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Abstract

A high activity harbor environment presents several problems for tracking
systems. The observable area may be small, targets may be closely spaced,
move in formation and disappear close to where other appears. Therefore, to
perform harbor surveillance one requires a tracking algorithm capable of both
robust track initiation, maintenance and termination.

To deal with this, the Hypothesis-Oriented Multiple Hypothesis Tracker (HO-
MHT) of Reid is extended to also model the event of targets ceasing to exist.
The result is similar to that of Kurien, but is formulated such that the K-Best
hypotheses can be generated in polynomial time by the algorithm of Murty.
Important design aspects of the algorithm are explained, including track and
hypothesis tree data structures, together with additional complexity reduction
techniques aside from K-best generation.

The surveillance system is to be used for the autonomous ferry project in
Trondheim, Norway, and the objective is to gather statistics for the area the
ferry is going to operate in. This is important to both evaluate the impact of
the ferry on the existing traffic, and to aid in the development of a collision
avoidance system.

A high performing radar detection system is developed, removing 40 % of the
clutter, and under 1 % of the true target detections. This includes a filter to
remove "multiples" generated by large boats. Measurement and plant noise
parameters for a DWNA-model are estimated for the sensor and the targets
that operate in the area. Both the optimal parameters of the detection system
and the target model is obtained by evaluating it against an approximate
ground truth.

Two Graphical User Interfaces (GUI) have been made. One facilitates the
creation of a ground truth. The other is made specifically to analyze the
results of the tracking system and the MHT. It is possible to examine individual
clusters and its hypotheses through time. The tracks of a hypothesis are shown
on top of a satellite image along with detection data.
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Sammendrag

Et havnemiljø med høy aktivitet kan gi flere problemer for et tracking-system.
Det observerbare området er gjerne lite, målene kan være tett fordelt, bevege
seg i formasjon og forsvinne nær der andre viser seg. Derfor krever hav-
neovervåking en tracking-algoritme som er i stand til robust track-initiering,
-vedlikehold og -avslutning.

For å håndtere dette, er Reids Hypothesis-Oriented Multiple Hypothesis Tracker
(HO-MHT) utvidet til å også modellere inn at mål kan slutte å eksistere. Re-
sultatet ligner det til Kurien, men er formulert slik at de K-beste hypotesene
kan genereres i polynomisk tid med algoritmen til Murty. Viktige designaspek-
ter av algoritmen er forklart, inkludert track- og hypotese-trestrukturer, sam-
men med flere kompleksitetsreduksjonsteknikker i tilegg til generering av de
K-beste hypotesene.

Overvåkningssystemet skal brukes i det autonome fergeprosjektet i Trondheim,
og målet er å samle statistikk for det området fergen skal operere i. Dette er
viktig for både å evaluere fergens påvirkning på eksisterende trafikk, og å bistå
i utviklingen av et system for å unngå kollisjoner.

Et radardeteksjonssystem med høy ytelse er utviklet, og fjerner 40% av falske
deteksjonene og under 1 % av de sanne. Dette inkluderer et filter for å fjerne
"multipler" generert av store båter. Måling og modelstøy for en "DWNA"-
modell er estimert for sensoren og målene som opererer i området. Både de
optimale parametrene til deteksjonssystemet og bevegelsesmodellen til målene
er oppnådd ved å evaluere de mot en tilnærming til faktiske tracks. Et grafisk
brukergrensesnitt (GUI) har blitt laget for å både legge til rette for opprettelsen
og øke presisjonen til disse trackene.

En annen GUI er laget for å analysere resultatene til tracking-systemet. Det
inkluderer muligheter til å undersøke individuelle "clusters" og dens hypoteser
for forskjellige tidspunkt. Trackene til en hypotese vises over et satellittbilde
sammen med deteksjonsdata og ved siden av en kameravisning.
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1 | Introduction

This thesis has two main contributions. The primary task was to gather statis-
tics for the autonomous ferry project in Trondheim, Norway. In the process,
an extension of the Hypothesis Oriented Multiple Hypothesis Tracker (HO-
MHT) has been made, which models in track termination, and contributes
independently of the original problem.

This chapter is an introduction to the primary task, while chapter two will
serve as an introduction to the MHT with Track Termination. For further
overview of the structure of the thesis, the reader is referred to the outline at
the end of this chapter.

1.1 Introduction to the Autonomous Ferry Project

Researchers at NTNU are currently developing an autonomous ferry designed
for carrying pedestrians and cyclists across the canal between Ravnkloa and
Brattøra in the city of Trondheim, Norway.

Figure 1.1: The canal between Ravnkloa and Brattøra. Green ar-
rows mark entry/exits for the canal intersection.

1



2 CHAPTER 1. INTRODUCTION

One is in need of connecting the two districts closer together. Ravnkloa is part
of the city center of Trondheim, close to different stores, restaurants and other
attractions. Brattøra was formerly an industrial area with a dock. Later, the
industrial activity was ended and the area was forgotten for a few years. Now,
the former dock has been replaced with cafés, a hotel is placed nearby, and
the area is undergoing a change. The closest bridge to pass the canal is 300
meters away, and therefore one was in need of a new way to get pedestrians
over the canal to connect Brattøra and the city center closer.

However, a new bridge was considered too much of an impact on the area and
the boat traffic in the canal. Therefore, the idea of an autonomous ferry was
presented which will serve pedestrians "on demand", in much similarity to an
elevator.

The canal is heavily used by marine vehicles, ranging from large boats to jet
skis and canoes. It is important that the ferry interferes as little as possible
with the original boat traffic. Therefore, one is need of gaining a better under-
standing of the traffic in the canal. This includes everything from the number
of boats at different times, what kind of boats that tends to be present, where
they are heading, and their typical velocities.

Since most of these boats do not use the Automatic Identification System
(AIS), it is necessary to monitor the traffic using shore-bound exteroceptive
sensors such as radar and camera to build up such statistics. Further ahead in
the future, shore-bound sensors will also be used to aid the Collision Avoidance
(COLAV) system of the autonomous ferry. For this purpose one is in need
of tracking statistics, like measurement errors, target speed and acceleration,
distribution of clutter and also how targets tend to resolve collision avoidance
situations.

Therefore, a surveillance station with a marine radar and a camera has been
placed at the shore of Brattøra. It is capable of unsupervised collection of
large amounts of data. However, analyzing large amounts by hand is tedious
and one is in need of a tracking system to automatically gather information.

To gather the statistics needed, the tracking system must be able to initiate,
maintain and terminate tracks. The observable area is expected to be crowded
at times, with targets at close proximity, which are known to present difficulties
for a tracking system.

1.2 Previous Work

During the fall of 2017, the author worked on the same project. The surveil-
lance station was set up, and the camera was assessed to be of little use for
tracking, but good for validating radar data and tracking results. Due to lack
of easy power access, only small amounts of data was collected. In addition,
an error was made leading to a sampling time of 20 seconds for the radar data.
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This made it hard to assess the possibilities of an effective tracking system.

Still, work was done in the detection system of the radar, where large amounts
of false detections were removed by using image masks. These techniques are
carried on from the original problem, and will be described further on. A
Probabilistic Data Association Filter (PDAF) was implemented and used as a
tracking algorithm. It was concluded that it was insufficient, due to the lack of
estimating the correct number of targets and track coalescence. Targets were
seen to have close proximity in the canal and to move together in groups. This
both led to the track coalescence and it was also seen that a great amount of
detections from targets were being merged. The previous project was coded in
MATLAB, but it proved insufficient in speed, memory use and code flexibility,
and therefore, for this project, Python has been chosen.

1.3 Problem Formulation

The project involved the following tasks:

1. Extend the single-target tracker from the specialization project to a
multi-target tracker, with particular focus on challenges relating to merged
measurements and track coalescence.

2. Test the tracking system on progressively longer sequences of radar scans
in order to qualify its capabilities as the core of data interpretation in
the harbor surveillance system.

3. Generate statistics on the number of vessels, their entry points and their
exit points.

4. Generate statistics on paths/trajectories of vessels in the channel. Inves-
tigate the possibilities of using these statistics for long-term prediction
of vessel trajectories.

5. Develop an interface that allows the user to quickly get access to camera
data of the scene according to a variety of queries.

For reference, there were additional tasks on this list, as one was uncertain on
the comprehensiveness of the tasks and the time necessary to complete them.
They are expected to be tasks if the project is continued.

6. Develop methods for identifying situations where interaction between
vehicles, e.g. COLAV maneuvers, find place.

7. Include automatic detection in camera data, fusion between camera and
radar as well as automatic classification of vessels.
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1.4 Contribution

The main contributions of the project are listed below:

• A sophisticated radar detection system has been made, removing large
amounts of false detections and only a few true ones.
• A K-Best HO-MHT with track termination has been formulated, running

in polynomial time. The algorithm is implemented in Python, using low
memory and having capabilities of analyzing large amounts of data.
• A GUI has been made for creating a ground truth. It has been used to

create 40 hours of ground truth data.
• A GUI has been made for examining tracking results of the system,

specifically designed for MHT with track termination.
• Evaluation and statistical tools for evaluating tracking performance has

been implemented, including the OSPA metric.
• Measurement and plant noise parameters for a Discrete White Noise

Acceleration-model have been analyzed and decided upon to give a small-
est possible track gate. Parameters for an optimal target state initializa-
tion has also been found.

1.5 Outline

The thesis is organized in the following matter. Chapter 2 gives an introduction
and overview of the tracking problem. It also presents some of the algorithms
that were investigated and considered to be used for the surveillance. The
discussion of the algorithms serves as the basis for Chapter 3 where the MHT
with Track Deletion is presented. Along with the derivation of the algorithm,
a solution for generating the K-best hypotheses is given, as well as a clustering
scheme, pruning techniques and a suggested implementation.

Chapter 4 presents the underlying part of the tracking system, including radar
settings used and the detection system. All parameters in the tracking system
are discussed in relation to this particular case. Nonetheless, the discussion
of the parameters concerning the MHT are general enough to be applicable
for other cases as well. In chapter 5 the three GUIs that have been created
are presented. Chapter 6 presents the results of the thesis. This includes a
ground truth for a subset of the data, created "by hand". It is used for both
identifying parameters and for reviewing the performance of the MHT. Lastly,
the MHT is used on the rest of dataset to gather track data and resulting
statistics. Chapter 6 discusses the results, while Chapter 7 concludes on the
project as a whole and suggests on further work.



2 | The Tracking Problem

The aim of this section is to present for the reader the general concepts and
problems concerning multi-target tracking. Also, it will define some of the
terminology to be used further in this thesis. At last, some established tracking
methods will be briefly discussed.

2.1 Objective

In general, the objective of tracking is to observe a physical space, attempting
to identify targets of interest, and estimate their position and motion. How-
ever, tracking is a vast term and there may be other objectives in together
with these, depending on the purpose of the tracking. Two common purposes
are collision avoidance and surveillance.

A target of interest may be airplanes, boats or people, but may also include
birds or similar. In general, a target may be anything in the physical space
that stands out from its surroundings. A common way to observe a physical
space is with exteroceptive sensors, and this is the type of sensor assumed in
tracking literature.

2.2 Exteroceptive sensors

Exteroceptive sensors observe the space around them, either passively (camera,
etc.) or actively (radars, sonars, LIDARs). The objective of the sensor and
its surrounding system is to deliver measurements assumed to originate from
targets. The following pipeline is typical for a exteroceptive sensor system.

1. Observe energy
2. Signal processing
3. Thresholding
4. Extraction of measurements

The last two steps are often referred to as detection and is a process heavily

5
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dependent upon both the sensor, the observable area, targets and the tracking
algorithm to be used.

Usually, an exteroceptive sensor system obtains measurements in batches, and
it is assumed that the measurements are obtained at approximately the same
time. A set of measurements obtained at the same time is called a scan. Each
measurement includes information about the position of the assumed target,
but some sensors may also be able to supply additional information about
velocity, shape or other attributes in addition to the location.

One of the main problems presented by exteroceptive sensors is the origin un-
certainty of measurements. There are three possible origins of a measurement:

• No target. Either internal (sensor) or external (environmental) noise
could lead to a measurement not belonging to a target. The measurement
is often referred to as a false measurement or "clutter".
• One target. This is the ideal case, and is referred to as a resolved mea-

surement.
• Several targets. Limited resolution of the sensor and/or noise may lead

to several targets only producing one single measurement. Referred to
as a merged measurement.

Furthermore, usually it is not only desired to know if a measurement originated
from a target, but also from which target it originated from. A measurement
could both originate from some previously seen target, and one could therefore
associate a measurement with a set of previous ones, or it could originate from
a new target appearing in the observable area of the sensor.

In addition, if a target is present in the observable space around the sensor,
one has two possible errors concerning this target:

• A measurement is not obtained of the target. This is usually referred to
as a missed detection of the target.
• The target produces several measurements. For some sensors with high

resolution it may be expected that a target produces several measure-
ments, and it may also be desired to be able to estimate target size.
However, when this is the case, it is often trivial to know that a group
of measurements all belong to the same target, for instance due to the
close proximity of the measurements. Anyhow, there is a possibility that
one target produces several measurements (or groups of measurements),
which appears to originate from more than one target. This is referred
to as split measurements.

