


experiment in the individual PCA models, so the PCA model of the blue experiment might be
more stable than that of the red.

Electrode 35 has shown overall much spiking activity in earlier analysis on the young culture
(Figures 6.6, 6.7, 2.12 (Hovden, 2017)) and it is interesting that many of the frequency bins (the
variables) belonging to the same electrode have large weighted negative regression coefficients
starting to be expressed from factor 3 and higher (Figures 6.21 and 7.2). This is a latent feature
well expressed in the blue experiment but little expressed in the red experiment (See Figure 7.2,
PC3 score in 3D plot).

Despite this, the PLS-DA model on the non-scaled data (Figure 6.24) do not point out electrode
35 in any way in the regression coefficients or loading plots, and the discrimination is just as good.
Note however, as commented in Figure 6.20 that weighted regression coefficients for unit scaled
data are independent of the variance in the original variables (not idependent of the variance in
the original variables when data is not unit scaled, as in Figure 6.24). This might be the reason
that 35 is not visible as special electrode in this model. As with the scaled data PLS-DA model,
almost every electrode have variables that contribute similar to each other. Hence, there must be
some common difference between the two recordings that are observable on all electrodes. VIP
plots show that higher frequency components are influencing the discrimination in the PLS-DA
model more than the lower frequency components. It is beyond the knowledge of the author to
discuss the possible biological factors that make it possible to discriminate the experiments
in this case (Figures 6.21, 7.1, 7.2, 6.24). In the other two cases, it is more evident what can be
the latent variable(s) used in discrimination. It is probable that the overall long-term change
in electrical power in the culture is the physical interpretation of the latent variable(s) used
in discrimination. It might be used as a measure of the age of the culture (Figures 6.20, 6.23,
6.22, 6.25, 6.26 (a) (c) and 6.27 top two figures.

7.6 Are synchronized bursts a sign of young culture?

In expert terminology, the synchronization in a burst can also be regarded as a form of coherence.
Spike trains that form of an effect of repetitive bursting with many second pauses can also also
be called a neuronal avalanche. Coherent avalanches could in many cases be related to synaptic
plasticity, in other words the general development of the neural network. (Gireesh and Plenz,
2008) claimed from in-vivo and in-vitro MEA experiments on rat cortical layer 2/3 that neuronal
avalanches organize as nested theta and beta/gamma oscillations during development of cortical
layer 2/3. The correspondence between nested oscillations and neuronal avalanches required
activation of the dopamine D1 receptor. (Shew et al., 2009) reported from MEA experiments on
coronal slices from rat somatosensory cortex that such cortical networks that generate neuronal
avalanches benefit from a maximized dynamic range, i.e., the ability to respond to the greatest
range of stimuli. Lastly, (Benchenane et al., 2010) reported coherent theta oscillations between
hippocampus and medial prefrontal cortex on in-vivo microdrive-array tetrode recordings of rat
learning a maze.

The above research might not be relatable at all to the cell culture analyzed, but the reward re-
lated dopamine is often relatable in tasks such as reward-based learning. As described in the
background Chapter 2, the neuronal cells analyzed should correspond to a type of dopaminergic
neurons found in substantia nigra pars compacta (SNc), which is a part of substantia nigra, which
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is located in the human midbrain. The core pathology in Parkinson’s disease is the degeneration
of the dopaminergic neurons in the SNc of the midbrain that project to the striatum. The latter
is the major portal of the basal ganglia, receiving inputs from the cerebral cortex and thalamus,
and projecting to the pallidonigral system (Hammond et al., 2007). The same source also refers
to multiple research claiming high beta synchronicity as a pathological sign in PD patients. Note
that this was also presented in Chapter 2.5.1, (Hovden, 2017) and in (Hovden and Gulbrandsen,
2017a).

As observed in earlier analysis, high beta synchronicity decays with age of the culture. In this
analysis, however, coherence in envelope frequencies in the beta band 13 — 30 Hz was not an-
alyzed. Rather coherence for frequencies up to approx. 6 Hz was analyzed. This includes the
theta band. Perhaps there is a link between less coherence in theta band (that was observed here)
and the decrease in power in beta band observed earlier. Thus, that the young culture was widely
aiming for development at the same time that it was pathogenic as in PD, then later differentiated
into more specialized dopaminergic neurons with beta-band coherence/synchronized oscillations.

