
Mixnets and Verifiable Shuffling

Åshild Bryn Damsgård

Master of Science

Supervisor: Kristian Gjøsteen, IMF

Department of Mathematical Sciences

Submission date: June 2018

Norwegian University of Science and Technology

Summary

In this thesis we consider different mix network protocols. First, we discuss a protocol
called cMix. We describe the concept of verifiable shuffling, that enable mixnodes to
prove that they operate correctly according to the protocol. We present three protocols for
verifiable shuffling a list of encrypted elements, the Naive protocol, the Simple n-shuffle

and the Permutation matrix protocol. The first two make use of the fact that polynomials
remain invariant under permutation of their roots, and the last makes use of a permutation
matrix. We discuss security achieved in all of our protocols, and explain how many expo-
nentiations they require.

Sammendrag

I denne oppgaven ser vi på ulike mix nettverk protokoller. Vi diskuterer først en pro-
tokoll kalt cMix. Vi gir en beskrivelse av konseptet verifiserbar stokking, som gir mu-
lighet for en mixnode å bevise at den følger den aktuelle protokollen korrekt. Vi presen-
terer tre protokoller som gir verifiserbar stokking av en liste med krypterte elementer, den
Naive protokollen, den Simple n-shuffelen og Permutasjonsmatrise protokollen. De første
to benytter seg av det faktum at polynomer er identiske under permutasjon av røttene, mens
den siste benytter seg av en permutasjonsmatrise. Vi diskuterer sikkerheten som oppnås i
alle våre protokoller, samt hvor mange eksponensieringer de krever.

i

Preface

This thesis represents the work of my final semester at NTNU. I would like to give a special
thanks to my supervisor Kristian Gjøsteen. He has been a great source of inspiration, and
given me excellent guidance. There has always been an open door, he has answered all my
silly questions, and explained things in such a way that even I could grasp them.

So many friends have filled the time as student with so much more than studying.
Thanks to all my classmates at ”Matteland”, this years would not have been nearly as
great without you! Thanks to Kristin Asdal and Ellen Johanne Weydahl for proofreading
this thesis. Finally, I would like to thank my family for always believing in me, and giving
me a huge amount of support!

Trondheim, 31.05.2018

Åshild Bryn Damsgård

ii

Contents

Summary i

Preface ii

Table of Contents iv

1 Introduction 1
1.1 Mixnet . 1

1.2 Verifiable shuffling . 2

1.3 Outline of the thesis . 2

2 Theory 5
2.1 Indistinguishability . 5

2.2 Zero knowledge argument . 5

2.2.1 Σ-protocols . 6

2.3 Proof of knowledge . 7

2.3.1 Rewinding . 7

2.4 Commitments . 8

2.5 Assumptions . 9

3 cMix 11
3.1 Construction . 11

3.1.1 Notation . 13

3.1.2 Protocol description . 14

3.2 Security . 17

iii

3.2.1 Insider attack . 19
3.2.2 Tagging attack . 20

3.3 Number of exponentiations . 21

4 Roots of polynomials 23
4.1 The Naive protocol . 24

4.1.1 The Multiplication protocol . 24
4.1.2 The Naive protocol . 28

4.2 Neff‘s shuffle . 32
4.2.1 Iterated logarithmic multiplication proof protocol (ILMPP) 34
4.2.2 The Simple n-shuffle . 38

5 Permutation matrices 41
5.1 Basic ideas . 42

5.1.1 Permutation matrix . 42
5.1.2 Correctness of shuffle . 43
5.1.3 Outline of the Permutation matrix protocol 44
5.1.4 Security of the protocols . 44

5.2 Protocol I . 45
5.3 Proof II . 52
5.4 Protocol III . 55
5.5 Protocol IV . 56
5.6 The Permutation matrix protocol . 58

6 Closing remarks 67

Bibliography 69

iv

Chapter 1
Introduction

The main subject of this work is verifiable shuffling in mix networks. In this chapter we
will give a brief introduction to mixnet, and previous work done in this field of crypto-
graphy. We will then explain the concept of verifiable shuffling. Finally, we give an
overview of the outline of this thesis.

1.1 Mixnet

Mixnets are useful for applications which require anonymity, such as electronic voting. In
these networks we consider a set of users that want to a send message to a set of receivers.
The messages are encrypted by the senders and then relayed by a sequence of trusted
intermediaries, called mixnodes. The mixnodes decrypt and randomly permute a batch
messages. The last mixnode in the sequence outputs a permuted version of the original
input sequence. This process makes it difficult to trace an individual message through
the network [6]. A security aspect of mix networks is unlinkability between sender and
receiver. Unlinkability means that no one is able to relate an output message to a users
input message.

It has been developed a wide range of different mixnet protocols. The first, often re-
ferred to as decryption mixnet, was introduced by Chaum in 1981 [7]. In 1985, Pfitzmann
and Waidner introduced hybrid mixnets which combine asymmetric and symmetric cryp-
tography, and allows messages of arbitrary length [27]. Park, Itoh and Kurosawa were the
first to describe a re-encryption mixnet. In this network each mixnode re-encrypts the in-
put ciphertexts, instead of decrypting, by taking advantage of homomorphic properties of
ElGamal encryption [26]. An offline-online approach of mixnet was introduced by Adida

1

Chapter 1. Introduction

and Wikström in 2007 [1]. Their protocol still requires several public-key operations in
the online phase.

Recently, cMix was introduced as another mix network that makes use of an offline-
online approach. This network was constructed by Chaum, Jevani, Das, Kate, Krasnova
and Ruither in 2016 [6]. In this protocol, the online phase does not require any public-key
operations. The network is claimed by its authors to be secure unless all mixnodes collude.
In this thesis we will give a description of how this protocol is constructed, and discuss the
security it achieves.

1.2 Verifiable shuffling

A huge threat to mixnet is that the mixnodes might be active cheaters, meaning they do
not follow the protocol correctly. Protocols that provide verifiable shuffling, enable the
mixnodes to prove that their output is constructed correctly. This can be proven to the
other mixservers in the protocol, or to any interested independent verifier. This is an
important property of mixnets, hence verifiability of shuffles has received much attention.

There are two main paradigms for proving correctness of a shuffle; one paradigm is
based on polynomials being identical under permutation of their roots, and the other ap-
proach makes use of permutation matrices [18]. In this thesis we will look at two protocols
that belongs to the first paradigm. One of these is a protocol given by Neff [24]. For the
second paradigm we will look at a protocol that was constructed by Furukawa and Sako
[13].

1.3 Outline of the thesis

In this thesis we will first consider the cMix protocol. The protocol receives messages
from a group of senders, the messages are relayed by a sequence of mixnodes, and finally
outputted to the receivers of the messages. Second, we will in Chapter 4 and 5 describe
different protocols that provide verifiable shuffling. We stress that we then only consider
onemixnode, and we explain how the mixnode proves its correctness. Finally, we compare
the security achieved and exponentiations required in our protocols. This thesis is outlined
as follows:

Chapter 2 We describe the theoretical background and notation used in the paper. We
give definitions of zero knowledge, proof of knowledge, and commitment schemes.

Chapter 3 We describe the cMix protocol, and analyze its security.

2

1.3 Outline of the thesis

Chapter 4 We describe the Naive protocol and the Simple n-shuffle by Neff, that are two
verifiable shuffling protocols based on polynomials being identical under permuta-
tion of their roots. We look at the security for both of the protocols.

Chapter 5 We describe the Permutation matrix protocol by Furukawa and Sako, and look
at the security the protocol achieves. This is a verifiable shuffling protocol that
makes use of a permutation matrix.

Chapter 6 We compare and summarize the results from Chapter 3, 4 and 5.

3

Chapter 1. Introduction

4

Chapter 2
Theory

In this chapter we will present the theoretical background that is necessary and relevant for
our protocols. We present notation, definitions and theorems that are used. We will first
give a definition of indistinguishability, and then define the concept of zero knowledge and
proof of knowledge. Further we give a definition of commitment schemes.

2.1 Indistinguishability

We say that two distributions are indistinguishable if it is hard to distinguish them. We
have different levels of indistinguishability, described in the following definition [11]:

Definition 1. Given two distributions X and Y , we say that:

• X and Y are perfectly indistinguishable ifX and Y have the same probability space,

• X and Y are statistically indistinguishable if the statistical distance between them
is negligible. This means that there is a small advantage over a random guess of
which of the distributions that produced an output,

• X and Y are computationally indistinguishable if no algorithm exists that can dis-
tinguish them. This means that it requires a lot of computational power to decide
which of the distributions that produced an output.

2.2 Zero knowledge argument

A zero knowledge argument is an argument where we want to convince a player without
leaking any information out of the transcript. We have given two algorithms, a prover P

5

Chapter 2. Theory

and a verifier V.
We let X be a set, and L a subset of X called the language, L ⊆ X . We let W be a

set of witnesses w, and E a relation such that E ⊆ X ×W . This gives us the following
definition [9]:

Definition 2. We have a two party game (P, V) for a set L between a prover P and a
verifier V. P and V are given public input x, and w is given as private input to P. This is
an interactive proof system if the following are satisfied:

• completeness: For every x ∈ L there exist w such that (x,w) ∈ E,

• soundness: If x 6∈ L, then for any P∗, the verifier accepts with probability at most ε
after interaction with P∗.

We will use the notation V∗ for an honest but curious verifier, and P∗ for a cheating
prover.

Interactive proof protocols can be zero knowledge. This concept was first introduced
by Goldwasser, Micali and Rackoff [15]. Zero knowledge proofs allows P to convince V

that a given statement is true, without revealing any information about the secrets to the
verifier, or anybody else [9]:

Definition 3. The protocol (P, V) is zero knowledge if for any verifier V∗ there exists an
efficient simulator S such that the output construced by S is indistinguishable from the
output constructed by (P, V∗).

The protocol can be perfectly, statistically or computationally zero knowledge depend-
ing on whether the output produced by S is perfectly, statistically or computationally in-
distinguishable from the output produced by (P, V∗).

If we only require the simulator to exist for the honest verifier V, we obtain a signifi-
cantly weaker property called honest verifier zero knowledge:

Definition 4. The protocol (P, V) is honest verifier zero knowledge (HVZK) if there exists
an efficient simulator S such that the output constructed by S is indistinguishable form the
output constructed by (P, V).

2.2.1 Σ-protocols

Σ-protocols are a particular type of three round zero knowledge proofs [10]. First, the
prover sends a commitment α to the verifier. Second, the verifier answers with a random
challenge β. Finally, the prover computes γ and sends the calculated value to the verifier.
Σ-protocols fulfill the following three properties, with public input x [17]:

6

2.3 Proof of knowledge

• Completeness: w is given as private input to P. For every x ∈ L there exist a w such
that (x,w) ∈ E.

• Special soundness: From any x and any pair of accepting transcripts (α, β, γ) and
(α, β′, γ′) where β 6= β′, one can efficiently compute w such that (x, w) ∈ E.

• Special honest verifier zero knowledge (SHVZK): There exists an efficient simula-
tor S, which on input x and challenge β outputs an accepted transcript (α, β, γ)
indistinguishable from a real transcript constcuted by (P, V).

We note that SHVZK implies HVZK, and the special soundness property implies
soundness.

2.3 Proof of knowledge

There are two kinds of interactive proofs: a proof of a mathematical statement, and a proof
of knowledge. A proof of knowledge proves that the prover knows a secret that satisfies a
certain predicate [23]. We let X,L,W and E be defined as above.

An interactive protocol (P, V) is a proof of knowledge if there exists an efficient ex-
tractor Ex with the following property: for every P∗ with non-negligible probability of
making V accept, Ex can use P∗ and output with overwhelming probability w such that
(x, w) ∈ E [20].

Remark that proof of knowledge implies soundness if there exists a witness, since a
proof of knowledge of a witness implies its existence. Special soundness implies proof of
knowledge of the witness.

2.3.1 Rewinding

The concept of rewinding is a common proof technique in cryptography, that for instance
can be used to prove that a protocol is sound. When rewinding is performed an extractor
Ex can make use of P∗ to obtain multiple accepted transcripts. Rewinding in a protocol
that outputs an accepted transcript (α, β, γ) is performed as follows:

1. The protocol starts running as usual, and P∗ outputs α. This state is saved.

2. Ex gives β to P∗.

3. P∗ sends γ as response to Ex. We have obtained an accepted transcript (α, β, γ).

4. Rewind back to after step 1 and before step 2.

7

Chapter 2. Theory

5. Ex gives a new challenge β′ 6= β to P∗.

6. P∗ sends γ′ as response to Ex. We have obtained an accepted transcript (α, β′, γ′).

We stress that the rewinding can be done multiple times. Rewinding requires that we
are able to save states in the protocol, such that we can rewind back to the previously saved
states [28].

2.4 Commitments

Commitments are at the heart of almost any construction of modern cryptography proto-
cols. Making a commitment allows a player in a protocol to choose a value from a set,
and make a commitment to his choice. Once the commitment is made, the player can no
longer change his mind. The player can, but is not queried to, reveal his choice at a later
stage [9].

We letM be a set of messages, andR a set of random numbers. To make a commitment
c to message m ∈M with randomness r ∈ R, we write:

c = commit(m, r)

To open the commitment, the tuple (m, r) is revealed, and the verifier can check if c =

commit(m, r) [18].
There are two essential properties to any commitment scheme:

• Binding property: It should be hard for P to change the chosen value at a later stage.

• Hiding property: It must be hard for V to gain any additional information about the
commitment.

Both of these properties can be either unconditional or computational [9]:

• Unconditional binding: Even with infinite computing power P cannot change his
mind after committing. If P is committed to m using r, there is no pair (m′,r′) such
that commit(m, r) = commit(m′, r′).

• Computational binding: P∗ is an algorithm that outputs two tuples (m,r) and (m′,
r′), where Pr[commit(m, r) = commit(m′, r′)] ≤ ε.

• Unconditional hiding: A commitment to m reveals no information about m, even to
an infinitely powerful V. The distribution of commitments to m is perfectly indis-
tinguishable from the distribution of commitments to m′.

8

2.5 Assumptions

• Computational hiding: A bounded V will have a hard time guessing what is inside
a commitment. This means that the distribution of commitments to m is computa-
tionally indistinguishable from the distribution of commitments to m′.

Remark that at at the most one of the two properties can be unconditional at any time.
In this thesis we use homomorphic commitment as an essential part of of our schemes.

We give the following definition [18]:

Definition 5. A commitment scheme is homomorphic if the following property holds ∀
(m0,m1) ∈M and (r0, r1) ∈ R:

commit(m0 +m1, r0 + r1) = commit(m0, r0)commit(m1, r1)

A similar definition can be given for homomorphic encryption [18]: An encryption
scheme E is homomorphic if the following property holds for messages ∀ (m0,m1) ∈ M
and randomizers (r0, r1) ∈ R: E(m0m1, r0 + r1) = E(m0, r0)E(m1, r1).

