
Mar. Drugs 2012, 10, 1400-1411; doi:10.3390/md10061400 
 

Marine Drugs  
ISSN 1660-3397 

www.mdpi.com/journal/marinedrugs 

Article 

Pigmentation and Spectral Absorbance Signatures in  
Deep-Water Corals from the Trondheimsfjord, Norway 

Anette C. Elde 1, Ragnhild Pettersen 1, Per Bruheim 2, Johanna Järnegren 3 and Geir Johnsen 1,4,* 

1 Trondheim Biological Station, Department of Biology, Norwegian University of Science and 

Technology (NTNU), Trondheim NO-7491, Norway; E-Mails: anette.c.elde@gmail.com (A.C.E.); 

ragnhild.pettersen@bio.ntnu.no (R.P.)  
2 Department of Bio-Technology, Norwegian University of Science and Technology (NTNU),  

Sem Sælands vei 8, Trondheim NO-7491, Norway; E-Mail: per.bruheim@biotech.ntnu.no  
3 Norwegian Institute for Nature Research (NINA), Trondheim NO-7485, Norway;  

E-Mail: Johanna.Jarnegren@nina.no  
4 The University Centre on Svalbard (UNIS), P.O. Box 156, Longyearbyen NO-9171, Norway  

* Author to whom correspondence should be addressed; E-Mail: geir.johnsen@bio.ntnu.no;  

Tel.: +47-7359-1581; Fax: +47-7359-1597.  

Received: 3 April 2012; in revised form: 23 May 2012 / Accepted: 13 June 2012 /  

Published: 20 June 2012 

 

Abstract: The pigmentation and corresponding in vivo and in vitro absorption 

characteristics in three different deep-water coral species: white and orange Lophelia pertusa, 

Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are 

described. Pigments were isolated and characterized by High-Performance Liquid 

Chromatography (HPLC) analysis and High-Performance Liquid Chromatography  

Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all 

three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and 

skeleton of orange L. pertusa contained 2 times more astaxanthin g−1 wet weight compared 

to white L. pertusa. White and orange L. pertusa were characterized with in vivo 

absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for  

P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance 

spectra (400–700 nm) were species-specific, indicated by in vivo, in vitro and the 

corresponding difference spectra. The results may provide important chemotaxonomic 

information for pigment when bonded to their proteins in vivo, bio-prospecting, and for  

in situ identification, mapping and monitoring of corals. 
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1. Introduction 

Deep water corals have a cosmopolitan distribution and are found in almost all of the world’s 

oceans. The scleractinian (stony coral) Lophelia pertusa is a reef forming coral found at depths 

between 39 and 3383 m, but most commonly occurs between 200 and 800 m [1,2]. This species creates 

large reef complexes of great ecological importance by providing shelter, food and substrate for a 

variety of other species. In the north-east Atlantic, which houses the main part of the L. pertusa reefs 

discovered in the world to date [2], more than 1300 species have been registered that are associated 

with the reefs, which is equivalent to the diversity of tropical shallow water reefs [1]. Deep-water coral 

reefs are dispersed along the Norwegian coast, and the Røst reef (approximately 67°19′ N; 9°02′ E) 

southwest of Lofoten is the largest known L. pertusa reef in the world [3]. Paragorgia arborea and 

Primnoa resedaeformis are deep water gorgonian corals with a soft skeleton that with their large and 

branching morphology also create habitats of importance to other species [4–6]. They occur on both 

sides of the North Atlantic, most commonly at depths between 200 and 1000 m [7–9]. 

Deep-water corals are passive suspension feeders [2] using their polyps to capture zooplankton [10–13] 

and they also feed on dead particulate matter [14]. They are azooxanthellate organisms [1,15] living 

primarily below the euphotic zone, yet many of these organisms are as intensely colored as tropical 

corals. Color is defined as the reflection of different wavelengths of visible light, hence coloration is 

the result of selective absorption [16]. Lophelia pertusa has two basic color morphologies; orange and 

white [17]. Paragorgia arborea individuals vary from deep red to white-pink, whereas white 

individuals also exist. Primnoa resedaeformis do not show as much color variation, and is usually 

orange-yellow [5]. The color variation between these species is likely due to carotenoids, probably 

bound to specific proteins.  