Consequently, it is unlikely that synchronized bursts would occur in the adult culture. No data of
old culture showed synchronized bursts. However, this is clearly not enough evidence to claim
that synchronized bursts is a sign of young culture. It might be more a property of a developing
dopaminergic neuronal cell culture.
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Chapter 8

Conclusion and future work

8.1 Conclusion

This study has investigated spatiotemporal variation in detected action potentials across frequency
components of multiple combinations of electrode signals. The approach was multivariate anal-
ysis on collections of spike count histograms from each of the 60 electrode signals on 13 MEA
recordings of a developing dopaminergic neuronal culture from the time span 2017-03-20 to 2018-
01-22. Note that there was an approximately 5 month gap where data from the adult culture was
not available.

The synchronized bursts (around 3 Hz) with pauses of several seconds (around 10 seconds) clearly
visible in raw data of the young culture develop into gradually shorter bursts with shorter pauses
as the age of the culture increases. The end result is complete de-synchronization where no
oscillatory activity can be detected from raw data without analyzing in frequency domain. During
the same age increase, the overall power in the culture has been shown in earlier analysis to
increase.

When the preprocessing is working correctly and number of action potentials are counted in
the 6 second sliding 80 % overlapping windows, results from Chapter 6 provide evidence of a
culture were certain frequency components start to show distinct behavior as the age of the culture
increases. In some microelectrode array experiments of the adult culture, oscillatory patterns in
certain high-frequency ranges (f. example 2540 — 2550 Hz, Figure 6.8 (a)) are observable on
most electrodes. However, the distinct frequency ranges vary with experiment.

Comparisons of MVA models of sets of two experiments have two main findings:

* If the two experiments are from the culture with different age, power spectral density vari-
ation over frequency on a small set of electrodes are the main difference between the ex-
periments. Those electrodes contain the significant energy differences between the experi-
ments.

Additionally, for each of these electrodes, lower frequencies from the range 300 — 3000
Hz are more influential than higher frequencies in this range in activity that are distinct in
separating the experiments (energy difference).

» The electrode activity patterns to distinguish between two experiments with almost equal
age are contained in almost all electrodes.
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Additionally, for all electrodes, higher frequencies from the range 300 — 3000 Hz are more
influential than lower frequencies in this range in activity that are distinct in separating the
experiments.

8.2 Future work

An immediate suggestion is to analyze more experiments with the methods described in the thesis.
The experiment data could also be of better quality, f. ex. in terms of known or constant signal-
to-noise-ratio or more meta data available.

Furthermore, it is necessary to experiment with different types of stimulation as already described
in the introductory Chapter 1.2. Something like intraburst-based stimulation in (Wagenaar et al.,
2005) would be worth looking into, or even optogenetic neuromodulation (Yaroslavsky et al.,
2002; Laxpati et al., 2014) if possible/relevant. The real-time preprocessing likely is a step in
the correct direction into applying multivariate analysis that can be used to determine feedback
stimulation.

The following sections present some suggestions for improvement of the preprocessing and mul-
tivariate analysis in order to get closer to the NTNU Cyborg goal of making a closed-loop con-
trolled bio-mechanic robot. Some alternative methods for spectrogram-like decomposing of sig-
nals, as well as some alternative neural activity analysis are then discussed and finalize the chapter.

8.2.1 Possible modifications of the preprocessing

Discussions in 7.1, 7.2 and 7.3 lead to some suggestions for improvement of the preprocessing
methods:

* Preprocessing should count oscillations with higher envelope frequencies, maybe even up
to 200 Hz, so that results can be related to existing research such as to properties related
to EEG. For this specific dopaminergic culture, it would be interesting if APs in beta-band
envelope frequencies (13 — 30 Hz) could be counted. However, this would require a much
larger sampling rate if this is to be done real-time.

* The length of the sliding window could be dynamically adjusted according to some measure
(for example entropy), in order to remember an optimal, varying past of neural activity. The
author has no reason except for observing approx. 10 second bursts in the young culture,
that 6 seconds is an optimal time window for decoding aggregated neural codes in the
neural network.

 Offline preprocessing should have a better way to select noise segments for noise reduction.
A possible workaround to represent common noise could be concatenating noise segments
from multiple electrodes and use this as the noise segment in the offline preprocessing. For
the real-time preprocessing, an automatic program to construct the noise thresholds would
be a nice feature.

* Interspike-interval (ISI) histograms can be created from each frequency bin as a way to
possibly analyze even finer grained spatiotemporal patterns. If the ISI histogram contains
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100 frequencies of interspike-intervals, it would multiply the number of variables in the
existing MVA by 100. This was not discussed in the above mentioned sections.