Most of the commitments made in the protocols of this thesis will require two expo-
nentiations. To make a commitment to m with randomness r, we write commit(m, r) =

XmY r. For simplicity, we therefore assume that it requires two exponentiations to make a
commitment, unless we want to make a commitment to zero, or the random value is zero.

2.5 Assumptions

The Discrete logarithm assumption and Decisional Diffie-Hellman assumpion are well kn-
own assumptions in cryptography that is often used as a basis to prove different security
aspects. This thesis is not an exception. We will therefore define the assumptions here:

We let G be a cyclic group of order q, where g is a generator. The discrete logarithm
assumption means that given g and y ∈ G, it should be hard to find X ∈ Zq such that
gX = y.

In the Decisional Diffe-Hellman (DDH) assumption r, t and z is chosen at random
from Zq . If the DDH assumption is satisfied it should be hard to distinguish tuples on
form (gr, gt, gz) from (gr, gr, grt) [29].

9

Chapter 2. Theory

10

Chapter 3
cMix

cMix is a mix network that was constructed by Chaum et al. in 2016 [6]. A huge ad-
vantage of this network is that all the computations that require exponentiation are done
in an offline phase, called the precomputation phase. The senders participate only in the
online real-time phase, that is carried out by use of fast multiplication. This lower the
cryptographic latency of the network [6]. Wikström and Adida have also considered an
online-offline approach to mixnets earlier, but their protocol still require several public-key
operations in the online phase [1].

First, we will describe how the protocol is constructed. Our description will closely
follow the description given by Chaum et al. [6]. Further we will analyze the security
of the scheme. It is stated that the protocol achieves unlinkability between sender and
receiver. But as we will see, a security proof of cMix is not written yet.

We stress that we in this chapter consider a mix network that enables a set of senders to
send a message to a set of receivers, through a sequence of multiple mixnodes. In Chapter
4 and Chapter 5 on the other hand, we will consider protocols for verifiable shuffling,
hence these protocols only examine one mixnode.

3.1 Construction

In the cMix protocol we assume we have a set of e senders, (A1, ..., Ae) that want to send
a message through the network to a set of e′ receivers (B1, ..., Be′). The network includes
a sequence of h mixnodes (N1, ..., Nh). The network also include an additional entity
called the network handler that performs non-sensitive computations such as computing
values the mixnodes outputs. A brief overview of the network is given in Figure 3.1.

11

Chapter 3. cMix

Network handler

A1

A2

...

Ae

B1

B2

...

Be′

N1

N2

N3

Nh−1

Nh

· · ·

Figure 3.1: A cMix network with senders (Aj), receivers (Bj) and mixnodes (Ni).

12

3.1 Construction

The users share a secret key with each mixnode. The keys are multiplied with the users
messages, and become the input to the protocol. The output of the protocol is a permuted
version of the original input sequence. The messages are processed in large batches by
the network handler, and we require that all the messages in a batch to have the same size.
We let n be the size of the batch, where n ≤ e. The goal of the protocol is to achieve
unlinkability between senders and receivers, even though all senders and receivers in a
batch are known.

We divide this section in two; first we describe the notation used in the protocol. Then
we give a detailed description of how the protocol is constructed. We will in our construc-
tion only consider the forward path when messages are sent from senders to receivers, and
not the return path.

3.1.1 Notation

Our computations are performed in a cyclic group G of prime order q, where g is a genera-
tor for this group. We assume G satisfies the DDH assumption. G∗ is defined as the set of
non-identity elements in G. The protocol make use of a group homomorphic encryption
scheme written by Balaloh [3], based on ElGamal.

Each mixnode Ni has a decryption share Xi ∈ Z∗q of the secret key. The public key
for encryption can be computed by use of all the secret shares: y =

∏h
i=1 g

Xi . Encryption
and decryption of a message m goes as follows, where C is the ciphertext obtained and r
is a random number from Zq:

• C = (C1, C2) = E(m) = (gr,myr). C1 is called the random component of the
ciphertext, and C2 is called the message component.

• To decrypt (C1, C2) Ni computes a decryption share of C1:

Di(g
r) = g−rXi

All the decryption shares are then multiplied with C2 to receive the message:

h∏
i=1

g−rXimyr = y−rmyr = m

The encryption scheme is homomorphic. This gives us that if we encrypt or decrypt a
vector of values, each value in the vector is encrypted or decrypted individually, and we
achieve a new vector with ciphertexts.

13

Chapter 3. cMix

As mentioned above, the messages are divided into batches of size n by the network
handler. We let a slot denote one of the messages in the batch, hence we have n slots in
the batch. The following notation and values are used in our construction of the protocol:

• πi is a random permutation used by Ni on the n slots in the batch.

• Πi(a) is the composition of all the permutation performed on a value a through i
mixnodes.

Πi =

π1(a) i = 1

πi(Πi−1(a)) 1 < i ≤ h

• ki,j ∈ G∗ is the secret key shared between Ni and sender user of slot j.

• ~ki = (ki,1, ..., ki,n) is a vector with all the shared keys between Ni and senders for
the n slots in the batch.

• Kj ∈ G∗ is the product of all the shared keys for the user that sends slot j, Kj =∏h
i=1 ki,j

• ~K = (K1, ...,Kn) is a vector of the computed products Kj from the users sending
the n slots in the batch. ~K−1 is the inverse vector; ~K−1 = (K−11 , ...,K−1n)

• mj ∈ G∗ is the message sent by user Aj .

• ri,a and ti,a are random values used on slot a by Ni, fleshly generated for each
round: ri,a, ti,a

r← G∗. This gives Ni two vectors of random values for the n slots:
~ri = (ri,1, ..., ri,n) and ~ti = (ti,1, ..., ti,n).

• ~Ri is the product of all the i first local random r values: ~Ri =
∏i
j=1 ~rj .

• Ti is the product and permutation of all the i first local random t values:

~Ti =

~ti i = 1

πi(~Ti−1)× ~ti 1 < i ≤ h

3.1.2 Protocol description

We will now give a detailed description of how the protocol is constructed. As mentioned,
the protocol is divided in two phases, the precomputation phase and the real-time phase.
We also descripe an initial setup phase. The goal in the precomputation phase is to calcu-
late values that later can be used in the real-time phase. Through a number of calculations,

14

3.1 Construction

the association between the sender and receiver is hidden, before the message finally is
delivered to the receiver.

Our protocol involves a network handler. We stress that this entity only performs
calculations that later will become public so he does not learn any secret information. The
computations done by the network handler could be replaced by an additional pass through
the mixnet, but his will reduce the networks latency significantly.

Setup

The mixnodes establish their decryption share Xi, and the public key y is computed. Each
user Aj will individually establish a symmetric key ki,j with each mixnode Ni in the
network. This can be done using any (offline) key distribution method, e.g. by use of
Diffie-Hellman. The mixnodes draw their random values ~ri and ~ti for the n slots.

Precomputation phase

The goal in this phase is to perform the public-key operations that is needed in the real-
time phase. The calculations are done once for each real-time phase. We further divide this
phase in three distinct steps: preprocessing, mixing and postprocessing. An illustration of
the precomputation phase is given in Figure 3.2.

Step 1 - Preprocessing: Mixnode Ni computes E(~ri
−1), and send their calculated vec-

tor to the network handler. The network handler then computes E(~R−1h) =
∏h
i=1 E(~ri

−1).

Step 2 - Mixing: Ni(i = 1, ..., h− 1) computes and sends the following to Ni+1:

E(Πi(~R
−1
h)× ~T−1i) =

π1(E(~R−1h))× E(~t−11) i = 1

πi(E(Πi−1(~R−1h)× ~T−1i−1))× E(~ti
−1

) 1 < i < h

We see that Ni(i = 1, ..., h − 1) use their random permutation πi to permute the
vector they receive, and encrypt their local random values ~t−1i . Nh finally computes:
(~C1, ~C2) = E((Πh(~Rh)× ~Th)−1) = πh(E(Πh−1(~R−1h)× ~T−1h−1))×E(~t−1h). He sends ~C1

to the other mixnodes, and store ~C2 locally for use in the real-time phase.

Step 3 - Postprocessing: Mixnode Ni use their decryption share Xi to decrypt the
vector of random components they received in the previous step; Di(~C1) = ~C−Xi1 . They
publish a commitment to their calculated decryption share.

Real-time phase

In this phase the senders are involved. Aj constructs a blinded message mj ×K−1j . The
blinded messages are the input to the protocol, and they are combinded by the network

15

Chapter 3. cMix

Preprocessing
Add ~R:
E(~ri

−1)

Mixing
Permute and add ~T :
E((
∏h
i=1(~Rh)× ~Ti)

−1)

Postprocessing
Compute decryption share:
Di(~C1)

Precomputation phase

Compute:

E(~R−1)

Network
handler

Figure 3.2: An illustration of the precomputation phase in cMix.

16

3.2 Security

handler to yield the vector ~m× ~K−1 Analogously to the precomputation phase, we separate
the real-time phase in three distinct steps: preprocessing, mixing and postprocessing. An
illustration of the real-time phase is given in Figure 3.3.

Step 1 - Preprocessing: Every mixnode Ni calculates ~ki × ~ri, and sends the resulting
vector to the network handler. The network handler can then compute ~m × ~Rh = ~m ×
~K−1 ×

∏h
i=1

~ki × ~ri, hence the ~K−1 vector is replaced with the random r values of each
mixnode.

Step 2 - Mixing: The goal in this step is to hide the association between senders and
receivers. Ni(i = 1, ..., h− 1) computes and sends the following to Ni+1:

(Πi(~m× ~Rh)× ~Ti) =

π1(~m× ~Rh)× ~t1 i = 1

πi(Πi−1(~m× ~Rh)× ~Ti−1)× ~ti 1 < i < h

We see thatNi(i = 1, ..., h−1) use their random permutation πi to permute the value they
receive, and add their local vector of random values ~ti. Mixnode Nh computes Πh(~m ×
~Rh)× ~Th = πh(Πh−1(~m× ~Rh)× ~Th−1)× ~th. He commits to this vector, and sends his
commitment to the remaining mixnodes.

Step 3 - Postprocessing: When mixnodes Ni(i = 1, ..., h− 1) receive the commitment
from Nh, they send their decryption share Di(~C1) computed in the precomputation phase
to the network handler. The last mixnode computes and send the following to the network
handler: Πh(~m × ~Rh) × ~Th × ~C2 × Dh(~C1). Due to the properties of the encryption
scheme, the network handler can compute:

Πh(~m× ~Rh)× ~Th × ~C2 ×
h∏
i=1

Di(~C1) = Πh(~m× ~Rh)× ~Th × (Πh(~Rn)× ~Th)−1

= Πh(~m)

The network handler outputs Πh(~m), that is a permutation of the input messages.

3.2 Security

Chaum et al. have written a security analysis of the protocol in their paper. They state that
the protocol provides unlinkability for all the n messages in the batch, even if the attacker
compromises all but two users and all but one mixnode. This means that an attacker
cannot map any input message to the corresponding output message [5]. For this reason,
it is reasonable to believe that a possible attack of cMix does not exist. However, a formal
security proof of the protocol is not written. It is possible that the authors of the cMix

17

Chapter 3. cMix

Preprocessing
Replace ~K−1 with ~R:
~ri × ~ki

Mixing
Permute and add ~T :∏h
i=1(~m× ~R)× ~T

Postprocessing
Send decryption share:
Di(~C1)

Network
handler

Compute:

~m × ~K−1

Compute:

~m× ~Rh

Real-time phase

mj × ~Kj
−1

Πh(~m)

Figure 3.3: An illustration of the real-time phase in cMix.

18

3.2 Security

paper have missed something in their security analysis. We can therefore not assure that
the protocol is secure.

We will describe two possible attacks on the protocol that breaks the unlinkability
property of cMix, originally written by Galteland, Mjølsnes and Olimid [14]; an insider

attack and a tagging attack. We explain how these attacks can be prevented. Security
mechanisms that hamper both the attacks are implemented in an updated publication of
the cMix protocol [5].

Chaum et al. introduce an attacker A that can eavesdrop, forward and delete messages
at any point in the protocol, but not modify, replay or inject new messages. They assume
authenticated communication channels among the network handler and the mixnodes, and
among all mixnodes. This means that the communication channels are resistant to tamper-
ing, but not necessarily resistant to overhearing.

3.2.1 Insider attack

We let A be an attacker that compromise mixnode Nh and the network handler. The at-
tacker is then able to cancel all permutations added by the previous mixnodes, and perform
the overall mixing himself. The output of the protocol will be a batch of messages per-
muted by an permutation known by A, and he can easily break the unlinkability of the
protocol.

Construction of the attack

The attack is constructed as follows:

1. In step 2 of the precomputation phase Nh ignores the input he receives from Nh−1,
and chooses its own output. He draws a vector with random values θi

r← Gq ,
(i = 1, ..., n), and let ~θh = (θ1, ..., θn). The mixnode computes the ciphertext
(~C1, ~C2) = πh(E(~Rh)−1 × E(~θ−1h)). He sends ~C1 to the other mixnodes.

2. In step 2 of the real-time phase Nh ignores the input he receives from Nh−1. He
chooses πh(~m×~Rh×~θh) to be his output, instead of πh(Πh−1(~m×~Rh)×~Th−1)×~th.
The mixnodes commits to this, and sends the following to the network handler:
πh(~m× ~Rh × ~θh)× ~C2 ×Dh(~C1).

19

Chapter 3. cMix

3. The network handler computes the output of the protocol:

πh(~m× ~Rh × ~θh)× ~C2 ×
h∏
i=1

Di(~C1) = πh(~m× ~Rh × ~θh)× πh(~R−1h × ~θ
−1)

= πh(~m)

The output is only permuted with πh, which is a permutation known by the attacker. The
attacker can then easily apply the inverse permutation π−1h , and receive the corresponding
input.

How the attack can be prevented

The insider attack can easily be prevented if randomized partial checking (RPC) is in-
cluded in the protocol. RPC was first introduced by Jakobsson, Juels and Rivest [21].
RPC forces every mixnode to publicly show parts of its permutation. The mixnodes have
to commit to its input and output, and then release a large fraction of its input-output
pairs, e.g. half of them. Anyone can then verify if the mixnodes have operated correctly
according to the protocol, and used the right input.

If RPC is implemented in the protocol, it will be detected if the last mixnodes ignores
the input he receives in step 2 of the percomutation- and real-time phases, and chooses his
own output.