Carotenoids generate bright coloration in several taxa, such as birds, insects, fish and crustaceans [18], 

and are also present in many marine invertebrates and terrestrial animals [19]. The carotenoids are 

produced in photosynthetic bacteria, higher plants, micro- and macroalgae [20] and are further 

metabolically transformed through the food web into deep-water corals examined in this study. 

Altogether, more than 600 different carotenoids exist [21] and in marine phytoplankton more than  

30 major carotenoids can be found [22,23]. Carotenoids serve different purposes in marine organisms, 

e.g., light absorption and utilization in photosynthesis and photoprotection in algae, and as  

camouflage [19] in deep sea living organisms. Carotenoids also function as antioxidants [24] which 

possibly may contribute to the strengthening of coral immune systems. In deep-water corals, the 

carotenoids (metabolites) may provide an antibacterial function, as the corals secrete mucus that 

contains antibacterial substances to remove sediments and particles [25]. 

One of the major carotenoids found in marine invertebrates is astaxanthin [16,26]. Since animals are 

unable to synthesize carotenoids de novo [27] they obtain these pigments from their diet, i.e., the 

absorbed carotenoids are transformed into other carotenoid derivatives [23,28]. It has been suggested 
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that organisms produce different forms of carotenoids, and the majority of these are oxidation products 

of β,β-carotene. The metabolic pathway is different for most organisms, however the end product, 

astaxanthin, is often the same [29]. Carotenoids do not usually appear in free form in organisms, and 

can emerge as carotenoproteins or be bound to esters, glycosides and sulfates [19]. Carotenoids can 

also, as in scleractinian corals, be bound to calcium carbonate. The physical and chemical properties of 

the carotenoid can be changed when bound to proteins or other molecules, and can cause a spectral 

shift in the light absorption spectrum [24]. In vivo and in vitro absorption spectra (400–800 nm) give 

an indication of which major pigments are present in corals. Only one publication [30] related to 

pigment composition in L. pertusa, P. arborea and P. resedaeformis is known to the authors. 

The main objective of this study was to determine pigmentation and corresponding optical signature 

using in vivo and in vitro absorption characteristics in P. arborea, P. resedaeformis and two color 

morphs of L. pertusa. In vivo bio-optical characteristics from coral species pigments may provide 

important chemotaxonomic information (pigments bonded to their specific proteins making specific 

signatures), future identification of pigments for bio-prospecting and for in situ identification, mapping 

and monitoring of corals. 

2. Results and Discussion 

In vivo OD (optical density = absorbance spectra, dimensionless, OD(λ)) spectra of coral tissue 

indicated a pigment signature with two main absorbance peaks in all coral species examined, except 

for white L. pertusa (Figure 1a). The main peak in these samples was found from 350 to 550 nm, and 

OD maxima varied between 409 and 476 nm (Table 1). All species show the same OD(λ) signature at 

450–550 nm, indicating the presence of astaxanthin.  

In vitro absorption (a(λ) g−1 wet weight) spectra of acetone raw pigment extract demonstrated a 

distinct peak in orange L. pertusa (Figure 1b) with a(λmax) at 480 nm. Absorption spectra for white  

L. pertusa, P. arborea and P. resedaeformis did not show as distinct peaks, however they showed 

slightly different signatures compared to the in vivo absorbance curves (Figure 1a).  