Therefore, a measurement may originate from no target, one or several, while a
target may produce no measurement, one or many. The ideal case is of course
a one-to-one measurement-to-target relationship.

However, the ideal case is not trivial, since the problem of knowing from which
target the measurement originated from still persists. This problem is greatly
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affected by the time step of the sensor. A time step that approaches zero would
deem the problem trivial, as measurements could easily be associated with the
closest one in the previous time step.

In addition, an error in the measurement itself is present. Assuming one knows
the origin of every measurement, an error between the position of the measure-
ment and the true target location is expected, because of noise and accuracy
limitations of the sensor.

2.3 Tracking Algorithms

To overcome the problem of the origin uncertainty and missed detections, it is
a necessity to use scans from one or multiple sensors over time.

Usually the term "tracking" refers to what is considered classical tracking-
algorithms. Classical tracking algorithms are able to rely on only position
measurements to perform the tracking, although many are able to use addi-
tional detection information as velocity to improve on it. This differs from
"visual tracking"-algorithms where color information and a detailed shape are
the main features used to associate a measurement with a previous one. Fur-
ther on this thesis, classical tracking algorithms are the ones being discussed.
Interestingly, these are also proven to be useful in visual tracking scenarios [5].

The concept of a track is of concern, as it is a concept loosely defined in
literature. Some may define a track as a set of measurements assumed to
belong to the same target, but this is not intuitive for algorithms that does
not assign measurements explicitly to targets. Therefore, defining a track
in terms of target state estimates is more appropriate. Also, a set of track
estimates may be acquired, but some or all of the estimates may be far off
from actually corresponding to the path of an actual target. Therefore, the
following definition is made:

A track is an ordered sequence of discrete-time state estimates for what is
estimated to be a target.

Also, some additional terminology relating to a track are defined.

• True track: The actual track of a target in the observable area of the
sensor.
• Track error : The error between position estimates and the true target

location.
• Track loss: Acceptable estimates are not acquired for the whole time the

target is present in the observable area.
• False and partly false track: All, or some of the estimates of the track

are present when a target is not.
• Correct track: There are no track loss, no false track estimates and the
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track error is within reasonable measure for all estimates.

Not all tracking algorithms constructs tracks, but rather give a set of point
estimates for targets at each timestep. Specifically, this is the case for some of
the FISST based algorithms, which will be discussed in the Section 2.4.

Tracking algorithms are either single-target or multi-target algorithms. As
indicated by the names, single-target algorithms assume only one target to be
present at the same time, while for multi-target there may be several.

Further, tracking algorithms can be categorized into single-frame and multi-
frame ones. Single-frame algorithms decides on a single "tracking result" at
every timestep, while multi-frame algorithms stores several outcomes, post-
poning its decision on what is the correct one. The different outcomes of a
multi-frame algorithm usually have a score or probability, which gets updated
as additional scans are received.

2.3.1 Performance Metrics for Multi-Target Tracking

The performance of tracking algorithms may be evaluated by examining re-
sults. However, a more systematic way is to use a metric to evaluate them. A
metric measures the error between the tracking algorithm output and a ground
truth, and is particularly useful when comparing different algorithms.

Cardinality

A simple measure of performance is the cardinality of the set of target esti-
mates at each iteration, i.e. how well the algorithm estimates the number of
targets, N̄k. In this case one does not consider the actual value of the esti-
mates. Since this is simply a deviation between two numbers, the cardinality
of the tracker and the ground truth, various metrics may be used, typical ones
are Mean Absolute Error (MAE) and root-mean-square error (RMSE). The
latter penalizes outliers more heavily than the former, and is given for a set of
scans k ∈ [0, T ] as

eRMSE
card =

√√√√ 1
T

T∑
k=1

(N̄k −N true
k )2 (2.1)

OSPA

The Optimal Subpattern Assignment (OSPA)-metric penalizes both cardinal-
ity errors and errors in state estimates [22]. At a certain timestep, the set of
target state estimates are compared to the set of true target state estimates.
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The metric finds the best match of estimated targets to the true estimates. If
the sets are of different cardinality, it is penalized and the best matching subset
of the larger set is found. The error of the states are penalized with a distance
metric, for instance the euclidean distance. However, if the distance value is
above a threshold, called the cut-off distance, this is used as the distance value.
Practically, the cut-off distance decides the error in which one decides that two
target states can not be associated, and the difference between the states are
penalized as much as a cardinality error. At a certain timestep the metric is
given as

d̄(c)
p (X, Y ) =



(
1
n

(
minπ∈Πn

∑m
i=1 d

(c)(xi, yπ(i))p + cp(n−m)
)) 1

p

if m ≤ n

d̄(c)
p (Y,X) if m > n

0 if m = n = 0
(2.2)

where d(c) = min(c, d(x,y)), c is the cutoff distance. X and Y are the set of
target estimates for the ground truth and the tracking algorithm output, with
cardinality m and n, respectively. p is similar to that of a p-order metric, and
from a practical point of view, it will penalize outliers more if its increased.
Πn is the set of all permutations of Y in m.

For a whole dataset, the mean of the OSPA values for each timestep may be
used. This is reasonable as it already penalizes outliers with the p parameter.

A limitation of OSPA is that it does not consider tracks, but only the set of
state estimates at a single timestep. Therefore, if two tracks get mixed up,
meaning that all estimates of one track after a time k are acceptable estimates
for the other track and vice versa, the OSPA will not penalize it.

2.4 Multi-Target Tracking Algorithms

Multi-Target Tracking (MTT) algorithms can roughly be categorized into two
different approaches to solving the tracking problem: Data association based
approaches and approaches based on FISST. These two approaches will be
presented and a selection of algorithms will be discussed, mostly in terms of
advantages and disadvantages.

2.4.1 Data Association Filters

The data association based MTT-algorithms associates specific measurements
to targets, and usese a filter to update its state. The most popular algorithms
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are the Joint Probalistic Data Association Filter (JPDAF) and the two main
variations of Multiple Hypothesis Tracking (MHT).

JPDAF

The JPDAF assumes targets are known and its state are initialized. When
updating a target state all measurements inside a validation region of the pre-
dicted position of the state are considered. This region are referred to as a track
gate. It is assumed that the target generated at most one measurement, how-
ever no measurement is picked explicitly, and rather the gated measurements
are combined in a single statistically most probable update. The update takes
into account nearby tracks and the statistical distribution of misdetections and
clutter.

A drawback to JPDAF is that it assumes targets exists and does not in-
clude track initiation or track termination. However, by using a scheme like
M/N-initiation/termination in parallel with the filter these capabilities may
be achieved [1]. M/N initiation creates a track when two consecutive mea-
surements, not inside the validation region of any existing tracks, are in close
vicinity. The resulting track is maintained by a separate JPDAF to not inter-
fere with the probability of confirmed tracks. If the track successfully gates
measurements in at least M of N time steps, it is declared a confirmed track
and moved to the JPDAF for confirmed tracks. If not, it is removed. M/N-
termination works in similar fashion. If a confirmed track gates a measurement
in at least M out of the N last time steps it is kept, if not it is terminated. The
M/N values can be set to assure only reasonable tracks are confirmed, but this
may be unsuited for targets that are present in the observable area for only
a short time. In addition, if a target appears inside the validation region of a
confirmed target, the measurement is not used by the scheme. One may remove
this requirement, but then one would end up with duplicate tracks interfering
with each other, which would be even worse. This leads to M/N-initiation not
being suited for problems where targets appear close to each other.

Another drawback to JPDAF is its approximation in combining all measure-
ments in its update. As will be shown when discussing MHT, it is possible
to update a track with each measurements separately and later decide upon
which actually was the correct one. This will lead to more accurate estimation,
though the accuracy of JPDAF may well be sufficient for many applications.

Track coalescence is another problem of JPDAF. If two targets are in close
proximity of each other they could validate and use the same measurements to
update its state. If two targets remain close to each other for some time, this
will eventually lead to the tracks being merged, and to errors in estimation [7].
There exists improvements to JPDAF that attempts to deal with this problem
[3][9].
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MHT

Multiple Hypothesis Tracking are in general used to describe two similar multi-
frame data association algorithms, the hypothesis-oriented MHT (Hypothesis-
Oriented MHT (HO-MHT)) and the track-oriented MHT (Track-Oriented MHT
(TO-MHT)). There exists an algorithm called Probabilistic MHT, but it will
not be considered here. The approach of HO-MHT and TO-MHT is to explic-
itly define all possible associations between targets and measurements, result-
ing in a set of mutually exclusive outcomes called hypotheses. The idea is that
while a hypothesis may be unlikely at first, as new scans are received it may
end up being the most likely.

Hypothesis Orientated MHT

Singer, Sea and Housewright first introduced the idea of propagating multiple
hypotheses for a single target with clutter present [24]. However, Reid first
developed a complete algorithm and framework, also assuming multiple targets
could be present [21]. This framework were originally called just MHT, but
are later referred to as HO-MHT.

The algorithm enumerates all possible data-associations of measurements, and
a specific enumeration is called a hypothesis. A measurement is either classi-
fied as clutter, classified as a new target or assigned to a single existing target
implied by the previous hypothesis. By this fashion, hypotheses are created re-
cursively by enumerating all data-associations for the measurements in a scan,
for all previous hypothesis. The probability of a hypothesis is also evaluated
recursively as the joint probability of the parent hypothesis and the specific
enumeration of the current scan. It is assumed that clutter and new born
targets occur according to a Poisson point process with constant intensity,
and that they are uniformly distributed over the observable region. Also, it
is assumed that targets generate at most one measurement per scan and are
detected with a constant probability of detection.

HO-MHT does not include track termination as the event of a target ceasing
to exist is not modelled. The result is that, with time, the most likely hy-
pothesis will become the one assuming that all measurements are clutter. The
hypotheses that assume a target to be present will model the target as misde-
tected for every timestep after the target cease to exist. This makes the other
hypotheses, which assumes no new targets, become increasingly probable. An
extension to HO-MHT that includes the event of targets ceasing to exist will
be presented in Chapter 3.

Merged and split measurements are not accounted for explicitly by the algo-
rithm. However, neither case should be an issue if they are not too frequent.
In the case of a merged measurement, the measurement can only be assigned
to one of the targets that produced it and the rest of the targets will simply be
modelled as misdetected. If merged measurements of the targets persists this
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could lead to track loss [10]. One should consider decreasing the probability of
detection to account for the misdetections caused by merged measurements.
In the case of a split measurement, one of the measurements in the split will
be assigned to the target, and the other measurements of the split will be
classified as clutter. Here, one should consider increasing the clutter density if
split measurements are frequent.

MHT has a reputation of being too expensive in both memory and compu-
tation. The number of hypotheses increase exponentially with the number
of measurements, and it is necessary to prune unlikely hypotheses to make
the algorithm run for even small problems. However, it has been shown that
the K-best hypotheses can be generated using the algorithm of Murty and
runs in polynomial time O(K2(m + n)3), where m and n are the number of
measurements in the scan and the number existing targets in the hypothesis
respectively [17]. Techniques like clustering and additional pruning strategies
could further decrease the computation time.

In terms of tracking performance MHT is considered to be one of the best,
although thorough studies to back this up is hard to find. It is shown to
be superior to JPDA even with quite extensive pruning [8]. In general its
performance will largely depend on the amount of pruning, as one would expect
it to be optimal if all hypotheses are generated.

Track Oriented MHT

Track Oriented MHT was created as a more lightweight alternative to HO-
MHT. The idea was to take advantage of the number of tracks in HO-MHT
being far less than the number of hypotheses.

In Track-Oriented MHT targets are assumed to be known and its tracks ini-
tialized. At every scan, each track are split into different track-hypotheses for
each of the measurements in the validation region of the track, and in addition
a track-hypothesis for the possibility that the target was misdetected. The
result is that an initialized target and its track serves as the root node of a
tree, and as scans are received the tree expands. Each leaf node represents
an alternate track for the initialized target, and is assigned a score. Track
nodes grow exponentially with measurements and pruning needs to be applied
in similar fashion to HO-MHT.

A hypothesis, in a similar sense to the hypothesis of HO-MHT, is a set of
compatible tracks from each of the track trees. Two tracks are compatible if
they do not share a measurement. The score of the hypothesis is the sum
of the score of all its track. It is possible to enumerate all hypotheses, but
it will suffer from the same combinational explosion as HO-MHT. However,
while HO-MHT is dependant on generating a set of hypotheses to progress its
data, all data is kept in the track trees in TO-MHT, and since one usually is
interested in only the highest scoring hypothesis, one only needs to find that
one. The problem of finding the highest scoring one is a Multi-Dimensional



2.4. MULTI-TARGET TRACKING ALGORITHMS 13

Assignment (MDA) problem. The problem is NP-hard, but can be solved by
using Lagrangian Relaxation [20].