3.2.2 Tagging attack

The main idea in this attack is for the attacker to put an identifier tag on an input message
to the protocol, such that it is recognizable in the output. This breaks the protocols unlink-
ability between sender and receiver. We let A be an attacker that compromises mixnode
Nh. The attacker wants to learn the receiver of message mj . We assume that it is possible
to determine whether an output message is valid.

Construction of the attack

1. Nh creates ~s that consist of (n− 1) 1‘s, and one tag s ∈ G∗ in slot j. He computes
~kh × ~rh × ~s.

2. In step 3 of the real-time phase, Nh receives all the decryption shares from the other

20

3.3 Number of exponentiations

mixnodes. The last mixnode computes:

Πh(~m× ~s) = Πh(~m× ~Rh × ~s)× ~Th × ~C2 ×
h∏
i=1

Di(~C1)

The attacker will then recognize the tagged message in slot j′.

3. Nh creates the inverse vector ~s−1, that consists of (n − 1)1‘s, and one tag s−1 in
slot j′. Nh computes ~C ′2 = ~C2×~s−1, and sends Πh(~m× ~Rh)× ~Th×Dh(~C1)× ~C ′2
to the network handler.

4. The network handler computes:

Πh(~m× ~Rh × ~s)× ~Th × ~C ′2 ×
h∏
i=1

Di(~C1) =

Πh(~m× ~Rh × ~s)× ~Th × (Πh(~Rn)× ~Th)−1 × ~s−1 = Πh(~m)

The network handler retrieves the permuted batch as normal, and he will not be able to
determine whether the attack took place or not.

How the attack can be prevented

To detect this attack the last mixnode has to make a commitment to ~C2 in step 3 of the
precomputation phase. This causes that Nh is not able to remove the tag, by replacing ~C2

with ~C ′2. Hence, the tag will not be removed. Due to the assumption that it is possible
to determine whether an output message is valid the users will be aware that a tagging
attack took place. The attack can also be prevented by RPC. It is worth mentioning that
the messages are blinded with random values at all locations in the path, except at the last
mixnode. If a tagging attack is detectedNh should therefore be removed from the cascade.

3.3 Number of exponentiations

We will in this section compute how many exponentiations that are required in the cMix
protocol. The establishment of the symmetric keys ki,j between user Aj and mixnode Ni
is done in the setup phase. As mentioned, this key establishment can be done with any
key distribution method, so it is unknown how many exponentiations this requires. This
will therefore only include the exponentiations required in the precomputation- and real-
time phases. We recall that encryption of a value requires 2 exponentations. Table 3.1
summarize the data we need.

21

Chapter 3. cMix

Where What Ni computes Number of exponentiations
performed by Ni

Precomutation step 1 E(~ri
−1) 2n

Precomputation step 2 E(Πi(~R
−1
h)× ~T−1i) 2n

Precomputation step 3 Di(~C1) = ~C−Xi1 n

Table 3.1: Exponentiations required in cMix.

This gives us that Ni has to perform 5n exponentiations to run the protocol for a batch
of size n, and the total number of exponentiations required in the network of h mixnodes
is 5nh.

22

Chapter 4
Roots of polynomials

We will in this chapter and in Chapter 5 look at protocols for verifiable shuffling, and will
only consider one of the mixnodes in the mix network. All our protocols consider that
the mixnodes shuffles an input batch of size n. The idea of verifiable shuffling is that the
mixnodes can prove that the output is computed correctly. We stress that both the input
and the output sequences will be encrypted messages, therefore it is not trivial to show that
the output is a permutation of the input.

The fundamental idea in this chapter is that two polynomials are identical under per-
mutation of their roots. This means that if we have a polynomial f(X) =

∏n
i=1(X − i)

and a permutation π, the following equality holds:

f(X) =

n∏
i=1

(X − i) =

n∏
i=1

(X − π(i))

The following theorem gives us that if two polynomials have the same value at a ran-
dom point, the polynomials are with high probability equal [25]:

Theorem 1. Let f(X), f̃(X) ∈ Zq be monic polynomials of degree at most d, with

f(X) 6= f̃(X). If t is selected at random from Zq then,

Pr[f(t) = f̃(t)|t r← Zq] ≤
d− 1

q

The idea of making use of roots of polynomials to verifiable shuffling a list of en-
crypted elements was first introduced by Neff [24]. Neff later published an improved
version of his protocol [25]. Groth generalizes Neff’s approach to an abstract protocol for
any homomorphic cryptosystem [16, 18]. We will in this chapter first look at a simpler

23

Chapter 4. Roots of polynomials

protocol than the protocol of Neff, to understand the basic ideas. We have chosen to call
this the Naive protocol. We will then look at the Simple n-shuffle, constructed by Neff.
The security will be discussed for both of them. As we will see, the Naive protocol might
be easier to understand, but it is very inefficient and requires a lot of work.

Notation

We assume p and q are two publicly known primes such that p = kq + 1. Gq is cyclic
group of order q; Gq ⊆ Z∗p. Let g be a generator for G. The arithmetic operations are
performed in the modular ring Zp, and n is a positive integer.

4.1 The Naive protocol

First, we construct the Multiplication protocol that is used as a building block in the Naive
protocol. We assume we have a homomorphic commitment scheme that is unconditionally
binding and computationally hiding.

4.1.1 The Multiplication protocol

This protocol allows P to convince V that a commitment c is a commitment to a product,
without revealing any extra information. P is given private input a, b, u, ra, rb and ru,
where u = ab. Commitments ca, cb and cu are made public. The Multiplication protocol
is used so P can convince V that cu is such that cu = commit(ab, ru). This protocol is
inspired by a similar construction written by Cramer, Damgård, Dziembowski, Hirt and
Rabin [8].

Construction

The Multiplication protocol is a three move protocol, illustrated in Figure 4.1. The output
of the protocol is (α, β, γ), where α = (cθ, cbθ), β = β, and γ = (d, s1, s2). If V accepts
the protocol, P has accomplished to convince V that cu is a commitment to the product of
a and b.

24

4.1 The Naive protocol

Public input: p, q, g, ca, cb, cu
Private input to P: a, b, u, ra, rb, ru

Prover, P Verifier, V
θ

r← Zq
rθ, rbθ

r← Zq
cθ ← commit(θ, rθ)
cbθ ← commit(bθ, rbθ)

cθ,cbθ−−−−−−−→
β←−−−− β

r← Zq
Compute:
d← βa+ θ
s1 ← βra + rθ

s2 ← drb − rbθ − βru
d,s1,s2−−−−−−−−→

Verify :
cβacθ = commit(d, s1)
cdb(cbθc

β
u)−1 = commit(0, s2)

Figure 4.1: The Multiplication protocol.

25

Chapter 4. Roots of polynomials

Security

Theorem 2. The Multiplication protocol is complete.

Proof. The protocol is complete if V always accept when P follows the protocol correctly.
V accepts if the following equations hold:

cβacθ = commit(d, s1)

cdb(cbθc
β
u)−1 = commit(0, s2)

We assume that P follows the protocol correctly and that u = ab. Due to the fact that
the commitment scheme is homomorphic, we have:

cβacθ = commit(βa+ θ, βra + rθ) = commit(d, s1)

cdb(cbθc
β
u)−1 = commit(db− bθ − βu, drb − rbθ − βrab)

= commit(βab+ bθ − bθ − βu, drb − rbθ − βru) = commit(0, s2)

The commitment scheme is unconditionally binding, so these equations will not hold
for any other input. The equations are satisfied, and V will accept. We have proven that
the Multiplication protocol is complete.

Theorem 3. The Multiplication protocol has special soundness.

Proof. We assume we have two accepted transcripts (cθ, cbθ, β, d, s1, s2) and (cθ, cbθ, β′,
d′, s′1, s′2), β 6= β′. We need to prove that we are able to extract a, b and u. First, we prove
that a easily can be computed:

d− d′ = βa+ θ − β′a− θ = (β − β′)a

a =
(d− d′)
(β − β′)

Second, we use the fact that db− bθ− βu = 0 and d′b− bθ− β′u = 0, to extract b and u:

db− bθ − βu = d′b− bθ − β′u

(d− d′)b = (β − β′)u

This gives us that u and b easily can be computed, and we can conclude that ab = u.
Hence, the protocol has special soundness.

26

4.1 The Naive protocol

We note that this implies that the protocol is a proof of knowledge of a, b and u such
that u = ab.

Theorem 4. The Multiplication protocol is SHVZK.

Proof. We will construct a simulator S that gets (p, q, g, ca, cb, cu, β) as its input, and
outputs an accepted transcript (α, β, γ). The protocol is SHVZK if transcripts constructed
by (P, V) and S have the same distribution, hence it is impossible to distinguish if (α, β, γ)
was constructed by (P, V) or S. Figure 4.4 shows how S is constructed.

Input: p, q, g, ca, cb, cu, β

Simulator, S
d, s1, s2

r← Zq
Compute:
cθ ← c−βa commit(d, s1)
cbθ ← c−βu cdb(commit(0, s2))−1

Figure 4.2: Construction of a simulator for the Multiplication protocol.

The simulator outputs (α, β, γ), where α = (cθ, cbθ), β = β and γ = (d, s1, s2). Table
4.1 summarize how (P,V) and S constructs their transcripts.

(P, V) S

θ
r← Zq d, s1, s2

r← Zq
rθ, rbθ

r← Zq Compute cθ and cbθ
Compute cθ and cbθ

Compute d, s1 and s2
Transcript: (cθ, cbθ, β, d, s1, s2) Transcript: (cθ, cbθ, β, d, s1, s2)

Table 4.1: Construction of transcripts by (P,V) and S.

Let (α̃, β̃, γ̃) be an accepted transcript. We define two following two probabilities p1
and p2:

p1 = Pr[(α̃, β̃, γ̃) = (α, β, γ)|(α, β, γ)← (P,V)]

p2 = Pr[(α̃, β̃, γ̃) = (α, β, γ)|(α, β, γ)← S]

We note that there is only one possible output for (P,V) when (θ, rθ, rbθ) is chosen at
random from Zq , and one possible output for S when (d, s1, s2) is chosen at random from

27

Chapter 4. Roots of polynomials

Zq , due to the fact that the commitment scheme is unconditionally binding. We can use
this to compute p1:

p1 = Pr[(α̃, β̃, γ̃) = (α, β, γ)|(θ, rθ, rbθ)← Zq]

=
1

q
· 1

q
· 1

q
=

1

q3

and p2:

p2 = Pr[(α̃, β̃, γ̃) = (α, β, γ)|(d, s1, s2)← Zq]

=
1

q
· 1

q
· 1

q
=

1

q3

Due to the fact that p1 = p2, we are not able to distinguish if (α̃, β̃, γ̃) was constructed by
(P, V) or S, and the protocol is SHVZK.

We note that the protocol is perfect SHVZK. The Multiplication protocol satisfies com-
pleteness, has special soundness and is SHVZK, hence the protocol is a Σ-protocol accord-
ing to the definition given in Section 2.2.1.

Theorem 5. The number of exponentiations required in the Multiplication protocol is 11.

Proof. Exponentiations required are summarized in Table 4.2.

Prover, P Verifier, V
Computation Exponentiations Computation Exponentiations

cθ 2 cβacθ 1
cbθ 2 cdb(cbθc

β
u)−1 3

commit(d, s1) 2
commit(0,s2) 1

Total: 4 Total: 7

Table 4.2: Exponentiations required in the Multiplication protocol.

4.1.2 The Naive protocol

The Naive protocol is a protocol that provides verifiable shuffling. A permutation π and
two sequences (X1, ..., Xn) and (r1, ..., rn) are given as private input to P. Commitments
(ci) such that ci = commit(Xi, ri) are made public. In addition a sequence (y1, ..., yn)

28

4.1 The Naive protocol

is made public. P is required to convince V that there exists a permutation π with the
property that:

yi = Xπ(i) (4.1)

without revealing any extra information about (Xi).

Construction

The protocol is a four move protocol, illustrated in Figure 4.3. We assume we have two
polynomials f(X) and f̃(X):

f(X) =

n∏
i=1

(X −Xi)

f̃(X) =

n∏
i=1

(X − yi)

We let t r← Zq , and define ai and bi as follows:

bi = t−Xi

ai =

i∏
j=1

(t−Xj)

In the protocol V makes a commitent c0 to the random value t with randomness 0.
P wants to make a commitent to f(t). This is done by first making commitments to
every factor in f(t): c̃i = c0/ci = commit(t − Xi, ri), due to the fact that the commit-
ment scheme is homomorphic. Further, P computes commitments ĉi = commit(ai, r̂i) =

commit(
∏i
j=1(t − Xj), r̂i), that are commitments to the i-th first factors in f(t). For

P to prove that his computations are performed correctly, he execute the Multiplication
protocol from Section 4.1.1. He can then prove that for (i = 2, ..., n):

ĉi = commit(ai−1bi, r̂i) = commit(
i−1∏
j=1

(t−Xj)(t−Xi), r̂i).

If the computations are done correctly, the final commitment ĉi = commit(an, r̂n) is a
commitment to f(t). Hence an = f(t). V receives an, and can easily verify if an = f̃(t)

when (yi) are given as public input. This gives us a four move protocol with accepted
transcript (t, c0, an, (cθi), (cbθi), (βi), (di), (s1,i), (s2,i)).

29

Chapter 4. Roots of polynomials

Public input: p, q, g, n, (yi), (ci) (i = 1, ..., n)
Private input to P: (Xi), (ri) (i = 1, ..., n), π

Prover, P Verifier, V
t
r← Zq

c0 ← commit(t, 0)
t,c0←−−−−−−

c̃i ← c0/ci, (i = 1, ..., n) c̃i ← c0/ci, (i = 1, ..., n)

r̂i
r← Zq(i = 2, ..., n)

Let ĉ1 = c̃1

Compute :
ĉ2 ← commit(a2, r̂2)

...
ĉn ← commit(an, r̂n)

θi
r← Zq(i = 2, ..., n)

rθi , rbθi
r← Zq(i = 2, ..., n)

Compute(i = 2, ..., n) :
cθi ← commit(θi, rθi)
cbθi ← commit(biθi, rbθi)

an,(cθi)
n
i=2,(cbθi)

n
i=2−−−−−−−−−−−−−−−−−→
βi

r← Zq(i = 2, ..., n)
(βi)

n
i=2←−−−−−−−−

Compute(i = 2, ..., n) :
di ← βiai−1 + θi
s1,i ← βir̂i−i + rθi
s2,i ← diri + rbθi + βir̂i

(di)
n
i=2,(s1,i)

n
i=2,(s2,i)

n
i=2−−−−−−−−−−−−−−−−−−−−→
Verify ∀(i = 2, ..., n) :

ĉβii−1cθi = commit(di, s1,i)
c̃dii (cbθi ĉ

βi
i)−1 = commit(0, s2,i)

an = f̃(t)

Figure 4.3: The Naive protocol.

