
Surface Assisted Autopilot for Remotely
Operated Vehicle

Eirik Storesund

Master of Science in Cybernetics and Robotics

Supervisor: Thor Inge Fossen, ITK

Department of Engineering Cybernetics

Submission date: July 2018

Norwegian University of Science and Technology

Preface

Acknowledgements

This thesis concludes the authors’ 2-year Master’s degree programme in Cybernetics
and Robotics at the Norwegian University of Science and Technology (NTNU).

I would like to express my appreciation to Torgeir Trøite and Oliver Skisland for
giving me the opportunity to write my master thesis at Water Linked AS.

I also wish to thank my advisor, Thor Inge Fossen, Professor of Guidance, Navigation
and Control at the Department of Engineering Cybernetics NTNU for providing
me with key insights when needed.

To Eirik Storås Thorbjørnsen and Audun Aarnes at Water Linked AS, you have
been greatly helpful when dealing with hardware and software, and for dragging
me out of the office to go climbing.

Additionally, I would like to thank Trude Støren, CEO of Embida AS for proofread-
ing the report.

Contributions

Water Linked provided all necessary hardware for the Underwater Modem and the
BlueRov2. Inventas AS provided the Intuitive Input Device used for controlling the
ROV. The main contributions by the author is listed below.

• Software Development Life Cycle literature survey.

• Customizing the hardware on the BlueRov2 to enable wireless control.

• Topside computer software (Python scripts)

– Interfacing with Xbox controller and Intuitive Input Device.

i

– Encoding of small sized data payloads to provide control input for the
ROV.

– Interfacing with Topside Master unit.

• Subsea software (Python scripts and ROS)

– Interfacing with Subsea Master unit.

– Setting up software on the BlueRov2 Onboard Computer (Raspberry
Pi). Includes Ubuntu Mate, ROS, MAVROS and Python.

– Decoding small sized data payload.

– Implementing the ROS package MAVROS to enable safe and robust
control of the ROV by interfacing with the onboard Pixhawk autopilot.

– Configure the Pixhawk Flight Controller Unit running ArduSub firmware.

• Test and validate wireless control of the BlueRov2 by using testing scheme
found in the literature survey.

Trondheim, July 2018 Eirik Storesund

ii

Abstract

The following thesis was done in collaboration with Water Linked AS and the Nor-
wegian University of Science and Technology. The task at hand was to demonstrate
wireless control of an ROV implemented using Water Linked’s Underwater Modem
as a part of the SWARMs (Smart and Networking Underwater Robots in Coopera-
tion Meshes) research project. The final demonstration took place at Trondheim
Biological Station 26. June 2018.

The Underwater Modem makes wireless underwater communication possible. The
Downlink provides communication from a topside computer to a subsea ROV, while
the Uplink provides a video stream subsea to topside. This thesis focus solely on
using the Downlink to facilitate a safe and robust system for wireless control of a
BlueRov2 from BlueRobotics.

The BlueRov2 is an affordable, high-performance ROV which is highly customizable.
The ROV is normally connected with a tether to a topside computer, but by using
the Underwater Modem system, the tether is omitted. The Downlink requires
an additional waterproof payload on the ROV, a Subsea Master unit, which was
mounted on the ROV.

To control the ROV, software for both a Raspberry Pi on board the ROV (OBC)
and for a topside computer were be made. Two different devices were integrated
to provide pilot input for the ROV; an Xbox controller, and the Intuitive Input
Device (IID) provided by Inventas AS. To be able to control the ROV using
a limited amount of data, the transmitted data were parsed and encoded. The
control commands provided control of four degrees of freedom, as well as giving the
opportunity to turn off and on lights, change the control mode, and adjust pilot
gain.

On the OBC, the control commands are received and decoded. To control the ROV,
a variety of software is used. ArduSub runs on the Pixhawk Flight Controller Unit
(FCU), and the ROS framework is used to interface with the FCU through the
MAVROS package. How the software on both the topside computer and the OBC
is implemented is explained in detail in the thesis.

iii

Prior to the demonstration of the system in the SWARMs project, extensive testing
was performed. To find tools and methods for testing, Software Development Life
Cycle methods were explored. This provided testing tools that enabled a successful
demonstration.

iv

Sammendrag

Denne masteroppgaven ble gjort i samarbeid med Water Linked AS og Norges
tekniske- og naturvitenskapelige universitet (NTNU) våren 2018. Hovedoppgaven
besto av å demonstrere trådløs fjernstyring av en ROV under vann ved bruk av
Water Linked produktet Underwater Modem. Dette ble gjort i forbindelse med
det industrielle forskningsprojektet SWARMs (Smart and Networking Underwa-
ter Robots in Cooperation Meshes). Demonstrasjonen ble utført ved Trondheim
biologiske stasjon 26. juni 2018.