A drawback to TO-MHT is that it does not include track initiation and needs
to use a track initiation scheme as for JPDAF. Track termination may be
implemented by pruning away low-scoring tracks. One may also be interested
in more than one hypothesis when tracking, especially in a collision avoidance
scenario, where all hypotheses that are sufficiently likely should be taken into
account.

There exists debate to whether TO-MHT actually is faster than HO-MHT.
It will largely depend on what is faster, the solving of the MDA-problem in
TO-MHT or the generation of the K-best hypotheses in HO-MHT [2].

2.4.2 FISST algorithms

FISST takes a different approach to the tracking problem. It avoids explicit
data association and rather treats the collections of target states and mea-
surements as Random Finite Sets (RFS). This allows one to express a Bayes-
optimal solution to the full multi-target tracking problem, known as the multi-
target Bayes Filter. The solution is found with a single prediction equation
and a single update equation, but it requires set integrations, and is therefore
computationally intractable [16]. The Probability Hypothesis Density (PHD)
filter [15] and the Cardinalized PHD (CPHD) filter [14] are developed as first
moment approximation of the multi-target Bayes recursion. Adaptations and
extension to the above methods exists, in addition to other algorithms based
on FISST, but they will not be considered further.

In terms of performance, studies show that PHD and CPHD is better than
JPDAF [19]. As for MHT no thorough comparisons exists. A study concludes
with PHD outperforming TO-MHT [18], but the simulation scheme used seems
somewhat sparse.

The PHD and CPHD filter runs in O(mn) and O(m3n) respectively, where m
and n are the number of measurements in the current scan and the currently
existing targets [13]. Comparing that to HO-MHT with K-best generation,
PHD and CPHD is far superior in terms of time complexity.

A drawback to the basic PHD and CPHD is that the output of the algo-
rithm are target state points (called particles) and not tracks. This makes the
suitable for purposes like collision avoidance, but less suitable for gathering
the statistics required for this task. However, there exists adaptations that
use some form of clustering of the particles to construct tracks. One is the
popular SMC-PHD [25], another is one by Bar-Shalom[12].
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3 | K-best Multiple
Hypothesis Tracking
with Track Deletion

In the first section a Bayesian multi-frame tracking algorithm is presented. It
accounts for new targets, false measurements, misdetections of targets and the
event of a target ceasing to exist. It has an approach similar to the works
of Reid in what is now known as Hypothesis-Oriented MHT (HO-MHT). An
algorithm for generating the K best hypotheses in polynomial time by using
Murtys method is also presented, making it suitable for real-time applications.
Further on, additional complexity reduction techniques are given, and ulti-
mately, main topics on the implementation of the algorithm are discussed.

3.1 The Algorithm

3.1.1 Assumptions

First, assumptions about the tracking problem are made. A linear Gaussian
model of the form is assumed for a single target state, xk, and a measurement,
zk, associated with the target:

xk = Fkxk−1 + vk, vk ∼ N (0,Qk) (3.1)
zk = Hkxk + wk, wk ∼ N (0,Rk) (3.2)
x0 ∼ N (x̂0,P0) (3.3)

(3.4)

where Fk is known as the transition matrix, and Hk the measurement matrix.
The plant noise, vk, and the measurement noise wk, are assumed to be white.
Also, the initial state, and the noise vectors at each step, {x0,v1, ...,vk,w1, ...,wk},
are all assumed to be mutually independent.

Given these assumptions, the Kalman Filter is an optimal solution to esti-

15
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mating target states. As will become important further on, one also have the
likelihood of a measurement associated with a target [4].

p(zk) = N (zk; Hkx̄k,Bk) (3.5)
Bk = HkP̄k(Hk)T + Rk (3.6)

where x̄k is the predicted state estimate for the target at time k. Bk is the inno-
vation covariance for the measurement and the target and P̄k is the predicted
state error covariance of the target.

Further, the following assumptions are made for the rest of the problem:

A.1 Point target: Any target generates at most one measurement per scan.
A.2 No merged measurements: Any measurement originates from at most

one target.
A.3 Clutter and New targets: Both clutter measurements and new targets

occur according to a homogeneous Poisson point process with intensity
βC and βN respectively, and are therfore uniformly distributed over the
surveillance region.

A.4 Target detection and existence: A target either generates a measurement
with constant probability PD, cease to exist with constant probability
PX , or exists, but are misdetected, with probability PO = (1−PD−PX).

3.1.2 Association Hypotheses

The approach to solving the tracking problem is to construct a set of hy-
potheses that account for all possible data-association of measurements and
all possible target existences.

Assume at a time k, one has a set of measurements received at time k and a
set of targets assumed to exist at k − 1. Then, by following the assumptions,
there exists a mapping and classification of measurements and existing targets
that:

• Map one subset of the measurements to a subset of existing targets at
k− 1, implying continued existence of the targets for the next iteration,
• classify one subset of the measurements as new targets, implying the

existence of new targets for the next iteration,
• classify the remaining measurements as clutter,
• and classify all previously existing targets, not assigned a measurement,

as either existing or not existing.

A variation of this procedure, meaning a particular mapping and classification
of measurements and targets, will now be referred to as a hypothesis innova-
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tion, or just innovation. A hypothesis at time k consists of a set of innovations
at each time step up to k. The complete set of hypotheses may be created
recursively by creating every possible innovation for every hypotheses from
the previous timestep. It should be clear that the number of hypotheses grows
exponentially with the number of measurements.

A hypothesis will consist of two sets of tracks. One set of tracks for targets
that still exists, and one set of tracks for targets that are terminated. A
single track consists of a set of measurements assigned to the same target. No
measurement in a track originated at the same timestep, and therefore the
states of the target can be obtained by a Kalman Filter. Also, all tracks of
a hypothesis are disjoint, a measurement is only in one track. Measurements
not contained in any of the tracks of a hypothesis are measurements classified
as clutter.

Two hypotheses at time k may have the same track, and may also have the
same set of existing tracks or the same set of terminated tracks, but not both
of them. Therefore, the complete set of tracks for hypotheses are disjoint.

Since a track consists of at maximum one measurement at each timestep, target
estimates may be obtained by using a Kalman filter. Therefore, a hypothesis
contains a set of estimates of targets that exists, which will prove useful when
hypotheses are generated recursively.

3.1.3 Probability of a hypothesis

Let Zk = {zk,1, zk,2, ..., zk,Mk
} denote the set of measurements at time k, and

Zk = {Z1, Z2, ..., Zk} denote all sets of measurements up to and including time
k. Let Ωk

i be the i-th hypothesis at scan k, consisting of a set of hypothesis
innovations for all timesteps up to and including time k. Also, let Ωk−1

p(i) denote
the parent hypothesis of Ωk

i , and ψik be the corresponding innovation that led
to it. Then, one has the following relations between a parent hypothesis, a
particular innovation and the resulting hypothesis. Also, one has a similar
relation for the set of all measurements.

Ωk
i = ψik ∪ Ωk−1

p(i)

Zk = Zk ∪ Zk−1

P (Ωk
i ) = P (ψik,Ωk−1

p(i) )
P (Zk) = P (Zk, Zk−1)

Then the probability of a hypothesis given all measurement results in the
following relation:

P k
i := P (Ωk

i |Zk) = P (ψik,Ωk−1
p(i) |Zk, Z

k−1) (3.7)
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By using Bayes theorem and the chain rule, one obtains a recursive relationship
between the hypothesis, the assignment and the parent hypotheses.

P (Ωk
i |Zk) = 1

P (Zk)P (Zk |ψik,Ωk−1
p(i) , Z

k−1)P (ψik |Ωk−1
p(i) , Z

k−1)P (Ωk−1
p(i) |Z

k−1)

(3.8)

P k
i = 1

ck,1
P (Zk |ψik,Ωk−1

p(i) , Z
k−1)P (ψik |Ωk−1

p(i) , Z
k−1)P k−1

p(i) (3.9)

Since, the probability of all measurements, P (Zk), are equal for all hypotheses
at time k we can set this a normalizing constant, ck,1. The third term on the
RHS is known from the previous iteration. Then there remains two terms on
the RHS that need to be derived.

We start off with the second term. From Ωk−1
p(i) one has the number of existing

targets, NE, at k − 1. Then, depending on the particular ψik one will have:

• ND targets that are detected and assigned a measurement.
• NN measurements that are classified as new targets.
• NC = Mk −ND −NN measurements that are classified as clutter.
• NX targets that are terminated.
• NO = NE −ND−NX that were not detected, but still exists (occluded).

From assumption A.3 the number of clutter and the number of new targets
are Poisson distributed. And from assumption A.4 the number of detected,
misdetected and terminated targets are multinomially distributed. Therefore
the probability of the number of elements in the subset are given as.

P (Nk,i |Ωk−1
p(i) , Z

k−1) = P (ND, NN , NC , NX , NO |Ωk−1
p(i) , Z

k−1)

= NE!
ND!NX !NO!P

ND
D PNX

X PNO
O

e−V βN
(V βN)NN

NN ! e−V βC
(V βC)NC

NC ! (3.10)

Where V is the volume (or area) of the surveillance region. By using that
exponential terms are equal for all hypotheses, we combine and simplify the
expression to:

P (Nk,i |Ωk−1
p(i) , Z

k−1) = 1
ck,2

NE!
ND!NX !NO!P

ND
D PNX

X PNO
O V NN +NC

βNN
N βNC

C

NN !NC !
(3.11)
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Given the number in the different subsets, there exists various combinations the
subsets can be drawn from the whole set of measurements and targets. Since,
all target probabilities and also clutter and new target intensities are constant,
the probability of all configurations are equal. Therefore, the probability of
a particular configuration can be found by dividing it by the number of all
possible configurations.

P (Ck,i |Nk,i,Ωk−1
p(i) , Z

k−1) = 1(
Mk

ND

)(
Mk−ND

NC

)(
Mk−ND−NC

NN

)(
NE−ND

NX

)(
NE−ND−NX

NO

)
= ND!NN !NC !NX !NO!

Mk! (NE −ND)! (3.12)

In addition, given the configuration, there are different ways of assigning the
ND measurements to the NE targets. The probability of them are equal as
well, given the constant probability of detection.

P (Ak,i |Ck,i, Nk,i,Ωk−1
p(i) , Z

k−1) = 1
NE !

(NE−ND)!
= (NE −ND)!

NE! (3.13)

The probability of a particular innovation is the joint probability of the three
events described above.

P (ψik |Ωk−1
p(i) , Z

k−1) = P (Ak,i, Ck,i, Nk,i |Ωk−1
p(i) , Z

k−1)
= P (Ak,i |Ck,i, Nk,i,Ωk−1

p(i) , Z
k−1)·

P (Ck,i |Nk,i,Ωk−1
p(i) , Z

k−1)·
P (Nk,i |Ωk−1

p(i) , Z
k−1) (3.14)

Moving on to the first term in equation 3.9, we have from assumption A.3 that
measurements that are clutter or new targets are uniformly distributed over
the surveillance region. Also, from equation 3.5 we have the likelihood of an
assigned measurement given that it is assigned to a target. Classification and
assignment of measurements are given by ψik, and therefore we have:

P (Zk |ψik,Ωk−1
p(i) , Z

k−1) =
Mk∏
j=1

1/V if zj is clutter or a new target
N (zk,j −Hx̄k,l, Bk,jl) if zj is assigned to target l

(3.15)

If one, for ease of notation, assume the ND first measurements are the mea-
surements assigned to detected targets, where measurement j is assigned to
target a(j) one can rewrite the expression as:
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P (Zk |ψik,Ωk−1
p(i) , Z

k−1) = 1
V NC+NN

ND∏
j=1
N (zk,j −Hx̄k,a(j), Bk,a(j)) (3.16)

Finally, by inserting (3.11 - 3.13) into 3.14, and then the resulting equation
together with 3.16 into 3.9 we obtain the final expression for the probability
of a hypothesis:

P k
i = 1

ck
βNC
C βNN

N PND
D PNX

X PNO
O

ND∏
j=1

[N (zk,j −Hx̄k,a(j), Bk,a(j))]P k−1
p(i) (3.17)

The normalizing constant, ck, can be found by taking the sum of all hypotheses
at time k. The initial case, when k = 1, then P 0

p(i) = 1. Note that the
expression equals that of Reid when NX = 0 and PX = 0 [21]. A comparison
with a similar expression of Kurien [11] will be given in Section 3.1.4.

The hypothesis probability will often not be descriptive in the level of confi-
dence that the hypothesis is the correct one. Hypotheses grow exponentially,
and many hypotheses will be of negligible probability. However, these hy-
potheses may sum to a great deal of the probability. Therefore, as the number
of hypotheses grows, the most likely hypotheses often decreases in probability.
Therefore, the ratio between the most likely hypothesis and the second most
likely may be seen as a better measure of confidence in that the hypothesis is
the "correct" one.

In addition, there may be cases where the most likely hypotheses are similar,
for instance if a target generates a double measurement (split measurement).
The probability of the hypothesis that associates one of the measurements will
be almost equal to the hypothesis associating the other, but still much lower
than the hypothesis that would be created if the target did not generate a split
measurement. However, the two hypotheses in the split case will still have close
to the same ratio to other hypotheses as the hypothesis in the non-split case.

