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Abstract

Brain Computer Interfaces enable the use of brain waves to control computer-based external

devices. It can, however, be difficult to trigger a specific brain wave, and it might not be repetitive

enough to be used in such a manner. EEG is used to record brain waves, where the parts of

the recorded signal that is related to eye movements are normally considered to be artifacts

(undesired). In this work, however, EEG recordings of eye movements are used to create datasets

for training a machine learning algorithm, used for controlling a drone in real time.

A list of features is presented through literature search and comparison of eye movement

plots. A non-linear SVM classifier and a greedy feature selection algorithm is used to distin-

guish between blinks, looking straight ahead, to the left, right, up and down. Data collected

from two subjects is presented, obtaining an average accuracy of 94% offline when training on

both subjects. A state-machine was designed for controlling the drone and evaluating online

classification. The down movement was discarded from the state machine due to observed

degradation in online performance when including this class, online classification therefore

only uses 5 eye movements. An average online accuracy of 94.5% was obtained when training

on both subjects and testing separately.

With proof of concept, the selected features and choice of algorithm is optimized for an im-

plementation on a battery powered device with respect to energy efficiency and classifier accu-

racy. Execution time speedup is used as a measure for energy efficiency in this thesis, as this can

be combined with a race-to-halt strategy to optimize for energy efficiency. A brute force search

is utilized (together with the greedy feature selection algorithm) to find the best feature vector,

presenting 9 features with a total extraction time of 242 µs on a personal computer. Through

this method, a speedup of 48x was achieved with a decrease of 2.1% in online accuracy when

training and testing on Subject 1. The subjects are able to use the system to control a drone in

real time, showing that eye movements can be used for devices demanding quick response. The

system was observed to be delicate, demanding the subjects to stay very concentrated and for

the electrodes to be positioned correctly, with good skin contact.
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Sammendrag

I denne masteroppgaven presenteres et system der prosesserte EEG-signaler fra et kommer-

sielt produkt med åpen kildekode, blir brukt til å klassifisere mellom øyebevegelsene opp, ned,

høyre, venstre, blunk og å se rett frem ved bruk av maskinlæring. Flere metoder blir presentert

for å finne gode egenskaper i disse dataene og for å finne en maskinlæringsstruktur som kan

klassifisere bevegelsene. Utgangssignalene fra klassifikatoren brukes til å kontrollere en drone.

Data ble samlet inn fra to deltakere, der et brukergrensesnitt med en sirkel som beveger

seg i forskjellige retninger ble designet for å gi instruksjoner til deltakerne i form av retning og

tidspunkt for bevegelse. I teorien har det presenterte systemet for innsamling av data mulighet

til å lagre data for 120 bevegelser i hver retning i løpet av en time (480 for blunk og rett frem).

I praksis ble innhenting av data gjort i kortere intervaller slik at deltakerne kunne opprettholde

denne hastigheten uten å miste fokus og bli slitne. Det ble laget et datasett til hver av deltakerne

der antall lagrede bevegelser for hver av deltakerne var på henholdsvis 2415 og 2980 bevegelser.

For å gjøre klassifiseringen bedre, blir det foreslått ulike måter å abstrahere egenskaper ved

dataen på, basert på litteratursøk av lignende oppgaver og inspeksjon av dataen som ble laget.

Validering av disse egenskapene blir gjort gjennom selve klassifiseringen, der gode resultater

tilsier at egenskapene er gode til å beskrive forskjeller mellom klassene. Litteratursøk kombinert

med en eksperimentell fremgangsmåte ble brukt for å finne riktig maskinlæringsalgoritme, der

et verktøy kalt Scikit-learn med mange ferdige implementasjoner av kjente maskinlæringsal-

goritmer ble brukt. Flere av disse ble lært opp og testet på datasettene der forskjellige kom-

binasjoner av egenskaper fra dataen ble brukt av algoritmene. Isteden for å manuelt vurdere

egenskapene, ble en grådig algoritme for utvalg av slike egenskaper benyttet. En grådig algo-

ritme er en algoritme som til en hver tid velger det beste alternativet. Med hjelp av denne, og

en eksperimentell fremgangsmåte, ble det oppnådd en treffsikkerhet på 94%, når data fra begge

deltakerne ble slått sammen for å lære opp maskinlæringsalgoritmen. Dette var testet på data

som var laget på forhånd og lagret på datamaskinen.

Å bruke en klassifikator i sanntid til å styre en drone, krever også en kontroller til å tolke

klassifiseringene. Til å tolke disse ble det laget en tilstandsmaskin, som endrer tilstand basert

på sekvensen til utgangssignalet til klassifikatoren. Denne tilstandsmaskinen blir også brukt
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til å evaluere hvor god klassifikatoren er når den prøver å klassifisere data som blir tatt opp i

sanntid. Evalueringen ble gjort i et opptaksmiljø som kunne ta opp tilstanden til tilstandsmask-

inen gjennom utskrifter i et terminalvindu og samtidig ta opptak av øynene til deltakerne via

et webkamera. Det ble gjennom denne evalueringen observert at "ned" bevegelsene forstyrret

klassifikatoren, og dermed forverret systemets evne til å klassifisere resten av retningene. Denne

"ned" bevegelsen ble derfor ekskludert fra tilstandsmaskinen, som gjør at kun de 5 resterende

bevegelsene ble brukt til sanntidsklassifisering.

Gjennom perioder der deltakerne testet klassifikatoren i sanntid, ble det observert at sys-

temet er veldig delikat i forhold til konsentrasjon og hvor god kontakt utstyret har med huden.

Når konsentrasjonen og kontakten var tilfredsstillende, ble det observert resultater med en tre-

ffsikkerhet på 94.5% ble observert når begge deltakerne lærte opp samme klassifikator.

For å optimalisere løsningen i forhold til energieffektivitet ble kjøretid brukt som en indika-

tor på energibruk. Det viste seg at den grådige algoritmen valgte ut de mest krevende egen-

skapene. En optimalisering ble gjort, der antallet egenskaper ble redusert og den endelige kom-

binasjonen skulle være av de egenskapene som hadde kortest utregningstid med en definert ne-

dre grense for treffsikkerhet for klassifikatoren. Denne kombinasjonen ble funnet med et kom-

plett søk av alle egenskapskombinasjoner der antallet egenskaper var satt til 9 av 26 mulige egen-

skaper. En sammenlikning på deltaker 1 med egenskapskombinasjonen valgt av den grådige

algoritmen og det komplette søket viste at utregningen av egenskaper og klassifisering fikk en

hastighetsøkning på 48x med en reduksjon i treffsikkerhet på 2.1%. Med denne hastighetsøknin-

gen kan energiforbruket minkes ved å minke klokkefrekvensen og spenningen.

Gjennom resultatene blir det konkludert med at fremgangsmåten for å finne riktige egen-

skaper, maskinlæringsstruktur, design av kontroller og energioptimalisering er velegnet for styring

av drone med øyebevegelser. En video av en av deltakerne som flyr drone med øyebevegelser

kan bli funnet her: https://www.youtube.com/watch?v=8S9dgh5TH0A

https://www.youtube.com/watch?v=8S9dgh5TH0A
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Chapter 1

Introduction

The first ever human recording of electrical activity in the brain using Electroencephalography

(EEG) was reported by Hans Berger in 1929 [1]. EEG studies has since then been performed nu-

merous times, including studies on head injuries, sleep disorders, strokes and epilepsy, among

others. EEG studies used to be exclusive to the medical and scientific community as equipment

used to measure EEG signals was expensive. Such equipment has recently been made available

to a larger audience by becoming cheaper and more mobile and developer-friendly.

Another way of looking at EEG recordings is to study the possibility of using these signals for

actuation. If one were able to undergo study and training to produce and decode specific re-

peatable signals, it would be possible for people to control computer-based technology. These

signals are recorded with scalp electrodes, making this a non-invasive technique. The usage of

scalp electrodes introduces a challenge in signal processing as undesired noise and interference

from other sources is present in the measurements. If this challenge can be overcome, a Brain

Computer Interface (BCI) that enables interaction between brain activity and computer tech-

nology can be used in real-time. This can have unlimited applications. Electric wheelchairs,

prosthetic limbs and assisting robots among many other options, can be controlled to increase

the life quality of people with physical impairments [2].

Artificial intelligence is currently a very popular field, where machine learning has been no-

ticed to have the potential to solve a large number of problems. "Machine learning is concerned

1
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with algorithmically finding patterns and relationships in data, and using these to perform tasks

such as classification and prediction in various domains" [3]. This technology has the possibil-

ity to find patterns in data that is difficult to find for a human. Using it on EEG data can provide

results that are hard to accomplish by having a person visually inspect EEG recordings. Machine

learning allows for problems to be solved without the need of a human to specify rules for ev-

ery possibility when solving a problem. Instead, the algorithms take in data and learns from

it through "experience". When using machine learning to perform classification, a machine

learning model is created through this experience and is considered a classifier [3]. There are

many types of classifiers, where some of the most popular are linear classifiers, Support Vector

Machine (SVM), Decision Trees, Logistic Regression and Neural Networks [4].

An aspect of BCI, is mobility and the possibility of not requiring proximity to an electrical

outlet to use the system. In this work, BCI is used to control a drone. And when controlling a

drone, especially if it is flown outside, it is considered an advantage to be mobile. Mobile devices

are generally powered by batteries and therefore has a limited supply of power. When designing

systems intended for mobile devices, energy efficiency is an important aspect and needs to be

considered to increase battery life.

Problem Description

The objective of this work is to control a drone with eye movements using EEG and is a continu-

ation of previous work in TFE4520 Digital System Design, Specialization Project [5]. The task in-

cludes creating a dataset of EEG recordings while test subjects performs a set of eye movements,

and to use machine learning classification to differentiate between the movements. Through

proof of concept, the classification should be implemented in real-time allowing the classifier

to be used as part of a real-world control application. The final system has an end goal beyond

this thesis to be implemented on a portable battery powered device. Thus, energy efficiency is a

key component, which should be considered and argued for. The classification process should

be optimized with respect to energy efficiency and classifier accuracy.
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A block diagram showing a simplified version of the complete system as used in real time

can be seen in Figure 1.1.

Figure 1.1: Simplified system overview

1.1 Objectives

The main objectives of this Master’s thesis are:

1. Make a system for sufficiently efficient generation of eye movement EEG data

2. Make datasets for at least two test subjects

3. Find features of the data that are fit to distinguish eye movements

4. Find a machine learning structure that, combined with these features, can distinguish eye

movements

5. Implement the classification in real-time

6. Design a drone controller based on the real-time predictions from the classifier

7. Optimize the machine learning structure and selected features based on accuracy and

energy efficiency

1.2 Limitations

There are some limitations to this thesis. First of all, the number of test subjects is low and

should ideally be a lot higher. Having few test subjects means that the argument for a cross-

subject portability not necessarily holds up. Ideally, the classifier would be trained on a large

group of subjects and tested on a group of subjects who were not used for training.
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The datasets are created as part of this work, which can be considered a limitation as the

quality of the dataset is subject to the persons evaluating them. The subjects creating the datasets

can make voluntary or involuntary movements, which disturbs the EEG recordings, in addition

to the fact that the quality of contact between electrode and skin can vary. A method to dis-

card data was utilized to remove datapoints where disturbances were present in the signals. The

method used to discard data was to visually inspect every datapoint in both datasets, where

each author had responsibility for one dataset each. This means that there can be differences

in the quality of the datapoints, due to the fact that the interpretation can have some variations

across the inspectors.

Commercial grade equipment was used to record the EEG signals. It was observed that the

placement of electrodes and contact with the skin affected the quality of recordings, therefore

also affecting the quality of classification. The system is also dependent on the subjects to stay

very focused during recording of data and flight. This could also affect the quality of datapoints

in the datasets as the gathering of data was performed in intervals, allowing some variance in

electrode placement and subject concentration.

Feature selection and choice of machine learning algorithm is based on energy efficiency

and classifier accuracy. When designing other parts of the system, such as the pre-processing

and controller, energy efficiency has been kept in mind but was not the main focus. This allows

the system to be further optimized for a battery powered implementation.

The number of machine learning algorithms and structures tested is limited. The machine

learning toolkit used in this work is Scikit-learn [6], which provides high-level implementation

of many popular machine learning algorithms. The support for creation of neural networks is

however low and the field of deep learning was unexplored by the authors. It is possible that a

neural network could be created through another toolkit providing support for energy efficient

machine learning, such as TensorFlow Lite, to create a more energy efficient classifier. This

would however demand more time and would not be guaranteed to provide as good results as

presented in this thesis within the same time period.

The energy optimized feature vector was only tested on Subject 1. The same procedure for

obtaining that feature vector should ideally be applied to Subject 2, and when training a model

on both subjects, to get a proper evaluation of the possible energy savings.
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1.3 Approach

Nearly all objectives were approached with analysis, hypothesis, experimentation and observa-

tions, providing insight and feedback along the way.

To create a method for generating datasets, literature on similar projects to this thesis has

been used. Looking at what others do and learn from their success and mistakes provided a good

basis of a good data generation method. When proposing the use of different features, which

features to select and what machine learning algorithms to use, the same basis with literature

search was used in addition to an experimental approach with the different classifiers to get

a feel of how good the selected features and algorithms are. Having a decent understanding

of how the features and algorithms are used before experimenting is started, provided a good

intuition of what works well and why.

To evaluate the performance of the classification, standard metrics used in machine learn-

ing literature were used throughout the thesis, both for offline and real time testing. A state

machine was designed for the use of classifier outputs to control a drone, where an experimen-

tal approach with analysis, hypothesis, experimentation and observations was used. When it

comes to energy efficiency, a comparison of different algorithms and selection of features using

execution time as an energy efficiency indicator was used. Only the energy usage to actually

classify a movement (not train the algorithm) was of interest, so the execution time for classify-

ing a movement should be compared across several machine learning algorithms. Calculating

the execution time for each of the presented features and comparing them, as well as testing

different methods of feature selection was performed to show the possible energy efficiency op-

timization.

1.4 Structure of the report

This report is organized into eight chapters. An overview of the main background theory and

a literature survey is presented in Chapter 2. Chapter 3 presents the system design with an

overview, excluding the vital parts of classification, complexity, controller and energy efficiency.

Chapter 4 will to some degree go in depth into machine learning, features and performance

metrics where Chapter 5 presents the offline classification results. A real time implementation,
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design of drone controller and real time classification results is presented in Chapter 6. The real

time classification is then optimized for energy efficiency in Chapter 7, where an evaluation of

the overall system concludes the chapter. Chapter 8 is the last chapter and will evaluate if the

objectives in this thesis are met, conclude and give recommendation for future work.

1.5 Main contributions

• Design of a system allowing a user to control a drone using eye movements, using methods

based on literature search, experimentation and observation.

• Proposal of a list of features that was proven to be useful for eye movement classification

of EEG signals.

• Creating a technique for selection of features by utilizing a popular greedy algorithm and a

brute force search to find the best "Low-power" combination of features. A fitting number

of features was found through observation of classifier performance during the feature

selection procedure of the greedy algorithm. Through the use of this method, it was pos-

sible to find a feature vector that gave a speedup of 48x with a decrease of 2.1% classifier

accuracy, compared to the feature vector found by the greedy algorithm.

• Creating an evaluation method for online classification performance for eye movements

by utilizing a web camera and prints in a terminal. By looking at the eye movements and

the state of the machine through prints at the same time, it was possible to validate the

movements and evaluate the online performance.

• Presentation of many machine learning concepts and methods in a simplified matter, so

that a reader without competence in machine learning can understand these concepts

and methods.



Chapter 2

Background Material

This chapter gives a short overview of what makes it possible to measure brain activity, what

measurements are used in this thesis, how these measured signals differ from each other and an

introduction to machine learning. The presented material is from a literature search performed

to get an understanding of the underlying processes utilized in this thesis.

2.1 Electroencephalography and brain anatomy

The Electroencephalography (EEG) is a technique to record the oscillations of the brain’s elec-

trical potentials measured from electrodes placed on the human scalp [7]. A human brain can

be looked at in three parts, the brain stem, cerebellum and the cerebrum as shown in Figure 2.1.

The brain stem is the infrastructure where nerve fibers transmit signals between the spinal

cord and brain centers. The cerebellum on the other hand has been associated with fine control

of muscle movements but has also been shown to play a role in cognition [7].

The cerebrum is divided into two almost equal halves, the left and right cerebral hemisphere.

The outer portion of the cerebrum, which is called the cerebral cortex, contains around 100

billion neurons and is believed to produce most of the electrical potentials in the scalp [7].

7
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Figure 2.1: Overview of the human brain. The superposition principle says that if we turn on
all the current sources (I1....In) at the same time, the potential at location R is the linear sum of
individual potentials (V1....Vn). [8]

Scalp recordings do not depend much on electrode size, as scalp potentials are space-averaged

by volume conduction between brain and scalp. A single electrode used on the scalp may cover

tissue masses containing roughly 100 million - 1 billion neurons, where each neuron can con-

tain about 10 - 100 thousand synapses [7]. Electrical activity in multiple nearby neurons adds

up to local field potentials (local sources). If enough local sources synchronize, the voltage po-

tential adds up to having a large enough amplitude to be read on the scalp. Figure 2.1 above

illustrates how superposition is used with EEG.

2.2 Frontal cortex

The frontal cortex is responsible for execution of all forms of action. Within this area is the

prefrontal cortex, which has the general function of temporal organization of actions toward

biological or cognitive goals [9]. This includes eye movement, emotional behavior, intellectual

performance, speech, etc. [10]. In this work the aim is to differentiate between different eye

movements. The prefrontal cortex, marked in orange in Figure 2.2 therefore ends up being the

area of focus.
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Figure 2.2: Figure of the left cerebral hemisphere where the prefrontal cortex is marked in or-
ange. This is a recreation of the original picture from [11].

Figure 2.2 is called Brodmann’s brain map [12], from 1909. To this day it forms the basis for

“localization” of functions in the cerebral cortex. Brodmann’s “areas” are still used to designate

cortical functional regions, such as Area 4 for motor cortex, Area 17 for visual cortex, and so

on [13]. The part of highest interest in this work is indexed as the number 8, and is named the

Frontal Eye Field (FEF). In humans, functional imaging studies have demonstrated increased

FEF activation during all visually guided quick simultaneous movement of both eyes, reflex or

voluntary [14].

2.3 Electrical activities

The electrical activities among neurons can be divided into two major categories: spontaneous

potentials and event related potentials [7]. Spontaneous potentials are always present and can

for instance be electrical activity as a result of sleep cycles. While event related potentials are

the changes in the electrical activity as a direct reaction to an event, such as moving an arm or

some internal or external stimuli. It is important to note that the event related potential might

give different measurements, depending on what state the mind is in [7].

The electrical activities originating from the brain can produce five major brain waves which

are classified by their frequency ranges. These are known as Alpha, Beta, Delta, Gamma and

Theta waves [15]. Table 2.1 shows the different frequency ranges for the different brain waves.
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Table 2.1: Brain waves and frequency ranges [15]

Brain wave Frequency range (Hz)

Delta 0.5 − 4
Theta 4 − 8
Alpha 8 − 13
Beta 13 − 30
Gamma 30 − 100

Artifacts

There are however other sources to electrode potentials in the EEG measurements that does

not originate from the neuron- and synaptic activity. These are called artifacts and can origi-

nate from muscle activity or interference from electrical equipment, among many other sources

[15]. Artifacts originating from biological activity in the brain are called biological artifacts, while

artifacts from components such as electrical equipment is called technical artifacts. Eye move-

ments and blinks are called ocular artifacts, and usually has higher amplitudes than brain sig-

nals [15]. While voltage potentials originating from brain signals are within the 0−100 µV range,

the ocular artifacts can vary from 10µV - 5 mV [16, 15]. These artifacts originate from the electri-

cal charge of the eye, where the cornea is positively charged and the retina is negatively charged,

creating a dipole. When the eye or eyelid moves, the potential field from the charge changes,

which is easily detected in the EEG measurements [17]. These changes in the EEG measure-

ments, triggered by the eye movements and blinks are the signals that are used and classified in

this work.

2.4 Brain-Computer Interface

Brain Computer Interface (BCI) technology can be looked at as an interface allowing communi-

cation between a wired brain and an external device [18]. BCI uses direct measurements from

the brain activity using electrodes placed on the scalp, instead of using normal communication

pathways, which depends on nerves and muscles [19]. Figure 2.3 shows the basic components

of a typical BCI.
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Figure 2.3: The figure illustrates the stages from input to output in a BCI. The input signal from
the electrodes is often processed to better the signals acquired, to be able to translate the brain
activity into some control signal for an external device [20].

BCI is a computer-based system which analyzes and utilizes the EEG signals acquired from

the scalp, often to be studied or used to control some external device. In these systems, the

user manipulates the brain activity to produce signals which can be used to control computers

or communication devices [21]. There are several definitions of the BCI term, but it can be

described by the following according to Cloyd [22]:

• BCI must record the electrical activity directly from the brain

• The device provides feedback for the user

• The feedback is provided in real time

• The system must rely on voluntary control

This means that BCI is a system which uses the brain activity to control a device where some

type of feedback is given while the device is being controlled. Some real time feedback could be

the visual feedback from for example a robot-arm movement, while controlling a robot in real

time. Using the same example, BCI would require that the robot only moves when it is desired

to by the user. There is a lot going on inside the brain that could trigger some event, in addition

to the electrical activity that should trigger the event. Any unwanted activity that may trigger the

robotic movement should be handled in some way, allowing for voluntary control.
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BCI was initially developed as technology used with bio-medical applications, such as re-

placing lost motor function [23]. The technology has also expanded outside the medical appli-

ances to entertainment, smart environment (Internet of Things), advertisement and education

among others [19]. BCI has allowed to make new approaches to interacting with computers, as

this technology has become more available for a larger audience through the introduction of

cheaper EEG headsets. This has opened up for the production of consumer friendly BCI prod-

ucts which comes as an assembled device, ready to plug and play.

The introduction of EEG is not the only factor for the increase in BCI popularity for con-

sumers [22]. The popularity has risen as a result of the popularity of the gaming industry, and

a shift from consoles such as XBOX and Playstation to other devices such as smart phones [22].

This has created a cultural accept for computer-based technology and different ways to interact

with that technology. Through introduction of new types of controlling methods in the ever-

growing gaming industry, such as Microsoft’s Kinect [24] and HoloLens [25], the interest for new

and novel ways to interact with technology increases [22]. The rising interest in new types of

controllers, the rising knowledge of brain activity and the introduction of cheaper electronics

is what the authors believe has spiked the popularity of BCI over the last years. There are sev-

eral BCI-devices available on the market, some of these are produced by companies such as

Neurosky [26], Emotiv [27] and OpenBCI [28]. In this work, a BCI-system made by OpenBCI is

used.

2.5 Classification with machine learning

This section provides an interpretation of the different steps in machine learning from different

literature and is not based on any "new" findings in the work of this thesis. However, figures

have been created and connected to some practical examples to better illustrate some of the

concepts in hope of making it easier to understand.

Machine learning is a technique which gives a computer the ability to learn, without being

explicitly programmed. Instead of making an application where everything is specified by a hu-

man, data is simply fed into a machine learning algorithm. There are two main types of learning

methods: supervised- and unsupervised-learning [29].
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Supervised learning depends on a supervisor to give the machine learning algorithm both

input data and desired output. Unsupervised learning does not provide the desired output to

the classifier, but lets the algorithm try to organize the input data on its own [30]. In this thesis,

supervised learning is the learning method of focus.

For supervised learning, the machine learning algorithm will use the set of input data and

desired output to train and find connections between input and output, this stage is called train-

ing [31]. The training stage realizes an inferred function called a decision function and a bound-

ary called a decision boundary, which are used in the second stage called testing. The decision

function is a function which maps input data to a scalar [32], so that:

f (x) =
 R>0 : if x ∈ Class 1

R≤0 : if x ∉ Class 1

The decision boundary is a boundary learned by the classifier, used to separate data in different

classes from each other [32]. An example of a decision boundary is shown in Figure 2.5.

To better illustrate what the different terms means when connecting them to a specific ma-

chine learning problem, the rest of this section is divided into two examples. The machine learn-

ing terminology used in this thesis is introduced in the first example and is a machine learning

problem where a classifier tries to distinguish between positive and negative numbers. In the

second example a classifier tries to distinguish between different types of the Iris flower.

2.5.1 Example 1: Classify positive and negative numbers

Figure 2.4 shows a simplified illustration of a supervised learning implementation for the train-

ing stage.

Figure 2.4: Illustration of how the training stage works. The classifier is fed two input objects X
= [x0, x1...xk ] and y = [y0, y1...yk ] with k datapoints. There is no output during the training stage
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Data is essential to train a classifier, and the data is stored in the form of a dataset. Datasets

used in supervised learning methods has a collection X of datapoints x0, x1...xk and a collection

y of labels y0, y1...yk . The datapoints x0, x1...xk are represented by so called features, which can

be any representation of data. A feature could for example be direct sample-values from elec-

trode recordings, the median of all those sampled values or any other attribute of the data [33].

A n dimensional vector containing all n features representing the data point is called a feature

vector [3]. In this thesis, each datapoint is an eye movement, where the feature vector consists

of features that represents the eye movement (datapoint). Therefore, when talking about data-

points, it is the eye movements and the number of them that is of focus. While the focus when

talking about the feature vector, is how these eye movements are represented in the form of fea-

tures. The labels y0, y1...yk indicates which class a datapoint belongs to, and it is therefore often

called the class label. It is important to note that there is no actual output during the training

stage, but that the datapoints are labelled so that the classifier can realize the decision function

and decision boundary.

Figure 2.5 shows an illustration of the ideal classification of the simple system introduced

in Figure 2.4, where the feature vector is of dimension n = 1. This means that the datapoint is

represented by a single feature, which in this case is the value of some integer.

Figure 2.5: Illustration of a one dimensional feature vector classification.

There were in total 6 datapoints fed into the classifier, where the feature vector is of n = 1

dimension and the feature is a positive or negative integer. Looking at the value of the labels,

it illustrates that negative numbers belong to class 0, and positive to class 1. As mentioned, the
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datapoints and labels are used to train the classifier, realizing the decision function and deci-

sion boundary. Thus, the more datapoints used for training the better and more accurate the

classification of the new datapoint. The decision function and decision boundary can then be

used to decide the class of a new datapoint not introduced in the training stage, this is called test-

ing. The output of the classifier when testing is called a prediction. In the example in Figure 2.5,

the decision boundary is a straight line at the number 0, dividing negative and positive numbers.

