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Preface

This Master thesis is carried out at NTNU in cooperation with Novelda AS during the spring

semester of 2018. The main objective of the thesis is to classify radar data using a neural

network. It continues the work of an earlier project written by the author in the fall of 2017

[11], where a small Convolutional Neural Network (CNN) was tested on pulse doppler radar

data captured by Noveldas X4 radar chip. Novelda provided the opportunity to capture

radar data at a film studio using the X4 radar, as well as a Matlab framework for visualizing

and extracting features from the raw radar data. The project work succeded in extracting

features with the given framework. Code was written that formatted these features into

input images to a neural network and code for a neural network architecture was written and

succesfully tested upon.

In this thesis, the code from the project work has been improved and made more efficient. A

smaller and less computationally expensive framework has been written to include only parts

of the Novelda framework that are necessary for extracting doppler data. The knowledge and

experience obtained during the project work has been used to come up with new ideas to

improve classification of the radar data. In parallel with the work of this thesis, a simulator

that generates radar data was developed as part of a master thesis by Anders Liland at the

Electronics Systems Design and Innovation department of NTNU [7], also in cooperation

with Novelda AS. It was placed at disposal in order to generate more data. The development

and arranging of input images from radar data to the neural network was a time consuming

effort and played a major role in this work. Different neural network architectures and image

designs were tested to gain deeper knowledge of the problem at hand with the final goal of

predicting and classifying radar images with high certainty.
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Summary and Conclusion

Micro-Doppler signatures take advantage of Doppler information in radar data to create time

VS. frequency information. Such signatures are interpretable by the human eye with visible

features such as frequencies of swinging arms and legs as well as radial velocities of moving

objects. This work explores the possibilities of distinguishing human and animal signatures

by using micro-Doppler data as input to a neural network classifier, more specifically a CNN.

A simulator was used to generate radar data of humans and dogs. This data is noise-free

and formed the basis for training and testing the neural network. Furthermore, a second

test set was developed based on real radar data. The real data was created from recordings

of a human and a dog in various situations using Noveldas X4 radar. This was done in a

controlled test environment to minimize noise and disturbances on the data. Micro-Doppler

signatures are retrieved from the radar data by a feature extraction process using a series

of digital signal processing steps. These are appropriately formatted to serve as input data

to a CNN. Two types of images with different resolutions are studied. Large images of size

256×256 contain high resolution frequency content, whereas the downsampled images of size

32×32 contain contours of the same content with poor resolution. Machine learning methods

such as L2-regularization and dropout are explored in efforts to increase testing performance

of the neural network.

The neural network was found to train more easily when using images of micro-Doppler

signatures over several seconds. These images contain frequency information such as mul-

tiple cycles of moving limbs that can be picked up by the network to distinguish a human

from a dog. The alternative of using images with only small variations in frequency content

proved to be hard to classify as no general features that can be extracted are visible in the

images.

Testing the images on the different CNN configurations revealed that the human images

were typically more easily correctly classified than the dog images. The greater access to

diverse human scenario radar data than dog data makes it difficult for the network to learn
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general dog features. The best network predictions were made on the 32× 32 images. 100%

classification accuracy was achieved on the simulated test images when using the dropout

technique as well as when using the dropout technique together with L2-regularization. These

cases showed strong levels of predictions on both human images and dog images. This sug-

gests that some general features that could separate the two classes were learned by the CNN

during training.

The real data was poorly classified by the network configurations tested upon. This is as

expected as the training of the CNN was based on simulated images only. The noise in the

real images is non-existent in the simulated images. Relating real and simulated images is

therefore difficult.

As a conclusion, simulated micro-Doppler signatures over several seconds can be classified

with high certainty. A high resolution is not necessary to capture important features in the

data. Due to a greater access to diverse radar data on humans, general features in human

images are more easily learned by a neural network than what is the case with dog images.

Real data can not be classified with the methods used in this thesis. For this to be realis-

tic, more resemblance between real and simulated data is necessary or real images must be

included when training the neural network, which requires a greater access to real data.
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Oppsummering og konklusjon

Micro-Dopplersignaturer utnytter Dopplereffekten i radardata til å skape tid VS. frekvens-

informasjon. Slike signaturerer kan tolkes av menneskeøyet med synlige detaljer som svinge-

frekvenser p̊a armer og ben, samt radiale hastigheter, hos bevegelige objekter. Dette ar-

beidet utforsker mulighetene til å separere menneske- og dyresignaturer ved å bruke micro-

Dopplerdata som inndata til et nevralt nett, nærmere bestemt et CNN.

En simulator ble brukt til å generere radardata av menneske og hund. Disse dataene er

uten støy og ble brukt som utgangspunkt til trening og testing av det nevrale nettet. I

tillegg ble enda et testsett dannet basert p̊a ekte radardata. De ekte dataene ble skapt

fra opptak av menneske og hund i forskjellige situasjoner ved bruk av Noveldas X4-radar.

Dette ble gjort i et kontrollert testmiljø for å begrense støy og forstyrrelser p̊a dataene.

Micro-Dopplersignaturer er hentet ut av radardatenene gjennom en signalbehandlingspros-

ess. De er videre formattert til å kunne brukes som inndata til det nevrale nettet. To typer

bilder med ulike oppløsninger er utforsket. Store bilder av størrelse 256 × 256 inneholder

frekenvsinnhold av høy oppløsning, mens nedsamplede bilder av størrelse 32× 32 inneholder

konturer av det samme innholdet, men med lavere oppløsning. Maskinglæringsmetoder som

”L2-regularisering” og ”dropout” er utforsket i forsøk p̊a å forbedre klassifiseringsevnen til

det nevrale nettet.

Det nevrale nettet trente enklere ved bruk av micro-Dopplersignaturer over flere sekunder.

Disse bildene inneholder frekvensinformasjon som representerer flere sykluser med svingende

armer og ben, som videre kan plukkes opp og brukes av det nevrale nettet til å skille mellom

menneske og hund. Et alternativ er å bruke bilder med små frekvensvariasjoner, men slike

bilder viste seg å være vanskelig å klassifisere ettersom ingen generelle detaljer i bildene er

synlige som et nevralt nett kan lære seg.

Testing av bildene p̊a de ulike CNN-konfigurasjonene avslørte at menneskebilder ofte var

enklere å klassifisere riktig enn hundebilder. Større tilgjengelighet av varierte menneskedata

enn hva gjelder hundedata gjør det vanskeligere for det nevrale nettet å lære generelle hun-
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deegenskaper. De beste nettverksprediksjonene ble gjort p̊a bildene av størrelse 32 × 32.

100% klassifiseringsnøyaktighet ble gjort p̊a det simulerte testsettet n̊ar dropout-teknikken

ble brukt under treningen av det nevrale nettet samt n̊ar dropout ble brukt sammen med

L2-regularisering. Disse tilfellene viste sterke klassifiseringsevner p̊a b̊ade menneske- og hun-

debildene. Dette tyder p̊a at det nevrale nettet lærte noen generelle detaljer i bildene gode

nok til å kunne separere de to klassene.

De ekte dataene ble klassifisert d̊arlig av de nettverkskonfigurasjonene som ble testet p̊a

i dette arbeidet. Dette er som forventet ettersom treningen av nettet var basert kun p̊a

simulerte data. Støy i de ekte dataene er ikke-eksisterende i de simulerte dataene, noe som

gjør de vanskelige å relatere til hverandre.

Det konkluderes med at simulerte micro-Dopplersignaturer over flere sekunder kan klassifis-

eres med høy nøyaktighet. Høy oppløsning er ikke nødvendig for å fange viktige egenskaper

i dataene. Grunnet større tilgang til varierte radardata p̊a mennesker er det enklere for et

nevralt nett å lære seg generaliserte detaljer i menneskebilder enn hva gjelder hundebilder.

Ekte data kan ikke klassifiseres med de metodene brukt i dette arbeidet. Dette kan gjøres re-

alistisk ved å gjøre simulerte og ekte data mer like, eller ved å inkludere ekte data i treningen

av det nevrale nettet, noe som krever større tilgang til ekte data.
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Acronyms

ADC Analog-to-Digital Converter.

BGD Batch Gradient Descent.

CNN Convolutional Neural Network.

EM electromagnetic.

IID Independent and Identically Distributed.

LoS Line of Sight.

PRF Pulse Repetition Frequency.

PRI Pulse Repetition Interval.

ReLU Rectified Linear Unit.

RF radiofrequency.

SGD Stochastic Gradient Descent.

SNR Signal to Noise Ratio.

STFT short-time Fourier transform.

UWB Ultra Wide Band.
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Chapter 1

Introduction

1.1 Motivation

The technology behind Novelda’s X4 radar performs far beyond traditional radar systems

when it comes to compact size, power consumption, accuracy, speed and low emissions [1].

The single-chip technology has the ability to detect presence, i.e. of a human breathing.

This can be used in applications such as light switching or heart rate monitoring in hospitals.

It can measure distances and detect motions through objects. This can be used in safety

and security solutions such as alarm systems. If the radar can distinguish between humans

and animals, the alarm can be set off only in the presence of humans, allowing pets to walk

around freely.

A radar can detect moving objects by taking advantage of the Doppler effect. The ve-

locities of the moving objects can be distinctly represented in the frequency domain, where

typical signatures can be extracted and used to classify the target of interest. Neural net-

works are potentially very powerful classifiers that, with proper data, can learn to extract

relevant features on their own. This makes neural networks an interesting study to further

investigate as classification method in relation with Doppler data.

1.2 Problem Despcription

Novelda Ultra Wide Band (UWB) radar is capable of detecting humans and animals by

taking use of the Doppler effect. A master thesis was written in the spring of 2016 on this

subject [6] and in the fall of 2017 a CNN was implemented to classify the radar images as

part of a project work [11].
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In the master thesis of spring 2016, testing was performed on a radar (X2) of limited Doppler

and range capabilities. A new radar (X4) without these limitations was tested in the project

work of fall 2017. Limitations in the X4 recordings were partly low Signal to Noise Ratio

(SNR), challenges with range estimation to target and few measurements available.

In this master thesis we want to develop the CNN algorithm further without the limita-

tions experienced in the project work. This requires a new data foundation and can be

solved by recording new measurements and by using a simulator which is developed in par-

allel with this thesis.

Tasks:

• Record new measurements on humans and animals using the X4 radar.

• Use a simulator to generate synthetic radar data.

• Further develop the CNN algorithm from fall 2017.

• Train and test the CNN classifier on micro-Doppler signatures extracted from radar

data acquired.

1.3 Earlier work

Novelda AS has been involved in multiple thesises concerning analysis and classification of

radar data. The older X2-radar has been studied in [12], where micro-Doppler signatures

of humans and dogs were extracted and compared. In [6], synthetic data created from a

mathematical model of a radar and point scatterer models of humans and animals was used

in order to train a fully connected neural network. It was tested on real data acquired from

the X2 radar. In [2], a CNN was used to classify respiration of humans and animals, detected

by the X2 radar. Similar studies were conducted in [11], only with micro-Doppler signatures

of walking humans and animals extracted from Novelda X4 radar.

