
Automated Planning and Control for a
Simulated Robot

Magnus Aarskog

Master of Science in Cybernetics and Robotics

Supervisor: Anastasios Lekkas, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology



 



Abstract

The early work in robotics and Artificial Intelligence showed great promise, but
because of the challenges and difficulties met in the early phases, the two fields drifted
apart. Artificial Intelligence focused more on algorithms and the abstract method
of approaching problems, while the robotics aspect focused more on electrical and
mechanical engineering. Now with the recent developments in Machine Learning, big
data, computing power, sensors, software etc., the two paths these to fields have been
on are getting closer [1].

The goal of this thesis is to try to combine Artificial Intelligence and robotics. The
author has the most experience with robotics, and will therefore try to focus on the
Artificial Intelligence part by making a fully usable planner. A planner, in this case,
means a program that will find a sequence of actions that will lead to the desired goal.
All the code for the planner has been written from scratch including a parser that will
read the problem description files which the planner will utilize to find a solution to
the planning problem.

To test the planner on a robotics system, the robot named KUKA YouBot is used to
solve different planning problems such as Tower of Hanoi, a stack/restack problem
of blocks and moving around in a domain where the robot must interact with the
environment to complete its goal.

As mentioned above, the AI community has focused much on algorithms and the

i



abstract thinking around it. The problems that the planning algorithms have been
based on have been in a deterministic matter where everything is known, which is
not a realistic assumption of the real world where uncertainty plays a big part. The
planner is based on a deterministic model where everything is known. This thesis
will therefore make an attempt to adapt the planner such that it also can handle cases
where not everything is known from before.

ii



Sammendrag

Kunsitg intelligens og robotikk viste i sine tidlige stadier lovende resultater, men på
grunn av utfordringene og vanskelighetene som opptsto i de tidlige fasene drev disse
feltene fra hverandre. Kunstig intelligens fokuserte mer på algoritmer og de abstrakte
metodene ved å løse problemer, mens robotikken fokuserte mer på elektronikk og det
mekaniske aspektet. Nå som det har blitt gjort store fremskritt i maskinlæring, big data,
regnekraft, sensorer, programvare etc., begynner nå robotikk og kunstig intelligens
igjen å nærme seg hverandre [1].

Målet med denne oppgaven er å forsøke å kombinere kunstig intelligene og robotikk.
Forfatteren har tidligere erfaring innenfor robotikk og vil derfor fokusere på kunstig
intelligens-delen ved å lage en fullt brukbar planlegger. En planlegger betyr i denne
sammenhengen et program som vil finne en sekvens med handlinger/ordre som vil
lede til et ønsket mål. All koden for planleggeren har blitt skrevet fra bunnen av,
inkludert en parser som vil tolke filene som beskriver problemet som planleggeren
skal løse.

For å teste planleggeren på et robotsystem vil roboten kalt KUKA YouBot bli brukt
til å løse forskjellige planleggingsproblemer. Problemer som Tårnet i Hanoi, et sta-
blings/omstablingsproblem av klosser og å bevege seg rundt i et miljø hvor roboten
må interagere med omgivelsene for å nå målet sitt.

Som nevnt over, så har kunstig intelligens foksuert mye på algoritmer og det abstrakte

iii



rundt dette. Plannleggingsproblemene som algoritmene har blitt basert på har vært
deterministiske hvor alt er kjent på forhånd. Dette er ikke en realistisk antagelse av
den ekte verden hvor usikkerhet spiller en stor rolle. Planleggeren er basert på en
deterministisk model hvor alt er kjent. Derfor vil denne oppgaven også fokusere på å
tilpasse planleggeren slik at den også kan fungere hvor alt ikke er kjent.

iv



Preface

This thesis was written during Spring 2018 for the Department of Engineering Cyber-
netics at Norwegian University of Science and Technology(NTNU).

Thank you to my supervisor Anastasios Lekkas for guiding me through this thesis.
Also thanks to my family and friends for moral support.

In this thesis the following tools have been used:

• The Linux distribution Ubuntu 16.04

• Python 2.7 programming language [2]

• V-REP simulation software [3]

• Robot Operating System (ROS) [4]

All the results from the planner that have been generated by the code that I have
written. No additional code has been given to me. Only the basic libraries from Python
2.7 have been used.

In V-REP and for the KUKA YouBot there is an example code that is given which is
used as a starting point for further development, i.e. the controller and kinematics
for the robot is not made by me, but the framework for communication between the
planner and the robot using ROS is made by me.

v



Problem description

The tasks in this thesis are to:

• Create a planner that can solve planning tasks described by an action language.

• Test the planner on a real-time system in a simulation environment.

• Explore the possibilities of adding uncertainty to the simulation.

vi



Contents

Abstract i

Sammendrag iii

Preface v

Problem description vi

1 Introduction 1
1.1 Motivation and Previous Work . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Automated Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Situation Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 STRIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 PDDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 PDDL Example . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation - Parser 14

vii



3.1 Domain Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Problem Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Implementation - Solver 19
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Forward Planning . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Heuristic Function . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Greedy Best-First Search . . . . . . . . . . . . . . . . . . . . . 32
4.3.4 A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.5 Weighted A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Planning and Replanning for a simulated robotic system 40
5.1 YouBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Tower of Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Restack of blocks . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Replanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 YouBot replanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Discussion 65
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.3 YouBot replanning . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 Parser and solver . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 YouBot replanning . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Links 71

References 72

ix



List of Tables

4.1 STRIPS problems considered . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 STRIPS problems solved using BFS . . . . . . . . . . . . . . . . . . . . 29
4.3 Run BFS until all states has been visited or out of memory . . . . . . 30
4.4 STRIPS problems solved using DFS . . . . . . . . . . . . . . . . . . . 32
4.5 STRIPS problems solved using greedy best-first search with missing

subgoals heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 STRIPS problems solved using greedy best-first search with relaxed

problem heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 STRIPS problems solved using A* search with missing subgoals heuristic 35
4.8 STRIPS problems solved using A* search with relaxed problem heuristic 36
4.9 STRIPS problems solved using weighted A* search with missing sub-

goals heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 STRIPS problems solved using weighted A* search with relaxed prob-

lem heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



List of Figures

3.1 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Number of actions it takes to solve each puzzle of the 8-puzzle. . . . 26
4.2 BFS graph visualization of Satellite problem . . . . . . . . . . . . . . 31
4.3 Comparison of DFS and BFS search tree . . . . . . . . . . . . . . . . . 33
4.4 Graph comparison of greedy best-first search heuristics . . . . . . . . 34
4.5 Graph comparison of A* search heuristics . . . . . . . . . . . . . . . . 36
4.6 Graph comparison of weighted A* search heuristics . . . . . . . . . . 38

5.1 Picture of the KUKA YouBot . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Picture of the Tower of Hanoi puzzle . . . . . . . . . . . . . . . . . . 42
5.3 YouBot and the Tower of Hanoi . . . . . . . . . . . . . . . . . . . . . 45
5.4 YouBot with completed Tower of Hanoi . . . . . . . . . . . . . . . . 48
5.5 The initial stacks and the goal stack . . . . . . . . . . . . . . . . . . . 49
5.6 Snapshots of the restack simulation . . . . . . . . . . . . . . . . . . . 51
5.7 Replanning flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.8 Initial state of the robot to door world . . . . . . . . . . . . . . . . . . 55
5.9 First and last steps of of the robot to door solution . . . . . . . . . . . 56
5.10 The initial layout of the grid world . . . . . . . . . . . . . . . . . . . 57
5.11 Snapshots of the YouBot replanning simulation . . . . . . . . . . . . . 64

xi



Chapter 1

Introduction

1.1 Motivation and Previous Work

When Artificial Intelligence (AI) and Robotics where in their early phases, these two
fields were strongly connected. Projects such as Shakey the robot [5] in 1966-1972
had a big impact on both AI and robotics. The results led to the development of the
A* search algorithm [6], which will be further explored later in this thesis. Also,
the Hough Transform [7], which is a method used in image processing for feature
extraction, was improved further because of this [8]. But because of the challenges
of making a complete intelligent system, the fields diverged. This has led researchers
only to focus and specializing on specific topics separately, leading to little cooperation
between these two fields. There are now several advancements in the recent years
that makes the AI and robotics field ready to be further developed. Advancements
such as computing power, machine learning and big data for instance. This has led
the science of robotics and Artificial Intelligence to become more prevalent. Over the
recent twenty years, the robotics field has been greatly improved in terms of sensors,
control algorithms, electrical engineering etc. The number of open source platforms

1



CHAPTER 1. INTRODUCTION 2

is increasing leading to even more development in the field. Because of this, and the
advances in navigation, manipulation and perception, robotics is expected to be one of
the fastest growing markets in the next years [9].

Since the robots are now starting to make big advances into markets such as hospitals,
service related workplaces and production, new demands towards versatility and the
ability to learn, plan, adapt and interact will arise. These topics have been the focus
of AI the last decades and therefore the two paths robotics and AI has been on over
the last years seems to get closer to each other. It is believed that the integration of
AI and robotics will lead to much disruptive innovation in the time to come [1]. The
editorial [1] also explains that the typical curriculum for a student is either robotics
or AI, but rarely both. In this thesis, a student with knowledge about robotics will
try to implement an AI to a simulated robotic system so as to become aware of the
challenges involved when attempting to close the gap.

As the two fields now are reuniting, the investments in commercializing AI technologies
to robotics is increasing. For example, the Bossa Nova robot [10] which is able to react
and plan in a dynamic environment without human intervention. Earlier projects such
as Flakey [11] which is the successor to Shakey and the museum tour-guide robot [12]
has also been contributing to the combined AI and robotics field. More interesting is
maybe the Deep Space 1(DS1) [13, 14] project from NASA where its mission was to fly
by a comet and an asteroid. It was also meant to test out new technology. DS1 was the
first spacecraft which operated without human intervention.

The goal of this thesis is therefore to create a fully usable AI planner which can solve
basic planning problems. Although open source planners already exist [15, 16], the
author has no former experience with this topic and making a planner from scratch
will give good insight into the world of AI planning.

Autonomous vehicles are more and more relevant in these days. Self-driving cars and
autonomous boats are heavily invested in. With this, it is expected that the autonomous
entities are taking the best and most optimal decisions based on how the world is



CHAPTER 1. INTRODUCTION 3

perceived.

In this thesis, an approach to use the self-made planner to make a plan for an au-
tonomous robot, which has a manipulator to aid its work, towards a goal in a world
where some level of uncertainty is present. This is made to try to create an autonomous
vehicle that needs as little human intervention as possible.

Since this is a rather large area for one person to fully cover for one semester, this
thesis is focusing on making a framework or create awareness for further research
into AI planning and replanning for autonomous systems.

1.2 Outline of Report

This report can be divided into two main parts. The first part which includes Chapter
2, 3 and 4 where Chapter 2 gives some basic knowledge about planning and how it is
defined in this thesis. Chapter 3 includes the making of a planner which parses from
files describing the world and the problem to be solved into a usable format for the
solver which is described in Chapter 4.

The second part of the thesis which is described in Chapter 5 covers some use-cases
of planning where some level of uncertainty is present and an implementation of a
planning system for the KUKA YouBot where the robot is to solve different tasks using
the planner made in the first part of the thesis.



Chapter 2

Background

This chapter will go through some basics of planning and give a description of what
planning actually is.