The decision function classifies the new datapoint as class 1 if its scalar output is larger than 0,

and as class 0 otherwise (as defined in Equation 2.5.) In a case such as this ideal example, which

happens to have a linear decision boundary, a decision function can be as shown in Equation

2.1.

f (x) = x +b (2.1)

The value b says something about the bias of the decision boundary and x is the datapoint that

the classifier should predict. In this case, the decision boundary is a straight line at the number

0, so the bias value is b = 0. When training is over, one might start feeding new datapoints to the

classifier. Some input could be:

X = [7,−8,3,−5,11,−6]

The classifier is now in the testing stage and will try to put each datapoint x0, x1...xk in class 0

or 1, where the feature vector is of dimension n = 1. By looking at the feature vectors and using

their values as input in the decision function as defined by Equation 2.1, it should be possible to

see what the classifier would predict.

Figure 2.6 shows a simplified illustration of the testing stage of a supervised learning imple-

mentation, with an ideal prediction accuracy of 100%.

Figure 2.6: Illustration of the testing stage. New datapoints are fed into the classifier and the
class the data belongs to is predicted by using the decision function.
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The new datapoints are fed into the classifier where the realized decision function and deci-

sion boundary are used to predict the class of the data. It can only choose between the values of

the labels given in the training stage, so it either outputs a 0 or a 1. Figure 2.6 shows that a list of

predictions is output from the classifier. This is not the case when predicting one datapoint at a

time but is a result of a dataset with several datapoints being put into the classifier.

2.5.2 Example 2: Classify types of Iris flower

To illustrate that the features and the dimension n of the feature vector can vary based on the

classification task, one could look at the Iris dataset. The Iris dataset is a classic dataset used

in machine learning [34]. The task is to discriminate between three types of the Iris flower,

based on features such as sepal length and sepal width, among others. The Iris dataset has

150 datapoints and 4 features, where each datapoint is one of the types of Iris flower and the

feature vector represents these flowers with the 4 features. Some of the feature vectors and class

labels can be used in the training stage when choosing to use two of the features, sepal length

(SL) and sepal width (SW ), to classify the type of Iris flower:

X = [[1.2,0.2], [4.0,1.3], [5.8,1.9]]

y = [0,1,2]

n = 2

Label 0 is the first Iris type called Setosa, Label 1 is the type called Versicolour and Label 2 is the

type called Virginica. The collection of datapoints X consists of 3 datapoints with a feature vector

dimension of n = 2. Figure 2.7 shows a plot of a classifier trained on the 3 feature vectors where

the color blue represents class Label 0, light blue represents class Label 1 and red represents

class Label 2. The illustration-method was inspired by [35].
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Figure 2.7: Illustration of Iris example in two-dimensional space, given by the features sepal
length and sepal width [35]. Blue represents class Label 0, light blue represents Label 1 and red
represents Label 2.

The datapoints are used to train a classifier to discriminate between the different classes by

realizing the decision function and decision boundary. The decision boundaries are seen as

the straight lines separating the different colors. Figure 2.7 shows the result of an actual imple-

mentation of a linear classifier trained on the dataset with X datapoints and y labels. If a new

datapoint with the feature vector x3 = [1.0,1.0] is introduced in the testing stage, it should be

possible to visualize the prediction from the classifier by looking at the decision boundaries in

Figure 2.7.

There are many different types of machine learning algorithms which can solve problems

such as the classification examples introduced among many others [6]. Each algorithm works

in a specific way to realize decision functions from datapoints given in the training stage in the

best possible way.

2.5.3 Dataset and feature vector

As mentioned in the Section 2.5, the machine learning algorithm purely bases itself on the data

it gets. Therefore, the algorithm will always be limited by the quality of the data. Low quality

data, both for training and testing, will result in low quality prediction. In addition to the quality
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of the dataset, the size of it also matters. Machine learning algorithms are often dependent on

having a lot of datapoints to properly differentiate the data that is given, as time used to train

and accuracy is often closely tied [36]. The performance of a classifier depends on the number

of datapoints used for training, number of features, and classifier complexity [37], among other

properties such as the features chosen and the classification task. The features chosen in the

Iris flower example in Section 2.5.2 made it easy to distinguish the classes, with clear differences

between them. This is not necessarily the case, as other chosen features might result in classes

that seem very similar, making them difficult to distinguish.

The amount of data needed can be said to vary depending on the task, number of classes

and complexity of the task. Datapoints are represented by one or several features, where a high

complexity task can result in a larger number of features, increasing the dimensionality of the

feature vector. The amount of datapoints that is needed to properly distinguish the different

classes increases exponentially with the dimensionality of the feature vectors [37]. This is called

the curse of dimensionality. Therefore, one can say that there is a correlation between number

of datapoints needed and feature vector dimensionality. A rule of thumb is to use at least five

to ten times as many training datapoints per class, as the dimensionality of the feature vector

[38]. An increase of feature vector dimensionality, as a result of task complexity, can be seen in a

comparison of the feature vectors from the classification examples for Iris flowers and positive

and negative numbers, in Sections 2.5.2 and 2.5.1.

2.6 Previous work on EEG and EOG eye movement classification

This section presents solutions for EEG and EOG eye movement classification provided by other

papers. Some of the solutions are designed for energy efficiency where self-made algorithms

are used to classify the movements, while others use machine learning algorithms as classifiers.

Some of the terminology and details presented in this section will be explained later in Chapter

4.
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[39] Ker-Jiun Wang, Lan Zhang, Bo Luan, Hsiao-Wei Tung, Quanfeng Liu, Jiacheng Wei,

Mingui Sun and Zhi-Hong Mao (2017). Brain-computer interface combining eye saccade two-

electrode EEG signals and voice cues to improve the maneuverability of wheelchair. A two-

electrode EEG system combining eye movement classification and a voice-menu. Eye move-

ments are used to access a voice menu giving voice cues, which is proposed used in a system

to control several things such as wheelchairs, TV, smart lights and smart doors. There are in

total four classes: Looking straight, looking to the right, looking to the left and blinking. Fea-

ture extraction is done with a method called Independent Component Analysis (ICA), while

classification is performed with two machine learning algorithms: Support Vector Machine

(SVM) and K-Nearest Neighbors (KNN). The KNN algorithm shows slightly better results, and

has an average accuracy of around 97%, while SVM shows an average accuracy of around 96%.

The Data-processing is done with a bandpass filter from 1 − 45 Hz. Thirteen participants (3

females, 10 males) with a mean age of 28 are present in the experimental procedure. The pro-

cedure uses a red ball on a screen that is controlled with a joystick and is used to label the eye

movements. Each participant executes two tasks, one while looking in horizontal directions and

one task for blinking. Horizontal movements are performed around every second, while blink-

ing is performed every two seconds. Each task lasts for 90 seconds, giving a dataset with around

45 datapoints for each class with a total of around 135 datapoints.

[40] Chi-Hsuan Hsieh and Yuan-Hao Huang (2015). Low-Complexity EEG-Based Eye Move-

ment Classification Using Extended Moving Difference Filter and Pulse Width Demodula-

tion. This paper presents a low-complexity eye-classification scheme using a self-made algo-

rithm instead of machine learning. The directions classified are right-glancing, left-glancing,

up-glancing and down-glancing. The electrode placements used are F7 and F8 for right and

left glances, while AF3 and AF4 are used for up and down glances. A low complexity Extended

Moving Difference filter is used as edge detection, with Pulse Width Modulation (PWM) and

demodulation used to differentiate between the movements and blinks. Positive and negative

threshold values for an edge detector is used to detect events. An algorithm uses the timing of

events together with the PWM signal to classify the direction corresponding to the event. Blinks

are considered parasitic and are removed by setting a threshold where an event is discarded if

the duration is less than 0.3s. The presented method in this paper only uses O(N ) additions
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where N is the processing length of the EEG signal, making it a low complexity solution with an

average classification accuracy of 89%.

[41] Sherif M. Abdelfattah, Kathryn E. Merrick and Hussein A. Abbass (2017). Eye move-

ments as information markers in EEG data. This paper presents a way to classify the eye-

movements up, left, right and down by using 19 channels. Normalization is performed to re-

move the DC offset present in the electrodes, and Fast Fourier Transform (FFT) is used on the

normalized signal to exclude frequencies outside the 0−42 Hz range. A total of 78 features are

presented based on four different properties. A Decision Tree classifier is used to find the best

partition of the 78 features and shows that the Theta-Beta ratio (TBR) were the best performing

features. A total of 19 TBR features are then used to train three different classifiers: Multilayer

Perceptron with 10 hidden layers, Logistic Regression and Random Forest. A voting mechanism

is introduced to further improve the accuracy, by looking at the dominant label from the differ-

ent classifier predictions. Introducing the voting mechanism increases the accuracy from 86.2%

to 90.1%. The dataset was created with ten subjects (5 females, 5 males) with an average age of

25. A GUI was created to make the instructions clear. The dataset consists of 15 datapoints in

each direction, per subject. Resulting in a dataset of 600 datapoints, 150 per direction.

[42] Hai Thanh Nguyen, Nguyen Trung, Vo Toi and Van-Su Tran (2013). An autoregressive

Neural Network for Recognition of Eye Commands in an EEG-Controlled Wheelchair. This

paper presents a system using an Auto Regression (AR) model with a neural network to distin-

guish looking straight ahead, blinking, looking to the left and right. Data was recorded through

3 channels (Fp1, F7, F8) and an AR model of second order was used where two coefficients were

calculated for each channel resulting in a total of 6 features. The output of the neural network

was used to control an electric wheelchair, where the online performance was based on ob-

servation of wheelchair control. A controller was designed with a sequence of blinks and eye

movements. 3 blinks drove the wheelchair forwards, 4 blinks drove backwards, 2 blinks stopped

the wheelchair, looking to the left turned left and looking to the right turned right. The online

control of the wheelchair showed an average accuracy of 94%.

[43] Soumya Sen Gupta, Sumit Soman, P Govind Raj, Rishi Prakash, S Sailaja, and Ru-

pam Bor-gohain (2012). Detecting eye movements in EEG for controlling devices. This paper

presents a system using four electrodes (AF3, AF4, F7, F8), a bandpass filter from 0.5 to 3 Hz
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using a 5th order Butterworth filter and the Common Spatial Pattern (CSP) algorithm for feature

extraction. SVM is used for classification with four classes, staring straight, right, left and blink.

They claim an online accuracy of "around 95%".

[44] Abdelkader Nasreddine Belkacem, Duk Shin, Hiroyuki Kambara, Natsue Yoshimura

and Yasuharu Koike (2015). Online classification algorithm for eye-movement-based com-

munication systems using two temporal eeg sensors. This paper created a GUI solution with a

moving ball to instruct the test subjects. Electrode placements are F7 and F8 and the recorded

signal is then filtered with a bandpass filter from 0.5 to 100 Hz using an 8th order Butterworth fil-

ter and a 4th order notch filter with stop band from 48 to 52 Hz. Feature extraction is performed

by wavelet transform and classification is done with a self-designed algorithm with six classes.

The classes were up, down, left, right, straight, and blink. They achieved an online average ac-

curacy of 85%.

[45] Chi-Hsuan Hsieh, Hao-Ping Chu and Yuan-Hao Huang (2014). An hmm-based eye

movement detection system using eeg brain-computer interface. This system uses a Hidden

Markov model with the Viterbi algorithm to realize a low complexity eye-movement detector.

They use channels F7, F8, AF3 and AF4. Noise is removed with a low pass filter. Feature ex-

traction is performed with an Independent Component Analysis (ICA) algorithm and then the

DC offset is removed with an Extended Moving Difference filter. They implemented the Hidden

Markov Model on a FPGA with an achieved 88.6% online detection rate without using machine

learning. They claim lower classification complexity than [43]. However, this classification com-

plexity does not include pre-processing and ICA decomposition, as this is performed in MATLAB

before it is sent to the Field-programmable gate array (FPGA).

[46] Rafael Barea, Luciano Boquete, Sergio Ortega, Elena López and JM Rodríguez-Ascariz

(2012). EOG-based eye movements codification for human computer interaction. This paper

presents a system that uses wavelet transform and a neural network to detect different angles of

eye movements and show an error of less than 2° during long periods of use. However, the task

was not to classify horizontal and vertical eye movements, but to distinguish between small in-

voluntary eye movements, voluntary eye movements and the angle of the voluntary movement.

The system tries to classify the different angles of eye movements to allow for an eye detection
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system which could be used in everyday life. Pre-processing is done with a 0.054 to 35 Hz band-

pass filter.

2.7 What remains to be done?

As seen in the literature search there are many different methods that can be used to solve the

eye movement classification problem. Some showed success using machine learning, while oth-

ers created solutions without the use of machine learning at all. It seems that a specific method

or algorithm is used to extract the features in the papers, which means that all the features used

are of the same type (spectral, time series etc.). Some papers solely focused on using machine

learning and getting good classifier performance, while others showed systems without ma-

chine learning where every component was designed with energy efficiency in mind. What has

yet to be seen, is a proposed list of mixed type features used with machine learning, where a

selection of these features is based on both energy efficiency and classifier accuracy. The next

chapter will introduce how the system in this work is built up by different components.



Chapter 3

System Design

This chapter will start with a brief overview of the system. It will then go in depth into essential

parts of the system, excluding controller, features and classification with machine learning. The

main purpose of this system is to train a machine learning classifier with recorded EEG data and

use the trained classifier on data captured in real-time to control a drone. The system design

is on the software side and only utilizes hardware, APIs and software libraries that are open

source. The sections are a mix of work done in this thesis, work done in the previous project [5]

and work from others. Section 3.1 starts by presenting the overall system with work both done

in this thesis and by others. Section 3.2 describes equipment used in this thesis, which is other’s

work, but examples have been created in Section 3.2.2 to argument for placement of electrodes.

Section 3.3 describes how the datasets were created specifically for this thesis.

3.1 System overview

The overall system is divided into four different main components. Therefore, this section is

divided into four subsections explaining each of the main components of the overall system.

Figure 3.1 shows a high-level block diagram of the complete system, establishing naming con-

ventions for all signals in the system.

23
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Figure 3.1: Overview of the complete system topology and the signal propagation of the pro-
posed solution.
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Figure 3.1 shows a conceptual diagram over the system. Main components are drawn in

dashed lines and sub blocks are drawn in solid lines. The "EEG headset" block is a commercially

available BCI system and the EEG data is available from an API provided by the manufacturer.

The sub block architecture of the "Real-time prediction" and "Training blocks" was designed in

the previous project [5] and is used in this thesis with some changes. The "User interface" main

block and "Pre-processing" sub block were designed and implemented in the previous project

[5] and are used only with minor implementation changes.

The main contribution regarding system design from this work is the remaining sub blocks,

with special focus on the "Feature extraction", "Classifier" and "Controller" blocks, as these are

regarded as critical to system performance. The "Feature extraction" and "Classifier" blocks

are designed around methods and toolboxes already created and will be explained in detail in

Chapter 4. The "Dataset", "Data slicer" and "Controller" blocks are created from scratch in this

work, and are explained in more detail in Sections 3.3.4, 3.3.3 and 6.2. Others have created

the "Drone" block [47], while "Training GUI" and "Real-time plotting" was implemented in the

previous project [5].

EEG headset

Starting from the top with the "EEG headset" block, the electrodes are represented by a voltage

source, where m ∈ {1,2, ..., M } and M is the number of electrodes. When referencing a specific

channel, subscript notation is used, ex. x̃m[n]. x̃(t ) is an analog signal that is measured by the

scalp-electrodes and needs to be converted into a digital format. The result from passing x̃(t )

through the Analog-to-Digital converter (ADC) is x̃[n] which is derived from Equation 3.1.

x̃[n] = x̃(nTs), (3.1)

where:

• Ts = sampling period

• fs = 1/Ts is the sampling frequency
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Real-time prediction

Continuing with the "Real-time prediction" block, which takes x̃[n] as an input. The first stage

is "Pre-processing" where DC offset and known noise components of the signal are removed.

The output of the Pre-processed signal is x[n]. The next stage is "Feature extraction" where a

sliding window, of length lw,c, of data x[n] is abstracted into a feature vector named fp [i ] (p for

prediction). Please note that the indexing is changed, from n to i , as the rate of the "Feature-

extraction" f f is not necessarily the same as the sampling frequency fs . If the sliding window

length is set to be such that lw,c > fs
f f

, the windows will overlap each other. The channel index

m has also disappeared with the "Feature extraction" block, as the signals from the different

channels now are represented as features in a vector fp [i ] calculated from a selection of the

channels.

For each index of i the "Classifier" will perform a classification with input fp [i ], based on

the classifier model C m. The output from the classifier, p[i ], is the class labels predicted for an

eye movement. The "Controller" will then in turn interpret these predictions from the classifier

to control the drone with the command signal c[h]. The reason for the new index h is that the

control signal is not produced at the same rate as the classification. The connection between

labels and classes will be shown in Section 3.3.1.

Training

Next, we have the "Training" block that also takes x̃[n] as an input. The first stage is the "Data

slicer", which slices a window of length lw,tot from x̃[n] and saves it on disk, this is done each

time it receives a label y[ j ] from the "Training GUI". Each sliced window is a datapoint in the

complete dataset of eye movements. The sliced window (which is saved on disk) is called x̃[ j ],

where y[ j ] ∈ {0,2,4,5,6,8} is the class label for that sliced window and j is dataset index. Storing

raw data x̃[n] instead of pre-processed data x[n] makes it possible to change the pre-processing

in the future without having to make a new dataset.

Then, we have "Pre-processing", which is nearly identical to the "Pre-processing" stage in

the "real-time prediction" block, except that it also slices off some part of the start and the end

of the window. It was found in this work to be necessary to remove the initialization period of
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the digital filter from the data, and for some minor alignment adjustments during training. The

removal of initialization periods for the digital filter makes the data look like it is taken from a

continuous stream of pre-processed data, making it similar to what it will experience in a real-

time prediction setting.

The "Feature extraction" in the training block is identical to the "Feature extraction" in the

real-time block and outputs a feature vector named ft [ j ] (t for training). The last stage is the

"Classifier training" that uses all the labeled feature vectors, (ft [ j ], y[ j ]), to train a classifier

model C m and save it to disk. More about feature extraction and classifier training will be pre-

sented in Chapter 4.

User interface

The "Training GUI" will be introduced later in this chapter. The real-time plotting continuously

plots the 2000 last arriving pre-processed samples. This corresponds to a window of 8 seconds.
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3.2 Headset

The headset used is made by OpenBCI and is the Ultracortex IV with the OpenBCI Cyton board

[48, 49]; a low-cost, programmable, open source BCI-platform. It is built around the Texas In-

struments ADS 1299 IC, which is a low noise 24-bit ADC with 8 channels specifically designed

for bio-potential measurements [50]. Communication between board and computer happens

through Bluetooth, making it possible to not have any physical connection to the main grid. A

block diagram showing its interaction can be seen in Figure 3.2 and the hardware can be seen in

Figure 3.3.

Figure 3.2: Block diagram of the hardware and how the signals are propagated. Hardware related
to the Cyton board is in the top row and hardware related to the USB dongle in the bottom row.
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Figure 3.3: Shows the equipment used to measure the EEG data. Headset with attached elec-
trodes to the left [48], Cyton board in the upper right corner and the USB dongle for Bluetooth
communication in the lower right corner [51].

Data sampled by the ADC goes unfiltered, with a sample-rate of fs = 250 Hz, through the

onboard PIC microcontroller and is transmitted by a radio to the USB dongle. From there, the

data is available in Python via an Application Programming Interface (API) from OpenBCI [52].

3.2.1 Electrodes

The electrodes used in this kit are dry Ag/AgCl electrodes and can be seen in Figure 3.4 [53]. Dry

electrodes are very convenient as there is no need for any gel or other liquid to get good signals

from the skin.

Figure 3.4: Picture of a dry electrode from Florida Research [53]. There are in total eight of these
attached to the headset.
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Evaluating the signal quality of the electrodes is complicated. To give some information

about this, one thing we can do is to look at an experiment created to show the frequency com-

ponents in x̃1[n]. Figure 3.5 shows the spectrum plot while a subject looks straight ahead, with-

out filtering of data.

Figure 3.5: Amplitude response |X̃1( f )| with y-axis in dBµV. The recording is made when holding
the eyes completely still.

The plot in Figure 3.5 is a Discrete Fourier Transform (DFT) plot. The signal is multiplied with

a Blackman window [54], defined in Equation 3.2, before the transformation to reduce spectral

leakage [55].

w[n] = 0.42−0.5cos

(
2πn

L

)
+0.08cos

(
4πn

L

)
(3.2)

The transform is defined by Equation 3.3 [56]:

X̃ ( f ) =
L−1∑
n=0

x̃[n]e−i 2π
L

f
fs w[n] (3.3)

The frequency band is restricted to only show 0−125 Hz components as 125 Hz is the highest

representable frequency with a sampling rate of fs = 250 Hz. This range of 0−125 Hz covers the

whole known brain wave frequency band as shown in Table 2.1.

We can see that the signal has some significant 0, 50 and 100 Hz components that were found

to be noise in the previous project [5].



3.2. HEADSET 31

3.2.2 Electrode placements

There are several options when it comes to placement of the electrodes. Figure 3.6 shows the

electrode positions supported by the 10/20 electrode placement system. Signal electrodes used

in this work are marked in yellow and grounding electrodes are marked in green.

Figure 3.6: Illustration of the 10/20 electrode placement system with utilized positions marked
in yellow and green [57].

The F p1, F p2, F 7 and F 8 placements are chosen because they are good at detecting ocular

artifacts, as they are close to the eyes. F 3, F 4, FC 1 and FC 2 are electrode placements related to

the Frontal Eye Field (FEF) area. The FEF region is responsible for both small involuntary and

larger voluntary eye movements [14], as mentioned in Section 2.2.

To illustrate that the F p1, F p2, F 7 and F 8 positions are good for detecting ocular artifacts, a

model of the eye and electrodes was made in this work. As mentioned in Section 2.3 the eye can

be modelled as a dipole [17], with positive charge at the cornea and negative charge at the retina.

When we rotate the ocular dipole, the change in charge is best detected by an electrode close

to the rotational plane of the dipole and far from the axis of rotation, given that the rotational
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axis is orthogonal to the dipole axis. This is illustrated in Figure 3.7, showing two approximated

electrode placements (F p1 and F 7). Using this as a basis, calculations can be made to find the

usefulness of the electrode placements for the different eye movements. These calculations are

done as part of this work.

Figure 3.7: Illustration of 30◦ up and left movements of the left eye, relative to approximate
electrode positions.

The eye can be modeled as a sphere with r = 2 and center in the origin, with the cornea

placed in resting position at C = (2,0,0). If the electrode placements are roughly approximated,

the coordinates for the electrodes can be given as F p1 = (2,0,4) and F 7 = (−1,5,4). It is now

possible to calculate the change in distance from the Cornea to the electrodes with a 30◦ move-

ment towards left, called L and a 30◦ upward movement called U . The created model presented

in Figure 3.7 is generalized, meaning that it can be used for all electrode placements in the 10/20

electrode placement system.

To calculate the positions for U and L a rotation matrix is utilized. For the Up position the

rotation is performed around the y-axis, where the calculation for the rotation can be seen in

Equation 3.4.
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U =


cos−30◦ 0 sin−30◦

0 1 0

−sin−30◦ 0 cos−30◦
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2

0

0

=


p

3

0

1

 (3.4)

For the Left position the rotation is performed around the z-axis, where the calculation for

the rotation can be seen in Equation 3.5

L =


cos30◦ −sin30◦ 0

−sin30◦ cos30◦ 0

0 0 1




2

0

0

=


p

3

1

0

 (3.5)

Next, the distances between the electrode placements and the Center, Up and Right posi-

tions are needed. This can be calculated with the Pythagorean theorem and gives the following

results in Equation 3.6.

|C F p1| = 4

|C F 7| = 7.07

|U F p1| = 3.01

|U F 7| = 6.44

|LF p1| = 4.13

|LF 7| = 6.28 (3.6)

The coordinates of the electrodes and the Center, Up and Right positions are:

• F p1 = (2,0,4)

• F 7 = (−1,5,4)

• C = (2,0,0)

• U = (
p

3,0,1)

• L = (
p

3,1,0)
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The change in distance to the respective electrodes can be seen in Equation 3.7

∆F p1U = 0.99

∆F 7U = 0.63

∆F p1L =−0.13

∆F 7L = 0.79 (3.7)

When interpreting these results, it is important to keep in mind that the electrode place-

ments in the model are rough estimates. The distances from C = (2,0,0) to the electrode place-

ments in the model probably differs from the real-world system. In reality, having one electrode

much closer to the eye will result in the strongest changes in the closest electrode. The model

presented in this work was made to illustrate that placing electrodes in different directions rel-

ative to the eye, can make it more suitable for horizontal and vertical eye movements. The dis-

tance from the electrodes to the eye should only affect the magnitude of the changes for each

electrode, not which movement shows the absolute greatest change in the electrode.

This means that it is not necessarily a good idea to compare the electrode positions with each

other, but rather how the electrode potential changes with horizontal and vertical eye move-

ments. When we compare the electrode placement F p1 for the U and L movements, we can see

that it has the greatest change in distance for the U movement. When comparing the electrode

placement F 7 for the U and L movement, we can see that it has the greatest change in distance

for the L movement. This difference is valuable for a classification situation and it can therefore

be concluded that F p1 and F p2 are good for measuring vertical eye movements, while F 7 and

F 8 are good for measuring horizontal eye movements.

As mentioned early in Section 3.2.2, F 3, F 4, FC 1 and FC 2 are electrode placements of in-

terest related to the Frontal Eye Field (FEF) area and can contain brain signals regarding the eye

movements. The FEF region is responsible for both small involuntary and larger voluntary eye

movements [14].

Table 3.1 shows the mapping of electrode placements to channels, and their signal names.
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Table 3.1: Channels, electrode placements and signals

Channel Electrode placement Signal

1 F p1 x̃1(t )
2 F p2 x̃2(t )
3 F 7 x̃3(t )
4 F 8 x̃4(t )
5 F 3 x̃5(t )
6 F 4 x̃6(t )
7 F c1 x̃7(t )
8 F c2 x̃8(t )

3.2.3 Pre-processing

The system for pre-processing the data was designed in the previous project [5]. A short sum-

mary of the pre-processing can be found in Appendix A. The result was a 14th order IIR notch

filter, with notch frequencies at 0 Hz, 50 Hz and 100 Hz.