The in vivo absorption characteristics indicated differences in pigmentation between the coral 

species (Figure 1a). The spectral signatures from carotenoids without proteins are shown in the in vitro 

absorbance signatures (Figure 1b). The difference spectra between in vivo OD(λ) and in vitro a(λ) 

(Figure 1c) indicated that the signatures were species specific, illustrating spectral shifts, possibly 

induced by differences in pigments bound to proteins and other macro molecules. Figure 1c indicates 

in vivo absorption characteristics that are unique for the living coral specimens, indicating the presence 

of carotenoid-proteins.  

In vivo OD(λmax) of orange and white L. pertusa were found at shorter wavelengths than in vitro 

a(λmax) (Table 1). For P. arborea the in vivo OD(λmax) was found at the same wavelength as in vitro 

a(λmax), while for P. resedaeformis, in vivo OD(λmax) was found at longer wavelengths than in vitro 

a(λmax) (Table 1). The in vivo and in vitro coefficient of variation for mean λmax was <1% for almost all 

species (Table 1).  
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Figure 1. Pigment absorption signatures in all coral species, in vivo absorbance (column a) 

and in vitro weight specific (g−1 wet weight) absorption curves in acetone raw extracts 

(column b), and the corresponding difference spectra between a and b (column c), 

indicating absorbance characteristics that are unique for living specimens. Arrows in the 

difference spectra indicate species characteristic and major in vivo carotenoid absorption 

signature. In vivo and in vitro pigment signatures are primarily from carotenoids. Standard 

deviations are shown as bars (N = 3). Note different y-scales.  
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Table 1. Differences between in vivo OD and in vitro absorption (in acetone) maxima for all 

coral species. Coefficient of variation of mean value (CV%) for three replicates (N = 3). 

  In vivo In vitro 
Species N Mean λmax CV% Mean  CV% 

Orange Lophelia pertusa 3 473 0.88 477 0.12 
White Lophelia pertusa 3 409 0.61 429 0.36 

Paragorgia arborea 3 475 1.16 475 0.76 
Primnoa resedaeformis 3 476 0.32 463 2.27 

White L. pertusa showed similar in vitro absorbance maxima as orange L. pertusa, although at 

shorter wavelengths (Figure 1b). Living specimens of orange L. pertusa had a broad absorption 

maximum from 400 to 550 nm that was not present in white L. pertusa. All species had an absorbance 

maximum at 420 nm.  
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HPLC analysis identified two major carotenoids in the corals; astaxanthin and a canthaxanthin-like 

carotenoid (Figures 2 and 3, Table 2). Orange L. pertusa contained >50% astaxanthin g−1 wet weight 

compared to white L. pertusa (Table 3). Paragorgia arborea clearly contained the highest 

concentration of astaxanthin g−1 wet weight between the examined species (Table 3), and the main 

bulk of carotenoids were located in the epidermal layer of the coral, which is visibly the most colorful 

part of the coral. Primnoa resedaeformis contained the lowest concentration of astaxanthin, i.e., <17% 

astaxanthin than white L. pertusa. In addition, HPLC chromatograms also showed non-separated 

pigments, detected in the solvent and for P. arborea: several unidentified isolated pigments at  

4, 12 and 42 min (Figure 2). 

Figure 2. HPLC chromatogram of Paragorgia arborea in methanol extract, showing the 

main isolated pigments astaxanthin and canthaxanthin, and several unknown pigments. 

Solvent front contains non-separated pigments. OD (AU) detected at 440 nm.  

 

Figure 3. Optical density (OD) spectra from HPLC chromatograms of astaxanthin (left) 

and canthaxanthin (right) in all coral species studied, white and orange Lophelia pertusa, 

Primnoa resedaeformis and Paragorgia arborea in methanol extract, scaled to OD of 1. 

Standard of Astaxanthin and Canthaxanthin is also included for reference. Astaxanthin in 

P. arborea and orange L. pertusa shows the most similar absorbance as the astaxanthin 

reference. Note that canthaxanthin was not detected in P. resedaeformis.  
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Table 2. HPLC pigment isolation of methanol extracts of orange and white Lophelia 

pertusa, Paragorgia arborea and Primnoa resedaeformis. “X” denotes major carotenoid. 

