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Abstract

Autonomous vehicles have numerous advantages compared to standard vehicles. They
can reduce fuel consumption, reduce injuries and death, optimize mobility, and reduce
tra�c congestion. Most lane assists used in consumer cars today are built up by several
modules and can be complex and non-general, and few of these can handle dirt roads.
Change in weather and road types can cause drastic and unwanted e�ects on the
performance and safety of the lane assist. The end-to-end approach for autonomous
vehicles has shown promising results in the later years. It uses a front-facing camera on
a vehicle that feeds images of the road through a Convolutional Neural Network (CNN)
which then maps each image directly to a steering angle. End-to-end networks have
the advantage that there is no need for manually designing rules. The network is
trained using supervised learning by cloning the behavior of human maneuvers. It is
trained to generalize its perception of the road so it can predict accurately regardless of
weather and road conditions. This thesis proposes a multi-input end-to-end network
for dirt roads that combines camera images and Light Detection And Ranging (LiDAR)
data in an attempt to outperform single-input end-to-end networks. Using a test set,
the experiment proved that combining camera images and LiDAR outperforms camera
or LiDAR alone. Multi-input networks can, therefore, improve the local navigation of
an o�-road autonomous UGV. Additionally, a path veri�cation technique is presented.
It uses a segmentation network to segment out the dirt road, and together with the
predicted steering angle, it evaluates the local path of the vehicle.
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Sammendrag

Selvkjørende biler gir �ere fordeler sammenlignet med vanlige kjøretøy. De kan
redusere drivsto�orbruk, redusere skader og ulykker, optimalisere framkommelighet,
og redusere kø på veiene. De �este kjørebane-assistenter i biler i dag er bygget opp
av �ere moduler og kan være komplekse og er ikke-generelle, og få er terrenggående.
Skiftende vær og underlag kan ha uønskede e�ekter på ytelsen og sikkerheten til
kjørebane-assistenten. Ende-til-ende tilnærmingen for autonome kjøretøy har vist
lovende resultater de siste årene. Den bruker et forovervendt kamera på et kjøretøy
som mater bilder av veien inn til et konvolusjonsnettverk som direkte tilegner hvert
bilde en anbefalt styrevinkel. Ende-til-ende nettverk har fordelen med at man ikke
trenger å manuelt designe regler. Nettverket er trent ved hjelp av ledet læring ved
å etterligne menneskelige manøvre. Den er trent til å generalisere sin oppfatning
av veien uavhengig av kjøreforhold som nedbør og underlag. Denne avhandlingen
foreslår et ende-til-ende nettverk med inngang for både kamera bilder og LiDAR, i et
forsøk på å forbedre resultatet i forhold til ende-til-ende nettverk med kun en inngang.
Ved å bruke et test dataset ble det demonstrert at nettverket med �ere innganger
oppnår et bedre resultat enn nettverk som kun benytter kamera eller LiDAR alene.
Flere innganger kan dermed forbedre den lokale navigeringen til en autonom UGV.
I tillegg blir en teknikk for bane-veri�sering foreslått. En slik teknikk benytter et
segmenteringsnettverk for å segmentere ut veien, og sammen med den predikerte
styrevinkelen gjøres det forsøk på å evaluere bilens bane i forhold til veien.
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Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles have numerous of advantages compared to standard vehicles.
They can reduce fuel consumption, reduce injuries and death, optimize mobility, and
reduce tra�c congestion. Most lane assists used in consumer cars today are built up
by several modules and can be complex and non-general, and few of these can handle
dirt roads. Change in weather and road types can cause drastic and unwanted e�ects
on the performance and safety of the lane assist. However, several car manufacturers,
startups, and other companies have in recent years started to research and development
of self-driving cars using Deep Learning (DL). A common technique used for this is
called the end-to-end approach [1, 2, 3]. Instead of making rules on how a car should
behave, they use supervised learning with an Arti�cial Neural Network (ANN) to
clone the behavior of human maneuvers accurately. The end-to-end approach for
autonomous vehicles has shown promising results [1, 2, 3]. Yet, most papers about
self-driving cars present a system meant for public roads and utilizes only camera
images in their end-to-end networks.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem description

This thesis will investigate the use of the end-to-end approach with both camera
images and LiDAR data as input for steering angle prediction, everything in an o�-road
environment like dirt roads. The multi-input end-to-end network will be compared
to single-input end-to-end networks only using camera images or LiDAR data as
input. The end-to-end network will in this thesis be named steering angle network.
Additionally, this thesis presents a possible and experimental technique for local path
veri�cation using the output of a segmentation network together with the predicted
steering angle from the steering angle network. By combining the results from the two
models, steering angle, and segmentation, one can verify the vehicles local path. The
end-to-end network uses supervised learning to clone and learn from human behavior,
while the segmentation network uses supervised learning for road segmentation.
Figure 1.1 illustrates the full system. Unlike asphalt roads, colors on the ground on
dirt roads and trails do not have clearly de�ned meanings. Trees, thicket, and poorly
de�ned roads is a messy environment for a computer whichmakes this task challenging.
The task can be divided up into the following objectives:

1. Develop two single-input end-to-end networks for steering angle prediction on
dirt roads, one for camera images and one for LiDAR data.

2. Develop a multi-input end-to-end network for steering angle prediction on dirt
roads by fusing the two networks mentioned above.

3. Compare the performance of the networks.

4. Develop a segmentation network for segmenting road from non-road.

5. Use the segmented road together with the predicted steering angle from the
previous network to present an experimental technique for path veri�cation.
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Figure 1.1: The system takes both regular camera images and LiDAR data as input.
These are processed through two CNNs before predicting a steering angel. Parallel to
this is a segmentation CNN that uses camera images to segment out the road ahead.
This segmentation can be used together with the predicted steering angle in a path
veri�cation module.
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1.3 Background

External supervisor Narada Warakagoda and Forsvarets Forskningsinstitutt (FFI)
introduced a hypothesis of usingmulti-input neural networks in an end-to-end approach
to steer an Unmanned Ground Vehicle (UGV). This thesis will investigate the use of the
end-to-end approach using both camera images and LiDAR data as input, compared to
only using camera or LiDAR data. All this in an o�-road environment. In addition to
providing the task itself, Warakagoda provided information about the fundamentals
of the end-to-end approach, and neural network in general. He also provided the
TensorFlow software used as a starting point for developing the end-to-end network
presented in Chapter 3, along with the unprocessed dataset. This network is covered
later in Chapter 3 as the steering angle network. The other network trained and used
in this project was a segmentation network. Since this network only was to be used
to present a possible path veri�cation technique, a suitable architecture was adopted
from gitHub1 and modi�ed to �t the task initiated in this thesis. Supervisor, Kristin
Y. Pettersen equipped the project with a suitable workstation. This workstation was
necessary to train the networks in Chapter 3.

1.4 Contributions

• A comparison between single-input end-to-end networks using camera or
LiDAR, andmulti-input networks using both - on dirt roads. This thesis demonstrates
that multi-input end-to-end networks outperform single-input networks, which
can give the system better hardware redundancy and along with improved
resistance to sensor noise like sun �air, rain and snow, and re�ections.

• A path veri�cation technique using a segmentation network is presented. It uses
the segmented road and combines it with the predicted steering angle from the
end-to-end network to evaluate the local path of the vehicle.

1Source: https://github.com/maxritter/SDC-Semantic-Segmentation

https://github.com/maxritter/SDC-Semantic-Segmentation
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1.5 Related work

This section reviews central literature relevant to thework done during this project.