1.4 Gait and bulk motion

Two terms that are frequently used throughout this thesis are gait and bulk motion. Gait is

by www.dictionary.com defined as ”a manner of walking, stepping or running” and will be

used in this work to describe locomotion through the movement of swinging limbs of humans

and animals. A gait cycle corresponds to one period of swinging arms or legs. Similarly, gait
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frequency is the frequency at which arms or legs swing. The bulk motion is the motion of

the main part of the body, which in this work corresponds to the human and dog torso.

1.5 Outline

The rest of the thesis is structured as follows. Chapter 2 gives an overview of relevant

pulse Doppler radar theory as well as the feature extraction method used to extract Doppler

information from the radar data. Chapter 3 covers the neural network theory necessary to

grasp the groundwork forming the basis for the tests carried out in this thesis. Chapter

4 includes methods regarding data acquisition, input data design and design of the CNN.

Chapter 5 presents the testing and results of the neural network with the input images

created. The work of this thesis is further discussed in chapter 6, where thoughts on future

work also are presented. . .
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Chapter 2

Pulse Doppler Radar and Feature

Extraction

This chapter provides basic theory needed to understand the pulse Doppler radar used in

this thesis. It also covers a feature extraction process to acquire micro-Doppler signatures

from radar data. The theory is based on Richards, Scheer and Holm’s book Principles of

Modern Radar [9], which provides a comprehensive introduction to modern radar systems.

The feature extraction process follows the procedure of work done in [6].

All symbols used when presenting the radar theory are listed in table (2.1). Similarly are the

symbols used as part of the feature extraction process listed in table (2.2).

2.1 Radar principles

Radar, short for Radio Detection And Ranging, is a system that uses electromagnetic (EM)

waves in the radiofrequency (RF) region to detect objects of interest. Early radar systems

were limited to detecting targets and measuring target range. The field of radar systems

have evolved into modern radars, capable of tracking, imaging and classification of targets.

2.1.1 Radar Subsystems

A radar must be comprised of major subsystems such as a transmitter, an antenna and a

receiver, as depicted in figure (2.1). It shows an EM wave being generated by the transmitter

and radiated by the antenna. The transmitted signal reaches the target and is reradiated

back into the environment. Some of the reradiated signal is captured by the antenna. The

target echo will not be the only signal intercepted by the antenna, as all other surfaces also

cause echoes. Such unwanted signals are called clutter. The captured signal is processed in
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the receiver, where it is amplified and further converted to a digital signal by an Analog-to-

Digital Converter (ADC). The transmitter and receiver are isolated by a switch to protect the

receiver from high-power waves generated in the transmitter. It also provides a connection

point so that the antenna can be used on a shared-time basis by the transmitter and receiver.

Figure 2.1: Radar principle [11]

In a pulse Doppler radar, the transmitter and receiver work on a shared-time basis. EM

waves are transmitted for a short time duration where only the transmitter is connected

to the antenna. This is followed by a listening period where the receiver is connected and

reradiated signals are allowed in, before another pulse is transmitted. The time duration

of one such pulse cycle is called the Pulse Repetition Interval (PRI). The number of pulses

transmitted per second is referred to as the Pulse Repetition Frequency (PRF), which is

inversely related to the PRI.

2.1.2 Measuring range

The target range can be measured based on the round-trip-time at the speed of light. Since

the signal has to travel to the target and back, the range is 2R and is found by

R =
c∆T

2
(2.1)

where R is the target range, ∆T is the time between signal transmission and reception and

c is the speed of light, at c ≈ 3× 108m/s.

A problem with pulsed radar occurs if the pulse round-trip travel time, ∆T , is larger than
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the PRI. If a new pulse is transmitted before the previously transmitted pulse has returned,

the received pulse could be a reflection of either one of them. This is known as a range

ambiguity. To avoid range amgiguities, the PRI must be larger than the maximum pulse

round-trip travel time, as stated in the condition below.

PRI ≥ ∆Tmax =
2Rua

c
(2.2)

where Tmax is the maximum round-trip time and Rmax is the maximum target range that

can be unambiguously achieved. Similarly,

Rua ≤
c · PRI

2
=

c

2PRF
(2.3)

Symbol Definition Unit

R Range m

c Speed of light m/s

∆T Round-trip time s

Rua Unambiguous Range m

vr Radial velocity m/s

fr Received Frequency Hz

ft Transmitted Frequency Hz

fd Doppler Frequency Hz

f0 Carrier frequency Hz

λ Wavelength m

t Time s

A Amplitude V

θ Phase rad

φ Shifted phase rad

Table 2.1: List of common radar theory symbols

2.2 The Doppler Shift

Due to noise and clutter it can be hard to discriminate target signals. Modern radars take

advantage of Doppler information to separate static clutter from moving targets. Measuring

Doppler characteristics can also help distinguish several targets at the same range.

The Doppler frequency is the change of frequency between the transmitted signal and the
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received signal due to a target in motion relative to the radar. The received frequency, fr,

can be explained by the theory of special relativity as in equation (2.4).

fr =
1 + vr/c

1− vr/c
ft (2.4)

where ft is the transmitted frequency and vr is the radial velocity of the target along the

radars Line of Sight (LoS). A positive vr represents an approaching target and will increase

the received frequency. Similarly, a receding target with velocity −vr will decrease the re-

ceived frequency.

Considering that radar targets will have radial velocities much smaller than the speed of

light, the equation can be simplified. By expanding the denominator into a binomial series

and discarding all but the first order term, leaves

fr = [1 + 2(vr/c)]ft (2.5)

The change in frequency, fd, is called the Doppler frequency or the Doppler shift and is given

by

fd = fr − ft =
2vr
c
ft (2.6)

As was shown for equation (2.4), a positive radial velocity causes a positive Doppler shift

representing an approaching target, just like a receding target causes a negative Doppler

shift.

2.2.1 Unambiguous Doppler shift

The Doppler shift is sampled at the PRF. If the PRF is not high enough, Doppler frequency

amgiguities can occur. Nyquist’s sampling criterion states that the maximum frequency that

can be unambiguously measured is half the sampling frequency. In a radar, the Doppler shift

frequency interval is therefore limited to

fd,max = ±PRF
2

(2.7)

where fd,max is the maximum unambiguous Doppler shift. Relating it to radial velocity

reveals

fd,max =
2vua
λ

(2.8)

where vua = λ · fd,max is the maximum unambiguous radial velocity and λ is the wavelength

of the transmitted wave. If a velocity target violates Nyquist and exceeds vua/2 its echo will
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alias into a new value v′ = v + k · vua that falls within ±vua/2.

By looking at equation (2.3) it is clear that the choice of PRF leads to a trade-off in max-

imizing range and frequency measurements. Maximizing unambiguous range requires lower

PRFs whereas maximizing unambiguous Doppler shift requires higher PRFs.

2.2.2 The Micro-Doppler Effect

All objects in motion cause frequency modulations on the carrier signal. These motions that

are not the bulk motion of the object are known as micro motions. That can be swinging

arms or legs of a human or a rotating propeller of an aircraft. The superposition of these

modulations create distinct signatures known as micro-Doppler signatures. Such signatures

contain information about the kinematic properties of the target. This way, distinct target

features can be extracted and used for classification purposes. [3]

2.3 Coherent Detector

Equation (2.6) shows the physical relationship between the Doppler shift and the radial ve-

locity. To actually measure the Doppler shift, modern radars often apply a coherent detector.

It measures the amplitude and phase of the received signal and downconverts it to baseband,

where it is more easily processed. The transmitted RF signals at frequency ft will from now

on be referred to as being at the carrier frequency, f0.

Consider a transmitted sinusoid at the radar’s carrier frequency, f0, at time t = 0:

x(t) = Acos(2πf0t+ θ) (2.9)

This pulse can be characterized by its amplitude, A, and phase, θ. This can be seen by

rewriting it into its exponential form:

x(t) = <(Aejθej2πf0t) (2.10)

where < represents the real part of the complex number. The returned signal from a target

at range R0 will be
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x
(
t− 2R0

c

)
= A′cos

[
2πf0

(
t− 2R0

c

)
+ θ
]

= A′cos
[
2πf0t+ θ − 4πR0

λ

]
= <(A′ej

(
θ−φ
)
ej2πf0t)

(2.11)

The returned signal in equation (2.11) has a new amplitude, A′, a phase shifted by φ =

−4πR0/λ radians and a time delay by 2R0

c
. A radar must measure these three parameters.

The coherent detector takes the sinusoid echo of equation (2.11) as input to two channels as

depicted in figure (2.2). The upper channel is mixed with a reference cosine signal, typically

the transmitted signal. The product of two trigonometric functions is a sum of two terms:

a summation term and a difference term. The summation term is removed by the low pass

filter, leaving the output I(t) = A′cos(θ − φ), which is called the in-phase term or the I-

channel. The lower channel is mixed with a 90 deg phase shifted reference signal 2sin(2πf0t).

It outputs a signal which is in-quadrature with the upper channel and is therefore called the

Q-channel.

Figure 2.2: Coherent Detector

The Q-channel alone has ambiguities in finding the amplitude and phase. Along with the

I-channel, it forms a complex output, y(t) = I(t) + jQ(t), that resolves the ambiguities. For

10



f0 and R0 the output will be:

y[0] = I[0] + jQ[0]

= A′cos(θ − φ) + jA′sin(θ − φ)

= A′ej(θ−φ)

(2.12)

For multiple such time samples the ouput will form a discrete-time signal y[m] = I[m]+jQ[m].

The removal of the sum frequency terms by the lowpass filters is called downconversion

to baseband, as it outputs a sinusoid at a frequency of zero Hz, i.e. a constant pulse.

2.4 Feature extraction

The process of extracting micro-Doppler information is covered in [6, 11] and will be repeated

here, only with some changes of notation from [9] in consistency with the theory in this thesis.

Figure (2.3) shows the steps of the process together with the final step of classifying the micro-

Doppler data. The purpose of feature extracting is to obtain relevant information such as

gait frequencies, gait amplitudes and object velocities. These are features that can prove

important in the classification process.

Figure 2.3: Feature extraction process

Symbol Definition

L Number of range bins per pulse

M Number of pulses in time series

I Number of data matrices

τ Pulse length

T PRI

Υm Frame number m

Gi Range Doppler number i

µ Micro-Doppler matrix

Table 2.2: List of common symbols in the feature extraction process
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2.4.1 Fast time/Slow Time

To measure the time delay, the receiver samples repeatedly after the pulse is transmitted.

These time samples form complex samples from the I and Q channels that are stored in a

vector of samples called range bins. For each pulse there are L such range samples. Since the

range is sampled at a much higher rate than the pulses, which are sampled at the PRF, the

range axis is called fast time. Similarly, the pulse number axis is called slow time.