2.1 Automated Planning

Planning is an explicit deliberation process where the actions are chosen and organized
by anticipating the expected outcomes of each action. An action is used in the setting of
something that an agent does. This can be things like doing a motion, communication,
perceive something or a force which will make a change to the environment or state
of the agent. The agent must be able to interact with the environment. The agent
wants to complete one or more objectives using actions. To achieve the objective, a
deliberation process deciding which actions to execute in order to achieve the objective
is performed [17].

Deliberation consists of choosing which actions to do and how they are used to
complete an objective. The reasoning process includes what the result of the action is

4



CHAPTER 2. BACKGROUND 5

and what actions to undertake in order to get the desired effect. This process gives the
agent the ability to predict and decide how to combine actions such that they together
complete the wanted effect. For example:

• When you are following a car driving down the road with your sight, you move
your head, eyes, and body.

• When you are fishing you must first obtain a fishing rod, put on a bait and then
throw the bait into the water to obtain a fish.

• To be able to make an origami bird from a sheet of paper, one have to do a series
of actions where the combined effects of the actions will lead to the sheet of
paper looking like a bird.

The first bullet point expresses the coordination and sensing of the body in order
to track an object. The actions which aim at keeping the car in the field of view is
purposeful but is more acting than deliberation. The last two scenarios are tasks where
a set of reasoning must happen in order to complete the goal [17]. This shows the
nature of acting deliberately.

On an everyday basis, our actions require some planning while others not so much.
When we are acting, we anticipate the outcome of our actions even though we do
not know the full outcome of the action. Normally, we are acting much more than
we deliberate. Much of what we do are based on experience which makes us do
complicated tasks without actually planning for them.

When humans must plan it is because the activity addresses a new situation and/or
complex tasks which is not so familiar. People mainly do deliberation in cases where
the risk is high or when the cost is high, i.e. we only plan when it is strictly necessary
because the time consumption and cost can tend to be very high as well as complicated.
When we deliberate we often come up with plans that are feasible and good instead of
the most optimal plan.

In Artificial Intelligence(AI), automated planning studies the deliberation process
computationally. Automated planning can be very beneficial. Where the systems tend



CHAPTER 2. BACKGROUND 6

to be large and the resources and time constraints are important, automated planning
can do a job much faster and better than a human operator. An example can be in
space-related planning e.g. a Mars rover which has limited resources based on time
and power and at the same time one wants to collect as many samples as possible
and take pictures of points of interest. Another use can be in shipping and transport
where a system can contain a lot of different ships, planes and other transport vehicles.
Finding an optimal plan to transport the cargo to its desired locations can be a tedious
and difficult task for a human [18].

The focus of the rest of the chapter will be to get an overview of how to represent
planning domains such that a computer can read them and solve the planning problems
that are defined.

2.2 Classical Planning

This section gives an overview of classical planning and is mostly based on [17]. The
models that describe planning systems are called planning domains. The planning
domain is an approximation of the agent and the environment that emphasizes on
understandability. The agent and domain can be represented using a state-transition
system [17]. In [17], the authors defines the state transition system as a triple∑
= (S,A,γ ) or if the actions has some costs related to them it becomes a 4-tuple:∑
= (S,A,γ , cost) where:

• S is a set of states the system can be in.

• A is a set of actions the agent can do in the system.

• γ is a function that keeps track of what actions that are applicable in a given
state.

• cost is a function that represents the cost of an action in terms of money, time
consumption etc.



CHAPTER 2. BACKGROUND 7

The definition above is called a classical planning domain, where a set of assumptions
must be satisfied in order for it to be usable:

• The environment must be static and finite. This means that the changes that
happen are only because of actions being executed. This means that other agents
or external events cannot intervene.

• There is no time dependency. All actions happen in sequence and are not based
on when to start the action, or if the actions are performed concurrently.

• All the actions are deterministic. I.e. the effects of an action is always known.

This forms the basis of classical planning and the next subsections will focus on how
to express a planning system based on classical planning.

Most of the action languages are based on first-order logic. From the first order logic
there are predicates which are functions that take in an object or any entity and returns
true or false. The states are often defined with ground atoms,which means that it does
not contain any free variables, e.g. the atom at(Heathrow,plane2) where at(x,y) is the
predicate function

2.3 Situation Calculus

The situation calculus was first described in 1963 by McCarthy [19]. The situation
calculus is a logical language that represents changes in scenarios. The very basic
concept of the situation calculus are the situations, actions and fluents [20].

• Situations
Situations have multiple definitions. According to [20] a situation is the state of
the world at a certain time instance. According to [21], a situation is the finite
sequence of actions leading from the initial situation S0 to the current situation
and is the definition that is used.

• Actions



CHAPTER 2. BACKGROUND 8

An action marks the transition between two situations of the world. An example
is move(location) where the entity is to move to location. An action consists
of a set of preconditions and effects. The preconditions state if the action is
executable in a given situation. If an action is possible, the effects give the effect
of the action on the fluents.

• Fluents
Predicates with arguments that depend on time are called fluents. Fluents are
used to describe the situations as well as the effects of actions. Fluents can
have two forms: relational fluents and functional fluents. Relational fluents
are described as true or false statements. An example of a relational fluent can
be a fluent called at_table(pencil) which states if the object pencil lies on the
table or not. The other type of fluents can take a range of different values. For
example, location which returns the location of the pencil or some other kind of
object [22].

2.3.1 Example

A classical example, which will also be used to test the planner later on, is the blocks
world. The blocks world consists of a given number of blocks sitting on a table. The
final goal is to rearrange the blocks into one or more stacks in a specific order. Only
one block can be moved at a time and the blocks can either be moved onto the table or
onto another block. If a block has another block on top of itself, it can not be moved.
To describe a situation calculus domain one must find the actions available for the
agent to perform and the fluents which will describe the state of the world and the
effects the actions will have on the world. The actions of the blocks world are:

• stack(x,y) - this action puts block x onto block y given that the robot is holding
block x and there is no block on top of block y, i.e. block y is clear.

• unstack(x,y) - the opposite action of stack which is pick up block x from block y
given that block x is clear and the gripper is empty.



CHAPTER 2. BACKGROUND 9

• putdown(x) - if the robot is holding block x then it is possible to put it down on
the table.

• pickup(x) - if the robot is not already holding anything, the robot can pick block
x from the table provided the block is clear.

This describes the four different actions that the robot can do. The fluents that can be
used are:

• holding(x) - which is true if the robot is holding block x

• on(x,y) - this fluent is true if block x is on block y

• ontable(x) - this returns true if block x is on the table.

• clear(x) - this is true if block x does not have any blocks on top of itself

• handempy - true if the gripper does not hold any of the blocks.

If the robot are going to do the stack(x,y) action in a given situation. Then the fluents
holding(x) and clear(y) must be true. After this action has been performed the effects
will be that on(x,y) and handempty is true, and holding(x) and clear(y) are false.

2.4 STRIPS

The situation calculus is sometimes referred to as too descriptive, leading to that it
may be harder to develop good solving algorithms. One particular problem arises
when actions are executed and one must also specify the non-effects as well, i.e. what
does not change when an action is executed. This is called the Frame Problem [20] and
it also occurs when defining the state. Because of this, the state can get very large,
which is not desirable. STanford Research Institute Problem Solver (STRIPS) [23] is
one of the approaches which tries to solve some of the shortcomings of the situation
calculus such as the Frame Problem and to be more restrictive in its declarations. The
way STRIPS deals with the Frame Problem is to assume that an action only changes a
feature of the world if it says so [24]. This means that if one is going to pick up a cup



CHAPTER 2. BACKGROUND 10

from a table, one does not have to state that the table is still there after the cup has
been picked up. STRIPS atoms that are not mentioned in the state are false. E.g. if the
handempty atom is not present in the current state, it is false. This is called the Closed
World Assumption(CWA). The effects property of a STRIPS action consists of the delete
list and add list. The delete list states what atoms that are deleted from the state and
the add list describes what atoms to add to the state after the action has been executed.
For example, in the blocks world the stack(x,y) actions delete list will be holding(x) and
clear(y), and the add list will be on(x,y) and handempty.

To define a complete STRIPS instance one needs to define an initial state, a set of goal
atoms that the planner wants to reach and a set of actions. For the blocks world a
STRIPS instance can look something like this:

• Initial state: on(A,B), ontable(B), ontable(C), clear(A), clear(C), handempty

• Goal: on(C,A)

• Actions:

– stack(x,y)
Preconditions: holding(x), clear(y)
Add list: handempty, on(x,y)
Delete list: holding(x), clear(y)

– unstack(x,y)
Preconditions: handempty, on(x,y), clear(x)
Add list: holding(x), clear(y)
Delete list: handempty, on(x,y)

– putdown(x)
Preconditions: holding(x)
Add list: ontable(x), handempty
Delete list: holding(x)

– pickup(x)
Preconditions: clear(x), handempty, ontable(x)



CHAPTER 2. BACKGROUND 11

Add list: holding(x)
Delete list: handempty, ontable(x)

A possible solution for this problem is first pickup(C) and then stack(C,A).

One of the shortcomings of STRIPS is the inability to express conditional effects of an
action [25] i.e. the effect may state when(condition,effect). The action language Action
Description Language(ADL) [26] was made to solve this. Some of the differences be-
tween STRIPS and ADL are that STRIPS is based on a Closed World Assumption(CWA),
and ADL is based on an Open World Assumption(OWA) where a statement can be true
whether it is known or not. This means that in the CWA if the atom is not defined in
the state it is false while in the OWA it would be unknown. Because of the simplicity
of STRIPS and the CWA, the STRIPS structure will be the language that will be used in
this thesis.

2.5 PDDL

The Planning Domain Definition Language [27] was made to make a standard of AI
planning and make it easier to compare and test different systems and approaches
which will lead to a faster progress in the field. PDDL is therefore used in this thesis
to express the STRIPS problems.

The whole PDDL system is given in two files. The first file is a domain file normally
named domain.pddl. The domain file states what available predicates can be used to
declare the planning domain. It also gives all the actions the agent is able to do. The
second PDDL file that is used, describes the problem at hand and is mostly called, or
something similar to, problem.pddl. This file gives the initial state the domain is in and
the goal atoms that need to be satisfied.



CHAPTER 2. BACKGROUND 12

2.5.1 PDDL Example

To get a feel of how the PDDL files are set up, and a more descriptive way of how to
define a STRIPS problem in PDDL, consider a simple example where two objects are
swapped between two locations. The first part of the domain file is given in Code 2.1.
The first line in Code 2.1 only defines the domain name. The second line states what
requirements the planner must support in order to solve problems defined in this
domain. In this case, the STRIPS requirements will be considered. The predicates field
declares the predicates for the domain. This means that this is the objects which will
be used to define the domain and state [27].

(define (domain swap)
(:requirements :strips)
(:predicates
(At ?obj ?loc)
(object ?obj)
(location ?loc) )
...