1.5.1 Single-input end-to-end networks

[1] by Nvidia used the end-to-end approach for steering angle prediction on a real
car. Nvidia’s paper explains how they normalize all pixels before feeding them into
�ve convolutional layers followed by three fully connected. For better centering of
the vehicle, they use left- and right-positioned camera. Images from these cameras
are used to mimic an o�-center position during training. They perform successful
tests on highways. Similar to the Nvidia project is the work done by Comma.ai [2].
They use three convolutional layers followed by three fully connected layers to map
images of roads to steering angles. Note that [2] does not have a research paper. Their
research contains only the software developed by the company, and no design choices
were explained or documented. The CEO Hotz did a more general description of their
goal and work during AI by the bay, an AI conference [4]. [5] also use the end-to-end
approach. They present an architecture base on the VGG-16 model [6] with additional
seven convolutional layers, and two max pool layers. It should be noted that they use
this architecture for both steering angle prediction and object detection. Furthermore,
they add batch normalization in the last layers for faster convergence [7]. Another
technique is the use of temporal data, in [8, 9] they present a network with recurrent
nodes using Long Short Therm Memory (LSTM). In [9] they also compare their model
with other models for comparison using a benchmark dataset.

1.5.2 Multi-input end-to-end networks

Combining camera images and LiDAR in an end-to-end matter has been proven to
improve autonomous driving performance [3]. In [3], a neural network processes
both camera images and LiDAR data for steering angle prediction on public roads.
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They experiment with point cloud mapping and the use of PointNet. An architecture
initially made for handling segmentation tasks with LiDAR data [10]. The model
uses the Pointnet architecture in [10], and combines it with a CNN by using a fully
connected fusion network. They also present a similar model with a LSTM instead
of a fully connected fusion layers for sequential data handling. A similar model for
object detection has been developed in [11] to be used for vehicles.

1.5.3 FCNs for semantic segmentation

Fully Convolutional Neural Networks (FCNs) has been used to segment road from
background in Mulitnet [12]. They utilize the architecture described in the theory
chapter Section 2.3 for semantic segmentation of public road and background (non-road).
The main reason for using a FCN for segmentation was the small computational time
a forward iteration uses, together with its accuracy [12, 13]. The paper focuses on fast
real-time performance, which is necessary for an autonomous driving system.

1.6 Outline

The report is organized as follows. In Chapter 2 one can �nd a short introduction to
the theory used in the later chapters. Chapter 3 covers the methodology and approach
used to tackle the tasks in this project. Chapter 4 includes the results, discussion, and
conclusion. Appendix A, includes (as an attachment zip-�le) the scripts used in this
thesis. Finally, in Appendix B, a possible technique for steering angle prediction only
using segmentation is presented.



Chapter 2

Theory

This chapter will brie�y cover some of the theory behind the DL technologies used in
building and training the networks, and this will establish the foundation of the later
networks in Chapter 3.

2.1 Arti�cial Neural Networks (ANNs)

Arti�cial Neural Networks (ANNs) have been around since the early 1940s. However,
it took decades before they were improved enough to be e�ciently used for machine
learning tasks. Real breakthroughs did not come into existence before early 2010s
[14]. This was a result of further development of techniques and using GPUs for
faster calculations [15, p.440]. There are many di�erent variations of the Arti�cial
Neural Network (ANN), both in depth, width, input, output, and general architecture.
A typical network used when input data are images is called a Convolutional Neural
Network (CNN). To make a new layer in a CNN, one can apply a small �lter with
weights which slide along the input image. When it slides, it multiplies itself with
the corresponding pixel values on the input image. When this is done all over the

7
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Input

Filter

Feature map

Figure 2.1: Example of a convolution which outputs one feature maps.

input image, the output is called a feature map. This multiplication of input and �lter
can be done several times to create multiple feature maps. Using �lters preserves the
spatial relationship between nearby pixels. By doing this, it extracts small but essential
characteristics out of the input image. An illustration of a convolution is to be found in
Figure 2.1, a patch of nearby pixels are mapped to the next layer. An ANN can output
a variety of di�erent tensor shapes. CNNs are often used for classi�cation tasks where
the output is a vector, and the highest value of a position indicates the associated
class. They can be build up by several convolutions layers, pooling layers which
down-samples a patch of the input, and fully connected layers. Fully connected layers
are where each node in a layer is connected to all nodes in the next layer. However,
ANNs can also be used for regression problems. When dealing with a regression
problem, the single output node returns a continuous value. An example �gure of an
ANN for regression is illustrated in Figure 2.2.
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Figure 2.2: Simple ANN with one output node for regression. Last node can output a
continuous range of values.

2.1.1 Loss functions

A loss function is used in neural networks to describe how far o� the produced result
was from the expected result. The error is then used to minimize the loss using an
optimizer. Models that deal with a regression problem outputs a value and not a class.
To measure the performance of these networks, one can use Mean Square Error (MSE),
expressed as

MSE =
1
n

n’
i=1

(Ŷi � Yi )2 (2.1)

where Ŷ is a vector with the predicted values, and vector Y is the correct and observed
values to verify with. TheMSE gives the optimizer a measure on how far o� it currently
is. Similarly, one can also take the root of MSE, and this is called Root Mean Square
Error (RMSE). Models for semantic segmentation often use softmax cross-entropy in a
pixel-wise fashion as loss function. It calculates the di�erence between the predicted
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class and the label class for each pixel. The cross-entropy function expressed as

D(S,L) := �
’
i

’
c
li (c) log(si (c)) (2.2)

where S is the two-dimensional array of pixels and classes, where softmax operation
(sum across both classes is one) has been applied across the class axis. L is the
two-dimensional label array. i iterates over all pixels and c over all classes. li (c)
is the class label indicating whether the ith pixel belongs to the class c . It is 1 if this is
true and 0 otherwise. si (c) is the softmax output for class c of the ith pixel.

2.1.2 Optimizers

The key aspect of training a multi-layered network is to �nd the change in error with
respect to a speci�c weight so that the loss is minimized [16]. By using the concept
of gradient descent with an optimizer, the algorithm can propagate backward from
the loss function to adjust weights [16]. A simple optimizer that utilizes the gradient
descent is Momentum. It adds a fraction of the previous update vector in the current
one to accumulate momentum towards the local or global minimal. It is formulated
as

mt = �mt�1 + �r� � (� )
� = � �mt

(2.3)

where � are the parameters of the cost function J,mt is the current updated vector,
� is the momentum term, and � is the learning rate. A common and more advanced
optimizer is the Adam optimizer [17]. Adam stands for adaptive momentum estimate.
The algorithm uses the principle of gradient descent to do a step towards ideal minima,
similar to Momentum. However, [17] explains how the optimizer calculates individual
learning rates for each parameter and the adaptive momentum values for these. It
determines the moving average of the gradient and squared gradient and calculates the
adaptive learning rates using these based on the parameter. These exponential moving
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averages, called the mean and the uncentered variance, are formulated respectively
as

mt = �1mt�1 + (1 � �1)r� � (� )
�t = �2�t�1 + (1 � �2)(r� � (� ))2

(2.4)

where �1 and �2 control the decay rates.mt and �t are initialized as zero which causes
them to be biased towards zero. This is corrected with

m̂t =
mt

1 � � t1

�̂t =
�t

1 � � t2

(2.5)

which is then used in the updated function

�t+1 = �t �
�p

�̂t + �
m̂t (2.6)

where � is a small number to prevent zero-division. Their study show how Adam gives
a better performance than other optimizers in most cases.