3.3 Creating the datasets

An easy and effective method for creating datasets was desired. It was thought to be most effec-

tive if a computer instructed the subjects to move the eyes in different directions. By providing

instructions through a stimulus and record the EEG signals a period after the instruction. This

will be explained in Section 3.3.1. Both visual and audio stimuli are easy to implement, but as the

auditory cortex is located much closer to the area of interest than the visual cortex [13], visual

stimuli is chosen as this might interfere less with the measurements. This approach was also

used by others [39], creating a visual stimulus by using a moving dot on a screen. This approach

will also be applied in this work.

Two subjects participated in the experiments for this thesis, both for the creation of datasets

and testing of classifiers. Both subjects are right handed males with an average age of 24.5±1.5

years. Both subjects have corrected-to-normal vision and no reported current or past neurolog-

ical or psychiatric illness.
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3.3.1 Graphical User Interface

To get a consistent basis for generating training data, a Graphical User Interface (GUI) is used

to control the timing and direction of eye movements performed by the test subjects. This also

makes it possible to make a system for automatic labeling and splitting of recorded data into

time segments. The visual design of the GUI was made in the previous project [5], but the back-

end is from this work. The visual design is shown in Figure 3.8.

Figure 3.8: Showing how the dot in the GUI can move in different directions.

The idea is that the test subject follows a red dot with the eyes and blinks when the dot disap-

pears. The dot is moving in clockwise sequence of vertical and horizontal directions, returning

to center in between movements. The clockwise sequence is chosen over a random sequence to

allow the subject to be aware of the direction to look in. This is more similar to the actual use of

the system, where the subject always will be aware of the direction to look in when controlling

the drone. The dot is held in the uttermost position of a given direction for one second before

returning to center. When it has reached center it stays there, still, for two seconds. After that it

disappears for half a second and reappears standing still in center for three seconds, before com-

mencing a new movement. The timing of each movement and the number of blinks is found

according to experimental findings on what feels comfortable and to minimize the number of
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parasitic blinks. Parasitic blinks are considered as blinks that occur without the GUI explicitly

telling the test subject to blink. An overview of the class and the associated eye movements can

be found in Table 3.2. Names are given to each class and are used throughout the rest of the

thesis.

Table 3.2: Classes and their labels

Class Label

Blink 0
Up 1
Down return 2
Right 3
Left return 4
Straight 5
Right return 6
Left 7
Up return 8
Down 9

With the current speed of the GUI, a dataset with one datapoint for each of the classes can

be made every 30 seconds. This corresponds to at least 120 datapoints of each class per hour

in theory. The occurrence of the Straight and Blink classes will be four times as large as the rest

of the classes, due to the nature of the movements. To achieve this throughput in practice, full

concentration must be maintained and no errors can occur (not likely). The throughput of dat-

apoints per hour is therefore expected to decrease in a practical setting as it is hard to maintain

the concentration over a longer period. Moving the eyes to the extents of each direction is also

tiresome to the subject. The datasets will therefore be created in smaller intervals, where the

subject follows instructions from the GUI as long as comfortable.

3.3.2 Setup

The test subjects are positioned in front of a screen in such a manner that the dot is at eye height.

The distance to the screen was approximately 15 cm, to ensure that the dot moves out of sight

in the different directions (screen size highly affects the distance needed). This ensures maxi-

mum peak value of the signal and will make it easier to differentiate between small involuntary
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movements happening all the time and voluntary movements for control. The reason for larger

peaks when moving the eye further away from center is because the change in position is larger,

relative to the electrodes. This was mentioned in Section 3.2.2.

3.3.3 Epoching the data

The system for splitting the data into equal sized epochs (time periods) and labelling them is

controlled by the "Training GUI" and performed by the "Data Slicer". This is illustrated with the

block diagram in Figure 3.9.

Figure 3.9: Block diagram of the data slicing and labeling operations

It can be seen from Figure 3.9 that the "Training GUI" only sends the label y[ j ] to the "Data

slicer". Each time the GUI has moved the red dot, it spawns a "Data slicer" thread that looks

for data with the same time stamp x̃ t [n] as when the thread was started y t [ j ]. It then appends

unfiltered data x̃[n] of length lw,tot to the dataset file. The epoching of data can be illustrated

with Figure 3.10
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Figure 3.10: An illustration of how the data slicing operation is performed.

The x̃[n] signal is divided into three sub-windows of different lengths, lw,tot = lw,f+lw,c+lw,b.

The sub-windows are called front padding, interesting area and back padding, respectively. The

lengths are lw,f = 750 samples, lw,c = 250 samples and lw,b = 250 samples. As a reminder, the

sampling frequency is fs = 250 Hz.

The sample with matching time stamp x̃ t [n] = y t [ j ] is the last sample of the interesting area.

The sliced window x̃[ j ] is saved together with the label y[ j ], which represents the recorded eye

movement. The datasets are stored as raw data from x̃[n], making it possible to change the

pre-processing in the future, without having to make a new dataset. The padding allows time

for filter initialization and minor alignment adjustments. The padding is removed after pre-

processing, and before the data is being used to train the system.

An example of a signal with padding from channel x1[t ], for Down and Down return, can be

seen in Figure 3.11.
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Figure 3.11: A whole window from channel x1[t ] with padding, for the Down and Down return
movements.

Figure 3.11 shows the whole window with pre-processing. The same window is stored in

the dataset, but as the raw version of the signal. The pre-processing was used for illustration

purposes as the raw signal mostly looks like 50 Hz noise, and to show the filter initialization

region. One can be see that the filter initialization lasts for ∼ 2 seconds, and that it is possible to

shift the window lw,c up to 1 second in each direction.

3.3.4 Dataset

In the dataset, moving the eyes in a direction and then returning back to center is stored as

separate movements. This gives a total of 10 classes in the datasets as introduced in Table 3.2.

It was later found that some of these classes and labels, such as Up (1) and Down return (2),

could be merged to the same class and label. This is because the relative direction and distance

covered when moving the eyes from center and up, and from down to center should be the same.

The only thing that differs is the starting point for the movements. Looking up can therefore be

considered to be the same as returning to center after a down movement has been performed.

This accounts for all the horizontal and vertical directions. The dataset is still stored with the

10 original classes, to maintain the possibilities to use these separate movements in some other

classification task. Instead, when the dataset is loaded for training and testing of the classifier,

the classes and labels are merged before it is sent to the classifier.

Merging these gives a total of 6 classes and labels. Table 3.3 shows the mapping from the

original 10 classes and labels to the 6 new classes and labels.
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Table 3.3: Classes and labels before and after merging

Original class Original
label

New class New label

Blink 0 Blink 0
Up 1 Up 8
Down return 2 Up 8
Right 3 Right 6
Left return 4 Right 6
Straight 5 Straight 5
Right return 6 Left 4
Left 7 Left 4
Up return 8 Down 2
Down 9 Down 2

The classes and labels presented in Table 3.3 are used throughout this thesis. An example of

a plot of the Blink class can be seen in Figure 3.12. Plots for the rest of the classes can be found

in Appendix B.

Figure 3.12: Showing a datapoint for the Blink class.
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3.3.5 Dataset validation and size

It was considered important to make sure that the data representing the different movements

in the datasets were free of errors. To make sure that the dataset contains the desired informa-

tion, and not something else entirely, all datapoints were plotted as in Figure 3.12 and inspected.

Datapoints with obvious variations which seemed to come from sources such as poor electrode

connection or movements other than eye movements (facial, arms, legs etc.), were removed

from the datasets. As a result of this, the classifier accuracy is likely to fall if such variations are

present in the recorded signals during testing. This might require the subjects to stay completely

still without performing movements other than eye movements to get high classifier accuracy.

The removal of datapoints resulted in an unbalanced dataset where some classes had a

higher number of datapoints than others. To solve this, the number of used datapoints for each

class were decided when the dataset was loaded, before training and testing. An uneven balance

could make the classifier biased towards one or a few of the classes. Balancing is not always nec-

essary, for example in datasets where the real-world application of the model is to be used on

unbalanced data. The problem in this work on the other hand does not favor any eye move-

ments (classes), so having a balanced dataset makes for "fair" classification.

The number of datapoints used when training differs according to the type of tests per-

formed, the number of used datapoints will therefore be introduced in Chapter 5 and Section

6.5. However, the total number of datapoints for the original classes from Table 3.2 contained in

the datasets is shown in Table 3.4.
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Table 3.4: Number of datapoints in the two subjects’ datasets before merging.

Class Subject 1 Subject 2

Blink 638 805
Up 153 202
Down return 162 314
Right 150 134
Left return 156 141
Straight 625 674
Right return 143 169
Left 156 142
Up return 130 198
Down 134 201
Total 2447 2980

When merging the classes, only the lowest count of the two classes merged is counted. This

is because it is desired to have an equal amount of datapoints from looking in a direction and its

equal from the opposite return (Up and Down return for example). Table 3.5 shows the number

of datapoints of the resulting classes after merging.

Table 3.5: Number of datapoints in the two subjects’ datasets after merging.

Class Subject 1 Subject 2

Blink 638 805
Down 260 396
Left 286 284
Straight 625 674
Right 300 268
Up 306 404
Total 2415 2831

Each dataset was inspected by one inspector each, meaning that the evaluation of the dat-

apoints is somewhat subjective. This can affect the results somewhat during testing shown in

Chapter 5 and Section 6.5. When the two datasets are used, it is made sure that the number

of datapoints chosen from each dataset is the same. So even if Subject 2 has a bigger dataset,

the classifiers will be trained on the same number of datapoints from both subjects. Using the

lowest occurrence of a class from the subjects, the number of datapoints for each movement is

260, giving a total of 1560. The reason for using the same amount of datapoints for both subjects
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is so that the classifiers will be trained and tested on the same amount of data. The results will

therefore present the differences in the datapoints, and not the amount of training the classifier

has done.

3.3.6 Reducing window size

In the example shown in Section 3.3.3, the window size was set to lw,c = 250 samples. It is desir-

able to be able to vary the window size in order to focus on different parts of the signal. Reducing

the window size could make sure that no other data than the data representing an event is con-

tained in the window and allow for movements to be performed in quick succession.

When reducing the window length, it is necessary to make sure that the samples representing

the movement is located within the new reduced window. For reductions down to 200 samples,

this is usually not a problem as it equals a 25-sample reduction in each end of the window, as

the original alignment of the data places the movement well within the 200 central samples of

the window. Any further reduction might lead to parts of the movement being left out of the

window. To avoid this, one can use a method for dynamically center the samples representing

the movement.

The dynamic centering can be performed by smoothing the data with a Savitzky-Golay filter

[58, 59] and then finding the index with maximum absolute value, called peak-index pi . After

the peak-index has been found, this can be used as the center of the new reduced window. The

Savitzky-Golay filter is chosen for properties such as a low time shift and good preservation of

the original signal shape. An example of finding the peak-index pi with a problematic window

from the dataset can be seen in Figure 3.13.
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Figure 3.13: Pre-processed data x[n], smoothed pre-processed data and peak finder

Figure 3.13 illustrates why the smoothing is necessary. The largest absolute value is located

around index 0, which would have become the center of the window without use of the smooth-

ing filter. This is however not the center of the movement, which is located around index 145.

This is known to be the center of the movement as it has been observed that the Down return

class is characterized by a high positive peak-shape. It is also supported by literature that eye

movements create a change in potential [17], which are peak-shaped when high-pass filtered.

The samples around this peak-shape are the desired data as the eye movement is of focus in this

thesis, not the brainwaves triggering the movement. The smoothing filter makes it possible to

find the peak-index representing the center of the specific eye movement and ignore the largest

absolute value at around index 0. The parameters for the smoothing filter are: polynomial order

= 2 and window = 35. After the peak-index pi has been found it only remains to adjust the win-

dow sizes accordingly, shown in Equation 3.8. The pi index is referenced to the whole window

lw,tot .

lw, f = pi −
lw,c

2

lw,b = lw,tot −
(

pi +
lw,c

2

)
(3.8)



46 CHAPTER 3. SYSTEM DESIGN

If one does not wish to center the samples representing the eye movements dynamically,

but just want to statically reduce the window size lw,c, it is possible to just set pi = 875, as this

corresponds to the center of lw,c before any window size reduction. The window size lw,c can

now be reduced down to any size, with or without centering, as can be seen in later chapters. The

most common setting for work in this thesis was no centering with window size lw,c = 250∨200,

but settings with centering and window size down to lw,c = 50 are also present. Figure 3.14 shows

a block diagram for the dataset pre-processing.

Figure 3.14: Block diagram for dataset pre-processing

It can be seen from Figure 3.14 that only data from channel x1 is sent into the smoothing

filter and that the peak index pi found in channel x1 is used to center all the channels equally.

This is because x1 has been observed to have the largest average absolute values, across all the

different eye movements. The peak-index pi could, however, also have been from x2 or the

average of x1 and x2. It is also worth mentioning that the "Merge label" block in Figure 3.14 is

responsible for the merging of classes and labels when loading the datasets, as mentioned in

Section 3.3.4.
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3.4 System design summary

This chapter introduced the different components of the system, a method for gathering data,

splitting the data into epochs (time periods) and adjusting the epochs. A GUI was created to

instruct subjects on the eye movements they should perform, allowing the data to be created

with a theoretical speed of 120 datapoints an hour for each class (480 for Straight and Blink).

Balancing the classes and the two datasets makes sure that all classes are considered equally

important, ensuring a fair comparison of the two subjects. The output of the system in this

chapter is data, ready to be represented by features and used with a machine learning algorithm.
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Chapter 4

Machine Learning

This chapter introduces machine learning in more detail and shows how it is implemented in

this thesis. Terminology and methods mentioned in this chapter builds on concepts introduced

earlier in Section 2.5. To freshen up the concepts of machine learning a few terms are repeated:

• dataset, all datapoints and labels

• datapoint, a data element in the dataset, in this thesis each datapoint is an eye movement

• feature vector, the representation of the datapoints where the feature vector consists of

one or several features

• labels, identifier of the classes the different datapoints belong to

• prediction, the output decision when testing the classifier

As in Section 2.5, this chapter provides an interpretation of different methods, concepts and

expressions from different literature that was utilized in this work. It also presents some impor-

tant scoring metrics for classifiers that will be used throughout the thesis. The chapter is not

based on any "new" findings from any work in this thesis. However, figures and examples have

been created to better illustrate some of the concepts in hope of making it easier to understand.

The machine learning toolkit used in this work is Scikit-learn [6], which is frequently referred

to through the next chapters. Scikit-learn provides high level implementations of many popular

machine learning algorithms, data processing methods and feature selection methods among

many other functionalities.

49
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4.1 Extracting and selecting features

In this work, it might be necessary to abstract the data by extracting features, to reduce the

dimensionality of the feature vector [37]. The features that are used has high impact on the

performance of the classifier, measured by scoring metrics introduced later in Section 4.3.1.

Finding features to represent the eye movements and to evaluate the quality of these features is

important to get the best possible performance of a classifier.

4.1.1 Feature extraction

A crucial and difficult task of extracting features is to represent the original data without too

much loss of relevant information. By knowing the problem the classifier tries to solve, it is also

possible to extract features that can bring classification improvement [33]. While it is easy to

extract features from data, it is not easy to extract features that are usable to distinguish between

the desired events. Finding the features that best describes the data for a specific problem can

be a demanding task. Usually, the most secure way to extract high quality features is to have

an expert in the field of the data-type, to evaluate the information that could be useful to the

specific problem. None of the authors can be considered experts of EEG data, so most of the

different proposed features in this thesis are based on previous research within EEG- and EOG-

data. The choice of some of these, such as the Pearson Coefficients [60], will be argued for in

Section 4.1.2 as part of this work. Some of the proposed features was however found through

studies of the eye movement plots. These features were found through work in this thesis and is

listed as follows:

• Standard deviation

• Maximum value

• Minimum value

• Difference in min value between two channels

• Difference in max value between two channels

• Peak-to-Peak (with inspiration from [61])
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4.1.2 Proposed features

Through the literature search and some thought experiments, a list of features was thought to

be able to classify the eye movements. The proposed features are presented in this section.

Samples as features

Using the sampled values, where each sample is considered a feature is a good approach in

many scenarios. Not only can it provide the best classifier performance, but it can also be used

to compare performance between the original data and data represented by abstracted features

[33]. The samples make up the original signal x[n] and should in some way contain the infor-

mation that is needed to distinguish the different classes.

Following the rule of thumb where the number of datapoints should be five to ten times

larger than the dimensionality of the feature vector per class [38], there is too little data in the

datasets made in this work to use this approach. As each movement is represented by 250 sam-

ples, the suggested amount of datapoints would be 1250−2500 for each class. This is time con-

suming to make, and a difficulty to overcome when using BCI technology with machine learn-

ing. Another approach would be to reduce the window size (feature vector) representing the

eye movements and see how the results turns out. If the window size (feature vector) was at 50

samples, the suggested number of datapoints needed for training would be at 250−500 which

is within reach given the size of the datasets in this work, as given in Table 3.5.

Higuchi Fractal Dimension

Fractal dimensions are measures of the complexity of the recorded signals and is often used

on EEG data [62]. Non-linear analysis of EEG data through fractal modeling can give a deeper

understanding of underlying physical processes that is involved in EEG [63]. The Higuchi Fractal

Dimension (HFD) algorithm [64] approximates the mean length of fixed size curve segments

and has been used in sleep stage research [65, 66]. The calculation procedure can be found in

Appendix C.2



52 CHAPTER 4. MACHINE LEARNING

The calculation of HFD was done with PyEEG, a Python module designed for EEG feature

calculation [67]. Two HFD features are calculated, one for a channel suited for vertical move-

ments (x1[n]) and one for a channel suited for horizontal movements (x4[n]).

Petrosian Fractal Dimension

Another fractal dimension-based feature used is the Petrosian Fractal Dimension (PFD). The

reason for considering this feature is that it was provided in the PyEEG module. Not much has

been found that supports this feature in an eye-classification scheme, but it is taken into con-

sideration through introduction from the PyEEG module. There are in total two PFD features,

extracted from channel x1[n] and x4[n] respectively. The formula for the PFD can be found in

Appendix C.

Standard deviation

Standard Deviation (STD) is a measure of variability [68]. There is a difference in the variability

of some of the movements, such as looking straight ahead, blinking and looking to the left. This

difference can be illustrated in Figure 4.1.

Figure 4.1: Illustration of varying STD between looking straight ahead, left and blinking.
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The eye movement plots in Figure 4.1 was gathered from experiments performed in this

work, where a subject looks in different directions and the movements are plotted. As shown in

Figure 4.1, the STD will be low when looking straight ahead, and will increase when performing

horizontal and vertical movements. The STD increases further for blinks as a result from the

increasing minimum and maximum signal values. STD is therefore considered to be a strong

feature to tell the difference between looking straight ahead, horizontal or vertical movements

and blinking. The STD is calculated using the function "std" provided by Numpy [69]. Two STD

features are calculated for channels x1[n] and x4[n] respectively.

Maximum and minimum values

Maximum and minimum amplitudes can be used to distinguish looking straight ahead, blinks

and horizontal or vertical movements from each other by looking at channel 1. Figure 4.1 from

the STD feature shows plots of the different movements, and there is a difference in the signal-

levels between the three types of movement. Looking straight ahead has almost no variation and

will therefore have low min and max values. Horizontal and vertical movements have around

the same min and max values, while blinks have the largest min and max values. The features

are calculated with the "min" and "max" functions provided by Numpy [69].

Slope between maximum and minimum points

The slope feature was chosen through presented results in [61], which proposed to use the slope

between min and max points to classify different eye movements. The feature was originally

used in EOG recordings and show that the slope in channels (x1[n]∧ x2[n]) and (x3[n]∧ x4[n])

differ when making specific movements. Figure 4.2 shows a table from [61] which illustrates

how the slope differs between movements.
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Figure 4.2: Illustration of different slopes from different movements [61].

The feature is utilized in the same way in this work but is expected to have varying impor-

tance due to variation in the signals as shown in 3.12. Something to notice is that the table in

Figure 4.2 [61] shows that the slope is used with a pair of two eye movements (in a direction

and back again), whereas it was used on one eye movement only in this work. There are two

slope features calculated, one for a channel suited for vertical movements (x1[n]) and one for

the horizontal movements (x4[n]). The slope S is defined by Equation 4.1 [61].

S = SVmi n −SVmax

Pmi n −Pmax
, (4.1)

where:

• SVmi n = minimum signal value

• SVmax = maximum signal value

• Pmi n = position of minimum signal value

• Pmax = position of maximum signal value

Peak-to-Peak

Peak-to-Peak (PTP) calculates the range of values, meaning the difference between the maxi-

mum and minimum points within the window lw,c [69]. This feature is based on much of the
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same argumentation as the slope feature but does not consider the distance between the max-

imum and minimum value indexes. The PTP feature was chosen through inspiration from the

slope feature in [61]. The calculation is done with the function "ptp" from Numpy and is equiv-

alent to taking "max" - "min" as provided by Numpy [69]. There are in total two PTP features

that are calculated for channel x1 and channel x4 (vertical and horizontal).

Difference in minimum and maximum point between two channels

As it can be seen in Figure 4.3 there are differences in the maximum and minimal points in

channels x2[n] and x4[n] when performing some of the movements. This was observed through

experiments in this work, where a subject looked in different directions. The green squares mark

the maximum point, and the red squares marks the minimum point in the respective channels.

Figure 4.3: Illustration of how the vertical movements, horizontal movements and blinks differ
in maximal and minimal points between channel 2 and 4.
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The features are defined by Equation 4.2 and 4.3.

diffmi n = min(x2[n])−min(x4[n]) (4.2)

diffmax = max(x2[n])−max(x4[n]) (4.3)

This is done with the "max" and "min" functions provided by Numpy [69].

Covariance between two channels

The covariance feature describes how the samples within the window of size lw,c varies be-

tween two channels. It is thought that different channels will vary differently according to the

movements performed. This will be illustrated shortly when presenting the Pearson Correla-

tion features. There are in total 4 covariance features used for channel pairs: (x1[n]∧x4[n]) and

(x3[n]∧ x4[n]). Each channel pair is represented by two covariance features. The calculation is

done with the "cov" function provided by Numpy [69], and can be found in Appendix C.

Pearson Correlation Coefficients

Pearson correlation is the most widely used type of correlation and is also called linear or product-

moment correlation [60]. The Pearson coefficient is a measure of how linearly related two vari-

ables are and has been used with EEG data to tell if a subject has open or closed eyes [70]. The

calculation procedure can be found in Appendix C.3. The coefficient has a high value if the

relationship between the variables can be approximated by a straight line.

The idea is that the correlation between two channels is different when performing differ-

ent movements. For this, channel pairs (x1[n] ∧ x4[n]) and (x3[n] ∧ x4[n]) are used. This is

because channels x3[n] and x4[n] seems to be similarly "active" when performing horizontal

movements, blinks and left movements. The same channels seem to differ in "activity" when

performing the right movements (right direction and returning from left), where channel x4[n]

has distinct variations while x3[n] seems to not be that affected by the movement. This was

observed through experiments in this work, where a subject looked in different directions. The

similarities from the experiments of horizontal movements, blinks and the left movement are

shown in Figure 4.4.



4.1. EXTRACTING AND SELECTING FEATURES 57

Figure 4.4: Illustration of how the blinks, down, up and left movements seem similarly "active"
in channels 3 and 4.

The difference in channel x3[n] and x4[n] when performing right movements is shown in

Figure 4.5.

Figure 4.5: Illustration of how right movements differs between channel 3 and 4.
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Figure 4.6 shows how there are noticeable changes in both channel x1[n] and x4[n] when

performing horizontal movements, but while performing vertical movements channel x1[n]

seems to be the channel that is mostly affected.

Figure 4.6: Illustration of how the vertical movements, horizontal movements and blinks differ
in the channel pair 1 and 4.

The calculation of the Pearson Correlation Coefficients is done using the "corrcoeff" func-

tion provided by Numpy [69]. Two of the four calculated coefficients are utilized, meaning that

the Pearson coefficients are represented as a total of 4 features. This is because a 2×2 matrix y is

returned from the Numpy function, where the elements y1,1 and y2,2 has the value 1, while y1,2

and y2,1 describe the value of the correlation.
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Theta-beta band ratio

[41] showed that using features based on spectral band properties can provide good results.

They achieved an average eye movement classification accuracy of 90.1% using features they

called the Theta-Beta ratio (TBR). TBR is the ratio between average amplitude values in the brain

wave frequency bands Theta and Beta from Table 2.1. The formula for TBR can be found in Ap-

pendix C. Other features were also proposed in [41] but was shown to give little value. There are

in total two TBR features used in this work, calculated from channels x1[n] and x4[n] respec-

tively.

Power Spectral Entropy

Power Spectral Entropy (PSE) has been used as an EEG feature in research of imaginary motor

tasks and anaesthetic state classification, with good results in [71, 72]. Entropy is a measure of

complexity and is regularly used in EEG research [62]. There are many types of entropy available,

but the choice came upon PSE [73] because of the the proven results in [71, 72]. As with HFD,

PSE is supported by the PyEEG module [67] and is utilized to calculate the feature. Two features

are calculated, one for a channel suited for vertical movements (x1[n]) and one for horizontal

movements (x4[n]). The procedure for calculating PSE can be found in Appendix C.1.

4.1.3 Quality of features

The quality of a feature can differ. Some features might give very distinct differences in the

data provided, while other features might be irrelevant and even redundant. To make sure that

the most important features are used in this work, among those proposed, a system to test the

classifier performance based on the selected features is used. Something that is important to

understand when evaluating the quality of features, is that a feature can be irrelevant by itself

but can become relevant when used in a combination [33]. A subset of features is a combination

of features based on a set of proposed features, such as shown in Figure 4.7.
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Figure 4.7: Illustration of different subsets of features.

It is possible for Feature 2 from Figure 4.7 to have a low impact in subset 1, but to have a high

impact in subset 2. This is because some features may have high correlation, making it hard for

the model to differentiate between the classes. High correlation between two features can serve

as noise and can reduce the performance of the classifier [74]. In another case, where the fea-

tures have distinct different relevant properties, Feature 2 can have a higher impact because it

provides additional information to the other features selected. Finding the perfect subset (par-

tition) is a computationally expensive task, as the best subset might only be found by doing

a complete search between all the possible combinations of features and compare the perfor-

mance of the classifier for each combination. Instead of performing a complete search of every

combination, there are methods to find a good subset of features often used in machine learn-

ing. The method utilized in this work is called the Recursive Feature Elimination with cross-

validation (RFECV) and will be explained in Section 4.1.4. Choosing a subset of features for the

task is called feature selection and uses the proposed set of features as a starting point.

4.1.4 Feature selection

Feature selection helps in reducing the computational requirement and the complexity of the

classification task, by focusing on selecting a subset of features which efficiently describes the

input data. Finding those features that are usable for the classification task, is the key focus
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of feature selection [33]. If a classifier uses irrelevant features during training, this irrelevant

information will be used on new data during testing as well, leading to a poor generalization [74].