Code 2.1: PDDL domain code example

In Code 2.2 the rest of the domain file is seen. Here, the only action the agent can
do is defined. The name is swap_objects and it takes in four parameters. To able to
execute the action, the current state of the domain must satisfy the preconditions
of the action. In this case obj1 and obj2 must be objects and loc1 and loc2 must be
locations. The objects need to be at the two different locations to be able to execute
the action. When the action has been executed, one needs to consider the effects of
the action. In Code 2.2 the :effect tab declares what states that is added to the current
state and what states to delete from the current state i.e. add list and delete list. The
not part declares that this atom is to be added to the delete list. The and statements
that one can see in the code states that all the stated atoms must be true. In this case,
since STRIPS only allows conjunctions, it is redundant. But, if one wishes to use ADL,
which allows disjunctions (or) it is relevant.

...
(:action swap_objects



CHAPTER 2. BACKGROUND 13

:parameters (?obj1 ?obj2 ?loc1 ?loc2)
:precondition (and

(At ?obj1 ?loc1) (At ?obj2 ?loc2) (object ?obj1)
(object ?obj2) (location ?loc1) (location ?loc2))

:effect (and (
(At ?obj1 ?loc2) (At ?obj2 ?loc1)
(not (At ?obj1 ?loc1)) (not (At ?obj2 ?loc2))
))))

Code 2.2: PDDL domain code example

Code 2.3 defines a problem in the domain created in Code 2.1 and Code 2.2. The first
line states the name of the problem. The next line states what domain the problem is
defined in. In :objects the objects for this problem is defined. In this example, there are
two boxes, a floor and a table. The :init section defines the initial state of the domain.
From the initial state one can see that the boxes are defined as objects and floor and
table as locations. Box1 is at floor and box2 is at table. The last element is the :goal.
This contains the atoms that need to be fulfilled for the problem to be solved.

(define (problem problem0)
(:domain swap)
(:objects box1 box2 floor table)
(:init (object box1) (object box2) (location floor)
(location table) (At box1 floor) (At box2 table))
(:goal (and (At box1 table) (At box2 floor)))

)

Code 2.3: PDDL problem code example

This example shows how the PDDL language is built up. The domain and problem are
split up into two files. One as a domain file and one as a problem file. The solution in this
example will simply be to do the action swap(box1,box2,floor,table) where the state will
satisfy the goal conditions. In most of the other cases, the solution will be a sequence
of action which, if possible, will lead to a state where the goal is satisfied.



Chapter 3

Implementation - Parser

Now that some background on STRIPS and PDDL has been covered it is time to
implement the first part of the planner. The parser will parse the domain file and the
problem file such that the solver can get the applicable actions in a given state to look
for a solution. In Figure 3.1 one can see an overall plan of how the process of finding a
plan is imagined to be. The figure shows that the two files are parsed by the parser
then the solver uses the generated data to find a sequence of actions that leads to a
state where all the subgoals are satisfied.

Figure 3.1: Plan

Initially, there will be two main classes that are used to read the files. The first, which

14



CHAPTER 3. IMPLEMENTATION - PARSER 15

reads the domain file, will extract all the information from the file into this class. The
class that reads the problem file is used to define the initial state. This class is used to
represent each new state that is found from the initial state.

3.1 Domain Parser

As mentioned above, the domain class contains all the actions of the domain. Each
action is declared as a class itself. In Code 3.1 the declaration of the domain class is
given. As one can see, the init function takes the domain file as input and passes it on
to the parser function.

class Domain:

def __init__(self,domain_file):
self.domain_name = ''
self.requirements = []
self.predicates = []
self.actions = []
self.parse(domain_file)

Code 3.1: Python domain class

The way the parser works is to count the parentheses in the file. The code iterates
through the file until it finds a parenthesis and if it is a left parenthesis, ’(’, it adds
one to the counter and the right parentheses, ’)’, subtracts one. It will be possible to
extract the different sections of the file by looking at when the counter is zero. This
function is used several times to also extract the individual predicates, parameters,
preconditions and so on throughout the code.

In Code 3.2 one can see the function set_domain_property() which takes in the different
sections from the code. The elements that are sent in can look like (:predicates(At
?obj ?loc)(object ?obj)(location ?loc)) and then if-else statements updates the domain
according to what kind of section that is the current extract.



CHAPTER 3. IMPLEMENTATION - PARSER 16

def set_domain_property(self,element):
element = "".join(element)
element = element.lower()

if element[1:7]=='define':
self.domain_name = element[14:-1]

elif element[1:14]==':requirements':
self.requirements = element[15:21]
if self.requirements!='strips':

raise ValueError('Error: ',element,"Wrong requirements, must be
STRIPS")

elif element[1:12]==':predicates':
self.set_predicates(element[12:-1])

elif element[1:8]==':action':
self.actions.append(Action(element[8:-1]))

else:
raise ValueError('Error: ',element,'Cannot recognize this property.

')

Code 3.2: Python define domain

The predicates list in the domain class is a list of predicate classes. In Code 3.3 the
predicate class only states its name and parameters.

def __init__(self,predicate):
self.parameters=[]
self.name=''

Code 3.3: Python predicate class

The action class is built up in the same way as the domain class. Instead of using the
whole domain file to define the domain, the action class init function takes in each
string containing the action statement and parses this. In Code 3.4 one can see the
function is similar to Code 3.2.



CHAPTER 3. IMPLEMENTATION - PARSER 17

if element[0]!=':':
self.set_name_and_parameters(element)

elif element[0:13] == ':precondition':
self.set_preconditions(element)

elif element[0:7]==':effect':
self.sef_effects(element)

else:
raise ValueError('Error in: ',element,"Did not recognize action

property")

Code 3.4: Python code creating the action class

The set_preconditions() fucntion seen in Code 3.4 extracts the different preconditions
and add them in as classes in a precondition list as a action class property. The
set_effects() function gets the effects and add them to an add_list variable for the effects
and a delete_effects for the delete effects. This means that the add_list list will be added
to the state when the actions is executed, and the delete_effects will be deleted from
the state when the action is executed.

3.2 Problem Parser

The second part of the parser is the problem parser. The problem parsers main class is
the state class. This is the most important class in the parser. The state class is used to
parse the file to create an initial state class and then the initial class is used in the solver
to create a new set of states and so on until the goal state is reached via a set sequence
of actions. The domain file and problem file are built up in the same way, so much
of the code that was used in the domain parser can be used in the problem parser as well.

An important feature of the class is to find all the actions that are possible to do
based on the current state. The function is called create_child_states() and it iterates
through all the actions in the domain and sends in the current state to check if the



CHAPTER 3. IMPLEMENTATION - PARSER 18

action can be executed based on the state. The first solution was to try all combi-
nations of the state objects as input to the function. This means that one can use a
dynamic number of nested for loops based on how many inputs the action has. This
can be solved using recursion. This solution does not scale well and if the number
of inputs gets large, and the number of objects is large, this solution will use a long
time to find all the possible actions. This is a brute force kind of method to solve this
problem.

Another method of doing this is more involved, but also a lot faster than the first
solution. The way this method works is to first extract the relevant atoms for each of
the actions. The next step is then to map the objects from the atoms to the input of
the action, e.g. if the action unstack(x,y) from the example in Section 2.4 is considered.
The relevant atoms in the goal state are on(A,B), on(C,A), handempty and clear(C). The
algorithm will check if handempty is true, which in this case it is. The next step is to
use the input of the action (x,y) and map them to the preconditions. The first atom
is on(A,B) which corresponds to the precondition on(x,y). This means that x=A and
y=B will be the assignments. The next precondition is clear(x) which corresponds in
this case to the atom clear(A) since this atom does not exist in the state, the action
unstack(A,B) is not possible. The algorithm continues to the next atom which is on(C,A)
and maps the objects accordingly. Here the atom clear(C) exist and all preconditions
are satisfied, which means that unstack(C,A) is a possible action and will be added to
the list of possible actions.

Since actions have a varying number of preconditions, this problem is solved with
recursion. If all of the inputs are not mapped on the first precondition, it will be
mapped in one of the next steps in the recursion.



Chapter 4

Implementation - Solver

In this chapter a solver to solve the STRIPS problem written in PDDL and parsed by the
parser in Chapter 3 is made. It will be able to choose from different search algorithms
which will traverse the state space until a state which satisfies the goals has been
found, or return fail if a solution can not be found. A solution is not found when the
solver has visited all the states where none satisfies all the subgoals.

4.1 Background

There are a lot of different approaches, algorithms and methods for solving a planning
problem. This section will be a brief overview of how automatic planning is done in
this thesis.

4.1.1 Forward Planning

In this project, the forward state space search is the strategy that will be considered.
The forward state space search starts at the initial node and traverses the state space

19



CHAPTER 4. IMPLEMENTATION - SOLVER 20

until a goal node is found. The nodes here represent the individual states and the
edges of the graph represent the actions [28]. Another possible solution approach is to
use regression planning (backward search) where the start node is the goal node. In
forward search, the nodes are expanded by looking at the applicable actions, which
are available in the current state. In backward planning, the nodes are expanded by
looking at the relevant actions, i.e. what actions are contributing to satisfy the goal
state. If an action satisfies a subgoal it is seen as relevant. If an action also negates an
element of the goal it is not seen as relevant since then you need at least one more step
to complete the goal. Backward planning is not chosen because it is harder to come up
with good heuristic functions [28]. What a heuristic function is, will be covered in the
next section.

4.1.2 Heuristic Function

A heuristic function is a function that estimates the distance from a given node to the
goal node. For example, when traveling from A to B via different nodes and edges e.g.
cities and roads, the estimate of how long distance you have left is the straight line
between you and B. In planning, a heuristic function is used to estimate how many
actions that are left until a solution is reached. If a heuristic function is said to be
admissible it will never overestimate the distance left. This means that it is possible
to find an optimal solution using this heuristic function. If a heuristic is informative
it will give a good estimate of the distance that is left to the solution. Therefore a
heuristic function that is both admissible and informative is desirable but can be hard
to find.

4.1.2.1 Missing Number of subgoals

One possible solution for a heuristic function is to count the number of missing
subgoals. This method is not admissible, because one action can satisfy two subgoals
and can therefore overestimate the number of actions left. Its informativeness will
depend on the stated goal. If only one goal atom is stated, the heuristic function will



CHAPTER 4. IMPLEMENTATION - SOLVER 21

return 1 until a solution is found, which is not very good. But if more subgoals are
stated, it can be more informative. By looking at the theory behind this heuristic, the
performance using it will most likely vary.

4.1.2.2 Relaxed Problem Heuristic

A good heuristic function h(s), where s is the state, is a heuristic function that solves
the problem and returns the number of steps needed to complete the goal. Since this
solution is pointless, because this actually solves the problem, one can consider a
relaxed problem where the problem, is relaxed into a simpler problem which is easier
to solve and then the length of this solution can be used as an estimate of the length
to the original solution.

In [28, 29], one type of relaxed problem is defined as ignoring the delete lists. This
means that only the add list is taken into consideration when trying to solve the relaxed
problem. The state is therefore strictly expanding until a solution is found, or the state
does not expand anymore. Unfortunately, the relaxed problem is still NP-hard [29].
This means that one needs an estimate of the optimal values of h(s). This can be done
by considering that all the applicable actions in that state are executed at each step
and the positive effects are added to the relaxed problem state. This continues until
the state satisfies all the sub-goals, or as mentioned above, the state stops expanding.
Every time an action that satisfies one of the atoms in the goal, the cost, дs (p), which
is the cost of achieving an atom p in the state s , is updated according to how many
steps it took to achieve the sub-goal.