2.1.3 Activation functions

Non-linear activation functions enable the neural network to solve non-linear tasks.
Activation functions are usually designed to take smaller values closer to zero as
inputs to speed up learning [18]. Recti�ed Linear Units (ReLU) has been the industry
standard of activation functions because of its simplicity and speed [19, 20]. It is also
replicate the real-life scenario of a neuron �ring, which in a nutshell is what inspires
the use of ANN. ReLUs pass negative values as inputs, if zero or below, these nodes
are deactivated. This can in some cases cause dying neurons which is related to the
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vanishing gradient problem. It is expressed as simple as

f (x) =
8>><
>>:
x if x > 0

0 if x  0.
(2.7)

In 2017 a paper was released describing a new and e�ective activation function called
Exponential Linear Units (ELU) [21]. They presented an activation function that
reduces the vanishing gradient problem. According to [21], "Mean shifts toward zero
speed up learning by bringing the normal gradient closer to the unit natural gradient
because of a reduced bias shift e�ect" (p. 1). The ELU activation function is plotted
later in Section 3.3, and is formulated as

f (x) =
8>><
>>:
x if x > 0

�(exp(x) � 1) if x  0
(2.8)

2.1.4 Regularization

A common problem in ANNs are over�tting. Some weights are overstimulated on
the training set which causes the poor performance results on the test set. One
regularization technique is weight decay, also known as L2 regularization. It penalizes
the loss function depending on the currentweight. This gives the new loss function

Ê(wi j ) = E(wi j ) +
�

2
w2
i j

where E(wi j ) is the old loss function and, � is the penalty hyperparameter. A similar
regularization technique is Dropout. A pre-speci�ed amount of randomly chosen
neurons are deactivated for each iteration. This avoids overly stimulated weights and
allows for better generalization of ANNs. Another regularization technique is Batch
Normalization [7]. It has a regulating e�ect, and additionally, it helps speed up the
learning by hindering explosion of weights and keeping them within the range of
the activation function [7]. Batch Normalization is usually placed after activation
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functions, and it can either standardize or normalize the values into a speci�c range.
Batch normalization in models enables larger learning rates and allows the user to be
less careful about parameter initialization [7].

2.2 The end-to-end approach

The end-to-end approach is used in self-driving systems for predicting steering angles.
It usually takes images from a front-facing camera and uses a CNN to map these
image frames of roads directly to steering angles. This approach is called end-to-end
because it handles everything from feature extraction to path prediction, end-to-end,
without any additional modules. The network maps individual camera images directly
to steering angles through the single node output. These models, which output a
continuous value, are called regression models, and Figure 2.2 illustrates an example
of this type of output. End-to-end models can concertize and distinguish essential
features of the road ahead because they have been trained to generalize features of the
road, such as road boundaries and curvature.

2.3 FCNs for semantic segmentation

Fully Convolutional Network (FCN) can be used for semantic segmentation and has
proved powerful with the right techniques [13]. Semantic segmentation is a way of
labeling images by giving each pixel a class. When using FCN in semantic segmentation,
a CNN extract features just like a regular CNN. A FCN model does not have fully
connected layers. Instead, it stacks convolutional layers that produce a smaller and
smaller heat map of the target. Since there are no fully connected layers, the spatial
representation is kept. When the heat maps are created, de-convolutional layers are
used to reconstruct the original size of the input image. De-convolutional layers can
learn by backpropagation, similar to a normal CNN. In contrast to a regular CNN, the
FCN model uses a pixel-wise loss function like Formula 2.2 presented in Section 2.1.1.
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Figure 2.3: Architecture of a Fully Convolutional Network used for semantic
segmentation. Width and height of the output are the same as the input image. This
model can classify pixels of two classes.1

De-convolutional layers can also handle non-linearity when up-sampling an image.
[13] implement this architecture with skip layers. This is a way of more accurately
predicting the segmented areas by merging the up-sampled image with the appearance
information of early layers whose heat maps are of higher resolution. The result is a
fast segmentation network (because of only using convolutions) that performs well on
di�erent segmentation datasets [13]. An example of a FCN architecture for semantic
segmentation can be seen in Figure 2.3.

2.3.1 Evaluation metrics

To evaluate the performance of the segmentation model, Average Precision (AP) was
used. Segmentation tasks can be evaluated using several di�erent metrics with di�erent
characteristics like those used in [13], but AP is used by Multinet in [12], and to easier
compare the results it was also applied when evaluating the segmentation network

1Image source: https://goo.gl/Fcnxxf

https://goo.gl/Fcnxxf
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in the methodology chapter, Section 3.4. AP use a confusion matrix to calculate the
precision using True Positives (TP) and False Positives (FP), and the recall using TP
and False Negatives (FN). Precision is de�ned as T P

T P+F P and recall is de�ned as T P
T P+FN .

AP calculates the area under the precision/recall curve. In this thesis, it implemented
using the scikit-learn2 Application Programming Interface (API), and is expressed
as

AP =
’
n
(Rn � Rn�1)Pn (2.9)

where Rn and Pn are the precision and recall at the nth threshold. It should be noted
that Multinet uses a slightly di�erent AP formula called the 11-point interpolating AP.
It is used by the Pascal Visual Object Classes evaluation and is de�ned in their own
paper [22]. The small metric di�erence does not matter in this thesis. The main goal
of the segmentation was not to achieve the highest possible score, but to present a
possibility of using a segmented road for path veri�cation.

2Documentation Source: https://goo.gl/WzJZjY

https://goo.gl/WzJZjY
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Chapter 3

Methodology

This chapter consists of �ve sections. The two �rst are a description of tools and
datasets. Following is a section for the end-to-end model which is named steering
angle network. Next, a section of the segmentation network. Finally, a section for the
path veri�cation technique. The scripts used in this part of the project can be found as
an attached zip-�le in Appendix A.

3.1 Tools

This section covers the software and hardware appliances used to develop and utilize
the neural networks.

3.1.1 Workstation

The CPU is the main processing unit in a computer. It handles a variety of di�erent
tasks and often uses multiple cores to parallelize them, a GPU, on the other hand,
is more specialized. It is primarily used to handle heavy graphics. Because it has

17
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signi�cantly more cores, it can handle certain simple tasks fast and parallel. ANNs are
computationally heavy with thousands or maybe millions of weights and biases that
are handled. ANNs have in the later years dramatically increased in size and forced
the need for GPUs in training. The workstation used in this work had four parallel
GeForce GTX 1080 Ti graphics cards and a MD RYZEN THREADRIPPER 1900X 4.0GHz.
Each GPU has 11 GB of VRAM, and more importantly, they have a memory bandwidth
of 484 GB/sec each.

3.1.2 TensorFlow

The models build in this project were build using TensorFlow1 and TensorFlow
Slim2, a machine learning API made by Google. It enables developers to implement
formulas, DL techniques, and other machine learning features fast and easy. Neural
networks are built as computational data �ow graphs with TensorFlow, where nodes
are computations and edges are multidimensional arrays storing weights and biases
[23]. There are other APIs which are easier and simpler to use and build with, but
TensorFlow allows for better control of data �ow and architecture. GPUs were used for
faster computations. NVIDIA has created a platform named Compute Uni�ed Device
Architecture (CUDA) which allows developers to use the computational power in the
GPUs for general purpose tasks. By installing CUDA on the workstation, TensorFlow
could access the GPUs memory and computational features for faster training. As
mentioned in Section 3.1.1, because it has multiple cores it can handle certain simple
tasks fast and parallel.

3.2 Datasets

A time-consuming part of the project was to prepare the dataset used to train the
TensorFlow models. Open and free datasets for self-driving systems exist, but none

1Documentation source: https://www.tensorflow.org/api_docs/
2Documentation source: https://goo.gl/cQJJcm

https://www.tensorflow.org/api_docs/
https://goo.gl/cQJJcm
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of them were recordings from a dirt road environment. Therefore, images and data
collected by FFI were prepared to be used in the di�erent models.