Note that the terms pulse and frame will be used interchangeably. The term pulse has a

more physical intuition to it, whereas frame represents the pulse in a mathematical form.

2.4.2 Pulse Radar Data Matrix

A single pulse of length τ has a Doppler resolution 1/τHz. This resolution can be improved

by measuring a series of M pulses together, giving a Doppler resolution 1/(MT )Hz, where

T is the PRI. These M frames are stacked column-wise in a pulse radar data matrix, as

illustrated in figure (2.4). Each frame, Υm, contains L range bins.

Figure 2.4: Data matrix
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The data matrix, Yi, is mathematically represented by:

Yi =


y0,0 y0,1 . . . y0,M−1

y1,0 y1,1 . . . y1,M−1
...

...
. . .

...

yL−1,0 yL−1,1 . . . yL−1,M−1

 (2.13)

where i ∈ [1, I] represents the ith data matrix out of a total of I matrices. Each element in

the matrix is given by

yl,m = Υi+m−M
2

[n] (2.14)

2.4.3 Range-Doppler Spectrum

Before Doppler information is extracted, stationary clutter around 0Hz is removed by sub-

tracting the frame average over each range bin, as in equation (2.15).

ȳl,m = yl,m −
1

M

M−1∑
m=0

yl,m (2.15)

The Doppler spectrum for all range bins is the short-time Fourier transform (STFT) of the

slow time data. In other words, for each range bin the Doppler spectrum is calculated

across M frames. The result is a superposition of all contributions. The Range-Doppler

spectrum is found by finding the Doppler spectrum across all range bins and is mathematically

represented by:

Gi =


g0,0 g0,1 . . . g0,M−1

g1,0 g1,1 . . . g1,M−1
...

...
. . .

...

gL−1,0 gL−1,1 . . . gL−1,M−1

 (2.16)

Gi is the ith range Doppler matrix, where 0 ≤ i ≤ I. gl,m are Doppler spectrum elements

(spectrograms) at specific range bins and Doppler frequencies. Equation (2.17) shows how

to calculate these spectrograms by taking the magnitude squared of the STFT along with a

window function, w(t). Common window functions used are Gaussian windows or Hamming

windows.

gl,m =

∣∣∣∣∣∣
M−1∑
m=0

w(m)ȳl,m exp
(
− j2πkm

M

)∣∣∣∣∣∣
2

(2.17)
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2.4.4 Joint time-frequency analysis

To be able to analyse time-dependent frequency information, the Fourier transform is not

sufficient. Joint time-frequency analysis is a commonly used method to describe signals in

both the time and frequency domains.

To represent the range Doppler matrices in the joint time-frequency domain, the micro-

Doppler matrix, µ, is created:

µ =


u0,0 u0,1 . . . u0,I−1

u1,0 u1,1 . . . u1,I−1
...

...
. . .

...

uM−1,0 uM−1,1 . . . uM−1,I−1

 (2.18)

The range Doppler matrices are range gated around the range of interest. Each element, um,i,

corresponds to the row-wise sum throughout the range gated range bins of the belonging

matrix Gi. These operations result in a matrix in the time-frequency domain. The method is

illustrated by figure (2.5), where the blue columns cover the range gate where the frequency

content is summed over and collected.
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Figure 2.5: An illustration showing how a micro-Doppler matrix is constructed from range

Doppler matrices.
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Chapter 3

Neural Networks

The neural network theory is primarily based on Michael Nielsen’s book Neural Networks

and Deep Learning [8]. Exceptions are otherwise stated within the relevant paragraphs. A

thourough review of the most important concepts is covered in [11]. Concepts necessary to

grasp the basic understanding of CNNs are revisited and/or repeated here to provide suffi-

cient theory for the classification methods conducted in this thesis.

Neural networks are mathematical models that learn from experience using observational

data. This data is called training data and consists of pre-labeled data points. A properly

trained neural network can give very high accuracy in applications regarding classification,

such as speech recognition or image classification. These models consist of interconnected

layers containing nodes known as neurons. In this chapter, two different types of neural

networks are presented, namely feedforward neural networks and CNNs, where the former

will serve as a basis for the latter.

3.1 Feedforward Neural Networks

3.1.1 Structure

An example of a feedforward network is illustrated in figure (3.1). This network consists of

three layers: An input layer, a hidden layer and an output layer. The hidden layer is also

called a fully connected layer, as its neurons connect to all neurons in the neighboring layers.

There can be as many hidden layers in a network as is necessary. A network of many layers

are called deep networks. These layers learn features of their inputs. The first layers pick up

rough features, whereas deeper layers look for finer details.
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Figure 3.1: Illustration of a feedforward network [11].

The input to the network is the vector x = [x1x2...xj], where j is the number of inputs.

The inputs are propagated throughout the network, visiting all neurons, until the last layer

wher the output y = [y1...yk] is calculated. There are as many output neurons, k, as there

are classes to be classified.

3.1.2 Activation functions

All inputs to the neurons are weighed by weights, w. By iteratively training the neural

network, these weights are adjusted to eventually give importance to specific features. The

goal of training is to adjust the weights in a way that minimizes the difference between the

output of the network and the real output already provided in the labeled training data. The

sum of all weighed inputs to the neurons at layer l are represented by the intermediate vector

zl, given by equation (3.1):

zl = wlal−1 + bl (3.1)
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where wl is a matrix containing all weights into layer l, al−1 is the vector of activations, or out-

puts of the activation functions, of the previous layer. The quantity bl is a constant bias term.

Each neuron contain an activation function that calculates the output from the given in-

puts. It can be any mathematical function, but should contain certain characteristics, as

their gradients are part of the iterative learning process. Activation functions are written in

compact form as in equation (3.2):

al = σ(zl) = σ(wlal−1 + bl) (3.2)

There are several common activation functions with different pros and cons, such as the

sigmoid function, hyperbolic tangent function, the Rectified Linear Unit (ReLU) and the

softmax function. The sigmoid function and hyperbolic tangent function have saturation

issues when calculating their gradients. Learning slows down if a gradient saturates and

becomes zero, which is the root of a phenomena known as learning slowdown. For that

reason, the ReLU is often the preferred activation function. It is given by equation (3.3):

σ(z) = max(0, z) (3.3)

The ReLUs don’t suffer any learning slowdown when increasing the weighed input. Still, if

the weighed input is negative the gradient disappears entirely. To handle this, a linear term

can replace the zero in equation (3.3). This version is called a leaky ReLU. The choice of

activation function is not trivial, however, work on image recognition has shown that the

ReLU outperforms other activation functions.

Lastly, the softmax function, given by equation (3.4), is a popular choice of activation function

in the last layer. It generates output values on probability form that are easily interpreted.

σ(z) =
exp z∑
k exp zk

(3.4)

The nominator is one of the output neurons and the denominator sums up over all the output

neurons, normalizing the values into probabilities.

3.1.3 Cost function

A cost function, or loss function, is defined to quantify how well the network performs during

training. It is a function that provides a measure of distance between the output of the

network and the real output. The output of the last layer is the input to the cost function.

Consequently, some activation functions are more suitable depending on what cost function
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is used. This is shown by looking at two different cost functions: the quadratic cost function

and the log-likelihood cost function.

Quadratic cost function

The quadratic cost function simply calculates the mean square error:

C(w, b) =
1

2n

∑
x

∥∥y(x)− a
∥∥2 (3.5)

where n is the total number of training inputs, a is the the output when x is input, y is the

correct class and the sum is over all training inputs x. The quadratic cost function serves

as a reasonable cost function as the cost always will be positive. The cost is also easily

interpreted. The training algorithm has done a good job if the cost is close to zero, C ≈ 0.

Similarly, a large cost means worse performance. It’s derivative with respect to the weights

is given by:
∂C(w, b)

∂w
= (σ(z)− y)σ′(z)x (3.6)

By looking at equation (3.6), it is seen that the derivative of the cost function is dependent

on the gradient of the activation function. The same goes for the gradient with respect to

the bias, b. This becomes a problem when using activation functions such as the sigmoid

function, which gradient becomes very small for inputs that are close to 0 or 1. This learning

slowdown can be addressed by using different variations of cost functions and activation

functions.

Log-likelihood cost function

One way to address the learning slowdown problem is with the combination of the softmax

function and the log-likelihood cost function. This solution is useful for classification prob-

lems, as the outputs are interpreted as probabilities. The log-likelihood function is given

by

C(w, b) = − 1

n

∑
x

∑
j

y ln a (3.7)

where the first sum sums up over all inputs to the corresponding output neuron number j

and the second sum sums up over all outputs. High probabilities, that is if the network has

done a good job, will generate low costs close to 0, C ≈ 0. If the network performs poorly

the softmax provides low probabilities, generating high costs. By analyzing the gradient with

respect to the weights in equation (3.8), it is clear that there are no dependencies on the

gradient of the activation function, hence solving the learning slowdown problem. Similar
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reasoning goes for the bias, b.

∂C(w, b)

∂w
=

1

n

∑
x

∑
j

x(σ(z)− y) (3.8)

3.1.4 Gradient Descent

The network learns by iteratively improving its weights and biases. It does so by minimizing

the cost as a function of the weights and biases. It is essentially an optimization problem,

and the learning algorithm used to optimize these parameters is known as gradient descent.

This method updates the weights and biases by moving them in the negative direction of the

gradient of the cost function. It comes in many variations, a few of which will be studied

further in this section.

Batch Gradient Descent

The Batch Gradient Descent (BGD) method calculates the derivative of the cost function

over the entire training set and subtracts it from the respective parameter, being either a

weight or a bias. The update rules are given by:

w′j := wj −
η

n

n∑
i=1

∂C

∂wj

b′j := bj −
η

n

n∑
i=1

∂C

∂bj

(3.9)

where η is the learning rate, a step size deciding how fast the algorithm should converge. It

is important when tuning the neural network that the learning rate is set correctly. If it is

too small it will render the algorithm to converge slowly towards the optimum. Too large

and the algorithm may overshoot the optimal solution. n is the total number of training

inputs, which is called a batch. Optimizing over the entire batch can be computationally

costly for large datasets. For this reason, the Stochastic Gradient Descent (SGD) method

and variations of it is a more common way to go.

Stochastic Gradient Descent

The SGD method differs from BGD in that it optimizes over a smaller part of the training

set, called a mini-batch. Selecting random samples from the training data into mini-batches

and computing the gradients speeds up learning. Let m be the number of samples, then

x1, x2, ..., xm and y1, y2, ..., ym forms a mini-batch. The update laws for the weights and
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biases are then as follows:

w′j := wj −
η

m

m∑
i=1

∂Cxj
∂wj

b′j := bj −
η

m

m∑
i=1

∂Cxj
∂bj

(3.10)

During one SGD run, an estimate of the entire training batch is given, which is not as exact

as for the BGD, but by chosing the mini-batch size properly it will be good enough. When a

neural network learns, mini-batches are chosen and trained upon until all tranining samples

are exhausted. One such cycle is called an epoch. Proper training involves completing many

such epochs.