The heuristic function can be written as:

h(s) =
∑
p∈G

дs (p) (4.1)

where G is the subgoals. The heuristic is informative, which is a good trait when
considering this heuristic function approach. Another heuristic that can be extracted
directly from the same method, is to instead of summing the cost of all of the actions



CHAPTER 4. IMPLEMENTATION - SOLVER 22

one can choose the subgoal with the largest cost. This heuristic is admissible, but not
especially informative and will not be considered further.

Other relaxed problem heuristics also exist. It is possible to ignore preconditions such
that all actions become applicable. Then count all the actions that together fulfill all
the sub-goals. This is almost the same as counting all the missing subgoals as in the
section above, but since one action can make more than one sub-goal to become true,
it is not. Another relaxed problem heuristic is to ignore some specific predicates to
make the state smaller and then solve the relaxed problem to get an estimate of the
number of actions left [28].

4.1.3 Search Strategies

There exist many different graph traversal algorithms. The choice of a search strategy
will affect how the solver traverses the graph to get to the solution and can greatly
affect the time it will take to get to the desired node. The nodes are usually stored in a
queue and the choice of solving algorithms decides how the nodes are arranged in the
queue.

4.1.3.1 Breadth and Depth-First Search (BFS & DFS)

The breadth and depth-first search are the simplest and easiest search algorithms to
implement. The BFS uses a last in first out (LIFO) queue. Which means that the oldest
node that is discovered is the node to be explored next. The DFS uses a first in first out
(FIFO) queue. This implies that the node that was discovered first is the node that is
next to be explored.

4.1.3.2 Greedy Best-First Search

Greedy best-first search or also called greedy algorithm is a search technique which
uses a heuristic function to determine what node that should be explored next. The



CHAPTER 4. IMPLEMENTATION - SOLVER 23

queue is sorted such that the node with the lowest heuristic estimate on the distance
to the goal is chosen. This can lead quickly to a solution, but the length of the solution
can be long.

4.1.3.3 A* (A Star)

The A* algorithm [6], is an algorithm used in pathfinding and graph traversal. It
resembles the greedy best-first algorithm with one extra feature taken into account
when selecting the next node. The A* algorithm uses the distance from the initial node
to the current node in its selection of node as well. The cost of the state is now the
distance from the initial node, д(s), added with the estimate of the remaining distance,
h(s), to the goal node. (4.2) shows the function calculating the state cost.

f (s) = h(s) + д(s) (4.2)

The state, s , with the lowest value f (s) is chosen to be the next node to be explored.
When h(s) = 0 in (4.2), the algorithm is actually the Dijkstra’s algorithm [30, 31], but
since the cost for each action is one, it is also breadth-first search. For greedy best-first
search, д(s) = 0, i.e. f (s) = h(s).

If the heuristic function is admissible the A* algorithm is guaranteed to find the optimal
solution [6]. Although sometimes it is more important to find the solution quick than
to find the solution with the smallest number of steps one can decide to use Weighted
A* search (WA*) instead [32], which is given by the function

f (s) = w · h(s) + д(s) (4.3)

This method may lead to solution of lower quality [33], but the speed will increase as
well. If the heuristic function is admissible, the solution will not exceed the optimal
solution by a factor ofW . IfW = 1, then (4.3) is the A* algorithm (4.2).



CHAPTER 4. IMPLEMENTATION - SOLVER 24

4.2 Implementation

The datasets that are generated in the process of traversing the domain can get large
and it is important to implement the algorithm such that it uses the least amount of
time looking through lists of states etc. There are mainly two lists that are used in this
algorithm. As seen in the previous section 4.1.3 the best-first search chooses the node
with the lowest state cost. One of the lists, in this case, must keep track of the visited
nodes such that it will not visit the same node twice and thus also avoiding cycles. For
this, it is natural to use a dictionary or a hash table which have an average look-up
and insertion time complexity of O(1). The key to the dictionary is the state. The algo-
rithmwill therefore check if the entry exists, and if not, the node is added as a new state.

The other list contains the nodes that have not been explored yet. The list is sorted
based on the individual cost of each node. A good method to use here is to use a heap
which has an average insertion time ofO(loд(n)) where n is the size of the heap. Since
the lowest value is on the top of the heap, it takes O(1) to get the lowest value. In
Code 4.1 one can see a simple Python implementation of the suggested solver.

from heapq import heappush
from heapq import heappop

def solve(initial_node):

heap = []
visited_nodes = []

heappush(heap,initial_node)

'''While heap is not empty'''
while heap:

'''Get the node with the lowest cost from the heap'''
current_node = heappop(heap)

if current_node.is_goal():
return current_node



CHAPTER 4. IMPLEMENTATION - SOLVER 25

else:
new_nodes = current_node.get_child_nodes()

for new_node in new_nodes:

if new_node not in visited_nodes:
new_node.set_node_cost()

'''Add the new node to visited nodes'''
visited_nodes[new_node.data] = True

'''Add the new state to the queue using a heap
sorted list based on the node cost:'''
heappush(heap,new_node)

return None

Code 4.1: Python graph search algorithm

Code 4.1 is an example of how a search algorithm can be implemented. The first test
of this algorithm was with the 8-sliding block puzzle, where there are 9!

2 = 181440
number of states. In fact, there are 9! = 362880 different combinations, but only half
of them is possible to solve. This was solved using a heuristic called the Manhattan
Distance [34]. The Manhattan distance is the absolute difference of the Cartesian
coordinates of the blocks current position and the blocks goal position. Since this is a
specialized solver for the 8-puzzle, it is expected to be much faster to solve compared
to the generalized PDDL solver. In Figure 4.1 the goal node has been used as a start
node and the whole graph has then been explored. Figure 4.1 shows the distribution
of the minimum of actions it takes to solve each puzzle. This shows that for some
problems it is possible to traverse the whole search space, and when this is done, one
can solve each puzzle instantly, because we now have the whole tree. In most of the
planning problems, the state space can get very large and it is not possible to find all
of the nodes. It is important for large search spaces that a good heuristic is used to
guide the search in the right direction.



CHAPTER 4. IMPLEMENTATION - SOLVER 26

Figure 4.1: Number of actions it takes to solve each puzzle of the 8-puzzle.

For the PDDL solving task, the same solution algorithm in Code 4.1 is used. As
mentioned above this is a more generalized solver made to solve problems that can be
defined using STRIPS. From Chapter 3 the PDDL files where parsed into two classes.
One domain class and one initial state class. The state class must be expanded into
calculating the two different heuristics defined in Section 4.1.2.1 and Section 4.1.2.2.
The heuristic of the number of remaining subgoals is not so very complicated to
implement. The strategy is just to iterate through each subgoal and check if it is in the
current state. If not, the heuristic function will be increased by one. Code 4.2 shows
how it is implemented in Python.

def missing_sub_goal_heuristic(self):
dist_to_goal = 0



CHAPTER 4. IMPLEMENTATION - SOLVER 27

for sub_goal in self.goal:
if not sub_goal in self.state:

dist_to_goal += 1
return dist_to_goal

Code 4.2: Missing subgoal heuristic

The more complicated heuristic search planner [29] from Section 4.1.2.2 is implemented
as seen in Code 4.3. It is a while loop that runs until all the goals are satisfied or the
state has stopped expanding. The while loop iterates over each action and checks
whether it is applicable or not. If the action is applicable, the relaxed state is expanded
with the add list from the action. The estimated distance to the goal state is calculated
by checking the difference in completed subgoal before and after applying the new
states and the difference is multiplied by the depth. This gives the individual cost of
completing each subgoal.

def ignore_delete_list_heuristic(self):
state = self.state[:]
cost = 0

completed_subgoals = self.get_number_of_completed_subgoals(state)
depth = 1
length_goal = len(self.goal)

old_length = len(state)

while not completed_subgoals==length_goal:

add_list = []
'''Find all applicable actions and their add lists'''
for action in self.domainclass.actions:

return_parameters = action.return_possible(state)

for parameters in return_parameters:

new_items = action.get_addlist(parameters)
add_list.extend(new_items)

completed_subgoals_prev = self.get_number_of_completed_subgoals(
state)



CHAPTER 4. IMPLEMENTATION - SOLVER 28

'''Add all of the add lists of the applicable actions'''
for add_state in add_list:

if add_state not in state:
state.append(add_state)

completed_subgoals = self.get_number_of_completed_subgoals(state)

cost = cost + depth*(completed_subgoals-completed_subgoals_prev)
depth = depth + 1

if old_length==len(state):
return cost

old_length=len(state)

return cost

Code 4.3: Relaxed problem ignore delete list and apply all possible actions heuristic
Python

4.3 Results

Different solving strategies have now been proposed and discussed. The most basic
search algorithms are the BFS and DFS algorithms from Section 4.1.3.1. Further, the
resulting sequence of actions from BFS will be the minimum set of actions needed for
solving the problem. This gives a good comparison property to be used when looking
into other solving strategies as well. The problems that are considered can be seen in
the attached files.
In Table 4.1 the different problems that are considered can be seen. Some data are also
given to get a feeling about the size of the different problems. All the problems, except
the Shakey domain which is from [35], are taken from the International Conference on
Automated Planning and Scheduling (ICAPS) [36] competition in Artificial Intelligence
planning.



CHAPTER 4. IMPLEMENTATION - SOLVER 29

Table 4.1: STRIPS problems considered

Name Number of objects Size initial state Available actions

Aircargo 6 10 4
Blocks 10 13 4
Rover 1 25 55 4
Rover 2 13 57 9
Satellite 12 17 5
Shakey 16 40 6

4.3.1 Breadth-First Search

In Table 4.2 the results of the BFS algorithm are seen. The algorithm successfully
generates solutions for all of the problems except for the blocks domain where the
state space expands too much and generates so many states which make the computer
use up all of its RAM. The second most complicated problem seems to be the Rover
1 problem. Actually, the whole state space of the Rover 1 problem consists of 162875
(see Table 4.3) different states, this means that using BFS one have to search through
almost whole of the state space to find a solution. This is not optimal.

Table 4.2: STRIPS problems solved using BFS

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 121 17 0.0264
Blocks Out of memory 528052 715845 144
Rover 1 53 161632 434 140
Rover 2 10 8407 6338 16.7
Satellite 9 429 284 0.185
Shakey 22 8961 154 9.92

In Figure 4.2 the graph structure of a BFS search in the satellite domain is plotted using



CHAPTER 4. IMPLEMENTATION - SOLVER 30

Graph-tool [37]. Each node represents a state and the edges represent an action. In
the code, the nodes are added when a new state is found and it is connected with its
parent state where the action came from. The red thicker edge is the solution path.
For a small problem like the satellite problem, the algorithms expand a big set of nodes
before it finds a state that satisfies all of the subgoals.

Table 4.3 shows the result of running the BFS algorithm until all reachable nodes from
the initial nodes have been visited. The aircargo search space is very small and the
time it takes to visit each node does not require a lot of time so the choice of search
strategy will not matter that much. But in the blocks domain it exists a lot more states
and with the given resources, one can not visit all the states to find a solution.