A vehicle with mounted cameras, a LiDAR and sensors were driven around in di�erent
environments recording data to be used in the dataset. Most of the data recorded
were dirt roads and trails. While recording, camera images, LiDAR data, and steering
angle were continuously saved. The camera rig was made up by three cameras, all
pointing forwards. One camera was centered, and the two others were positioned on
edge on each side of the vehicle. Both side cameras left and right was originally used
for stereo recording and recorded images in grayscale. The data were saved with the
help of Robot Operating System (ROS), which saved all data into ROS-bags, including
the associated steering angles. Combined, all ROS-bags occupied a total of 2.5 TB. All
images captured by the front facing center camera was saved in BAYER format. By
using this format, the size of an image was stored in one-third of its original size [24].
These ROS-bags were opened and read with ROS, rosbag, CvBridge, and openCV. Down
below is a code snippet of an example program that reads and saves frames from the
’/camera/center’ topic. The other topics used in this project were ’/camera/stereo_left’,
’/camera/stereo_right’, ’/lidar_sweeps’, and ’/olav/vehicle_measurements’.

import rosbag

import cv2

from cv_bridge import CvBridge

filenm =�test.bag�

bag = rosbag.Bag(filenm)

i=0

img = []

for topic , msg , t in bag.read_messages(topics=[�/camera/center �]):

img = CvBridge ().imgmsg_to_cv2(msg , desired_encoding="passthrough")

cv_image_rgb = cv2.cvtColor(img , cv2.COLOR_BAYER_RG2RGB_EA)

cv2.imwrite(�img_%s.png� % i , cv_image_rgb)

i=i+1
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3.2.1 Dataset for steering angle network

All data saved in each rosbag were saved with timestamps in nanoseconds. The
recording rate was 6 Hz for the cameras, 10 Hz for the LiDAR and 50 Hz for the
steering angle sensor, but the timestamps were not synced. This is expected due to
minor delays in di�erent processes of hardware and ROS. Therefore, a script was made
that would pick out the timestamp of a data and �nd the timestamp for a steering
angle that would be closest to it in time. The script gathered data from the rosbags as
explained in the previous section, and saved camera images, LiDAR data, and steering
angle labels in folders. To ensure that the dataset only contained data collected from
a moving vehicle, all data recorded when the vehicle had a ground speed below one
kilometer per hour was discarded. When playing back camera frames one could from
time to tome observe the vehicle stopping or parking. Data from a stationary vehicle
would pollute the dataset which is only meant to contain data of a moving vehicle
operated by a human.

Figure 3.1: Before and after applying hot encoding on the camera images.

It was decided to convert all image frames taken by the center camera and converting
them to grayscale. This was to match the left and right camera so images taken by
all three cameras could be used in the same neural network, interchangeably. Next,
all image frames were colored by using hot encoding. Coloring was done to make
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sure that the data would �t the pre-trained net used later in this chapter. Figure 3.1
illustrates this colorization. This tripled the size of the dataset. Additionally, steering
angles belonging to the left or right camera was modi�ed so the steering angle would
tilt towards the center of the road. The idea was to learn the model to keep the vehicle
centered, comparable to what [1] did. All image frames were resized to take up less
space and �t the CNN. All camera images were divided up into a training set and a test
set where the test set made up 20 %. LiDAR data collected from the rosbags were at
�rst of shape (32,723,2), height, width, and the last dimension represent distance and
intensity. To get it to �t the input of the CNN, the LiDAR data frames were reshaped
with TensorFlow’s resize bilinear function to (32,224,2). The �rst channel, representing
distance, was duplicated and placed as the third channel. The �nal shape of all LiDAR
data where (32,224,3). The data frames were then divided up into a training set and a
test set where the test set made up 20 %.

Figure 3.2: Samples from the LiDAR dataset where pixels in the left �gure represent the
distances to the environment, and the pixels in the right represent re�ection intensity.

For fastest possible data handling and pipeline, TFrecord was used. That is a feature
of TensorFlow that makes data into binary �les, which can be fed directly into the
GPU. This enhances the training speed since the CPU no longer have to handle all
data before feeding it to the model. Two datasets were made with TFrecord �les. One
was made from the camera images, and the other one was made from the LiDAR data,
each with 142,013 samples and both with synchronized steering angles.
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Table 3.1: Dataset for steering angle network

Training Testing Total
Camera images 113,613 28,400 142,013
LiDAR data 113,613 28,400 142,013

3.2.2 Labeling data for segmentation network

For the segmentation network, 500 RGB color images of dirt road were prepared. The
images were handpicked from di�erent rosbags to match the expected environment
the system most likely is meant to be used in. The intention was to collect a variety
of non-asphalt roads in di�erent conditions and with di�erent degree of turns on the
road in the image.

Labeling data for the segmentation network was a time-consuming job. A program
with a user interface was written to speed up the dataset production, and at the same
time make each label as accurate as possible. The program took each of the 500 original
images, one by one, and presented them to the user. By using grabCut, an algorithm
for foreground extraction [25], one could easier segment road and non-road. After the
algorithm was done cutting out the road in the image one could use drawing tools to
�ne-touch and �nalize the image and correct the inaccuracy of grabCut. When done,
the dataset would consist of a folder of the original images, and another folder with
the label images. All label images in this folder would have binary color, white for
road or black for not road. Figure 3.3 illustrate an original image meant to be fed into
the segmentation network, and label image meant to be used by the loss function to
train the network.

Table 3.2: Dataset for segmentation network

Training Testing Total
FFI 400 100 500
KITTI 398 200 598
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Figure 3.3: The original RGB color image to the left, and the associated two-class label
image to the right.

3.2.3 Existing datasets

In Section 3.4 the segmentation network is presented. To extend the self-made dataset,
the KITTI dataset by Karlsruhe Institute of Technology was included. It consists of
398 training images and 200 test images taken from a city and highway environment
[26]. The labels contain multiple classes of segmented objects and areas, but it is only
the road label and background (non-road) which is of this thesis’ interest. Another
dataset used, here indirectly, was the ImageNet from the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) 2015. When the VGG-16 model used in Section 3.3
and 3.4 were downloaded, they were pre-trained on ImageNet. They were downloaded
pre-trained from TensorFlow’s model library 3. The dataset contains images of 1000
di�erent classes used in image classi�cation tasks. The pre-trained model has adapted
features like edges, colors, and shapes which can give the networks in this thesis a
head start when training on their own dataset. This is called transfer learning.

3Download source: https://github.com/tensorflow/models/tree/master/research/slim

https://github.com/tensorflow/models/tree/master/research/slim


24 CHAPTER 3. METHODOLOGY

3.3 Training steering angle network

This section deals with the steering angle network which is built using the end-to-end
approach. It handles both camera images and LiDAR data as input and maps it to
a steering angle. It consists of two subnetworks, one for the camera images, and
one for the LiDAR data. In the �rst following subsection, the camera subnetwork
is covered, followed by a subsection about the LiDAR subnetwork. In the �nal
subsection, the two subnetworks are fused into the full model which handles both
inputs parallel. The two subnetworks, camera network, and LiDAR network were
�rst trained individually. When training the subnetworks, both camera images and
LiDAR data had the same timestamp. This eliminates the environmental di�erences
in the two datasets. The TensorFlow software provided by Warakagoda was used as
a starting point for developing the steering angle networks. It was initially used for
classi�cation tasks and had to be modi�ed to �t this problem.

As mentioned in Chapter 2, steering angle prediction with CNNs has shown e�ective
[1, 2, 3]. By using camera images combined with LiDAR data, the objective was to
enhance the performance compared to single data networks. Camera images provide
patterns and colors, while LiDAR provide depth and object understanding to the model.
Here, both data types use its own CNN to extract features before they are fused together
for prediction of the correct steering angle. The two prior CNNs are from now on
named subnetworks. Figure 3.4 illustrate the principle behind this idea. Ultimately,
the goal is to enable the vehicle to drive by itself by looking at the road ahead, without
explicit lane detection nor path controllers. Doing this on a dirt road or trail is assumed
to be a challenge. Unlike with asphalt roads, colors on the ground on dirt roads and
trails do not have a clearly de�ned meaning. Slopes frequently change, and roads are
not level. The model is trained by using supervised learning, cloning of human car
maneuvering, collected in the datasets presented in section 3.2.
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Figure 3.4: Overview of the steering angle prediction model. Camera and LiDAR frames
are each fed through a CNN subnetwork before fused together to predict the steering
angle. These subnetworks are called camera subnetwork and LiDAR subnetwork.

3.3.1 Training camera subnetwork

The camera subnetwork was �rst trained by itself, isolated from the rest of the system.
The subnetwork was fed with images recorded by the three forward facing cameras
which are placed on the roof of the UGV. The grayscale images are color mapped with
a hot encoder. More information about this dataset can be found in Chapter 2, Section
3.2.1. Samples from this dataset taken by the front-facing cameras can be seen in
Figure 3.7. Each image in 3.7 has a tag with the corresponding steering angle. The goal
was to predict the steering angle of similar samples as accurate as possible. As seen in
the samples, the subnetwork has to handle di�erent conditions such as changing light
and soil type.