Momentum-based gradient Gradient Descent

The SGD method struggles when the gradient is zero, which occurs in local minimas and

saddle points. This can be addressed by adding a momentum term to equation (3.10), that

still exists even though the gradient is zero. The update laws with such a term are given by:

w′j := wj + µv − η

m

m∑
i=1

∂Cxj
∂wj

b′j := bj + µv − η

m

m∑
i=1

∂Cxj
∂bj

(3.11)

where v is a running average of the gradients that can be viewed as a velocity term. The

algorithm now steps in a weighed average direction of the velocity and the gradient. µ is a

friction term that decays the velocity. This momentum based method solves the problems

that the SGD method encounters in local minimas and saddle points.

3.1.5 Backpropagation

This section on backpropagation is taken in its entirety from [11] and explains how the gra-

dient descent methods are made possible to work with neural networks.

To actually be able to use the gradient descent method the gradients have to be calculated.

This is done using the backpropagation algorithm. Before the idea behind backpropagation

is explained, some notation is necessary. wljk is the weight between the kth neuron in the

(l − 1)th layer to the jth neuron in the lth layer. Similarly, alj is the activation from the jth

neuron in the lth layer.

The idea behind backpropagation is that a small weight perturbation ∆wljk causes a small
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change ∆alj in the activation from the jth neuron in the lth layer. This will cause a small

change in all the activation in the next layer, and so on. In the end, it will have caused

a small change in the cost function C(w, b). This propagation of changes can be tracked

using the chain rule along the path of change. Since there will be many such paths, the total

change in the cost function can be obtained by summing over all the paths, as is shown in

equation (3.12).
∂Cxj
∂wj

=
∑
mnp...q

∂C

∂aLm

∂aLm
∂aL−1n

∂aL−1n

∂aL−2p

...
∂al+1

q

∂alj

∂alj
∂wljk

(3.12)

In summary, the backpropagation algorithm propagates the error backwards throughout the

network in order to find a small change in weights that decreases the cost.

3.2 Convolutional Neural Networks

This far, inputs to the neural networks must be presented on vector form. Classification of

images thus requires a mapping down to one dimension, resulting in a loss of spatial structure.

Nielsen uses three fundamental ideas to explain the concepts of CNNs, which architectures

conserve the spatial structure of images. These ideas are presented in this section.

3.2.1 Local Receptive Fields

In contrast with feedforward neural networks, images can be inputted directly into a CNN.

They are usually presented in a four dimensional manner, [m,n, c, I], where m and n are the

width and height of the images respectively. c is the number of channels, which for RGB

images is three and grayscale images is one. The last number, I, is the total number of images.

Small filters, presented by Nielsen as local receptive fields, look for spatial structures in the

images. Figure (3.2) shows a 5× 5 filter in the upper left corner of a 16× 16 input image. A

dot product between all the pixels in the filter and a region of the image produces a neuron in

the next hidden layer. By convolving the filter over the entire image, a complete mapping of

dot products is created. The resulting hidden layer is therefore better known as an activation

map.
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Figure 3.2: A local receptive field producing a neuron in the hidden layer. [11].

The 5× 5 filter will with a stride length of 1 only be able to slide across the image eleven

times until it reaches the image border. This results in a reduced activation map of size

11× 11. A common solution to maintain the input size in the activation maps is to zero pad

the borders of the input image.

3.2.2 Shared Weights

Each convolutional layer of the network can contain several such filters creating belonging

actication maps. Each filter has weights corresponding to its pixels in addition to one bias

term. That is, all neurons in an activation map has a set of shared weights and a bias. This

means every filter will look for the same feature across the input image. If many filters are

randomly initialized, a convolutional layer will look for correspondingly many features of the

input images.

3.2.3 Pooling

To reduce the number of parameters throughout the network layers it is common to use

pooling layers. They downscale the activation maps and exist in different variations. A widely

used pooling method is called max pooling. A sliding window is slid across the activation

map with a certain stride length and window size, outputting the maximum value within
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the window. A window of size 2 × 2 reduces the activation maps by a factor of 2. Another

variation is L2-pooling, which instead outputs the square of the sum of squares of each pixel

within the window.

3.3 Measures against overfitting

Neural networks usually have a wide range of parameters (weights and biases). That means

they can potentially describe training data down to the smallest detail. The learned model

may agree well with the training data, however the network can be so specialized to the

training data that when tested on different data, the results are not as good anymore. This is

called overfitting. Such models can describe a given dataset, but are not generalized to handle

other situations. There are several techniques to cope with the problem of overfitting. A

solution can be to increase the training data, or even reduce the network. Acquiring training

data is cumbersome, and large networks are more powerful than small networks. Therefore

it is desirable to approach this differently [11]. Some common methods are discussed in

the notes accompanying a deep learning class hosted by Stanford University [10], which are

repeated here. The last section on training, validation and test data, chapter 3.3.3, is taken

from [11] with minor modifications.

3.3.1 L2-regularization

A common form of regularization is to penalize the squared magnitude of all parameters.

This is done by adding the term 1
1
λw2 in the cost function, where λ is the regularization

strength. This way, large weights are penalized and smaller weights are preferred, meaning

the network tries to use all its inputs rather than a small dominating portion.

3.3.2 Dropout

A simple, but effective regularization technique is dropout. During training, the neurons are

kept active with some probability, p. This means, after training the modified network over

a mini-batch of data, the weights and biases are updated and the process is repeated with a

new subset of neurons kept active. This technique builds on a theory saying that different

networks overfit in different ways. A kind of average scheme of different networks may be

an efficient way of handling overfitting, which is what happens when training on different

sub-networks for all mini-batches of data.
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3.3.3 Training, validation and test data

It is common procedure to split the data into three sets: A training, validation and test set.

The majority of the data should belong to the training set. Common distributions involve

around 80% training data and 10% each of validation and test data, as shown in figure (3.3).

It is important that the data throughout the sets are Independent and Identically Distributed

(IID). This assumption is common in statistics to simplify mathematical models. By indepen-

dent it goes that the occurrence of one should not affect the occurrence of another. Identically

means the distribution from which the data is drawn stays the same.

Figure 3.3: A dataset split into training data, validation data and test data.

The training set is the dataset which the network will use to learn from. The training set

is labeled so that the network can move its weights and biases in the right direction.

During training, a separate labeled set can be used to check the performance. This set

is called the validation set and can give indications on whether or not the network is overfit-

ting to the training data. If the training loss is much higher than the validation loss then the

network is overfitting. This is often done once or twice per epoch. The validation set does

not contribute to training the network.

The test set is an unlabeled set used on a trained network to see if the network can classify

data other than the training data correctly.

3.4 Weight initialization

Before the neural network can be trained, the weights and biases must be initialized. Weight

initialization is a widely discussed topic with state of the art methods highly depending

on network architectures. A common way to initialize the parameters is by drawing random

weights from a zero mean Gaussian distribution with some standard deviation [5]. A problem

occurs in deeper network where the models run into convergence troubles due to saturating

weights throughout the network layers. A solution proposed by Glorot and Bengio [4] is using

a scaled uniform distribution for initialization. This method is known as ”Xavier” initial-

izaion and assumes linear activation functions. When using ReLU functions this assumption
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does not hold.

He, Zhang, Ren and Sun [5] proposes a robust initialization method that takes ReLUs into

account. This method is known as ”HE-initialization”. It concludes that the variance of the

weights should be given by

V ar(W ) = 2/n (3.13)

where n is the number of input neurons. This leads to the randomly initialized weights with

zero mean and standard deviation = sqrt(2/n). The bias terms are initialized to zero. This

is according to [10] the current recommended initialization method.
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Chapter 4

Methods

This chapter presents the methods used when acquiring data, both with Novelda X4 radar

and by the use of the simulator developed in [7]. It also covers the design of the micro-

Doppler images and the preparing of the datasets to be used as input data to the CNN.

Finally, details of the CNN classifier as well as the design of the network architecture are

presented.

4.1 Data acquisition

4.1.1 Real data

Real data was acquired over two turns in a controlled test environment in a film studio at

Ila, Trondheim. The first round of recordings were performed in connection with the project

work of the same subject in September 2017 [11]. The need of higher resolution images along

with more data lead to a second round of recordings were some adjustments to the setup and

radar parameters were made. This was carried out as part of this thesis in January 2017 at

the same location.

The details on the first round of recording are repeated here. Data of a Weathen Terrier

dog and two humans, walking with different gaits from different angles, was collected. This

test setup is shown in Table (4.1). The recordings were video taped synchronously with

the PRF, making analysis at specific frames possible. The test subjects carried a ranging

device that estimated the range between the radar and the test subjects. These distances

were provided alongside the recordings as csv files. A PRF of 300Hz was used so that the

radar could capture high velocity targets, such as a running dog. The radar was placed at

approximately 3m above ground. The angles at which the targets move relative to the radar

is defined with 0 degrees pointing straight out from the radar.
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Target Distance Direction Movement style

Dog 2m 90◦ Walking

Dog 4m 90◦ Walking

Dog - 0◦ Walking

Dog - 45◦ Walking

Humans - 45◦ Walking, Marching, Hands in Pockets

Humans 1m 90◦ Walking, Marching, Hands in Pockets

Humans 4m 90◦ Walking, Marching, Hands in Pockets

Humans - 0◦ Walking, Marching, Hands in Pockets

Table 4.1: Test matrix round 1

A new round of recording was done to capture data with a higher SNR. The same film

studio was used, only with a few adjustments to the setup. The radar was placed at a lower

height so that the lobe pointed more directly toward the targets, allowing the capture of

more stable radial velocities of the targets. The radar was mounted as shown in Figure (4.1),

where the radar can be seen at the far right and the web camera in the middle.

Figure 4.1: Test setup with mounted web camera and X4 radar.

A newly developed tracking algorithm replaced the ranger used earlier and so no form of

ranging was done during recording.
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Target Direction Movement style

Dog Random Walking

Dog 0◦ Walking

Dog 45◦ Walking

Dog 90◦ Walking

Human Random Walking

Human 0◦ Walking, Marching, Hands in Pockets

Human 45◦ Walking, Marching, Hands in Pockets

Human 90◦ Walking, Marching, Hands in Pockets

Table 4.2: Test setup round 2

Table (4.2) shows the test setup of the second round of recording. In contrast with

round 1, only one human was recorded, as the pulse Doppler signatures of the two people

contributing to round 1 had no prominent variations. Recording at 90 degrees was given

lower priority as it is the angle at which the lowest change of radial velocity occurs. At

the 90 degree recording, the distance was kept around 5m away from the radar. Separate

recordings were made of the dog and a human walking around randomly. These were made

to provide realistic test sets independent of the other recordings.