30

4.1 The Naive protocol

Security

Theorem 6. The Naive protocol is complete.

Completeness can easily be proved with simple calculations. We stress that the com-
mitment scheme is unconditionally binding by our assumptions, so the equations verified
by V will only hold for the attempted values.

Theorem 7. The Naive protocol is sound.

Proof. We need to prove that if V accepts the Naive protocol, there exists a permutation π
such that (4.1) is satisfied.

Assume f̃(t) = f(t) such that V accepts. Theorem 1 gives us that f(X) = f̃(X),
when t is chosen at random, except with negligible probability. We know that polynomials
are identical under permutation of their roots, hence there exists a permutation π such that
yi = Xπ(i) (i = 1, ..., n).

Theorem 8. The Naive protocol is a proof of knowledge of (4.1).

Proof. We will with rewinding prove that we are able to extract the permutation π that
satisfies (4.1). We assume that we have an extractor Ex that can use P∗:

1. t and c0 is given as input to P∗.

2. P∗ outputs an, (cθi) and (cbθi) (i = 2, ..., n).

3. P∗ is given random challenges (βi) (i = 2, ..., n).

4. Let P∗ compute and outputs (di), (s1,i) and (s2,i) (i = 2, ..., n).

5. Rewind to after step 2 and before step 3.

6. Give P∗ new random challenges (β′i), (βi) 6= (β′i) (i = 2, ..., n).

7. Let P∗ compute and output (d′i), (s′1,i) and (s′2,i) (i = 2, ..., n).

We then have two accepted transcripts (t, c0, an, (cθi), (cbθi), (βi), (di), (s1,i), (s2,i)) and
(t, c0, an, (cθi), (cbθi), (β

′
i), (d

′
i), (s

′
1,i), (s

′
2,i)). If V accepts, we know that the following

equations hold:

ĉ1 = commit(a1, r̂1) = commit(t−X1, r̂1)

ĉ2 = commit(a2, r̂2) = commit(a1b2, r̂2) = commit(a1(t−X2), r̂2)

...

ĉn = commit(an, r̂n) = commit(an−1bn, r̂n) = commit(an−1(t−Xn), r̂n)

31

Chapter 4. Roots of polynomials

In the proof of Theorem 3 we proved that we are able to extract (ai), (ai−1) and (bi), from
the two accepted transcripts. This gives us that we are able to compute (Xi):

X1 = t− a1
X2 = t− a2(a1)−1

...

Xn = t− an(an−1)−1

When (Xi) (i = 1, ..., n) are computed, the permutation that satisfies yi = Xπ(i) can
easily be extracted. This proves that the protocol is a proof of knowledge of (4.1).

We note that proof of knowledge implies that the protocol is sound, but soundness can
also be proven directly (similarly to the proof of Theorem 7). Soundness means that the
witness π exists when V accepts, and proof of knowledge means that the P∗ knows the
witness π when V accepts.

Theorem 9. Let A be an attacker that can distinguish if an accepted transcript (α, β, γ)

was constructed by (P,V) in the Naive protocol, or by a simulator S for the Naive protocol.

Then AdvA is negligible.

Proof. In Figure 4.4 we construct a simulator S for the Naive protocol that outputs an
accepted transcript (t, c0, an, (cθi), (cbθi), (βi), (di), (s1,i), (s2,i)).

We note that commitments ĉi(i = 2, ..., n−1) are commitments to random values (ai)

and ĉn is a commitment to f̃(t), such that the transcript is accepted. Due to the fact that the
commitment scheme is computationally binding it requires a lot of computational power
for A to distinguish if an accepted transcript was constructed by S or by (P,V). Hence, the
advantage of the attacker is negligible.

We note that this implies that the protocol is computationally HVZK.

Theorem 10. The number of exponentiations required in the Naive protocol is (13n−12).

Proof. Exponentiations required are summarized Table 4.3. This gives a total of (13n −
12) exponentiations to run the protocol.

4.2 Neff‘s shuffle

The protocol of Neff was one of the first efficient proof of shuffles [30]. First, we construct
ILMPP and then the Simple n-shuffle protocol. ILMPP is not a protocol that shuffle the

32

4.2 Neff‘s shuffle

Input: p, q, g, n, (yi), (ci) (i = 1, ..., n)

Simulator, S
t, βi

r← Zq(i = 1, ..., n)

r̂i, di, s1,i, s2,i
r← Zq(i = 2, ..., n)

ai
r← Zq(i = 2, ..., n− 1)

an = f̃(t)
Compute:
c0 ← commit(t, 0)
c̃i ← c0/ci, (i = 1, ..., n)
ĉ2 ← commit(a2, r̂2)
...
ĉn ← commit(an, r̂n)

cθi ← ĉ−βii−1 commit(di, s1,i)(i = 2, ..., n)

cbθi ← c̃dii ĉ
−βi
i (commit(0, s2,i))−1(i = 2, ..., n)

Figure 4.4: Construction of a simulator for the Naive protocol

Prover, P Verifier, V
Computation Exponentiations Computation Exponentiations
ĉi, (i = 2, ..., n) 2(n− 1) c0 1

Multiplication protocol 4(n− 1) Multiplication protocol 7(n− 1)
(n− 1) times (n− 1) times

Total: 6n− 6 Total: 7n− 6

Table 4.3: Exponentiations required in the Multiplication protocol.

33

Chapter 4. Roots of polynomials

input elements, but is used to convince a verifier that given two sets of group elements
(xi) and (yi), then

∏n
i=1 loggxi =

∏n
i=1 loggyi. The Simple n-shuffle makes use of the

ILMPP and is useful when we want to commit to a permutation. We will follow Neff
[24, 25] in our description.

4.2.1 Iterated logarithmic multiplication proof protocol (ILMPP)

In ILMPP two sequences of n elements are given as public input: (x1, ..., xn) and (y1, ...,
yn), where (xi) 6= 1 and (yi) 6= 1. The sequences (Xi, ..., Xn) and (Yi, ..., Yn) are given
as private input to P, where Xi = loggxi and Yi = loggyi. The prover wants to convince
the verifier of the relation:

n∏
i=1

Xi =

n∏
i=1

Yi (4.2)

without revealing any extra information about the secret logarithms.

Construction

The protocol, illustrated in Figure 4.5, is a three move protocol, where (α, β, γ) = ((Di),
β, (si)) is given as output. We define two sets of equations:

D1 ← yθ11

D2 ← xθ12 y
θ2
2 (4.3)

...

Dn−1 ← x
θn−2

n−1 y
θn−1

n−1

Dn ← xθn−1
n

and,

ys11 ← D1x
−β
1

xs12 y
s2
2 ← D2 (4.4)

...

x
sn−2

n−1 y
sn−1

n−1 ← Dn−1

xsn−1
n ← Dny

(−1)n−1β
n

34

4.2 Neff‘s shuffle

Public input: p, q, g, n, (xi), (yi) (i = 1, ..., n)
Private input to P: (Xi), (Yi) (i = 1, ..., n)

Prover, P Verifier, V
θi

r← Zq(i = 1, ..., n− 1)
Compute:

Di(i = 1, ..., n) that satisfy(4.3)
(Di)

n
i=1−−−−−−−−→
β←−−−− β

r← Zq
Compute:

si(i = 1, ..., n− 1) that satisfy(4.4)
(si)

n−1
i=1−−−−−−−−→

Verify if
(4.4) holds

Figure 4.5: ILMPP.

Security

Theorem 11. The ILMPP protocol is complete.

Proof. We assume (4.2) is satisfied. The protocol achieves completeness if P always can
find (s1, ..., sn−1) that satisfies (4.4), given arbitrary (θ1, ..., θn−1) and β. To show that
this is the case, we first take logg on each side of the equations in system (4.4) and obtain:

s1Y1 = θ1Y1 − βX1

s1X2 + s2Y2 = θ1X2 + θ2Y2

...

sn−2Xn−1 + sn−1Yn−1 = θn−2Xn−1 + θn−1Yn−1

sn−1Xn = θn−1Xn + (−1)n−1βYn

This can be expressed in the following n × (n− 1) system of linear equations:

35

Chapter 4. Roots of polynomials

Y1 0 0 · · · 0 0

X2 Y2 0 · · · 0 0

0 X3 Y3 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · Xn−1 Yn−1

0 0 0 · · · 0 Xn

s1 − θ1
s2 − θ2
s3 − θ3

...
sn−2 − θn−2
sn−1 − θn−1

=

−βX1

0

0
...
0

(−1)n−1βYn

P1
~S1 = ~J1 (4.5)

We are interested in whether column vectors in this system are linearly independent or
dependent. We therefore look at a (n− 1)× (n− 1) sub-system, where the first row of the
matrix P1 and vectors ~S1 and ~J1 is removed:

X2 Y2 0 · · · 0 0

0 X3 Y3 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · Xn−1 Yn−1

0 0 0 · · · 0 Xn

s2 − θ2
s3 − θ3

...
sn−2 − θn−2
sn−1 − θn−1

=

0

0
...
0

(−1)n−1βyn

P2
~S2 = ~J2 (4.6)

We observe that P2 is an upper triangular matrix, which gives us that det(P2) =∏n
i=2Xi. We know that the determinant is non-zero because of the assumption that (xi)

6= 1. This is equivalent with the fact that the matrix is non-singular and the (n − 1) col-
umn vectors in P2 are linearly independent. Hence the column vectors in P1 are linearly
independent.

Next, we look at the following matrix:

Q =

X1 Y1 0 0 · · · 0 0

0 X2 Y2 0 · · · 0 0

0 0 X3 Y3 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · Xn−1 Yn−1

(−1)nYn 0 0 0 · · · 0 Xn

Q =

(
~V1, ~V2, · · · , ~Vn−1, ~Vn

)
36

4.2 Neff‘s shuffle

We observe that det(Q) =
∏n
i=1Xi−

∏n
i=1 Yi. By our assumption we know that det(Q) =

0. This is equivalent with the fact that Q is a singular matrix and that the column vectors
(~Vi) are dependent. We have already proved that the column vectors (~V2, ..., ~Vn) are
linearly independent, hence ~V1 has to be a linear combination of (~V2, ..., ~Vn). This implies
that it has to exist a vector ~S1 that satisfies (4.5), and the protocol is complete.

Theorem 12. The ILMPP protocol is a proof of knowledge of (4.2).

Proof. The theorem is constructed similarly to the proof of Theorem 8, but we will outline
the main differences. We rewind and obtain three accepted transcripts: ((Di), β, (si)) and
((Di), β

′, (s′i)) and ((Di), β̃, (s̃i)). We need to prove that (X1, ..., Xn) and (Y1, ..., Yn)

can be extracted.

We know that (4.4) holds for each of the accepted transcripts. This gives us the fol-
lowing two sets of equations:

(s′1 − s1)Y1 = (β − β′)X1

(s′2 − s2)Y2 = (s1 − s′1)X2

...

(s′n−1 − sn−1)Yn−1 = (sn−2 − s′n−2)Xn−1

(−1)n(β − β′)Yn = (s′n−1 − sn−1)Xn

and,

(s̃1 − s1)Y1 = (β − β̃)X1

(s̃2 − s2)Y2 = (s1 − s̃1)X2

...

(s̃n−1 − sn−1)Yn−1 = (sn−2 − s̃n−2)Xn−1

(−1)n(β − β̃)Yn = (s̃n−1 − sn−1)Xn

We have 2n equations, with 2n unknowns: (Xi)
n
i=1 and (Yi)

n
i=1. The logarithms can

easily be extracted, hence the protocol is a proof of knowledge of (4.2).

Theorem 13. The ILMPP protocol is SHVZK.

Proof. We will prove that given β a simulator S for ILMPP can construct an accepted tran-
script that is indistinguishable from the real transcript constructed by (P,V). Construction
of S is illustrated in Figure 4.6.

37

Chapter 4. Roots of polynomials

Input: p, q, g, n, β, (xi), (yi) (i = 1, ..., n)

Simulator, S
si

r← Zq(i = 1, ..., n− 1)
Compute:
D1 ← xβ1y

s1
1

D2 ← xs12 y
s2
2

...
Dn−1 ← x

sn−2

n−1 y
sn−1

n−1
Dn ← x

sn−1
n y

(−1)nβ
n

Figure 4.6: Construction of a simulator for ILMPP.

The simulator outputs the accepted transcript ((Di), β, (si)). It is clear that a randomly
generation of θi from Zq (i = 1, ..., n − 1) gives the same distribution as a randomly
generation of si from Zq (i = 1, ..., n− 1). Hence, S will perfectly simulate (P,V) and the
protocol is SHVZK.

We note that this gives that the protocol is perfect SHVZK.

Theorem 14. The number of exponentiations required in ILMPP is 3n.

Proof. We note that (Di)(i = 2, ..., n − 1) can be computed as: gθi−1Xi+θiYi . This
gives that it requires n exponentiations for P compute (Di)(i = 1, .., n). It requires 2n

exponentiations for V to verify if (4.4) hold. This gives that a total of 3n exponentiations
are required in ILMPP.

4.2.2 The Simple n-shuffle

We have two public known sequences (x1, ..., xn) and (y1, ..., yn), where (xi, yi) 6= 1.
The sequences (Xi, ..., Xn) and (Yi, ..., Yn) are given as private input to P, where Xi =

loggxi and Yi = loggyi. Constants k, l ∈ Zq are known to P, and commitments K = gk

and L = gl are made public.

In this protocol P is required to convince V that there exists a permutation π with the
property that (i = 1, ..., n):

yli = xkπ(i) (4.7)

without revealing any information about Xi, Yi, k, l or π.

38

4.2 Neff‘s shuffle

Construction

We define two polynomials:

f(X) =

n∏
i=1

(
Xi

l
−X)

f̃(X) =

n∏
i=1

(
Yi
k
−X)

For simplification, we make the following two assumptions:

1. Xi 6= Xj and Yi 6= Yj for i 6= j.

2. Xi 6= 1(i = 1, ..., n).

The Simple n-shuffle is a five move protocol, that goes as follows:

1. V generates t r← Zq , and sends this challenge to P.

2. P and V publicly compute:

• F ← Lt = glt

• H ← Kt = gkt

• x̂i ← xi/F, (i = 1, ..., n)

• ŷi ← yi/H, (i = 1, .., n)

3. P and V execute the ILMPP protocol for the two sequences of length 2n:

φ← (x̂1, ..., x̂n,K, ...,K),with n-K‘s

ψ ← (ŷ1, ..., ŷn, L, ..., L),with n-L‘s

4. V accepts if it accepts ILMPP for φ and ψ.

We stress that the verifier will accept if:

(loggK)n
n∏
i=1

loggx̂i = (loggL)n
n∏
i=1

logg ŷi

n∏
i=1

(Xi − lt)k =

n∏
i=1

(Yi − kt)l

n∏
i=1

(
Xi

l
− t) =

n∏
i=1

(
Yi
k
− t)

39

Chapter 4. Roots of polynomials

Hence, V will accept if f(t) = f̃(t)

Security

Theorem 15. The Simple n-shuffle is complete, HVZK and is a proof of knowledge of

(4.7).