Underwater Modem muliggjør kommunikasjon under vann. Downlink gjør at man
kan kommunisere mellom en topside PC (over vann) og en ROV under vann, mens
Uplink muliggjør det å strømme bilder fra en ROV til en topside PC. Denne
masteroppgaven fokuserer på å bruke Downlink for å demonstrere sikker og robust
trådløs styring av en BlueRov2 ROV.

BlueRov2 er en rimelig, høyytelses ROV som er svært tilpassbar. ROVen er normalt
koblet til en topside PC gjennom en tether, men ved bruk av Underwater Modem
systemet blir tetheren utelatt. Flere oppgradering på ROVen måtte bli gjort for å
legge til rette for trådløs styring.

For å styre ROVen trådløst, ble software laget for både en Raspberry Pi ombord
av ROVen og på topside PCen. To enheter ble integrert for å kunne manøvrere
ROVen, en Xbox-kontroller og Intuitive Input Device (IID) fra Inventas AS. ROVen
blir styrt med en begrenset datamengde, 4 byte/s. For å gjøre opp for dette, ble
de sendte datapakkene enkodet og dekodet. Kontrollkommandoene gir styring i
fire frihetsgrader, samt gir mulighet til å slå av og på lys, endre kontrollmodus og
justere forsterkning.

På Raspberry Pien mottas kontrollkommandoene som blir dekodet og tatt i bruk.
En rekke programvarer ble brukt for å kunne kontrollere ROVen. ArduSub kjører
på Pixhawk Flight Controller Unit (FCU), og ROS rammeverket brukes som grens-
esnittet med FCUen, gjennom MAVROS-pakken. Hvordan programvaren på både
topside PCen og Raspberry Pien ble implementert, forklares i detalj i avhandlingen.

Før demonstrasjonen i SWARMs prosjektet ble omfattende testing utført. For å

v

finne verktøy og metoder for testing, ble Software Development Life Cycle (SDLC)
metoder utforsket. Dette ga testverktøy som sørget for at demonstrasjonen ble en
suksess.

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

Table of Contents ix

List of Figures xii

List of Tables xiii

List of Code Excerpts xv

Abbreviations xvi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Description . 2
1.4 Thesis outline . 3

2 Water Linked Underwater Modem 5
2.1 Overview . 5
2.2 Downlink . 6
2.3 Uplink . 6

vii

3 Hardware and Software 11
3.1 Hardware . 11

3.1.1 BlueRov2 . 11
3.1.2 Input Devices . 14

3.2 Software . 15
3.2.1 Gazebo . 15
3.2.2 Robot Operating System . 16
3.2.3 ArduSub . 17

4 Theory 19
4.1 Software Development Life Cycle . 20
4.2 Traditional SDLC models . 20

4.2.1 Waterfall model . 20
4.2.2 V-model . 21

4.3 Prototyping Model . 22
4.4 Incremental / Iterative model . 24
4.5 Agile Development . 25

4.5.1 Agile Manifesto . 25
4.5.2 Extreme Programming . 27
4.5.3 Feature Drive Development 28

4.6 Testing in Software Development Life Cycle 29

5 Implementation 31
5.1 Overview . 32
5.2 Topside software . 33

5.2.1 Input devices . 34
5.2.2 Encoding . 35
5.2.3 Transmitting UDP packets 38

5.3 Subsea software . 39
5.3.1 Receive UDP packets asynchronously 39
5.3.2 Decoding . 39
5.3.3 MAVROS . 40

5.4 Linux Services . 42

6 Testing 49
6.1 Unit Testing . 49
6.2 Integration Testing . 51

viii

6.3 System Testing . 51
6.4 Acceptance Testing . 53

7 Results and the way forward 55
7.1 Results . 55
7.2 Conclusion . 56
7.3 Further work . 57

References 59

Appendices 61
A.1 List of software resources . 1
B.2 Subsea data log excerpt . 3

ix

x

List of Figures

1.1 Water Linked AS logo . 1
1.2 SWARMs logo . 2

2.1 Underwater Modem overview . 6
2.2 Master-D1 digital computing-board 7
2.3 Setup of the Underwater Modem Downlink 8
2.4 Setup of the Underwater Modem Uplink 9

3.1 BlueRov2 with Heavy Configuration. 12
3.2 Custom BlueRov2 . 13
3.3 The Pixhawk4 Flight Controller Unit 13
3.4 The Raspberry Pi 3 Onboard Computer 14
3.5 Xbox controller, default input device 14
3.6 Intuitive Input Device (IID) from Inventas AS 15
3.7 Simulating BlueRov2 in Gazebo . 16