8.2.2 Improvement of the MVA and complementing analysis

The existing MVA could be complemented with additional analysis such as:

* Additional variable contribution measures that work on batch data can be just what is
needed in the real-time MVA analysis (Westerhuis et al., 2000). Could work on a small
set of selected influential electrodes from adult culture.

» Additional methods for measuring model stability such as using jack-knife estimates and
stabilised PLS models in (Martens et al., 2001).

* Further measures on neuronal synchrony such as entropy measures on f. ex. scores from the
bilinear models to investigate neural codes such as those in (Borst and Theunissen, 1999).

* It must be noted that the overall (first) goal of the multivariate analysis in the Cyborg project
would be something like determining actionable feedback electrical stimulation to the bi-
ological neural culture (possibly with a combination of other methods/analyses and algo-
rithms).

Actionable stimulation is in this multivariate context regarded as stimulation that leads to
clearly visible variational pattern changes visible in the latent component space in multi-
variate models of the preprocessed data stream.

Determining appropriate feedback stimulation to the culture could perhaps be regarded as
an optimization problem where given environmental constraints (such as blocking walls)
the goal is to let the neuronal activity represent and control the robot movement and posi-
tion, as well as act reasonable in accordance to the robot’s behavior and sensors, as tightly
as possible.

* Multivariate analysis such as PLS is perhaps more naturally fit to validate the realization of
such a system described in the last point. For instance, logs of turning left or right of the
controlled robot (in f. ex. the simulation environment) can be recorded in the form of a two
column data matrix Y.

The two columns in Y could represent left- and right-turns turn respectively, where the
column with the largest of the two values in any of the rows determine the relative turn
direction/angle (based on whatever analysis the described system in the last point would
use. This is in fact how the robot simulator SHODAN gives right and left turns as of today
(2018-05-31)).

The independent X block could contain the binned spike count histograms from real-time
preprocessing method 2 in this thesis. A PLS model of this X and Y as independent and
dependent blocks could then give a measure of the predictive steering ability of the system
with respect to actual neural activity.
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8.2.3 Other methods for spectrum-like decomposition

There exists many other methods for decomposing a signal into spectral components for time-
frequency or spectrum-like analysis than the windowed Fourier transform used in the prepro-
cessing. Some are the wavelet transform, and (the already used on the same data) empirical
mode decomposition (Hovden and Gulbrandsen, 2017a). There exist also multivariate empirical
mode decomposition (Rehman and Mandic, 2009) and a mixture of empirical mode decomposi-
tion and wavelet transform called variational mode decomposition (Dragomiretskiy and Zosso,
2014). Two other similar approaches are the empirical wavelet transform (Gilles, 2013) and the
synchrosqueezed wavelet transform (Daubechies et al., 2011).

Lastly, there exist something called dynamic mode decomposition, which can somewhat be re-
lated to PCA and Fourier analysis (Chen et al., 2012; Schmid, 2010). In traditional control sys-
tems, model reduction involves finding a minimum realizable transfer function describing the
dynamics of the system (much like the transfer function for the filter in Appendix Chapter 8.4.14)
that is stable, by using methods such as balanced truncation or Hankel-norm approximation (Zhou
et al., 1996). (Proctor et al., 2016) extends dynamic mode decomposition to being useful in
input-output models in control theory. It is thus a newer approach in finding the optimal model
dimension for input-output control of a dynamical system, which leads to finding a balanced
reduced-order model of observable and controllable subspaces.

8.2.4 Some other methods for neural activity analysis

There are too many alternative approaches of analyzing neural data to be mentioned in a single
section, but some are:

* Established effective connectivity analysis such as Dynamic Casual Modeling (DCM, gen-
erative model, Friston et al. (2003)), Granger Casuality (GC, Roebroeck et al. (2005)) and
Transfer entropy (TE, Vicente et al. (2011); Orlandi et al. (2014); Zuo et al. (2013); Li
(2015)). A part of the analysis of almost the same neural data (also from Sandvig lab, but
not necessarily MEA2) in the specialization project of MSc student Helge-Andre Langaker
are transfer entropy calculations as a way to find effective connectivity (directional flow of
information) in the MEA experiments (Langaker, 2017). (Friston, 2011) compares func-
tional (predictive model) with effective (generative model) connectivity analysis.

» Trying to fit the activity to existing computational models (Bassett and Bullmore, 2017;
Kuznetsova et al., 2010; Cohen and Esposito, 2016).