There are many ways to decide what feature subset one should use, as different optimization

algorithms work in different ways to find the subset of features giving the best results.

There are three types of feature selection methods: Filter, Wrapper and Embedded selection

methods [74]. Filter methods are used as a pre-step to evaluate the quality of the features before

training the classifier. A suitable ranking criterion is used to score the features, and a threshold

is chosen to remove features of low relevance [74].

Wrapper methods uses the classifier as a black-box and looks at how the features chosen

impacts the performance (accuracy for example) of the classifier by testing it. This means that a

classifier is trained for each subset of features. An extensive search can become computationally

intensive for larger datasets, where larger feature vector dimensions also increase the amount of

computation. Wrapper methods are therefore used with simplified algorithms such as Genetic

Algorithms [74].

Embedded methods try to reduce the computation time taken up for reclassifying different

subsets, which is done in wrapper methods. The main focus is to incorporate feature selection

during the training process [74]. Recursive Feature Elimination (RFE) is a standard embedded

method for doing feature selection with SVMs, which uses the importance of features to decide

feature removal [75]. A weight is realized by the classifier during training and is based on how

the classifier uses a feature when making predictions, each feature gets a weight. The weight

can therefore be looked at as the importance of a specific feature. The RFE function takes in

the feature importance in form of the feature weights, the higher value of the weight the more

important the feature.

Many feature selection methods are considered unstable, meaning that they do not produce

the same feature subset when altering the train and test split. Therefore, to make sure that the

method used is stable, several train and test splits must be created. This is to prove that the same

features and the number of features is the same for the different splits.

RFE is a recursive greedy algorithm. It starts on the full set of features, considers all the

weights and removes the feature with the lowest weight. This is done in several iterations, train-

ing a classifier for each iteration, until the desired number of features is reached. This method
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leaves out some feature combinations as the feature left out never will be a member of a con-

sidered feature subset again. Another approach utilizes something called Cross-validation (CV),

which will be explained in Section 4.3.2, to calculate the performance of the classifier at each

feature subset. This is called Recursive Feature Elimination with cross-validation (RFECV) and

is provided by Scikit-learn [76]. RFECV outputs the number of features which gave the best per-

formance of the classifier, and what features were selected to achieve that performance. Figure

4.8 shows how an example plot of how classifier performance is evaluated at each step when

using RFECV.

Figure 4.8: Example plot showing how RFECV evaluates the performance at the different steps
in its process [76].

RFECV is used in this work for feature selection and is chosen because of the easy imple-

mentation as provided by Scikit-learn [76] and because it is a standard feature selection method

to use with Support Vector Machine (SVM)s [75]. As will be shown later, SVM is the machine

learning algorithm of focus in this thesis and will be explained in more detail in Section 4.4.1.

4.2 Scaling and splitting the dataset

So far, the raw data x̃[n] has been processed through filtering and features has been extracted.

Before one can feed fv [i ] to the algorithm it might be necessary to scale the data [77], and to

split it up into data used for training and for testing.
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4.2.1 Scaling

Algorithms such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) require fea-

tures to be standardized, meaning that they have zero mean and unit variance [77]. If a feature

has variance that is magnitudes times larger than the other features, it will have a much larger

impact (larger weight) than the others, and make the classifier interpret the significance of the

features incorrectly. This is because of how the classifier interprets the magnitude of feature

values during training. Each feature is therefore standardized to have zero mean and unit vari-

ance, in order to allow the classifier to learn evenly from all features. This is done by training

a scaler through calculating the mean and standard deviation from the training data with the

"StandardScaler" function provided by Scitkit learn [78]. These mean values and standard devi-

ations collected from the training data is then used on the test data, so the scaler is also realized

through training.

4.2.2 Training and test data

An important step before feeding data to a classifier is to split the dataset up in two parts which

is used in separate steps as illustrated in Section 2.5. These two parts are called training and

testing. The training data is as used to train the classifier, while the test data is used to validate

the performance of the classifier with a test. If the same data was used for both training and

testing, there would be no way to tell if the classifier is predicting correctly, or if it is copying

what it was given in the training stage. The dataset is split into training and testing with a ratio

of 80/20 throughout this work.

The test part is only used once in the end to validate the performance of the classifier. When

splitting the data into training and testing, it is important to understand that the performance

of the model will have some variation if the data contained in each split change. In practice,

methods splitting the data often use some kind of randomizer to make sure that different splits

are produced, which makes for a more unbiased evaluation. More about why splitting the data

into training and testing is so important will be explained shortly.
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Balanced training and test data

The training and testing sets are sorted so that the number of datapoints for the different classes

are balanced. This means that there is an equal proportion of each class in the training data,

and in the test data. This ensures that the classifier is not biased towards some of the classes,

as a larger amount of one class in the training data can make the classifier biased towards that

specific class, as mentioned in Section 3.3.5.

4.3 Machine learning algorithms, models and evaluation

There is a difference between a machine learning algorithm and a machine learning model. A

machine learning algorithm tries to solve a specific problem in a set of ways when being fed with

data. Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes

and Logistic Regression are examples of common and popular algorithms [79], all working in

different ways to distinguish between the data. These algorithms have something called hyper-

parameters, which are parameters that cannot be learned through training, but are set before

training is started.

The hyperparameters can represent many different properties, such as how the classifier

learns from mistakes, how it should shape the decision boundary according to the training data,

how strict it should be when making predictions etc. A model is specific to the hyperparame-

ters chosen and training data, meaning that there are many different models that can be cre-

ated from each algorithm. Therefore, when talking about training and testing, it is the model

(classifier) that is being trained and tested. Tuning the hyperparameters is an important part of

designing a good classifier [80]. How these hyperparameters are tuned is explained in Section

4.4.2.

Choosing the correct algorithm for the task can be difficult. Scikit-learn has provided a

cheat-sheet shown in Figure 4.9, which is designed to give a starting point when choosing an

algorithm.
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Figure 4.9: Map of proposed method for choosing a machine learning algorithm, provided by
Scikit Learn [81].

In Figure 4.9 the term "samples" is equivalent to datapoints, which is the term used in this

thesis. There is no algorithm that works best on a general basis, which means that the choice

can depend on factors such as the problem trying to be solved, number of datapoints, quality

of data, the nature of the data, the features representing the data etc. There is therefore no right

answer to the question "Which machine learning algorithm should I use?" [36]. This also means

that there are several algorithms that can solve the same problem. Machine learning is therefore

often subject to an experimental approach, trying to implement with one algorithm and move

on to another if the results are insufficient.

4.3.1 Scoring metrics

Evaluating the classifier is important to say something about the performance. The system pre-

sented in this thesis tries to differentiate between six classes related to eye movements. The

predictions from the classifier are listed in a Confusion Matrix. Figure 4.10 shows the Confusion

Matrix of a test performed early in this work where a classifier was trained on a training set with

119 datapoints, 20 for each class with an exception of blinking which has 19 datapoints.
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Figure 4.10: Illustration of a Confusion Matrix used to evaluate the Left class. The matrix is based
on a test set with 19 datapoints for blinking, and 20 for the rest. The layout of the Confusion
Matrix is provided by Scikit-learn [82].

The rows in a Confusion Matrix show what the classifier should have predicted, and the

number in each cell shows how many times that specific prediction was made. The columns

show the actual predictions made by the classifier. Therefore, the diagonal cells show how many

times the classifier predicted correctly.

The Confusion Matrix gives a very intuitive understanding of what the classifier does right

and what it does wrong. There are several scoring metrics that can be used to evaluate the

classifier, some metrics may be more important for some systems than others, and some can be
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prone to weaknesses. The scoring metrics are based on the following terms:

• True Positives (TP)

• True Negatives (TN)

• False Positives (FP)

• False Negatives (FN)

When using these terms, it is important to note that the metrics are calculated for one spe-

cific class at a time. To get the overall performance of the classifier for a given metric one must

first find the metric for all the respective classes, then average the score to get total performance.

When calculating the metrics respectively, the class that is under focus is considered the posi-

tive class, while all others are considered to be the negative class. With this information, we can

define the terms introduced:

• True positives - should predict the positive class and actually predicted it

• True negatives - should predict the negative class, and actually predicted it

• False positives - should predict the negative class, but predicted the positive class

• False negatives - should predict the positive class, but predicted the negative class

Using these terms while looking at the Confusion Matrix in Figure 4.10 makes them easier to

understand. Let the Left class be of focus, it is then considered as the positive class while all

others are considered to be the negative class [83]. The vertical axis shows the true classes, while

the horizontal axis shows the actual predictions made by the classifier. Therefore, True Positives

are found in the diagonal square marked in green, False Negatives are found in the horizontal

squares marked in red, False Positives are found in the vertical squares marked in black and True

Negatives are found in the diagonal squares marked in yellow.

Confusion matrices are often used to evaluate performance and get a visual feel of what the

classifier does wrong and correct. The most intuitive and proper evaluating is done through an-

alyzing the Confusion Matrix, as all the classifier’s weaknesses and strengths are shown. This is
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the basis of the scoring metrics, where the number of true positives, true negatives, false posi-

tives and false negatives are all counted from the Confusion Matrix. A few scoring metrics that

are frequently used to evaluate the performance are defined as follows:

Accuracy

Accuracy A is the proportion of correct classifications from overall number of classifications,

defined by Equation 4.4 [83].

A = TN+TP

TP+TN+FP+FN
(4.4)

Precision

Precision P is the proportion of correct positive classifications from cases that are predicted as

positive, defined by Equation 4.5 [83].

P = TP

TP+FP
(4.5)

This says something about how many of the positive class predictions actually were correct.

Precision is also called the positive predictive value [83].

Recall

Recall R is the proportion of correct positive classifications and the total number of the positive

class and is defined by Equation 4.6 [83].

R = TP

TP+FN
(4.6)

This shows how many of the positive class it predicted correctly, based on how many it

should have predicted correctly. Recall is also called sensitivity [83].
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f1 score

The f1 scoring metric is the harmonic mean of the precision P and recall R, defined by Equation

4.7 [83].

f1 = 2PR

P +R
(4.7)

Which also can be defined by Equation 4.8.

f1 = 2TP

2TP+FP+FN
(4.8)

Scoring example and Classification Report

This example is created in this work to illustrate how the presented scoring metrics can be used,

and how some of them can have weaknesses.

Using Figure 4.10 and the Left class as an example we can calculate some performance met-

rics. The number of True Positives is found in the diagonal square, with a total of 13 True Posi-

tives. Looking at the vertical squares for the Left class, it is seen that there were Left predictions

where Down, Right and Up were the true classes. In total there were 1+3+1 = 5 False Positives

for the Left class. Looking at the horizontal squares we can see that there were left movements

classified as Blink, Down, Right and Up. Giving a total number of: 1+2+3+1 = 7 False Negatives.

The number of True Negatives for the Left class is equal to the sum of True Positives from the

other classes. Thus, summing the diagonal squares and leaving out the Left class gives TNs =

19+19+18+16+16 = 88.

Now that the parameters are gathered, the scoring metrics can be calculated.

Accuracy:

A = TN+TP

TP+TN+FP+FN

ALeft =
88+13

13+88+5+7
= 0.89

This seems like a good result as the accuracy is high, but this illustrates how the scores can

be deceiving. In this case, it is deceiving because of the fact that there are a lot more predictions
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from the other classes, as the Left class only stands for 1
6 of the total predictions. So, the fact that

there are a lot of True Negative boosts the accuracy metric.

Precision:

P = TP

TP+FP

PLeft =
13

13+5
= 0.72

The precision score shows that the predicted Left class was correct in 72% of the cases it was

predicted. Leaving 28% of the Left predictions as wrong.

Recall:

R = TP

TP+FN

RLeft =
13

13+7
= 0.65

This recall result shows that 65% of the Left class datapoints from the test set were actually pre-

dicted as the Left class. Leaving 35% of the Left class datapoints predicted as something else.

From this example it can be seen that several metrics often need to be considered to evaluate

the classifier. In the case of evaluating the performance of the classifier when looking at classes

respectively, in a multiclass-scheme, accuracy seems like a bad point to start. Accuracy could be

better suited when looking at the overall prediction when considering all classes. To the authors,

a balance between precision and recall seems like a good evaluation point when looking at the

classes respectively. This is because a low recall score for one class would decrease the precision

for another class, where the two metrics combined both considers FP and FN. While scoring

metrics such as accuracy only considers the hit rate. For optimal evaluation, the Confusion

Matrix should be studied to show the weaknesses and strengths of all classes.

When presenting the scoring metrics in this thesis, they will be split in two parts. The first

part considers all the classes and calculates the scores as an unweighted "Macro-average" [84],

meaning that the number of datapoints for the respective classes used in the test is not consid-

ered. This will be referred to as the "unweighted average".
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The second part presents scores for the respective classes, and a weighted "Macro-average"

score [84], meaning that the number of datapoints for the respective classes affects the score.

The weighted "Macro-average" of a scoring metric is considered as the "weighted average" through-

out this thesis. A "Classification Report", which is created with a function provided by Scikit-

learn [85], lists both the respective class metrics and the weighted average. An example of a

Classification Report can be seen in Table 4.1 [85]. The two ways of presenting the scoring met-

rics will be shown as follows.

First part: The model achieved an accuracy of 78.8%, precision of 78.8% and recall of 81.0%.

These are the unweighted average scores.

Second Part:

Table 4.1: Classification Report

Class Precision Recall f1-score support

Blink 0.78 0.54 0.64 13
Down 0.40 0.80 0.53 5
Left 1.00 0.83 0.91 6
Straight 0.86 0.83 0.85 30
Right 0.83 1.00 0.91 5
Up 0.86 0.86 0.86 7
avg/total 0.82 0.79 0.93 66

Table 4.1 shows the metrics for each class and then a weighted average score for all the

classes at the bottom line. The support column shows how many datapoints that was tested

for each class.

To show how the weighted and unweighted average scores are calculated, we can use the

"Classification Report" in Table 4.1 as an example. We can start by calculating the weighted

average scoring metric for Precision. This is done by summing the Precision scores for the re-

spective classes and divide by the number of classes as in Equation 4.9.

0.78+0.40+1.00+0.86+0.83+0.86

6
= 0.788 (4.9)

The weighted average scores, as can be found as the "avg/total" in the Classification Report,

uses the same respective class scores as presented in the Classification Report but finds the
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weighted average. The support column is used to weight the scores as in Equation 4.10.

0.78×13+0.40×5+1.00×6+0.86×30+0.83×5+0.86×7

66
= 0.82 (4.10)

The unweighted and weighted average scores are as shown, the same as presented in the "First

part" and at the bottom of the Classification Report.

4.3.2 Evaluating model performance

Splitting the dataset into training and test sets is an important step before a specific model is

realized through training and tuning of hyperparameters, as mentioned in the beginning of Sec-

tion 4.3. If a model were to be trained on a given dataset, and was tested on the exact same data,

there is no way to tell if the model actually predicted something useful or just repeated it [86].

This concept where the test data is too correlated with the training data is the reason for split-

ting up in training and test data and is common practice in machine learning to prevent what is

called overfitting [86]. Figure 4.11 illustrates how overfitting fails to generalize the model.

Figure 4.11: Illustration of overfitting [87].

Overfitting describes the situation where a model that fits the training data can have a lot

of correct predictions but fails to predict anything useful when presented with new data not

previously seen during training [88]. Underfitting is the opposite of overfitting, where the model

will generalize too much and fail to find a decision boundary which can perfectly classify the
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datapoints [89]. Even when introducing the splitting of data into training and test data, there is

a chance of overfitting. This is because of the fact that the performance can be optimized for the

test set by tuning the hyperparameters. Therefore, one could say that information specific to

the test set leaks into the trained model [86]. There are two ways to avoid this. The first is to split

the dataset into yet another part called the validation set. This validation set will then be used

as evaluation when tuning the hyperparameters, and when things seem to be going smoothly,

the test set can be used for final evaluation [86]. A problem with this is the decrease in data that

can be used for training. The second way is called Cross-validation (CV). A test set should still

be held out when using CV, but there is no need for a validation set [86]. Figure 4.12 shows the

principle of Cross-validation.

Figure 4.12: Illustration of the how cross validation is performed [90].

Cross-validation splits the training data into k different folds, where k −1 folds are used for

training and the last fold is used for validation. This is repeated k-times, where the fold used

for validation changes every iteration and ensures that no fold is used for validation more than

once. This prevents that the hyperparameters are biased (overfitted) towards specific test data

[86]. It is important to note that CV only uses the training data from the split of the dataset and

does nothing with the test set. CV can be used for both tuning of parameters and evaluation of

a model [86]. When using CV for evaluation, a specified scoring metric is calculated for each

iteration and appended to a list. It is possible to show the scoring metric from all the different

iterations and to output the average and standard deviation of the scores. Evaluation with CV is

performed on the training set, and then compared with results from the test set. Big differences

in the scores from the Cross-validation and test set can indicate overfitting and underfitting.
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4.4 Classification scheme

As mentioned in Section 2.5, there are a lot of viable algorithms that can be used, and there is

no algorithm that always will outperform the others. Support Vector Machine (SVM) is the main

focus and was chosen because of good results and reviews for EEG data and pattern recognition

in literature [37, 39, 43, 91, 92, 93, 94].

4.4.1 Support Vector Machines

SVM is a powerful approach for pattern recognition. It does not need any distributional as-

sumptions about the data, while providing a very good discriminative solution and generaliza-

tion at the same time [94]. SVM classifies new datapoints with a defined optimal hyperplane

(decision boundary). The hyperplane is realized through the training phase and exists in a high-

dimensional space [95]. For illustration purposes, one can think of the hyperplane in a two-

dimensional space where it simply equals a straight line as illustrated in Figure 4.13.

Figure 4.13: Illustration of the hyperplane used to discriminate between classes [96].

Looking at Figure 4.13 there are a lot of ways one could draw a line to separate the two classes.

The problem the SVM therefore tries to solve is to find the hyperplane with the largest possible

margin between distributed datapoints [95]. The margin is defined as the distance between the
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hyperplane and the closest datapoints. Intuitively enough it becomes easier to generalize with a

larger gap (margin) between the classes. Support vectors are parallel vectors of the hyperplane,

which is defined by the datapoints on the margin [95]. Figure 4.13 showed an example of a

linearly separable problem where a linear SVM discriminates between the classes. But what if

the problem is not linearly separable with the given datapoints?

To solve this problem, many machine learning algorithms (including SVM) uses something

called a kernel-transformation. The idea is that if the data is not linearly separable in the current

dimensional space, it may be transformed into a space called a kernel space where the data is lin-

early separable by a hyperplane [95]. Figure 4.14 illustrates a simplified kernel-transformation

[97].

Figure 4.14: Illustration of the kernel transformation used to find a linearly separable hyperplane
[97].

The transformation is done with a given kernel function. There are many kernel functions

that can be used, those supported by Scikit-learn for SVMs are Radial Basis Function (RBF),

linear, Polynomial and Sigmoid kernels. As with machine learning algorithms, there is no set

science in determining SVM kernels. According to the no-free-lunch theorem [98] there are no

guarantees that one kernel will work better than the other. In this work the RBF kernel and linear

kernel were chosen due to RBF kernel popularity and the simple nature of a linear kernel [99].

Table 4.2 shows the definition of the different kernel functions for SVMs, as provided by Scikit

learn [100].
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Table 4.2: Kernel functions [100]

Kernel Function

RBF K (x, x ′) = exp(−γ‖x −x ′‖2)
Linear K (x, x ′) = 〈x, x ′〉
Polynomial (γ〈x, x ′〉+ r )d = 〈x, x ′〉
Sigmoid tanh(γ〈x, x ′〉+ r )

The decision function, as conceptually introduced in Section 2.5, can be specified according

to the kernel chosen for the model [101]. The decision function used for SVM is defined by

Equation 4.11

f (x) = sgn
( n∑

i=1
yiαi K (xi , x)+b

)
, (4.11)

where sgn() is the sign function, x is the test data, xi are support vectors, αi yi are the support

vector coefficients, K (xi , x) is the kernel function and b is the bias [92].

4.4.2 Hyperparameters

In addition to choosing a kernel, hyperparameters must be tuned to achieve optimal perfor-

mance. There are many hyperparameters for SVM, but the ones of interest in this work are the

regularization parameter C and the kernel coefficient γ. The hyperparameters that are used for

the different models in this work varies depending on the kernel chosen. Table 4.3 shows the

dependence between kernel and hyperparameters.

Table 4.3: Kernel and hyperparameters

Kernel hyperparameters

RBF C , γ
Linear C

The regularization parameter C provides a trade-off between a smooth decision boundary

(hyperplane) and correctly classifying the training datapoints [102]. High values of C will make

the model try to classify as many training datapoints as possible correctly, making more com-

plex decision boundaries. Low values of C will make a more general hyper plane. Figure 4.15

illustrates how the decision boundary is affected by a varying C [102].
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Figure 4.15: Illustration of how the decision boundary is affected by a varying C [102].

γ is called the kernel scale parameter [102] and is used together with C in a SVM based model

with RBF kernel. The combination of the two hyperparameters has a high impact on the model

performance. A lower γ typically should be paired with a higher C (less regularized decision

boundary), and a higher γ should typically be paired with a lower C (more regularized decision

boundary). Figure 4.16 illustrates how an SVM classifier with RBF kernel differs in error rate on

a test performed with different combinations of γ and C [102].

Figure 4.16: Illustration of how γ and C affects the error rates of a RBF kernel-based SVM classi-
fier [102]. The x-axis is log scaled.

Figure 4.16 does not represent what the parameters C and γ should be set to in this work but

illustrates that a tuning of the two parameters is important to get good performance.
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To find the optimal hyperparameters and kernel for the SVM a grid search provided by Scikit

learn, using Cross-validation on the training data, is utilized in this work. A parameter-grid is

defined with a list of varying values for the hyperparameters C and γ. A model is trained on the

training data for every possible combination of the hyperparameters, and the Cross-validation

results are used to decide what model performed the best. This is an extensive search but makes

sure that every combination is tested. The values for the hyperparameters that was chosen to

be tested in this work is shown in Table 4.4.

Table 4.4: Hyperparameter values for grid search

C γ Kernel

10−3 10−4 RBF
10−2 10−3 Linear
10−1 10−2

1 10−1

101 1
102

103

The output of a grid search, when applied to the parameter values for kernel, C and γ as in

Table 4.4, can be found in Appendix J.

4.4.3 Other classifiers

As mentioned in Section 2.5, there are many machine learning algorithms that works in its own

way to solve classification tasks. Section 4.4.1 presented the machine learning algorithm of focus

in this thesis, Support Vector Machine (SVM), while this section will give a short introduction of

a few other machine learning algorithms mentioned. This section only shows an interpretation

of how the algorithms work and is not based on anything found as part of this work. Some

examples are however created to illustrate the concepts of some of the algorithms, as part of

this work.
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Random Forests

The Random Forest classifier is a supervised classifier based on Decision Trees used in machine

learning. When training a Decision Tree, it tries to choose the best features and feature values

to create "decision rules", used to classify datapoints [103]. The best feature is used at the root

of the tree, which is the first node in the Decision Tree. Figure 4.17 shows an example of a very

simplified Decision Tree classifier, created in this work, that could be used to classify new iris

flowers in the iris flower example in Section 2.5.

Figure 4.17: Showing an illustration of a simplified Decision Tree classifier, connected to the
example shown in Section 2.5.2.

Random Forest is an ensemble method, which means that it combines several classifiers of

the same or different type. Then it uses a voting scheme for all the classifiers to output pre-

dictions [104]. Random Forest uses several Decision Trees, trained on different subsets of the

dataset, and uses a voting mechanism to output the final prediction.

K-Nearest Neighbors

K-Nearest Neighbors (KNN) is another supervised learning classifier and is often used when

there is little or no knowledge about the distribution of datapoints [105]. Instead of realizing

some decision function or decision boundary through training, the algorithm "saves" data-

points introduced in the training stage. When introducing the classifier to new data points after

training, a Euclidean distance is calculated from the new data point to the K nearest datapoints
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introduced in the training stage. The prediction from the classifier is set to the most frequent

true class of the K nearest training datapoints [105]. The variable K can be tuned and impacts

the prediction of the classifier. Figure 4.18 shows an illustration of how a new datapoint is clas-

sified with a KNN classifier [105].

Figure 4.18: Showing an illustration of a how a KNN classifier predicts a new data point [105].

The illustration in Figure 4.18 shows that the number of neighbors to consider is K = 4. The

new datapoint will be predicted to be the most frequent true class of the K = 4 closest datapoints

introduced during the training. The most frequent of the K = 4 nearest neighbors is class A,

which means that the new datapoint would be predicted as class A.

4.5 Machine learning summary

This chapter introduced methods for abstracting the data through feature extraction, to select

feature subsets, scale the datasets and split it into data for training and testing and showed that

there are a lot of possibilities when choosing a machine learning algorithm. When training a

machine learning algorithm, it is important to pay attention to how the models can be overfitted

and underfitted. Having good procedures for testing the models, such as use of Cross-validation
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and a separate test set, was used in this work to help avoid cases where the model is too spe-

cific or generalized towards some data. There is no algorithm that is the obvious choice when

solving a classification problem, and the method used to find the best classifier is to experiment

with different algorithms and hyperparameters. However, using the theory and techniques pre-

sented in this chapter a lot of information can be extracted from the experimental procedure,

shortening the process.
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Chapter 5

Offline Prediction Results

In this chapter, results regarding machine learning implementations are presented. Several

models have been built from several algorithms to give a comparison basis for the proposed

solution. Results will be presented as both offline and online results in this work. Offline results

are presented in this chapter and are based on a training and test set stored on the computer

(online results are based on a scheme where the model is tested on data captured in real time).

Two test subjects’ data was used to train and test several classifiers. A walk through of the dif-

ferent approaches and results for Subject 1 is presented, and a comparison of classifier perfor-

mance between the two subjects is given in Section 5.5 as part of a summary. Online results will

be presented in Section 6.5, as this is related to control of the drone and cannot be tested with a

stored dataset.

