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Abstract
Fluid extraction has led to compaction, land subsidence, flooding and even earthquakes many places around the world. 
Although rare, the environmental costs could be overwhelming. Once compaction has been identified, possible future conse-
quences should be investigated. If deemed adverse, preventive actions should be started as soon as possible to mitigate future 
damage. The purpose of this study is to enable simultaneous prediction of possible changes in thickness and permeability 
by a simplified analytical model. These changes may occur simultaneously or separately. Although best, studies by numeri-
cal simulation are time consuming and expensive. A fluid extraction period may also be necessary to match the model to 
observed behavior. A pressure transient test, on the other hand, may be conducted once a formation has been penetrated. Due 
to simplicity and ease of application, we believe our methodology will be useful, at least as screening tool. Our model, which 
is a generalization of a classical one, Raghavan et al. (SPEJ 253:267–386, 1972) and Pedrosa (1986), has been extended to 
account for boundary dominated flow and for the effect of wellbore storage and skin. During the last decades, many stud-
ies have expanded and improved the Pedrosa theory. We rediscover the Pedrosa (1986) equations, but with a composite 
(sum) modulus replacing the permeability modulus and an additional modulus to thickness in the storability coefficient. 
Our model will simplify to the Pedrosa model and many others by simple changes in the input data. The traditional well test 
model, without stress-sensitivity, is included as limiting behavior. Most commercial well test simulators already include 
the majority of coding to take advantage of the proposed technique. We find that the value of the sum modulus may either 
enhance or mask the existence of stress-sensitivity. The latter may be an important problem in case of a negative permeability 
modulus. This could reduce the value of the sum modulus due to appearance of additional fractures. Then, results obtained 
with the present model are likely to be misleading. The present methodology should be used with caution under this condi-
tion. Important in situ fracture generation may be detected by strong micro seismic activity. Core analysis may also give a 
forewarning of brittle formations. The use of the proposed well test model leads to many different possible interpretations 
(non-uniqueness). Hence, selecting a plausible reservoir model depends on the existence of information that is independent 
of well testing. The proposed model may be of interest in ground water hydrology, for wastewater disposal, geothermal- and 
petroleum reservoirs. We derive equations for the dynamic behavior of the thickness and permeability.

Keywords Compaction · Analytical solutions · Compaction ramifications · Type curves

Introduction

Fluid extraction has led to compaction, land subsidence, 
flooding and even earthquakes many places around the 
world. Decreasing thickness and altered permeability may 

compromise well integrity and have serious environmen-
tal ramifications. On the positive side, compaction may 
also be an important production mechanism. Examples of 
subsidence are Venice, Groningen and Ekofisk, Doornhof 
et al. (2006). Once compaction has been identified, possible 
future consequences should be estimated. If deemed adverse, 
preventive actions should be taken as soon as possible to 
mitigate future damage. Subsidence due to fluid withdrawal 
“has been measured to about 10 m in Mexico, Japan and the 
United States for example”, Johnson (1991).

Manmade subsidence has been with us for more than 
a century, Prat and Johnson (1926). The problem has not 
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yet been satisfactorily solved. It still reoccurs many places 
around the world.

Subsidence is often reported in the regular press. For 
example, Guardian reported subsidence in Groningen, 
(10th October, 2015) and New York Times about Ekofisk, 
(August 19, 1987), both in Europe.

The focus of this work is on simultaneous changes in 
reservoir thickness and permeability.

Doornnhof et al. (2006) point out that a variety of dif-
ferently classified reservoirs may be prone to compaction 
and subsidence. Examples are; high and low permeability 
reservoirs, geo-pressured reservoirs, etc.

Stress-sensitive reservoirs may also be classified as 
non-recoverable and/or recoverable. A recoverable (elas-
tic) reservoir will rebound if refilled. Whatever classi-
fication, we assume that the pressure behavior may be 
described by exponential functions.

The cost effective way to achieve dynamic reservoir 
data is pressure transient analysis (PTA). A test may be 
conducted once a new well has penetrated a formation. 
In addition, pressure transients move quickly compared 
to fluid movements. Hence, a well test may give an early 
warning of incipient problems.