» Using one of the many popular artificial neural network architectures for specific hard tasks,
such as the multiplicative recurrent neural network used for decoding neural information
in a brain-computer interface and keeping it robust to future neural variability in (Sussillo
et al., 2016). Keyword: Hessian-free optimization.
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Appendix

Supplementary background information.

8.3 Further recording procedures

8.3.1 MCS Experimeter to detect spikes from raw data

MultiChannel Experimeter can also detect spikes in an electrode recording based on thresholding.
This spike detection is not used in the thesis, but is included here since it was used in the project
report and lead to some results that are compared to the results in the thesis.

A spike on sample n on the time domain signal x(n) is detected if

z(n) > 5y/Var(z(n)) or x(n) <—=5y/Var(z(n)) 8.1

where the variance was calculated in MultiChannel Systems Analyzer (MultiChannelSystems,
2017b) using a selected sample segment N. In the PCA spike recordings, N = T'ime Duration[s] x
SampleRate[+] = 10[s] x 10000[] = 100000.

8.3.2 MCS Experimeter to generate Interspike-interval histograms from
detected spikes

The ”Spike Analyzer” module in MultiChannel Analyzer (MultiChannelSystems, 2017b) can fur-
ther analyze the detected spikes from the ”Spike Detector” module (both MCS Analyzer and MCS
Experimeter). The module has the ability to compute IST histograms on each electrode from the
raw data of the (7-10 min) experiments.

Interspike interval (ISI) histograms show the distribution of ISI in fixed 10 ms bins for each
channel. The maximum ISI displayed is 1000 ms (MultiChannelSystems, 2017b). Hence, the
histograms show spike counts over a distribution of 100 bins.
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8.4 Mathematical background

8.4.1 Estimation of spike frequency from ISI bins

In the project work (Hovden, 2017), an estimation of spiking frequency was calculated for each
10 ms bin in Microsoft Excel using the formula:

1
Avg(BinStartTimeM s;, BinEndTimeMs;) x 103

BinFrequency;[Hz| = (8.2)

where BinEndITimeM s; — BinStartTimeMs; = 10 ms and ¢ € 100. For example, for the
last bin, BinFrequencyioo = ((990+100(})/2)X10,3 = 1.005 Hz. The resulting frequency band

was f € [1.005 — 200] Hz with uneven frequency spacing. See Figure 8.1a.

8.4.2 ISI histogram interpolation

In the project work (Hovden, 2017), the frequency spacing needed to be even in order to group
the frequencies using the average PSD powers from earlier (Figure 2.11). This was achieved by
importing the modified histograms (conversion to Hz as row header) into The Unscrambler®and
using the Interpolate...” transform with a step size of 2 on the imported data. The procedure was
done on IST histograms for each of the experiments. The results for #4 is seen in Figure 8.1.

8.4.3 The covariance matrix Cx

Given the M x N data matrix with M objects and N variables

T11  T12 T1N
T21 X292 P ToN

X=1 . o =[x ox2 ... xn] eRMXN (8.3)
M1 TM2 --- TMN

the covariance matrix is defined to be (Richardson, 2009):

xX1X7 xi1xX3 ... xix%y
T T T
1 1 XoX7 X2X5 . X1XN
Cx = XTX = , , . , e RVXN (8.4)
M—-1 M—-1 : : - :
XNX{ Xng cee XNX%

which expresses covariances between all the different variables. Hence,

Cov(x1,%x1) Cov(x1,%x2) ... Cov(x1,Xpr)
Cov(x2,%x1) Cov(x2,%x2) ... Cov(x1,xn)

Cx = : : , . € RV*N (8.5)
Cov(xn,x1) Cov(xy,x2) ... Cov(Xn,XN)
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(a) IST histograms with estimated bin frequencies. Frequency range f € [1.005 — 200] Hz with uneven step
size. The estimated frequencies are plotted for reference to (b) (the green exponential line).
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(b) The interpolated histograms. Frequency range f € [2 — 200] Hz with 2 as step size. By comparision
with (a), most information lies in f € [2 — 32] Hz. Note that in (b) the height of the histograms are no
longer spike counts, but stretched-out interpolations for integer frequencies. This was done in order to group
objects using average electrode power from PSD in score and influence plot after PCA on the interpolated ISI
histograms. A step size of 2 was the solution for having correct interpolation in The Unscrambler®software.
The straight line of the plotted Hz verifies that the interpolation was done correctly.