4.1 Waterfall development life cycle . 21
4.2 V-model development life cycle . 23
4.3 The Prototyping model . 23
4.4 The incremental / iterative SDLC model 25
4.5 The agile development process . 26
4.6 Extreme Programming (XP) vs Waterfall and Iterative Model 27
4.7 The Feature Driven Development method 28
4.8 Testing scheme . 30

xi

5.1 Software overview . 32
5.2 Topside program flow . 33
5.3 Xbox controller input device . 35
5.4 SWARMS Intuitive Input Device . 35
5.5 Data frame sent by the Downlink . 36
5.6 Data byte for forward and lateral axis 36
5.7 Data byte for throttle, yaw and buttons 37
5.8 UDP packet to be sent to Topside Master over Ethernet 38
5.9 Sending UDP packets to Topside Master 38
5.10 Subsea software overview . 40
5.11 ROS node overview . 47

6.1 Testing in indoor tank . 52
6.2 Testing outdoors . 52

7.1 Delay between each received data frame on the Onboard Computer . 56

xii

List of Tables

2.1 Water Linked Underwater Modem specifications 7

3.1 Hardware BlueRov2 . 12
3.2 Control modes of the ROV provided by ArduSub 17

4.1 Waterfall model strengths and weaknesses 22
4.2 V-model strengths and weaknesses 22
4.3 Prototype model strengths and weaknesses 24
4.4 Incremental / Iterative model strengths and weaknesses 24
4.5 Extreme Programming strengths and weaknesses 28
4.6 Feature Driven Development strengths and weaknesses 29

6.1 System Testing requirements . 51
6.2 Acceptance Testing requirements . 53

7.1 SWARMs demonstration results . 56

xiii

xiv

List of code excerpts

5.1 Encode forward and lateral joystick command 37
5.2 Encode throttle, yaw and button command 43
5.3 Asynchronous UDP Client . 44
5.4 Message handler . 44
5.5 Decode control commands . 45
5.6 Scale integer to floating number . 45
5.7 Publishing joystick messages in ROS 46
5.8 Linux Service . 46
6.1 Unit-test example . 50

xv

Abbreviations

AUV Autonomous Underwater Vehicle

DOF Degree Of Freedom

FDD Feature Driven Development

FIFO First In First Out

GPS Global Positioning System

IID Intuitive Input Device

OBC Onboard Computer

PWM Pulse Width Modulation

ROS Robot Operating System

ROV Remotely Operated Vehicle

SDLC Software Development Life Cycle

SWARMs Smart and Networking Underwater Robots in Cooperation Meshes

UDP User Datagram Protocol

USV Unmanned Surface Vehicle

XP Extreme Programming

xvi

Chapter 1
Introduction

1.1 Background

This master thesis is done in collaboration with Water Linked AS, the inventors
of the “Underwater GPS” for acoustic positioning. Water Linked has joined the
industrial based research project SWARMs, where the aim is to make AUVs, ROVs
and USVs further accessible and useful. For this research, Water Linked is adopting
an ROV from BlueRobotics called BlueRov2. The BlueRov2 is normally connected
to a topside computer using a tether, where all control signals and communications
go through.

Water Linked uses their acoustic technology to make underwater communication
possible, a product they called the “Water Linked Underwater Modem”. This way,
the ROV can be controlled wirelessly in real-time from a topside computer.

Figure 1.1: Water Linked AS logo. Image courtesy: [19]

1

Chapter 1. Introduction

1.2 Motivation

The SWARMs Project is a 17.3 Million Euro industrial research project with over
30 partners representing 10 European countries. The primary goal for this project
is to expand the use of underwater and surface vehicles (AUVs, ROVs, USVs) to
facilitate the conception, planning and execution of maritime and offshore operations
and missions [17]. Its use-cases include corrosion prevention, seabed mapping and
pollution monitoring.

One of the main objectives is to “Apply communication concepts ensuring smooth
functioning while also exploring new, innovative technologies” [17]. Water Linked
provides the Underwater Modem for this purpose. The integration and valida-
tion of the project was set to 11-24 June 2018 in Trondheim, Norway. The final
demonstration was set to 26. June.

Figure 1.2: SWARMs (Smart and Networking Underwater Robots in Cooperation Meshes)
logo. Image courtesy: [17]

1.3 Problem Description

The main deliverable of the work described in this thesis is the SWARMs demon-
stration 26. June 2018 in Trondheim, Norway. Here, the Underwater Modem is
used to demonstrate wireless control of the ROV using the software produced in
the duration of the project.

The work consists of writing software for a topside computer and a Raspberry Pi
on board the ROV. Additionally, a testing scheme along with different tools is used
to ensure that the system meet its requirements. The tasks includes

• Software Development Life Cycle (SDLC) literature survey.

• Explore and use testing tools used in successful SDLC models.