Exploration wells are typically vertically drilled to 
delineate the reservoir thickness, extent and fluid content. 
Knowledge of the initial thickness is crucial to quantify 
deformation, reservoir volume etc.

A host of studies on the effect of stress-sensitivity 
has been published. Research on the combined effect of 
changes in permeability and thickness has not received 
much attention. In many cases, there is a contrast in adjust-
ment time. The effect of permeability changes (reduced 
inflow performance) can show up quickly, while compac-
tion requires more time. The rate of withdrawal, which is 
crucial for the well economy, is a strong function of the 
current value of the permeability. Hence, the variation of 
permeability is more likely to receive attention.

We invoke the traditional assumptions: The volume of 
grains remain constant, all pressure-dependent variables 
may be described by exponential functions of pressure and, 
in case of build-up, negligible hysteresis. In addition, the 
assumption of an instantaneous response is implied. Next, 
we assume that the pressure dependency of the thickness 
also follows an exponential pressure function. The latter 
assumption leads to an additional “compressibility” in the 
diffusivity equation.

An inherent problem of traditional well test interpre-
tation is non-unique responses and more variables than 
equations. Hence, the analyst has to rely on data from 
other sources. Core analysis, well logging, PVT analy-
sis etc. may help estimate the initial rock properties: per-
meability, porosity and thickness. In addition, fluid and 

matrix compressibility may be obtained. These techniques 
are useful, also for stress-sensitive reservoirs.

Pressure transient analysis depends on matching predic-
tions from a plausible mathematical model to observed data. 
The model is a diffusivity equation with appropriate bound-
ary conditions. In case of stress-sensitive reservoirs, the dif-
fusivity equation is non-linear. This is because coefficients to 
the gradient terms depends on pressure changes, Eq. (1). The 
non-linear diffusivity equation has no known exact solution.

Approximate solutions, however, may be available, Al-
Hussainy et  al. (1966). They proposed to transform the 
non-linear diffusivity equation into a simpler form by the 
Kirchhoff integral. The result was a diffusivity equation of 
linear appearance. The simplified equation, however, was still 
non-linear. This problem was avoided (neglected) by evaluat-
ing all pressure-dependent variables at the initial condition. 
Then, they obtained a linear equation in terms of transformed 
variable. The important consequence is that many known 
solutions for slightly compressible fluids are also available 
for gas wells. They coined the term “real gas pseudo poten-
tial” to describe their transformed variable. Then, the pd-
function for a traditional reservoir is also a solution to the 
pseudo potential function. Since then, the pseudo potential 
technique has been applied to PTA for many important prob-
lems, including stress-sensitive reservoirs.

Raghavan et al. (1972) proposed a pioneering well test 
model for pressure-dependent rock and fluid properties. 
They used the pseudo pressure approach. Their pseudo 
potential function included the effect of density, permeabil-
ity and porosity changes.

Literature shows that most analytical studies rely on 
either the pseudo pressure approach or a logarithmic sub-
stitution (Cole-Hopf transformation). Jelmert and Selseng 
(1997) showed that these are equivalent for exponential 
pressure behavior. The authors pointed out that the former 
is more flexible with respect to the choice of parametric 
equations. Use of the former technique has been discussed 
in many studies, for example, Friedel and Voigt (2009) and 
Samaniego and Cinco-Ley (1989).

Pedrosa (1986) used a similar approach as Raghavan 
et al. (1972), but he assumed an exponential relationship 
between permeability and pressure. In addition, he invoked 
the slightly compressible fluid assumption. With known 
initial value, the permeability-function depends the modu-
lus only. A logarithmic substitution, Eq. (7), transforms the 
non-linear governing equation into a diffusivity equation 
of simpler appearance, Eq. (8). The non-linear diffusivity 
coefficient, however, makes analytical solutions intractable. 
Again, this problem may be circumvented by evaluation 
of all pressure-dependent variables at the initial condition. 
Then, the coefficient to the temporal derivative assumes 
unit value and Eq. (8) simplifies to the traditional diffusiv-
ity equation without stress-sensitivity, Eq. (47). To improve 
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an obviously simplistic solution, he proposed to enhance the 
accuracy by regular perturbations. He published two solu-
tions. First, the zero order solution, which is the solution 
to the linear problem, the traditional line source solution, 
Eq. (48). Then, an improved solution, the first order per-
turbation, Eq. (49). Once an approximate solution has been 
obtained, it can easily be converted back to pressure by Eq. 
(42). This is advantageous since pressure, not pseudo pres-
sure, is measured.