3.1.4 Comparison with Kurien

Kurien also gives an expression for a hypothesis in similarity to what is done
here, by also expanding the framework of Reid to include a probability of
track termination. It also includes the possibility of targets executing different
maneuvers, together with leaving the likelihood of measurements undefined.
However, if the number of clutter measurements is Poisson distributed over a
region (as Kurien models), the likelihood of a measurement is by that model
uniformly distributed over the same region.

If one removes the possibility of special target maneuvers (m = 0, Pm = 0),
assume the likelihood of measurements are equal to that of here, and write the
numbers in terms of the notation used in this thesis, one obtains
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P k
i = 1

ck
βNC
C βNN

N (P̂D(1− P̂X))ND P̂NX
X ((1− P̂X)(1− P̂D))NO ·

ND∏
j=1

[N (zk,j −Hx̄k,a(j), Bk,a(j))]P k−1
p(i) (3.18)

It equals Equation 3.17 by the following relation between probabilities of de-
tection and termination by Kurien and the ones presented here:

PD = P̂D(1− P̂X)
PX = P̂X

PO = (1− P̂X)(1− P̂D)
(3.19)

3.1.5 Target State Initialization

Generally, a single measurement does not provide enough information to fully
initialize the states of the target in 3.3. Usually one only have information
about the position, while target states contain states of motion as well. The
initialization of x̂0 and P0 will therefore depend on the particular model.

Reid presents a scheme for the Discrete-Time, White Noise Acceleration-model
(DWNA-model)-model with measurements in cartesian coordinates. Position
entries of x̂0 are set equal to the measurement position and its variance. Veloc-
ity entries of x̂0 are initialized to zero mean with variance equal to (vmax/3)2,
where vmax is the assumed maximum initial velocity of targets.

3.2 K-Best Hypothesis Generation

The number of hypotheses grows exponentially with the number of measure-
ments and targets. While it is possible to prune away unlikely hypotheses
at each time step (pruning will be discussed further on in section 3.3.2, just
enumerating all hypotheses at a single timestep could give a very long compu-
tation time. At best it will deem the algorithm useless for real-time scenarios
like collision avoidance. However, it will be shown that finding the K-best
hypotheses can be done in polynomial time.

Finding an innovation from a parent hypothesis can be formulated as a weighted
bipartite matching problem. The problem of finding the maximum probability
innovation then reduces to the "assignment problem" from combinatorial opti-
mization. This problem is solved in O(N3), where N is the number of nodes,
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by the "Hungarian Algorithm". However, it is usually wanted to find more
than the maximum likelihood hypothesis, and thus, still possess the multi-
frame property of the algorithm. The Murty algorithm solves the assignment
problem K times, by iteratively finding the best solution and then removing
it from the problem. By using the algorithm by Murty the K best solutions to
the bipartite matching problem can be found in O(KN3) [17], however as the
problem size is reduced by every timestep, the average runtime is expected to
be better as shown in [6].

We have that each measurement can either be assigned to an existing track,
be classified as a new target or as clutter. At the same time we have that
an existing track can either be detected and assigned a measurement, not
be detected or become terminated. These can in some sense be seen as two
overlapping matching problems, where the assignment of measurements to an
existing track is common for both of them.

The problem of generating the best hypothesis from a parent is formulated as
a bipartite matching problem, where the total score are given by the product
of its arcs. It is defined by the following matrix, C̄. Each entry in the matrix
defines an arc between nodes in the graph. The names of the nodes are given
on the top and left side, separated by solid lines.

T1 . . . TNE
B1 . . . BMk

F1 . . . FMk
O1 . . . ONE

M1 l11 . . . l1NE
βN . . . 0 βC . . . 0

... ... . . . ... ... . . . ... ... . . . ... 0
MMk

lMk1 . . . lMkNE
0 . . . βN 0 . . . βC

X1 PX/PO . . . 0 1 . . . 0
... ... . . . ... 0 0 ... . . . ...

XNE
0 . . . PX/PO 0 . . . 1

(3.20)

where

lij = PD
PO
N (zk,i −Hx̄k,j, Bk,ij) (3.21)

Then, by negative log-transforming each element of the matrix, the problem
is reformulated as a sum of arcs instead of a product. Then, the K-best
hypothesis, innovated from a particular parent, and their probability can be
found by using Murty.
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C = − log(C̄ + ε) (3.22)
P k
i = e−SiPNE

O P k−1
p(i) (3.23)

where Si denotes the score of a particular solution of C, and ε is an arbitrarily
small number, making the logarithm defined for all entries of C̄. The matching
translates into an innovation, ψik, by the following relations:

• Mi ↔ Tj: zi is assigned to target j. It should be noted that this will
always result in the matching Xj ↔ Oj as only two matchings, Xj ↔ Tj
and Xj ↔ Oj, are possible for node Xj.
• Mi ↔ Bi: zi is classified as a new target.
• Mi ↔ Fi: zi is classified as clutter.
• Xi ↔ Ti: Target i is terminated.
• Xi ↔ Oi: Target i is detected if Mj ↔ Ti and occluded if not.

There may be times where K valid innovations are not available, in which
solutions are found where one or more of the mappings are between nodes
with zero entries in C̄. Those solutions are identified with e−Si < ε, and one
can stop the algorithm. A rule of thumb is to ensure ε < max(C̄) ∗ (Mk +NE)
to ensure that no valid solution can be below ε.

The resulting time complexity of generating the K-best hypotheses from a
single parent is O(K(Mk + NE)3). The total runtime of generating all K2

hypotheses from all K parents is then O(K2(Mk + NE)3). Note that the NE

will vary from parent to parent. To keep a constant K hypotheses, a list of
sorted, K hypotheses, is obtained in O(K2) by building a max heap from the
K2 hypotheses and extracting K elements.

However, there exists a scheme that on average is expected to achieve a better
runtime. By utilizing the fact that the K solutions to the Murty algorithm
can be obtained iteratively, one can stop generating innovations from a parent
if the probability of the resulting hypothesis is lower than the currently K
worst hypothesis generated from all other parents, as the next innovations are
guaranteed too have an even lower probability. The K-best hypotheses can
be maintained in a min-heap sorted on probability. If there are more than K
hypothesis in the heap, and the probability of a new hypothesis is better than
the worse, it replaces it. At the end of the generation of all hypothesis there
are at maximum K hypothesis in the heap. Then, the sorted list of hypothesis
can be obtained by extracting all values of the min heap and reversing the
resulting list.

As one innovates parent hypotheses with decreasing probability, one are in-
creasingly likely to stop innovating hypotheses before K innovations are gener-
ated. The worst case is that allK hypotheses are innovated from the least likely
parent hypothesis, in which case the runtime is still O(K2(Mk + max(NE))).
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For the above scheme, with a heap the worst case runtime is even worse with
O(T log T ), where T = K2(Mk +max(NE)).

3.3 Complexity reduction techniques

The number of hypotheses grows exponentially. In addition to only generating
the K-best hypotheses there exists various techniques to reduce the complexity
of the problem. Both clustering and pruning techniques will be presented, and
discussed jointly as they are dependent.

3.3.1 Clustering

When tracking multiple targets, one often have a substantial distance between
targets in the observable region. If two targets are far from each other, one
remains with two approximately disjoint tracking problems, as the probability
of assigning measurements generated by one target is close to zero for the other
target, by equation 3.5.

Clustering is used to divide the entire set of global hypotheses into sets of
local hypotheses (clusters) that do not interact with each other. This leads to
a number of smaller tracking problems that can be solved independently from
each other.

First, we introduce the validation region for a measurement and a predicted
target estimate.

(zk −Hx̄k)B−1
k (zk −Hx̄k) ≤ chi2cdf−1(PG) (3.24)

where PG is the confidence level of the validation test, and is often referred to
as the "gate probability". It is usually in the interval 0.95 − 0.99. chi2inv−1

is the inverse of the cumulative chi-squared distribution. As the variance in
Bk is sampled from a set of normally distributed variables, it follows a chi-
squared distribution. If a measurement and a target estimate satisfies 3.24,
the measurement is "gated" by the target. If not, one removes the possibility
of assigning the measurement to the target, with confidence PG.

A cluster is defined by a set of mutually exclusive hypotheses. Each hypothesis
in a cluster has a set of existing target estimates. If a measurement falls into
the validation region of any of the existing target estimates of any of the
hypothesis in a cluster, the measurement is associated with the cluster. If
a measurement is not associated with any cluster, a new cluster is formed,
leading to only two possible hypothesis in the cluster, that the measurement
is clutter or a new target.
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Last, if a measurement is associated with two or more clusters, the clusters
are merged into a "supercluster". The resulting cluster consists of the joint
hypothesis of the prior clusters. The number of hypothesis are the product of
the number of hypotheses in the prior clusters. A joint hypothesis is created
from two or more prior hypotheses by taking the union of the existing tracks,
and the union of the terminated tracks. The probability is the product of
the probabilities of the prior hypotheses. It can be shown that the resulting
probability is the same as if the hypotheses were calculated jointly from the
beginning if PG is sufficiently large.

It should be noted that while clustering is optimal, it may not be as effective
as one would expect. The reason for this is that one will have hypotheses that
account for the possibility of tracks being occluded, in which the predicted
estimate covariance, Bk, will grow large and lead to a big validation region.
The respective hypotheses may be very unlikely. This leads to measurements
being gated "easily" by clusters, and few new clusters will be created and/or
clusters would often be merged. By pruning away very unlikely hypotheses one
may prune away the problematic hypotheses and improve on the clustering.

With pruning and track termination one could end up with "dead clusters", in
which none of the remaining hypotheses contain any existing tracks. This will
lead to no gating of measurements, and the cluster can be removed from the
tracking problem. Therefore, clustering does not only divide the problem into
sub-problems only in terms of proximity, but also in time.

3.3.2 Pruning

Pruning is necessary to keep the number of hypotheses at a reasonable level, as
briefly discussed in section 3.2, where K-best hypotheses generation was pre-
sented. In addition, pruning may lead to more effective clustering, as discussed
in section 3.3.1. In addition to K-best, there exists other pruning techniques.
Those will be presented and discussed.

Ratio pruning

One of the simplest pruning techniques is the ratio pruning. If the ratio be-
tween the most likely hypothesis and another one is greater than a threshold
the latter may be removed. The reason for the ratio being used and not an
absolute threshold on probability is used is because of that discussed late in
Section 3.1.3.

∀i :
maxj [P (Ωk

j )]
P (Ωk

i )
> rprune ⇒ prune Ωk

i (3.25)
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N-Scan

With N-Scan pruning the hypothesis at time k − N , with the greatest sum
of child hypothesis probability at time k is kept, while all others are pruned
away. If the hypotheses through time are visualized as a tree, this corresponds
to removing all but one branch, N levels back. If N = 0, this corresponds
to choosing the maximum likely hypothesis at time k, in which the algorithm
reduces to a single-frame one.

Selective pruning

Both N-scan, K-best and ratio pruning filters out hypotheses based on only
probability. A more sophisticated approach is to prune hypotheses depending
on criteria other than just probability. For instance, one could keep hypotheses
known to have initially low probability but usually increases as child hypothe-
ses are generated. This could often be the case for new targets and deleted
targets, as βN and PX usually are low compared to PD, PO and βC .

Comparison

The problem with K-best and ratio pruning is that they may both prune away
hypotheses prematurely. This could often be the case for hypotheses that
deletes or initiates one or more targets, since their initial probability usually
start off low, but increases through time, if they are correct.

An example is made for a target that generates its last measurement at time
k−1. No measurement is generated at k. since PX is low compared to PO, the
probability of the hypothesis accounting for the deletion is low. However, for
the other hypotheses, where the target still exists, their child hypotheses will be
multiplied by PO for each subsequent time step where no target measurement
is generated. The hypothesis where it was deleted will remain constant, and
eventually become the most likely. If K or the ratio is too low, one may
prune away the deletion hypothesis, which eventually shows to be the correct
one. This both illustrates the strength of a multi-frame algorithm, and also
the dangers of pruning. The ratio threshold should at least be greater than
PO/PX and βC/βN .

"Selective pruning" may be used to avoid problems presented by the above
example, but it requires more intimate knowledge of the problem and is harder
to implement.

N-scan proves to be effective in for the above example, as it keeps a greater set
of "probability diversity" at the current timestep, since the criteria on removing
hypotheses is set back in time. If the target in the above example has been
observed for a long time and is very likely to be present, the hypothesis is
"confirmed" back in time, removing all other child nodes at time k, allowing
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the low deletion hypothesis to be generated/kept. However, the case may be
that back in time, the hypothesis that a target is present is not the most likely,
which may be the case for a new target, where some timesteps/measurements
are needed for the track too be likely. Then N -scan would prune away the
track and classify the measurements as clutter. This illustrates it is important
to keep N large.

3.4 Implementation and Data Structure

Multiple Hypothesis Tracking is both expensive in terms of computation time
and memory. It is therefore in need of careful implementation and efficient data
structures to both avoid recomputing and redundant memory use. First, an
overview of the algorithm will be presented, then a more in depth explanation
of the data structures used.