4.1.2 Micro-Doppler Radar simulator

Training neural networks usually require large datasets of IID data. Acquiring this manually

is both an impractical and time consuming effort. For this purpose, a simulator was devel-

oped as part of another master thesis of spring 2018 [7].

It models humans and animals based on motion captures of humans and animals and creates

simulated baseband data similar to that of the radar. The use of the simulator and the

motion capture libraries enables signal capture of different size targets at different speeds

and angles relative to the radar. This opens the opportunity for large and variate datasets

that can be used for classification purposes.

4.2 Preparing datasets

The raw data acquired in chapter 4.1 is passed through the feature extraction process ex-

plained in chapter 2.4. For the resulting micro-Doppler signatures to be suitable as input

data for the neural network, they must be processed into a certain format. The input images

to the neural network are designed in a 4-dimensional fashion, containing the width, height,
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depth and number of images. The width and height correspond to the time and Doppler

frequency axes of the micro-Doppler matrices. This section covers the generation of input

images and the preparation of the datasets used for training and testing the neural network.

4.2.1 Image design

Several design considerations must be considered when creating the micro-Doppler matrices

and designing the images. Four important points to consider when processing the data are

listed below and will be further discussed.

• PRF: Different target velocities require different PRFs to avoid aliasing.

• Window length: The choice of the window length, w(t), in the STFT is crucial to

present the matrices in a visually understandable manner.

• Time length: The time length in each input image decides how much gait information

is included.

• Image size: The size of the images before being passed through the neural network

stipulates the final image resolution.

Pulse Repetition Frequency

The use of the simulator enables large datasets to be created with the possibility to adjust

the PRF to capture high target velocities. The data is generated using a PRF = 2000 except

for the scenarios of running targets where a PRF = 3000 was necessary to avoid aliasing.

As for the real data, the radar settings were set with a PRF = 300. This big gap in the

PRF is due to X4-radar limitations. Most of the recordings from the second round, listed in

table (4.2), contain target velocities exceeding the limit as given by the radar settings, thus

rendering the data useless due to folding.

Window length

The number of elements, M, along the frequency axis of the micro-Doppler matrices is set

by the window length, w(t) multiplied with the PRF. A window too small results in a micro-

Doppler signature with poor Doppler frequency resolution. If the window is too large the

frequency content smears out into blobs with no visual meaning.

Figure (4.2) shows a micro-Doppler signature from the real dataset of a human walking

towards the radar. It illustrates the effect of three different window lengths. In figure (4.2a)

the window length of w(t) = 0.1s is short enough to yield the micro-Doppler signature, only
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with poor resolution. Figure (4.2b) has slightly better resolution with w(t) = 0.2s, whereas

the frequency content in figure (4.2c) is completely smeared out as the window length of

w(t) = 1.0s is too large. Due to these observations, the number of elements, M, along the

frequency axis is set according to a window length w(t) = 0.2s for both the real and simulated

images.
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(a) Window length 0.1s
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(b) Window length 0.2s

(c) Window length 1s

Figure 4.2: The effect of the STFT window length.
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Time length

The time axis is set according to the number of frames, or range Doppler matrices, included in

the micro-Doppler and the PRF. The longer the time interval, the more information, such as

gait frequencies, are included in each image. In the earlier works of [2, 11], each micro-Doppler

image was created by extracting fifty consecutive frames from a micro-Doppler signature.

This allowed for large datasets of many different images, as every image only required fifty

frames. However the resulting time length in each image is short and leaves small changes of

oscillating frequency visible. An alternative is creating images capturing several gait cycles.

Such longer time series images must be comprised of more range Doppler matrices and will

therefore to some extent decrease the size of the dataset.

Figure (4.3) shows two images of different time lengths. Figure (4.3a) shows an image made

to illustrate a design similar to that used in the earlier works of [2, 11]. Note that this ex-

ample is made for the purpose of comparison and does not replicate the images used in the

earlier works. It contains five hundred range Doppler matrices. Small changes in frequency

can be seen, but not enough information is included to indicate the frequency at which limbs

are oscillating. The image in figure (4.3b) shows an image containing three thousand range

Doppler matrices. This results in an image containing several gait cycles, which gives a more

complete conception of the target’s locomotion style. This amount of frequency content over

time is believed necessary in order to distinguish between dog and human micro-Doppler

signatures and make good predictions.
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(a) 500 range Doppler matrices
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(b) 3000 range Doppler matrices

Figure 4.3: The effect of the time length.

To capture more frequency content in each image, time series comprised of 3000 range

Doppler matrices, as in figure (4.3b), are used for the simulated data. With the PRFs used
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when generating the data, this corresponds to time durations of 1.5s and 1.0s. The real data

is acquired with a lower PRF. Using 300 range Doppler matrices in each image thus creates

images covering 1.0s.

Input image size

So far the simulated images are of size M × 3000 and the real images are of size M × 300.

To limit the input size to the neural network, the images are downsampled using bicubic

interpolation into quadratic images. Two different input sizes are tested upon. These are

listed in table (4.3) along with their abbreviations.

Input size Abbreviation

256× 256 Im256

32× 32 Im32

Table 4.3: Image input sizes and their abbreviations

The largest images are of size 256× 256, keeping the resolution along the frequency axis

for the simulated data. Further downsampling still results in images with key information

visible to the eye, only with poorer resolution. Testing smaller size image decreases compu-

tation time. They contain much of the same information as the full resolution images, only

with less noise. This might let the network focus on the important features and improve

training.

Figure (4.4) compares the image types Im256 and Im32. They are taken from the same

scenario of a simulated walking human. A brighter color indicates higher Doppler frequency

power over the range bins at that point in time. Approximately two and a half gait cycles

can be eyeballed in these images from the repetitive pattern due to swinging arms and legs

and bulk motion. While the resolution of the Im256 image in figure (4.4a) is much higher

than that of the Im32 image in figure (4.4b), the same pattern is still visible.
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(a) Image type Im256
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(b) Image type Im32

Figure 4.4: Input image with the signature of a walking human.
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4.2.2 Input data

The complete dataset used for training is generated by the simulator and includes various

situations. Table (4.4) lists the scenarios included in the training set. A total of 1560 training

images are generated by extracting consecutive frames from the micro-Doppler signatures.

As mentioned earlier, capturing several gait cycles in each image requires big portions of

the original micro-Doppler signatures and leads to fewer images availbable for extraction. In

order to compromise between capturing several gait cycles as well as creating a large dataset,

all images overlap all but the 50 preceding frames. This results in a large set of data. The

size of the dataset is ultimately limited by the access to motion capture data on dogs.

Class Situation Radar placement

Human Walk 0◦, 45◦, 90◦

Human Walk fast 0◦, 45◦, 90◦

Human Walk exaggerated 0◦, 45◦, 90◦

Human Walk and turn 0◦, 45◦, 90◦

Human Run circles -

Dog Run 0◦, 45◦, 90◦

Dog Various motions 0◦, 45◦, 90◦

Dog Run and jump 0◦, 45◦, 90◦

Dog Run and jump onto box 0◦, 45◦, 90◦

Table 4.4: Training data

A test set consisting of simulated data is created by extracting 10% of the training set

in table (4.4). This portion is not used during training and is completely independent of

the training data when tested upon. A second test set is generated from the real data listed

in table (4.1). This set consists of 558 images. These test sets will be referred to as the

simulated test set and the real test set.

Figure (4.5) compares human and dog images from both the simulated and the real datasets.

Note that the vertical axes aren’t the same in the simulated images as the real images. This

is due to the different PRFs used when capturing the radar data. The number of image

points are still the same as the final image sizes are set according to either image type Im32

or Im256. In this figure the images are of type Im256. Figure (4.5a) shows a micro-Doppler

signature of a human from the real dataset. The positive Doppler frequencies indicate the

human is walking towards the radar. Approximately one and a half period of the swinging

pattern is visible. The dog has a higher swinging frequency, as seen in the dog image in

figure (4.5b) with almost five periods visible. This makes sense from the standpoint of dogs
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having shorter legs and higher gait frequencies. The negative Doppler frequencies means the

dog is moving away from the radar. The frequency at which the objects move their limbs is

an important feature that can possibly be used to separate the classes. As seen in both of

the images coming from the real datasets, there is a large amount of noise visible. This is

non-existent in the simulated images.

Figure (4.5c) shows a human image from the simulated dataset. The frequency patterns

are clearly visible with almost three periods visible. The amplitude of the oscillations are

much greater in the human image than what is the case with the simulated dog image in fig-

ure (4.5d). This indicates that the simulated human reaches higher velocities as it swings its

limbs than the simulated dogs. Some weak oscillations can be seen in the dog image, however

most of the frequency content stays near the bulk frequency. This difference in thickness of

the signatures may be a feature that helps distinguish the image classes.
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(a) Real human image
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(b) Real dog image
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(c) Simulated human image
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(d) Simulated dog image

Figure 4.5: Human and dog images from simulated and real datasets

There are great differences between the simulated and real images when it comes to pres-

ence of noise and characteristics of the oscillating frequency patterns. The real images are

marked by noise in the form of clutter from surrounding objects and propagation loss. The
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propagation loss renders signals returning from a distance weaker. That is, the signal is

weaker the longer it has travelled, making information of interest less visible. The vertical

patterns arising in figure (4.5a) and figure (4.5b) are likely due to this phenomena.

The real data signatures are made more distinct by converting the data into a logarith-

mic scale. Noise can be removed by setting a decibel limit, allowing only frequency spikes

of a certain power level to be visible. This effectively increased the contrast between the

frequency patterns and the noise floor.

A neural network will be trained on simulated data and tested on both the simulated test set

and the real test set. It is expected that the results on the simulated test set are better than

on the real test set as only simulated data is trained upon. If classification can be done on

simulated data it is likely it can be done with real data as well under the right circumstances.

This implies that training is done properly with real data included in the training process

and that the access to real data is good enough to create a large set of diverse images. It is

however interesting to see if a network trained on simulated data can recognize features in a

real test set.

Lastly, it was experienced during testing that an unbalanced training set may lead to the

results being heavily biased. Rather than learning to identify important features of the data,

a neural network may base its classification on the distribution of each class in the training

data. Therefore the dataset is balanced such that there are an equal amount of dog images

as there are human images.

4.3 Neural Network Classifier

The CNN is implemented using the ”Neural Network Toolbox” in Matlab. Training is per-

formed using an NVIDIA TITAN X graphics card (GPU), significantly decreasing computa-

tion time. The design is partly based on experience from the work in [11], where a smaller

network consisting of fewer convolutional layers is studied. Other considerations are taken in

line with state of the art theory from [10]. The CNN developed in this work is of a greater

size than what was tested in [11], meant to capture a bigger set of features.