Kikani and Pedrosa (1991) matched the Pedrosa (1986) 
model to real data. They argued that the zero order solution 
is of sufficient accuracy for many engineering applications. 
This is because the first order solution is multiplied by the 
dimensionless permeability modulus squared, which usu-
ally assumes small values. In addition, they showed that the 
permeability modulus could be quantified by type-curve 
analysis, provided the initial permeability may be obtained. 
They also obtained a second order perturbation solution. 
According to them, the latter did not make much difference.

During the last decades, many studies have expanded and 
improved the Pedrosa theory (1986). Our model will sim-
plify to the Pedrosa (1986) model and many others by simple 
changes in the input data.

Theory

The basic theory of this study has been explained previously, 
Jelmert and Toverud (2016). They found that the pressure 
equations for a compacting reservoir remain unchanged 
when compared against those obtained in Kikani and 
Pedrosa (1991), but with dimensionless time differently 
defined. In addition, the composite (sum) modulus replaces 
the permeability modulus. This study expands the scope of 
their methodology.

The diffusivity equation, Eq. (1), may be thought of as 
consisting of two parts, the transport term on the left hand 
side (LHS) and the storage term on the right hand side 
(RHS). The mass flow rate shows up inside the parenthesis 
on LHS. The outer space derivative implies change of mass 
flow rate. The storability is the coefficient to the time deriva-
tive on the RHS. The terms inside the parenthesis is the mass 
currently in place. The derivative with respect to pressure 
implies rate of change. Hence, the rate of change in mass 
flow rate is balanced by the rate of change of mass stored.

The generalized diffusivity equation for compacting 
media is, Raghavan et al. (1972):
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On LHS, the permeability—thickness product accounts 
for altered flow capacity. On RHS, the inclusion of thickness 
accounts for the shrinking reservoir volume due to compaction.

Index n denotes normalized to the initial condition, while 
index i denotes at the initial condition. The pressure-dependent 
variables are; density, permeability, thickness and viscosity 
on LHS. On RHS: thickness, density and porosity. The new 
element, compared to previous studies, is the simultaneous 
appearance of permeability and thickness as state variables.

After some manipulations of Eq. (1), we find:

where

The addends of the composite modulus are modulus to 
permeability, thickness, viscosity, and the compressibility of 
the fluid. The addition property depends on the assumption of 
exponential pressure functions.

Pedrosa (1986) found that the perturbation procedure would 
be simplified whenever Eq. (4) is a valid approximation to 
Eq. (2). This criterion is satisfied if 𝛾 >> c

�
+ cma . They con-

sidered flow of slightly compressible fluids.

The dimensionless equivalent of Eq. (4) becomes:

We invoke the same assumption {Eq. (2) may be approxi-
mated by Eq. (4)}, but the simplification is different in detail. 
For a positive permeability modulus, the criterion of validity 
becomes:

Again, the condition of a slightly compressible fluid is 
implied. As pointed out in Appendix B, the dimensionless 
moduli are proportional to the real ones.

Pedrosa (1986) proposed a logarithmic transformation.

Substitution of Eq. (7) into Eq. (5) yields:
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The transformed variable (pseudo pressure) is denoted 
by �.

We obtain the same equations as Kikani and Pedrosa 
(1991), i.e., Equation (8). Hence, the same perturbation 
technique and solutions are available for compacting res-
ervoirs. The perturbation technique is well known and will 
not be repeated here. Suffice to say that the perturbation 
schemes starts out with the linearized (zero order perturba-
tion) version of Eq. (8), i.e., the coefficient to the temporal 
derivative is unity.

In line with the majority of PTA studies, dimensionless 
time is defined to include the total compressibility as a factor 
in the denominator. Hence, the generalized dimensionless 
time includes the modulus to thickness, � . This is because 
shrinking reservoir volume, due to compaction, leads to 
decreased storability.