All the experiments are first presented with data from Subject 1 and will in Section 5.5 be

compared with results from Subject 2. Both subjects have used the same test procedure. Each

subject has its own dataset with 1560 chosen datapoints, 260 for each class. The features pre-

sented in Section 4.1.2 are now given an index shown in Table 5.1. Only the feature index will be

referenced when presenting the features selected for the different models. The dynamic center-

ing of data, as introduced in Section 3.3.6, is only used in the "samples as features" implemen-

tation in Section 5.1.1. This is because the classifier was observed to perform better without

centered data when extracting features. All sections presenting a new classifier will start with a

short introduction specific for the classifier, before presenting the results. Table 5.1 shows the

possible features the RFECV algorithm can select from. RFECV was introduced in Section 4.1.4.
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Table 5.1: Feature indices, names and channels

Index Name Channel

0 Higuchi Fractal Dimension 1
1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
5 Spectral Entropy 4
6 Pearson Coefficient 3 and 4
7 Pearson Coefficient 3 and 4
8 Pearson Coefficient 1 and 4
9 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
17 Slope 4
18 θβ ratio 1
19 θβ ratio 4
20 Petrosian Fractal Dimension 1
21 Petrosian Fractal Dimension 4
22 Peak-to-Peak 1
23 Peak-to-Peak 4
24 Minimum Value 1
25 Maximum Value 1

5.1 SVM with RBF kernel

The first classifier to be tested is the SVM with RBF kernel. It will first be tested without feature

extraction, where time-series data will be used as input, to determine if feature extraction is

necessary. Then it will be tested with features chosen by the RFECV algorithm, as introduced

in Section 4.1.4. Cross validation was performed on the training set with k = 50 folds for each

classifier.
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5.1.1 Samples as features

The first experiment was done without extracting features, and instead put pre-processed time-

series data xm[n] into the classifier. It was tested with a number of different channel combi-

nations and window lengths. The best result was obtained with a window length of lw,c = 50

from channels x1[n], x2[n] and x4[n]. This results in a feature vector of length 150, with 50 fea-

tures from each channel. Hyperparameters were optimized with the grid-search to C = 50 and

γ= 0.01 The Cross-validation result for Subject 1 was an accuracy of 87±13%.

To validate this performance, the trained model is used to predict on a test set. Figure 5.1

shows the Confusion Matrix listing the predictions made on the test set.

Figure 5.1: Confusion Matrix for SVM with samples as features on the test set. An ideal model
would have 52 true positives for each class.

The accuracy for Subject 1 on the test set was shown to be 87.1%, where the Classification

Report in Table 5.2 shows the metrics for the respective classes.
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Table 5.2: Classification Report

Class Precision Recall f1-score support

Blink 0.93 1.00 0.96 52
Down 0.88 0.83 0.85 52
Left 0.77 0.83 0.80 52
Straight 0.87 0.90 0.89 52
Right 0.88 0.81 0.84 52
Up 0.92 0.87 0.89 52
avg/total 0.87 0.87 0.87 312

The reason why this model performs so poorly may be affected by several reasons. The vec-

tors are shortened down to 50 samples for each channel, leaving out vital information. However,

increasing it did not result in better performance. This is thought to be because of the "curse of

dimensionality" [37], and lack of training data.

5.1.2 Feature extraction

In this experiment, feature extraction was performed on the signal x[n]. The features were se-

lected from the proposed features by the RFECV algorithm. It must be noted that the RFECV

algorithm does not work on SVM with RBF kernel. Therefore, the optimization with regards to

the choice of features were done on a model with identical hyperparameters, with exception of

the kernel which is set as linear. The selected features were index: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 18, 19, 22, 23, 24, 25. Giving a total of 23 features.

Cross-validation was performed on the training set with k = 50 folds and the hyperparam-

eters were optimized to C = 10 and γ = 0.01. The Cross-validation accuracy on the training set

for Subject 1 was shown to be 96±7%. As a reminder, the output from Cross-validation is the

average accuracy for all k-folds, ± the standard deviation. So 96± 7% does not mean that the

best result was 103%, as you cannot get more right predictions than you are trying to predict.

To validate this performance, the trained model is used to predict on the test set. Figure 5.2

shows the Confusion Matrix from the validation on the test set.
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Figure 5.2: Confusion Matrix for SVM based model with RBF kernel on the test set with extracted
features. An ideal model would have 52 true positives for each class.

The accuracy on the test set was shown to be 94.9%, where the Classification Report in Table

5.3 shows different scores for the respective classes.

Table 5.3: Classification Report

Class Precision Recall f1-score support

Blink 0.98 1.00 0.98 52
Down 0.89 0.92 0.91 52
Left 0.96 0.98 0.97 52
Straight 0.98 0.92 0.95 52
Right 1.00 0.92 0.96 52
Up 0.91 0.94 0.92 52
avg/total 0.95 0.95 0.95 312

These results show that there is a huge improvement by performing a feature extraction. Fea-

ture extraction introduces additional computation on the data, but in turn yields better classi-

fier performance and a lower dimension of the feature vector. The trade-off between additional

computation and classifier performance will be further investigated in Chapter 7.
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5.2 SVM with linear kernel

The same features as in Section 5.1.2 were used for this model, as the RFECV algorithm did not

support feature selection for the RBF based model. The decision function is the same for this

model, as defined by Equation 4.11. The hyper parameter C was optimized to C = 10 and Cross-

validation was performed on the training set with k = 50 folds, achieving an accuracy of 95±9%

for Subject 1. This is a small decrease compared to the SVM based model with RBF kernel.

To validate this performance, the trained model is used to predict on the test set. Figure 5.3

shows the Confusion Matrix from the validation on the test set.

Figure 5.3: Confusion Matrix of the support vector machine with linear kernel. An ideal model
would have 52 true positives for each class.

The accuracy on the test set was shown to be A = 0.949, where the Classification Report in

Table 5.4 shows different scores for the respective classes.
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Table 5.4: Classification Report

Class Precision Recall f1-score support

Blink 1.00 1.00 1.00 52
Down 0.89 0.92 0.91 52
Left 0.96 0.96 0.96 52
Straight 0.96 0.94 0.95 52
Right 0.96 0.94 0.95 52
Up 0.92 0.92 0.92 52
avg/total 0.95 0.95 0.95 312

The Classification Report in Figure 5.4 showed very similar scores for the different classes, as

with the SVM based model with RBF kernel.

5.3 Linear Support Vector Classifier

Scikit-learn provides another implementation of SVMs based on another C-library called lib-

linear, while the SVM models presented so far are based on a C-library called libsvm. Linear

Support Vector Classifier (LinearSVC) works in a similar matter as the linear kernel SVM but dif-

fers in the fact that it inherits from another C-library specifically designed for linear SVMs. It

also differs slightly in the way it learns from the datapoints given through training. The decision

function in LinearSVC is the same as defined in Equation 4.11

As with SVM, features are extracted from the signal x[n]. The features were selected from

the proposed features by the RFECV algorithm. All features were selected, giving a total of 26

features. Using Cross-validation with k = 50 folds on the training set for Subject 1, an accuracy

of 95± 8% was achieved. Which is the same as SVM with linear kernel. The hyperparameters

were optimized through a grid search to C = 10. To validate this performance, the trained model

is used to predict on the test set. Figure 5.4 shows the Confusion Matrix when using the Linear

SVC classifier on the test set.
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Figure 5.4: Showing the Confusion Matrix of the LinearSVC model. An ideal model would have
52 true positives for each class.

The accuracy on the test set was shown to be 95%, where the Classification Report in Table

5.5 shows different scores for the respective classes.

Table 5.5: Classification Report

Class Precision Recall f1-score support

Blink 1.00 1.00 1.00 52
Down 0.87 0.92 0.90 52
Left 0.93 0.98 0.95 52
Straight 1.00 0.94 0.97 52
Right 0.98 0.96 0.97 52
Up 0.92 0.88 0.90 52
avg/total 0.95 0.95 0.95 312

The scores presented by the Classification Report in Figure 5.5 are similar to those shown

in the other models. The only noticeable change is the Up class, which showed a recall of 88%,

whereas the SVM based models showed recall above 92% for all classes.



5.4. OTHER CLASSIFIERS 91

5.4 Other classifiers

To give comparison basis for the SVM classifiers presented, some other algorithms were also

tested. These will not be presented as detailed because they are only used as a comparison

basis in this thesis. In this section only the most valuable metrics for Subject 1 will be presented,

the rest can be found in Appendix E.

5.4.1 Random forest

Hyperparameters were tuned to:

• number of estimators = 54

• max depth = 30

• min samples leaf = 1

Chosen features were: index: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 22, 23, 24,

25. Giving a total of 23 features. With a Cross-validation with k = 50 folds, the classifier achieved

an accuracy of 94±10%.

5.4.2 K-nearest neighbors

Hyperparameters were tuned to:

• number of neighbors = 5.

The RFECV algorithm does not support feature selection for KNN due to how KNN works, as

introduced in Section 4.4.3. The same features as used for the Random Forest classifier were

therefore chosen. With a Cross-validation with k = 50 folds, the classifier achieved an accuracy

of 94±9%.
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5.5 Summary and comparison

A short summary between the different models are presented in Table 5.6 to give a short overview.

Table 5.6: Result summary, Subject 1

Model Accuracy (CV) Features (no.)

SVM (RBF), samples 87±13% 150
SVM (RBF) 96±7% 23
SVM (Linear) 95±9% 23
LinearSVC 95±8% 26
Random forest 94±10% 23
KNN 94±9% 23

The presented results so far have been for Subject 1, where this subjects data has been used

both to train and test the models. The same features and hyperparameters as found for subject

1 has been used with the data from Subject 2. The reason for not selecting features and tuning

parameters for Subject 2 is to see the viability of using one subject to find features and hyper-

parameters, and another to predict his eye movements by only introducing another dataset. All

Confusion Matrices for Subject 2 can be found in Appendix D. Table 5.7 shows a short summary

of the accuracies achieved with the different models for Subject 2.

Table 5.7: Result summary, Subject 2

Model Accuracy (CV) Features (no.)

SVM (RBF), samples 81±17% 150
SVM (RBF) 94±8% 23
SVM (Linear) 93±9% 23
LinearSVC 94±8% 26
Random forest 94±9% 23
KNN 92±12% 23

It can be seen in Table 5.7 that subject 2 performs well using the same features and hyperpa-

rameters as Subject 1. The accuracies for Subject 2 are slightly lower than for Subject 1, where

the top performing models achieved an accuracy of 94±8%.

In addition to training and testing on data from the respective subjects, the cross-subject

portability was tested by training on one subject and testing on the other. As a final comparison,
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data from both subjects was used to train a model and tested on the subjects respectively. This

is done by appending the training data from the subjects together and use the same test sets

as before when testing. The exact same data as with the previous models is used for testing

and training, the only difference is that the model trains on data from both subjects, doubling

the number of datapoints used for training. The classifier used is the best performing model

for Subject 1, SVM with RBF kernel, with the hyperparameters C = 10 and γ = 0.01. A Cross-

validation with k = 50 folds for the model trained on both subjects achieved an accuracy of 94

±7%. Table 5.8 shows a subject comparison of the accuracies achieved.

Table 5.8: Subject Comparison. Each cell is the accuracy of the model when trained on a subject
(rows) and tested on another subject (columns).

Subject 1 2 Both

1 94.9% 76.2% N/A
2 76.6% 94.2% N/A
Both 93.6% 92.6% 93.1%

The Confusion Matrices for the test sets from the different subject combinations can be

found in Appendix F. As a reminder, the results are only presented from one of the many possi-

ble splits of training and testing. Both worse and better test results can be found when altering

this split.

It can be seen in Table 5.8 that the results from testing on a subject is dependent on the

subject(s) used for training the model. Training on Subject 1 and testing on Subject 2 showed

an 18% decrease in accuracy from 94.2% to 76.2% compared to training and testing on Subject

2. Using the test data from Subject 1 when training on Subject 2 showed an 18.3% decrease

from 94.9% to 76.6% compared to training and testing on Subject 1. Both subjects showed a

small decrease in accuracy when training a model on both subjects but lies around the accuracy

that was shown when training and testing on them, respectively. Both subjects also showed

accuracies within the range given from the Cross-validation result of 94±7%, when training a

model on both subjects.

It can be concluded that the classification is poor when training on one subject and testing

on another. However, a single model can provide good results for both subjects by introducing

data from both subjects during training.
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All results presented in this chapter were with a window length of lw,c = 250. A window

length of 250 equals a time period of 1 second as the sampling frequency is fs = 250 Hz. The

models presented are specific to their window lengths, varying the window length will therefore

result in a different model. This is something to keep in mind when reading further. The window

length of 250 was set as a basis and showed great results offline, this is not necessarily the case

for online classification. A proof of concept was shown in this chapter, using offline results as a

measure of its success. The two top performing classifiers from this chapter, SVM based model

with RBF kernel and LinearSVC, will be implemented in an online classification scheme to see

if the same classifiers can be used in a real-world classification application.



Chapter 6

Controller and Online Results

To use predictions from the classifier to issue commands to a drone, a controller is needed. The

drone used is a Parrot AR.drone 2.0 [106]. It does not come with a Python API from the man-

ufacturer, but there are 3rd party APIs available. The API used for this project is the ps_drone

API by J. Philipp de Graaff [47]. The controller-logic will be used together with the predictions

to give a measure of online classification performance. The online classification performance

can therefore also give an indication of how accurately the drone can be controlled using the

predictions as control inputs. Figure 6.1 gives a quick recap of signal names and modules in the

system closely related to the controller.

Figure 6.1: Block diagram with an overview of essential signal names.

It can be seen in Figure 6.1 that the signals p[i ] and c[h] have different indexing. This is be-

cause they are produced at a different rate. The predictions p[i ] are produced at a fixed rate, and

the commands to the drone c[h] are issued at irregular intervals, depending on the sequence of

p[i ]. This chapter presents the design of the controller and the online experiments performed

in this work.
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6.1 Online feature extraction and classification

When predicting, features are calculated from the most recent pre-processed samples x[n] over

a window of length lw,c , for each prediction. The prediction frequency is found by Equation

6.1 with o = 75% overlap. The o = 75% overlap is chosen both from experimental tuning and

because T. Hörmann et al. [107] found this to be optimal for SVM classifiers.

fp = fs

(1−o)lw,c
= 5 Hz, (6.1)

where:

• fs = 250 Hz is the sampling frequency

• lw,c = 200 is the window length. Will be further explained in Section 6.3

In energy efficiency terms it is favorable to have a low prediction rate, as this means fewer

predictions (less calculation). However, any overlap less than o = 75% was shown in [107] to

degrade the performance of the classifier, and any higher did not provide any significant gain in

classification accuracy. The rate of predictions is therefore kept to be 5 Hz to keep the overlap of

o = 75%.

6.2 Controller design

There are some alternatives to how one can design the controller. An observation of the predic-

tions shows that there are some glitches (wrong predictions). Dealing with these wrong predic-

tions was the main concern when designing the controller. There are ways to deal with this, for

example one could design a state-machine with some kind of glitch tolerance. We can look at a

series of predictions in Equation 6.2 during an "Up" movement, to get a pinpoint on how to do

this. The earliest arriving prediction is the one to the left and the most recent is the one to the

right.

p[i ] = ...,5,5,5,8,8,0,8,2,5,2,2,2,2,2,5,5,5,5, ... (6.2)
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By looking at the predictions in Equation 6.2, we can see that two consecutive predictions

can be used to trigger a directional command to the drone. A mechanism is also needed to

reliably return to the initial state when the predictions settles on a series of p[i ] = 5 predictions.

Another observation from Equation 6.2 is that the first prediction after a sequence of p[i ] =
5 predictions is often correct. These observations are used as a basis for the designed state-

machines, as will be introduced shortly.

As a reference, the translation of predictions to drone commands can be seen in Table 6.1

Table 6.1: Drone commands based on out-coming predictions

Label p[i ] Eye movement Drone movement c[h]

0 < 3 Blinks None
0 3 Blinks in 3s Takeoff or land
2 Down Fly backwards
4 Left Rotate counter clockwise
5 Returned to center Hover
5 Look straight None
6 Right Rotate clockwise
8 Up Fly forwards

Before introducing the state-machine we first need to introduce the "Other" and "Opposite"

translation dictionaries, defined in Tables 6.2a and 6.2b.

Table 6.2: Translation dictionaries

(a) "Opposite"

Input Output

2 8
4 6
6 4
8 2
0 0

(b) "Other"

Input Output

2 4,6
4 2,8
6 2,8
8 4,6
0 2,4,6,8

The purpose of these dictionaries is to identify how the consecutive predictions p[i ] relate

to the movement being performed c[h]. So, let’s say for example the drone is flying forwards

after a series of "eye up" predictions p[i ] = 8, then the opposite prediction would be "eye down"

p[i ] = 2. The "Opposite" dictionary shows all the different predictions and their opposites. The
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"Other" dictionary is for identifying the predictions that is not the opposite, but rather any other

directional prediction. Both these dictionaries are used to evaluate when the drone should stop

its current movement and return to an idle state, where it can accept a new movement command

c[h] ∈ {2,4,6,8}.

Figure 6.2 shows the state-machine diagram for the directional commands. The actual code

implementation of the state-machines can be found in Appendix H and are designed as a five-

layer deep if-tree. This is not necessarily a good implementation, but it is implemented that

way for readability and could easily be flattened to two layers at the expense of more complex

statements. The diagrams are produced by best effort to capture the essence of this if-tree, so

where it gets complicated, it might be better to look at the implementation in the appendix.

Variable names in the diagrams corresponds with the code in the appendix.

Figure 6.2: State-machine for interpreting the predictions and issue directional commands to
the drone.

As Figure 6.2 shows, the glitch tolerance is implemented so that two consecutive predictions

of the same class is needed to transmit a directional command to the drone (S2). Any less than

two consecutive predictions of the same class will increase the number of undesired drone com-

mands. Increasing the number of consecutive class predictions will cause the controller to miss
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more of the desired drone commands, refer to Equation 6.2. The rest of the state-machine dia-

gram is a bit complicated, but the purpose is to issue the "hover" command c[h] = 5 as fast as

possible when the eyes return to center (S7 and S6), and then determine when predictions has

settled after the movement and get ready for the next directional command. Although the "Op-

posite" and "Other" conditions are seemingly redundant, there is a reason for differentiating

between "Opposite" and "Other" directions. The reason is the opportunity to add a state tran-

sition from S3 to S2 for going directly between two directions (shown in dotted lines). This was

tested, but only worked for some of the better classifiers tested online. In order to make a more

general-purpose state-machine that works good on classifiers with lower precision, this state

transition from S3 to S2 is removed for the online testing. However, if you have a very precise

classifier, this is a nice feature to include as the flying experience becomes a bit more intuitive

as you do not need to wait for the state-machine to return to S0 before doing a new movement.

Figure 6.2 shows the state-machine diagrams for the takeoff and land commands, controlled

by blinks.

Figure 6.3: State-machines for interpreting the Blink predictions and issue takeoff and land com-
mands to the drone.
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In order to determine when to start or land the drone, three state-machines are designed.

The first is a blink counter. The second resets the blink counter if more than three seconds has

elapsed since the last blink. While the third observes if the drone is flying or not and issues the

correct fly/land command if the blink counter reaches 3. The "now" variable is the variable that

holds the system time and is updated for each prediction p[i ]. S is the state of the directional

state-machine where S < 2 means that the state of the directional state-machine must be either

S0 or S1.

As a feedback to the user a text-to-speech engine is utilized, keeping the user updated with

the commands sent to the drone. When running the system on Windows the pywin32 library

[108] is used, and for Linux the eSpeak [109] is used. The reason for using different Operating

Systems (OS’s) is that the PS-drone API needs a posix [110] compliant OS and when not flying

the drone, a Windows system is used. Every time a command c[h] is sent to the drone, or the

transition from S8 to S0 is made, this is announced to the user through speakers or connected

headphones. This makes it easier to understand what the drone is "thinking" and control it

accordingly.

6.3 Window size and model selection

Through initial testing of the controller, it was quickly observed that the window length lw,c

highly affects the responsiveness of the system. Having a shorter window length means shorter

time periods for each movement which allows for more movements in quick succession. The

classifiers presented in the offline results Chapter 5 used a window length of lw,c = 250, where

the whole window was dedicated to one movement. This means that only movement could

be registered every second (sampling frequency fs = 250 Hz). This is very slow when used in

practice and makes it difficult to control the drone intuitively as one must be vary to not perform

more than one movement within that second.

In addition to the responsiveness, varying the window length lw,c also alters the classifier

performance. As many features are calculated over the whole window, the length can affect

the importance of the features. The feature value might not have the same importance for the
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classification when calculating over a different number of samples (window size), as some sam-

ples might be left out when reducing the window size. In short, varying the window length lw,c

results in a different model which can have different performance in form of accuracy, recall

etc. Thus, the best performing classifier from Chapter 5 might not be the best when tweaking

the window size for online classification.

An experimental approach was chosen to find the middle ground between performance

metrics and responsiveness, by tweaking the window length lw,c and testing these lengths on

different models. The starting point was based on the results from Chapter 5 with the best per-

forming classifiers (LinearSVC and SVM with RBF kernel).

6.4 Evaluation method

Evaluating the online classifier was more complicated compared to offline classification, as the

test data is the continuous stream of calculated features from the scalp electrodes. The model

can still be evaluated on the training data using CV, but a method for evaluating online per-

formance is needed (how CV works was explained in Section 4.3.2). Instead of looking at how

the drone moves, a terminal window is used to print the state of the controller and the stream

of predictions. Using a web camera to record the eye movements while observing the prints in

terminal window, it is possible to count the True Positive, True Negative, False Positive and False

Negative. For this, a recording environment is setup using the Open Broadcaster Software (OBS)

[111]. This allows recording of both web camera and terminal window at the same time. Figure

6.4 shows the environment used.
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Figure 6.4: Picture of the environment used for online evaluation.

By looking at the recordings after performing a series of movements, the performance of the

online classification can be evaluated. The video is recorded at 30 Frames Per Second (FPS). As

a little side-note, the system delay can now be calculated by counting the frames from a move-

ment was started till the system issued a command c[h]. It was found that 13 frames elapsed

before the command was issued. This gives the system a total delay of 430 ms. This delay is

mainly due to prediction frequency and overlap between windows. The predictions are made in

1/ fp = 200 ms intervals, so about half the delay can be accounted for from that. The other half is

a bit vague, but it is not unrealistic that around 50 samples from a movement must be within the

sliding window before the classifier predicts that movement. If this is the case, around 400 ms

of delay is accounted for. The EEG headset itself is another source of delay, but this is not in-

vestigated as the delay is considered small enough to not be an issue. It takes 296 µs to perform

a prediction (will be shown in Section 7.4), so prediction time is negligible in this context. The

delay did, however, not seem to be an important factor when controlling the drone.

The movements are performed in an undefined order, but the number of each movement

should be approximately the same (looking straight is an exception). Scores for accuracy, pre-

cision and recall are calculated as an unweighted average for all classes. The precision, recall

and f1-scores found in the Classification Reports are calculated for the respective classes where
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the bottom line of the Classification Report shows the weighted average score across all classes.

Confidence intervals for the accuracy are calculated with a Wilson interval [112], with a confi-

dence level of 95%. The formula can be seen in Equation 6.3 [112].

p̂ + z2

2n

1+ z2

n

± z

1+ z2

n

√
p̂(1− p̂)

n
+ z2

4n2
, (6.3)

where:

• p̂ is the binomially-distributed observation

• n is the number of observations

• z = 1.96

The scores for online accuracy differ from the offline accuracies presented in Chapter 5. The

offline accuracies in Chapter 5 was presented as the result of Cross-validation on the training

data, ± the standard deviation. The accuracies for online classification is given with a confi-

dence interval instead of the standard deviation. This is because the offline results were calcu-

lated using Cross-validation on the training data, while online results show scores from online

tests.

When evaluating performance, a True Positive (ref. 4.3.1) for the different directional eye

movements and blinks was counted if the drone command c[h] matches the eye movement

performed by the subject. A True Positive for the Straight class was counted if no directional

drone command c[h] = 5 is made while the subject looks straight ahead. Meaning that if no

directional drone command was transmitted before an actual movement was performed by a

subject, a True Positive for the Straight class was counted. A wrong drone command c[h] (ex.

looked right and command to left c[h] = 4) will count as False Negative for the direction the

drone should have flown in, and a False Positive for the one it actually flew to.

Straight and Blink are considered to be the most important classes, because the drone should

stay still when looking straight ahead and the Blink class should be able to reliably control take-

off and landing intentionally. In an attempt to increase the correctness of the Straight and Blink

predictions, a "no-event" class multiplier mnc was introduced. This is a multiplier that increases

the number of datapoints used when training the classifier, for the Straight and Blink classes.
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This results in an unbalanced dataset, where the Straight and Blink classes has a higher repre-

sentation. Training on too many Straight and Blink datapoints will however degrade the perfor-

mance of the other classes, so it is important to tune this multiplier.

As the scores are determined by looking at a video recording of the test subject and terminal

output, there will be some kind of subjective evaluation of what is counted as correct. But the

general rule used for these experiments is that a period of staring straight (5) before a movement,

equals a correct Straight prediction if no directional drone commands were transmitted during

that period. When a movement is performed, the prediction (2,4,6,8) is counted as wrong or

correct depending on the command sent to the drone. This method has some weaknesses as no

True Positive, False Positive or False Negative are counted for stopping the movement (returning

to center position). This means that it is possible that even though the subject has looked back

to center (from left position), and is currently looking straight, the state of the machine might tell

the drone to keep flying left due to a miss-prediction. There is currently no evaluation method

for such cases.

6.5 Online Results

With the method for validation and evaluation as proposed through Section 6.4, several on-

line tests were performed on several models based on LinearSVC and SVM with RBF kernel. The

models were tested with varying window sizes lw,c and "no-event" multipliers mnc. Training was

done in the exact same way as in Chapter 5, with an exception of introducing more datapoints

for the Blink and Straight classes through the "no-event" multiplier mnc. The only difference is

that the test set now is the continuous stream of feature extracted electrode recordings. Features

were selected with the RFECV algorithm (as explained in Section 4.1.4) for each model. By ex-

perimenting with different window sizes and "no-event" multipliers, it was found that the best

results was obtained by having a window size of lw,c = 200, no dynamic centering of the data (as

introduced in Section 3.3.6 and a "no-event" multiplier mnc = 1.2. This results in an increase

to 1664 datapoints used from the datasets, 260 for Left, Right, Up and Down while Blink and

Straight has 312 datapoints each.
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This section presents the observed online results with window size lw,c = 200 and "no-event"-

class multiplier mnc = 1.2. First when training and testing on the respective subjects, then when

training on both subjects and testing on them respectively. The features selected by the RFECV

algorithm for each model can be found in appendix I. The Confusion Matrices are given in per-

cent because of the unbalanced nature of the tests, each Confusion Matrix should therefore be

studied carefully. The number of different movements performed in the tests is given in the

figure texts. The classifier hyperparameters are as with offline classification, C = 10 and γ= 0.1.