This follows immediately from proof of Theorems 11, 12 and 13. We proved that
ILMPP is perfect SHVZK. The SHVZK property is only defined for Σ-protocols, hence
the Simple n-protocol will be perfect HVZK. Soundness can also be proved directly, sim-
ilarly to proof of Theorem 7.

Theorem 16. The number of exponentiations required to in the Simple n-shuffle is (6n+

2).

Proof. It requires 2 exponentiations to compute F and H . The input sequences φ and
ψ to ILMPP is of length 2n. Theorem 14 gives us that it requires 2n exponentiations to
construct ILMPP with this input, and 4n exponentiations to verify. This gives that a total
of (6n+ 2) exponentitations are required in the protocol.

40

Chapter 5
Permutation matrices

The other paradigm for verifiable shuffling uses permutation matrices. It has been written
a wide range of different protocols that belongs to this paradigm. Each protocol is based
on a theorem stating that a permutation matrix Aij is a permutation matrix if and only if
certain conditions holds. The differences between the approaches are the conditions that
state that the matrix actually is a permutation matrix [22].

This research line was first introduced by Furukawa and Sako [13]. In their approach
you first make a commitment to a permutation matrix. Next you prove that the matrix
actually is a permutation matrix, and prove that the input sequence is shuffled correctly
according to this permutation [16].

We will in this chapter give a description of the original protocol of Furukawa and
Sako from 2001 [13], and look at its security. This approach has later been optimized and
generalized by Furukawa [12].

Notation

We assume p and q are two publicly known primes such that p = kq + 1. Gq is cyclic
group of order q, Gq ⊆ Z∗p. Let g be a generator for Gq . Arithmetic operations are
performed in the modular ring Zp, and n is a positive integer. We will specify when we
calculate exponents, hence the computations are performed modq. The protocol makes
use of a ElGamal cryptosystem, with public keys (p, q, g, y) and secret key X ∈ Zq such
that y = gX mod p.

41

Chapter 5. Permutation matrices

5.1 Basic ideas

A ciphertext Ci is defined as Ci = (gi,mi), where gi and mi both have order q. A
re-encryption C ′i = (g′i,m

′
i) of this ciphertext can be computes as:

g′i = grigπ−1(i)

m′i = yrimπ−1(i)

where ri is chosen at random from Zq .
First in this section, we give a definition of permutation matrices. Second, we describe

how the shuffling can be performed by use of a permutation matrix, and describe the two
properties that needs to be shown in order to prove correctness of a shuffle. Finally, we
will give an outline of how the protocol is constructed.

5.1.1 Permutation matrix

A permutation matrix Aij is defined as follows:

Definition 6. Let q be a prime and π a permutation. A matrix Aij is a permutation matrix
over Zq if the following holds (i, j = 1, ..., n):

Aij =

1 mod q if π(i) = j

0 mod q otherwise

The following theorem will be very useful in our construction of the protocol:

Theorem 17. A matrix Aij is a permutation matrix if and only if for all i,j, and k, both of

the following equations holds:

n∑
h=1

AhiAhj =

1 mod q if i = j

0 mod q otherwise
(5.1)

n∑
h=1

AhiAhjAhk =

1 mod q if i = j = k

0 mod q otherwise
(5.2)

We will give a proof of Theorem 17. For convenience we introduce the following
definition:

Definition 7. δij and δijk is defined as follows:

42

5.1 Basic ideas

δij =

1 if i = j

0 otherwise
and δijk =

1 if i = j = k

0 otherwise

Proof. We assume (5.1) and (5.2) hold, and want to prove thatAij is a permutation matrix.
We will first prove that it is exactly one non-zero element e in each row vector and each
column vector of Aij , and then argue that e = 1.

Let ~Vi be the i-th column vector of the matrix Aij , ~Vi = (A1i, ..., Ani). Let (~Vi, ~Vj)
be the inner product of ~Vi and ~Vj , (~Vi, ~Vj) = δij . This implies that we have n orthogonal
vectors, and rank(Aij) = n. Hence, there are least one non-zero element e in each row
vector and each column vector. We observe that ~Vi 6=~0 ∀ i, from the fact that (~Vi, ~Vi) = 1.

Next, we consider a vector ~Vj � ~Vk = (A1jA1k, ..., AnjAnk), and observe that (~Vi,
~Vj � ~Vk) = δijk. We assume j 6= k, which gives us (~Vi, ~Vj � ~Vk) = 0∀i. This implies
that ~Vj � ~Vk = ~0, for j 6= k. This means for any h, j, k such that j 6= k either Ahj = 0 or
Ahk = 0. Hence, we know that there are a maximum one non-zero element in each row
vector. Combining this with the result above, we know that there is exactly one non-zero
element e in each row vector of Aij , and a total number of n non-zero elements in the
matrix. Since ~Vi 6= ~0 ∀ i, the number for non-zero elements in each column vector also
equals one.

We let ei be the non-zero element in the i-th row. From (5.1) we get that e2i = 1 mod q,
and (5.2) gives us that e3i = 1 mod q. Hence ei = 1 mod q, and we have shown that the
matrix Aij is a permutation matrix over Zq .

To prove that (5.1) and (5.2) holds when Aij is a permutation matrix is clear from
inspection of Definition 6.

5.1.2 Correctness of shuffle

We note that a permutation matrix Aij can be used to compute a re-encryption pair C ′i =

(g′i,m
′
i) of a ciphertext Ci = (gi,mi):

g′i = gri
n∏
j=1

g
Aji
j (5.3)

m′i = yri
n∏
j=1

m
Aji
j (5.4)

For a mixnode to show correctness of a shuffle, the following two properties have to
be shown:

1. For each pair {(g′i, m′i)} the same ri and Aij has been used.

43

Chapter 5. Permutation matrices

2. Aij is a permutation matrix.

To prove the first property, we will use a standard technique from Brands [4]. To prove the
second property, we prove given (gi) and (g′i) it there exits a matrix Aij satisfying (5.1)
and (5.2) and (ri) such that (5.3) is satisfied.

5.1.3 Outline of the Permutation matrix protocol

The goal in this chapter is to construct a protocol for verifiable shuffling a list of encrypted
elements. This is done by first constructing protocols I, II, III and IV, and then run them
in parallel in the Permutation matrix protocol.

Protocol I Prove that given (gi) and (g′i), (g′i) can be expressed as (5.3), by use of (ri)

and a matrix that satisfy (5.1).

Protocol II Prove that given (gi) and (g′i), (g′i) can be expressed as (5.3), by use of (ri)

and a matrix that satisfy (5.2).

Protocol III Prove that (ri) and the matrix used in Protocol I and Protocol II are identical.

Protocol IV For each pair (g′i, m
′
i) the same ri and (Aij) has been used.

5.1.4 Security of the protocols

The following definition and theorems are later used in the security analysis of our proto-
cols:

Definition 8. DefineRmn to be the set of tuples of n×m elements in Gq: I = (x
(1)
1 , ..., x

(m)
1 ,

x
(1)
2 , ..., x(m)

2 , ..., x
(1)
n , ..., x

(1)
n). Emn is defined to be the subset of Rmn satisfying:

log
x
(1)
1
x
(i)
1 = log

x
(1)
j
x
(i)
j ,

for all i(i = 1, ..., n), and j (j = 2, ..., n).

Theorem 18. For any n≥ 2 and m≥ 2, let F1 be an attacker that can distinguish uniform

instances fromE2
n andR2

n, and F2 an attacker that can distinguish uniform instances from

Emn and Rmn . Then:

AdvF2 ≤ AdvF1

.

44

5.2 Protocol I

Theorem 19. Let F1 be an attacker that can distinguish uniform instances from E2
n and

R2
n, for any n ≥ 2, and A an attacker that can solve DDH. Then:

AdvF1 ≤ AdvA

.

We will not provide the proves of these theorems here, but a sketch can be found in the
paper by Furukawa and Sako for the interested reader [13].

5.2 Protocol I

We will in this section first construct Protocol I, and then look at the security of the pro-
tocol. Sequences (gi) and (g′i) are made public, and a sequence (ri) and Aij is given as
private input to P. The protocol proves that both (5.1) and (5.3) hold.

Construction

The main idea is for P to calculate s0 =
∑n
j=1 rjβj and si =

∑n
j=1Aijβj(i = 1, ..., n),

and give γ = (s0, (si)) as response to a challenge (βi). V can then verify if:

gs0
n∏
j=1

g
sj
j =

n∏
j=1

g′j
βj (5.5)

n∑
i=1

s2i =

n∑
j=1

β2
j mod q (5.6)

Apparently, this will leak information aboutAij . To prevent this, randomizers ψ, (ψi),
and σ are added, and (5.5) and (5.6) are modified.

First, we add randomizers ψ and (ψi). P sends α = (g′, (Fi), H) as commitments in
advance, where Fi =

∑n
j=1 2ψjAji, H =

∑n
j=1 ψ

2
j , and g′ = gψ

∏n
i=1 g

ψi
i .

Given a challenge (βi), P computes s0 =
∑n
j=1 rjβj + ψ and si =

∑n
j=1Aijβj +

ψi(i = 1, ..., n), and sends γ = (s0, (si)) to V. The verifier will accept if the following
equations hold:

gs0
n∏
j=1

g
sj
j = g′

n∏
j=1

g′j
βj

n∑
i=1

s2i =

n∑
j=1

β2
j +

n∑
j=1

Fjβj +H mod q

45

Chapter 5. Permutation matrices

Further, we add randomizer σ and (5.6) is modified to be:

n∑
i=1

s2i + σs0 =

n∑
j=1

β2
j +

n∑
j=1

(Fj + σrj)βj +H + σψ mod q

This verification is computed over exponents in order the hide the values of (Fj + σrj),
(H + σψ) and σ. This gives us the two verification equations:

gs0
n∏
j=1

g
sj
j = g′

n∏
j=1

g′j
βj (5.7)

ws0g
∑n
j=1(s

2
j−β

2
j) = ŵ

n∏
j=1

ŵ
βj
j (5.8)

The protocol is three move, illustrated in Figure 5.1. The output of the protocol is (α, β, γ),
where α = (w, g′, (ŵi), ŵ), β = (βi) and γ = (s0, (si)). The prover computes g′. We
enumerate the following equation for convenience:

g′ = gψ
n∏
j=1

g
ψj
j (5.9)

Security

Theorem 20. Protocol I is complete.

Completeness of the protocol can be proved with simple calculations.

Theorem 21. If V accepts Protocol I with non-negligible probability, then P∗ either knows

both (ri) and Aij that satisfy (5.1), or can generate non-trivial integers (ai) and a satis-

fying ga
∏n
i=1 g

ai
i = 1 with overwhelming probability.

Proof. First, we prove that if V accepts with non-negligible probability, then P∗ knows
ri, Aij , ψ and (ψi) that satisfy (5.3) and (5.9). Recall that (5.3) gives that g′i = gri

∏n
j=1 g

Aji
j .

This can be proved with rewinding. The technique is described in detail in proof of
Theorem 8. First, we start running the protocol and P∗ outputs α = (w, g′, (ŵi), ŵ). P is
given challenge (βi,1), and outputs γ1 = (s0,1, si,1). This gives us one accepted transcript
(α, βi,1, γ1).

We perform rewinding n times. Each time is P∗ is given challenge (βi,b), (βi,1) 6=
(βi,b), and P∗ outputs the corresponding output γb = (s0,b, (si,b))(b = 2, ..., n+ 1),

46

5.2 Protocol I

Public input: p, q, g, n, (gi), (g′i) (i = 1, ..., n)
Private input to P: (ri), Aij (i, j = 1, ..., n)

Prover, P Verifier, V
ψ,ψi, σ

r← Zq, (i = 1, ..., n)
Compute:
w ← gσ

g′ ← gψ
∏n
j=1 g

ψj
j

ŵi ← g
∑n
j=1 2ψjAji+σri(i = 1, ..., n)

ŵ ← g
∑n
j=1 ψ

2
j+σψ

w,g′,(ŵi)
n
i=1,ŵ−−−−−−−−−−−−−→

βi
r← Zq, (i = 1, ..., n)

(βi)
n
i=1←−−−−−−−−

Compute :
s0 ←

∑n
j=1 rjβj + ψ mod q

si ←
∑n
j=1Aijβj + ψi mod q, (i = 1, ..., n)

s0,(si)
n
i=1−−−−−−−−−−→

Verify if
(5.7) and (5.8) hold

Figure 5.1: Protocol I.

47

Chapter 5. Permutation matrices

(i = 1, ..., n). This gives us a total of (n+ 1) accepted transcripts:

(α, β1, γ1) = (w, g′, (ŵi), ŵ, (βi,1), s0,1, (si,1))

(α, β2, γ2) = (w, g′, {ŵi}, ŵ, (βi,2), s0,2, (si,2))

... =
...

(α, βn+1, γn+1) = (w, g′, (ŵi), ŵ, (βi,n+1), s0,n+1, (si,n+1))

First, we extract (ri) by making use of the fact that s0,b =
∑n
j=1 rjβj,b + ψ. This

gives us the following system of equations:

β1,1 β2,1 · · · βn,1 1

β1,2 β2,2 · · · βn,2 1
...

... · · ·
...

β1,n+1 β2,n+1 · · · βn,n+1 1

r1

r2
...
rn

ψ

=

s0,1

s0,2
...

s0,n+1

 (5.10)

The matrix to the left will be invertible except with negligible probability, when (βi) is
chosen at random from Zq . Hence (r1, r2, ..., rn, ψ) can be extracted.

Further, we extract (Aij) by making use of the fact that si,b =
∑n
j=1Aijβj,b + ψi.

This gives us the following system of equations:

β1,1 β2,1 · · · βn,1 1

β1,2 β2,2 · · · βn,2 1
...

... · · ·
...

...
β1,n+1 β2,n+1 · · · βn,n+1 1

A11 A21 · · · An1

A12 A22 · · · An2
...

... · · ·
...

A1n A2n · · · Ann

ψ1 ψ2 · · · ψn

(5.11)

=

s1,1 s2,1 · · · sn,1

s1,2 s2,2 · · · sn,2
...