Suppose all other variables are known from other sources, 
then the modulus to thickness may be obtained from the 
“time match”, Jelmert and Toverud (2016).

In appendix A we show that the exponential term, 
LHS of Eq.  (2), is akin to normalized transmissibility, 
Tn(Δp) = e−�Δp , where the pressure change is Δp = pi − p . 
Then, the dimensionless model (boundary conditions and 
differential equation) will reduce to Eq. (46) and Eq. (47). A 
reduced value of � leads to decreased apparent stress- sensi-
tivity (decreased transmissibility). For an increase, it is the 
other way around. For example, the permeability modulus 
may assume a negative value since new fractures and fissures 
may be created. Then, there is a chance that the permeabil-
ity- and the viscosity modulus in Eq. (3) lead to a small sum, 
which in turn could mask real stress-sensitivity.

In many cases, the zero order solution is of sufficient 
accuracy. Then, the best way to proceed is to evaluate the 
pressure-dependent coefficient to the temporal derivative of 
Eq. (2) at the initial condition. Under this assumption, a 
large but constant fluid compressibility is properly accounted 
for.

The set of assumptions include instantaneous responses, 
which may not be realistic for all reservoirs. If the response 
time is long compared to the duration of the test, then pos-
sible stress-sensitivity will be impossible to detect. This does 
not mean that the proposed method is useless. The moduli 
may be estimated from core analysis or experience from 
other wells in this or similar formations. Then, the model 
can be used as a tool to obtain some information about the 
expected future behavior.

The Laplace space solutions technique has proved to be 
a valuable tool in PTA, van Everdingen and Hurst (1949). 
Many governing equations and boundary conditions remain 
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unchanged during the pseudo pressure transformation. Hence, 
these solutions are also available for pressure sensitive reser-
voirs, but in terms of the pseudo pressure.

Due to linearity, Eqs. (46) and (47), the effect of wellbore 
storage may be computed convolution:

Indices w , v , c and 0 denotes well, variable rate, constant 
rate and zero order perturbation, respectively. Variables CD , S 
and s denotes wellbore storage-, skin factor and the Laplace 
space variable respectively. A Laplace transformed variable 
is indicated by a bar on top. Equation (10) may be inverted 
numerically.

The bounded reservoir responses, with a no-flow boundary, 
may be calculated by the traditional equation.

K, I are modified Bessel functions. Indices 1 and 2 denote 
first and second kind, respectively. re is the distance to the 
external boundary. The effect of skin and wellbore storage 
has been neglected, in Eq. (12).

The thickness and permeability depend on the fluid pres-
sure. Under the assumption of exponential pressure behavior, 
Jelmert and Toverud (2016) found.

Indices, n , 0 and sf  denote normalized with respect to the 
initial condition, 0-order perturbation and sand face, respec-
tively. The sand face is located at the wellbore, but on the 
reservoir side of the skin.

As pointed out previously, �D may be obtained as a param-
eter on the type curve and �D from the “time Match”. The 
dimensional equivalents are readily available.
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Results

Many interpretation techniques depend on the assumption 
of a constant flowrate. This condition may be difficult to 
achieve for a sufficient length of time. A pressure build-
up (PBU) test mitigates this problem in a simple way by 
closing the well. Traditionally, the PBU has been analyzed 
contingent to the assumption of two concurrent radial flow 
periods in the superposition function. The flowrate depends 
on the permeability thickness product. The flow capacity is 
best estimated by analysis of the infinite-acting radial flow 
period. We consider infinite-acting radial flow, without well-
bore storage and skin. The traditional Horner equation is 
included in the generalized solution as limiting behavior, 
Jelmert and Toverud (2016), see Eq. (55). The Horner equa-
tion shows up as the semi-log straight line (in red) on the 
dimensionless semi-log plot in Fig. 1. Figure 1 is the same 
as Fig. 5 in Kikani and Pedrosa (1991). In Figs. 1 and 2 we 
invoke Eq. (4) to facilitate perturbations. Both the Kikani 
and Pedrosa (1991) and Jelmert and Toverud (2016) models 
may be matched to the same well test data. The existence 
of multiple interpretations (non-uniqueness) is problematic. 
This topic will be discussed later.