6.5.1 Testing with all classes

It was observed that the Down class confuses the classifier both when based on LinearSVC and

SVM. This degrades the control of the drone drastically. This was the case for both subjects over

a series of different models and was quickly concluded as a problem for proper control of the

drone. To illustrate the confusion from the Down class, two tests where Subject 1 tests on a SVM

based model with RBF kernel and Subject 2 tests on a LinearSVC based model are highlighted.

Subject 1, SVM based model with RBF kernel

Figure 6.5 shows the Confusion Matrix from a test with all movements.
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Figure 6.5: Confusion Matrix for SVM with RBF kernel while training on Subject 1 and testing
on Subject 1 online with extracted features. An ideal model for this test case would have 13 true
positives for Blink, 30 for Straight, 6 for Left, 5 for Right, 5 for Down and 7 for the Up class.

The model achieved an accuracy of 78.8 (67.5, 86.9)% , precision of 78.8% and recall of 81.0%.

These are not bad results. It can be seen in Figure 6.5 that the Blink class has about half its

predictions correct, while the other half is predicted as Straight and Down. The Classification

Report in Table 6.3 shows different scores for the respective classes.

Table 6.3: Classification Report SVM Subject 1

Class Precision Recall f1-score support

Blink 0.78 0.54 0.64 13
Down 0.40 0.80 0.53 5
Left 1.00 0.83 0.91 6
Straight 0.86 0.83 0.85 30
Right 0.83 1.00 0.91 5
Up 0.86 0.86 0.86 7
avg/total 0.82 0.79 0.93 66

Some scoring metrics to notice are the recall for Blink and precision for Down in Table 6.7.
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Blink had a recall of 54% and Down had a precision of 40%, which is very low. The number of eye

movements performed in this test is also low but was considered enough because of the poor

performance and the illustration purposes.

Subject 2, LinearSVC

The same validation procedure was used for Subject 2 but testing on a LinearSVC based model

instead of SVM. Figure 6.6 shows the Confusion Matrix from a test with all movements.

Figure 6.6: Confusion Matrix for LinearSVC while testing on Subject 2 online with extracted
features. An ideal model for this test case would have 4 true positives for Blink, 51 for Straight, 1
for Down, 7 for Left, 6 for Right and 4 for the Up class.

Figure 6.6 shows the confusion between Straight and Down, resulting in an overall accuracy

of 58.9 (47.4, 69.5)%, precision of 83.9% and recall of 90.2%. The predictions for all the classes

except Straight are very good on Subject 2. Straight was, however, more often than not predicted

as Down. This makes it hard to tell if a Down prediction was from a miss-prediction from the

Straight class, or if it was a correct prediction. The Classification Report in Table 6.4 shows dif-

ferent scores for the respective classes.



108 CHAPTER 6. CONTROLLER AND ONLINE RESULTS

Table 6.4: Classification Report Linear SVC Subject 2

Class Precision Recall f1-score support

Blink 1.00 1.00 1.00 4
Down 0.03 1.00 0.06 1
Left 1.00 1.00 1.00 7
Straight 1.00 0.41 0.58 51
Right 1.00 1.00 1.00 6
Up 1.00 1.00 1.00 4
avg/total 0.99 0.59 0.70 73

As with the Confusion Matrix, Table 6.4 shows that the recall of the Straight class and preci-

sion of the Down class are very low. As with Subject 1 the number of eye movements are low but

the Straight class, that causes the most trouble, has a total number of 51 predictions. Which in

this case is considered sufficient as a result of the bad performance and illustration purposes.

Evaluation

Both subjects showed weaknesses when using all four directions in addition to blinking and

looking straight ahead. Subject 1 showed a weakness with the confusion for Blink, which was of-

ten predicted as Straight and Down, while Subject 2 showed a large confusion between Straight

and Down. Straight and Blink are considered important classes as Straight is a "no-event" class,

while Blink is used to start flying and landing the drone. No conclusion could be made to as of

why the Down class is miss-predicted. An idea to increase performance was to not allow Down

to count as a directional command in the state-machine. By discarding the "Down" class as a

directional command, it is possible to achieve better control at the cost of having only three di-

rectional movements. The only consequence is that the drone will not be able to fly backwards.

Instead, the drone needs to rotate 180° before flying forwards to substitute the Down command.

The newly proposed state machine is tested in the next sections.
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6.5.2 New state-machine without Down

The new state-machine for the directional commands can be seen in Figure 6.7.

Figure 6.7: The new directional state-machine, without Down as a command.

It can be seen in Figure 6.7 that the new state-machine is similar to the old one, with some

minor changes. The state transition between S0 and S1 is changed to only include classes 4, 6 or

8. As a consequence, the loop back now also includes class 2. This is the state-machine that will

be used for the rest of the thesis.

6.5.3 Online testing with LinearSVC

Tests were performed on the models created from LinearSVC based on the liblinear C-library

[113]. The models are expected to have a better performance than those presented in Section

6.5.1. The Down class is no longer considered as a direction for the drone to fly in, therefore

the Confusion Matrices and Classification Reports does not contain the Down class. The Down

predictions p[i ] = 2 is only discarded from the state transition from S0 to S1 in the state machine,

otherwise it is used as before.
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Subject 1

Figure 6.8 shows the Confusion Matrix when testing Subject 1 on the LinearSVC based model.

Figure 6.8: Confusion Matrix for LinearSVC while testing on Subject 2 online with extracted
features. An ideal model for this test case would have 37 true positives for Blink, 108 for Straight,
23 for Left, 24 for Right and 22 for the Up class.

When comparing Figure 6.8 to Figure 6.5 it can be seen that the predictions has changed

slightly for the Left, Right, Up and Straight classes. Something to notice is the fact that Blink

still is confused, but this time it miss-predicts as the Up class instead of Straight and Left. This

confusion between Blink and Up was not present in the SVM based model in Section 6.5.1. It

is possible that this confusion is present due to the fact that the model is based on LinearSVC,

which should be investigated. The overall performance of the presented model based on Lin-

earSVC achieved an accuracy of 88.3 (83.3, 92.0)%, precision of 87.7% and recall of 87.0%. This is

an increase from the state-machine using all movements as in Section 6.5.1. The Classification

Report in Table 6.5 shows different scores for the respective classes.



6.5. ONLINE RESULTS 111

Table 6.5: Classification Report LinearSVC Subject 1

Class Precision Recall f1-score support

Blink 0.95 0.51 0.67 37
Left 0.96 1.00 0.98 23
Straight 0.99 0.96 0.98 108
Right 1.00 0.92 0.96 24
Up 0.49 0.95 0.65 22
avg/total 0.93 0.88 0.89 214

The number of eye movements performed in each direction has increased in this test, com-

pared to the test in Section 6.5.1. The Classification Report in Table 6.5 shows that the recall is

high for all classes except Blink, which is at 51%. It can also be seen that Blink has a very high

precision of 95% which means that it is almost always correct when a Blink is actually predicted.

The low recall of the Blink class affects the precision of the Up class, giving it a precision of 49%.

Overall, the model performs well on all classes except Blink and Up. Finding a model which does

not get confused between these two classes would result in a very good classifier.
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Subject 2

Figure 6.9 shows the Confusion Matrix when testing Subject 2 on the LinearSVC based model.

Figure 6.9: Confusion Matrix for LinearSVC while testing on Subject 2 online with extracted
features. An ideal model for this test case would have 52 true positives for Blink, 133 for Straight,
24 for Left, 24 for Right and 24 for the Up class.

It can be seen in Figure 6.9 that the Straight class has improved compared to the state ma-

chine using the Down class as in Figure 6.6. The Right, Left and Up classes are very accurate

with an accuracy of 100%. There are, however, weaknesses shown for the Blink and Straight

classes. Blink is as with Subject 1 mistaken as the Up class, but with a smaller degree of confu-

sion than for Subject 1. 12% of the straight-ahead events were also predicted as the Left class.

Subject 2 achieved an overall accuracy of 84.4 (79.5, 88.4)%, precision of 80.1% and recall of

90.2% when not using the Down class in the state-machine. This is an increase of 25.5% in ac-

curacy compared with the state-machine including the Down class as a directional command.

The Classification Report in Table 6.6 shows different scores for the respective classes.



6.5. ONLINE RESULTS 113

Table 6.6: Classification Report LinearSVC Subject 2

Class Precision Recall f1-score support

Blink 0.92 0.69 0.79 52
Left 0.57 1.00 0.73 24
Straight 1.00 0.82 0.90 133
Right 0.92 1.00 0.96 24
Up 0.59 1.00 0.74 24
avg/total 0.90 0.84 0.85 257

As expected from looking at the Confusion Matrix in Figure 6.9 it is seen that the precision of

the Left class is low due to the miss-predictions when looking straight ahead. The Up class can

be seen to have low precision due to the fact that blinks are frequently miss predicted as Up.

Evaluation

The LinearSVC based models showed some distinct weaknesses for both test subjects by con-

fusing Blinks for the Up class. This makes the control of the drone bad in practice, as the drone

could unintentionally start flying forwards. The classifier showed strengths in classifying right,

left and up movements but does not make up for the weakness showed for the blinks. It would

be impossible to control the drone properly with this classifier, as flying forwards unintention-

ally clearly is a problem.

6.5.4 Online testing with SVM

A SVM based model with RBF kernel showed the best results in the offline results. It is therefore

expected that this model also will perform better than the other classifiers when testing online.

Subject 1

Figure 6.10 shows the Confusion Matrix when testing Subject 1 with a model based on SVM with

RBF kernel.
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Figure 6.10: Confusion Matrix for SVM with RBF kernel while training on Subject 1 and testing
on Subject 1 online with extracted features. An ideal model for this test case would have 58 true
positives for Blink, 189 for Straight, 45 for Left, 43 for Right and 49 for the Up class.

Figure 6.10 shows that the model performs very well. All classes are distinguishable by the

model, resulting in an accuracy of 97.4 (95.3, 98.6)%, precision of 96.4% and recall of 96.6%. The

Classification Report in Table 6.7 shows different scores for the respective classes.

Table 6.7: Classification Report SVM Subject 1

Class Precision Recall f1-score support

Blink 0.93 0.97 0.95 58
Left 0.96 0.98 0.97 45
Straight 0.99 0.99 0.99 189
Right 0.98 0.98 0.98 43
Up 0.96 0.92 0.94 49
avg/total 0.97 0.97 0.97 384

As the Confusion Matrix indicated in Figure 6.10, all classes score high in every scoring met-

ric with an average of 97%. One class that really strengthens this classifier for Subject 1 is the
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Straight class, which achieved a precision-, recall- and f1-score of 99%.

Subject 2

Figure 6.11 shows the Confusion Matrix when testing on Subject 2.

Figure 6.11: Confusion Matrix for SVM with RBF kernel while testing on Subject 2 online with
extracted features. An ideal model for this test case would have 47 true positives for Blink, 122
for Straight, 28 for Left, 29 for Right and 31 for the Up class.

It can be seen that Straight is the class which confuses itself most for other classes, where

all classes are represented in its confusion. The model has very high accuracy for the remaining

classes with a minimum of 97% correct predictions. The overall test achieved an accuracy of

92.6 (88.7, 95.2)%, precision of 90.5% and recall of 95.6%. The Classification Report in Table 6.8

shows different scores for the respective classes.
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Table 6.8: Classification Report SVM Subject 2

Class Precision Recall f1-score support

Blink 0.88 0.98 0.93 47
Left 0.78 1.00 0.88 28
Straight 0.99 0.87 0.93 122
Right 0.90 0.97 0.93 29
Up 0.97 0.97 0.97 31
avg/total 0.94 0.93 0.93 257

Table 6.8 shows that the precision for the Left class is low compared to the others. This is

because Straight is more often miss-classified as Left, as shown in Figure 6.11. When comparing

with Subject 1, the only weakness is that the Straight class showed a slight confusion for the

other classes.

Evaluation

The SVM based model with RBF kernel was as with the offline results, the best performer for

both subjects. Subject 1 was close to having no problem distinguishing the movements at all

with an accuracy of 97.4 (95.3, 98.6)%, while Subject 2 showed a small weakness in the Straight

class achieving an accuracy of 92.6 (88.7, 95.2)%. No other tested model was able to surpass

those based on SVM with RBF kernel, for either subjects. It showed great promise for the sub-

jects when training and testing on them respectively. Another thing to evaluate is how well the

model works when trained on both subjects and tested on them respectively.

6.5.5 Unified model for SVM with RBF kernel

The unified model based on SVM with RBF kernel is trained on data from both test subjects, so

there are twice as many datapoints used to train this model.

Subject 1

Figure 6.12 shows the Confusion Matrix when training on both subjects and testing on Subject

1.
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Figure 6.12: Confusion Matrix for SVM with RBF kernel while training on both subjects and
testing on Subject 1 online with extracted features. An ideal model for this test case would have
32 true positives for Blink, 129 for Straight, 34 for Left, 33 for Right and 31 for the Up class.

By comparing to the specialized model for Subject 1 in Figure 6.10 it can be seen that there

is a bigger confusion for the Blink and Left classes. There has also been a small decrease for

the Straight and Right classes, while varying slightly for the better for the Up class. Looking

at the overall performance, the model achieved an accuracy of 93.1 (89.3, 95.6)%, precision of

90.5% and recall of 92.2%. The Classification Report in Table 6.9 shows different scores for the

respective classes.

Table 6.9: Classification Report SVM Subject 2

Class Precision Recall f1-score support

Blink 0.93 0.81 0.87 32
Left 0.97 0.88 0.92 34
Straight 1.00 0.95 0.97 129
Right 0.89 0.97 0.93 33
Up 0.74 1.00 0.85 31
avg/total 0.94 0.93 0.93 259
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As with the Confusion Matrix in Figure 6.12 it is seen that the recall for Blink and Left are

lower than the rest. The Up class also shows a lower precision because of blinks being miss

predicted as Up. The overall result is, however, good with an average weighted recall of 93%

and weighted precision of 94%. It would be ideal to fly the drone on the specialized model for

Subject 1, but it is very possible with the unified model as well.

Subject 2

Figure 6.13 shows the Confusion Matrix when training on both subjects and testing on Subject

2.

Figure 6.13: Confusion Matrix for SVM with RBF kernel while training on both subjects and
testing on Subject 2 online with extracted features. An ideal model for this test case would have
45 true positives for Blink, 124 for Straight, 28 for Left, 26 for Right and 27 for the Up class.

When comparing this to both training and testing on Subject 2 in Figure 6.11 it can be seen

that there are more miss-predictions for Up, Left, Right and Blink. However, Straight increased

from 87% to 99% when training on both models. Subject 2 achieved an accuracy of 96.0 (92.8,

97.8)%, precision of 93.8% and recall of 94.4% when the model was trained on both subjects.
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This is an increase in accuracy of 3.4% from only training on Subject 2. The Straight class is

the most frequent, so an increase in correct predictions for the Straight class will have a higher

impact than an increase for the other classes. The reason for the increase for the Straight class

might be due to "better" Straight datapoints from Subject 1. As introduced in Section 3.3.5, the

inspection of the datasets was performed by different people, meaning that the quality of the

datapoints in the datasets is subjective. This can result in different classifier performance from

the two datasets. The Classification Report in Table 6.10 shows different scores for the respective

classes.

Table 6.10: Classification Report SVM Subject 2

Class Precision Recall f1-score support

Blink 0.93 0.91 0.92 45
Left 0.96 0.93 0.95 28
Straight 1.00 0.99 1.00 124
Right 0.96 0.96 0.96 26
Up 0.83 0.97 0.88 27
avg/total 0.96 0.96 0.96 250

As with Subject 1, Table 6.10 shows a small weakness for the Up class as both Blink and the

Left class had a few miss predictions as Up (shown in Figure 6.13). The overall performance is

however very good with an average weighted recall and weighted precision of 96%.

Evaluation

The SVM based models with RBF kernel, C = 10, γ = 0.01, ncm = 1.2, no shifting of data (as

introduced in Section 3.3.6) and a window length of lwc = 200 proved to be sufficient both in

the specific case when training and testing on respective subjects, and when training on both

subjects. The average accuracy for both subjects from all the tests performed (both unified and

separately) is 95.0% (93.6, 96.2)%. This shows that the performance is high both when creating

specialized and general models. Table 6.11 shows a subject comparison when testing the SVM

based models.
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Table 6.11: Subject Comparison. Each cell is the accuracy achieved when trained on a subject
(rows) and tested on another subject (columns).

Subject 1 2

1 97.4 (95.3, 98.6)% N/A
2 N/A 92.6 (88.7, 95.2)%
Both 93.1 (89.3, 95.6)% 96.0 (92.8, 97.8)%

The average cross-subject accuracy achieved when training on both subjects is 94.5 (92.2,

96.2)%.

6.6 Summary and comparison with state of the art

First, the state machine with all movements considered was tested and was shown to have trou-

ble distinguishing between classes, for both subjects. Altering the state machine to no longer

consider Down (p[i ] = 2) as a state transition from S0 to S1, but instead only use it as the "Other"

and "Opposite" transitions, increased the performance for both subjects. The LinearSVC based

models struggled to properly classify the blinks for both subjects but showed great promise for

the other classes. While the SVM based model with RBF kernel showed good results for both

subjects when training and testing respectively. Training on both subjects and testing on them

respectively decreased the performance slightly for Subject 1 but increased the performance

for Subject 2, having both subjects perform well on the unified model, proving that the system

is capable of being used on several subjects. Table 6.12 shows a short summary of the online

prediction results achieved.
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Table 6.12: Summary of the online results achieved

Classifier Training
subject

Testing
subject

Accuracy (%) Features (no.)

SVM (RBF with Down) 1 1 78.8 (67.5, 86.9) 19
LinearSVC (Down) 2 2 58.9 (47.4, 69.5) 26
LinearSVC 1 1 88.3 (83.3, 92.0) 19
LinearSVC 2 2 84.4 (79.5, 88.4) 26
SVM (RBF) 1 1 97.4 (95.3, 98.6) 19
SVM (RBF) 2 2 92.6 (88.7, 95.2) 18
SVM (RBF) Both 1 93.1 (89.3, 95.6) 23
SVM (RBF) Both 2 96.0 (92.8, 97.8) 23

Training on both subjects and testing on them respectively, using the top performing SVM

based model with RBF kernel, resulted in an average cross-subject accuracy of 94.5 (92.2, 96.2)%,

average weighted recall of 94.5% and average weighted precision of 95%, which is a very good

result. This is comparable to results shown in literature with similar classification schemes.

[39] achieved an accuracy of 97% for a classification scheme with horizontal movements

and blinks using a K-Nearest Neighbors classifier. They also managed to achieve an average

unweighted accuracy of 96.7% for all classes respectively with a SVM based classifier, where

their average recall was at 99% for looking straight ahead but only between 32 to 52% (±29.6%)

for blinks, right and left eye movements.

[44] achieved an average accuracy of 85.2% with a self-made classification scheme (not ma-

chine learning) for all four directional movements, straight ahead and blink.

[45] achieved an accuracy of 88.6% using a threshold-based system and a Hidden Markov

Model to detect horizontal and vertical movements (straight ahead and blink excluded), the

data was low-pass filtered at 7 Hz.

The closest results to this work, which was based on a SVM classifier, achieved an online ac-

curacy of "around 95%" in [43]. This was, however, for blinks, straight, right and left movements

and a bandpass filter from 0.5 to 3 Hz.

[42] used a neural network to distinguish between blinks, looking straight, to the left and

right and achieved an average accuracy of 94%.

The best results found in literature was [46], which used EOG data, high pass filter at 0.05 Hz,
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low pass filter at 35 Hz, wavelet transform and a RBF based neural network to go beyond clas-

sifying the directions of the signal. They tried to classify eye movements in different directions,

and in addition classify how large the eye movements were (in degrees). The proposed system

managed to classify eye movements at ± 10° and larger, with an error rate (standard deviation)

2°. It is hard to compare the results with this paper due to the differences in the task at hand, the

way of presenting the results, the different methods for processing data, extracting features and

the chosen algorithm.

Table 6.13 shows a comparison of the models used and the online results in the different

papers.

Table 6.13: Online accuracy comparison

This work [42] [39] [43] [45]

Model SVM (RBF) Neural Network KNN SVM (Linear) HMM
Classes L,R,U,C,B L,R,C,B L,R,B L,R,C,B L,R,U,D,C
Accuracy (%) 94.5 94 97 ∼ 95 88.6

It is in this thesis proposed a state-machine used for controlling the drone and a model for

predicting the data streaming from the scalp electrodes. It can be said to be performing well

both for the specific case when training and testing on subjects respectively, and in the general

case when trained on both subjects. The offline results, for the SVM based models with RBF

kernel, showed lower accuracy than what was achieved in the online case. The Down class was,

however, excluded from the state-machine by removing Down as a separate command. The

results presented in Table 6.13 proves the effectiveness of the state machine.

Comparing with results from other literature, the proposed method for processing data,

choosing a learning algorithm, finding good features, tuning the hyperparameters and the con-

troller design can be said to be a good alternative with comparable results to methods presented

in other literature.

In addition to the accuracies achieved, it was observed through the evaluation that the sys-

tem is very delicate. The placement of the electrodes, disturbances in the form of muscle move-

ments and the level of concentration all affect the signals. The "state" of the subject is therefore

very important to properly control the state machine. It was observed that it in many cases was
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needed for the subject to "configure" into a calm state before the classifier actually made cor-

rect predictions. During this "configuration" phase, the classifier showed to frequently predict

incorrectly, even when looking straight ahead. It was also observed that this differed between

the subjects, where Subject 2 often needed more time to "configure" than Subject 1. As a re-

minder, the only filtering done in this work is at 0, 50 and 100 Hz using a notch filter, meaning

that very few brain wave frequencies are filtered out. The creation of the dataset was also done

in a calm state, where the subjects were focused on only making eye movements. This, together

with the fact that all types of brain waves are present in the data, could be a reason for the need

to be in a calm state.

Because of this delicateness and the nature of using a state-machine, in addition to training

the machine learning model the subjects trained themselves to get better at using the controller

to output drone commands. It is thought that better results could be achieved through more

training of the subjects. However, having more data for training the model, where the data is

gathered in various states of mind, could also help make for a less delicate system.

Another attempt to reduce the delicateness could be to filter out some of the higher brain

wave frequencies to improve the eye movement classification, as has been done in other pa-

pers such as [43]. No obvious reason to remove these higher brain wave frequencies has been

found, and information contained in these frequencies would also be discarded by doing so. In

a desire to keep all the information in the signals, this filtering has not been performed. The

consequence of this decision unfortunately remains unexplored in this thesis.

The mentioned literature used to compare the online results presented in this thesis con-

cludes with the results presented for their online classification. In this work, the presented re-

sults so far is used as a proof of concept where the next step is to improve it in terms of energy

efficiency. In the next chapter, execution time is used as an indicator of energy consumption

for the system and the proposed features are compared and evaluated for efficiency. A trade-off

between classifier performance and energy consumption is discussed to find a good solution for

a battery powered device implementation. More literature showing similar results to this thesis

is available and will be used as comparison in Chapter 7 to give a point of reference regarding

energy efficiency.
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Chapter 7

Energy Efficiency

Finding the best trade-off between performance and low energy consumption is an impor-

tant aspect of implementing the proposed system on a battery powered device. This chapter

presents a method for finding a feature vector that is more energy efficient than the feature

vector proposed by the RFECV algorithm in Section 6.5, without too much degradation in per-

formance. The RFECV algorithm was introduced in Section 4.1.4. It will also explore the energy

consumption in terms of execution time when making predictions with different classifiers and

how feature combinations affects the execution time. The results presented in this chapter is

run on a private computer with a fresh install of Ubuntu 16.04 LTS where the CPU is of type:

Intel Core i7-4700HQ @ 2.40GHz. Memory is 12GB DDR3 1600MHz.

7.1 Optimization strategy

There are many properties that can be used as indicators for energy consumption such as: spa-

cial locality, regularity, number of operations and critical path [114]. Other indicators could also

be the number and types of mathematical operations or doing an actual implementation on a

mobile device and measure the power consumption. However, this requires a system that is a

bit closer to the implementation stage than this project.

Another indicator is the execution time. Regardless of the benchmark, data load and pro-

gramming language, the ratio between execution time and the energy consumption remains

consistent [115]. Therefore, comparing the execution time between areas of interest in this

125
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project is an easy and illustrative way to optimize the final implemented system for lower en-

ergy consumption. When presenting the execution time, the time library [116] in the "Python

Standard Library" is used. The execution time will vary depending on how much other work

is performed by the OS. To work around this, a loop with 10.000 iterations is setup around the

functions used to calculate specific features and make predictions and is timed for each itera-

tion. The minimum execution times found is presented as the execution time for calculating

that feature or making a prediction. Using execution times as an energy indicator has some

limitations in that it is a relative comparison and can really only be compared against other so-

lutions in the system presented in this thesis. However, many more comparisons can be done

due to faster analyzation.

Lowering the execution time also fits well as a rough pre-stage to further optimize with pop-

ular energy optimization techniques, such as Dynamic Voltage Frequency Scaling (DVFS) [117]

and Race-to-Halt (RTH) [118]. This is because the real-time prediction part of the system can

be implemented as two independent tasks, executed at regular intervals (introduced in Sec-

tion 3.1). One task fetches the raw data x̃[n], pre-processes it and store it in memory every

1/ fs = 4 ms, and one task that does all the other processes every 1/ fp = 200 ms. The latter might

be particularly suitable to RTH optimization as it is a CPU bound task.

7.2 Energy components

There are several parts of this project that could be considered when evaluating energy effi-

ciency. The pre-processing, classifier chosen, number of features, high and low complexity fea-

tures among many other components affects the energy consumption. This work has so far

focused on using machine learning to classify the different eye movements, where choosing the

best features for optimal prediction has been a key part. As this has been the focus of this work

so far, this will also be the area of focus when optimizing for lower energy consumption.

7.2.1 Prediction

When looking at the energy consumption for a specific model, only the part where it is used

for prediction will be considered. This is because of the implementation approach, where the
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model could be trained on a computer where the dataset is stored, then use the pre-trained

model to make predictions on the battery powered device. This way, the energy consumption

when training a model is out of interest in this thesis. The classifier proposed from the online

results in Section 6.6 was the SVM based model with RBF kernel and hyperparameters C = 10

and γ= 0.01, with a window length of lw,c = 200.

The total complexity of making a prediction is not certain. Scikit-learn has empirically stated

that "Overall you can expect the prediction time to increase at least linearly with the number of

features" [119]. While [120] stated that the run-time complexity of a SVM based model with RBF

kernel is given by O(nsv ×d), where nsv is the number of support vectors and d is the feature

vector dimensionality (support vectors were introduced in Section 4.4.1). On the other hand,

linear SVMs is stated to have a run-time complexity of O(d) [120]. This illustrates that the linear

models should be unaffected by the complexity of the model (number of support vectors) when

making predictions.