... · · ·
...

s1,n+1 s2,n+1 . . . sn,n+1

The matrix to the left will be invertible except with negligible probability, hence (Aij) and
(ψi) can be extracted. If V accepts, the same (ri), Aij , ψ and (ψi) are used to calculate
g′ and (g′i) by (5.3) and (5.9) respectively. This proves P∗‘s knowledge of (ri), Aij , ψ
and (ψi) such that (5.3) and (5.9) are satisfied. Next, we will prove that this knowledge
implies that either (5.1) is satisfied, or P∗ is able to find a non-trivial representation of 1

48

5.2 Protocol I

with overwhelming probability.

First, we look at (5.7), the first verification equation. Assume that P∗ knows (ri), Aij , ψ

and (ψi) satisfying (5.3) and (5.9), and (ai) and a satisfying (5.7). We note that the fol-
lowing gives a non-trivial representation of 1:

gs0−
∑n
j=1 rjβj+ψ

n∏
i=1

g
si−

∑n
j=1 Aijβj+ψi

i = 1

If either s0 6=
∑n
j=1 rjβj + ψ or si 6= Aijβj + ψi for some i, then P∗ is able to find a

non-trivial representation of 1 with overwhelming probability if (5.7) is satisfied.

Next, we look at (5.8) that is the other equation verified by V. Assume that P∗ knows
(ri), Aij , ψ and (ψi) satisfying (5.3) and (5.9). If (5.8) is satisfied, then the following
holds (modq):

s0 +

n∑
j=1

(s2j − β2
j) =

n∑
j=1

(ψ2
j + σψ) +

n∑
i=1

(

n∑
j=1

2ψjAji + σri)βi

and (modq),

σ(

n∑
j=1

(rjβj + ψ)) +

n∑
i=1

(

n∑
j=1

(Aijβj + ψi)
2 − β2

i)

=

n∑
j=1

(ψ2
j + σψ) +

n∑
i=1

(

n∑
j=1

2ψjAji + σri)βi

We can use the fact that
∑n
i=1 βj =

∑n
i=1

∑n
j=1 δijβiβj . This gives us (modq):

0 = (

n∑
j=1

ψ2
j + σψ)− (

n∑
j=1

ψ2
j + σψ) +

n∑
i=1

(

n∑
j=1

2ψjAji + σri)βi

−
n∑
i=1

(

n∑
j=1

2ψjAji + σri)βi +

n∑
i=1

n∑
j=1

(

n∑
h=1

AhiAhj − δij)βiβj

It is clear that if (5.1) does not hold, the probability that (5.8) holds is negligible. This gives
us that if V accepts either (5.1) holds, or P∗ is able to find a non-trivial representation of
1. This completes our proof.

Remark that since (g1, ..., gn) originally are chosen by those who encrypt the messages,
we cannot assure that the prover does not know the relation among (gi). Hence, we can
not assure that P∗ is not able to construct (ai) and a and such that ga

∏n
i=1 g

ai
i = 1. We

49

Chapter 5. Permutation matrices

note that the protocol does not satisfy the ordinary soundness property.

Theorem 22. Let B be an attacker that can distinguish if an accepted transcript (α, β, γ)

was constructed by (P,V) in Protocol I or by a simulator S for Protocol I. We then have

an attacker A against DDH such that AdvB ≤ AvdA.

Proof. The proof is constructed as follows:

1. Construct a simulator S for Protocol I.

2. Construct an attacker F1 that can distinguish between uniform instances from E2
n+1

and R2
n+1.

3. Describe how the attacker can act as a simulator S′.

4. Prove that S′ perfectly simulates (P,V) when I ∈ E2
n+1 and that S′ perfectly simu-

lates S when I ∈ R2
n+1.

Construction of S: A simulator S for Protocol I is constructed in Figure 5.2. The simulator
outputs (w, g′, (ŵi), ŵ, (βi), s0, (si)).

Input: p, q, g, n, (gi), (g′i) (i = 1, ..., n)

Simulator, S
s0, si, βi

r← Zq, (i = 1, ..., n)

w, ŵi
r← Gq, (i = 1, ..., n)

Compute:
g′ ← gs0

∏n
j=1 g

sj
j g
′
j
−βj

ŵ ← ws0g
∑n
j=1(s

2
j−β

2
j)
∏n
j=1 ŵ

−βj
j

Figure 5.2: Construction of a simulator for Protocol I.

Construction of F1: We will construct an attacker F1 that can distinguish uniform in-
stances from E2

n+1 and R2
n+1 if S cannot simulate Protocol I. Assume I = (x

(1)
1 , x

(2)
1 , ...,

x
(1)
n+1, x

(2)
n+1), was chosen uniformly from either E2

n+1 or R2
n+1.

We let g = x
(1)
1 . First, F1 generates (gi) as the constants used in Proof 1, and a

permutation matrix Aij . He computes (i = 1, ..., n):

g′i = x
(1)
i+1

n∏
j=1

g
Aji
j

50

5.2 Protocol I

The attacker will now act as a simulator S′, based on the values and the permutation matrix
he has obtained. S′ is constructed in Figure 5.3.

Input: p, q, g, n, (gi), (g′i) (i = 1, ..., n)

Simulator, S′

s0, si, βi
r← Zq, (i = 1, ..., n)

w ← x
(2)
1

Compute:
g′ ← gs0

∏n
j=1 g

sj
j g
′
j
−βj

ψj ← sj −
∑n
k=1Ajkβk mod q, (j = 1, ..., n)

ŵi ← x
(2)
i+1

∏n
j=1 g

2ψjAji , (i = 1, ..., n)

ŵ ← ws0g
∑n
j=1(s

2
j−β

2
j)
∏n
j=1 ŵ

−βj
j

Figure 5.3: Construction of simulator S′.

S′ outputs an accepted transcript (w, g′, (ŵi), ŵ, (βi), s0, (si)). We will now prove
that S′ perfectly simulates (P, V) when I ∈ E2

n+1 and that S′ perfectly simulates S when
I ∈ R2

n+1.

S′ perfectly simulates (P,V) when I ∈ E2
n+1: We assume I ∈ E2

n+1. S′ perfectly sim-
ulates (P, V) if transcripts constructed by S′ and (P, V) have the same distribution. The
proof is similar to the proof of Theorem 4, but we will outline the main differences.

In protocol I P chooses σ r← Zq . We now let: σ = log
x
(1)
1
x
(2)
1 . Remark that this will

tamper the protocol, because σ will still be a random value. P is given private input (ri)

defined as follows: ri = log
x
(1)
1
x
(1)
i+1.

This gives us that (P,V) chooses ψ, (ψi) and (βi) at random from Zq , and S′ chooses
s0, (si) and (βi) at random from Zq . It is clear that S′ perfectly simulates (P,V) when
I ∈ E2

n+1.

S′ perfectly simulates S when I ∈ R2
n+1: We assume I ∈ R2

n+1. In this case (x
(2)
1 , ..., x

(2)
n+1)

is chosen at random from Gq by S′. This gives us Table 5.1. It is clear that transcripts
constructed by S and S′ gives the same distribution, hence S′ perfectly simulate S when
I ∈ R2

n+1.
Figure 5.4 illustrates what we have proven so far. Transitivity gives us that if we have

an attacker B that is able to distinguish transcripts from (P,V) and S, then we have an
attacker F1 that is able do distinguish uniform instances from E2

n+1 and R2
n+1. From

Theorem 19 we know that if it is easy for F1 to distinguish these instances, then it is easy

51

Chapter 5. Permutation matrices

S S′

s0, si, βi
r← Zq(i = 1, ..., n) s0, si, βi

r← Zq , (i = 1, ..., n)

w, ŵi
r← Gq(i = 1, ..., n) x

(2)
i

r← Gq (i = 1, ..., n+ 1)

Table 5.1: Outline of the randomness in transcripts constructed by S and S′.

for A to solve the DDH problem. Hence, if it is easy for B to distinguish the transcripts, it
is easy for A to solve DDH. This completes the proof of the theorem.

(P,V) S′

I ∈ E2
n+1I ∈ E2

n+1 I ∈ R2
n+1 I ∈ R2

n+1

S′ S

Transcript Transcript Transcript Transcript≈
DDH
≈ ≈

Figure 5.4: An illustration of how the proof is constructed.

We note that as long as it is difficult to solve DDH, B will not be able to distinguish
if an accepted transcript (α, β, γ) was constructed by (P,V) or by S. The protocol is
computationally HVZK.

5.3 Proof II

We will in this section first construct Protocol II, and then look at the security of the
protocol. Sequences (gi) and (g′i) are made public, and a sequence (ri) and Aij is given
as private input to P. The protocol proves that Aij satisfies the second condition for
permutation matrices given in (5.2) and that (g′i) are computed correctly according to
(5.3).

Construction

Similarly to protocol I, we need to add randomizers to prevent that the protocol leaks infor-
mation about Aij . P draws randomizers τ, θ, ψ, (ψi), λ, (λi) and calculate commitments.
The commitments are sent to V, and V gives a challenge (βi) as a response. Finally P

52

5.3 Proof II

computes s0, (si) and d, send this to V, and V verifies if the following equations hold:

gs0
n∏
j=1

g
sj
j = g′

n∏
j=1

g′j
βj (5.12)

gd = u

n∏
j=1

u
β2
j

j (5.13)

tdvs0g
∑n
j=1(s

3
j−β

3
j) = v̂

n∏
j=1

v̂
βj
j t̂

β2
j

j (5.14)

This gives us as is a three move protocol with output (α, β, γ), where α = (t, v, u, (ui), g
′,

(t̂i), (v̂i), v̂), β = (βi), γ = (s0, (si), d). The protocol is illustrated in Figure 5.5.

Public input: p, q, g, n, (gi), (g′i) (i = 1, ..., n)
Private input to P: (ri), Aij (i, j = 1, ..., n)

Prover, P Verifier, V
τ, θ, ψ, ψi, λ, λi

r← Zq, (i = 1, ..., n)
Compute:
t← gτ , v ← gθ, u← gλ

ui ← gλi , (i = 1, ..., n)

g′ ← gψ
∏n
j=1 g

ψj
j

t̂i ← g
∑n
j=1 3ψjAji+τλi , (i = 1, ..., n)

v̂i ← g
∑n
j=1 3ψ2

jAji+θri , (i = 1, ..., n)

v̂ ← g
∑n
j=1 ψ

3
j+τλ+θψ

t,v,u,(ui)
n
i=1,g

′,(t̂i)
n
i=1,(v̂i)

n
i=1,v̂−−−−−−−−−−−−−−−−−−−−−−−−→

βi
r← Zq, (i = 1, ..., n)

(βi)
n
i=1←−−−−−−−−

Compute :
s0 ←

∑n
j=1 rjβj + ψ mod q

si ←
∑n
j=1Aijβj + ψi mod q, (i = 1, ..., n)

d←
∑n
j=1 λjβ

2
j + λ mod q

s0,(si)
n
i=1,d−−−−−−−−−−−→

Verify if
(5.12), (5.13) and (5.14) hold

Figure 5.5: Protocol II.

53

Chapter 5. Permutation matrices

Security

Theorem 23. Protocol II is complete.

Completeness can be proved with simple calculations.

Theorem 24. If V accepts Protocol II with non-negligible probability, then P∗ either

knows both (ri) and Aij satisfying (5.2), or can generate integers (ai) and a satisfying

ga
∏n
i=1 g

ai
i = 1 with overwhelming probability.

Recall that (5.2) is given by:
∑n
h=1AhiAhjAhk = 1 if i = j = k and 0 otherwise,

(5.3) is given by: g′i = gri
∏n
j=1 g

Aji
j and (5.9) is given by: g′ = gψ

∏n
j=1 g

ψj
j .

Proof. The theorem can be proved analogously to proof of Theorem 21. We can with
rewinding prove that P∗ knows (ri), Aij , ψ and (ψi) such that (5.3) and (5.9) are satisfied.
This knowledge implies that if V accepts then either (5.2) holds or P∗ is able to find a non-
trivial representation of 1. For the last statement, we can perform the exact same argument
as described in proof of Theorem 21. This shows that (5.12) will hold if P∗ is able to find
(ai) and a such that ga

∏n
i=1 g

ai
i = 1.

For the first statement we see that if (5.14) holds, then the following is satisfied:

0 = τ(

n∑
i=1

λiβ
2
j + λ)− τ(

n∑
i=1

λiβ
2
j + λ) + θ(

n∑
i=1

riβi + ψ)− θ(
n∑
i=1

riβi + ψ)

+ 3

 n∑
i=1

n∑
j=1

(ψ2
jAjiβi + ψjAjiβ

2
i)

− 3

 n∑
i=1

n∑
j=1

(ψ2
jAjiβi + ψjAjiβ

2
i)

+

n∑
i=1

n∑
j=1

n∑
k=1

(

n∑
h=1

AhiAhjAhk − δijk)βiβjβk

where we have used the fact that
∑n
j=1 β

3
j =

∑n
i=1

∑n
j=1

∑n
k=1 δijkβiβjβk. It is clear

that if (5.2) does not hold, then the probability that V accept is negligible. This completes
the proof of the theorem.

Remark that the protocol does not satisfy the ordinary soundness proopery, because
we can not assure that P∗ does not know the relation between (gi).

Theorem 25. Let B be an attacker that can distinguish if an accepted transcript (α, β, γ)

was constructed by (P, V) in Protocol II, or by a simulator S for Protocol II. We then have

an attacker A against DDH such that AdvB ≤ AdvA.

The theorem can be proved analogously to Theorem 22. We can construct a simulator
S for Protocol II, and construct an attacker F2 that can distinguish uniform instances from

54

5.4 Protocol III

E3
n+1 and R3

n+1. F2 can then act as a simulator S′. Theorem 18 gives us that if it is
easy for F2 to distinguish these instances, then it is easy for an attacker F1 to distinguish
uniform instances from E2

n+1 and R2
n+1.

This is the exact same situation we had in proof of Theorem 22, and we can conclude
that if it is difficult to solve DDH, then B will not be able to distinguish if an accepted
transcript (α, β, γ) was constructed by (P,V) or by S. The protocol is computationally
HVZK. We will not write the proof in detail here, but how S and S′ compute their values,
e.g. u, g′ and v̂ are included in proof of Theorem 30 in Section 5.6.

5.4 Protocol III

We want to prove that (ri) and Aij used in Protocol I and Protocol II are equal. We will
argue that this will be satisfied if we include a new basis (g̃, g̃1, ..., g̃n) in the Permutation
matrix protocol, where g̃ and (g̃i) are chosen at random. This basis should be independent
from the input ciphertexts. We can assure that the relation among the basis is unknown,
in contrast to the relation among (gi) (See proof of Theorem 21). Under the discrete
logarithm assumption it will then be computationally infeasible to obtain (ai) and a such
that g̃a

∏n
j=1 g̃

ai
j = 1 [4].