The non-linear correction shows up as the vertical dis-
placement between the non-linear (broken) and linear (solid) 
curve. The divergence increases with increasing values of 
the sum modulus and with time. Failure to recognize stress-
sensitivity may lead to erroneous well test interpretation.

Figure 1 shows that, in this case, the effect of the first 
order perturbation is negligible. Due to the Horner ratio on 
the horizontal axis, the effect of a possible change in thick-
ness is lost. A better approach is to plot pressure against 
the shut-in time. This technique has been called the MDH 
method, Matthews, Brons and Hazebrook (1954). Then, it is 
possible to compute the dimensionless modulus to thickness 
from the “time match”, Jelmert and Toverud (2016).

The semi-log MDH type curves are shown in Fig. 2. 
Both Figs. 1 and 2 show that the case with negative sum 
modulus falls below the zero value response. The responses, 
( �D = 0.2 and �D = −0.2 ) are not symmetrical about the zero 
value (red �D = 0 ) straight line. This is a consequence of the 
non-linearity.

Suppose the numerical value of the viscosity modulus, � , 
is close to the total fluid compressibility, then Eq. (3) will 
reduce to:

If the effect of the modulus to thickness is neglected, 
either by error or on purpose, then the generalized model 
will simplify to the Pedrosa (1986) model.

Extension of the generalized theory to the flow of a real 
gas is straight forward as shown in Pedrosa (1986). This is 
because the generalized model depends on the same govern-
ing equations.

Next, we include the effect of wellbore storage and skin. 
This effect has been discussed in Kikani and Pedrosa (1991), 
Jelmert and Toverud (2017a) and Cao et al. (2004).

Figure 3 shows the transition from wellbore storage into 
radial flow for �D = 0.05 . The non-linear responses are indi-
cated by broken curves. A conspicuous feature is that the 
logarithmic derivatives (lower curves) do not show up as a 
single horizontal line during radial flow. Rather than that, 
we see a family of upward bending curves. The linear case 
(solid curves) corresponds to the dimensionless pressure 
without stress-sensitivity or the zero order solution of the 
transformed variable.

Figure 4 shows the time response of the thickness normal-
ized to its initial value. Index sf denotes sand face (at the 
wellbore but at the reservoir side of the skin) and index zero 
denotes a zero order perturbation.

The behavior can be explained as follows: Initially, 
there is negligible compaction since the reservoir flow 
rate is insignificant. The majority of the produced derives 
from the wellbore (unloading). Next comes a transition 

(17)� ≈ � + �.

Fig. 1  Comparison of zero and first order perturbation, Horner ratio 
on the horizontal axis

Fig. 2  MDH plot, Infinite-acting radial flow
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period. The “almost” straight line corresponds to estab-
lished reservoir flow.

For a large thickness, even a small decline in normal-
ized thickness could lead to significant compaction. This 

is because the actual compaction depends on the initial 
thickness as a multiplication factor,

Figure 5 shows the effect of the skin factor. The three 
cases corresponds to damage (positive S), no damage (S = 0) 
and a stimulation (negative S). To generate the latter case, 
we invoked the concept of apparent wellbore radius (denoted 
by index wa ), that is the pressure response is evaluated at an 
increased wellbore radius, rwa = rwe

−S.
Use of the equivalent radius is possible since a loga-

rithmic function is a monotonically increasing function for 
arguments larger than zero. This property precludes multiple 
values of the equivalent radius.

Figure 6 shows the effect of a radial no-flow external 
boundary. Again, we observe a clear difference between 
the linear and non-linear cases. In the same way as a single 
horizontal line in the pressure derivative is a characteristic 
of radial flow, the unit slope lines in the linear responses 
indicate pseudo-steady state flow. None of the non-linear 
responses (broken curves) is of the pseudo-steady state type.

Boundary dominated flow starts with deviation of the 
responses from the almost semi-log straight line in Fig. 7. 
As expected, the infinite-acting period will last longer for a 
large external radius (Figs. 6, 7).