Scikit-learn also states that the execution time for non-linear models generally increases

when the number of support vectors increases [119], which corresponds to the complexity state-

ment made by [120]. To illustrate the difference in execution time for making a prediction with

different models, all features are selected to train six models. RFECV was not used in this ex-

periment to give a consistent comparison basis between the models. The first two are based

on SVM with RBF kernel, the two next are based on the same SVM algorithm but with a linear

kernel, while the last two are based on the LinearSVC algorithm proposed in Section 5.3. As a

reminder, LinearSVC is built on a C-library optimized for linear classifiers [113], while the SVM

based models with linear and RBF kernel are built on a C-library designed for a more general

purpose [121]. Their execution times are compared in Table 7.1:



128 CHAPTER 7. ENERGY EFFICIENCY

Table 7.1: Model prediction execution time comparison

Classifier Subject Support vectors
(No.)

Execution time
(µs)

SVM (RBF) 1 316 54
SVM (RBF) 2 397 63
SVM (Linear) 1 112 40
SVM (Linear) 2 261 48
LinearSVC 1 N/A 23
LinearSVC 2 N/A 26

Table 7.1 shows that linear SVM in fact is less computationally expensive than SVM with

RBF kernel, and that LinearSVC outperforms the other classifiers in time used to predict. It can

also be seen that the number of support vectors changes depending on the data the models are

trained on, and that the execution times increases with the number of support vectors. This dif-

ference in number of support vectors can clearly be seen by comparing SVM with linear kernel

for Subject 1 and 2. The reason for this might be because it is a harder classification problem to

classify data from Subject 2, this is also supported by the fact that Subject 1 generally has better

performance for all classes.

LinearSVC also showed a small increase in execution time from Subject 1 to Subject 2, indi-

cating that not only the dimensionality of the feature vector matters. As shown in Table 7.1, Lin-

earSVC outperforms SVM with RBF in terms of execution time when predicting, but as shown

in Table 6.12 LinearSVC has a significantly lower performance for online prediction. The de-

crease in execution time is not considered large enough for the LinearSVC based model to make

up for the degradation in performance. If as in this case, a non-linear classifier is needed for

better performance, it is possible to reduce the execution time when predicting by minimizing

the number of support vectors. Some ways of doing this could be to decrease the number of

datapoints used for training, tune the hyperparameters or use features that solve the classify-

ing problem with fewer support vectors [101]. However, as it will be shown in Section 7.2.2, the

bottleneck of the system regarding execution time is the extraction of features. An attempt to

reduce the number of support vectors will therefore not be done in this thesis.
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7.2.2 Features

In addition to looking at the computational complexity of performing a prediction, it is also

important to look at execution times when calculating the features. Some features are com-

putationally expensive with complex operations such as FFT (spectral entropy), while others

are more simplistic (min and max values). Finding the combination of features that gives the

best performance metrics and the least amount of computation can save a lot of energy without

losing too much accuracy. As mentioned in Section 7.2, a loop with 10.000 iterations is setup

around the function calculating the specific feature and timed for each iteration. The minimum

execution time is presented as the execution time for calculating that feature. Table 7.2 shows

the execution time for each of the proposed features from Section 4.1.2 with a window size of

lw,c = 200:

Table 7.2: Feature execution time

Index Name Channel Exec. time (µs)

0 Higuchi Fractal Dimension 1 6810

1 Higuchi Fractal Dimension 4 6861

2 Minimum Value Difference 1,3 5

3 Maximum Value Difference 1,3 5

4 Spectral Entropy 1 51

5 Spectral Entropy 4 51

6 Pearson Coefficient 3,4 64

7 Pearson Coefficient 3,4 64

8 Pearson Coefficient 1,4 64

9 Pearson Coefficient 1,4 63

10 Covariance 3,4 48

11 Covariance 3,4 48

12 Covariance 1,4 48

13 Covariance 1,4 48

14 Standard Deviation 1 22
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15 Standard Deviation 4 22

16 Slope 1 7

17 Slope 4 7

18 θβ ratio 1 35

19 θβ ratio 4 35

20 Petrosian Fractal Dimension 1 101

21 Petrosian Fractal Dimension 4 101

22 Peak-to-Peak 1 5

23 Peak-to-Peak 4 5

24 Minimum Value 1 3

25 Maximum Value 1 3

Table 7.2 shows that the most expensive feature is Higuchi Fractal Dimension (HFD) with

an execution time of around 6.8 ms, while the least expensive features are the minimum and

maximum value of around 3 µs. If all features were chosen, the total computational cost would

be the sum of the execution times as given by Equation 7.1

fc =
n−1∑
i=0

fci = 14.57ms, (7.1)

where fci is the cost of the feature with index i , n is the total number of proposed features and

fc is the total cost for calculating the feature vector.

It is important to note that around 13.6 ms of these comes from the two HFD features, so

excluding these features from a feature subset would improve energy efficiency drastically.

So far, RFECV has been used to pick the best feature subset based on the accuracy of a model.

As shown in Figure 7.1, the performance of the model is evaluated at every step in the iteration

process. Based on these plots one can try to find a smaller number of features where the model

performance has not decreased by too much.
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(a) Unzoomed (b) Zoomed

Figure 7.1: Unzoomed and zoomed RFECV plot of SVM with RBF and lw,c = 200.

Figure 7.1 shows the RFECV plot of the SVM based model with RBF kernel, proposed in Sec-

tion 6.6. The model is trained on Subject 1 with features calculated from a window length of

lw,c = 200. The optimal number of features found from RFECV is 19 with an accuracy of 94.2%.

The number of support vectors is 301 for this model, resulting in a prediction execution time of

50 µs. It can be seen that it is possible to reduce the number of features to be 9 without losing

too much accuracy, at 9 features the accuracy is 93.4%. There is also a noticeable increase in

accuracy at 13 features, which showed to be 93.7%. As a short reminder, RFECV is a greedy algo-

rithm which leaves out many of the possible feature subsets. As a starting point for the search of

a more energy efficient feature combination, the number of features were chosen to be 9. Using

9 features over 13 has the possibility of lower power consumption and have approximately three

times fewer combinations to test, making this a good choice.

With a training time of approximately 50 ms for each combination and 3.124.550 different

combinations, this corresponds to around 2 days of training. This is extensive but possible to

do with a brute force search and would likely be able to increase the classifier performance for

a fixed number of features. The search is based on the same principle as RFECV, where the per-

formance of the classifier is evaluated for each feature subset. There are other alternatives to a

brute force search that also could work. A hill-climbing optimization algorithm such as "Simu-

lated annealing" [122] might have given similar results with less computational time compared

to the brute force search.
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When performing the brute force search, each feature subset and the model performance

based on several metrics in the Classification Report, as introduced in Section 4.3.1, is stored

in a file so it can be accessed later. This means that the overall system can be optimized for

accuracy, recall, precision, lowest possible feature execution time or some middle ground by

searching through the logs for desired properties. A problem is that the brute force search is

specific to one model, meaning that hyperparameters, classifier and subject used for training

must be chosen in advance. The technique is therefore best used in problems where the best

feature combination for a specific classifier, specific dataset and a given number of features is

desired. Cross-validation (CV) is not used in this brute force search due to additional computa-

tion. The energy optimization technique using the brute force search is tested on Subject 1 to

show a proof of concept. Ideally, the same technique should also be tested for Subject 2 and the

unified model.

7.3 Evaluation method

When doing the brute force search for all combinations of 9 out of 26 features, all the scores for

precision, recall and f1 are saved to a log file. The best performing feature subset was in this

work considered to be the combination with lowest execution time with less than 1% decrease

in the highest minimum value of recall. The highest minimum value of a metric is an alternative

to averaging the metric, as it only takes the lowest performing class into account. Each feature

combination in the logs is searched, and the model with the highest minimum recall is chosen.

The distribution of minimum recall values can be seen in Figure 7.2

Figure 7.2: Kernel Density Estimation (KDE) [123] plot of minimum recall distribution.
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We can see from Figure 7.2 that the minimum recall distribution has the highest density

at 0.8 to 0.9. When analyzing the logs there were 30 possible candidates in the top 1% and of

those, only 6 combinations have an execution time of less than 1 ms. The reason for choosing

the highest minimum recall value is that it is most desirable to not have any poor performing

classes in online prediction, as this might make the online prediction very distinct in its miss-

predictions. An example where a poor performing class confuses the controller can be seen in

Section 6.5.1.

As a comparison baseline, the proposed feature subset from RFECV can be seen in Table 7.3

Table 7.3: Feature execution time

Index Name Channel Exec. time (µs)

0 Higuchi Fractal Dimension 1 6810
1 Higuchi Fractal Dimension 4 6861
2 Minimum Value Difference 1,3 5
3 Maximum Value Difference 1,3 5
4 Spectral Entropy 1 51
6 Pearson Coefficient 3,4 64
7 Pearson Coefficient 3,4 64
9 Pearson Coefficient 1,4 63
10 Covariance 3,4 48
11 Covariance 3,4 48
12 Covariance 1,4 48
13 Covariance 1,4 48
14 Standard Deviation 1 22
15 Standard Deviation 4 22
16 Slope 1 7
18 θβ ratio 1 35
22 Peak-to-Peak 1 5
24 Minimum Value 1 3
25 Maximum Value 1 3

Table 7.3 corresponds to a total execution time for extracting features of 14.21 ms. The num-

ber of support vectors is 301 for this model, with an execution time for predicting of 50 µs. To-

tal execution time for feature extraction and prediction for this model, proposed by RFECV, is

14.26 ms. This is compared with results from the brute force search in Section 7.4.
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7.4 Results

As mentioned in Section 7.3, the best performing feature subset was found by searching for the

combination with lowest execution time with less than 1% decrease in the highest minimum

value of recall. This feature combination, found from the brute force search, can be seen in

Table 7.4.

Table 7.4: Feature execution time

Index Name Channel Exec. time (µs)

4 Spectral Entropy 1 51
10 Covariance 3,4 48
12 Covariance 1,4 48
14 Standard Deviation 1 22
15 Standard Deviation 4 22
16 Slope 1 7
17 Slope 4 7
19 θβ ratio 4 35
24 Minimum Value 1 3

The total execution time for the feature vector, optimized for energy efficiency, in Table 7.4 is

242 µs. The number of support vectors for this model is 470, with an execution time for predict-

ing of 5 µs. Compared to the baseline from RFECV, this is a 58x speedup in feature extraction

and an increase in execution time of 4 µs for making predictions. Total execution time for fea-

ture extraction and predicting is 296 µs, giving a total speedup of 48x for both feature extraction

and prediction.

Online prediction, as in Section 6.5, was performed on Subject 1 using the optimized feature

vector to validate the feature combination. Figure 7.3 shows the Confusion Matrix from the test.
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Figure 7.3: Confusion Matrix for SVM with RBF kernel while training on Subject 1 and testing on
Subject 1 online with extracted features, optimized for energy efficiency. An ideal model for this
test case would have 99 true positives for Blink, 211 for Straight, 53 for Left, 53 for Right and 51
for the Up class.

We can see in Figure 7.3 that there is some confusion between both Left/Right and Blink/Up.

Otherwise it performs very well. The overall test achieved an accuracy of 95.3 (93.0, 96.9)%,

precision of 93.0% and recall of 93.5%. The Classification Report in Table 7.5 shows different

scores for the respective classes.

Table 7.5: Classification Report SVM Subject 1

Class Precision Recall f1-score support

Blink 0.96 0.94 0.95 99
Left 0.92 0.87 0.89 53
Straight 0.99 0.99 0.99 211
Right 0.88 0.96 0.92 53
Up 0.90 0.92 0.91 51
avg/total 0.95 0.95 0.95 467
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7.5 Summary and comparison with state of the art

Based on the results one can see that it is possible to achieve a speedup of 48x for feature extrac-

tion and prediction with a 2.1% loss in accuracy for Subject 1, compared to the feature vector

from RFECV. Changing the feature vector also meant an increase of 4 µs when making predic-

tions, but this is dwarfed compared to the improvement in execution time for extracting fea-

tures. Therefore, changing to the feature vector found by the brute force would result in saving

considerable amounts of energy, improving the viability of implementing the system on a bat-

tery powered device.

Even though the energy optimization proved to reduce energy consumption, the proposed

solution needs to be compared with similar literature to give a point of reference. Many of the

articles mentioned in the online results summary in Section 6.6 did not present any form of en-

ergy evaluation or the number of features used in the feature vectors. This made it difficult to

compare with the presented results in this thesis. Some articles, however, gave enough infor-

mation to recreate their feature extraction process and apply them to the system in this work

for comparison. Ideally, the execution time presented in this work should be compared to many

of the solutions presented in other papers, but the lack of information about feature extraction

methods and the number of features used made this difficult. The recreation of feature extrac-

tion processes done in other projects is time consuming, energy efficiency comparisons were

therefore only done with a few papers.

In addition to the execution time when extracting the 9 optimized features, the execution

time of making a prediction is compared to the different models proposed in the other papers.

These will be recreated with algorithms provided by Scikit-learn, which means that comparing

with papers based on neural network classifiers will not be done in this comparison. The exe-

cution times of the recreations, both for prediction and feature extraction, does not necessarily

represent what actually was achieved in the systems the papers used. It does, however, show the

execution time when implemented in the system made for this thesis.

The execution time comparison between the papers can be found in Table 7.6. How these

execution times are obtained is explained subsequently.

[42] used 6 Auto Regression (AR) coefficients (2 for each of the 3 channels used) fed into a
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neural network to distinguish between having eyes open (interpreted as looking straight ahead),

blinking, looking to the left and looking to the right. Their neural network achieved a classification

accuracy of 94%, which is in the same region as the performance presented in this work. To com-

pare the energy usage, a method was found for obtaining an AR model of 2nd order in the system

used in this work. The execution time was measured in the same way as with the features used

in this thesis. The function for creating the second order AR model was provided by StatsModels

[124] and was used on the 3 same channels as presented in the paper.

[41] was the inspiration for the use of the θβ ratio feature, as introduced in Section 4.1.2.

They used 19 features, which consisted of the θβ ratio for 19 different channels (one for each).

They introduced 3 different classifiers where the top performer was a Logistic Regression based

model built on the liblinear C-library (same as LinearSVC), achieving an accuracy of 86%. An

additional method was utilized with all 3 classifiers using a voting mechanism, increasing the

accuracy to 90%, but this will not be considered in this comparison due to the additional com-

putation introduced by having 3 classifiers. The execution time for calculating the 19 features

in the system proposed in this thesis is equal to the execution time for θβ ratio (from Table 7.2)

times 19. The results presented in the paper was during offline testing, an online implementa-

tion of the classification method was not provided.

[43] used the most related method in Section 6.6 by using a SVM based model and achieved

an accuracy of "around 95%" for blinks, looking straight ahead, left and right. The method used

for calculating features was Common Spatial Pattern (CSP), the number of resulting features was

not mentioned. The same CSP method was tested on the system in this work with a library and

dataset provided by MNE [125]. This gave an execution time of 67 µs with four classes and four

channels, using a window length of lw,c = 200. The CSP feature is quoted in Table 7.6 to have 36

features. It is debatable how one should present this because it is by definition one feature that

returns a matrix with 36 elements, to be input into the classifier. This should, however, explain

the discrepancy between the extraction time of 67 µs and 36 features.

[45] did not use machine learning to classify eye movements but based classification on cal-

culating features from a method called Independent Component Analysis (ICA), which was used

to decompose the signal into 5 components (frequency bands). The execution time for feature

extraction is given as the time taken to extract 5 components from the original signals, which
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was gathered from channel pairs (F7, F8) and (AF3, AF4). To find this execution time a function

called FastICA [126], provided by Scikit-learn, was used in order to calculate the 5 components.

A Hidden Markov Model was used to classify the signals, which is not a machine learning algo-

rithm. The presented system was claimed to be a low complexity solution, which is the reason

for the comparison. When implemented in the system presented in this thesis, the execution

time is given from extracting 5 components from the raw signal x̃1,2,3,4[n] with a window length

of lw,c = 200.

As mentioned in Section 7.2.1, the data used for training the model affects the prediction

time. To do a proper comparison of prediction time would therefore mean that the datasets

in the other papers should be used with the same features they proposed. This is not possi-

ble as their datasets are not available online, and an implementation of this would prove to be

too demanding for the time given in this thesis. Therefore, no exact numbers regarding exe-

cution time for predictions is provided. However, to give some indication of the differences in

prediction times, the different algorithms from the papers are trained and tested on the dataset

provided in this thesis. This is done with the 9 features as presented in Section 7.4, showing

relative execution times. None of the papers provided details regarding their models, the model

implementations will therefore use the default hyperparameters as provided by Scikit-learn.

Table 7.6 shows a comparison between the different papers when implemented on the sys-

tem in this thesis. The layout of Table 7.6 was inspired by [40].
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Table 7.6: Execution time comparison

This work [42] [41] [43] [45]

Model SVM (RBF) Neural
Network

Logistic
Regression

SVM (Lin-
ear)

HMM

Classes L,R,U,C,B L,R,C,B L,R,U,D,C L,R,C,B L,R,U,D,C

Features (No.) 9 6 19 36 5

Features (type) Mixed Time series Spectral Spectral Spectral

Feature algo-
rithm

Mixed AR θβ ratio CSP ICA

Feature exec.
time

242 µs 5110 µs 665 µs 67 µs 77 µs

Prediction
exec. time

54 µs N/A 22 µs 45 µs N/A

Accuracy (%) 95 (Sub.1) 94 86 ∼ 95 88.6

The achieved accuracy of 95.3 (93.0, 96.9)%, presented in Table 7.6, used the features found

from the brute force search in Section 7.4 and was from a specialized case where Subject 1 both

trained and tested the model. The same feature vector was never tested on any other models,

meaning that the accuracy presented with the lowest execution time in this work is from a spe-

cialized case, whereas the accuracy from the other papers is presented as an average over several

subjects.

It was shown in this work that it was possible to get a speedup in execution time for fea-

ture extraction and prediction of 48x without losing too much performance, by testing on Sub-

ject 1. Training a model on both subjects using a feature vector from the brute force technique

will likely decrease the online accuracy of 94.5%, as presented in Section 6.5, achieved with the

RFECV generated feature vector. If the decrease in 2.1% accuracy for Subject 1 is considered

the best possible decrease in performance, when switching from the RFECV generated feature

vector to the brute force generated feature vector, the best-case accuracy for the general model

would be 92.4% (more likely, less). This is not necessarily a representable number and will there-

fore not be presented as a performance score for the general model when using the brute force

generated feature vector.

The execution time for extracting the 9 presented features from this work are somewhere in
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the middle, as there are solutions with execution times that are both lower and higher. The low-

est execution time found in literature when using feature extraction for eye movement classification

was 67 µs in [43] when testing on the system presented in this thesis. The system proposed in

this thesis has an execution time of 242 µs for extracting features.

When it comes to execution time for making predictions, the model used in this thesis seems

to be in the upper end of the scale, with an execution time of 54 µs for Subject 1. This could be

improved with an effort on reducing the amount of support vectors but was not done in this

thesis as the largest gain in execution time was found to be in the feature extraction procedure.

Regarding accuracy, the classifier presented in this thesis does very good. When comparing

to classifiers with the same number of classes ([41, 45]) it has a 6.4% higher accuracy, which is a

significant amount. When converting the percentages to fractions the difference becomes even

clearer. The classifier in this work will, according to its accuracy, have 1 in 20 wrong predictions,

while the classifier in [45] will have 1 in 8.8 wrong predictions. It is also important to mention

again that this work only tested with one test subject, while [45] had 11 subjects, where several

scored 100%. To classify fewer classes is a much easier classification problem, hence classifiers

with fewer classes are not comparable to the one presented in this thesis [127].

Regarding both classifier performance and energy efficiency, the overall solution of this pro-

ject/thesis is positive. Energy efficiency turns out to be the area with the largest potential for

further improvement.



Chapter 8

Objective Evaluation, Conclusion and

Recommendations for Further Work

To sum up and evaluate this thesis, the main objectives are repeated:

1. Make a system for sufficiently efficient generation of eye movement EEG data

2. Make datasets for at least two test subjects

3. Find features of the data that are fit to distinguish eye movements

4. Find a machine learning structure that, combined with these features, can distinguish eye

movements

5. Implement the classification in real-time

6. Design a drone controller based on the real-time predictions from the classifier

7. Optimize the machine learning structure and selected features based on accuracy and

energy efficiency

141
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8.1 Objective evaluation

There have been many findings and results in this work. A system was created, which uses

recordings from a commercially available and open source EEG headset, to classify eye move-

ments. Methods have been presented for gathering data, finding good features of the data, find-

ing a suitable machine learning structure, and use its output to control a drone with eye move-

ments. A GUI was created for data gathering that instructs subjects on which eye movements

to perform and when to perform them. Giving a theoretical throughput of minimum 120 dat-

apoints per class an hour. Two datasets were created for two subjects, with a total of 2415 and

2980 datapoints, meeting Objective 1 and 2.

Recursive Feature Elimination with cross-validation was used to select features from a list

of features proposed by literature search and this work. Utilizing the Scikit-learn library for

Python, a Support Vector Machine classifier was trained on the datasets with selected features

and showed an offline accuracy of 94% when training on both subjects, meeting Objective 3 and

4. To use the classifier in real-time, a state machine was designed, using classifier predictions

to output drone commands. The state machine used a sequence of predictions to output com-

mands, giving feedback to the user through audio stimuli. Evaluating the online performance of

the classifier was done through screen-capture of predictions and commands in a terminal win-

dow using prints, together with a video-feed from a web-camera of the subject making the eye

movements. The terminal and subject were recorded at the same time, allowing for a more ob-

jective evaluation of the performance. An online classification accuracy of 94.5% was achieved

when training on both subjects, meeting Objective 5 and 6.

An advantage of using Recursive Feature Elimination with cross-validation was the quick

implementation and proof of concept. It is however a suboptimal feature selection method due

to its greedy nature. A technique was developed that used information gathered from Recursive

Feature Elimination with cross-validation, to find a reduced number of features to run a brute

force search on. When applying this technique, it is possible to make trade-offs between clas-

sifier accuracy and energy efficiency by comparing accuracy for different feature combinations.

By using this technique, a speedup of 48x with a decrease in 2.1% online accuracy was achieved

for Subject 1. This speedup can be used to reduce the energy consumption by reducing the clock



8.2. CONCLUSION 143

frequency and voltage supply (DVFS), meeting Objective 7.

8.2 Conclusion

In this thesis a solution has been provided, with very good results regarding classification ac-

curacy both offline and online. Selection of features and machine learning model was based

on energy efficiency and accuracy, providing a good classifier with an energy efficient solu-

tion. The method used for energy optimization works well for problems similar to the ones

presented in this thesis. By using this method, huge energy savings can be made with a small

degradation in classifier performance. The subjects were able to use the presented system to

control a drone in real time using eye movements. A video demonstration can be found here:

https://www.youtube.com/watch?v=8S9dgh5TH0A.

8.3 Recommendations for further work

The system was sufficiently accurate to control a drone with a unified model. Training on data

from two subjects provided positive results when testing on the subjects separately. This seems

promising for creating a somewhat general model. More data from a larger number of sub-

jects could be gathered as a larger variation of subjects could result in a good general model. If

enough subjects recorded data for training, it could be possible to create a model where new

test subjects, that did not participate in the making of training data, could fly the drone.

It was observed that the system is very delicate with regards to muscle movements, level of

focus, other people nearby, and being in a calm state. The recording of data was done with a GUI

instructing the subjects on what to do while moving nothing but the eyes, in a calm and focused

state. Datapoints that showed variations due to muscular movements, bad electrode connection

etc. were discarded from the training dataset as explained in Section 3.3.5. Finding a method for

gathering data with varying levels of concentration and some muscle movements, could allow

for a system which is not as delicate. Here, the difficulty of gathering large amounts of EEG data

comes into play, but experiments regarding the delicateness of the system by introducing more

variations in the data would be interesting.

https://www.youtube.com/watch?v=8S9dgh5TH0A
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Neural networks were never explored in this work but are very popular in the machine learn-

ing field. Neural nets also showed great performance when working with EOG data in [46]. Per-

forming a proper study on neural networks has the possibility to create a neural network which

could be both more energy efficient and provide better classification results. The TensorFlow

Lite package [128] which was launched in the spring of 2018 could be explored, as it is a machine

learning toolkit, allowing the creation of neural networks optimized for mobile and embedded

devices.

The brute force search was used for energy optimization, but the proposed method was only

used on Subject 1 in this work. It would be desirable to do the same optimization with models

for Subject 2 and the unified model with both subjects. This would provide a better overview of

classification accuracy and the energy savings that could be made, not only the savings possible

for Subject 1. Doing this optimization for more test subjects might yield a general set of features,

eliminating the need for optimization on future test subjects.

When using the brute force search with 9 out of 26 features, a total of 3.124.550 models were

trained and tested. Performing the same search with 13 out of 26 features, a total of 10.400.600

models would be trained and tested. Ideally, each model should be evaluated with CV. With a

fold of size k = 10, the number of models trained increases to 104.006.000, with a training time

of 50 ms this corresponds to 60 days of training. This shows that the technique does not scale. In

addition, the algorithm, its hyperparameters and the training data must be chosen in advance

of the brute force search. Meaning that a comparison of several datasets and several hyperpa-

rameters using a brute force search should be avoided if possible. If it is desired to compare

different algorithms or datasets it is suggested to find another way of selecting the feature vec-

tors. In this work, Recursive Feature Elimination with cross-validation was used when tuning

the hyperparameters and comparing the different algorithms. However, as mentioned earlier

this is a suboptimal solution, and without the use of a brute force solution RFECV should be

considered replaced by a hill climbing feature selection algorithm.

A more detailed study on energy optimization would be necessary before doing an actual

battery powered device implementation. The pre-processing and state-machine are not ana-

lyzed for energy efficiency as a 14th order IIR filter and a five-layer deep if-tree is thought to be

dwarfed by the feature extraction and machine learning predictions. In the long term it would be
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exciting to see an actual battery powered mobile device implementation and to see the system

control things other than a drone.

The pre-processing used in this work filtered out frequencies around 0 Hz, 50 Hz and 100 Hz.

This means that a lot of brain wave frequencies, as defined in Table 2.1, are still present in the

data recorded. In this work, the focus was to classify eye movements by focusing on the peaks

that also would be present in EOG recordings. It would be interesting to see a study on the pos-

sibility of using other parts than the clear peaks of the signals recorded, to classify the different

eye movements.