Architecture

Since similar work have used fully connected layers [1, 2], the �rst experiment
also included fully connected layers in the last part of the subnetwork. The �rst
experimental architecture was inspired by Nvidia [1] and used a pre-trained VGG-16
model for extraction followed by three fully connected layers. The model started out
with the Adam optimizer and the MSE as loss function. However, during testing and



26 CHAPTER 3. METHODOLOGY

(a) 1.06 (b) �0.47 (c) �5.11

Figure 3.5: Di�erent prepossessed samples from the training set showing variations
in weather and lighting conditions, terrain, and soil. The value under each sample
indicate it’s corresponding steering angle value. Positive values represent a left turn,
and negative a right turn.

experimentation, a better result was achieved using the standard Momentum optimizer.
After several unsatisfactory trainings with this the architecture it was changed to
the to the architecture presented by [5]. The training convergence improved when
comparing the �rst model with the new model. After this small experiment, it was
decided to use the model presented in [5] as a base for the camera subnetwork. The
�rst part of the steering angle model was built from a pre-trained VGG-16 architecture.
Transfer learning was used to get faster convergence towards acceptable loss values.
All layers up to the forth max pool layer of the VGG-16 model was used. Following
this is the new prediction section of the model, adapted from [5]. This new section
was later connected with the �fth max pool layer, which included three additional
convolutional layers. Using these additional layers resulted in a loss drop of 50 %. The
�nal architecture can be found in Table 3.4. It is divided into an upper section made by
the pre-trained VGG-16, and the lower section called the predictor part.

An attempt was made to implement ELU for faster learning in the predictor part of the
model [21]. It proved di�cult to observe a distinct improvement in loss convergence.
Tests showed that the �nal loss was indistinguishable from a model only using ReLU.
Since the pre-trained VGG-16 section of the model already uses ReLU, it was not
possible to experiment with other activation functions there. In the end, ReLU was
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implemented in the last layers as well, so not to mix activation functions within the
model. The ReLUs activation function illustrated as blue in Figure 3.6, may result in
dying neurons, however, through testing and experimentation ReLU turned out to
provide an acceptable result. The last output layer of the model presented in [5] used
a tanh activation function. All three activation functions are plotted in Figure 3.6. The
model presented here does not include an activation function in the �nal layer to avoid
the predicted steering angle to be bounded by the range of the activation function. To
sum up, all activation functions are ReLU except the last node where it is linear.

The model was implemented with two regularization techniques to prevent over�tting.
The �rst regularization technique usedwasweight decay, also known asL2 regularization.
The L2 parameter was set to 4e � 5, The second is batch normalization. Since the

Figure 3.6: Comparison between ELU, ReLU and Tanh. ReLUwhere used in the steering
angle model. Tanh where used as output activation function in [3].
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target label is standardized and input images are normalized, batch normalization was
implemented after all convolutional layers in the last prediction part of the model.
Unfortunately, VGG-16 was created before batch normalization [6, 7]. This means that
batch normalization layers could not be added in the upper, and already pre-trained,
VGG-16 section of the model.

Data handling and tuning

The images were collected from the TFrecord �les and randomly shu�ed before
prepossessed and fed into the network. The input images were normalized from 0 to 1,
as mentioned in Section 3.2, to �t the ReLU activation functions. During training, both
training loss and validation loss were plotted to determine easier which parameters to
tune. One could also observe the validation curve to �nd a suitable number of epochs.
The �nal hyperparameters are listed in Table 3.3. When training on the full dataset a
batch size of 20 was used. Bigger batch size was preferable because training is faster,
but experimentations were limited by GPU resources. Learning rate was �rst set to
1e � 4 but triggered a loss of nan because of exploding weights. 1e � 6 proved slightly
too small. 1e � 5 was therefore chosen as the �nal learning rate.

Table 3.3: Hyper parameters steering angle network

Batch size Learning rate Epochs L2Re�.

20 1e-5 100 0.00004

3.3.2 Training LiDAR subnetwork

The LiDAR subnetwork was �rst trained by itself, isolated from the rest of the system.
The subnetwork was fed data recorded by the LiDAR sensor on the roof of the UGV.
The �rst channel of the LiDAR frame, which represent the distances to the objects,
where duplicated and stacked behind the two �rst channels to �t the input shape of the
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Table 3.4: Subnetwork used in steering angle network. This architecture were used by
the camera subnetwork, and the LiDAR subnetwork. The line separates the pre-trained
VGG-16 and the new predictor section. (a) indicates the only di�erence between the
two subnetworks. (b) indicates the fusion network input.

Layer type Features Kernel Strides Activation
Conv2D 64 3x3 1x1 ReLU
Conv2D 64 3x3 1x1 ReLU
MaxPool2D - 2x2 2x2 -
Conv2D 128 3x3 1x1 ReLU
Conv2D 128 3x3 1x1 ReLU
MaxPool2D - 2x2 2x2 -

VGG-16 Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
MaxPool2D - 2x2 2x2 -
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
MaxPool2D - 2x2 2x2 -
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
MaxPool2D - 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
Batch Norm. - - - -
Conv2D 128 3x3 1x1 ReLU
Batch Norm. - - - -
Conv2D 256 3x3 1x1 ReLU
Batch Norm. - - - -
MaxPool2D - 2x2 2x2 - ← (a)

Predictor Conv2D 128 3x3 1x1 ReLU
Batch Norm. - - - -
MaxPool2D - 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
Batch Norm. - - - -
Conv2D 512 4x4 1x1 ReLU ← (b)
Batch Norm. - - - -
Conv2D 1 1x1 1x1 Linear
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model. More information about this dataset can be found in Section 3.2.1. An example
of LiDAR data is illustrated in Figure 3.2.

Architecture

The network architecture used for the LiDAR subnetwork was almost identical to the
model used by the camera subnetwork covered in the preceding section, Section 3.3.1.
This means that Table 3.4 also applies to this model. The di�erence was that the max
pool stride was increased to (4,4) in the last max pooling layer marked (a), this was to
decrease training time, and reduce the risk of over�tting. Just like regular RGB color
images is the LiDAR data built up by a 3-D array of width, height, and depth. Since the
camera subnetwork achieved satisfactory results with its architecture, it was adopted
for the LiDAR subnetwork. In contrast to [3] is the LiDAR data handled as regular
images in the CNN.

Data handling and tuning

Similar to the camera subnetwork, where also the LiDAR data for the LiDAR subnetwork
normalized. Similarly, these were collected from TFRecord �les and randomly shu�ed
before trained on. The LiDAR data used to train this network had the same timestamp
as the camera images used to train the camera subnetwork. The hyperparameters were
set to the same as it was for the camera subnetwork, see Table 3.3. Since reasonable
parameters were found in the camera subnetwork, and theyworked on this subnetwork,
the hyperparameters were kept as is for simplicity. No further tuning was done.

3.3.3 Training fusion network

The subnetworks were �rst trained separately, isolated from the rest of the system.
The two matching datasets with synchronized timestamps, camera images, and LiDAR
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data, were simultaneously fed into the two inputs of the full steering angle network in
an attempt to improve the results.

Architecture

The two subnetworks were kept as is all the way down to the second last convolutional
layer marked as (b) in Table 3.4. The output of the camera subnetwork was a feature
vector of size 2078, and the output of the LiDAR subnetwork was of size 1024, a total
of 3072. These were then concatenated and fed to a fully connected layer of 100 nodes
before ending up in the last single linear output node.

Data handling and tuning

During training of the full steering angle network the subnetworks where frozen,
meaning they could not be trained further. The only trainable parameters where the
new fully connected layers fusing the two subnetworks together. Camera images
and LiDAR data used to train the two subnetworks, with the same timestamp, were
collected from the TFRecords �les. The data was pushed through the network in with
the same batch size as for the two subnetworks. It was trained for 100 epochs, where
the 50th epoch achieved the highest score. The fully connected layer and the output
node were smaller than the subnetworks and needed fewer epochs of training. It was
trained as the two subnetworks, with the same optimizer, weight decay, learning rate
and, batch size.