Discussion

An altered permeability could be caused by reduced pore 
radii, collapsing fractures or induction of new ones. The 
latter phenomenon may lead to a negative permeability 
modulus. Then, use of the present model may be mislead-
ing. Possible cracking of the formation may be detected by 
micro seismic activity. Hence, the proposed method should 
be used with caution under this condition. A reservoir with 

(18)h(Δp) = hihn(Δp).

Fig. 3  Pressure and pressure derivative, non-linear (broken curves) 
and linear (solid curves) responses. From Jelmert and Toverud 
(2017a)

Fig. 4  Semi-log plot of normalized thickness as a function of dimen-
sionless time. From Jelmert and Toverud (2017a)

Fig. 5  Pressure and pressure derivative, non-linear (unbroken curves) 
and linear (solid) responses

Fig. 6  Pressure and pressure derivative, non-linear (broken curves) 
and linear (solid curve) responses
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a positive permeability modulus and a large value of the sum 
modulus may give forewarning of future problems.

A reduced thickness may compromise well integrity. An 
altered permeability may impede or aid flow into the well-
bore. There is no such thing as a comprehensive well test 
model for stress-sensitivity. Every reservoir is unique, and 
should ideally be treated as such. We believe our methodol-
ogy will be useful since a field curve, obtained by a real test, 
may be matched against a model with both the modulus to 
thickness and permeability as unspecified variables. In case 
of a poor match, another method should be attempted. For 
example, this could be a numerical well test model. Then, 
any pressure function or even tabulated values may be used 
to describe the stress-sensitive variables.

In some cases, the duration of the test may be too short to 
detect neither an altered permeability nor a reduced thick-
ness. There is still a chance that stress-sensitivity is an issue. 
Core analysis, laboratory experiments and well logging may 
add additional information. Then, the well test model may 
be used as an extrapolation tool with inferred values for the 
stress-sensitive variables.

The reliability of any model depends on how well the 
simplifying assumptions reflect the reality. The variation 
of permeability and porosity values with pressure has been 
investigated by laboratory experiments for decades. If we 
accept that these results provide insight at the length scale 
of well testing, then we have indirect information that can 
be used predict permeability and porosity. Some experi-
ments for the permeability, show exponential like behav-
ior, but the curves are shifted upwards compared to perfect 
exponential behavior, see figures based on core analysis in 
Kikani and Pedrosa (1991), Cao et al. (2004) and Jelmert 
et al. (2000). Since then, numerous authors have used the 
exponential model anyway. With inaccurate data, the com-
puted response is valid for a limited pressure range only. 
For tight reservoirs, some cores show almost perfect expo-
nential behavior for the permeability, Walls et al. (1982). 
In fact, this property was a key element to obtain unsteady 

state measurements of the permeability-pressure function. 
This method has the advantage of being much faster than 
the steady state method. The simplifying assumption that 
the bulk volume occupied by solid material is constant 
(Raghavan et al. 1972), leads to the conclusion that the 
variation of thickness depends on the change in porosity. 
Hence, the modulus to thickness may also be estimated 
from the porosity behavior by core analysis. Raghavan 
et al. (1972) presented core data to support their method. 
Due to the problem of upscaling, we believe data from 
core analysis is indicative only. Jelmert et al. (2000) sug-
gested that an average value obtained from a set of cores, 
the geometric average, for example, might constitute a 
practical upscaling technique in lack of better alternatives.

Direct measurements of compaction in deep reservoirs 
are difficult and expensive. A method depends on the use 
of radioactive bullets. The method works best for vertical 
wells. For shallow reservoirs, it may be possible to observe 
compaction directly as wellheads protrude farther and far-
ther from the surface, Doornhof et al. (2006).

The proposed technique is also available for partially 
penetrating wells and restricted entry problems Jelmert 
and Toverud (2017b).

Probably the best tool to analyze and predict compac-
tion is numerical simulations, Doornhof et al. (2006). Such 
studies, however, are time consuming and expensive. A 
fluid extraction period may also be necessary for history 
matching. This period could be long for a tight reservoir. 
In addition, a numerical model cannot highlight the inter-
action between the variables by means of equations.