Figure 8.1: The original and interpolated interspike interval histogram of #4 used in (Hovden, 2017).
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8.4.4 Covariance

The covariance between the two variable sequences of length V, x; and x», is defined as

Cov(x1,%x2) = E[(x1 — E[x1])(x2 — E[x2])] (8.6)

Assuming equiprobable outcomes, the covariance formula becomes (Smith, 2002)

i

COU(X17X2) = E[(Xl - il)(XQ — X2 - X1 X2i — )52) (87)

8.4.5 Variance

The variance is a measurement of variation on a single variable sequence x, or the covariance
between x and x

M
1 )2
Var(x) = Cov(x,x) = V1 ;(xl —X) (8.3)
8.4.6 Mean
The mean X of x is defined as (Smith, 2002)
M
x= ; x; (8.9)

8.4.7 Eigen Decomposition Theorem

Let E be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with
the corresponding eigenvalues on the diagonal. Then, as long as E is a square matrix, A can be
written as an eigen decomposition

A =EDE™! (8.10)

where D is a diagonal matrix. Furthermore, if A is symmetric, then the columns of E are orthog-
onal vectors.

If E is not a square matrix, then it cannot have an inverse and eigen decomposition is not possible.
However, if E € RM*N where M > N, Singular Value Decomposition can be used instead to
decompose A.

Source: (Weisstein, 2017a)
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8.4.8 Singular Value Decomposition (SVD)
Let A € RM*N pe 3 real matrix with M > N. Then A can be written on the form

A =UDVT 8.11)

where U € RMXM P ¢ RMXN vy ¢ RVXN

and U and V have orthogonal columns so that
vtu=1 (8.12)

and
vTv =1 (8.13)

where I is the identity matrix. The two identity matrices can have different dimensions.

Source: (Golub and Kahan, 1965; Golub and Reinsch, 1970; Weisstein, 2017b)

8.4.9 Parseval’s relation for discrete periodic signals

Parseval’s relation is an application of the Plancherel theorem on the Fourier transform. The
discrete version yells for the Discrete Fourier Transform (DFT), used in the project, and tells the
relation of total energy in a discrete signal in time and frequency domain, where the frequency
domain is the DFT of the time domain signal. (Proakis and Manolakis, 2014)

Ex =Y lz(n)] = % > IX (k)P (8.14)
where X (k) = DFT (z(n)).

8.4.10 Power Spectral Density (PSD)

PSD is a scaled version of the Fast Fourier Transform (FFT), which represents power in the dis-
crete signal independently of the sampling rate. Said differently, PSD is the auto power spectrum

of z(n) scaled by the frequency resolution, Aif = N x At = Fﬂ (this equation is called the
golden equation of digital signal processing).
N 1 1
PSD = —8,, = X(K))? and  Spp = —|X(k)|? 8.15
SD = 2Sur = 7 IXW)P and So = 5 |X(R)| (8.15)

where F's is the sampling rate, X (k) is the FFT of (n), S, is the auto power spectrum and N is
the length of the discrete signal, following from 8.14 (Siemens, 2017b,a,c; Nationallnstruments,
2017; Scipy, 2017).
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8.4.11 DFT, FFT, STFT, spectrogram and window functions

The Discrete Fourier Transform (DFT) is the frequency-amplitude spectrum of discrete periodic
time-domain signals (Proakis and Manolakis, 2014).

The Fast Fourier Transform is an efficient software implementation of DFT (Cochran et al., 1967).

The Short-Time Fourier Transform (STFT) is a time-frequency analysis of time-domain signals.
It computes multiple DFTs from a small sliding window, resulting in a frequency-amplitude-time
representation (Allen, 1977). This is also more broadly called a spectrogram.

There exist many types of windows that can be used in STFT (Harris, 1978). A typical window
is the "Hamming” window. This window is used in the electrode sound STFT analysis.

8.4.12 Cross-validation

A common way to evaluate the fitness of the model during training (or statistical modeling) by
dividing the training data to N (possibly random selected) segments, then training the model N
times on N — 1 segments, each time validating the model with the single segment that was not
used for training at that time.