As a feedback to the user, audio stimuli were used to call out the different commands sent to

the drone. This was a simple implementation allowing for some understanding of the thought

process of the drone. However, pinpointing the position of the drone through audio stimuli

is difficult. It is possible when the subject is facing the drone, but otherwise not sufficient. A

possible solution to this problem is to use the camera on board the drone. The possibility of

implementing a point-of-view solution using virtual reality glasses to see from the drone’s per-

spective was discussed early on. A point-of-view implementation is thought to make it much

easier to intuitively control the drone. To implement this, virtual reality glasses of a smaller size

is needed due to how the Ultracortex IV helmet from OpenBCI is placed on the head. If small

enough virtual reality glasses are not available, it might be worth considering using a smaller

EEG recording system.

The features presented in this thesis were extracted sequentially. When calculating features

from this thesis, the features have the possibility to be calculated in parallel. This is achievable

if implemented on an Application-Specific Integrated Circuit or FPGA. This would reduce the

feature extraction execution time to that of the feature with the longest execution time.
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Appendix A

Pre-processing

Pre-processing is needed in order to remove undesired parts of the signal, and make sure that

the data fed into the classifier contains the desired information. The method for processing data

was proposed in a previous project [5] and is not considered an essential part of this thesis but

serves as additional information to the curious reader or if one wishes to recreate parts of this

work in the future. This Appendix will shortly summarize the results from that project.
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As a starting point we can look at some time-series and spectrum plots in Figure A.1.

Figure A.1: Time-series of x̃1[n] and amplitude response |x̃1( f )|.

From Figure A.1 we can deduct some desired filter properties:

• Removal of DC offset and other disturbances

• Delay as short as possible, not over 500 ms

• Step response with short fall time, low amount of disturbance and short settling time

Both the DC component and 50 Hz noise are considered to be technical artifacts and are

therefore regarded as parasitic [15]. Delay should ideally be as short as possible as the drone

is going to be controlled in real time, which means that a large delay makes for unresponsive

control. Having a step response with short fall time and short settling time means that there can

be many events in quick succession, without having them overlap. It also means that it is clearer

what part of the waveform that is a direct response to the step, caused by the filter. Each filter

tested in the previous project [5] was given a sum of points based on the desired properties.

The results showed that the filter with the highest score implemented notch filters at 0 Hz,

50 Hz and 100 Hz and was named the "septa notch filter".
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Figure A.2 shows the amplitude response |x̃sn,1( f )| of the output signal from the septa notch

filter.

Figure A.2: Amplitude response |x̃sn,1( f )|.

Figure A.3 show the time-series plot of x̃sn,1[n].

Figure A.3: Time-series plot of x̃sn,1( f )

The septa notch filter uses a first order notch filter to remove a DC component, an eight-

order notch filter at 50 Hz and a fourth order notch filter at 100 Hz. A block diagram can be seen

in figure A.4.
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Figure A.4: Block diagram of the septa notch filter Hsn( f ) with a 0 Hz notch filter, 50 Hz notch
filter and a 100 Hz notch filter.

Hdc ( f ) is a first order notch filter at 0 Hz, Hn( f ) is an eight order notch filter at 50 Hz, and

H100( f ) is a fourth order notch filter at 100 Hz. The first order notch filter Hdc ( f ) coefficients

are obtained from the DC blocker chapter in the "Introduction to Digital Filters: with Audio

Applications" [129] book and shown in table A.1.

Table A.1: DC notch filter coefficients[129]

index a j bi

0 1 1
1 -0.9 -1

The eight order notch filter Hn( f ) at 50 Hz is made by cascading four of the second order 50

Hz notch filters presented in table A.2.

Table A.2: 50 Hz notch filter coefficients

index a j bi

0 1 0.9876
1 0.6104 -0.6104
2 0.9752 -0.9876
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The 100 Hz notch filters is made by cascading two second order IIR filters designed with a Q

factor of 50, which is implemented with the SciPy function iirnotch [130]. The filter coefficients

can be seen in Table A.3.

Table A.3: 100 Hz notch filter coefficients

index a j bi

0 1 0.97
1 1.57 1.57
2 0.95 0.97

When we combine the filter coefficients the results can be found in Table A.4.

Table A.4: Combined filter coefficients

index a j bi

0 1 0.9051
1 -0.1847 -0.2136
2 2.1783 1.9424
3 1.0537 0.8235
4 2.0830 1.7287
5 0.4115 -0.0816
6 2.5758 2.1561
7 -1.5179 -2.1561
8 0.5387 0.0816
9 -1.2193 -1.7287
10 -0.5383 -0.8235
11 -1.5404 -1.9424
12 0.2172 0.2136
13 -0.7360 -0.9051

The filtering is performed with the general IIR filter equation found in Equation A.1

xm[n] = 1

a0

( P∑
i=0

bi x̃m[n − i ]−
R∑

j=1
a j xm[n − j ]

)
(A.1)

Where:

• P = 14 is the feedforward filter order

• R = 13 is the feedback filter order
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The amplitude- impulse-, step-, and phase-response of the resulting septa notch filter is

shown in Figure A.5.

Figure A.5: Showing the amplitude-, impulse-, phase- and step-response of the septa notch
filter.



Appendix B

Dataset class examples

The following Appendix shows plots of various eye movements that are contained in the dataset.

Plots like these are what was used when inspecting the quality of the different data points.
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Figure B.1: Staring straight forward.

Figure B.2: Up from center at 0.7 seconds.



169

Figure B.3: Back to center from up at 0.6 seconds

Figure B.4: Down from center at 0.6 seconds.
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Figure B.5: Back to center from down at 0.5 seconds.

Figure B.6: Left from center at 0.6 seconds.
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Figure B.7: Back to center from left at 0.6 seconds.

Figure B.8: Right from center at 0.6 seconds.
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Figure B.9: Back to center from right at 0.3 seconds.



Appendix C

Calculation procedures for features

Several features have been presented in Section 4.1.2. However, the presentation of the features

has avoided going into detail around the calculation of the features due to the complexity of

some of them and that they are not being used for anything further in the thesis. This Appendix

goes into detail about how several of the proposed features are defined and how they are calcu-

lated. This is not definitions from own work but is simply a description of the implementation

of features found in other literature. In some cases, the text is directly copied from the original

literature.
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C.1 Power Spectral Entropy

The computational procedure for calculating the Power Spectral Entropy (PSE), as defined in

[67] follows:

To a time series [x1, x2, . . . , xN ], denote its Fast Fourier Transform (FFT) result as [X1, X2, . . . , XN ].

A continuous frequency band from flow to fup is sliced into K bins, which can be of equal width

or not. Boundaries of bins are specified by a vector band = [ f1, f2, . . . , fK ], such that the lower

and upper frequencies of the i -th bin are fi and fi+1, respectively. Commonly used unequal

bins are EEG/MEG rhythms, which are, δ(0.5−4 Hz), θ(4−7 Hz), α(8−12 Hz), β(12−30 Hz), and

γ(30−100 Hz). For these bins, we have band = [0.5,4,7,12,30,100]. The Power Spectral Intensity

(PSI) [12] of the k-th bin is defined in equation C.1

PSIk =
bN( fk+1/ fs)c∑
i=bN( fk / fs)c

|Xi | k = 1,2, . . . ,K −1, (C.1)

where fs is the sampling rate, and N is the series length. Relative Intensity Ratio (RIR) is defined

on top of PSI in equation C.2

RIR j =
PSI j∑K−1

k=1 PSIk
, j = 1,2, . . . ,K −1 (C.2)

The Power Spectral Entropy (PSE) is defined in equation C.3

PSE =− 1
log(K )

∑K
i=1 RIRi log RIRi (C.3)

C.2 Higuchi Fractal Dimension

The Higuchi Fractal Dimension (HFD) algorithm [64] approximates the mean length of curve

segments of length k. The algorithm as defined in [67] follows:

Given a time series observations taken at regular interval: X (1), X (2), ..., X (N ) we first con-

struct a new time series X m
k in Equation C.4.

X m
k : X (m), X (m +k), X (m +2k), . . . , X

(
m +

(
N −m

k

)
k

)
(C.4)
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Where m = 1,2, . . . ,k.

We then calculate the length of the curve X m
k in Equation C.5

Lm(k) =




[
N−m

k

]∑
i=1

|X (m + i k)−X (m + (i −1)k)|
 N −1[N−m

k

]
k


/

k (C.5)

C.3 Pearson Correlation Coefficients

Equation C.6 shows how the correlation is calculated as defined in [131]:

r =
∑lw,c

i=1(xi − x̄)(xi − x̄)√∑lw,c

i=1(xi − x̄)2
√∑lw,c

i=1(xi − x̄)2
(C.6)

C.4 Theta-Beta ratio

For notation purposes, the FFT, of xm[n] specific to the Theta and Beta bands (defined in table

2.1) are noted as Xθ[n] and Xβ[n]. The TBR is defined by Equation C.7 [41].

T BR =
1

lw,c

∑lw,c
n=1 Xnθ

1
lw,c

∑lw,c
n=1 Xnβ

, (C.7)

where n denotes the sample index.

C.5 Petrosian Fractal Dimension

The Petrosian Fractal Dimension (PFD) is defined in Equation C.8 [67].

PFD = log10N
log10N+log10(N /(N+0.4Nδ)) , (C.8)

where N is the series length, and Nδ is the number of sign changes in the signal derivative
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C.6 Covariance

To calculate the covariance for x j ∧xk the following approximation are used [69]:

C ≈ 1

P

N−1∑
i=0

(xi , j − x̄)(xi ,k − x̄)H , (C.9)

where xi is an observation of X (as a column-vector), N is the number of observations made

and P = N −1.



Appendix D

Offline testing Confusion Matrices for

Subject 2

Subject 1 was used as a baseline when presenting the different models and their performance in

the offline results section 5.5. Subject 2 also performed the same tests. The following Appendix

shows the Confusion Matrices and Classification Reports for Subject 2.
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D.1 SVM with RBF kernel and samples as features for Subject 2

Figure D.1: Confusion Matrix for SVM with RBF-kernel and samples as features on the test set
for Subject 2. An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be A = 82.7%, where the Classification Report in Table

D.1 shows different scores for the respective classes.

Table D.1: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 1.00 0.96 0.98 52
Down 0.75 0.79 0.77 52
Left 0.73 0.67 0.70 52
Straight 0.75 0.83 0.79 52
Right 0.86 0.81 0.83 52
Up 0.89 0.90 0.90 52
avg/total 0.83 0.83 0.83 312
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D.2 SVM with RBF kernel and feature selection Subject 2

Figure D.2: Confusion Matrix for SVM with RBF-kernel on the test set for Subject 2 with extracted
features. An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be A = 94.5%, where the Classification Report in Table

D.2 shows different scores for the respective classes.

Table D.2: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 1.00 0.98 0.99 52
Down 0.82 0.88 0.85 52
Left 0.94 0.88 0.91 52
Straight 0.94 0.94 0.94 52
Right 1.00 1.00 1.00 52
Up 0.98 0.98 0.98 52
avg/total 0.95 0.95 0.95 312
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D.3 SVM with linear kernel Subject 2

Figure D.3: Confusion Matrix for SVM with linear-kernel on the test set for Subject 2 with ex-
tracted features. An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be 94.5%, where the Classification Report in Table D.3

shows different scores for the respective classes.

Table D.3: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 1.00 1.00 1.00 52
Down 0.81 0.90 0.85 52
Left 0.94 0.85 0.89 52
Straight 0.94 0.96 0.95 52
Right 1.00 0.96 0.98 52
Up 1.00 1.00 1.00 52
avg/total 0.95 0.95 0.95 312
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D.4 LinearSVC Subject 2

Figure D.4: Confusion Matrix for LinearSVC on the test set for Subject 2 with extracted features.
An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be 94.2%, where the Classification Report in Table D.4

shows different scores for the respective classes.

Table D.4: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 1.00 1.00 1.00 52
Down 0.83 0.87 0.85 52
Left 0.92 0.87 0.89 52
Straight 0.94 0.98 0.96 52
Right 0.98 0.98 0.98 52
Up 0.98 0.96 0.97 52
avg/total 0.94 0.94 0.94 312
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Appendix E

Offline testing with Random Forest and

K-Nearest Neighbors

Several different algorithms were tested offline in 5.5. Some was shown to have a larger focus

than others due to their results. This Appendix shows the Confusion Matrices and Classification

Reports of the Random Forest and K-nearest neighbor classifiers in 5.5.
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E.1 Random Forest

E.1.1 Subject 1

Figure E.1: Confusion Matrix for Random forest on the test set for Subject 1 with extracted fea-
tures. An ideal model would have 52 true positives for each class

Table E.1: Classification Report Subject 1

Class Precision Recall f1-score support

Blink 0.96 1.00 0.98 52
Down 0.91 0.92 0.91 52
Left 0.96 0.98 0.97 52
Straight 0.98 0.90 0.94 52
Right 0.96 0.90 0.93 52
Up 0.91 0.96 0.93 52
avg/total 0.95 0.95 0.95 312
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E.1.2 Subject 2

Figure E.2: Confusion Matrix for Random forest on the test set for Subject 2 with extracted fea-
tures. An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be 93.5%, where the Classification Report in Table D.2

shows different scores for the respective classes.

Table E.2: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 0.98 1.00 0.99 52
Down 0.79 0.92 0.85 52
Left 0.95 0.81 0.88 52
Straight 0.94 0.96 0.95 52
Right 0.98 0.98 0.98 52
Up 1.00 0.94 0.97 52
avg/total 0.94 0.94 0.94 312

E.2 K-Nearest Neighbors
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E.2.1 Subject 1

Figure E.3: Confusion Matrix for k-nearest neighbors on the test set for Subject 1 with extracted
features. An ideal model would have 52 true positives for each class

Table E.3: Classification Report Subject 1

Class Precision Recall f1-score support

Blink 0.98 1.00 0.99 52
Down 0.87 0.90 0.89 52
Left 0.94 0.96 0.95 52
Straight 0.96 0.90 0.93 52
Right 1.00 0.94 0.97 52
Up 0.89 0.92 0.91 52
avg/total 0.95 0.95 0.95 312
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E.2.2 Subject 2

Figure E.4: Confusion Matrix for K-nearest neighbors on the test set for Subject 2 with extracted
features. An ideal model would have 52 true positives for each class

The accuracy on the test set was shown to be 92.6%, where the Classification Report in Table E.4

shows different scores for the respective classes.

Table E.4: Classification Report Subject 2

Class Precision Recall f1-score support

Blink 1.00 0.96 0.98 52
Down 0.79 0.87 0.83 52
Left 0.87 0.90 0.89 52
Straight 0.96 0.98 0.92 52
Right 1.00 1.00 1.00 52
Up 0.96 0.94 0.95 52
avg/total 0.93 0.93 0.93 312
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Appendix F

Subject comparison

The following appendix contains Confusion Matrices from the cross-subject comparison when

testing the SVM model with RBF-based Kernel in an offline setting as presented in 5.5.
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Figure F.1: Showing the Confusion Matrix when training on Subject 1 and testing on Subject 1.
An ideal model would have 52 true positives for each class

Figure F.2: Showing the Confusion Matrix when training on Subject 1 and testing on Subject 2.
An ideal model would have 52 true positives for each class
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Figure F.3: Showing the Confusion Matrix when training on Subject 2 and testing on Subject 1.
An ideal model would have 52 true positives for each class

Figure F.4: Showing the Confusion Matrix when training on Subject 2 and testing on Subject 2.
An ideal model would have 52 true positives for each class
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Figure F.5: Showing the Confusion Matrix when training on both subjects and testing on Subject
2. An ideal model would have 104 true positives for each class

Figure F.6: Showing the Confusion Matrix when training on both subjects and testing on Subject
1. An ideal model would have 104 true positives for each class
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Figure F.7: Showing the Confusion Matrix when training on both subjects and testing on both
subjects. An ideal model would have 104 true positives for each class
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Appendix G

Software implementation

There has been written an extensive amount of code for this project. The code size is over 6k

lines, so it is both too big to be put in Appendix and it also serves no purpose for the report.

The software implementation can be found in the Github repository https://github.com/

kristiankrohn/Masterproject. This Appendix shows the dependencies needed to utilize the

software created in this work.
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In addition to direct use of open source modules, there are also some of the libraries that

have been modified and put in the repository. These files are emd.py, hht.py, mttkinter.py and

pyeeg.py. The rest are used as downloaded.

G.1 Dependencies

The software heavily depends on native Python 2.7 libraries, but also on some external libraries:

• Python 2.7.14

• Numpy 1.13.1

• Scipy 0.19.1

• PyQtGraph 0.10.0

• PyQt4

• scikit-learn 0.19.1

• open_bci_v3

• keyboard 0.11.0

• PyHht 0.1.0

• tracestack 0.2.4

• ps_drone

• pandas 0.21.0

• seaborn 0.8.1

• matplotlib 2.0.

• pyeeg 0.02 r1

• dill 0.2.7.1
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• mttkinter 0.5.0

• netifaces 0.10.6

• psutil 5.4.5

• pypiwin32 223

• pyserial 3.4

To run the program, you will also need an external folder structure to hold the datasets, plot

exports and logs, which can be seen in figure G.1.
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Figure G.1

The top directory is on top, the rest are subdirectories. Names with * are unspecified, mean-

ing that Dataset_*some* is for Dataset_exports, Dataset_fft and Dataset_raw unless specified

otherwise.
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G.2 Basic usage and workflow

To start the system just run the main.py file. The system has a terminal interface where you can

choose what to do. Take a look in the file to find out what they are, the "help" option does not

include all options. To start with the training gui you need to run the main.py with gui as an

input parameter. start to collect data from the helmet with "start" command. When you have

made some data, export the plots with "exporttempplots" command. To delete datapoints you

type in a list of indices found on each plot in the corresponding file in Dataset_delete and then

run the "deleteappendedtemp" command. After that you can append the new datapoints to the

dataset with the "savedata" command. For training the system it is easier to look in the code,

but to make a classifier for online prediction you need to run the createPredictor function in

predict.py by writing in the settings and running the predict.py file. To start the online system,

you first need to start to collect data from the helmet, then start the TTS system with "speak"

command and then start the drone with "drone" or the online verification controller with "on-

line".

G.3 Tips

If you are going to use this system, the main suggestion is that you redesign the dataset storage,

as to store large amounts of floats as text is a very inefficient storage solution, but it was nice for

debugging the system and was never changed after that. Good luck!
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Appendix H

Controller

A controller was needed to use the predictions from the classifier to translate into drone com-

mands. The following Appendix shows the code-implementation of the controller in Python.
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Listing H.1: State-machine implementation

1 def stateMachine ( blinks , opposite , otherkey , pressedKey , keypress ,

2 previousPrediction , prevPreviousPrediction , gotf ive , gotother ,

3 gotopposite , lastTime , drone=None ) :

4 # global speak

5 now = datetime .now( )

6

7 i f (now − lastTime ) > timedelta ( seconds = 3 ) :

8 ’ ’ ’

9 i f blinks > 0 : #Use t h i s f o r decrement every i n t e r v a l

10 blinks = blinks − 1

11 e l s e :

12 blinks = 0

13 ’ ’ ’

14 blinks = 0 #Use t h i s f o r r e s e t t i n g blinks every i n t e r v a l

15 lastTime = now

16

17 try :

18 with glb . predictionslock :

19 prediction = glb . predictionsQueue . get ( block=False , timeout =1)

20 print ( prediction )

21 except :

22 prediction = None

23

24 i f prediction != None :

25

26 # State t r a n s i t i o n from P0 to P1

27

28 i f prediction == 0 :

29 i f previousPrediction == 0 :



203

30 i f prevPreviousPrediction ! = 0 and not keypress :

31 blinks += 1

32 print ( " Blinks : %d" %blinks )

33 speak . Speak ( s t r ( blinks ) + " blinks " )

34 lastTime = datetime .now( )

35

36 # State t r a n s i t i o n from S0 to S1

37 i f not keypress and prediction == previousPrediction :

38

39 # i f prediction in [ 2 , 4 , 6 , 8 ] :

40 i f prediction in [ 4 , 6 , 8 ] : #without backwards

41 keypress = True

42 pressedKey = prediction

43

44 i f prediction == 8 :

45 i f drone != None :

46 drone . moveForward ( 0 . 1 )

47 print ( "Move forwards " )

48 speak . Speak ( "Forwards" )

49 e l i f prediction == 2 :

50 i f drone != None :

51 drone . moveBackward ( )

52 print ( "Move backwards" )

53 speak . Speak ( "Backwards" )

54 e l i f prediction == 4 :

55 print ( "Turn l e f t " )

56 speak . Speak ( " Left " )

57 i f drone != None :

58 drone . turnLeft ( 1 )

59 tme . sleep ( 0 . 2 )
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60 drone . hover ( )

61 # print ( " Finished turning l e f t " )

62 e l i f prediction == 6 :

63 print ( "Turn r i g h t " )

64 speak . Speak ( " Right " )

65 i f drone != None :

66 drone . turnRight ( 1 )

67 tme . sleep ( 0 . 2 )

68 drone . hover ( )

69 # print ( " Finished turning r i g h t " )

70

71 i f keypress :

72 # State t r a n s i t i o n from S1 to S2

73 i f prediction == opposite [ pressedKey ] :

74 i f gotopposite == 0 :

75 print ( "Hover" )

76 #speak . Speak ( " Hover " )

77 i f drone != None :

78 drone . hover ( )

79 gotopposite += 1

80

81 e l i f prediction in otherkey [ pressedKey ] :

82 i f gotother == 0 :

83 print ( "Hover" )

84 #speak . Speak ( " Hover " )

85 i f drone != None :

86 drone . hover ( )

87 e l i f gotother == 2 :

88 #Do the other movement

89 pass
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90 gotother += 1

91

92 # State t r a n s i s t i o n from S2 to S0

93 i f prediction == 5 :

94 i f ( gotopposite == 2 or gotother == 2 ) :

95 gotother = 0

96 gotopposite = 0

97 keypress = False

98 speak . Speak ( " Finished " )

99 print ( "Ready for new prediction , other / opposite e x i t " )

100

101 e l i f pressedKey in [ 4 , 6 ] :

102 i f ( ( previousPrediction == 5) and

103 ( prevPreviousPrediction == 5 ) ) :

104 #speak . Speak ( " Hover " )

105 print ( "Hover" )

106 i f drone != None :

107 drone . hover ( )

108 gotother = 0

109 gotopposite = 0

110 keypress = False

111 speak . Speak ( " Finished " )

112 print ( "Ready for new prediction , f i v e e x i t " )

113

114 prevPreviousPrediction = previousPrediction

115 previousPrediction = prediction

116

117 return blinks , opposite , otherkey , pressedKey , keypress , \

118 previousPrediction , prevPreviousPrediction , gotf ive , \

119 gotother , gotopposite , lastTime
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Appendix I

Feature vectors for online testing

When creating models for online testing, RFECV was used to choose features for the different

models as presented in section 6.5. Only the performance metrics achieved from the model was

presented in 6.5. The following Appendix shows the feature vectors associated with the different

presented models.
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I.1 Testing with down as a separate command

I.1.1 Subject 1 SVM with RBF

Table I.1: Feature indices, names and channels

Index Name Channel

0 Higuchi Fractal Dimension 1
1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
6 Pearson Coefficient 3 and 4
7 Pearson Coefficient 3 and 4
9 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
18 θβ ratio 1
22 Peak-to-Peak 1
24 Minimum Value 1
25 Maximum Value 1



I.2. TESTING WITHOUT DOWN AS A SEPARATE COMMAND 209

I.1.2 Subject 2 LinearSVC with down

Table I.2: Feature indices, names and channels

Index Name Channel

0 Higuchi Fractal Dimension 1
1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
5 Spectral Entropy 4
6 Pearson Coefficient 3 and 4
7 Pearson Coefficient 3 and 4
8 Pearson Coefficient 1 and 4
9 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
17 Slope 4
18 θβ ratio 1
19 θβ ratio 4
20 Petrosian Fractal Dimension 1
21 Petrosian Fractal Dimension 4
22 Peak-to-Peak 1
23 Peak-to-Peak 4
24 Minimum Value 1
25 Maximum Value 1

I.2 Testing without down as a separate command



210 APPENDIX I. FEATURE VECTORS FOR ONLINE TESTING

I.2.1 Subject 1 LinearSVC

Table I.3: Feature indices, names and channels

Index Name Channel

0 Higuchi Fractal Dimension 1
1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
6 Pearson Coefficient 3 and 4
7 Pearson Coefficient 3 and 4
9 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
18 θβ ratio 1
22 Peak-to-Peak 1
24 Minimum Value 1
25 Maximum Value 1

I.2.2 Subject 2 LinearSVC

Same as with the model for Subject 2 based on LinearSVC with down in section I.1.2

I.2.3 Subject 1 SVM with RBF

Same as with Subject 1 based on SVM with RBF with down in section I.1.1
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I.2.4 Subject 2 SVM with RBF

Table I.4: Feature indices, names and channels

Index Name Channel

1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
7 Pearson Coefficient 3 and 4
8 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
18 θβ ratio 1
19 θβ ratio 4
23 Peak-to-Peak 4
24 Minimum Value 1
25 Maximum Value 1
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I.2.5 Subject 1 Unified SVM with RBF

Table I.5: Feature indices, names and channels

Index Name Channel

0 Higuchi Fractal Dimension 1
1 Higuchi Fractal Dimension 4
2 Minimum Value Difference 1 and 3
3 Maximum Value Difference 1 and 3
4 Spectral Entropy 1
5 Spectral Entropy 4
6 Pearson Coefficient 3 and 4
7 Pearson Coefficient 3 and 4
8 Pearson Coefficient 1 and 4
9 Pearson Coefficient 1 and 4
10 Covariance 3 and 4
11 Covariance 3 and 4
12 Covariance 1 and 4
13 Covariance 1 and 4
14 Standard Deviation 1
15 Standard Deviation 4
16 Slope 1
18 θβ ratio 1
19 θβ ratio 4
22 Peak-to-Peak 1
23 Peak-to-Peak 4
24 Minimum Value 1
25 Maximum Value 1

I.2.6 Subject 2 Unified SVM with RBF

Same as for Subject 1 with Unified SVM with RBF.



Appendix J

Grid search

To find the combination of hyperparameters that gives the best classifier performance a grid

search was used. The grid search was provided by Scikit learn. This Appendix shows the output

of the grid search, when testing hyperparameters as shown in Table 4.4.
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Figure J.1: Output of the grid search when testing hyperparameter values as shown in Table 4.4.
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