Conclusions

Reservoir compaction may have severe environmental 
ramifications, including subsidence, flooding and earth-
quakes. Pressure transient analysis has the potential to give 
the analyst an early warning against incipient problems. 
As such, the proposed method may be useful, at least for 
screening.

A well-known theory for pressure transient analysis in 
stress-sensitive formations has been generalized to account 
for simultaneous changes in thickness and permeability. 
Many scenarios give rise to the same predicted pressure sig-
nature, (non-uniqueness). Additional (independent) informa-
tion is required to select the best reservoir model.

There is a possibility to estimate the modulus to thickness 
and thickness by type curve matching.

The reservoir permeability may increase because of new 
fractures generated. Then, the value of the permeability 
modulus could assume small and even negative values. This 
phenomenon masks real stress-sensitivity.

Fig. 7  Effect of no-flow boundary on normalized thickness
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A positive permeability modulus highlights stress-sensi-
tivity. A negative one has the opposite effect. The proposed 
model is unreliable in case of a negative sum modulus.
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Appendix A

The following normalized variables are defined:

Index n denotes normalized to initial condition. The latter 
is denoted by index i.

We assume a constant mass rate withdrawal.

Since the density, �Sc , is constant, then the rate of with-
drawal, qSc , is also constant.

Equation (20) will reduce to:

The flowrate is given by the non-linear Darcy’s law. The 
assumption of exponential pressure functions leads to:

Index sf  denotes sand face and Sc denotes standard 
conditions.

The density ratio is the inverse of the initial fluid forma-
tion factor, B.

We define a composite state variable, Tn(Δp) . Then:

(19)

xnj(p) = e−�jΔp, xnj =
xj

xi
, j = 1,… , 6,

xj = k(p), �(p),�(p),�(p), h(p), T(p),

�j = � , c, �, cma, �, �.

(20)

ṁsf = 𝜌sf qsf = 𝜌ScqSc = −
2𝜋𝜌ikihi

𝜇i

𝜌n(Δp)kn(Δp)hn(Δp)

𝜇n(Δp)
r
𝜕Δp

𝜕r
.

(21)ṁsf = ṁsfiṁsfn.

(22)qSc = −
2�kihi�i

�i�Sc
e−�Δpr

�Δp
(

rw
)

�r
= const.

(23)� = � + c + � − �.

(24)Tn(Δp) =
kn(Δp)hn(Δp)

�n(Δp)Bi

e−�Δp,

(25)qSc = −2�TiTn(Δp)r
�Δp

�r
.

Solving Eq. (24) for the pressure change, Δp = pi − p , 
we obtain

The spatial derivative of Eq. (26) becomes:

Substitution Eq. (27) into Eq. (22) yields:

The diffusivity equation for compacting media is, Raghavan 
et al. (1972):

Substitution of Eq. (26) into Eq. (30) yields:

After some manipulations, we obtain:

At this point, we may proceed two ways; either evaluate 
exponential term at the initial condition, Δpi = 0 , or use the 
Pedrosa method. By use of the first alternative, the exponential 
term becomes unity, which is the traditional pseudo pressure 
assumption. Then:

Pedrosa (1986) found that the perturbation scheme could be 
simplified whenever Eq. (31) can be approximated by Eq. (33),

The implied assumption is that:

(26)Δp = −
1

�
ln
(

Tn
)

= −
1

�
ln
(

1 − ΔTn
)

(27)
�Δp

�r
= −

1

�Tn

�Tn

�r
.

(28)qSc = −
2�kihi

�iBi�
⋅ r

�Tn
(

rw
)

�r
= const.

(29)
1

r

𝜕

𝜕r

(

ṁsf

)

=
𝜕

𝜕Δp
(h(Δp)𝜌(Δp)𝜑(Δp))

𝜕Δp

𝜕t
.

(30)

1

r

�

�r

(

e−�Δpr
�Δp

�r

)

=
�i�i

ki
e−(�+c�+cma)Δp

{

� + c
�
+ cma

}�Δp

�t
.

(31)

1

r

{

�

�r

(

r
�Δp

�r

)

− �r

(

�Δp

�r

)2
}

=
�i�i

ki
e(�+�−�+c�−(�+c�+cma))Δp

{

� + c
�
+ cma

}�Δp

�t
.