3.4.1 Overview

1. Receive measurements, Zk
2. Clustering and likelihood calculation.

3. For each cluster:

(a) Generate K-best hypotheses
(b) Prune Hypotheses
(c) Update cluster track nodes
(d) Remove cluster if dead and save to file.

4. Create new clusters from measurements which are not gated.

5. Predict leaves of the target track tree.

3.4.2 Data Structures

The hypotheses of the algorithm are stored in a way similar to a tree data
structure. If clustering is not used, a hypothesis has a single parent, and
several child nodes. However, when one uses clustering, one or more clusters
may be merged and a hypotheses could have more than one parent. Therefore,
the hypothesis tree is in general not a "pure" tree structure, but rather several
trees, which "occasionally" are merged. This is illustrated in Figure 3.1. A
hypothesis structure is created when a new cluster is created. It will not have
a single root as there are always two hypotheses when a cluster is created (the
measurement is clutter or it is a new target).
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Figure 3.1: Example of the hypothesis data structure with a cluster
merge.

Figure 3.2: Example of a track tree. Measurement indices are
shown inside the nodes. "-" denotes a node where there are no
measurement.

Multiple track trees are maintained in addition to the hypothesis tree. The
reason for this choice is that hypotheses may share the same tracks between
them. A measurement will create a new track tree as one will have the pos-
sibility of it being a new target. Also, the same measurement will be used to
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expand other track trees by associating it to previously existing targets. The
track tree is a pure tree data structure, as a node may only have a single parent
and a single root.

As a track tree is created and expanded, state estimates (and its error covari-
ance) are updated. The track tree is also expanded with a trivial step for the
possibility of targets not being assigned a measurement. This will be referred
to as innovating the track with an "empty" measurement. Note that all track
nodes at the same depth of a track tree have target estimates for the same
timestep.

A hypothesis node have a list of pointers to nodes of the track trees, and the
complete tracks of a hypothesis can be found by traversing the tree backwards
from the node which the hypothesis points to. There are one list of pointers
for existing targets and one for terminated targets. When a hypothesis is
innovated, the dead track list is copied and previously existing tracks that
gets terminated are added to the list. Each track that keeps their existence
are updated with a new track node since the track is extended. The extension
of a track node is done by querying a map structure contained in the track
node. The map uses measurements as keys and the data is the child nodes
corresponding to the measurements. If the child node does not exist upon
querying, it is created and added to the map.

A cluster structure keeps both a list of all leaves for its hypothesis tree, and
a list for all leaves of all its track trees. The leaves of the hypothesis tree are
used for fast access when innovating hypotheses, while the track leaves are
used for fast access when predicting leaf node states and when clustering. In
addition, the cluster structure has a list of measurements that are gated in the
clustering.

The LHS of Equation 3.24, which is computed when gating measurements,
is also computed when calculating the measurement assignment likelihood,
defined in Equation 3.5. Therefore, gating and measurement likelihood com-
putation is done at the same time and the result of the likelihood is stored in a
map structure in the track node. This saves computation time when creating
the cost matrix in Equation 3.20 as several hypotheses have the same tracks.
An overview of the clustering and likelihood calculation process is shown in
Algorithm 1.
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Algorithm 1 Clustering and Likelihood Computation
1: C: List of clusters at k-1
2: Z: List of measurements at k
3: γ: Gate threshold. chi2cdf−1(PG)
4: Initialize empty list of unassociated measurements, UZ
5: for each z in Z do
6: Initialize empty list of associated clusters, AC
7: for each cluster in C do
8: associated← False
9: for each track_node in cluster.track_nodes do
10: gate_value← calcGateValue(z, track_node)
11: if gate_value < γ then
12: likelihood← calcLikelihood(track_node, gate_value)
13: track_node.storeResult(z, likelihood)
14: if not associated then
15: associated← True
16: AC.append(c)
17: end if
18: end if
19: end for
20: end for
21: if AC.length == 0 then
22: UZ.append(z)
23: else if AC.length == 1 then
24: AC[0].gated_measurements.append(z)
25: else
26: new_cluster ← MergeClusters(AC)
27: new_cluster.gated_measurements.append(z)
28: C.remove(AC)
29: C.append(new_cluster)
30: end if
31: end for
32: return UZ



4 | The Tracking System

This section will specify the complete setup for the tracking system. The algo-
rithm to be used is the MHT with Track Deletion and clustering, as presented
in Chapter 3.

4.1 Radar

4.1.1 Location

The surveillance post is located on the north-east shore of the canal. The exact
location is at (lat: 63.435183, lng: 10.392984) shown in Figure 4.1. Both radar
and camera vision is quite good for the middle of the canal, but somewhat
limited at the west and east entry/exit points.

The radar is positioned at about 7 meters above sea level, and is therefore able
to detect some targets at the same line of sight, depending on the height and
range to the targets. The camera is positioned about a meter lower.

31
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Figure 4.1: The location of the platform. Radar range in red, and
the area of where boats are too be tracked in green. The main
entry/exit points are marked in turquoise.

4.1.2 Radar

The radar used is the Simrad Broadband 4G. This is a Frequency-Modulated
Continuous-Wave (FM-CW) radar. The available speeds are 24, 36 and 48
RPM, giving sampling times of respectively 2.5, 1.66 and 1.25 seconds. How-
ever, due to an error in the software provided for acquiring data, the sampling
time had to be set as an integer, giving a lowest possible sampling time of 5
seconds.

There are settings available on the radar, shown in Table 4.1, in together with
the values. Some settings like the gain, Sensitivity Time Control (STC) and
Fast Time Constant (FTC) are standard for all modern radars. However, some
of the settings specific for this radar were not described in its manual[23], and
therefore lacks a description in the table.



4.2. DETECTION 33

Setting Value Description
Range 175
Gain Auto Manual disables DCR
Sea Harbor Harbor/Sea. "Sea" disables DCR.
Rain 0 ...
FTC 0 Used to reduce the effect of rain.
Sidelobe Auto
STC Moderate Used to avoid saturation at close range.
Fast scan High Off/Medium/High = 24/32/48 RPM
Interference rejection (IR) High
Local IR High Removes interference from other sources.
Beam Sharpening High Improves angular accuracy.
Target Stretch Off To be used for long ranges.
Target Boost High

Table 4.1: Table showing the settings of the radar.

The gain of the radar is set to "Auto", in which the radar software itself de-
termines appropriate gain. Also, this allows for the radar to use "Directional
Clutter Rejection" (DCR), where it is assumed that the gain is set differently
for different angles. It was experienced that setting the gain to a manual
setting gave worse results as more targets were misdetected.

Since information on the settings were not well documented, they were indi-
vidually adjusted and its effects examined. Only "Interference Rejection" and
"Local IR" showed a positive effect as it was changed from its default settings
("Medium"). Increasing it to "High" decreased the amount and fluctuation of
clutter detections near the edge of the canal.

Output of the radar is a 1024x1024 "png"-image, giving a regular grid of cells
marking detections. Since a radar obtains measurements in reference to a polar
coordinate system, a projection from polar coordinates to Cartesian ones are
already made by the radar:

z =
[
x
y

]
=
[
r cos(θ)
r sin(θ)

]
(4.1)

4.2 Detection

The raw radar output goes through a set of filters to remove false detections.
Two mask images are first applied to remove detections from the raw radar
output. Then the cell detections are clustered. If the area of the cluster is
greater than a threshold, the centroid of the cluster is used as a measurement.
In addition a filter was made to remove "multiple"-detections.
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4.2.1 Rotation and Range

First, a 183 degree rotation is performed to represent the radar output in
respect to a North East Down (NED)-frame. The value of the rotation is
found by comparing the raw radar output to a satellite overlay. The rotation
is applied by using a rotation matrix on the raw radar image and interpolating
with nearest neighbour.

A difference between the range setting in the radar and the actual range was
found. The specific factor was found in similar fashion to finding the rotation.
When the radar setting was 175m the actual range was found to be 200m.

actual range
radar setting = 200

175 = 1.143 (4.2)

4.2.2 Mask Filters

Two image masks are made to filter out highly unlikely cells that are marked
as a detection.

An image mask is simply a 2D-array where each element is either true or false.
The output of the radar is also a 2D-array where each cell (element) is either
true or false for a detection. If the masks are true for cells that should be
filtered out, the filtered radar image is obtained by:

D1 = D0 ∧ ¬Mcombined Mcombined = Msatellite ∨Maverage (4.3)

Satellite Mask

A great deal of the detections in the raw radar output corresponds with land,
upon there are no targets. By using a satellite overlay an image mask is made
"by hand" to filter out these detections.

In addition, it was discovered in the preceding report [cite] that a "deadzone"
was present on the east end of the canal, due to the radar being obscured.
Only clutter occurred in the zone and no targets were detected. Therefore,
this zone is also included in the mask. The resulting mask is shown in Figure
6.1.

Average Mask

In addition to the satellite image mask, another one was made to account
for false detections appearing in the canal at the same location frequently.
Frequent detections were seen to be located at the shore of the canal.
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A mask to ignore detections at cells occurring p times or more in a set of
samples is described mathematically as:

M1(p;x, y) =
(

1
N

N∑
i=1

Ii(x, y)
)
≥ p, Ii(x, y) = {0, 1} (4.4)

where Ii(x, y) is a radar sample and N is the number of images, equal to the
number of samples. This resembles the simplest of "background subtraction"-
techniques often used for camera detection.

After a mask has been created, the findContours method from OpenCV is used
to locate connected components. In the method, the border points (contour)
of a connected component is found. It uses 8-connectivity, meaning two pixels
are adjacent if next or diagonal to each other. Each connected component
contour are then filled, which leaves no holes in the connected components.

4.2.3 Clustering using Connected Components

All targets of interest are occupying more than one cell. Therefore, connected
component analysis are performed on the detection image to create one single
measurement value per target.

The contours of the connected components are found using the findContours
method from OpenCV. In the method, the border points (contour) of a con-
nected component is found. It uses 8-connectivity, meaning two pixels are
adjacent if next or diagonal to each other.. Then, the centroid and the area of
each component are found. The centroid is in pixel-coordinates. It is trans-
lated and scaled to give the measurement position in reference to a NED-frame
centered at the radar location.

4.2.4 Size Filter

Some detections are too small in size to be originating from targets. Therefore,
detections with area less than Amin are removed. To determine the threshold,
sensitivity analysis will be performed. It is important to decrease the amount
of clutter, but not too many of the detections.

4.2.5 Multiple Filter

By examining the raw data, "multiples" was seen to occur when large boats
appeared close to the radar.

The "multiple"-phenomenon is illustrated in 4.2. A radar transmits energy,
which is reflected by a surface and received by the antenna. The distance to
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the surface is calculated by using the time from the transmit to the receive.
However, the received energy of the antenna can reflect off the antenna, reflect
off the same surface and get received again. If the received energy is large
enough it will lead to a false detection at the same angle, but double the
distance of the true one. This phenomenon may happen more than once,
leading to several false detections at two, three, four, etc, distance of the
correct detection.

Figure 4.2: Illustrating the "multiple"-phenomenon of a radar. A
second order multiple. shown.

If multiples occur at several consequent timesteps they could resemble the path
of a target and lead to false tracks.

A multiple usually appears directly behind a target. Therefore, if a detection
is within the angular region covered by another detection, closer to the radar,
it is a candidate to being a multiple. Usually, a multiple will cover a smaller
angular region than the true detection since only the center of the target reflects
enough energy to generate a multiple. The very edges of the target will only
reflect enough energy to generate the true one, but not enough to generate a
detection for the multiple.

A multiple will occur at a distance multiple of the true detection, and one
could in theory examine if the distance to a detection from the radar is about a
multiple (2, 3, 4 etc.) of another. However, it is difficult to find the appropriate
reference point, because the exact location of where the energy that leads to
the multiple reflects off, is hard to identify. This will be illustrated in Section
[results: multiple].

Therefore, a simplification was made and a detection is marked as a multiple
if a it is completely obscured by a detection of size larger than a threshold
Amultiple. This is reasonable since only large targets will generate multiples.
Also, a large target will limit the view of the radar, leading to it being impos-
sible to actually detect targets behind it.

The filter is implemented with the following procedure:

1. In the set of detections, see if any has area greater or equal to Amultiple.
They are candidates for generating multiples.

2. For each detection: Calculate the angle of each contour point in reference
to the radar, and find the minimum and maximum values. Also, calculate
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the distance from each detection centroid to the radar.
3. Remove a detection if its minimum angle is greater and its maximum

angle is less than a candidate, and the ratio of distance between the
detection and the candidate is greater the threshold rmultiple.

4.3 Tracking Model

The state of a target is given as x = [N, VN , E, VE], where N , E, VN and VE
are the north and east positions and velocities of the target in a NED reference
frame centered at the radar/camera location.