Table 4.3: Run BFS until all states has been visited or out of memory

Name State space size Number of solution states

Aircargo 143 8

Blocks >1243897(Out of memory) NA

Rover 1 162875 49

Rover 2 >366590(Out of memory) NA

Satellite 1856 48

Shakey 9216 1

4.3.2 Depth-First Search

The next algorithm is the Depth-First Search(DFS). The results are given in Table 4.4.
The length of the solutions compared to Table 4.2 is significantly longer, but the total
runtime has been greatly improved. The blocks domain are again not solvable because
the memory runs out. This means that a more sophisticated search algorithm is needed
in this case, which will be considered in the next sections. A comparison of the graph
structure of DFS and BFS can be found in Figure 4.3. The figures show that the BFS



CHAPTER 4. IMPLEMENTATION - SOLVER 31

Figure 4.2: BFS graph visualization of Satellite problem



CHAPTER 4. IMPLEMENTATION - SOLVER 32

produces a lot more nodes compared to the DFS. The BFS will find the shortest solution
but at a greater cost.

Table 4.4: STRIPS problems solved using DFS

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 18 28 53 0.00667

Blocks Out of memory 19055 35318 27.0

Rover 1 93 141 106 0.123

Rover 2 84 141 415 0.315

Satellite 18 86 43 0.0363

Shakey 92 137 82 0.160

4.3.3 Greedy Best-First Search

Now that some uninformed search strategies have been tested, it is time to test some
informed search strategies. In Table 4.5 and Table 4.6 one can see the results of the
missing subgoals heuristic from Section 4.1.2.1 and the relaxed problem heuristic
from Section 4.1.2.2 respectively. In Table 4.5, a solution for the blocks domain finally
appears and at a fast total runtime as well. Compared to Table 4.6 the solution of
the blocks problem is very long, but it solves it over six times faster than the relaxed
problem heuristic. The greedy best-first search with the missing subgoals heuristic is
fast but may find solutions that are unnecessary long. The greedy best-first search with
relaxed problem heuristic algorithm finds better solutions at a bit slower runtime this
is because the relaxed problem heuristic algorithms must solve the relaxed problem
for every new node discovered, which can be time-consuming.



CHAPTER 4. IMPLEMENTATION - SOLVER 33

(a) DFS graph visualization of Satellite prob-
lem

(b) BFS graph visualization of Satellite prob-
lem

Figure 4.3: Comparison of DFS and BFS search tree

Table 4.5: STRIPS problems solved using greedy best-first search with missing subgoals
heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 15 31 0.00392
Blocks 150 2828 2081 0.540
Rover 1 77 269 111 0.235
Rover 2 24 176 206 0.349
Satellite 9 38 37 0.0165
Shakey 40 114 53 0.130



CHAPTER 4. IMPLEMENTATION - SOLVER 34

Table 4.6: STRIPS problems solved using greedy best-first search with relaxed problem
heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 6 26 0.0185
Blocks 60 250 388 3.41
Rover 1 63 209 217 6.41
Rover 2 10 10 35 0.370
Satellite 9 12 35 0.0600
Shakey 30 86 86 1.35

(a) Greedy best-first search with missing
subgoals heuristic graph visualization of
Rover1 problem

(b) Greedy best-first search with relaxed
problem heuristic graph visualization of
Rover1 problem

Figure 4.4: Graph comparison of greedy best-first search heuristics



CHAPTER 4. IMPLEMENTATION - SOLVER 35

4.3.4 A*

In Section 4.3.3 the next node to be expanded was only based on the estimate of
the remaining distance to the goal. As previously mentioned in Section 4.1.3.3, the
A* algorithm also takes the current distance from the start node into account when
choosing the next node to expand. In Table 4.7 one can see the results of the A* with
the missing subgoals heuristics. Because of the bad informative properties of this
heuristic, the algorithm cannot find a solution for the blocks domain.

Table 4.7: STRIPS problems solved using A* search with missing subgoals heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 69 48 0.0170

Blocks Out of memory 536819 718666 153

Rover 1 53 159823 655 142

Rover 2 10 2552 2623 4.96

Satellite 9 132 191 0.0576

Shakey 22 4873 1220 5.41

Table 4.8 shows the results of the A* with the relaxed problem heuristic. It finds the
solution of all the given example problems, but for the Blocks and Rover1 domains,
the total runtime is very high compared to the other search strategies. If the goal is
to find a short solution where there are no time constraints, this strategy will be a
good one. Since the relaxed problem heuristic is not admissible one can see that that
in some cases it will not find the optimal solution. The optimal solution of Shakey
is 22, but with the relaxed problem heuristic, the solution has length 26. As one can
see in Figure 4.5, the missing subgoals heuristic leads the solver to branch out a lot
more than the relaxed problem heuristic does. This can be evidence on that the relaxed
problem heuristic is better at estimating the cost.



CHAPTER 4. IMPLEMENTATION - SOLVER 36

Table 4.8: STRIPS problems solved using A* search with relaxed problem heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 24 62 0.0488

Blocks 40 54539 94496 906

Rover 1 53 38704 8522 754

Rover 2 10 47 125 1.61

Satellite 9 20 59 0.0962

Shakey 26 839 705 14.0

(a) A* search with missing subgoals heuris-
tic graph visualization of Satellite problem

(b) A* search with relaxed problem heuristic
graph visualization of Satellite problem

Figure 4.5: Graph comparison of A* search heuristics



CHAPTER 4. IMPLEMENTATION - SOLVER 37

4.3.5 Weighted A*

In Section 4.3.3 the runtime was good, but the length of the solutions were in some
cases longer than necessary and in Section 4.3.4 the length of the solutions were good,
but the runtime became too long in some of the problems. With the weighted A* (WA*),
which is explained in Section 4.1.3.3, one can choose by setting a weight w , if one
wants more greedy best-first search behavior or one can choose to get more of the
A* behavior where the length of the solution is more important. This means that w
is a tuning parameter and is chosen based on the requirements of the task at hand.
The results in Table 4.9 and Table 4.10 have the weightw = 100. This can be seen as a
greedy best-first search where it picks the node with the lowest depth when there are
ties in the cost. The results in Table 4.9 are satisfactory. All the problems are solved in
under 0.5 seconds and the length of the solutions have a length that is satisfactory as
well.

Table 4.9: STRIPS problems solved using weighted A* search with missing subgoals
heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 22 36 0.00560
Blocks 44 141 242 0.0398
Rover 1 65 386 126 0.333
Rover 2 10 79 127 0.156
Satellite 9 34 33 0.155
Shakey 40 145 58 0.167

Table 4.10 shows the results with the relaxed heuristics. Here the solver will again use
some time to find a solution to the more difficult problems. The length of the solutions
is not so much better either.

Now that many different search strategies have been implemented and tested one
can see that the most promising is the weighted A* algorithm. The missing subgoals



CHAPTER 4. IMPLEMENTATION - SOLVER 38

Table 4.10: STRIPS problems solved using weighted A* search with relaxed problem
heuristic

Name Length of solution Nodes expanded Nodes in queue Total runtime[sec]

Aircargo 6 6 26 0.0180
Blocks 60 259 387 3.19
Rover 1 61 212 223 6.45
Rover 2 10 10 35 0.369
Satellite 9 12 35 0.0595
Shakey 30 97 97 1.54

(a) Weighted A* search with missing
subgoals heuristic graph visualization of
Shakey problem (b) Weighted A* search with relaxed prob-

lem heuristic graph visualization of Shakey
problem

Figure 4.6: Graph comparison of weighted A* search heuristics



CHAPTER 4. IMPLEMENTATION - SOLVER 39

heuristics gave better results than expected. Some of the examples used have multiple
independent subgoals where the heuristic makes the solver focus on the actions that
make the state satisfy the subgoals. If the goal state was only one subgoal, this heuristic
would not perform much better than a breadth-first search. The reason the relaxed
problem heuristic is so slow may be of non-optimal programming in the development
phase. The search for applicable actions is text-based and the algorithm finding the
actions is a recursive for loop with a runtime based on the size of the current state. The
difficult problems tend to have larger states which normally generates many applicable
actions which in turn generates many new states where one need to run the heuristic
function on. I.e. the bottleneck of the code is the function that finds the applicable
action and the relaxed problem heuristic uses this function as well when solving the
relaxed problem which makes the heuristic solver slow.



Chapter 5

Planning and Replanning for
a simulated robotic system

In the previous chapter different solving algorithms were tested on different problems
from the ICAPS competition [36]. In this chapter, the solver will be further explored
with some examples.

5.1 YouBot

In this example, the KUKA YouBot [38] will be used in a simulation environment to
solve two different planning problems. The first one is the Tower of Hanoi and the
second is to rearrange stacks of blocks. The YouBot, seen in Figure 5.1, is a five degrees
of freedom robotic manipulator with a two finger gripper on top of an omnidirectional
base. Five degrees of freedom means here that the robotic manipulator has five joints.
All the joints are controllable. Omnidirectional means that the robot can move in all
directions regardless of its orientation.

40



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM41

Figure 5.1: Picture of the KUKA YouBot

The simulation tool used to simulate is called V-REP [3]. V-REP is a virtual robot
experimentation platform. In this example, the education version of V-REP is used.
V-REP also has an integrated development environment which means that one can do
development in V-REP via the Lua programming language.

5.1.1 Tower of Hanoi

Tower of Hanoi is a game which consists of a given number of disks of increasing sizes.
The disks can be threaded down onto three different sticks. It is possible to move a
disk if it is on the top of the stack or is the only disk on the stick. The disk can only be
moved onto a disk which is bigger than itself or moved to a stick if the stick has no
disk on it. The initial puzzle can be seen in Figure 5.2. The puzzle has three disks, and
the goal is to move the stack, one disk at the time, to the opposite stick. In this case,
it will be three disks. The minimum number of moves is hn = 2n − 1 where n is the



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM42

number of disks [39]. This means that the minimum number of moves in this example
is 7.

Figure 5.2: Picture of the Tower of Hanoi puzzle

This problemwas chosen because it is already a given example in the V-REP installation
for the YouBot. In the original example, the solution is hardcoded Lua code written in
V-REP . This means that the existing script for the solution will be rewritten into taking
orders from the STRIPS solver that was made in Python in the previous chapters. The
Python script must have a way to communicate with the embedded Lua script. V-REP
has a remote API for Python. The remote API cannot communicate directly with
the Lua script, which means that the example and the controllers that have already
been written, must be rewritten in Python. This will be time-consuming or maybe
not possible since the API has limited functionality compared to the embedded Lua
script.