In the Permutation matrix protocol constructed in Section 5.6 the prover computes
g̃′i = g̃ri

∏n
j=1 g̃

Aji
j . He has to perform the same permutation on (g̃, g̃1, ..., g̃n) and

(g, g1, ..., gn). A new verification equation g̃s0
∏n
j=1 g̃

sj
j = g̃′

∏n
j=1 g̃

′
j
βj is added. We

can use the results from Protocol I and Protocol II:

• Aij satisfies (5.1). We know from Protocol I that given Aij , (ri), (g̃i) and (g̃′i), (g̃′i)

can be expressed as:

g̃′i = gri
n∏
j=1

g̃
Aji
j

when V accepts.

• Aij satisfies (5.2). We know from Protocol II that givenAij , (ri), (g̃i) and (g̃′i), (g̃′i)

can be expressed as:

g̃′i = gri
n∏
j=1

g̃
Aji
j

when V accepts.

Hence, Aij is proved to be a permutation according to Theorem 17. If (ri) and Aij not
are identical in the two representations of (g̃i) above, then the prover knows two different
representations of an element in the fixed basis, which means that he knows the relation

55

Chapter 5. Permutation matrices

among the elements. This goes against our assumption. It is therefore sufficient to add the
new basis in the Permutation matrix protocol to assure that (ri) and Aij used in Protocols
I and II are identical.

5.5 Protocol IV

This protocol proves that the same ri and Aij are used in computations of a re-encryption
pair (g′i, m

′
i). We will make use of a protocol that is used for proving knowledge of a

representation, written by Brands [4]. Encryption pairs ({gi,mi)} and re-encryption pairs
{(g′i,m′i)} are made public, in addition to the public key of the encryption scheme. A
sequence (ri) and Aij are given as private input to P.

Recall that according to (5.3) and (5.4) the re-encryption C ′i = (g′i,m
′
i) of a ciphertext

Ci = (gi,mi) is computes as:

(g′i,m
′
i) = (gri

n∏
j=1

g
Aji
j , yri

n∏
j=1

m
Aji
j)

Construction

The protocol is illustrated in Figure 5.6. First, P computes commitments g′ and m′, and
sends α = (g′,m′) to V. Second, P is given a random challenge (βi). Further, P computes
s0 and (si) and sends γ = (s0, (si)) to V. Finally, V verifies if the verification equations
hold:

gs0
n∏
j=1

g
sj
j = g′

n∏
j=1

g′j
βj (5.15)

ys0
n∏
j=1

m
sj
j = m′

n∏
j=1

m′j
βj (5.16)

This gives us a three move protocol with output (α, β, γ). For convenience, we enumerate
the following equations:

g′ = gψ
n∏
j=1

g
ψj
j (5.17)

m′ = yψ
n∏
j=1

m
ψj
j (5.18)

56

5.5 Protocol IV

Public input: p, q, g, n, y, {(gi,mi)}, {(g′i,m′i)} (i = 1, ..., n)
Private input to P: (ri), Aij (i, j = 1, ..., n)

Prover, P Verifier, V
ψ,ψi

r← Zq, (i = 1, ..., n)

Compute g′ and m′

according to (5.17) and (5.18)
g′,m′−−−−−−−→

βi
r← Zq, (i = 1, ..., n)

(βi)
n
i=1←−−−−−−−−

s0 ←
∑n
j=1 rjβj + ψ,modq

si ←
∑n
j=1Aijβj + ψi mod q, (i = 1, ..., n)

s0,(si)
n
i=1−−−−−−−−−−→

Verify if
(5.15) and (5.16) hold

Figure 5.6: Protocol IV.

Security

Theorem 26. Protocol IV is complete.

The completeness of the protocol is easy to see with simple calculations.

Theorem 27. If V accepts Protocol IV with non-negligible probability, then P∗ either

knows both (ri) and Aij such that the relation between (5.3), (5.4), (5.17) and (5.18) are

satisfied, or can generate integers (ai) and a satisfying ga
∏n
i=1 g

ai
i = 1 with overwhelm-

ing probability.

Proof. We perform rewinding, equally to the rewinding performed in proof of Theorem
21. This proves that P∗ knows (ri), Aij , ψ and (ψi) such that (5.3), (5.4), (5.17) and
(5.18) are satisfied. We will prove that this knowledge implies that the same ri and Aij is
used to construct a re-encryption pair (g′i,m

′
i) when V accepts.

57

Chapter 5. Permutation matrices

If verification equation (5.15) holds, then:

g
∑n
j=1 rjβj+ψ

n∏
i=1

g
∑n
j=1 Aijβj+ψi

i = g′
n∏
i=1

g′j
βj

gψ
n∏
i=1

gψii

n∏
j=1

(
grjβj

n∏
i=1

g
Aijβj
i

)
= g′

n∏
i=1

g′j
βj

gψ
∏n
i=1 g

ψi
i

g′

n∏
j=1

(
grj
∏n
i=1 g

Aij
i

g′j

)βj
= 1

The probability for this to hold if (5.3) and (5.17) does not hold is negligible. Similarly, if
(5.16) holds, then:

yψ
∏n
i=1m

ψi
i

m′

n∏
j=1

(
yrj
∏n
i=1m

Aij
i

m′j

)βj
= 1

The probability for this to hold if (5.4) and (5.18) does not hold is negligible. Hence,
(g′i,m

′
i) are computed correctly.

For the second statement of the theorem, we use the exact same argument described
in proof of Theorem 21, where we saw that P∗ can forge a proof if he is able to generate
non-trivial integers (ai) and a such that ga

∏n
i=1 g

ai
i = 1.

This gives us that if V accepts the protocol, then either the same ri and Aij are used to
compute a pair (g′i,m

′
i), or P∗ is able to find a non-trivial representation of 1.

We note that the protocol, similarly to Protocol I, does not satisfy the ordinary sound-
ness property, because we can not assure that P∗ does not know the relation between
(g1, ..., gn). Remark that in this protocol Aij is not proved to be a permutation matrix.

5.6 The Permutation matrix protocol

We have now constructed Protocols I, II and IV, and explained how the conditions in
Protocol III can be met. These proofs can be executed in parallel, resulting in a protocol
that reduces communication complexity.

Encryption, and re-encryption pairs {(gi,mi)} and {(g′i,m′i)} are given as public in-
put. In addition, the new basis g̃ and (g̃i), and the public key for the encryption scheme are
public. A sequence (ri) and a permutation matrix Aij are given as private input to P. The
protocol proves that Aij is a permutation matrix, and that the same ri and Aij is used to
compute a re-encryption pair. We know from Section 5.1.2 that this is sufficient to prove

58

5.6 The Permutation matrix protocol

correctness of the shuffle.

Construction

The Permutation matrix protocol is a three move protocol illustrated in Figure 5.7. First, P
draws random values, computes commitments, and sends the commitments to V. Second,
V then sends a challenge (βi) to P. Third, P computes s0, (si) and d and sends this to V.
Finally, V verifies if the verification equations hold:

g̃s0
n∏
j=1

g̃
sj
j = g̃′

n∏
j=1

g̃′j
βj (5.19)

gs0
n∏
j=1

g
sj
j = g′

n∏
j=1

g′j
βj (5.20)

ys0
n∏
j=1

m
sj
j = m′

n∏
j=1

m′j
βj (5.21)

ws0g
∑n
j=1(s

2
j−β

2
j) = ŵ

n∏
j=1

ŵ
βj
j (5.22)

gd = u

n∏
j=1

u
β2
j

j (5.23)

tdvs0g
∑n
j=1(s

3
j−β

3
j) = v̂

n∏
j=1

v̂
βj
j t̂

β2
j

j (5.24)

Security

For convenience we enumerate the following equations:

g̃′i = g̃ri
n∏
j=1

g̃
Aji
j (5.25)

g̃′ = g̃ψ
n∏
j=1

g̃
ψj
j (5.26)

Theorem 28. The Permutation matrix protocol is complete.

Completeness of the protocol can be proved with simple calculations.

Theorem 29. If V accepts the Permutation matrix protocol with non-negligible probabil-

ity, then P∗ either knows both (ri) and a permutation matrix Aij satisfying both (5.3) and

59

Chapter 5. Permutation matrices

Public input: p, q, g, y, n, g̃, (g̃i) {(gi,mi)}, {(g′i,m′i)} (i = 1, ..., n)
Private input to P: (ri), Aij(i, j = 1, ..., n)

Prover, P Verifier, V
σ, τ, θ, ψ, ψi, λ, λi

r← Zq, (i = 1, ..., n)
Compute:
t← gτ , v ← gθ, w ← gσ, u← gλ

ui ← gλi , (i = 1, ..., n)

g̃′i ← g̃ri
∏n
j=1 g̃

Aji
j , (i = 1, ..., n)

g̃′ ← g̃ψ
∏n
j=1 g̃

ψj
j

g′ ← gψ
∏n
j=1 g

ψj
j

m′ ← yψ
∏n
j=1m

ψj
j

t̂i ← g
∑n
j=1 3ψjAji+τλi , (i = 1, ..., n)

v̂i ← g
∑n
j=1 3ψ2

jAji+θri , (i = 1, ..., n)

v̂ ← g
∑n
j=1 ψ

3
j+τλ+θψ

ŵi ← g
∑n
j=1 2ψjAji+σri , (i = 1, ..., n)

ŵ ← g
∑n
j=1 ψ

2
j+σψ

t,v,w,u,(ui)
n
i=1,(g̃

′
i)
n
i=1,g̃

′

−−−−−−−−−−−−−−−−−−−−→
g′,m′,(t̂i)

n
i=1,(v̂i)

n
i=1,v̂,(ŵi)

n
i=1,ŵ−−−−−−−−−−−−−−−−−−−−−−−−−→

βi
r← Zq, (i = 1, ..., n)

(βi)
n
i=1←−−−−−−−−

Compute:
s0 ←

∑n
j=1 rjβj + ψ mod q

si ←
∑n
j=1Aijβj + ψi mod q, (i = 1, ..., n)

d←
∑n
j=1 λjβ

2
j + λ mod q

s0,(si)
n
i=1,d−−−−−−−−−−−→

Verify if:
(5.19), (5.20), (5.21)
(5.22), (5.23), (5.24) hold

Figure 5.7: The Permutation matrix protocol.

60

5.6 The Permutation matrix protocol

(5.4), or can generate integers (ai) and a satisfying g̃a
∏n
i=1 g̃

ai
i = 1 with overwhelming

probability.

Recall if (5.3) and (5.4) are satisfied then (g′i,m
′
i) = (gri

∏n
j=1 g

Aji
j , yri

∏n
j=1m

Aji
j).

Proof. This theorem can easily be proved by combining the results from Theorems 21,
24 and 26. With rewinding we can prove that P∗ knows (ri), Aij , ψ and (ψi) that satisfy
(5.25) and (5.26) when (5.19) is satisfied. This knowledge implies that Aij satisfies (5.1)
and (5.2), if verification equations (5.19), (5.22), (5.23) and (5.24) hold. Hence, Aij is
proved to be a permutation matrix according to Definition 6.

We can use the same argument described in proof of Theorem 26 to prove that when
(5.20) and (5.21) are satisfied the same (ri) and Aij have been used to compute a re-
encryption pair (g′i,m

′
i) . This yields the correctness of the shuffle.

For the last statement of the theorem, we use the same approach as earlier, and prove
that it is a possibility for P∗ to fore a proof. Verification equation (5.19) is satisfied if the
following holds:

g̃s0−
∑n
j=1 rjβj+ψ

n∏
j=1

g̃
sj−

∑n
j=1 Aijβj+ψi

j = 1

If s0 6=
∑n
j=1 rjβj + ψ or si 6= Aijβj + ψi for some i, then P∗ is able to find (ai) and a

such that:

g̃a
n∏
i=1

g̃aii = 1

Hence, if V accepts, then P∗ knows both (ri) and a permutation matrix Aij and the
re-encryption is performed correctly according to (5.3) and (5.4), or he is able to find a
non-trivial representation of 1.

As written in proof in Section 5.4, if (g̃i) is chosen at random, then we can make it
computationally infeasible for P∗ to obtain such (ai) and a under the discrete logarithm
assumption. Hence, the Permutation matrix protocol is a proof of knowledge if is difficult
to compute discrete logarithms. This gives us that the protocol is computationally sound.

Theorem 30. Let B be an attacker that can distinguish if an accepted transcript (α, β, γ)

was constructed by (P,V) in the Permutation matrix protocol or by a simulator S for the

Permutation matrix protocol. We then have an attacker A against DDH such that AdvB

≤ AdvA.

Proof. We can construct a proof analogously to the proof of Theorem 22. We will con-
struct a simulator S of the Permutation matrix protocol, and then construct an attacker F2

61

Chapter 5. Permutation matrices

that can distinguish uniform instances from E5
n+1 and R5

n+1. We will explain how F2 can
act as a simulator S′. Theorem 18 gives us that if it is easy for F2 to distinguish these
instances, then it is easy for an attacker F1 to distinguish uniform instances from E2

n+1

and R2
n+1. This is the exact same situation we had in proof of Theorem 22, and we can

conclude that if it is difficult to solve DDH, then B will not be able to distinguish if an
accepted transcript (α, β, γ) was constructed by (P,V) or by S. For completeness sake,
we will include the full proof of the theorem:

We first construct a simulator S for the Permutation matrix protocol, then we construct
an attacker F2, and explain how F2 can act as a simulator S′.

Construction of S: The simulator is constructed in Figure 5.8. The output is given as:
(t, v, w, u, (ui), (g̃′i), g̃

′, g′, m′, (t̂i), (v̂i), v̂, (ŵi), ŵ, (βi), s0, (si), d).

Input: p, q, g, y, n, g̃, {(gi,mi)}, {(g′i,m′i)} (i = 1, ..., n)

Simulator, S
s0, si, βi, d,

r← Zq, (i = 1, ..., n)

t, v, w, ui, t̂i, v̂i, ŵi, g̃
′
i
r← Gq, (i = 1, ..., n)

Compute:

u← gd
∏n
j=1 u

−β2
j

j

g̃′ ← g̃s0
∏n
j=1 g̃

sj
j g̃
′
j
−βj

g′ ← gs0
∏n
j=1 g

sj
j g
′
j
−βj

m′ ← ys0
∏n
j=1m

sj
j m

′
j
−βj

v̂ ← tdvs0g
∑n
j=1(s

3
j−β

3
j)
∏n
j=1 t̂

−β2
j

j v̂
−βj
j

ŵ ← ws0g
∑n
j=1(s

2
j−β

2
j)
∏n
j=1 ŵ

−βj
j

Figure 5.8: Construction of a simulator S for the Permutation matrix protocol.