The popular DWNA-model is used to model the target motion, where accel-
eration is modeled as process noise. It assumes as little as possible of target
maneuvers. The state transition matrix and the plant noise covariance as
defined in Equation 3.1 are given as:

F =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , Q = σ2
v


∆t4

4
∆t3

2 0 0
∆t3

2 ∆t2 0 0
0 0 ∆t4

4
∆t3

2
0 0 ∆t3

2 ∆t2

 (4.5)

where ∆t is the sample time and σ2
v is the continuous acceleration noise vari-

ance. The model assumes acceleration is constant in a single sample interval,
[xk, xk + 1).

The output from the detection is the position in the same reference frame as
the state, leading to the following measurement mapping.

H =
[
1 0 0 0
0 0 1 0

]
R = σ2

w

[
1 0
0 1

]
(4.6)

where σw is the standard deviation of the discrete measurement noise.

State Initialization

The MHT with Track Termination requires the target state to be initialized
with a single measurement. The measurement only supplies information of the
position of the target and not its speed. Therefore, the scheme proposed in
Section 3.1.5 is used, which requires determining the maximum speed of the
targets, vmax. The initial state and its covariance is given as

x̂0 =
[
zi,0 0 zi,1 0

]T
(4.7)
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P̂0 =


σ2
w 0 0 0
0 vmax

3
2 0 0

0 0 σ2
w 0

0 0 0 vmax

3
2

 (4.8)

for measurement i with noise covariance σw.

4.4 Tracking parameters

The MHT with Track Deletion and the DWNA-model requires several param-
eters to be set. In this section they will be discussed, and the schemes for
estimating them will be described.

The following parameters need to be defined:

• σw: The standard deviation of the discrete measurement noise.
• σv: The standard deviation of the continuous acceleration noise.
• PG: The probability of a target measurement falling into the validation

region of the predicted estimate of the target.
• vmax: The assumed maximum velocity of targets.
• βN and βC : The density of new targets and the density of clutter.
• PD, PO and PX : The probability of detecting, not detecting and termi-

nating a target, respectively.
• Nscan, rprune,Kbest: Parameters for different pruning strategies.

4.4.1 Measurement Noise and Error

As mentioned in Section 2.2, limited accuracy creates error in the measure-
ments. However, the error is expected to be small for resolved measurements,
as the centroid would is likely to be a good estimate. However, when measure-
ments are merged or split, the error is expected to be greater, especially for
the latter.

For split measurements the true location of the target is likely to be somewhere
in between the centroid of each of the measurements. The likely location of a
target can be found by the average of centroids, weighted by area, giving the
centroid of the combined mass of the split measurements. The errors of each
of the measurements can be found by the distance to the likely location of the
target.

z̄i =
∑ni
j=1 zi,jAj∑ni
j=1Aj

(4.9)
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ei,j = ||z̄i − zi,j||2 (4.10)

The largest detection of the split is expected to have less error than the smaller
ones as it follows from the preceding equation. Therefore it is likely to be
chosen as the target measurement by the MHT, at least if a target has about
constant speed. Therefore, for the error of split detections one could consider
only the larger of the measurements in the split, as the other ones would be
classified as clutter.

Targets of greater size are expected to have a larger error than small ones.
Therefore, one could vary the measurement error deviation in terms of the
size of the detection. However, this could lead to unwanted results as it could
favor assigning targets to smaller measurements as their error of innovation,
Bk (3.14), would be less than for larger ones. Clutter are usually small in size.
Also, for split measurements of unequal size, this could favor the smaller, "less
correct", ones.

Therefore, the measurement standard deviation is set as a constant. It will
be defined in terms of the split measurements error, which is the least error
measurement in the group of measurements for a split detection. The worst
case error is expected to be seen when the largest target generates two equally
sized measurements.

4.4.2 Acceleration Noise and Gate Probability

It is expected that most targets will have close to constant speed, but some
targets like jet-skis and fast boats may change their speed quickly. These boats
are important to track as they are highly relevant for a collision avoidance
scenario.

Usually, targets that have a high acceleration are small in size. However, as
size is not estimated, σv is set constant.

The plant noise covariance will affect the probability of assigning a measure-
ment to a target (Equation 3.5), as well as the size of track gates (Equation
3.24), since it affects the innovation covariance, Bk. The innovation covariance
can be expressed in terms of plant noise.

Bk = HP̄kHT + R (4.11)
= H(FP̂k−1FT + Q)HT + R (4.12)

Since the measurement covariance, R, is constant, Bk will only vary on the
updated estimate covariance for the track at the previous timestep, Pk−1, and
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the plant noise, Q. Note, that Pk−1 also depends on the plant noise for all
timesteps from the beginning of the track and up to k − 1.

Since most targets are expected to have a low acceleration, the acceleration
variance should be set as low as possible. Especially in the case of closely
spaced targets and high clutter density this is important since one wants to
decrease the likeliness of assigning a target to some close by, but wrong mea-
surement. However, to be able to track high acceleration targets, one must
ensure they are at least gated.

Therefore, the gate probability is set high, PG = 0.99, and the noise covariance
are to be set as low as possible.

The continuous acceleration noise vector, w(t), for one dimension, is given as

x̂k+1 = Fx̂k +
[

∆t2
2

∆t

]
w(t) (4.13)

By using an approximation of a ground truth, one can obtain samples of the
acceleration in both dimensions to estimate the plant noise covariance.

4.4.3 The Maximum Speed of Targets

The same argument is made for the maximum speed of targets, vmax, as for the
previous section with σv. It is set as low as possible, but such that all initial
tracks gates its next measurement. Samples of the speed and the initial speed
of will be obtained from a ground truth, in which vmax will be set according
to the maximum value.

4.4.4 Clutter and New Target Densities

The densities of clutter and new targets can be expressed in terms of the
expected number of clutter and the expected number of new targets per scan,
by calculating the size of the observable area.

βC = αC
V

βN = αN
V

(4.14)

where αC and αN are the number of clutter and new targets per scan, respec-
tively. The size of the observable area can be found by counting non-masked
cells of the combined satellite and average mask, Mcombined, and multiplying it
by the area of a cell.

The expected number of clutter and new targets per scan can be estimated
by establishing a ground truth for a set of data, and counting the number of
clutter measurements, and the number of tracks.
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αC = NC

L
αN = NT

L
(4.15)

where NC and NT is the number of clutter measurements and the number of
tracks in the dataset with L scans.

One may want to tune these parameters to increase the robustness of the MHT.
If the clutter density is increased, while the new target density is decreased,
one decreases the likeliness of a new track. This may result in less false tracks,
but may come at the expense of loss of true tracks.

4.4.5 Target Probabilities

The probability of detection, misdetection and deletion can also be estimated
from a ground truth, by examining each track for the number of detections
and the track length, and then using the average values for all tracks.

P̄D, i = Ndetections, i

Ltrack, i
P̄X, i = 1

Ltrack, i
P̄O, i = 1− P̄D, i − P̄X, i (4.16)

However, the target probabilities is expected to greatly vary depending on the
target, and the average may not be suited. Usually, targets of greater size will
have a higher probability of detection than smaller targets, as they are easier
to detect by the radar. The actual observable area could also be affected by the
size, as there could be areas where only large targets are detected. Therefore,
size can affect the probability of deletion as well. Slow targets will also have
a lower probability of deletion as they stay in the observable area for a longer
time.

Targets that are easily detected are the "easy" cases for the MHT. Since the
target generates measurements regularly there will be low uncertainty in state
estimates, leading to a low innovation covariance, and the likelihood of assign-
ing measurements to it will be high. A low innovation covariance will also lead
to a small track gate and less likelihood of gating clutter. A lower probability
of detection than the actual probability for the target can be set, as the like-
lihood of detecting the target and assigning it a measurement is greater than
the alternative, which is classifying the measurement as clutter. However, this
may not be the applicable with a high clutter density, but this is not expected
to be the case in this scenario.

A too high probability of deletion would too easy terminate tracks that are
misdetected for consequent timesteps, and rather give birth to a new target,
as it is detected again. A case is illustrated in 4.3, along with the resulting
probabilities. The opposite case of PX being very low, is that the deletion
hypothesis may easily be pruned away. Also, the loss of a whole track loss
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is possible if it is short, as the probability will make a track less likely than
classifying all measurements as clutter.

Figure 4.3: A case of a target being misdetected three times. The
alternative hypotheses that are the target is deleted and a new is
born is shown underneath.

Therefore, as MHT is likely to be robust to a lower probability of detection
than the reality for easily detected targets, PO should be increased from P̄O,
while decreasing PD and PX , to increase the robustness against false tracks.

4.4.6 Pruning Parameters

The pruning parameters are important to be set sufficiently high to be able
to generate the "correct" hypotheses at the end of the tracking. The "correct"
hypothesis is defined to be the most probable hypothesis if one did not prune at
all. Pruning to "hard" could lead to one not generating the correct hypothesis
or its parent.

The parameters Nscan and Kbest control the depth and width of the hypothesis
tree. They are very much dependant on each other in finding the values needed
to, at least most of the time, generate the best hypothesis.

Without N-Scan (Nscan = inf), one could end up with severe errors in the
tracking. At a time step one could generate top hypotheses that have very
similar probability, e.g both being likely. If the outcome is similar as well,
their child hypotheses will have similar probabilities as well. Then, if this
happens for several timesteps, one would eventually "fill up" the set of K-best
hypotheses. This is a typical case for targets moving together. The result
is that hypotheses with low probability events, like target deletion and birth,
will not be generated and tracks would neither be created or deleted, leading
to severe errors in the tracking. With N − scan one would eventually "settle"
on these similar hypotheses back in time, allowing one to have more diverse
hypotheses for the recent time.

A consequence of the dependency is that if Kbest is just sufficient to generate
the correct hypotheses for a value of Nscan, one must increase it if one increases
Nscan.
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The ratio pruning parameter (Equation 3.25), rprune, must be set sufficiently
high such that the ratios between hypotheses that lead to the correct one and
the most likely hypotheses at each of the time steps, are less or equal to rprune.
The ratio pruning will be set quite high and just used to remove the extremely
unlikely hypotheses, to reduce the computation time.
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5 | Code and Graphical User In-
terfaces

In this section, the code will be presented. Only an overview and the essential
parts will be presented, due to its extensiveness. The focus will be on the three
different Graphical User Interface (GUI)s that have been made.

All the code has been implemented using Python, except for the algorithm by
Murty, coded in C, with a Python interface, by Jonatan Olofsson. The Python
libraries used are OpenCV, Numpy, Scipy, PyQt and Matplotlib. Otherwise,
all code is made from scratch.

Figure 5.1: The data flow for the three different views of the GUI

5.1 Detection GUI

The detection view was made for browsing radar and camera output, and
examining the results of the detection.

The radar output is shown on top of a satellite image of the area, in addition to

45
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showing the satellite mask and average mask used in the detection. In addition
it has the following features:

• Browse to scan index.
• Jump to next or previous scan that has a measurement.
• Navigation using arrow keys.
• Show time and date of scan.
• Disable camera to speed up loading.
• Enable camera enhancing. Improves camera image with adaptive his-

togram normalization (slows down browsing).

Figure 5.2: The detection GUI

The GUI is made using PyQt, while the actual view of the radar and camera is
a Matplotlib-plot. Because of the slow rendering of the latter, work has been
done to improve the speed, like caching of the radar background.

5.2 MHT GUI

This GUI builds on the detection one, and is made to analyze MHT results,
and to aid in debugging the MHT code when it was created.

The view is centered around the list of clusters. The list shows information
about each cluster, like the number of targets in the top hypothesis. This
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makes it easy to navigate the results of the MHT. For instance if the ratio is
low, this suggests an uncertain result and one may want to examine it more
closely.

Figure 5.3: The sidebar of the MHT GUI. The top list are the clus-
ters, while the bottom are the hypotheses for the cluster selected.

One or several clusters can be selected, showing the most likely hypotheses
of each. This is useful when there are several clusters present at the same
timestep. If a specific cluster is selected the GUI brings up its sorted list of
hypotheses, with the probability of each. Then, one can select other hypotheses
than the most likely one, showing its tracks instead.

Debugging of Kbest and rpruning is made easy. Each hypothesis shows its max-
imum K-value, Kmax, and its maximum ratio-value rprune,max. The maximum
K-value of a hypothesis is the worst ranking of it, or one of its parents, in
its respective timestep, while the maximum ratio-value is similar, only for the
ratio between the hypothesis and the most likely one.

Similar to the detection view one can navigate the scans. In addition, one can
select a specific MHT timestep that can be greater than the timestep of the
scan, thereby viewing the tracks for that scan based on the hypothesis at the
MHT timestep. Also, one can set a track cutoff timestep, which makes the
view not show any track estimates before that timestep. This is implemented
because there may be many and long tracks which could overlap and create a
chaotic view of the tracking results.

The GUI requests the MHT-loader for the MHT-data at a given timestep. If
the MHT data is present it is given. If not, it instructs the MHT to process the
scans from where it was last loaded up until the given timestep. This makes it
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possible to analyze data on the go, not needing to process the complete dataset
first. Also, one has the possibly to save the MHT-data and load it another
time.

5.3 Ground Truth GUI

This view is made to create a ground truth for the radar data.