4.3.1 Neural network architecture

The input images are passed through five convolutional layers, each followed by a max pool-

ing layer and leaky ReLU functions. The max pooling layers effectively downsamples the

input images by a factor of 2 in each layer. To keep the computational complexity in each
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layer the same, the number of filters are consecutively increased by a factor of 2 with the

purpose of giving uniform importance throughout the network layers.

The last activation maps are mapped onto a fully connected layer, representing the strongest

feautures of the input image. Several such layers gradually downsample the features towards

the two classes. The features are weighed and computed into probabilities in the output layer

by the softmax function. The output layer consists of two neurons representing a human and

a dog. The probabilities in the output neurons are fed into the log likelihood cost function

so that a cost can be calculated and used to update the weights, as described in chapter 3.1.3.

An illustration of a neural network architecture is shown in figure (4.6). It is based on

the Im256 images. The dimensions in the activation maps changes with other input image

types, but the general layer structure stays the same.
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Figure 4.6: Neural network architecture.

The boxes underneath each layer contains layer parameter considerations and are color

coded. The red box belongs to the respective convolutional layer and holds the number of

filter and their sizes. The blue box contain information about the pooling layers. The yellow

box tells which activation function is used and the purple box in the output layer is the cost

function at the very end of the architecture, which here is the log-likelihood function.

4.3.2 Number of epochs and training iterations

The number of epochs is chosen such that network is trained enough for the loss and accuracy

to stabilize. 20 epochs were trained upon when testing the Im256 images, whereas 50 epochs

when testing the Im32 images. This was due to some of the configurations needing more
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time to converge.

The mini-batch size is set to 128. With the total of 1560 images being split into 1248 training

images and 312 validation images, this resulted in floor(1248/128) = 9 iterations per epoch.

The Im256 images are therefore trained over a total of 20 epochs× 9 iterations = 180 itera-

tions. Similarly, the Im32 images are trained over 50 epochs× 9 iterations = 450 iterations.

4.3.3 Initial learning rate

The learning rate in the SGD method is set on a piecewise drop schedule, starting at 0.1 and

dropping with a factor of 10 every time one fifth of the training epochs are completed. This

means the learning rate dropped every 4th epoch for the Im256 images being trained for 20

epochs and every 10th epoch for the Im32 images training for 50 epochs.

Such a piecewise schedule was shown to produce better results than training with a constant

learning rate. This way it takes larger steps towards the optimal minimas in the beginning

before it starts fine searching.
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Chapter 5

Testing and results

This chapter covers the testing of the CNN and the input images as presented in chap-

ter 4. The first section presents details explaining the test procedure and how the results

are treated. The following sections present some selected results from testing with the two

image types, Im256 and Im32, where the effects of L2-regularization and dropout are studied.

The major focus is on the simulated dataset as it was the main source of data and most

importantly, the data comprising the training set. Three factors are studied and compared

to analyze the performance of the network on the simulated data:

• Classification accuracies: The percentage of correctly classified test images.

• Training and validation loss: Loss curves help evaluate the model. Together the training

and validation loss can give information about how the model fits to the data.

• Bar plots with predictions on test images in probability form.

These three factors give a combined evalutation of the network’s performance. The filters of

the convolutional layers can also be studied for some selected results in appendix A.

Classification accuracies on the real data are also presented to show how the network performs

on real data which is not included in the training set.

5.1 Test procedure

The neural network as well as all the code for preprocessing data and testing the network are

implemented in Matlab. Training information, such as the hyperparameters used, filters of

the convolutional layers and loss curves, were saved to a simultaneously created and times-

tamped folder in a predefined path. Test results such as bar plots of the predictions on the
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test data, confusion matrices and test accuracies on the simulated and real datasets were also

saved. This way it was trivial to go back and look at the results from training.

The code below is a simplified version of the main file used when training and testing the net-

work. The ”trainNetwork” function is part of the neural network toolbox in matlab, whereas

the other functions are custom made.

load ( tra inData ) ;

load ( t r a i n L a b e l s ) ;

load ( testData ) ;

load ( t e s t L a b e l s ) ;

loadhyperparameters ;

rng ( seed ) ;

l a y e r s = se tLayer s ( hyperparameters ) ;

l a y e r s = setWeights ( l aye r s , hyperparameters ) ;

opt ions = setTra in ingOpt ions ( hyperparameters ) ;

[ net , i n f o ] = trainNetwork ( trainData , t ra inLabe l s , l aye r s , opt ions ) ;

testNetwork ( net , testData , t e s tLabe l s , savePath ) ;

saveTra in ingResu l t s ( net , in fo , hyperparameters , savePath ) ;

First, the preprocessed training and test data are loaded. The hyperparameters are then

loaded as a struct. This struct keeps the parameters, such as initial learning rate, regulariza-

tion strength, mini-batch size to mention a few, organized in an orderly manner. A seed is

set by the ”rng(seed)” command to produce predictable random weights and data shuffling.

The layers are defined by ”setLayers” and ”setWeights” before the training options are set

according to the hyperparameters. The layers and training options now define the neural net-

work, which is trained by ”trainNetwork” with the loaded training data. The ”net” output

argument is the trained network where the layers and the weights are defined. ”info” contains

information from the training process such as training loss and accuracy data. Finally, the

network is tested and the results are saved to the predefined save path.

5.2 Testing on Im256 images

In this section the Im256 images are studied. With no form of regularization or dropout the

network scored a classification accuracy of 81% on the simulated data and 50% on the real
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data. The corresponding training and validation loss curves are shown in figure (5.1a). Both

the validation loss and the training loss converges nicely towards zero. The validation loss

follows the training loss for the most part, suggesting the network managed not to overfit to

the training data. The predictions in figure (5.1b) shows that the network classifies all human

images with high confidence, whereas portions of the dog images are incorrectly classified as

human and in general classified with poor confidence. This result is used as a reference to

the proceeding results when testing with regularization and dropout techniques.
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Figure 5.1: Loss curves and classification predictions on Im256 images.

5.2.1 Effect of L2-regularization

The L2-regularization method is tested with different regularization strengths, λ, to map the

effects on training. Table (5.1) lists the classification accuracies on simulated and real test

data resulting from test runs with different extents of regularization. Corresponding training

and validation loss against training iterations are plotted in figure (5.2). Bar plots containing

the network’s predictions on the simulated test data are shown in figure (5.3).

Im256

λ Simulated data accuracy Real data accuracy

1.0 59% 45%

0.1 100% 40%

0.01 89% 50%

0.001 73% 45%

0.0001 70% 50%

Table 5.1: Classification accuracies given regularization strengths tested on Im256 images.
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The highest classification accuracy of 100% is according to table (5.1) occurring with a

regularization strength λ = 0.1. The loss curves stagnate around 0.1 in figure (5.2b). Spikes

in the curves arise around the fortieth iteration before they converge towards the terminal

loss. This can indicate that the SGD method has problems finding local minimas when opti-

mizing the cost function with a regularization strength this high. By looking at figure (5.3b)

it can be seen that all images were predicted correctly, only with little confidence as the

network classifies most of the dog images with probabilities around 0.5. The human images

are more easily classified with probabilities around 0.8.

A worse scenario occurs with λ = 1, which has a classification accuracy of 59%. The cor-

responding training and validation losses in figure (5.2a) stagnate at approximately 0.69.

A loss of 0.69 is a typical value when using the log-likelihood cost function on two-class

problems with probabilities equal to chance. The loss is calculated from equation (3.7) as

C = −ln(0.5) ≈ 0.69. The classification accuracy of 59% is a little higher. The predictions

shown in figure (5.3) shows that all the test images are classified with probabilities close

to 0.5, meaning the network classifies the images with little confidence. This discrepancy

between the classification accuracy and the loss curves may be explained by the network’s

prediction levels not being exactly 0.5.

A λ = 0.01 resulted in a classification accuracy of 89%. The loss curves in figure (5.2c)

converges smoothly to zero. Figure (5.3c) shows that the confidence of classification is higher

than the previously cases presented, but still with a big portion of the dog images predicted

with low probabilities. The incorrectly classified images are dog images being predicted as

human.

The results achieved with λ = 0.001 and λ = 0.0001 are of slightly worse performance with

accuracies 73% and 70%. The loss curves of figure (5.2d and 5.2e) show convergence towards

zero for both cases. The test image predictions are quite similar as seen in figure (5.3d) and

figure (5.3e).

Poor performance is achieved throughout all regularization runs when testing on the real

dataset. The best classification accuracy of 52.5% occurs with λ = 0.1.
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Figure 5.2: Training and validation loss curves from regularization test runs.
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Figure 5.3: Predictions on simulated Im256 images from regularization test runs. The 65

bars to the left are dog predictions and the 65 bars to the right are human predictions.
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5.2.2 Effect of dropout

The dropout technique is tested with different dropout probabilities, p, as explained in chap-

ter 3.3.2. The classification accuracies achieved are listed in table (5.2), with corresponding

loss curves in figure (5.4). The network’s predictions on the simulated data are presented in

figure (5.5).

Im256

p Simulated data accuracy Real data accuracy

0.1 78% 48%

0.2 70% 50%

0.3 84% 50%

0.4 61% 51%

0.5 62% 49%

0.99 50% 53%

Table 5.2: Classification accuracies given dropout probabilities tested on Im256 images.

As seen in table (5.2), training the network with p = 0.1 and p = 0.2 resulted in 78%

and 70% of the simulated test images being correctly classified. The loss curves in figure

(5.4a) and figure (5.4b) converge smoothly towards zero. The predictions of p = 0.2 in fig-

ure (5.5b) are somewhat stronger than the network’s predictions with p = 0.1 in figure (5.5a).

The highest classification accuracy on the simulated data was 84%. It was achieved with

a dropout probability of p = 0.3. This is a slight improvement to the test run without any

form of regularization or dropout. The loss curves in figure (5.4c) have spikes arising around

the thirtieth iteration. After that they reach zero quickly, meaning the network eventually

predicts the training data well. The validation loss follows the training loss which suggests

the network manages not to overfit to the training data. The predictions in figure (5.5c) are

strong on the human data. Some of the dog images are falsely or poorly predicted.

Further increasing the dropout probability results in lower accuracies. p = 0.4 scores a

classification accuracy of 61% on the simulated data. The loss curves in figure (5.4d) has

some troubles decaying in the first 20 iterations, but starts converging towards zero loss

eventually. Figure (5.5d) shows that most images are predicted as human. A similar case

arises with p = 0.5, which scores a classification accuracy of 62%. The predictions in figure

(5.5e) are very similar to those of p = 0.4. The loss curves in figure (5.4e) reaches zero a

little faster and are somewhat smoother.
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Poor results are achieved with all the different dropout probabilities when testing on the

real data. The classification accuracies are close to chance.

A sanity check was performed with a dropout probability p = 0.99 to see if the network

behaves normally. This effectively killed 99% of the neurons during training and lead to 50%

accuracy on the simulated test set and 53% accuracy on the real test set. The loss curves

are shown in figure (5.4f). The loss requires many iterations before it starts converging.