3.4 Training segmentation network

This chapter deals with the segmentation network isolated from the rest of the system.
A brief introduction to the theory is described in the background chapter, section 2.3.
The TensorFlow script used in this part of the project was adopted from gitHub and
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later modi�ed. This is mentioned in Section 1.3

The architecture in segmentation network is based on the work of [13], using FCN
for semantic segmentation. [12] used FCN on road segmentation using DL techniques
in their Multinet model, which is what this segmentation task is aiming for. Using
relatively few training images (289), they manage to accurately segment the road
from the rest of the environment. The goal of this segmentation network was not to
achieve highest possible score on the test set, but rather get a descent segmentation
result which could be used to research the possibilities of a path veri�cation. This
experimental technique is covered in Section 3.5. The challenge in this project was to
segment a dirt road from the environment, which can be hard because of the slightness
of a distinct di�erence between road and not-road. Figure 3.7 illustrates four randomly
selected samples the model was trained on. The model has to tolerate di�erent weather
and lighting conditions, terrain, and soil.

(a) (b)

(c) (d)

Figure 3.7: The model has to tolerate di�erent weather and lighting conditions, terrain,
and soil. Four di�erent samples showing these variations.
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Architecture

The FCN model adopted from gitHub was modi�ed to �t the current task. This
involved changing feature maps in skip layers to �t two classes, one for the road, and
one for non-road, among other smaller modi�cations. It consists of a VGG-16 with
15 convolutions and three skip layers which de-convolutes the images back up to its
original input size. The architecture is identical to the model presented in Figure 2.3.
The input of the segmentation network where RGB color images with shape (224, 224,
3) taken from the center front facing camera of the vehicle. The output consists of
feature maps consisting of two segments where one represent the background and
one the dirt road, the height, and width of the output image are identical to the input
image. The outputs were of shapes (224, 224, 2). For regularization, L2 regularization
was used. Considering the input images not being normalized and L2 being the only
regularization technique, the L2 parameter was set to 1e � 3.

Data handling and tuning

To handle the input data, a generator was created. The input images and associated
label were loaded as PNG-�les directly in this generator. In the generator, the samples
were augmented with a slight color adjustment to replicate possible camera settings
and light conditions. The generator would also 50 % �ip the images horizontally to
arti�cially increase the dataset. The 400 self-labeled training images of dirt roads
were all slightly augmented. Some time was spent �ne-tuning the data augmentation
function, which would maximize the data set and help prevent over�tting. After
viewing the 400 training images, it was decided to augment them with colors to
replicate the various color conditions cause by weather and light. They were also
augmented to replicate the color diversity caused by the camera settings of the camera
pointing on the road ahead. The colored input images were therefore augmented with
Gaussian noise, brightness, hue, and saturation. These augmentations did only change
the images within what one can call a reasonable range, all augmented images still
looked natural.
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Training the segmentation model proved to be fast since it is only constructed of
convolutional layers and handles low-resolution input images. Using the hyperparameters
listed in 3.5 and the workstation described in Section 3.1.1, one training would take
about 30 minutes. Therefore, one could e�ciently optimize the hyperparameters by
tuning and testing rapidly. Especially the fast forward iterations were one of the
reasons for choosing the FCN architecture. It is fast enough to handle real-time image
inputs [12]. The segmentation network was �rst trained on the KITTI dataset and later
trained on the dirt road dataset. The idea was to reduce the amount of self-labeled
images needed for segmentation, and overall increase the total amount of training data.

[13] used a batch size of 20, while [12] (Multinet) used a batch size of one. A batch
size of 20 were chosen for this segmentation network as it was big enough to reduce
noise produced by outliers. The learning rate ended up being 1e � 5, just like Multinet.
1e � 4 proved to be too big, and 1e � 6 too small.

Table 3.5: Hyper parameters for segmentation network

Batch size Learning rate Epochs L2 Reg.
20 1e-5 40 � : 1e � 3

3.5 Path veri�cation

In this chapter, an experimental path veri�cation technique is presented. The segmented
image made from the segmentation model from Section 3.4 is used together with the
steering angle from Section 3.3 to verify the local path ahead of the vehicle. The
technique presented in this thesis is named path veri�cation. During the research and
testing of this technique, another steering angle prediction approach was formed. This
was inspired by the Udacity self-driving car program [27] and is given in Appendix B.
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The steering angle prediction approach was purely experimental and was only a
realization of the idea to demonstrate its feasibility.

3.5.1 Pipeline

The model from the previous section (Section 3.4) returns a prediction of the segmented
road. See Figure 3.8a. The binary version of this image is then processed further using
computer vision techniques. It is smoothed to get rid of standalone pixels and sharp
edges. Next, the perspective transformation is applied which is illustrated in Figure 3.8b.
This gives a birds-eye view of the road ahead which makes it easier to apply and extract
information from the segmented road. The path veri�cation draws the steering angle
from Section 3.3 directly on top of the perspective transformed segmented binary
image as illustrated in Figure 3.8c and 3.8d. These �gures are meant to demonstrate
the idea, and are only imaginative. Considering this technique was for made for an
experimental purpose can some parts of this be inaccurate, but accurate enough to
demonstrate the idea. This applies to the lack of correction for lens distortion and
perspective transformation.

Since the steering angle network outputs a single scalar for each input frame independently
from other frames, the steering angle is drawn linearly in its current state. If the drawn
predicted steering angle would fall outside the segmented area, it would indicate a
poorly predicted steering angle. To adjust the strictness of the path veri�cation, the
range of the veri�cation can be moved closer or fuhrer way from the vehicle. The
veri�cation only veri�es the path up to this threshold and ignores the veri�cation
beyond this point. As seen in Figure 3.8a, the segmentation continues further up the
dirt road, while only a certain distance ahead is used to verify the path. The threshold
distance is meant to change dynamically depending on the speed of the vehicle. If
the threshold is closer to the vehicle, the path veri�cation is less strict, and if it is far
up ahead, it is stricter. In this experimental test, it was set to a constant threshold
for the simplicity to demonstrate the possibilities of path veri�cation. Figure 3.8c
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portrays a hypothetical veri�cation that passes the test, while Figure 3.8d portrays
a veri�cation that fails. The intention of path veri�cation is that this could be used
to adjust the current steering angle to fall back into a safe path. By combining the
results from each network, the idea is that using two DL techniques could potentially
be used to enhance the overall performance of the system. The di�erence between
each predicted steering angle used in the veri�cation and its actual target is compared
to the outcome of the path veri�cation. This is to evaluate the path veri�cation. If
the distance between a predicted steering angle and the true steering angle were less
than six degrees, and at the same time the path is within the associated segmented
image, it would be considered successful. So by comparing the result from the test set

(a) (b)

(c) (d)

Figure 3.8: Original image with predicted segmentation overlay (a). Binary image of
predicted segmented area with birds-eye transformation (b). The predicted steering
angle is within the acceptable area (c). The predicted steering angle is outside the
acceptable area (d).
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of the steering angle network with the result of the path veri�cation, it can indicate
the performance of the path veri�cation.