(32)

1

r

{

�

�r

(

r
�Δp

�r

)

− �r

(

�Δp

�r

)2
}

=
�i�i

ki

{

� + c
�
+ cma

}�Δp

�t
.

(33)

1

r

{

�

�r

(

r
�Δp

�r

)

− �r

(

�Δp

�r

)2
}

=
�i�i

ki
e�Δp

{

� + c
�
+ cma

}�Δp

�t
.

(34)𝛾 + 𝜉 − 𝜐 + cl >> 𝜉 + c
�
+ cma or 𝛾 >> 𝜐 + cma.
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Appendix B

We define dimensionless �D =
qSc�iBi�

2�kihi
 variables.

The variable, C , is the traditional wellbore storage 
constant.

The rate of withdrawal, qSc , is an arbitrary reference rate 
at standard conditions..

Substitution of Eq. (35)–(38) into Eq. (33) yields:

Substitution of Eq. (35)–(38) into Eq. (32) yields:

Pedrosa (1986) proposed a logarithmic transformation:

This study is based on the above equation. This is because 
�D may be used as a perturbation parameter. The generalized 
Tn transformation (Eq. 26) becomes

Hence, all of Pedrosa’s equations result from the follow-
ing substitution:

Substitution of Eq. (42) into Eq. (40) yields:

(35)rD =
r

rw
,

(36)tD =
kit

�i�i

(

� + c
�
+ cma

)

r2
w

,

(37)pD =
2�kihi

qScBi�i

Δp,

(38)

�D =
qSc�iBi�

2�kihi
�D =

qSc�iBi�

2�kihi
cD =

qSc�iBic

2�kihi
�D =

qSc�iBi�

2�kihi
,

(39)CD =
CBi

2�hi�i

(

� + c
�
+ cma

)

r2
w

.

(40)
1

rD

{

�

�rD

(

rD
�pD

�rD

)

− �DrD

(

�pD

�rD

)2
}

= e�DpD
�pD

�tD
.

(41)
1

rD

{

�

�rD

(

rD
�pD

�rD

)

− �DrD

(

�pD

�rD

)2
}

=
�pD

�tD
.

(42)pD = −
1

�D
ln
(

1 − �D�
)

.

(43)pD = −
1

�D
ln
(

1 − ΔTn
)

.

(44)� =
1

�D
ΔTn

Substitution of Eq. (42) into Eq. (41) yields Eq. (47).
We consider an infinite-acting reservoir for a fully pen-

etrating line-source well. The boundary conditions become:

The perturbation scheme starts with the zero order solu-
tion, which has to satisfy Eq. (30), and Eq. (47).

The zero order line-source solution at the sand-face is:

The first order solution is

The superposition function for build-up test becomes:

Which further becomes

and

The traditional Horner equation is included in Eq. (54) as 
a limiting behavior.

(45)
�2�

�r2
D

+
1

rD

��

�rD
=

1

1 − �D�

��

�tD
.

(46)

�
(

rD,0
)

=0, lim
rD→∞

�
(

rD, tD
)

= 0, lim
rD→0

(

rD
��

�rD

)

= −1, tD ≥ 0.

(47)
�2�0

�r2
D

+
1

rD

��0

�rD
=

��0

�tD
.

(48)�0 =
1

2
E1

(

r2
D

4tD

)

.

(49)�1 =
1

2
E1(2z) −

1

4
(1 + e−z)E1(z),

(50)z =
r2
D

4tD
.

(51)�0ws(Δt) = �0w
(

tD + ΔtD
)

− �0w
(

ΔtD
)

.

(52)�0ws(Δt) =
1

2

(

E1

(

1

4
(

tD + ΔtD
)

)

− E1

(

1

4ΔtD

)

)

,

(53)�0ws(Δt) ≈
1

2

(

ln
tD + ΔtD

ΔtD

)

,

(54)pD0ws(Δt) ≈
1

�D

(

1 − �D ln
tD + ΔtD

ΔtD

)

.

(55)lim
(

pDw
)

�D→0
≈

1

2
ln

tD + ΔtD

ΔtD
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