Neither the validation loss nor the training loss converge all the way to zero, meaning the

network never fully manages to classify the training and validation images with high proba-

bilities. Figure (5.5f) shows that the network consistently predicts the simulated test images

as human. This result supports the sanity of the network.
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Figure 5.4: Training and validation loss curves from dropout test runs.
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Figure 5.5: Predictions on simulated Im256 images from the dropout test runs. The 65 bars

to the left are dog predictions and the 65 bars to the right are human predictions.
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5.2.3 Dropout and regularization

In the earlier sections the isolated effect of L2-regularization and dropout has been studied.

This can be seen as searching for an optimal solution in a one dimensional plane. Now, both

the dropout and regularization techniques are tested together to look at the combined effect,

which requires searching for a solution in a two dimensional plane. This involves looking

for completely new optimal values which don’t necessarily agree with the one dimensional

solutions. To study this, a few regularization strengths and dropout probabilities were cross

tested based on the results from testing L2-regularization and dropout individually.

The classification accuracies on the simulated and real data resulting from cross testing

p = 0.2, p = 0.3, λ = 0.01 and λ = 0.001 are listed in table (5.3). The corresponding

loss curves and bar plots with test predictions are shown in figure (5.6) and figure (5.7)

respectively.

Im256

p λ Simulated data accuracy Real data accuracy

0.2 0.01 69% 50%

0.2 0.001 62% 45%

0.3 0.01 78% 40%

0.3 0.001 56% 43%

Table 5.3: Classification accuracies given dropout probabilities and regularization strengths

when training on Im256 images.

None of the selected parameter combinations resulted in improving the network’s ability

to classify the test data. Combining p = 0.2 and λ = 0.01 produced a classification accuracy

of 69% on the simulated data, whereas p = 0.2 and λ = 0.001 achieved 62%. Their loss

curves in figure (5.6a) and figure (5.6b) all converge to zero, however the predictions in figure

(5.7a) and figure (5.7b) show poor performance on dog images, with the former predicting

the dog images a little better.

The combination of p = 0.3 and λ = 0.01 resulted in the strongest classification accu-

racy of 78% on the simulated data. It’s loss curves in figure (5.6c) decays nicely towards

zero and the network is able to predict all human images with high confidence, whereas the

dog images are predicted with less certainty, as seen in figure (5.7c). The last combination

of p = 0.3 and λ = 0.001 scored a classification accuracy of 56%, only slightly better than

chance. There is no apparent indication of this poor performance in the belonging loss curves

in figure (5.6d), however the network predicts close to all images as human, as shown in figure
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(5.7d).
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(c) λ = 0.01 and p = 0.3
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Figure 5.6: Training and validation loss on simulated test images given dropout probability

p and regularization strength λ.
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(c) λ = 0.01 and p = 0.3
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(d) λ = 0.001 and p = 0.3

Figure 5.7: Predictions on simulated Im256 images given dropout probability p and regular-

ization strength λ. The 65 bars to the left are dog predictions and the 65 bars to the right

are human predictions.

These results merely represent the tip of the iceberg when exploring the various parameter

combinations. They do however support the theory that the one dimensional results are not

necessarily directly transferable to the two dimensional plane.

5.3 Testing on Im32 images

Similar tests are run on the Im32 images. Figure (5.8a) shows the loss curves when using no

form of regularization or dropout. It reaches zero loss after about hundred and fifty iterations.

This is a little slower than the case with the Im256 images. 85% accuracy was achieved on

the simulated images, whereas 57% accuracy was achieved on the real images. The bar plot

in figure (5.8b) shows strong predictions on all human images as well as the majority of the

dog images. In the following sections, L2-regularization and the dropout technique are tested
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on the Im32 images in an effort to improve performance.
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Figure 5.8: Loss curves and classification prediction on Im32 images.

5.3.1 Effect of regularization

The classification accuracies achieved when testing the Im32 images with different regulariza-

tion strengths are listed in table (5.4). Corresponding training and validation loss curves are

displayed in figure (5.9). The simulated test image predictions at the various regularization

strengths are shown in figure (5.10).

Im32

λ Simulated data accuracy Real data accuracy

1.0 50% 50%

0.1 94% 57%

0.01 88% 56%

0.001 86% 56%

0.0001 87% 56%

Table 5.4: Classification accuracies given regularization strengths tested on Im32 images.

The highest accuracy on the simulated data is 94% and is achieved with a regularization

strength λ = 0.1. However, looking at the belonging loss curves in figure (5.9b) reveals losses

not converging to zero. The bar plot in figure (5.10b) shows that the network classifies the

test images with poor prediction levels, most around a probability of 0.5.

The second highest classification accuracy on the simulated data is 88%. It is achieved

at λ = 0.01. The loss curve in figure (5.9c) converges to zero after approximately two hun-

dred iterations and the bar plot in figure (5.10c) shows predictions with most probabilities
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close to 1.

Further decreasing the regularization strengths leads to slightly lower classification accu-

racies, however the loss curves of figure (5.9d) and figure (5.9d) converges towards zero, also

with strong levels of predictions as seen in figure(5.10d) and figure (5.10e).

The real data is classified poorly no matter what regularization strength is used. The highest

classification accuracy achieved is 56.6% with λ = 0.1. It is however an improvement com-

pared to the accuracies achieved when training on the Im256 dataset.

Using λ = 1. results in 50% classification accuracy on both the simulated and the real

data. The loss curve in figure (5.9a) stabilizes around 0.69 and the barplot in figure (5.10a)

shows predictions at probabilities around 0.5. This is the same case as when training the

Im256 images with λ = 1.
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Figure 5.9: Training and validation loss curves from regularization test runs.
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Figure 5.10: Predictions on simulated Im32 test images from regularization test runs. The

65 bars to the left are dog predictions and the 65 bars to the right are human predictions.
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5.3.2 Effect of dropout

Table (5.5) shows the results from testing the Im32 images with a dropout layer of different

dropout probabilities. Figure (5.11) shows the corresponding loss curves and figure (5.12)

shows the network’s predictions when testing on the simulated data.

Im32

p Simulated data accuracy Real data accuracy

0.1 100% 56%

0.2 79% 55%

0.3 100% 50%

0.4 99% 46%

0.5 95% 48%

0.99 84% 60%

Table 5.5: Classification accuracies given dropout probabilities tested on Im32 images.

The simulated test images were 100% correctly classified using the probabilities of dropout

p = 0.1 and p = 0.3. The belonging loss curves in figure (5.11f and 5.11d) converge towards

zero. The bar plots in figure (5.12f and 5.12d) show strong predictions close to probabilities

of 1. The latter, representing p = 0.3, shows the strongest network performance with all test

images classified with high confidence.

Dropout probabilities p = 0.4 and p = 0.5 also scored high classification accuracies on the

simulated test images with 99% and 95% respectively. These results are supported by nicely

converging loss curves in figure (5.11c and 5.11b) and bar plots showing strong predictions

in figure (5.12c and 5.12b).

Lower classification accuracies on the simulated data were achieved with p = 0.2. The loss

curves in figure (5.11e) show convergence towards zero, however the prediction bar plot in

figure (5.12e) shows a portion of the dog images being incorrectly classified as human images.

The corner case with a probability of dropout p = 0.99 achieved a classification accuracy

of 84% on the simulated data and 60% on the real data. The loss curves in figure (5.11a)

stabilize around 0.1 loss and the bar plot shows predictions on simulated test data similar to

that which was achieved using p = 0.2. When further increasing the probability of dropout

the classification performance aggravates and produces classification accuracies around 50%.

This suggests p = 0.99 is close to the dropout probability limit when training on the Im32

images.
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The real data is poorly classified with the various dropout probabilities tested with.
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Figure 5.11: Training and validation loss curves from dropout test runs on Im32 images.
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Figure 5.12: Predictions on simulated Im32 images from dropout test runs. The 65 bars to

the left are dog predictions and the 65 bars to the right are human predictions.
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5.3.3 Dropout and regularization

Again, the combined effect of dropout and L2-regularization is studied. The resulting classi-

fication accuracies on the simulated and real data are listed in table (5.6). The corresponding

loss curves and bar plots with test predictions are shown in figure (5.13) and figure (5.14)

respectively.

Im32

p λ Simulated data accuracy Real data accuracy

0.2 0.01 86% 58%

0.2 0.001 100% 51%

0.3 0.01 89% 58%

0.3 0.001 99% 56%

Table 5.6: Classification accuracies given dropout probabilities and regularization strengths

when training on Im32 images.

The parameter combinations resulted in good classification accuracies overall. Combining

p = 0.2 and λ = 0.01 produced a classification accuracy of 86% on the simulated data and

58% on the real data. Some distinctive oscillations occur in the loss curves of figure (5.13a)

as they decay towards zero. The bars in figure (5.14a) express good predictions on both dog

and human, however some dog images are predicted as human.

p = 0.2 and λ = 0.001 achieved 100% accuracy on the simulated images and 51% on the

real images. The loss curves in figure (5.6b) converge to zero and the predictions in figure

(5.7b) are very strong on both dog and human images with probabilities close to 1 throughout

the test set.

Combining p = 0.3 and λ = 0.01 scored a classification accuracy of 89% and 58% on the

real images. Also here, the corresponding loss curves show some oscillations before reaching

zero loss, as seen in figure (5.6c). Figure (5.7c) shows that the network predicts human im-

ages with very high confidence, whereas the dog images are less easily labeled.

The last combination of p = 0.3 and λ = 0.001 resulted in 99% accuracy on the simulated

data and 56% on the real data. Its loss curves in figure (5.6d) decay nicely towards zero and

the network is able to predict all human images with high confidence. Figure (5.7d) shows

that all human images are well predicted. The network has some difficulties predicting the

dog images with high certainties.
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(c) λ = 0.01 and p = 0.3
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(d) λ = 0.001 and p = 0.3

Figure 5.13: Training and validation loss on simulated test images given dropout probability

p and regularization strength λ.
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(b) λ = 0.001 and p = 0.2
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(c) λ = 0.01 and p = 0.3
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(d) λ = 0.001 and p = 0.3

Figure 5.14: Predictions on simulated Im32 images given dropout probability p and regular-

ization strength λ. The 65 bars to the left are dog predictions and the 65 bars to the right

are human predictions.
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Chapter 6

Discussion

6.1 Input images

6.1.1 Image design

The majority of the work during this thesis focused on preparing and testing different types

of images. The final design as presented in chapter 4.2 was chosen as it was believed to

display easily learnable information to the CNN. Perhaps the most important decisions are

setting the window length and time length of the micro-Doppler signatures. A window length

of 0.2 seconds in the STFT was found to display information in a smooth visual manner. A

time length of one second was set in order to have the images contain frequency content over

enough frames to capture distinct signatures. The PRF is dependent on the velocities of the

targets of interest and must be set high enough to avoid aliasing.