3.5.2 Veri�cation test

A dataset of 270 new samples was sent through the full network from the two
previous sections. Included in the dataset were also the associated target label. The
multi-input steering angle network predicted the steering angles for each sample,
and the segmentation network segmented out the dirt road on each of them. Each
segmented imagewith its associated predicted steering angle were then pushed through
the path veri�cation. The veri�cation returned a list of booleans which indicates if the
steering angle fell outside of the segmented area or inside. This list, containing 270
elements, were then compared to a list containing booleans from the steering angle
network. A boolean would indicate if the predicated steering angle were within or
outside of the six-degree range.
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Chapter 4

Results and conclusion

4.1 Results

4.1.1 Steering angle network

The steering angle network was as mentioned made up by two subnetworks, one that
handled camera images, and another that handled LiDAR data. The two subnetworks
were each trained and tested individually before they were fused together and trained
and tested again. The same data were used for testing, and the timestamp was
synchronized across datatypes. All three trainings used a batch size of 40 over 100
epochs where the best epoch was kept. The networks were trained with MSE, but to
evaluate the performance, normalized RMSE was used. This was used in [9], and makes
it possible to compare results with their benchmark table. The camera subnetwork
scored a RMSE of 0.2244 on the test set. This was slightly higher than the LiDAR
subnetwork which scored 0.2236. The fused network, with both camera images and
LiDAR data as input, scored 0.1926. Two prediction samples from the test set can be
seen in Figure 4.1, where (a) obtained the lowest MSE score, and (b) the highest. The

39
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training and validation losses for the three networks are plotted in Figure 4.2, 4.3 and
4.4. They visualize the training using MSE pr. epoch.

(a) MSE: 3.57e � 5 (b) MSE: 33.45

Figure 4.1: Two predictions done by the steering angle network. (a) is showing an
accurate prediction, and (b) showing an inaccurate prediction.
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Figure 4.2: Training loss and veri�cation loss for the camera subnetwork
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Figure 4.3: Training loss and veri�cation loss for the LiDAR subnetwork
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Figure 4.4: Training loss and veri�cation loss for the steering angle network
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4.1.2 Segmentation network

As mentioned earlier, the point of segmenting was to reach an acceptable level to
illustrate the path veri�cation technique in Section 3.5. The performance was measured
quantitatively using the AP described in 2.3.1. The segmentation network scored an
AP of 89.11 % on our test set, while Multinet scored 93.51 % on its. The main propose
of this comparison is to give an impression of the results achieved. Note that there was
a slight di�erence between AP formulas used, this is covered in Section 2.3.1. Figure
4.5 are four sample frames taken from the test set. The green overlay is the predicted
road segmentation. Figure 4.5a and 4.5b represent two image frames with an accurate
prediction overlay, both with a score over 90 % AP. The model handles shadows as
seen in Figure 4.5a, and also up-coming curves further up the road as seen in 4.5b.
Figure 4.5c and 4.5d are examples of less accurate results which can occur when the
ground is covered in grass.

4.1.3 Path veri�cation

A dataset of 270 samples was used to test the path veri�cation technique. Of the 270
images, 225 passed the path veri�cation meaning the path laid within the segmented
area 83.33 % of the time. None of the predicted steering angles were more than
6-degrees o� from their target value. The 45 samples that failed the test had a steering
angle outside the segmented road.

4.2 Discussion

4.2.1 Steering angle model

The results from the tests proved that in a dirt road environment, a multi-input
end-to-end network using camera and LiDAR could outperform a single-input end-to-end
network, whether it is using camera images or LiDAR data. This �nding is comparable



4.2. DISCUSSION 43

(a) Shadow on road (AP: 93.6) (b) Turn far up ahead (AP: 90.4)

(c) Wide road (AP: 79.4) (d) Overgrown trail (AP: 79.1)

Figure 4.5: Samples showing less accurate segmentation

to what [3] found, who used a similar approach but on public roads. This indicates that
multi-input networks handle the massive amount of data, and manages to exceed the
prediction results from single-input networks, also on dirt roads. Both subnetworks
extract information the other one does not have, and the last fully connected layers
map these right to enhance the performance. LiDAR data also proved to perform
slightly better than camera images. Neural networks are challenging to analyze, but
an explanation could be the chaotic information in camera images compared to LiDAR
data. The camera sensor picks up millions of details, while LiDAR has fewer pixels per
meter and only captures the essential, the drivable area. On the contrary, the images
used in this project only had 1-channel, and RGB camera images might give a di�erent
result.
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When comparing the loss plots from the camera subnetwork, Figure 4.2, and LiDAR
subnetwork, Figure 4.3, one can see a higher di�erence between the training and
validation loss on the camera subnetwork, than on the LiDAR subnetwork. The LiDAR
subnetwork has a more signi�cant loss drop than the camera subnetwork. The reason
for the di�erent loss convergences between these two subnetworks can be explained by
the di�erent data input and the slight di�erence in architecture. As seen on Figure 4.4,
the loss of the steering angle network stabilizes after about 10 epochs. This can indicate
that the last fully connected layers have reached its global or local minima, given the
input from the two subnetworks.

The goal of this project was not developing the best possible result compared to other
papers, but comparing the results of this experiment indicates how well multi-input
networks perform in contrast to single-input. The steering angle network presented
here scored lower than other papers. Nvidia [1] did not presented their RMSE result
in their work, but from [9] it was found to be 0.1604. Camera and LiDAR alone scored
respectively 0.2244 and 0.2236, while the fused steering angle network scored 0.1926.
This shows a noticeable drop when combining sensors. Performance can possibly be
improved to some degree with further tuning and more epochs, however, this was a
di�cult environment to train on. Imbalanced and unsymmetrical training data are
also factors that have an unwanted e�ect on the testing. The steering angle model has
mostly been exposed to straight forward driving. This is visualized in Figure 4.6 where
one can see that the majority of the training set consist of steering angles less than 3
degrees left and right. This may mean that the model is overstimulated on forward
driving, and it is predicting statistically more forward driving than there really is. A
dataset with more turns would be advantageous. Unsymmetrical training data was
also an issue [5] discovered to a�ect the results. The red line in Figure 4.6 indicates
the mean of the training set which is slightly o� set to to the left (positive steering
angles imply left turns). This will give a prediction mean slightly to the left of the
center. This could have been avoided by �ipping images of right turns horizontally.
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Figure 4.6: Visualization of steering angle distribution. Red line illustrates the mean.

In addition, if the multi-input network is trained correctly, it can withstand sensor
failure where one sensor can do the work on behalf of both sensor [28]. This will give a
more robust system in the form of hardware redundancy, along with better resistance
to sensor noise like sun �air, rain, snow, and re�ections.

4.2.2 Segmentation model

Segmentation of dirt road proved to be possible and accurate enough to be used for
path veri�cation. As seen in Figure 4.5c and 4.5d, the network is capable of accurately
segmenting the drivable area, which then can be used for path veri�cation. Accuracy at
this level requires a dirt road without grass on, aside from that, the network segments
most of the drivable dirt road from the environment. When the ground is covered
in grass and leaves the model has problems segmenting correct, even if it is in the
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normal drivable area. This may explain the patch of false negative in the center of
Figure 4.5d, which can indicate that the network recognizes grass as something that is
generally classi�ed as non-road. Figure 4.5d illustrates another outcome where the
road is wider than normal, and the model cannot �nd the expected road shoulder. A
video demonstrating the segmentation network on a test set can be found in the link
below1. In the video, the FCN was given new images in a wet environment which it
never was trained on, and then segments the dirt road from the environment.

The data used when training and testing the segmentation model were hand-picked.
This was to get samples that would �t the expected location of the future UGV. By
doing this, the randomness of the dataset dissipates. It is di�cult to �nd suitable data
and at the same time preserve the natural aspect of the dataset. Apart from that, the
results proved to be acceptable for the purpose of this task. The segmentation model
showed that it was capable of producing results acceptable for the path veri�cation
pipeline. In addition, it is di�cult to de�ne how accurate a segmentation has to be to
be used by path veri�cation.

4.2.3 Path veri�cation

When analyzing the path veri�cation technique, it indicated that it is possible to
perform a path veri�cation. This is mainly thanks to the segmentation network which
for the most part was able to return segmentations of the full road without holes in it.
However, in the test set of 270 samples, the target steering angles were unusually small.
The biggest steering angle found in the dataset were 0.45 degrees o� zero. So when
running the test set through the path veri�cation, the steering angles would appear
almost just as vertical lines. Two veri�cations are visualized in Figure 4.7 showing
how the steering angle would appear in all 270 cases. It is not sure why the steering
angles from this test set were so small, but it could be an error in the sensor monitoring
the steering angle, or an error in the script that collected them from the rosbag. The

1Video source: https://youtu.be/3p7PlDdpOqw

https://youtu.be/3p7PlDdpOqw
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overall result of the path veri�cation was 83.33 % which would have been higher if the
correct steering angle were applied. The relatively high score caused by notably more
open spaces than regular narrow dirt roads with turns. The video mentioned in the
last section is a visualization of the segmentation done on the 270 test images.