Construction of F2: We construct an attacker F2 that can distinguish between uniform
instances from E5

n+1 and R5
n+1 if S cannot simulate the Permutation matrix protocol.

Assume that I = (x
(1)
1 , x

(2)
1 , ..., x

(5)
1 , ..., x

(1)
n+1, x

(2)
n+1, ..., x

(5)
n+1), was chosen uniformly

from either E(5)
n+1 or R(5)

n+1.

We let g = x
(1)
1 , g̃ = x

(2)
1 , y = gX , X r← Zq . F2 generates {(gi,mi)} and {(g̃i, m̃i)}

as the constants used in Permutation matrix protocol. He generates a random permutation

62

5.6 The Permutation matrix protocol

matrix Aij , and computes:

(g′i,m
′
i) = (x

(1)
i+1

n∏
j=1

g
Aji
j , (x

(1)
i+1)X

n∏
j=1

m
Aji
j), (i = 1, ..., n)

F2 will now act as a simulator S′, constructed in Figure 5.9. The simulator outputs
(t, v, w, u, (ui), (g̃′i), g̃′, g′, m′, (t̂i), (v̂i), v̂, (ŵi), ŵ, (βi), s0, (si), d).

Input: p, q, g, y, n, g̃, {(gi,mi)}, {(g′i,m′i)} (i = 1, ..., n)

Simulator, S′

s0, si, βi, d, hi
r← Zq, (i = 1, ..., n)

Let : t = x
(3)
1 , v = x

(4)
1 , w = x

(5)
1

Compute:
ui ← (x

(1)
i+1)hi mod p, i = 1, ..., n

u← gd
∏n
j=1 u

−β2
j

j

g̃′i ← x
(2)
i+1

∏n
j=1 g̃

Aji
j , (i = 1, ..., n)

g̃′ ← g̃s0
∏n
j=1 g̃

sj
j g̃
′
j
−βj

g′ ← gs0
∏n
j=1 g

sj
j g
′
j
−βj

m′ ← ys0
∏n
j=1m

sj
j m

′
j
−βj

ψj ← sj −
∑n
k=1Ajkβk mod q, (j = 1, ..., n)

t̂i ← (x
(3)
i+1)hi

∏n
j=1 g

3ψjAji , (i = 1, ..., n)

v̂i ← x
(4)
i+1

∏n
j=1 g

3ψ2
jAji , (i = 1, ..., n)

ŵi ← x
(5)
i+1

∏n
j=1 g

2ψjAji , (i = 1, ..., n)

v̂ ← tdvs0g
∑n
j=1(s

3
j−β

3
j)
∏n
j=1 t̂

−β2
j

j v̂
−βj
j

ŵ ← ws0g
∑n
j=1(s

2
j−β

2
j)
∏n
j=1 ŵ

−βj
j

Figure 5.9: Construction of S′.

S′ perfectly simulates (P,V) when I ∈ E5
n+1: In the Permutation matrix protocol (ri), is

given as private input to P. We now define ri as follows:

ri = log
x
(1)
1
x
(1)
i+1,

63

Chapter 5. Permutation matrices

and σ, τ , θ, λi(i = 1, ..., n) as:

λi = (log
x
(1)
1
x
(1)
i+1)hi

τ = log
x
(1)
1
x
(3)
1

θ = log
x
(1)
1
x
(4)
1

σ = log
x
(1)
1
x
(5)
1

This gives the following values used by S′(i = 1, ..., n):

x
(1)
i+1 = gri

(x
(1)
i+1)hi = gλi

x
(2)
i+1 = g̃ri

(x
(3)
i+1)hi = gτλi

x
(4)
i+1 = gθri

x
(5)
i+1 = gσri

We summarize what is chosen at random by (P,V) and S′ in Table 5.2. We stress
that (λi) are random values, because (hi) is chosen at random from Zq . It is clear that S′

perfectly simulates (P,V) when I ∈ E5
n+1, because their constructed transcripts give the

same distribution.

(P,V) S′

ψ,ψi, λ, λi, βi
r← Zq(i = 1, ..., n) s0, si, βi

r← Zq, (i = 1, ..., n)

d, hi
r← Zq, (i = 1, ..., n)

Table 5.2: Outline of the randomness in transcripts constructed by (P,V) and S′.

S′ perfectly simulates S when I ∈ R5
n+1: In this case, S′ randomly chooses (x

(2)
i , x

(3)
i , x

(4)
i ,

x
(5)
i) (i = 1, ..., n + 1) from Gq . Recall that g̃ = x

(2)
1 . Hence, g̃ is a random number.

We summarize what is chosen at random by S and S′ in Table 5.3. It is easy to see that
transcripts constructed by S and S′ have the same distribution, hence S′ perfectly simulates
S when I ∈ R5

n+1.
Transitivity gives us that if we have an attacker B that is able to distinguish transcripts

from (P,V) and S, then we have a distinguisher F2 that is able do distinguish uniform
instances from E5

n+1 and R5
n+1. Theorems 18 and 19 impliy that if it is easy for B to

distinguish the transcripts, then A can easily solve the DDH problem.

64

5.6 The Permutation matrix protocol

S S′

s0, si, βi, d
r← Zq(i = 1, ..., n) s0, si, βi

r← Zq, (i = 1, ..., n)

g̃, t, v, w, ui, t̂i
r← Gq (i = 1, ..., n) d, hi

r← Zq, (i = 1, ..., n)

v̂i, ŵi, g̃
′
i
r← Gq(i = 1, ..., n) x

(2)
i , x

(3)
i , x

(4)
i , x

(5)
i

r← Gq (i = 1, ..., n+ 1)

Table 5.3: Outline of the randomness in transcripts constructed by S and S′.

Hence, B will not be able to distinguish if an accepted transcript (α, β, γ) was con-
structed by (P,V) or by S if it is difficult to solve DDH. The protocol is computationally
HVZK.

Theorem 31. The number of exponentiation required in the Permutation matrix protocol

is (18n+ 18).

Proof. The number of exponentiations required by the prover and verifier is summarized
in Table 5.4. This gives us a total of (18n+ 18) exponentaitons to run the protocol.

Prover, P Verifier, V
Computation Exponentiations Computation Exponentiations

t 1 (5.19) 2n+ 1
v 1 (5.20) 2n+ 1
w 1 (5.21) 2n+ 1
u 1 (5.22) n+ 2

(ui) n (5.23) n+ 1
g̃′i n (5.24) 2n+ 3
g̃′ n+ 1
g′ n+ 1
m′ n+ 1
(t̂i) n
(v̂i) n
v̂ 1

(ŵi) n
ŵ 1

Total: 8n+ 9 Total: 10n+ 9

Table 5.4: Exponentiations required in the Permutation matrix protocol.

65

Chapter 5. Permutation matrices

66

Chapter 6
Closing remarks

We have in this thesis discussed three protocols for verifiable shuffling a sequence of en-
crypted elements. This means that the mixnodes proves that they operate correctly accord-
ing to the protocol. The Naive protocol, and Neff‘s Simple n-shuffle make use of the fact
that polynomials are identical under permutation of their roots. The Permutation matrix
protocol of Furukawa and Sako belongs to the other domain of verifiable shuffling, and
make use of a permutation matrix. We note that a mixnet that exists of verifiable shuffle
protocols will achieve unlinkability, because we can assure that at least one mixnode in
the network operates correctly.

We have also examined the cMix protocol, which is an offline-online approach of
mixnets. The authors of the protocol claim that cMix achieves unlinkability, but a formal
security proof of the protocol is not written. Hence, we do not know whether it is secure
or not. It is worth mentioning that including RPC in the cMix protocol will prevent both
the insider- and tagging attacks described in Section 3.2. RPC can somehow be compared
with verifiable shuffling because this method is used to verify if the mixnodes follow the
protocol correctly. Remark that cMix will not achieve the same security as the verifiable
shuffling protocols if RPC is implemented, because the mixnodes is not proved to operate
correctly.

In Table 6.1 we summarize the security achieved in the protocols, and number of ex-
ponentiations required for each mixnode in the network.

By comparing the results represented in Table 6.1, cMix requires the least amount of
work. This is not surprising, because the protocols do not provide verifiable shuffling.
We stress that all the exponentiations required in cMix are done in an offline phase. This
improves the protocols latency, which means that the total time spent form the network

67

Chapter 6. Closing remarks

Protocol Exponentiations required Security Verifiable shuffling?
cMix 5n Nothing proved No

The Naive protocol 13n− 12 Sound Yes
Computationally HVZK

The Simple n-shuffle 6n+ 2 Sound Yes
Perfect HVZK

The Permutation matrix 18n+ 18 Computationally sound Yes
protocol Computationally HVZK

Table 6.1: Comparison of shuffles.

receives n messages and the protocol starts running, to the receives gets their messages,
will be low.

We see that the Simple n-shuffle satisfies both soundness and perfect HVZK, and re-
quire the least amound of exponentiations of the verifiable shuffle protocols. The Permu-
tation matrix protocol is only sound and HVZK if the discrete logarithm assumption and
DDH assumption hold respectively.

Finally, we want to mention that both the Simple n-shuffle and the Permutation matrix
protocol have been optimized and improved. The simple n-shuffle was first improved by
Neff to a General n-shuffle [24], and later by Bayer and Groth, Groth and Groth and Ishai
[2, 18, 19]. The shuffle by Furukawa and Sako has been improved by Furukawa [12], and
Wikström showed how to split a shuffle that make use of a permutation matrix in an offline
and online phase [30]. As we have discussed, this will reduce the protocols latency.

68

Bibliography

[1] Ben Adida and Douglas Wikström. Offline/online mixing. In International Collo-

quium on Automata, Languages, and Programming, pages 484–495. Springer, 2007.

[2] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 263–280. Springer, 2012.

[3] Josh Benaloh. Simple verifiable elections. In EVT ’06, Proceedings of the first

Usenix/ACCURATE Electronic voting technology workshop, pages 5–5, 2006.

[4] Stefan A Brands. An efficient off-line electronic cash system based on the represen-
tation problem. Technical report CSR9323, CWI, 1993.

[5] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
De Ruiter, and Alan T Sherman. cMix: mixing with minimal real-time asymmet-
ric cryptographic operations. In International Conference on Applied Cryptography

and Network Security, pages 557–578. Springer, 2017.

[6] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri de Ruiter, Alan T
Sherman, and D Das. cMix: Anonymization by high-performance scalable mixing.
25th USENIX Security Sym-posium, 2016.

[7] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[8] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
Efficient multiparty computations secure against an adaptive adversary. In Inter-

69

national Conference on the Theory and Applications of Cryptographic Techniques,
pages 311–326. Springer, 1999.

[9] Ivan Damgård. Commitment schemes and zero-knowledge protocols. In School

organized by the European Educational Forum, pages 63–86. Springer, 1998.

[10] Ivan Damgård. On σ-protocols. Lecture Notes, University of Aarhus, Department

for Computer Science, 2002.

[11] Ivan Damgård and Jesper Buus Nielsen. Commitment schemes and zero-knowledge
protocols, 2006.

[12] Jun Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE

transactions on fundamentals of electronics, communications and computer sciences,
88(1):172–188, 2005.

[13] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Annual

International Cryptology Conference, pages 368–387. Springer, 2001.

[14] Herman Galteland, Stig F Mjølsnes, and Ruxandra F Olimid. Attacks on the basic
cMix design: On the necessity of commitments and randomized partial checking.
In International Conference on Cryptology in Malaysia, pages 463–473. Springer,
2016.

[15] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[16] Jens Groth. A verifiable secret shuffe of homomorphic encryptions. In International

Workshop on Public Key Cryptography, pages 145–160. Springer, 2003.

[17] Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series
DS-04-3, BRICS, 2004.

[18] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Journal of

Cryptology, 23(4):546–579, 2010.

[19] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of
a shuffle. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 379–396. Springer, 2008.

[20] Carmit Hazay and Yehuda Lindell. A note on zero-knowledge proofs of knowledge
and the zkpok ideal functionality. IACR Cryptology ePrint Archive, 2010:552, 2010.

70

[21] Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In USENIX security symposium,
pages 339–353. San Francisco, USA, 2002.

[22] Helger Lipmaa and Bingsheng Zhang. A more efficient computationally sound
non-interactive zero-knowledge shuffle argument. Journal of Computer Security,
21(5):685–719, 2013.

[23] Ueli Maurer. Unifying zero-knowledge proofs of knowledge. In International Con-

ference on Cryptology in Africa, pages 272–286. Springer, 2009.

[24] C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Pro-

ceedings of the 8th ACM conference on Computer and Communications Security,
pages 116–125. ACM, 2001.

[25] C Andrew Neff. Verifiable mixing (shuffling) of elgamal pairs. Technical report, In
proceedings of PET 03, LNCS series, 2003.

[26] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel
and all/nothing election scheme. In Workshop on the Theory and Application of of

Cryptographic Techniques, pages 248–259. Springer, 1993.

[27] Andreas Pfitzmann and Michael Waidner. Networks without user observabil-
ity—design options. In Workshop on the Theory and Application of of Cryptographic

Techniques, pages 245–253. Springer, 1985.

[28] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-
knowledge proofs. In International Conference on the Theory and Applications of

Cryptographic Techniques, pages 415–431. Springer, 1999.

[29] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,
pages 256–266. Springer, 1997.

[30] Douglas Wikström. A commitment-consistent proof of a shuffle. In Australasian

Conference on Information Security and Privacy, pages 407–421. Springer, 2009.

71

72

	Summary
	Preface
	Table of Contents
	Introduction
	Mixnet
	Verifiable shuffling
	Outline of the thesis

	Theory
	Indistinguishability
	Zero knowledge argument
	-protocols

	Proof of knowledge
	Rewinding

	Commitments
	Assumptions

	cMix
	Construction
	Notation
	Protocol description

	Security
	Insider attack
	Tagging attack

	Number of exponentiations

	Roots of polynomials
	The Naive protocol
	The Multiplication protocol
	The Naive protocol

	Neff`s shuffle
	Iterated logarithmic multiplication proof protocol (ILMPP)
	The Simple n-shuffle

	Permutation matrices
	Basic ideas
	Permutation matrix
	Correctness of shuffle
	Outline of the Permutation matrix protocol
	Security of the protocols

	Protocol i
	Proof ii
	Protocol iii
	Protocol iv
	The Permutation matrix protocol

	Closing remarks
	Bibliography