Traces indicate that pigment is present in trace amount (≤1 mAU), and dash (-) indicates 

that pigment is not present. The main pigment, astaxanthin, appeared at 21 min, and 

canthaxanthin at 25 min in the HPLC chromatogram. Note that P. arborea contains several 

unknown pigments, which are not present in the other coral species. 

Pigment Retention time (min) 
Orange 

L. pertusa 

White  

L. pertusa 
P. arborea P. resedaeformis 

Astaxanthin 21 X X X X 

Canthaxanthin-like 25–26 Traces Traces X Traces 

Unknown pigments 5, 12, 41 - - X - 

Pigments in solvent front 1–2 X X X X 

The same extracts were also subjected to LC-TOF MS analysis for determination of accurate mass 

of the pigments (Table 3). This analysis confirmed the main peak of orange and white L. pertusa and 

P. arborea from HPLC chromatograms to be astaxanthin as the measured values is within a 0.4 ppm 

window to the theoretical value [23]. The canthaxanthin-like carotenoid, indentified from HPLC 

analysis, could not be assigned accurate mass due to the small pigment concentrations in raw extracts. 

LC-TOF MS analysis of P. arborea showed high absorption in the UV region, which was not detected 

from in vitro raw extract analysis in the spectrophotometer. 

Table 3. The main carotenoid astaxanthin isolated from deep-water corals by HPLC and 

assigned accurate mass from LC-TOF MS. OD maxima from HPLC OD spectra, 

concentration of astaxanthin from HPLC (given as ng astaxanthin ng−1 coral sample) and 

accurate molecule mass of astaxanthin from LC-TOF MS analysis, and respective ppm error.  

Species 

Astaxanthin 

λmax (nm) in 
methanol 

ng astaxanthin ng−1 
coral sample

Accurate mass  
(M + H)+ 

ppm error 

Orange Lophelia pertusa 476 3.75 × 10−7 597.3940 0.32 
White Lophelia pertusa 475 1.65 × 10−7 597.3936 −0.35 

Paragorgia arborea 478 3.15 × 10−6 597.3938 0 
Primnoa resedaeformis 473 1.37 × 10−7 Pigments degraded - 

Astaxanthin was the major pigment isolated from the coral samples, followed by a  

canthaxanthin-like carotenoid. These carotenoids are characterized with specific absorption maxima 

situated between 409–476 nm and 429–477 nm in the in vivo and in vitro absorbance spectra, 

respectively (Figure 1, Table 1). The highest concentration of astaxanthin in the corals examined was 

found in P. arborea, which is visibly the most colorful of the three coral species examined.  

From in vitro acetone extract analysis, indication of astaxanthin was found in orange L. pertusa 

only, as the absorption peak was distinct with a(λmax) at 480 nm, corresponding to astaxanthin [31]. 

The astaxanthin a(λmax) from the isolated peaks varied between coral species (Table 1), however 

a(λmax) of raw extracts were within a range of ±5 nm of the astaxanthin standard at 481 nm. The only 

exception to this was the a(λmax) of white L. pertusa, which deviated considerably from the astaxanthin 
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standard. The a(λmax) of canthaxanthin-like carotenoid (not shown) present in raw extracts of all coral 

species varied between 461 nm and 475 nm, and did not fully match the absorption characteristics of 

the canthaxanthin standard (a(λmax) 476 nm). Therefore, it cannot be identified as pure canthaxanthin, 

but as a canthaxanthin-like carotenoid.  