Thankfully, V-REP also supports the Robot Operating System (ROS) [40]. ROS is not
really an operating system as its name may state, but a flexible framework for writing
robot software. ROS has a collection of libraries, tools and conventions that are meant
to simplify the complex process of creating robust and good robot software. Tasks
that can be simple for humans, can be complex and hard for a robot. ROS was created
so that everyone with knowledge of different aspects robotic can contribute to ROS
and at the same time make use of resources others have made. In such ways, ROS is
always in development and encourage groups to collaborate to make ROS better.
The features that will be used from ROS in this case, is the publisher and subscriber
functionality. This functionality allows sending messages between the Lua script and



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM43

Python. The publisher publishes the message to a ROS topic. ROS topics are named
buses over which ROS nodes exchange messages [41]. A ROS node is a process that
performs computation and is combined with other ROS nodes into a graph and enables
them to communicate with each other [42]. The subscriber subscribes to a published
topic. This way one can create a ROS node on the V-REP side and one ROS node at the
Python side. Then declare a publisher for Python and a subscriber for V-REP which
makes it possible to exchange information between these two platforms. An example
of how to publish a message is seen below in Code 5.1. The publisher declares that the
action_node is publishing to the do_action topic using the message type String.

import rospy
from std_msgs.msg import String

pub = rospy.Publisher('do_action', String, queue_size=10)
rospy.init_node('action_node', anonymous=True)
msg = 'hello world'
pub.publish(msg)

Code 5.1: ROS publisher in Python

In Code 5.2 a subscriber in Lua is seen. The subscriber subscribes to the do_action
topic and every time a message is published to the topic, the subscriber will receive it
and the subscriber_callback function will be run with the message as the argument. In
this case, the message will be an action represented as a string.

subscriber=simROS.subscribe('/do_action','std_msgs/String','
subscriber_callback')

function subscriber_callback(msg)
action = split(msg.data," ")

end

Code 5.2: ROS subscriber in Lua

The approach in sending the desired actions is to send each action step by step from
Python as each previous action is completed. Another approach is to send the entire
plan right away, but it is desirable to keep the Lua script as low level as possible and
do the most of the planning and execution from Python. This means that a subscriber



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM44

must be added to the Python side and a publisher must be added to the Lua V-REP
side. This is to handle the confirmation messages which states that the action has been
completed.

5.1.1.1 PDDL

The Tower of Hanoi domain contains only one action, which is the (move ?from ?to)
action. The problem file is automatically generated using a Python script that has
been made for this purpose. The code only needs to know the number of disks and the
path for where to save the generated file. The PDDL files and the code for making the
problem file can be found in the attached files.

5.1.1.2 Implementation

Figure 5.3 shows the start position of the Tower of Hanoi. In the original Tower of
Hanoi there are disks which are threaded down onto sticks. In this case, the robot
will most likely struggle to deal with the practicalities of the original problem. In the
example given in V-REP the problem is represented with blocks instead. As one can
see, each color represents a disk and one has to move all the blocks with the same
color at the same time such that it qualifies as a Tower of Hanoi problem. The actions
that the script uses are:

• pickupBoxFromPlace(boxHandle, pickupConf)
This function picks up the box described by the boxHandlewhich are initialized at
the start of the script. For example yellowBox2=sim.getObjectHandle(’yellowRectangle2’)
will declare a box handle for the second yellow box. The pickupConf argument
is the desired orientation of the end effector when picking up the box.

• dropToPlace(placeHandle, shift, verticalPos, startConf, noVerticalArmForUpMove-
ment)



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM45

Figure 5.3: YouBot and the Tower of Hanoi



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM46

The task of this function is to drop an already picked up box onto a desired
spot. The placeHandle is a handle for one of the rectangles seen in Figure 5.3
which are used as the three sticks in the original problem. The shift argument
declares how much the placement of box shall be shifted left or right relative to
the rectangle center. verticalPos is the dropheight of the box. startConf is the
initial configuration of the manipulator. The noVerticalArmForUpMovement is
not used.

• dropToPlatform(platform)
This is used when the robot is supposed to drop a held box onto its platform. The
YouBot platform has three preassigned spots for placing boxes. The platform
arguments states where the box is to be dropped.

• pickupFromPlatformAndReorient(boxHandle)
This function picks up the desired box and drops it on the ground and then picks
it up again. This is because the robot arm can not pick the box properly up from
its platform. It therefore has to reorient its grip before placing the box.

The V-REP side, which is supposed to be as low level as possible, is only going to
translate the desired action from the Python side. The action can for example look
like this: pickupBoxFromPlace redBox1 pickup1. This makes it possible to effectively
handle each order as seen in Code 5.3. The objects, such as the boxes and platform,
are mapped in a dictionary called objectDict.

if message[1]== 'pickupBoxFromPlace' then
pickupBoxFromPlace(objectDict[message[2]],objectDict[message[3]])
message = ''
simROS.publish(publisher,{data='action_completed'})

elseif message[1] == 'dropToPlatform' then
dropToPlatform(objectDict[message[2]])

...

Code 5.3: Action request handled in Lua

The task of the Python script is to solve the planning problem and translate the Tower



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM47

of Hanoi move action from the solution, into orders that can be used in Lua to control
the YouBot . The move action has the parameters disk, from and to. The complete
domain.pddl file is given in the attached files. An important thing to keep in mind
here is that the move action for each disk will be different. To move the green disk,
which consists of the three green blocks, the YouBot must first place two of them on
its platform before it can place them somewhere else. Compared to each other, the
process of moving the red box takes two actions, while moving the green boxes takes
ten actions. After the solver has solved the planning problem, the plan is iterated
through and translated into YouBot actions, as seen in the example for moving the red
box in Code 5.4. The code also keeps track of the height of each stack, such that the
YouBot drops the box at the right height.

if action[1] == 'DISK1':
self.plan.extend(self.move_red(self.name_map[action[2]],self.name_map[

action[3]]))
...
def move_red(self,place_from,place_to):

self.name_map['DISK1'] = place_to
self.heights[place_to] += 1
self.heights[place_from] -= 1
dropheight = 'dropHeight'+str(self.heights[place_to])

actions = []
actions.append(['pickupBoxFromPlace redBox1 pickup1'])
actions.append(['dropToPlace '+place_to+' middle '+dropheight+' pickup1

'])
return actions

Code 5.4: Python code for generating actions to move the red box

When the list of actions is completed, the ROS publisher will publish each action, step
by step as they are completed. The code used for this is seen in Code 5.1. Figure 5.4
show the result after the plan has been executed. The video of the execution can be
found in the attachment.



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM48

Figure 5.4: YouBot with completed Tower of Hanoi

5.1.2 Restack of blocks

The previous Tower of Hanoi example was used as a transition to this problem, which
is a bit more complicated in regard to planning. Also, most of the framework made
above can be used here. The problem can be seen in Figure 5.5. The goal is to rearrange
three stacks of blocks into a wanted pattern. In Figure 5.5 the goal is to sort the stacks
such that is only contains one color. The order of the boxes must also be taken into
consideration. The YouBot can store three boxes on its back platform.

The same actions used in Tower of Hanoi is used here with some tweaks to the Lua
script. The changes are that the robot does multiple actions at the same time, such
as moving to the desired location and rearranging the orientation of the manipulator.
In some cases, the robot would knock over a stack because it had just placed a box
on the ground and the next action was to pick up a box at another stack. The fix was
to make the robot wait until the manipulator was the right configuration such that it
would not knock over a stack. Another fix was made to the placement of blocks on its
platform. The initial code from the Tower of Hanoi example did not handle having



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM49

three blocks at the same time there very well. The fix was made adjusting the position
of each joint to try to spread the boxes more over the platform, with varying results.
In the attached video file on can see that the robot struggles with placing the blocks
on its platform.

(a) The initial placement of three stacks
(b) The goal state for the three stacks

Figure 5.5: The initial stacks and the goal stack

5.1.2.1 PDDL

The technical details were dealt with in the previous section which means the biggest
task here is to create the PDDL files. Another thing to keep in mind is that each stack
has a max height of three and to make sure that a block is not placed at the uppermost
position when there are no blocks underneath to support it. The resulting PDDL-files
can be found in the attached files.



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM50

5.1.2.2 Results

Figure 5.6 shows four screenshots of the simulation while it is executing. The solution
that the solver finds has 56 actions and takes approximately one second to find. The
solver that is used here is the Weighted A* with the missing subgoals heuristics. Since
the goal state has many subgoals, the solver can focus on the path that takes the state
one step closer to the solution. The goals are not independent e.g. if the top box is at
the right place, but the boxes underneath are not, the top box must still be moved to
complete the problem, which may affect the computation time.



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM51

(a) (b)

(c) (d)

Figure 5.6: Snapshots of the restack simulation



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM52

5.2 Replanning

In Section 2.2 it was stated that the planning system had to be deterministic with no
uncertainty. In the real world, this is not the case. An interesting approach would
therefore to explore the opportunities of planning when the known domain changes
or the entire domain is not known. One way to replan is simply to replan from
scratch [43]. This can be done by updating the problem.pddl file to the new changed
state and then make a new plan based on the new knowledge about the world. This
way, the algorithm will assume that it knows everything about the domain and plan
based on that. When new things are discovered, the domain will be updated to a new
current view of the domain and plan accordingly.

In Figure 5.7 the flowchart of a replanning algorithm is presented.

5.2.1 Implementation

Consider a domain where a robot can move within a grid. The grid represents a room
where there are several obstacles to handle. The goal of the robot is to get to the goal
tile, which in this case is a door. The tiles in the grid can contain two kinds of objects.
The first kind of object can be picked up by the robot and placed on an empty tile. The
other kind of object cannot be moved and the robot must find a way around it. In the
initial state, one can decide to make the unmovable objects "invisible", such that in the
initial state, it is handled as a moveable object, but when the robot tries to pick it up, it
fails. The robot must then replan a route around it.

This problem can be represented using STRIPS. The possible actions in this domain
will be pick-up, put-down and move. The domain.pddl and the problem.pddl file can
be seen in the attached files. Unlike the domain file, the problem file is automatically
generated. This means that it is possible to generate a grid with desired measurements
and also be able to place obstacles around the grid. This makes it easy to test for
different problems in the domain. It is also needed to be able to construct the file in



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM53

Figure 5.7: Replanning flow chart



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM54

order to do replanning. The PDDL problem file is created with the Domain_rob_to_door
class in the domain_rob_to_door.py file in the attachments.

To do the (move ?from ?to) action, the predicate (can-move ?from ?to), must be true.
One way to automatically generate all the possible movement options is to generate
an adjacency matrix(n × n) where n = lenдth ·width and where the width and length
are the size of the grid domain for the robot. The possible move actions for the robot
is up, down, right and left. This means for a grid with size 2 × 2 the adjacency matrix
will look like the matrix seen below in (5.1). Column one means that the robot can
move from tile 1 to tile 2 or 3. The second column means that it is possible to move
from tile 2 to tile 1 or 4, and so on. With this in place, it is easy to add the can-move
from to atoms to the initial state. 

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


(5.1)

The problem.pddl file is created with a list of strings where each element of the list
represents one line in the file. For example the obstacle objects are just iterated through
and added to the list as seen in Code 5.5.

obstacle_num = 1
for obstacle in obstacles:

lines.append('obstacle'+str(obstacle_num))
obstacle_num += 1

Code 5.5: Adding obstacle objects to the pddl file

Just showing the solution can sometimes be a bit abstract and if one is also to do
replanning one need to make a module that sends data back if the world has changed.
E.g. in this case it will be if the obstacle object cannot be picked up. In Figure 5.8 one
can see the simulation of the robot-to-door domain. In this case, the grid consists of
5 × 4 tiles or waypoints. The r stands for the robot, the Os are movable(or unmovable)



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM55

objects. The D is the door i.e. the desired position. The robot can either pick up
the obstacles or go around them. The empty tiles are where the robot can move.
Unmovable objects are illustrated as vertical lines |, but cannot be seen in the initial
state because they have not been discovered yet. The goal is to get to the goal node
with an empty hand.

Figure 5.8: Initial state of the robot to door world

After the problem file has been made it will be solved by the solver. In the case
above, the initial solution found consists of 13 actions. Each action is then sent to the
do_action function. This function attempts to do the action. If the action is successful
it will update the simulation and return true. If it is not successful it will update the
problem.pddl file and return false. When a false is returned, the solver will find a new
plan by solving the updated problem. This continues until the robot reaches the goal
tile, or it can not reach the target. In Figure 5.9 one can see the start and end of the
solution. The total number of actions was 37, including the unsuccessful actions, which
is considerably more than the initial 13. The waypoint numbering reads left to right
from the top down.