8.4.13 Nyquist frequency

In order to recover all Fourier components of a periodic waveform, it is necessary to use a sam-
pling rate F at least twice the highest waveform frequency. The Nyquist frequency, also called
the Nyquist limit, is the highest frequency that can be coded at a given sampling rate in order to
be able to fully reconstruct the signal, i.e.,

1
fnyquist = §Fs (816)

Source: (Weisstein, 2018)

8.4.14 1IIR and FIR filters

Infinite impulse response (IIR) and finite impulse response (FIR) filters are two different ways
of achieving filtering of a discrete-time signal z(n) based on a desired magnitude response (low
pass, highpass, band-pass etc.) specified in equation 8.17

bo+ b1zt +boz 24+ . +byz N
ag+arz7t +agz"2 4+ .+ by M

|H(2)| = (8.17)

The a a and b constants are the filter coefficients and N and M are the filter order in numerator
and denominator. H(z) is a transfer function in the discrete z-domain analog to the Laplace s-
transform for continuous signals (f. ex. in the transfer function describing a dynamical system
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in control theory). z~! corresponds to a discrete time shift (delay) of of 1 of an input amplitude.
For a FIR filter, ag = 1 and a,, = 0 for n > 0.

With an unit impulse d(n) as input to a filter, the response in the time-domain is modelled as
h(n). H(z) is the z-transform of h(n).

Building upon this, the casual time response for a discrete input sequence x(n) is a discrete
convolution with the unit impulse response h(n) for that filter configuration according to equation
8.18

inf

y(n) = h(k)z(n— k) (8.18)
k=0

In the FIR case, no denominator in H (z) leads to a finite impulse response duration of equation
8.18, while for IIR the reponse is infinite.

FIR filters have linear phase displacement over frequencies (phase delay) while IIR have nonlinear
phase delay, so FIR is often chosen in applications where having no phase distortion is important.
However, IIR filters are more computationally efficient to implement and require less taps” than
FIR filters to achieve comparable magnitude response.

Source: (Proakis and Manolakis, 2014)

Matlab’s Filter Designer Tool (fdatool) was used to design the magnitude response and filter co-
efficients were extracted and used in the real-time preprocessing algorithm using the scalasignal.

8.5 Software used

8.5.1 MultiChannel Systems Lab Software

* MultiChannel Experimeter 2.6.0.17256, on-line MEA recorder and analyzer. Used to record
the data at Sandvigs’ lab at St. Olav University Hospital.

* MultiChannel Analyzer 2.6.0.17256, off-line analyzer. Used to re-run the recorded data to
do spike detection with new standard deviation estimation for spike detection 8.1.

e MultiChannel DataManager 1.9.4.0, Used to convert the proprietary raw format to comma-
separated (.csv) format.

8.5.2 The Unscrambler®version 10.5

Licensed access to a multivariate analysis software called "The Unscrambler®10.5” (CAMO,
2017b) by CAMO Software, Oslo Science Park, Oslo, Norway. was given for use in a course
in the master’s studies (TTK19 Big Data Cybernetics) as well as in project works for related
students.

It is typically used in the Chemometrics industries, and provides with a fast way to analyze well-
preprocessed multivariate data.
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Although neuronal data is a little heavy in this program, it presents all the plots and model cali-
bration and validation metrics in an organized way. The PCA and PLS and associated plots in the
report were made using this software.

8.5.3 Microsoft Excel and Microsoft Powerpoint
Excel was used for some simple tasks such as constructing .csv header row for the real-time
preprocessed data.

Powerpoint was used to compose some of the plots.

8.54 MATLAB
MATLAB’s (The MathWorks Inc., Matick, MA, USA) Filter Designer Tool was used to design
and get filter coefficients for the FIR and IIR filters tested for use in the real-time preprocessing.

MATLAB version R2017b was also used for calculating variable influence on projection (VIP)
values.

8.5.5 Open-source scientific computing and visualization software

e Scala 2.11 with Scala Build Tool 1.1.0, with roughly the libraries
— scalasignal (forked). Github link
— Functional Streams 2 (fs2). Github link.
— Vegas plotting library for Scala.
* Docker on linux for running the below docker image
* all-spark-notebook Docker image from docker-stacks (forked). Github link
* Python 3 with the following python libraries used for the offline preprocessing.

- 0S8

glob

numpy

pandas

— scipy

matplotlib
* Jupyter Notebook, a programming web server. Used during programming to plot data.

* Audacity, an audio editor. Used for noise reduction for converted audio signals from elec-
trodes. Version 2.1.2 (Linux) and 2.2.2 (Windows) was used.
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https://github.com/ivartz/scalasignal
https://github.com/functional-streams-for-scala/fs2
https://github.com/vegas-viz/Vegas
https://www.docker.com/
https://github.com/ivartz/docker-stacks

» Baudline 1.08, a scientific spectrogram analyzer. Used to analyze the noise reduced audio
signals.

e Ubuntu Linux 16.04 LTS, used with all mentioned software except The Unscrambler®,
MultiChannel Software and Microsoft Excel and Powerpoint.
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