Tutorial: Integrating New SDK Libraries in SES Projects

This tutorial explains how new libraries and drivers are added to an existing Segger
Embedded Studio (SES) project. There are essentially two steps involved in the pro-
cess. First the source files and header files are integrated into the project, secondly

the SDK is configured to activate the library and/or driver.

SES Configuration

First ensure that the path to the include file (. h) is registered in SES. Enter Project —
Edit Options.... In the applicable build drop-down list, select Common to ensure that
changes to configurations are applied to both the debug and release build. The drop-
down list is highlighted in Figure 1. Then navigate to Code — Preprocessor in the left
pane, and double click on User Include Directories, which brings up a list where the

paths to header files can be registered.

* ¥ 1% Debug ¥ | | Search Qptions
Public Configurations

“ COd; :Ef Debug

gl %ed Release

C qPrivate Configurations

cl & Common

External Build

Figure 1: Pulldown to select which builds configuration changes are applied to.

With the header files registered, the source file is imported directly into the left pane
folder structure. Either create a new folder in this hierarchy, or use an existing such as
nRF_Libraries. Right-click and select Add Existing File.... This can be seen in Figure 2.

Navigate to the implementation file (.c) and include it.

At this point all the source code is included, but the compiler will still throw an error
if any attempt is made to use the libraries. This is handled in the next section where

the static configuration options of the SDK are set.

. [20 nRF_BLE_Services 24 fies -) _
. E Edit Options...
3 E:j app_button.c
- E:j app_errorc
> E:j app_error_handler_gcc.c

- &2l app_emor_weak.c Exclude From Build
app_pwm.c

Campile Ctrl+F7¥

e

Run Static Code Analyzer

i 2] Add NewFile...
app_timer_freertos.c

&
. é':japp_util_platform.c @ Add Existing File..,
|

crelbie #7 New Folder...

’ IE|'_=:| fds.c Import
3 I%::' hardfault_handler_gec.c
: E:j hardfault_implementation J Cut Ctrl=X
' E:j nrf_assert.c Copy Ctrl=C
] nri_atfifo.c B Paste Ctri=v
- E:j nrf_atflags.c >< =
4 E:j nrf_atomic.c emoye
: E:j nrf_balloc.c ae Rename

)

Figure 2: Menu option to include source files into project.

SDK Configuration

Before using the included libraries, the peripherals and library layer must be enabled
in the SDK configuration file sdk_config . h. These changes can be done directly in
the file itself with a text editor, but a better approach is to use the CMSIS Configurator
tool. This results in a more structured overview of the configurations, and ensures that

correct format is maintained at all times. The tool can be seen in Figure 3.

Note that it is usually not enough to only enable the library for a peripheral. The
specific instance has to be enabled as well in the driver configuration. For example,
consider the case where the SPI transaction manager is to be enabled. The transaction
manager is an “upper layer” library, and in the SDK configuration its option is located
under nRF_Libraries — NRF_SPI_MNGR_ENABLED. To actually use any SPI periph-
eral, the instance and drivers will also have to be enabled. These options are located

under nRF_Drivers — NREX_SPI_ENABLED and nRF_Drivers — SPI_LENABLED.

nfigurator - sd

File Help
e e
- | Board Support
[+~ | nRF_BLE
- nRF_BLE_Services
[+ | nRF_Core
- | nRF_Crypto
[+~ | nRF_DFU
[| nRF_Drivers
[+ | nRF_Drivers_External
- | nRF_Libraries
- | nRF_Log
F- | nRF_NFC
- | nRF_Segger_RTT
- | nRF_SoftDevice

Figure 3: CMSIS Configurator overview.

