0.00299 0.00% 0.32% 2.78%
0.01500 0.00950 0.00950 0.00475 0.00475 -0.00475 -0.00475 0.00300 0.00299 0.00% 0.33% 2.63%
0.01750 0.01000 0.01000 0.00500 0.00500 -0.00500 -0.00500 0.00300 0.00300 0.00% -0.01% 2.50%
0.02000 0.01050 0.01025 0.00525 0.00525 -0.00525 -0.00500 0.00300 0.00302 2.38% -0.60% 2.38%
0.02250 0.01100 0.01100 0.00550 0.00550 -0.00550 -0.00550 0.00300 0.00300 0.00% -0.03% 2.27%
0.02500 0.01150 0.01150 0.00575 0.00575 -0.00575 -0.00575 0.00300 0.00300 0.00% 0.10% 2.17%
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Appendix B

Experiment 1 - Straight Line

83



Table B.1: Average values for the height measurements of the experiments

Exp: Avg Meas. Unf. Avg. Unf. Err. Unf. St.Dev. Gaus. 3x3 Avg. Gaus. 3x3 Err. Gaus. 3x3 St.Dev. Gaus. 5x5 Avg. Gaus. 5x5 Err. Gaus. 5x5 St.Dev.

e1 1.80 1.72 -0.08 0.14 1.73 -0.07 0.14 1.73 -0.07 0.14
e2 1.90 1.88 -0.02 0.07 1.89 -0.01 0.07 1.89 -0.01 0.06
e3 2.47 2.25 -0.22 0.11 2.25 -0.22 0.11 2.25 -0.22 0.11
e4 2.50 1.99 -0.51 0.12 1.98 -0.52 0.12 1.98 -0.52 0.12
e5 3.19 2.61 -0.58 0.10 2.61 -0.58 0.10 2.63 -0.56 0.10
e6 3.27 2.87 -0.40 0.11 2.87 -0.40 0.11 2.87 -0.40 0.11

e7 1.87 1.45 -0.42 0.09 1.45 -0.42 0.09 1.46 -0.41 0.09
e8 3.93 4.32 0.39 0.06 4.32 0.39 0.06 4.32 0.39 0.07
e9 1.80 1.77 -0.03 0.13 1.77 -0.03 0.12 1.78 -0.02 0.13
e10 3.90 4.12 0.22 0.10 4.12 0.22 0.10 4.11 0.21 0.10
e11 3.10 2.82 -0.28 0.07 2.82 -0.28 0.07 2.82 -0.28 0.08
e12 6.90 6.59 -0.31 0.10 6.57 -0.33 0.08 6.57 -0.33 0.08
e13 3.00 2.77 -0.23 0.08 2.77 -0.23 0.08 2.77 -0.23 0.08
e14 6.45 6.51 0.06 0.07 6.51 0.06 0.07 6.51 0.06 0.07
e15 3.85 3.20 -0.65 0.08 3.20 -0.65 0.08 3.20 -0.65 0.08
e16 7.85 7.62 -0.23 0.12 7.63 -0.22 0.12 7.63 -0.22 0.12

Table B.2: Average values for the width measurements of the experiments

Exp: Avg Meas. Unf. Avg. Unf. Err. Unf. St.Dev. Gaus. 3x3 Avg. Gaus. 3x3 Err. Gaus. 3x3 St.Dev. Gaus. 5x5 Avg. Gaus. 5x5 Err. Gaus. 5x5 St.Dev.

1 7.40 7.18 -0.22 0.94 7.13 -0.27 0.92 7.23 -0.17 0.92
2 8.20 7.70 -0.50 0.70 7.85 -0.35 0.70 7.73 -0.47 0.72
3 6.60 6.90 0.30 0.95 7.06 0.46 0.91 7.11 0.51 0.91
4 7.63 7.18 -0.45 0.55 7.05 -0.58 0.60 6.97 -0.66 0.84
5 7.07 6.83 -0.24 0.47 7.15 0.08 0.68 6.85 -0.22 0.92
6 7.60 7.07 -0.53 0.57 7.05 -0.55 0.60 7.09 -0.51 0.80

7 7.80 8.54 0.74 1.12 8.84 1.04 0.92 8.99 1.19 0.80
8 8.77 8.51 -0.26 0.49 8.55 -0.22 0.51 8.34 -0.43 0.65
9 7.12 8.44 1.33 0.99 8.56 1.45 0.95 8.58 1.47 0.76
10 9.50 8.52 -0.98 0.89 8.63 -0.87 0.63 8.62 -0.88 0.75
11 7.34 8.19 0.86 0.51 8.19 0.86 0.51 8.51 1.18 0.56
12 8.90 8.10 -0.80 0.72 8.28 -0.62 0.35 8.27 -0.63 0.34
13 8.29 8.38 0.10 0.37 8.51 0.23 0.45 8.58 0.30 0.54
14 9.55 7.99 -1.56 0.37 7.94 -1.61 0.34 7.93 -1.62 0.36
15 8.31 8.24 -0.07 0.57 8.33 0.02 0.56 8.26 -0.05 0.64
16 6.25 6.93 0.68 1.04 6.78 0.53 0.99 6.80 0.55 0.89
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Figure B.1: Experiment 1 height plot using the Sobel gradient.

Figure B.2: Experiment 1 width plot using the Sobel gradient.
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Figure B.3: Experiment 2 height plot using the Sobel gradient.

Figure B.4: Experiment 2 width plot using the Sobel gradient.
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Figure B.5: Experiment 3 height plot using the Sobel gradient.

Figure B.6: Experiment 3 width plot using the Sobel gradient.
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Figure B.7: Experiment 4 height plot using the Sobel gradient.

Figure B.8: Experiment 4 width plot using the Sobel gradient.
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Figure B.9: Experiment 5 height plot using the Sobel gradient.

Figure B.10: Experiment 5 width plot using the Sobel gradient.
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Figure B.11: Experiment 6 height plot using the Sobel gradient.

Figure B.12: Experiment 6 width plot using the Sobel gradient.
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Figure B.13: Experiment 7 height plot using the Sobel gradient.

Figure B.14: Experiment 7 width plot using the Sobel gradient.
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Figure B.15: Experiment 8 height plot using the Sobel gradient.

Figure B.16: Experiment 8 width plot using the Sobel gradient.
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Figure B.17: Experiment 9 height plot using the Sobel gradient.

Figure B.18: Experiment 9 width plot using the Sobel gradient.

93



Figure B.19: Experiment 10 height plot using the Sobel gradient.

Figure B.20: Experiment 10 width plot using the Sobel gradient.
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Figure B.21: Experiment 11 height plot using the Sobel gradient.

Figure B.22: Experiment 11 width plot using the Sobel gradient.
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Figure B.23: Experiment 12 height plot using the Sobel gradient.

Figure B.24: Experiment 12 width plot using the Sobel gradient.
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Figure B.25: Experiment 13 height plot using the Sobel gradient.

Figure B.26: Experiment 13 width plot using the Sobel gradient.
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Figure B.27: Experiment 14 height plot using the Sobel gradient.

Figure B.28: Experiment 14 width plot using the Sobel gradient.
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Figure B.29: Experiment 15 height plot using the Sobel gradient.

Figure B.30: Experiment 15 width plot using the Sobel gradient.
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Figure B.31: Experiment 16 height plot using the Sobel gradient.

Figure B.32: Experiment 16 width plot using the Sobel gradient.
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