At a scan, a list of measurements is presented where each can be selected to
create a new track. Also, the current set of alive tracks are shown, which can
be assigned one or several of the measurements in the scan. If several are
selected it indicates that the measurements are split. As well, a track can be
assigned no measurement and also be set as deleted.

Figure 5.4: The sidebar of the Ground Truth GUI. To the left,
measurements can be selected to start a new track. To the right
are two tracks which can be assigned a measurement. Here, they
are assigned measurement 1 and 2 respectively.

The current set of alive tracks are shown, and the view is updated if the
assignment of a track is changed. One may also go back and forth between
scans and alter the ground truth. This makes it easy to create the ground
truth for one track at the time. Lastly, the ground truth data can be saved at
anytime, to either create a checkpoint or alter previous data.

5.4 Radar and Track View

Here, a description of what is visible in the center view of the GUIs.
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Figure 5.5: The Track View. Two tracks are shown. One is termi-
nated, while the other alive.

Detection view:

• Green: Satellite mask.
• Purple: Average mask.
• White: Detection cells (without filtering).
• Red cross: Detection centroid.

Track view:

• Red plus sign: Centroid of a measurement.
• Line: Alive track.
• Stippled line: Terminated track
• Filled circle: An estimate and the target was detected.
• X: An estimate and the target was not detected.
• Big circle: Track gate of previous estimate.
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6 | Results

6.1 Experimental Data

Data was collected from 00:00 Friday, June 1st to 23:55 Thursday, June 7th,
resulting in seven days of data. Samples were taken from the radar and the
camera every 5 seconds, giving 120960 samples of each. The data uses 47.7 GB
of disk space, averaging at 394 KB per combined radar and camera sample.

6.2 Satellite and Average Mask

The satellite mask created for the area is shown in 6.1.

Figure 6.1: The Satellite Mask (in green) shown on top of a satellite
image of the area

An average mask were created by using all samples in dataset. The p-value
was set by examining different values. The final p-value was set to be 0.01.
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Figure 6.2: Plots illustrating the process of finding the p value for
the average mask.

The combined Satellite and Average Mask for p = 0.01 is shown in the following
figure. The combined mask is used throughout all following experiments.

Figure 6.3: The Satellite (green), and the Average Mask (purple)
for p = 0.01. The black area in the image remains as the observable
area.
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The observable area was found by counting the non-zero pixels (false pixels)
as described in Section 4.4.4, and then scaling.

Aobs = 14117m2 (6.1)

6.3 Ground Truth

By using the GUI presented in Section 5.3, a ground truth for target-measurement
assignments were made. It is made for a subset of the data, from 00:00 June
1st to 16:00 June 2nd, resulting in 40 hours of ground truth data. Impor-
tantly, the ground truth dataset is well distributed in target activity. It is
assumed to be two periods with low activity (morning/night) and two periods
with high activity (mid-day Friday and mid-day Saturday). Figure 6.11 later
confirms this. Also, the dataset has samples from days of the week assumed
to have high activity. Along with good weather when data was sampled, this
is expected to present difficult cases for the MHT as the number of targets are
high. However, because of the good weather, the water was calm, and a low
amount of clutter originating from waves is therefore expected.

In contrast to the MHT, the targets of the ground truth were allowed to be
assigned more than one measurement, and also a single measurement was
allowed to be assigned to more than one track. In other words, the ground
truth were created with the possibility of both merged and split measurements.
The camera was used to verify actual target presence.

The ground truth was created with both the mask filters enabled, in addition
to the area filter with a, presumably, low threshold of 20 pixel2 ≈ 3m2.

6.3.1 Ground Truth Track Estimates

The ground truth only has measurement associations. Therefore, schemes are
used to approximate the true target location.

• Resolved: Centroid

• Merged: Centroid

• Split: The centroid of the combined area of the detections (Equation
4.9).

By examining the contours and the paths of the targets, the resolved and split
measurements schemes seemed to give a good fit of what seemed to be the true
target location. For merged measurements this was not case. However, since
there are few merged measurements in the dataset it is expected to not affect
the proceeding results appreciably.
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6.3.2 Ground Truth Statistics

Measurements and Tracks

An overview of the number of resolved, merged, split and clutter measurements
are given in the following table. "Clutter MHT" is the number of clutter
measurements if only one of the measurements in a split is classified as a
target measurement, and the rest is classified as clutter. This is the number
"seen" by the MHT, as it assumes split measurements are not present.

Type Number Share [%]
Resolved 6224 57.2

Split 523 4.81
Merged 36 0.33
Clutter 4096 37.7
Total 10879 100

Clutter MHT 4096 40.0

Table 6.1: The different types of detections and their respective
numbers in the ground truth.

Avg Min Max
PD [%] 91.0 62.5 98.5
PO [%] 3.59 0.00 32.14
PX [%] 5.40 0.75 20.00

Track Length [scans] 23.4 5.0 134
Track Length [time] 1m 57 s 0m 25s 11m 10s

Table 6.2: Statistics for the 292 tracks in the ground truth.

By using the size of the observable area and the number of tracks and number
of MHT-clutter, we obtain:

Clutter per scan 0.1514
New Targets per scan 0.01014
Clutter intensity βC 1.07e-5

New Target intensity βN 7.18e-7

Table 6.3: Clutter and target intensity from the ground truth.

Clutter/Detection ratio, location. Start/End of tracks, location.
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6.4 Detection

Here, effects the different parameters of the size filter and the multiple filter will
be examined. The ground truth will be used as a reference. The number of true
detections and clutter are the ones expected to be used by the MHT. Therefore,
for a split measurement only the largest of the detections are classified as a
true detection, while the rest is classified as clutter.

6.4.1 Performance Measures

The size filter and the multiple filter are both binary classifiers, classifying a
detection either as a true detection or clutter. One has the following relation
to binary classification.

• True Positive (TP): Target detection kept.

• False Positive (FP): Clutter kept.

• False Negative (FN): Target detection removed.

• True Negative (TN): Clutter removed.

In addition, one has the following metrics:

sensitivity = TP

TP + FN
(6.2)

specificity = TN

TN + FP
(6.3)

These are also referred to as true positive rate and false negative rate, or
recall and precision, respectively. Preferably, the sensitivity and specificity ap-
proaches one. In a ROC-curve the specificity are plotted against 1−specificity
for a range of parameter values.

6.4.2 Size Filter

One wants to find the optimal Amin for the size filter.

Figure 6.4 shows the ROC-curve. Increasing Amin decreases the sensitivity,
but increases the specificity, as expected.
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Figure 6.4: ROC-curve for different values of Amin[pixel2]

Tracks with small targets may already have a low probability of detection.
Therefore, the effects of the size filter is examined on the ground truth tracks.
If the size filter removes detections at beginning or ends of a track, the track
is clipped to a shorter track.

Figure 6.5 shows worst case metrics for the tracks. The measures used are the
worst probability of detection of all tracks and the shortest track length. Also,
the number of tracks that are completely removed by the filter is shown. For
Amin ∈ [20, 34] pixel2 the worst probability of detection is unchanged. As Amin
is further increased the PD drops all the way to 0.5. In the end, all detections
of a track is filtered out. The track affected was identified and its detections
are shown in Figure 6.6.
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Figure 6.5: Examining the effects of the size filter threshold on
tracks.

Figure 6.6: The target with the lowest PD for Amin ≥ 35 pixel2.
All seven detections (in 8 timesteps) are shown, together with the
track in blue.

Figure 6.7: The target with the lowest PD for Amin ≥ 35 pixel2
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6.4.3 Multiple Filter

For the multiple filter, the thresholds Amultiple and rmultiple need to be found.
The effects are examined for all scans with two or more detections.

Figure 6.8 shows the ROC-curve. The reader are advised to notice the scale of
the plot. For all combinations, the filter shows high sensitivity, while greater
variation is seen for specificity. Regardless of rmultiple, Amultiple = 800[pixel2]
seems like the optimal value, where about 0.5% of the true detections are
removed. rmultiple = 1.0 is the optimal range, removing 24% of the clutter.

Figure 6.8: ROC-curves for different values of Amultiple and rmultiple.
Amultiple values are in pixel2 and are shown as text labels on the
lines.
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Figure 6.9: Example of multiples being filtered out. The true target
detection is shown with a red cross. The multiples are in the bottom
left.

6.4.4 Statistics After Filtering

Presented are the statistics for tracks and clutter density after the size and the
multiple filter is applied on the ground truth. The parameters used are Amin =
34, Amultiple = 800 and rmultiple = 1.0. The total number of clutter (seen by
MHT) is 2566, giving a 41 % decrease. This is done without affecting the
probability of detection, neither the average or worst cases. The most notable
effect is that the average and maximum track length are slightly shorter.

Type Number Share [%] Change [%]
Resolved 6172 68.07 -0.84

Split 523 5.769 0.00
Merged 36 0.397 0.00
Clutter 2335 25.76 -43.0
Total 9066 100 -16.8

Clutter MHT 2566 28.30 -41.1

Table 6.4: The different types of detections and their respective
numbers in the ground truth post filtering with area and multiple
filter. The change relative to the ground truth is shown.
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Avg Min Max
PD [%] 91.0 62.5 98.4
PO [%] 3.49 0.00 32.14
PX [%] 5.46 0.76 20.00

Track Length [scans] 23.2 5.0 131
Track Length [time] 1m 56 s 0m 25s 10m 55s

Table 6.5: Statistics for the 292 tracks in the ground truth post
filtering with area and multiple filter.

Clutter per scan 0.0891
New Targets per scan 0.01014
Clutter intensity, βC 6.31e-6

New Target intensity βN 7.18e-7

Table 6.6: Clutter and target intensity from the ground truth after
filtering with area and multiple filter.

Figure 6.10: The distribution of target probabilities after detection
filtering.

Figure 6.11 shows the clutter and target per scan, using a running average.
The running average is close to the average track length. It can be seen that
the two correlate, and also that they have a large variation. This may suggest
that the clutter density should be higher than its mean to reject clutter for
the cases when its the most present.
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Figure 6.11: The number of clutter and the number of new targets
per scan (after filtering). A running average of 2 minutes (N = 24)
is used to smooth out the data.

6.5 Estimation of Measurement, Plant Noise
and Maximum Speed

6.5.1 Measurement Noise

The measurement noise is estimated according to Equation 4.10, using all
split measurement groups from the ground truth. A histogram of the errors
are seen in Figure 6.12. A value of σw = 8.5/3 = 2.833 was chosen, as it fit
the distribution of the errors in the histogram well.

Figure 6.12: Normalized histogram of the split detection error for
all split measurement groups in the ground truth. The normal
distribution with σ = 2.833 is shown as an overlay.
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6.5.2 Maximum Initial Speed

The initial speed is calculated for all tracks that are detected for their first two
timesteps. Figure 6.13 shows the speed samples. The maximum speed of all
samples was 5.63m/s.

Figure 6.13: Histogram showing the distribution of speed samples
from ground truth.

By setting vmax = 5.63, σv = 0.6 and σw = 2.833 the maximum speeding
target was confirmed to be gated. Figure 6.14 shows this. The σv used is the
one found in the next section.
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Figure 6.14: The target with the maximum speed in the ground
truth (orange). The track gate is shown for PG = 0.99, σw = 2.833,
σv = 0.6.

6.5.3 Plant Noise

Acceleration samples will be impacted by measurement noise, with small er-
rors in measurements potentially leading to great noise in the samples. Since
the ground truth measurements are not really free from noise, the accelera-
tion samples are obtained from filtered estimates. σw = 2.833 is set constant
throughout this section, and vmax = 5.63. All samples are obtained with
Equation 4.13, and the samples of each dimension are combined.

First, σv = 2.0. This is a high value, which smooths out the estimates only
slightly to remove the outliers caused by noise. The highest acceleration sample
is found and the resulting track along with the track gate is shown in Figure
6.15.
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Figure 6.15: The track gate for the highest acceleration maneuver.
Estimates filtered with σv = 2.0

By iteratively lowering σv from 2.0, a value of 0.6 was found to give a track
gate that just gates the highest accelerating target. The resulting track gate
is shown in Figure 6.16. A normal distribution with σv = 0.6 is shown on top
of the distribution of the samples obtained with σv = 1.0 in Figure 6.17 and
Figure 6.18. It can be seen that it does not fit the distribution of samples
well, but covers the outliers (like the maximum acceleration target). The
distribution of samples when filtering with σv = 0.6 is shown in Figure 6.19.
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Figure 6.16: The track gate for the highest acceleration maneuver.
Estimates filtered with σv = 0.6

Figure 6.17: The distribution of acceleration samples for σv = 2.0.
The distribution is normalized such that the area under the bars
equals 1.



66 CHAPTER 6. RESULTS

Figure 6.18: The distribution of acceleration samples for σv = 2.0,
with clipped y-axis. The distribution is normalized such that the
area under the bars equals 1.