(a) (b)

Figure 4.7: Two samples from the test set to visualize the path veri�cation. (a) was a
sample that passed the veri�cation, while (b) did not. An error in the test set causes
the all steering angles to be close to 0 degrees.

The approach used in this project for path veri�cation is debatable, and the technique
does have some drawbacks andweak spots. To ensure a correct perspective transformation
(birds-eye view) the road ahead has to be a plane. This is rarely the case on dirt-roads.
On public roads and especially highways, the level di�erence between the vehicle
and a few meters ahead of the vehicle is minimal. Another negative impact of the
performance of the path veri�cation is the processing of inaccurate segmented images.
When the steering angle is drawn on the image, it requires a segmented image of the
full road. From road shoulder to road shoulder, and from the bumper and all the way up
to the threshold. False positive predictions from the path veri�cation can be hazardous.
If the system falsely approves a path where it actually is not, the vehicle can potentially
crash and harm people. The path veri�cation does need further development to be
used in real applications. For example, one can experiment with a curved path instead
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of linear, or other completely di�erent approaches using the segmented image and
the predicted steering angle. Nevertheless, the thesis presents a proof-of-concept
idea for path veri�cation, which indicates possibilities for veri�cation of paths using
segmentation and steering angle.

4.3 Future work

Getting a car to drive autonomously, especially on overgrown dirt roads, is a complex
task. Suggestions mention in the discussion will improve the performance of this
system, but there are still pieces missing before this end-to-end approach is capable
of driving in such an environment. This system is meant to be implemented in a
UGV. To do this the software needs an interface to communicate the UGV used
by FFI. Although the end-to-end approach handles all of the local path planing,
there still has to be other sensors for detecting special incidents. A controller is
also necessary to handle these incidents and enforcing actions parallel to end-to-end
module. Sudden and unpredictable incidents an autonomous UGV can encounter are
many. People and animals can all of the sudden enter the path ahead of the vehicle.
Other vehicles may also cut o� the UGV from the side. The UGV also needs to an
emergency sensor to verify a clear path ahead of the vehicle. There has been done
research on reinforcement learning approaches for handling complex tasks like these
[29]. A vehicle has to take decisions in a chaotic environment, and modern cars have
several sensors which can help understand the situation. Deep reinforcement learning
together with convolutional networks can help improve actions when unexpected
events happens. Additionally, a route planer is also advantageous, with GPS and
maps for longer route preparations. All these elements have to be processed in a
controller to calculate the steering angle and activate other actions like breaking. Most
of these considerations are unavoidable when the UGV ultimately will travel fully
autonomous.
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4.4 Conclusion

The thesis has demonstrated that in a dirt road environment, multi-input end-to-end
networks using camera and LiDAR could outperform single-input end-to-end networks
using camera or LiDAR alone. This can help improve the local navigation of an
o�-road autonomous UGV. Using multiple sensors in an end-to-end fashion allows for
redundancy where one sensor can take control if the other fails, along with improved
resistance to sensor noise like sun �air, rain, snow, and re�ections. Also, experiments
on the path veri�cation technique presented here indicate that road segmentation
together with the predicted steering angle could possibly be used to verify the local
path of an autonomous o�-road UGV, in some form or another.
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Appendix A

Media attachment

A zip-�le with scripts was uploaded as an attachment with this thesis. This zip-�le
contains scripts used for generating data from the rosbags, building the neural networks,
training them, and testing them.

A.1 Script setup

The scripts were all written for python 3.5. Themainmodules imported in gen_data.py
were openCV, ROS, rosbag. The rest of the scripts use TensorFlow 1.4 with CUDA 8.0.
The datasets were not possible to include as an attachment because of its size.
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A.2 Organization
./Appendix A

/Generate data

gen_data.py

README.txt

/Segmentation network

eval_segm.py

helper.py

main.py

predict.py

README.txt

test.py

/Steering angle network

/deployment

model_deploy.py

model_deploy_test.py

/nets

nets_factory.py

vgg.py

vgg_test.py

/preprocessing

preprocessing_factory.py

vgg_preprocessing.py

infer_fusion_net.py

infer_subnetwork.py

png2tfrecords.py

train_fusion_net.py

train_subnetwork.py

/Verification experiment

README.txt

verification.py



Appendix B

Steering angle prediction from
segmented images

In the Udacity Self-driving Car program, one can learn how to build a pipeline of
computer vision techniques to extract the lanes from an image and use this to calculate
the curvature of the lane [27]. In their course, one assumes a level road ahead of
the vehicle, which it mostly is when driving on public roads. A similar approach is
presented in this experiment, where the recommended steering angle is approximated
using the segmented image from Section 3.4. The segmented binary image is �rst
smoothed, but in contrast to the path veri�cation pipeline in Section 3.5, a canny edge
detection is then used to �nd the road shoulder (see Figure B.2b) [30]. In the same
way, as Udacity uses the lane markings for lane curve approximation, this pipeline
uses the edge of the segmented image. Next, the image is perspectively transformed
to a birds-eye perspective. Finally, a polynomial line is �tted to the edge of each of
the two road shoulders (Figure 3.8d). The curvature of the polynomial lines can then
be used to calculate the lane curvature. With the lane curvature, one can use the axle
distance to calculate the recommended steering angle for the UGV. The geometrical
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principle is illustrated in Figure B.1. Instant Centre of Rotation (ICR) is the center of
which the vehicle rotates around. L is the length between the front and back axle. � is
the steering angle. R is the radius of curvature. Typically on a four-wheel vehicle as
the UGV, the inner front wheel turns sharper than the outer one when turning, this is
called Ackermann steering geometry. The steering angle stored in the dataset is the
average between the two wheels. For the sake of demonstrations, there was no need
for an accurate steering model and the curvature of the turn was calculated by the
simpli�ed model used here. The angled wheel in this �gure represents the average
position the two front wheels on the UGV.

Figure B.1: Illustration of the model used to calculate the radius of curvature to the
vehicle when it is turning.

Through experiments like the one illustrated in �gure B.2, it proved possible to extract
lane curvature from the segmented images. With the lane curvature, one can �nd
the recommended steering angle to the UGV. The segmented image used in Figure
B.2 has a AP score of 90.9 % with a straight edge following the road shoulder. This
is advantageous when the lane curvature pipeline is �tting the polynomial lines.
Throughout the experiments, one could observe which inputs the pipeline would
perform better on. These included segmented images of clearly de�ned dirt roads with
high AP scores. On the contrary, when poorly segmented images were tested, the
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pipelines approximated the lane curvature inaccurately. These images were mostly
segmentations of grassy trails and dirt roads wider than average. The performance
was only qualitatively evaluated using the current steering angle and the di�erences
between the left and right lane curvature. Again, this was purely an experimental test
to demonstrate a possible steering angle prediction technique.

(a) (b)

(c) (d)

Figure B.2: (a) Original image with predicted segmentation overlay. (b) Binary image
of predicted segmented area, smoothed and Canny edge detection. (c) Birds-eye
transformation. (d) Lane curvature approximation.

To sumup, it lays a potential for accurately approximate steering angles from segmented
roads, and in this case even dirt roads. Throughout this experiment, it proved possible
to extract lane curvature from the segmented images, given a typical dirt road where
the soil of the drivable area di�ers from non-drivable areas. As a side note, one could
debate that this method of steering angle prediction, in general, potentially could
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be more e�cient than the end-to-end approach. When predicting with end-to-end
approaches, the neural network has to understand the input, map it, and output a
speci�c continuous value. The segmentation network, which is the only critical part
of the pipeline, has only one simple task.
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