5.3 YouBot replanning

In Section 5.2 the foundations for replanning was made. In Section 5.1, the framework
for planning and execution for the YouBot was implemented. In this section, the task
is to combine the work made in these two previous sections to do replanning with the
YouBot . The task at hand will be most similar to the replanning example in Section 5.2,



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM56

(a) First seven steps of the robot to door
replanning problem (b) Last eight steps of the robot to door re-

planning problem

Figure 5.9: First and last steps of of the robot to door solution



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM57

but instead of the uncertainty that the objects are movable or not, there can now
appear new boxes in the grid world. Figure 5.10 shows the start of the YouBot and the
grid world. There are four boxes already spawned in the grid. The goal for the YouBot
is to pick up the red box in the upper right corner and drive it to the upper left corner.
The grid is made up by a 5 × 5 grid which is highlighted in the figure. The YouBot
cannot move to tiles that are occupied by a box. Unless it shall pick the box up. In the
middle of the simulation, three blue boxes will spawn blocking the path to the goal
tile. This will trigger the planner to replan and find a way to get to the goal tile (upper
left corner).

Figure 5.10: The initial layout of the grid world



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM58

5.3.1 Implementation

5.3.1.1 V-REP - Lua

To make this work in V-REP some additional functionality is needed. The robot can
do three things in the given domain: pick-up, put-down and move. From before, the
robot has no move(x,y) function where (x,y) are coordinates in V-REP . Until now this
functionality has been included in the functions presented in Section 5.1.1.2, where
the robot moved to the boxes based on the position of the boxes. In this new domain,
the robot needs to move from tile to tile given the coordinates. Also, the movement
seen in the previous examples are combined with reorientation and translation in one
movement. When moving in this grid world, this kind of movement will in most cases
cause the YouBot to move into the other tiles where it can crash into some of the boxes
or the wall. The move(x,y) action will therefore consist of two processes. First, it will
reorient where the new orientation is calculated as θ = atan2(dx ,dy), where dx and
dy is the difference between the current position and the new position. atan2 is used
to get the angle in the right quadrant. Code 5.6 shows how it is done in Lua.

local newOrientation = math.atan2(dx,dy)

sim.setObjectOrientation(vehicleTarget,-1,{0,0,newOrientation})
waitToReachVehicleTargetPositionAndOrientation()

sim.setObjectPosition(vehicleTarget,-1,{x,y,0})
waitToReachVehicleTargetPositionAndOrientation()

Code 5.6: Code from the move function in Lua

For the action to pick up a box, the same reorientation/move problem arises when
the robot reorients itself at the same time it is moving. It is solved by adding a wait
function between the reorientation function and move function. To optimize the time
consumption, it is possible to make reorient a STRIPS action as well, but that will
make the planning problem more complex and bigger and is not considered in this
case. The last function, put-down(x,y), makes the robot to place the box it is holding
at coordinates (x,y) and then return back to the tile it was previously at. This is



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM59

done by three actions in Lua: move to box→put-down box →move back to previous
position.

5.3.1.2 STRIPS

The robot has in this domain three actions. The actions and their preconditions and
effects are the same as in Section 5.2 with the exception that when a box is picked up,
the robot will be at the position from where the box was picked up. This is because
the robot needs to drive to the box when it shall pick it up and it will in most cases
be inefficient to drive back. This is handled in Python by adding a pick-up action and
move action to the plan to be sent to V-REP over ROS. The problem file is automatically
generated using the initial knowledge of the world. The files can be found in the
attachments.

5.3.1.3 Python

It is in Python most of the changes will be done. Because the domain and problem are
almost the same, some of the code used in Section 5.2 will be reused here. The main
problem is the real-time challenges that appear, such as the robot must execute the
whole plan, and when it needs to replan, the robot can not continue to execute the
old plan. When new boxes appear, the Lua script will publish an interrupt message
on the already existing ROS topic. When the Python script gets the message, it will
stop sending new orders to the YouBot and start to replan. When a new plan is found,
the Python script will start sending the new plan back to the YouBot . The replanning
happens in the same way as in Section 5.2, by updating the problem.pddl file to the
current state of the domain and then solve the new problem.



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM60

5.3.2 Results

Figure 5.11 shows eight screenshots from the simulation. In the figures both the V-REP
simulation is seen and the terminal where information from the Python side is printed
as well. First, it displays the string that is published to the ROS topic. Then it shows
the STRIPS action that has been executed. The last thing is the visualization of how the
current state of the grid world looks like. The symbols are the same as in Section 5.2.
In the figures on can see when the YouBot comes close to its goal, three new boxes
are spawned blocking its way. A new plan then found and executed and the YouBot
gets to the goal position with the red box in its gripper.



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM61

(a)

(b)



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM62

(c)

(d)



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM63

(e)

(f)



CHAPTER 5. PLANNINGANDREPLANNING FORA SIMULATED ROBOTIC SYSTEM64

(g)

(h)

Figure 5.11: Snapshots of the YouBot replanning simulation



Chapter 6

Discussion

This chapter includes discussion of the method of the work, the results and potential
future extensions.

6.1 Method

One of the goals was to create a heuristic search planner to solve STRIPS problems.
This planner was tested with different planning problems mainly from the ICAPS
competition [36]. Because of no former planning experience, the author decided to
make a planner from scratch. In hindsight, this method may not be the best idea. The
parser in Chapter 3 were much more time consuming than originally thought and
maybe it might have been more educative to use an already existing parser. This would
allow to spend more time on developing the solver and make a more complete solution
for the YouBot simulation and planning.

Using STRIPS as the planning language was in this case sufficient enough for the
application it was tested on. It facilitated creating the parser such that only conjunctions

65



CHAPTER 6. DISCUSSION 66

are supported, along with that an action only consists of removing or adding atoms
from the state. A downside example may be the case of the restacking of blocks with
the YouBot where the stacks had a max height of three. In this case, a lot of extra atoms
were needed to represent the height and making sure that the boxes were not placed
wrong. With ADL, which has more expressiveness, would make the representation
better and thus make it easier for the solver.

The KUKA YouBot was the main case study for this paper. V-REP [3] was selected
simulation platform, which turned out to be a good choice because of its ease of use.
The embedded Lua scripting setup was easy to work with and the overall experience
was good.

6.2 Results

6.2.1 Parser

As mentioned above, the parser included a lot more work than expected. One of the
main tasks for a planner is to find a solution quickly. All of the code was written in
Python, which is not as fast as other programming languages as, for example, C. The
task for the parser was also to find the applicable actions for each new state. This
is was the part that consumed most of the computational resources. The method
used for finding applicable actions was string-based, which is also not an efficient
way of doing operations. Because of this, the function had to be rewritten several
times and the end result could be better. This problem is similar to, a Constraint
Satisfaction Problem(CSP), which is a field of research itself, and outside the scope of
this thesis.



CHAPTER 6. DISCUSSION 67

6.2.2 Solver

Several algorithms and heuristics were tested and used. The results varied based on
the problem and the solver was able to solve the easier problems from the ICAPS
competitions fairly fast.

The heuristic search planner, where the ignoring delete list heuristic was used, was
successful in finding a solution in few steps. Due to solving a relaxed problem for each
new found state, and because of the limiting effect from the slow process of finding
applicable actions, made the heuristic method slow, especially were the problem
states were large. In such cases, the missing subgoal heuristic would find a solution
quicker. Compared to solvers such as Fast Forward, the solver is some levels beneath
in performance [44, 45].

6.2.3 YouBot replanning

The results of the replanning for the YouBot were satisfactory. One main goal was
to add some kind of uncertainty to the domain. In this case, since the planning was
developed from scratch, the main challenge was to set up the framework for enabling
to update the problem file to the current state of the domain. In fact, one of the harder
problems for the solver was the replanning for when the new blue boxes appeared.
This is because the state was relatively large with over 140 atoms, where most of them
are adjacency atoms. Because one of the goals that is already satisfied with holding the
red box in the gripper and the YouBot must drop the red box in order to clear the path,
the solver seems to confuse the heuristic methods used and the solver needs some
additional time to solve the problem. In planning theory, this is known as the Sussman
anomaly [46] where the robot has to undo a subgoal to complete another.



CHAPTER 6. DISCUSSION 68

6.3 Future work

6.3.1 Parser and solver

The program runs only on one thread, so in the future work, one could consider making
the parser to use several cores to speed up the process.

The heuristics implemented in this thesis are among the simplest. For a state-space
search, there are a lot of other heuristic functions that are available and can be im-
plemented. Also, the solving method can be improved with a better search algo-
rithm [17, 28].

The planner and the YouBot functionality are uncoupled, whichmeans that substituting
the planner made in this paper with a state-of-the-art planner can be done if one wants
to solve more complex YouBot planning problems efficiently.

The WA* algorithm can yield varying results based on the weights chosen. When there
are constraints on the available time for planning, one can use the concept of Anytime
Planning. Where one will start with a high weight,w , to get a solution quickly and
then use the remaining available planning time to improve the solution by decreasing
the weight such that WA* approaches A* characteristics [47, 48, 49, 50, 51].

6.3.2 YouBot replanning

Because of the way action control is handled, the movement of the YouBot in the
grid world replanning domain is somewhat piecewise. As one can see in the attached
video, the YouBot stops at every waypoint in order to receive the next order. If a plan
involves a number of consecutive actions representing respective motions, then a more
refined curves path can be generated by making a spline or path to the end waypoint
such that the YouBot gets a more smoother movement and a quicker execution. In
the implementation of this solution, all actions are considered atomic, which means
that an action can not stop once it has started. If one going to include several actions



CHAPTER 6. DISCUSSION 69

into one action, one must consider some interruption functionality as well, in case of
something happens that has not been planned for.

Further work towards real-life implementation could involve adding a camera, or any
kind of perception sensor, which gives information about the grid world. This can be
used to add object detection and can then be used by the planner to plan/replan.

Because of the time constraints, there was no time to implement this on a real system.
The methodology developed in this work is transferable to other systems and it will not
require much to get the planner/replanner to work on other similar robotic systems.
As the system is now, it is based on a discretized world split in cells, where the robot
has been given no time constraint to find a new plan on how to act on the changes in
the domain. If the robot is to act in a more dynamic world where for example humans
also are interacting within the robot’s domain, replanning may take too long and a
kind of reacting behavior must be available to the system. This means that the current
plan must be ignored to make place for a react action. To this end, the work produced
in this thesis could be well connected to the existing and vast literature on collision
avoidance [52, 53].

The method of replanning from scratch may be the easiest and simplest way of doing
replanning. Another interesting approach would be to generate two or more plans
and if one plan does not work, the algorithm would try to switch plan, which may still
be applicable.

6.4 Conclusion

In this thesis, a STRIPS planner has been made and tested with different solution
approaches. The focuswas tomake a planner that could solve simple planning problems
at a reasonable time. This has been a difficult task and although one could wish that
the resulting implementation was faster, the end result was satisfying. The planner
has some work left to do if it is going to be as fast as state-of-the-art planners.