HPLC confirmed the presence of significant amounts of non-extracted pigments in the solvent front 

which may be present as colloids in the extract (Figure 2, Table 2). These colloids or micelles may be 

pigments bonded to proteins, lipids and other macro molecules [32]. This is especially prominent in  

P. arborea, where the solvent front contains unidentified pigments (Figure 2). The unknown pigments 

were not identified from LC-TOF MS analysis, however from HPLC it was evident that two out of the 

three unknown pigments showed UV-A absorption (320–390 nm [33], hence this may indicate UV 

absorbing amino acids/proteins [23]. Orange and white L. pertusa showed almost identical  

UV absorption in the solvent front. UV absorption was also evident in P. resedaeformis, and UV 

absorption was also confirmed by LC-TOF MS analysis. It can be mentioned that other carotenoid 

studies of hydrocorals and sea anemones show similar results, where carotenoids have been shown to 

be linked to proteins [34,35].  

Due to degradation, presumably caused by oxidation, it was not possible to confirm the presence of 

astaxanthin in P. resedaeformis raw extracts from LC-TOF MS analysis. However, it most likely 

contains astaxanthin, as peaks in its HPLC chromatogram appear at the same retention time as the 

peaks in the HPLC chromatograms of the other species studied, and the corresponding OD spectra 

have the same absorption characteristics. Bandaranayake (2006) [16] points out astaxanthin to be the 

major carotenoid in marine invertebrates, and astaxanthin in L. pertusa, P. arborea and P. resedaeformis 

has already been confirmed by Upadhyay and Liaaen-Jensen (1970) [30].  

A high coefficient of variation of P. arborea in vivo and in vitro absorbance and P. resedaeformis  

in vitro absorbance could potentially indicate either high biological variation within the species, or 

insufficient extraction. Insufficient extraction may be the reason why P. resedaeformis contains less 

astaxanthin than white L. pertusa. A previous study by Fox and Wilkie (1970) [36] found that skeletal 

material in the coral Allopora californica did not react to common, neutral organic solvents. The 

pigments in this species were only released when the skeleton of the coral was exposed to acids, 

suggesting that astaxanthin was firmly bonded to the calcareous matrix.  

Color variation within organisms can be caused by several factors. Type of food has been known to 

influence coloration, as clearly shown in a study on carotenoids in salmonids [37]. Lophelia pertusa is 

likely omnivorous, feeding on a diverse range of food from zooplankton to resuspended material [38]. 

Copepods, which are a part of the diet of many cold water corals, contain astaxanthin, and through 

them, astaxanthin is transferred up the food chain [39]. However, orange and white L. pertusa grow 

side by side and have access to the same food, yet have different color and pigment concentrations. 

Some marine bacteria contain astaxanthin [40] and since white and orange L. pertusa have been shown 

to display different compositions of bacterial community [41,42] the color variation may be related to 

these differences. It might also be an inherited trait, from individual to individual, through bacteria or 

genetically, as the orange L. pertusa produce orange eggs, the white L. pertusa produce white eggs, 

although there has not been found any evidence of vertical transmission of bacteria in the eggs 

(Kellogg C.A. and Järnegren J. [43]). LeBoeuf et al. (1981) [44] suggested in a study of sea anemones 

that the occurrence of different colors was presumably genetically determined. It was also pointed out 
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in a study of colors in the plumose anemone Metridium senile that pigmentation was not due to food, 

but inherited characteristics [45,46]. The association of proteins with pigments may also affect the 

color of the coral as indicated by this study (Figure 1). Unpublished proteomics studies by Järnegren 

and Collin-Hansen show a difference in protein composition between orange and white L. pertusa. 

Hence, astaxanthin is most likely not the only contributor to the orange coloration in these organisms. 

Given this, the variation in color may be due to bacterial or protein composition or genetic 

characteristics. In addition, differences in carotenoid metabolites may also be due to differences in 

enzymes in different color morphs of corals—another trait that may be largely due to differences in 

genetic composition.  