Figure 6.19: The distribution of acceleration samples for σv = 0.6,
with clipped y-axis. The distribution is normalized such that the
area under the bars equals 1.
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6.6 MHT evaluated on Ground Truth

To use the MHT to analyze the rest of the dataset, one needs to find the
parameters best suited. Also, one is in need of getting an intuition of how well
the algorithm performs compared to the ground truth to be able to establish a
level of confidence in the results for the rest of the dataset. The OSPA metric
will be used to evaluate the algorithm for different set of parameter values.
Also the RMSE of the cardinality and the total number of estimated tracks
will be used to establish a level of confidence.

6.6.1 Ground Truth Track Processing

The ground truth tracks are created with less detection filtering applied (no
multiple and low area threshold). Therefore they are clipped as described in
Section 6.4.2 to give an equal detection basis for the MHT and the ground
truth.

Also, tracks are smoothed with the Rauch–Tung–Striebel (RTS) method to
give better estimates for the ground truth when there are missed detections in
the track. The measurement and plant noise and the initial state covariance
is equal to that to be used by the MHT.

6.6.2 Post-Processing

By examining some preliminary results of the MHT, many false tracks, with
no speed, appeared near shore due to clutter. Therefore, tracks are removed
if all position estimates are within a radius of the mean of the estimates. By
examination this threshold was set to 5m.

6.6.3 Trial Setup

Some of the parameters are set constant for all trials. These are the ones
identified in the previous sections.

• σv = 0.6
• σw = 2.833
• vmax = 5.76
• PG = 0.99

• Amin = 34pixel2

• Amultiple = 800pixel2

• rrange = 1.0

The average estimated values from the ground truth will be used as a starting
point for the parameters that are to be tuned. The maximum hypothesis at the
very last timestep is used for providing the set of estimates for all timesteps for
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the RMSE cardinality and OSPA. This is reasonable since this is an evaluation
of the post-analyzing capabilities. The OSPA cut-off distance is set to 5m, with
the p-order set to 2. The mean of the OSPA-values for each timestep are used
as the OSPA-value for the whole dataset.
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6.6.4 Performance - Metrics

Label PD [%] PX [%] βC βN Nscan Kbest rprune RMSE[e-3] OSPA[e-3] Nt (/292) Kworst rworst
Avg values 90.0 5.46 0.089 0.010 7 750 1e15 164 348 330 450 5174
Avg values (low N) 90.0 5.46 0.089 0.010 5 750 1e15 164 346 330 127 5174
Avg values (high K) 90.0 5.46 0.089 0.010 7 1250 1e15 164 348 328 271 5174
1.5x Clutter (high K) 90.0 5.46 0.135 0.010 7 1250 1e15 174 370 309 1009 942
2.0x Clutter 90.0 5.46 0.178 0.010 7 750 1e15 174 342 278 627 1e6
2.0x Clutter (low N) 90.0 5.46 0.178 0.010 5 750 1e15 180 351 279 738 1e6
High PO 70.0 2.50 0.089 0.010 7 750 1e15 182 382 319 650 942
High PO (low N) 70.0 2.50 0.089 0.010 7 750 1e15 188 391 329 693 1331
Mix 70.0 5.00 0.135 0.010 5 750 1e10 177 376 292 811 1331

Table 6.7: Performance of the MHT on ground truth for different parameters. N = Nscan and K = Kbest for the labels.

Generally, with Nscan = 7 and Kbest = 750 one see that the Kworst is close to Kbest, which suggests the correct hypothesis may have been
pruned/not been generated. Therefore, both Nscan was lowered and Kbest increased. Note that sometimes the OSPA score is lower for
lower Nscan and Kbest, with the same tracking parameters.

A problem with the Murty Implementation caused the program to freeze, and is the reason only a few trials were conducted. The error was
reproduced for the same set of parameters and scans, and after some debugging seen to occur when solving one of the linear assignment
problems in the Murty algorithm. It is believed to be a bug of one of the loops or the "goto"-statements used. The cost matrices that
caused the problem were not found to have a pattern or be different to "working" ones, and it is therefore assumed they are not the
problem. There was not time before the deadline of the thesis to find the bug and correct it, though it was attempted.
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6.6.5 Performance - Example

A particular example is highlighted for the MHT, to show the effects of track
termination. The parameters used are those of "Avg values (low N)". Eight
targets are in and out of the observable area in a total of 4 minutes and 25
seconds (53 scans). At a particular instance, seven of them are present. The
MHT correctly estimated the number of targets that were present, though two
of the tracks suffer from track loss. However, this is not due to the MHT,
but merged measurements of the detection for several scans. Low amounts of
clutter are present during the time, except for some split measurements of the
last two targets.
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Four (actually five) kayaks have entered the canal. Two of them are merged (largest
detection), and has been since entering.

Another target crosses. Now, all kayaks have been detected, and a track initiated
for the last one.
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Same image as the previous one, but with track gates (for the previous timestep).
The purple target has been misdetected.

The red kayak has been terminated (prematurely), due to two of the kayaks being
merged again. The blue and brown has moved out of the observable area and has
been terminated. Two new targets enter the canal at the left.
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The ground truth for the same instance as the previous figure.

The resulting eight tracks after all targets have left the observable area.

Figure 6.22: Example of the MHT for a large amount of targets in
the canal.
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7 | Discussion

7.1 Filtering

The filtering with the multiple and the area filter gave a big improvement on the
radar sensor system. The number of clutter measurements for the MHT was
reduced with 41.1%, while only reducing the number of resolved measurements
with 0.84%. Importantly, the reduction in resolved measurements did not lower
the probability of detection, neither the average or the worst case.

The average track length was reduced, which suggests that the majority of the
resolved measurements that were removed by the filtering was at the beginning
or end of the tracks. This is reasonable, since when targets enter the observable
area, they may be partly inside the area and partly outside, leading to small
measurements, which then are removed by the area filter.

Since the worst case track length is not affected this will not be a problem for
the MHT, as most targets are still observed for a long time. Also, if the time
step is lowered from 5s to 1.25s in future experiments, this will increase the
track length. The worst case length will increase from 5 to about 40 scans.

7.1.1 Multiple Filter

Amultiple ≥ 800 removed close to no detections. This confirms the assumption
that targets above a certain size completely obscures the radar view and no
true detections are made behind them. rmultiple = 1.0 gave the best value
for specificity, thereby removing more clutter than the higher values. This is
interesting since multiples in general occurs for r > 2. However, as discussed in
Section 4.2.5, the centroid of the true target which is used as a reference point
may be off from where the reflection actually hits. Therefore one would expect
1.5 < rmultiple < 2.0 to be somewhat reasonable for detecting multiples even
with a wrong point of reference. Still rmultiple = 1.0 is low, and it signifies that
other phenomenons also take place for large boats. A possible cause may be
that some power is reflected off the sea surface and the target (or vice versa),
which would give a slightly longer time for the power to be received and thus
give a false detection right behind the true one.

75



76 CHAPTER 7. DISCUSSION

7.2 Noise Estimation and Maximum Initial Speed

Split measurements were expected to represent the worst case measurement
errors as discussed in Section 4.4.1. Figure 6.12 confirms the assumption,
where some of the samples have errors of about 10m. However, one can see
that for most of the samples the error is low. The distribution of the samples
resembles a normal distribution with mean equal to zero, though slightly un-
derrepresented for values between 0 and 0.5. However, one could assume most
resolved measurements are in this range.

As discussed in Section 4.4.2 most targets were expected to have low accelera-
tion. Figure 6.17 also showed that this was the case. The samples resembles a
normal distribution, but are too heavily represented around the mean of zero.
However, as it was decided to be desirable to find a value that not necessarily
represented the distribution of plant noise the best, but led to the maximum
accelerating target just being gated, the value of σv = 0.6 was chosen and
shown to just gate the target with PG = 0.99. To account for the non-gaussian
acceleration distribution, multi-model approaches may be utilized as for 3.1.4.

The target state initiation scheme proved to be a good one. By setting vmax
equal to the highest initial velocity of the ground truth samples, the track gate
of the target with the highest initial velocity just gated the next measurement.

7.3 Tracking parameters

Table 6.7 shows that different tracking parameters gives different performance
for the MHT, both in terms of just cardinality and OSPA.

However, some of the results were not as expected. The expectation was that
lowering PD and PX would improve performance of the tracking as described
in Section 4.4.5, since one would improve tracking results for targets of low
detectability. Figure 6.10 shows that there actually are few targets with low
detectability, and it may be the case that lowering PD will improve their per-
formance, but worsen it for the ones with high detectability, giving an overall
worse OSPA score.

Using the average values gave among the best OSPA-scores. However, it can
be seen that the number of tracks estimated is too high, suggesting many false
tracks.

Generally, the difference between Nscan = 5 and Nscan = 7 is small. In some
cases a lower Nscan value gives better results for the same parameters ("Avg
Values", "2x Clutter"). One reason for this is that the lower Nscan prunes
away the "correct" hypothesis, but that this "correct" hypothesis is not the
best in terms of OSPA. An other reason is that the correct hypothesis is not
generated with the higher Nscan for the reasons discussed in Section 4.4.6.



7.4. TRACKING PERFORMANCE 77

This is underlined by the results that show that Nscan in general gives higher
Kworse.

As expected, increasing the clutter density reduces the number of tracks. For
clutter density higher than the average value this leads to less estimated tracks
than there actually is. For 1.5x the clutter density, the estimated number of
tracks is close to the correct number, but the high OSPA-score and the high
Kworst suggests that the best hypothesis for some timesteps may not have been
generated.

More experiments should be conducted to better determine the effects of the
parameters. Also, the cases where the tracking is poor and the OSPA-score
is bad should be identified and examined with the GUI to get a better under-
standing of what goes wrong.

7.4 Tracking Performance

In Section 6.6.5 it was shown that the system could handle a high number
of targets in the area. The targets both appeared late due to merged mea-
surements and disappeared closely to where other targets was appearing or
misdetected. The system still estimated the correct number of targets and
had optimal performance given the detection output.

The number of estimated targets for all trials in Table 6.7 are close to the true
number, varying between being to low and too high, implying that the MTH
is close to getting it right, and are likely to do so with additional tuning.

All tracks were examined for "Avg Values (low N-scan)" by using the GUI.
In general, the algorithm performed well. A case where it often failed was
for targets being misdetected for consecutive time steps, causing the MHT to
terminate the track and then initiate it again. Also, tracks were too easily
initiated, especially when consecutive split measurements were generated by
targets. This led to a parallel false target being created in addition to the real
one. It is suggested to increase either the clutter intensity, decrease the new
target intensity and/or lower the probability of deletion.
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8 | Closing Remarks

8.1 Conclusion

A complete surveillance system has been created. It includes a detection sys-
tem and a new K-Best HO-MHT with Track Termination. In addition, two
GUIs has been created to aid in finding tracking parameters and to examine
tracking results.

The Track Terminating HO-MHT builds on the results of Reid [21]. It models
that targets not only can be detected and misdetected, but also cease to exist
with constant probabilities. The result is similar to that of Kurien, though the
derivation is slightly different [ref:kurien]. However, it builds on top of Kurien
by providing a polynomial time solution to generating the K-Best hypotheses
at each timestep by using the algorithm of Murty.

The MHT has been implemented in Python, with track and hypotheses tree
structures to improve on both computation time and memory consumption.
A GUI has been made to examine the results and for tuning parameters. One
also has the possibility to save and load computed data.

Ground truth tracks have been created for 40 hours of real radar data by using
a GUI developed. It has been used to aid in determining parameters for both
the detection system and the tracking system.

The detection system from the previous project of the author has been more
thoroughly examined and improved upon, removing 41.1% of clutter, and only
0.84% of the true target detections. The improvements include two filters, one
for removing detections based on the area of the detection contour and one to
remove "multiples" generated by large boats. The optimal parameters of the
filters have been found by examining ROC-curves. In addition, it has been
asserted that the area filter does not decrease the worst case probability of
detection, which was shown to be for a small target.

Measurement and plant noise parameters for a DWNA-model have been esti-
mated using ground truth data. Also, the maximum initial speed of targets
has been found for use in target state initialization. Both the plant noise and
the initial speed parameter has been shown to give minimally sized track gates
for their respective worst case scenarios, that being the maximum acceleration
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maneuver and the maximum initial speed.

As a final remark, a solid foundation has been laid to surveille the area around
the autonomous ferry. That is both in terms of the tracking system and the
tools to analyze it. With a polynomial time track termination MHT, realtime
possibilities of the system could also be possible.

8.2 Further Work

The main problem of the current project is an error in the Murty implemen-
tation. This, and limited time, led to a thorough examination of the intensity
and probability parameters of the MHT lacking. Also, a more thorough ver-
ification of the MHT and its capabilities are needed. It will be interesting to
see its performance for a timestep of 1.25s

In addition, some further work is listed which can prove itself useful:

• Use the MHT and the data to obtain additional statistics including typ-
ical entry/exit points, COLAV maneuvers and similar.
• Determining good values for the N-scan pruning and the K-best genera-

tion, both in terms of performance and time consumption.
• Evaluate other methods than the MHT and compare their performance.

Especially FISST based methods are interesting.
• It is believed by the author that the MHT can be reformulated in terms

of an inhomogenous Poisson point process and variable track probabili-
ties, in which thorough statistics of the area and targets can be used to
improve on the tracking.
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