CHAPTER 6. DISCUSSION 70

After the planner had reached a satisfactory performance, it was used with a real-time
simulation. The simulation was done in V-REP on the KUKA YouBot . The YouBot was
easy to work with because V-REP provided basic control functionality which could be
adapted into fitting the needs of the task at hand without too many complications. ROS
was used to connect the planner written in Python with the embedded V-REP script
written in the Lua programming language. The framework built for replanning and
execution of the planning domain has a lot of potential and because of the way it has
been made, it should be easy to use this in other examples and simulation platforms
along with real-world tasks.



Appendix A

Links

The code and videos explained in this thesis are found in the attachment. If the attach-
ment is not available, the content can also be found at this link:
Attachments: https://drive.google.com/open?id=1KyjKUX_8_hs6XvAS77wivFEIH9gMGBIb

The videos have also been uploaded to YouTube at:
Hanoi - https://www.youtube.com/watch?v=wkwClfFRocU
Restack - https://www.youtube.com/watch?v=JtnVpeEi1zw
Replan - https://www.youtube.com/watch?v=TJiHtSCd2Rg

The source code can also be found at these GitHub repositories:
Planner - https://github.com/Aarskog/Planning
V-REP - https://github.com/Aarskog/vrep-planning

71

https://drive.google.com/open?id=1KyjKUX_8_hs6XvAS77wivFEIH9gMGBIb
https://www.youtube.com/watch?v=wkwClfFRocU
https://www.youtube.com/watch?v=JtnVpeEi1zw
https://www.youtube.com/watch?v=TJiHtSCd2Rg
https://github.com/Aarskog/Planning
https://github.com/Aarskog/vrep-planning


References

[1] Kanna Rajan and Alessandro Saffiotti. Towards a science of integrated AI and
Robotics, 2017.

[2] Python 2.7.0 release | python.org. https://www.python.org/download/

releases/2.7/. (Accessed on 05/27/2018).

[3] Coppelia Robotics. V-rep. http://www.coppeliarobotics.com/, 2018. [Ac-
cessed: 7-May-2018].

[4] Ros.org | powering the world’s robots. http://www.ros.org/. (Accessed on
05/27/2018).

[5] Nils J Nilsson. Shakey the robot. Technical report, SRI INTERNATIONALMENLO
PARK CA, 1984.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, July 1968.

[7] Paul VC Hough. Machine analysis of bubble chamber pictures. In Conf. Proc.,
volume 590914, pages 554–558, 1959.

[8] Peter E Hart. How the Hough transform was invented [DSP History]. IEEE Signal
Processing Magazine, 26(6), 2009.

72

https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
http://www.coppeliarobotics.com/
http://www.ros.org/


REFERENCES 73

[9] World robotics report 2016 - international federation of robotics. https://ifr.
org/ifr-press-releases/news/world-robotics-report-2016. (Accessed
on 05/25/2018).

[10] Artificial Intelligence Swarms Silicon Valley on Wings and Wheels - The
New York Times. https://www.nytimes.com/2016/07/18/technology/

on-wheels-and-wings-artificial-intelligence-swarms-silicon-valley.

html. (Accessed on 05/28/2018).

[11] Alessandro Saffiotti, Kurt Konolige, and Enrique H Ruspini. A multivalued logic
approach to integrating planning and control. Artificial intelligence, 76(1-2):481–
526, 1995.

[12] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard, Armin B Cremers, Frank
Dellaert, Dieter Fox, Dirk Hahnel, Charles Rosenberg, Nicholas Roy, Jamieson
Schulte, et al. Minerva: A second-generation museum tour-guide robot. In
Robotics and automation, 1999. Proceedings. 1999 IEEE international conference on,
volume 3. IEEE, 1999.

[13] Nicola Muscettola, P Pandurang Nayak, Barney Pell, and Brian C Williams. Re-
mote agent: To boldly go where no AI system has gone before. Artificial Intelli-
gence, 103(1-2):5–47, 1998.

[14] Kanna Rajan, Douglas Bernard, Gregory Dorais, Edward Gamble, Bob Kanefsky,
James Kurien, William Millar, Nicola Muscettola, Pandurang Nayak, Nicolas
Rouquette, et al. Remote agent: An autonomous control system for the new mil-
lennium. In Proceedings of the 14th European Conference on Artificial Intelligence,
pages 726–730. IOS Press, 2000.

[15] Pl-plan: A java open-source ai planner. http://www.

philippe-fournier-viger.com/plplan/index.php. (Accessed on
05/29/2018).

[16] Optaplanner - constraint satisfaction solver (java™, open source). https://www.
optaplanner.org/. (Accessed on 05/29/2018).

https://ifr.org/ifr-press-releases/news/world-robotics-report-2016
https://ifr.org/ifr-press-releases/news/world-robotics-report-2016
https://www.nytimes.com/2016/07/18/technology/on-wheels-and-wings-artificial-intelligence-swarms-silicon-valley.html
https://www.nytimes.com/2016/07/18/technology/on-wheels-and-wings-artificial-intelligence-swarms-silicon-valley.html
https://www.nytimes.com/2016/07/18/technology/on-wheels-and-wings-artificial-intelligence-swarms-silicon-valley.html
http://www.philippe-fournier-viger.com/plplan/index.php
http://www.philippe-fournier-viger.com/plplan/index.php
https://www.optaplanner.org/
https://www.optaplanner.org/


REFERENCES 74

[17] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Acting.
Cambridge University Press, 2016.

[18] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

[19] JohnMcCarthy. Situations, actions, and causal laws. Technical report, STANFORD
UNIV CA DEPT OF COMPUTER SCIENCE, 1963.

[20] John McCarthy and Patrick J Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Readings in artificial intelligence, pages
431–450. Elsevier, 1981.

[21] Raymond Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. Artificial intelligence
and mathematical theory of computation: papers in honor of John McCarthy,
27:359–380, 1991.

[22] Fangzhen Lin. Situation calculus. Foundations of Artificial Intelligence, 3:649–669,
2008.

[23] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3):189 – 208, 1971.

[24] Leora Morgenstern. The problem with solutions to the frame problem. The
Robot’s Dilemma Revisited: The Frame Problem in Artificial Intelligence. Ablex
Publishing Co., Norwood, New Jersey, pages 99–133, 1996.

[25] Edwin PD Pednault. Generalizing nonlinear planning to handle complex goals
and actions with context-dependent effects. In IJCAI, pages 240–245. Citeseer,
1991.

[26] Edwin PD Pednault. Formulating multiagent, dynamic-world problems in the
classical planning framework. In Reasoning about actions & plans, pages 47–82.
Elsevier, 1987.



REFERENCES 75

[27] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL-the planning domain
definition language, 1998.

[28] Stuart J. Russel and Peter Norvig. Artificial Intelligence A Modern Approach.
Pearson, 2010.

[29] Blai Bonnet and Héctor Geffner. HSP: Heuristic search planner, 1998.

[30] Wei Zeng and Richard L Church. Finding shortest paths on real road networks: the
case for a. International journal of geographical information science, 23(4):531–543,
2009.

[31] EdsgerWDijkstra. A note on two problems in connexionwith graphs. Numerische
mathematik, 1(1):269–271, 1959.

[32] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
129(1-2):5–33, 2001.

[33] Richard E Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78,
1993.

[34] Eugene F Krause. Taxicab geometry: An adventure in non-Euclidean geometry.
Courier Corporation, 1975.

[35] AI-Planning-Solver-Shakeys-World-PDDL. https://github.com/

guillaume-chevalier/AI-Planning-Solver-Shakeys-World-PDDL. [Ac-
cessed: 10-April-2018].

[36] International Conference on Automated Planning and Scheduling (ICAPS).
http://www.icaps-conference.org/index.php/Main/HomePage. [Accessed:
10-April-2018].

[37] Tiago de Paula Peixoto. Graph-tool: Efficient network analysis. https:

//graph-tool.skewed.de/, 2017. [Accessed: 17-April-2018].

https://github.com/guillaume-chevalier/AI-Planning-Solver-Shakeys-World-PDDL
https://github.com/guillaume-chevalier/AI-Planning-Solver-Shakeys-World-PDDL
http://www.icaps-conference.org/index.php/Main/HomePage
https://graph-tool.skewed.de/
https://graph-tool.skewed.de/


REFERENCES 76

[38] KUKA. Kuka youbot. http://www.youbot-store.com/, 2018. [Accessed: 7-
May-2018].

[39] Miodrag Petković. Famous puzzles of great mathematicians. American Mathemat-
ical Soc., 2009.

[40] ROS. ROS. http://www.ros.org/. [Accessed: 13-December-2017].

[41] ROS. Ros topic. http://wiki.ros.org/Topics, 2018. [Accessed: 7-May-2018].

[42] ROS. Ros node. http://wiki.ros.org/Nodes, 2018. [Accessed: 7-May-2018].

[43] Sven Koenig, Maxim Likhachev, Yaxin Liu, and David Furcy. Incremental heuristic
search in ai. AI Magazine, 25(2):99, 2004.

[44] Jörg Hoffmann. FF: The fast-forward planning system. AI magazine, 22(3):57,
2001.

[45] Henry Kautz and Bart Selman. Unifying sat-based and graph-based planning. In
IJCAI, volume 99, pages 318–325, 1999.

[46] Gerald Jay Sussman. A computer model of skill acquisition. Elsevier Science Inc.,
1975.

[47] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and
Sebastian Thrun. Anytime dynamic A*: An anytime, replanning algorithm. In
ICAPS, pages 262–271, 2005.

[48] Thomas L Dean and Mark S Boddy. An analysis of time-dependent planning. In
AAAI, volume 88, pages 49–54, 1988.

[49] Rong Zhou and Eric A Hansen. Multiple Sequence Alignment Using Anytime A*.
In AAAI/IAAI, pages 975–977, 2002.

[50] M Likhachev, G Gordon, and S Thrun. Advances in Neural Information Processing
Systems ARA*: Anytime A* with provable bounds on sub-optimality, 2003.

http://www.youbot-store.com/
http://www.ros.org/
http://wiki.ros.org/Topics
http://wiki.ros.org/Nodes


REFERENCES 77

[51] Shlomo Zilberstein and Stuart Russell. Approximate reasoning using anytime
algorithms. In Imprecise and Approximate Computation, pages 43–62. Springer,
1995.

[52] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[53] Johann Borenstein and Yoram Koren. The vector field histogram-fast obsta-
cle avoidance for mobile robots. IEEE transactions on robotics and automation,
7(3):278–288, 1991.


	Abstract
	Sammendrag
	Preface
	Problem description
	Introduction
	Motivation and Previous Work
	Outline of Report

	Background
	Automated Planning
	Classical Planning
	Situation Calculus
	Example

	STRIPS
	PDDL
	PDDL Example


	Implementation - Parser
	Domain Parser
	Problem Parser

	Implementation - Solver
	Background
	Forward Planning
	Heuristic Function
	Search Strategies

	Implementation
	Results
	Breadth-First Search
	Depth-First Search
	Greedy Best-First Search
	A*
	Weighted A*


	Planning and Replanning for a simulated robotic system
	YouBot
	Tower of Hanoi
	Restack of blocks

	Replanning
	Implementation

	YouBot replanning
	Implementation
	Results


	Discussion
	Method
	Results
	Parser
	Solver
	YouBot replanning

	Future work
	Parser and solver
	YouBot replanning

	Conclusion

	Links
	References