3. Experimental Section  

3.1. Study Area and Sample Collection 

In February 2008 and 2009, white and orange color morphs of L. pertusa, P. resedaeformis and 

deep red P. arborea were collected at Stokkbergneset 63°28′ N; 9°55′ E in the Trondheimsfjord, 

Norway. Corals were sampled between 100 and 200 m depth using the remotely operated underwater 

vehicle (ROV) “Minerva” Sperre Subfighter 7500. The ROV was operated from the research vessel 

Gunnerus owned by the Norwegian University of Science and Technology (NTNU). The majority of 

the samples were frozen immediately (−18 °C) on board the ship, while the remaining were kept alive 

in a flow-through aquarium (7–8 °C, in situ water temperature from 100 m depth) at Trondheim 

biological station (TBS). 

3.2. Absorption Characteristics and Pigment Extraction 

In vivo optical density (OD, dimensionless) was measured in a double-beam UNICAM 

spectrophotometer UV 500 in order to measure the absorbance characteristics in living organisms.  

In vivo tissue samples (≈200 µL) were made by crushing frozen epidermal and underlying tissue of  

P. arborea and P. resedaeformis in a small mortar, and adding 200 µL of filtered sea water. Lophelia 

pertusa polyps were pulled out using tweezers and placed directly on sea-water (filtered) soaked 

Whatman GF/C 25-mm glass fiber filters. Correspondingly, filters soaked in filtered seawater were 

used as blank (N = 3) [46,47]. To correct for scattered light, the average optical density (OD) from  

750 to 800 nm was subtracted from OD(λ) 350 to 700 nm [47].  

In vitro extracts were made by crushing approximately 3 g frozen coral in a mortar, in which both 

epidermal layer/calcareous skeleton and underlying tissue/polyps were used. To avoid pigment 

degradation due to higher temperatures, the mortar was placed on ice. 15 mL of acetone and methanol 

was added respectively and the extracts were put in glass test tubes followed by N2 (g) bubbling. After 

24 h extraction time (−18 °C), the raw pigment extracts were sampled and filtered through a 0.2-µm 

filter to avoid particles and coral debris. In vitro absorption (m−1) (350 to 700 nm) of raw extracts 

(acetone) was measured using a 1 cm quartz cuvette in the spectrophotometer. The standard deviation 

between three coral samples for in vivo absorbance and in vitro absorption was calculated (N = 3) and 

from this, the coefficient of variation (CV) was calculated. In vitro raw pigment extracts with methanol 

were analyzed using High-Performance Liquid Chromatography (HPLC).  
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3.3. Pigment Analysis 

HPLC work was performed using a Hewlett-Packard 1100 series HPLC system equipped with a 

diode array optical density detector (350–800 nm) for pigment isolation, identification and quantification 

according to Rodriguez et al. (2006) [48]. Synthetic standards of Astaxanthin (Fluka number 32993) 

and Canthaxanthin (Fluka number 41659) were applied as references.  

Accurate mass determination by using an Agilent High-Performance Liquid Chromatography  

Time-Of-Flight Mass Spectrometer (LC-TOF MS) instrument was used as confirmatory analysis to the 

HPLC analyses. The extracts were run according to the protocol in Stafsnes et al. (2010) [49]. Acetone 

and methanol in vitro raw extracts containing minor amounts of water were used for LC-TOF MS analysis.  

4. Conclusions  

These results indicate that astaxanthin is the major carotenoid in the deep water corals examined. 

Pigment composition in corals is considered as important information for chemo-taxonomy when 

bonded to their respective proteins (in vivo properties), pigment function (antibacterial), and as a basis 

for in situ optical identification for mapping and monitoring purposes. Future pigment function 

experiments may be of importance for bio-prospecting related to future medicine. Astaxanthin is 

known to be bonded to different esters and proteins giving different properties as antioxidants, 

immunostimulants, anti-bacterial compounds and therefore may be a major molecule group for the 

treatment of human illnesses, such as cancer and cardiovascular diseases [31,50–53]. Different 

functions of these pigment-proteins clearly need further research. 
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