Other configurations tested were images consisting of fewer frames, such as the image config-

urations studied in the earlier works of [11, 2]. Those configurations used a minimal amount

of frames, generating images with only sudden changes of frequency visible. This proved to

work poorly on the test sets. Further focus was therefore directed towards larger time series

images. For the longer time series to be more suitable as inputs to the neural network they

were downsampled into quadratic images.

6.1.2 Overlapping images

Every micro-Doppler image created overlapped the preceeding image with all but fifty frames.

This effectively increased the size of the datasets. It can be argued that the overlapping

images break with the independence criteria in the IID assumption, as presented in chapter

3.3.3. The part of the images that overlap has some content which is present in other images.
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On the other hand, the constant shifting when creating new images results in a dataset where

none of the images are exactly the same. With the amount of radar data available, this is

perhaps the most efficient way of making a dataset of descent size.

6.1.3 Real data VS simulated data

Recalling from chapter 4.2.2 and the illustration in figure (4.5), clear oscillating frequency

patterns are visible in the real images. The human and dog images can be distinguished by

the frequency at which the patterns are oscillating, with the dog images swinging faster than

the human images. The real images are however littered with noise in the form of clutter and

propagation loss. This renders the patterns in a portion of the real dataset less recognizable.

It also makes micro motions arising from swinging arms and legs less distinct. The simulated

data on the other side show obvious micro motions around the bulk motion. The noise is

non-existent and the signatures are very distinct, particularly in the human images. No form

of propagation loss is added to the simulated data, which allows for uniform signal strength

over time. The fact that the real and simulated images are so different may mean that basing

classification off one other is a wasted effort. More resemblance between the images is likely

necessary for good neural network predictions to become a reality.

6.2 Results

Two image types of different sizes were used as input data to the CNN architecture, namely

the Im256 and Im32 images. The network was tested on a test set made up of simulated

data as well as another test set comprised of real data acquired from Noveldas X4-radar.

6.2.1 Network initialization

Several efforts were made to enable the possibility to reproduce a neural network of well

trained weights when training with identical parameters. Two weight initialization methods

were tested. The default method in matlab is drawing numbers from a zero mean Gaussian

distribution with unit variance. This resulted in highly varying weights and a large fluc-

tuations in the results between identical training sessions. Recalling from chapter 3.4, the

”HE-initialization” method is a robust method when training on ReLUs as the choice of acti-

vation functions. This method lead to less fluctuations, however the classification accuracies

worsened. The focus was therefore redirected back to the default matlab method.

To produce the same series of random numbers, a seed was set in the main script. This

sets a starting point in the random number generator when shuffling the input data and
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initializing the weights of the neural network. The fluctuations decreased, although full re-

producibility was still not achieved. This means the results presented in this work are not

necessarily the optimal solutions from training and testing with the chosen network architec-

ture and input data. They do however point out interesting network behaviours in various

scenarios and may serve as guidelines in future image and network design decisions.

6.2.2 Testing on simulated data

The first round of testing on the CNN was done with the Im256 images. Without using

any techniques to prevent overfitting, the network was able to predict 81% of the simulated

images correctly. The incorrectly classified images belonged to the dog class. Performance im-

proved when adding a regularization term to the cost function. 100% accuracy was achieved

when using the regularization strength λ = 0.1, however the dog images were predicted with

low probabilities, meaning the network made conclusions with low certainty. The belonging

training and validation loss also indicated that this regularization strength is too high. Low-

ering the regularization strength to λ = 0.01 gave 89% classification accuracy with higher

certainties in the predictions. The dropout technique contributed little when training the

Im256 images. The highest classification accuracy achieved with dropout was 84% with a

probability of dropout p = 0.3. Combining regularization and dropout did not improve clas-

sification in this case.

A breakthrough was made when testing the Im32 images. Using the dropout technique

with the probabilities p = 0.1 and p = 0.3 during training resulted inn 100% classification

accuracy on the test images, which were for the most part predicted with a probability

of 1. This means the network classified the images with very high certainty. This was

also achieved when using the dropout technique with p = 0.2 along with the regularization

strength λ = 0.001. Using regularization alone didn’t give results this good, however classi-

fication accuracies close to 90% were still achieved with various strenghts of regularization.

The increase in performance using the Im32 images could be a result of the final size of

the image after being downsampled. Before being mapped onto the fully connected layer,

the Im32 image is downsampled by five max pooling layers into 1 × 1 pixels. The Im256

images on the other hand are of size 8× 8 after passing through the last max pooling layer.

With this reasoning, it is possible that adding more max pooling layers, which further down-

samples the images, would improve prediction when using the Im256 images.

Another explanation is that the high resolution of the Im256 images might be abundant.

The major components of the micro-Doppler signatures are still visible to the human eye
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in the downsampled Im32 images. If the CNN is able to capture these features and make

predictions, the extra information gained by the high resolution in the Im256 images will

only be a source of noise.

6.2.3 Predicting dogs as humans

A typical problem when testing on both image types was dog images being predicted as

human. Human images in general were more easily predicted. This is likely a direct result

of the higher access to diverse human data. To explore how the network predicts the test

images, some of the simulated test images are displayed as they are seen by the CNN along

with their predictions in figure (6.1).

Real: human

Pred: human, 100%

Real: dog

Pred: human, 51.1%

Real: dog

Pred: dog, 79.4%

Real: human

Pred: human, 100%

Real: human

Pred: human, 100%

Real: dog

Pred: human, 63.1%

Real: human

Pred: human, 100%

Real: dog

Pred: dog, 74.2%

Real: dog

Pred: dog, 93.2%

Figure 6.1: Images of type Im256 along with their network predictions.

This example is from training the Im256 images with a dropout probability p = 0.3, where

the achieved accuracy was 84%. All human images are classified with 100% confidence. Dis-

tinct oscillations in frequency can be seen in the human images. The dog images are correctly

classified with predictions between 74.2% and 93.2%. Dog images are distinguishable from

human images in that the oscillations are weaker and closer to the bulk frequency which can
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be seen as the brightest lines. Two dog images are incorrectly predicted as human: The top

image in the middle separates from the other dog images in that it has more frequency con-

tent around its bulk motion frequency. This might be a feature that the network recognizes

as human. The image in the middle to the right is similar to other dog images, however

the image is still predicted as human. Telling how the network interprets the images is a

far-fetched affair. Some intuition can be gained by studying the filters in the convolutional

layers, some of which are added to appendix A.

6.3 Future Work

6.3.1 Simulate data based on mathematical models

The use of the simulator was limited to motion capture files on humans and dogs, where the

access to human data was much greater than that of dogs. The need for more data on dogs

is crucial to be able to create a good neural network classifier. For simulated data this can

be done by either making more motion capture files, or by making a target generator based

on mathematical models, which has been studied in [6]. The first choice allows for highly

realistic generating of data. The latter option opens up for a large variety of scenarios where

the mathematical models can be altered to cover different gait velocities, target sizes and

radial angles between radar and target. This is perhaps the most useful option if appropriate

mathematical models can be made and could therefore be a field of interest in future work.

6.3.2 Work with real data

The neural network architecture tested in this thesis was solely trained on simulated data as

the quantity and quality of the simulated data was superior to that of the real data. The

resulting network was able to classify simulated data with up to 100% accuracy. Prediction

attempts were done on a test set comprised of real data to see if it could be classified based

on simulated data, however the real data proved to be too different from the simulated data.

Improving the quality of the real data is believed necessary in order to extract micro-Doppler

signatures that can be classified with the same level of confidence as the simulated data. To

improve the quality when acquiring more data, two key points need to be considered:

• Increase the PRF to avoid folding and capture high velocity targets.

• Obtain a continuous range track over time.

During the second round of data acquisition the winter of 2018, much of the data were ren-

dered useless due to the targets moving at velocities exceeding the limit given by the PRF
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being used. This violated Nyquist’s sampling criterion causing the data to fold, as described

in chapter 2.2.1. This illustrates the importance of using a high PRF when capturing radar

data.

In order to acquire micro-Doppler signatures with a minimal amount of noise it is neces-

sary to obtain the range to the target over time. During the first round of recordings in the

fall of 2017 this was acquired by the use of a range sensor placed on the target of interest.

Another solution is to track major components in the range Doppler matrix. A tracking

algorithm has been implemented by Novelda to handle this. It groups moving content into

clusters and attempts to track each cluster. Such a cluster can be a moving arm. It has

proved difficult to maintain track over a longer period of time. This limitation makes the

second round of recordings harder to use, as extracting micro-Doppler images requires a con-

stant track over all the relevant frames. It does however have to potential of obtaining range

tracks that relate to all moving body parts which can help generate clean micro-Doppler

signatures.

The network was able to pick up features good enough to discriminate between simulated dog

and human images. It should also be able to classify real data if real data of good quality is

included when training the CNN. For this reason, finding good radar settings and acquiring

more real data using Novelda’s X4-radar should be given priority.

6.3.3 Explore other network configurations

The field of deep learning is developing fast and there are many ways to design a network.

The CNN design in this thesis achieved good classification results on simulated data, by

exploring the effects of L2-regularization and dropout. Different learning rates were tested as

well with the final setup being a drop schedule. This gradually decreased the learning rate,

allowing for a rough search for the optimal solution in the beginning followed by smaller

and smaller step sizes in the SGD method as the epochs finished. However, a great deal

of methods and parameters have not yet been tested that could improve learning. Some

suggestions to what can be studied further are

• Weight initialization.

• Choice of gradient descent method.

• Transfer learning.
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Appendix A

Filters

The filters of the convolutional layers display interesting information. The filters from two

training configurations with strong results are presented here. 16 filters are drawn from each

convolutional layer and displayed.

Figure (A.1) shows filters resulting from training the Im256 images with regularization

strength λ = 0.01. Many of the filters in the first convolutional layer look similar. Some

edges can be eyeballed. For the proceeding layers the details get more specific, with blobs

and edges clearly visible in the second layer. The patterns in the three last layers get more

abstract. Some of the filters seem to display no information at all.

Similar cases arise in the filters resulting from training the Im32 images. Figure (A.2) dis-

plays filters from training with a regularization λ = 0.001 and dropout probability p = 0.2.

This configuration seems to have a larger portion of the filters displaying visible patterns

than the filters in figure (A.1). This may indicate that features are more easily learned when

training on smaller sized images.
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(a) 1st convolutional layer (b) 2nd convolutional layer (c) 3rd convolutional layer

(d) 4th convolutional layer (e) 5th convolutional layer

Figure A.1: Filters of convolutional layers when using regularization with the Im256 images.
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(a) 1st convolutional layer (b) 2nd convolutional layer (c) 3rd convolutional layer

(d) 4th convolutional layer (e) 5th convolutional layer

Figure A.2: Filters of convolutional layers when using regularization and dropout with the

Im32 images.
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