2

Chapter 1. Introduction

• Enable wireless underwater control of a BlueRov2 ROV using Water Linked
Underwater Modem. This includes

– Set up necessary hardware and software

– Provide pilot input from a device, Xbox Controller or Intuitive Input
Device delivered by Inventas AS

– Develop and implement encoding / decoding of small-sized data payloads
to control the ROV.

– Interface with the Pixhawk autopilot using Robot Operating System
(ROS) framework for controlling the ROV

• Apply testing tools to the system, validating robust and safe control of the
ROV

1.4 Thesis outline

The thesis is organized in the following manner:

• Chapter 2 gives an overview of the Underwater Modem system, including the
Downlink and Uplink.

• Chapter 3 introduces important hardware and software used in this project.

• Chapter 4 gives an introduction to SDLC as well as several SDLC models.
Additionally, different software testing tools is explored.

• Chapter 5 gives a detailed explanation of the software developed during this
project.

• Chapter 6 describes how the different software testing tools were used.

• Chapter 7 presents the results, concludes the thesis and presents a few ideas
for future work.

3

Chapter 1. Introduction

4

Chapter 2
Water Linked Underwater Modem

2.1 Overview

Water Linked Underwater Modem enables wireless underwater communication. Al-
though underwater communication systems exists today, Water Linked’s system is
small-sized, low-priced and works well in highly reflective environments.

Figure 2.1 shows an example of communication between a topside computer and
a subsea ROV. The Downlink (topside → subsea) provides wireless control of the
ROV by sending control commands from a topside computer using an input device.
The Uplink (subsea → topside) enables streaming of low-quality video/images from
the ROV to the topside computer. Table 2.1 summarizes the system specifications.

Note that the Topside Master and Subsea Master units are a part of the Underwater
Modem system, and use the same type of hardware (see figure 2.2). The topside
computer is a PC that interfaces with input devices and the Topside Master. The
Onboard Computer (OBC) is a Raspberry Pi inside the ROV that interfaces with
the Subsea Master and controls the ROV.

5

Chapter 2. Water Linked Underwater Modem

Figure 2.1: Underwater Modem overview. The Downlink (DL) enables communication
from a topside computer to the ROV. The Uplink (UL) provides a video stream from the
ROV to the topside computer.

2.2 Downlink

As stated earlier, the Downlink enables communication between a topside computer
and the Raspberry Pi Onboard Computer (OBC) on the ROV. The hardware
needed is shown in figure 2.3. An input device (i.e Xbox controller) provides input
for the topside PC that transmits encoded data as UDP packets to the Topside
Master unit.

A Locator A1 hydro-acoustic device is used for transmitting the data acoustically,
while a Receiver D1 device connected to the ROV receives the acoustic signals. On
the Subsea Master, the signals are processed and the data is sent as UDP packets
to the Raspberry Pi OBC.

2.3 Uplink

The Uplink provides a low quality video stream from the ROV to the topside
computer. Figure 2.4 show the required hardware. The OBC compresses the video

6

Chapter 2. Water Linked Underwater Modem

Table 2.1: Water Linked Underwater Modem specifications

Topside Master unit Master D1 WL-21008
Subsea Master unit Master D1 WL-21008
Locator Locator A1 WL-21009
Receiver Receiver D1 WL-21005
Downlink >= 32 bits per second

< 1000 ms latency from pilot input to BlueRov thrusters
Uplink > 10 kbit per second peak

< 1000 ms latency from BlueRov camera to topside com-
puter

Figure 2.2: Master-D1 digital computing-board. Used in both the Topside and Subsea
Master units. Image courtesy: [19]

taken from the camera on board the ROV and sends the decoded data to the Subsea
Master as UDP packets. As with the Downlink, transducers are being used to send
data acoustically to the Topside Master. From here, the data can be decoded and
presented as a video stream on a monitor. Note that the work presented in this
thesis is only focused on using the Downlink.

7

Chapter 2. Water Linked Underwater Modem

Figure 2.3: Setup of the Underwater Modem Downlink enabling wireless underwater com-
munication

8

Chapter 2. Water Linked Underwater Modem

Figure 2.4: Setup of the Underwater Modem Uplink providing tether-less video stream

9

Chapter 2. Water Linked Underwater Modem

10

Chapter 3
Hardware and Software

3.1 Hardware

This section the most important hardware, including the custom built BlueRov2
and the input devices.

3.1.1 BlueRov2

The BlueRov21 is an affordable, high-performance ROV delivered by BlueRobotics
located in California. It contains open source electronics and software and is highly
customizable with several different modules and configurations. The ROV used in
this project utilises the “Heavy Configuration Retrofit Kit”. This means that instead
of the standard 6 thrusters, it is expanded to 8 thrusters, enabling control of all six
degrees of freedom. Figure 3.1 shows a BlueRov2 with the Heavy configuration.

In addition to the heavy configuration, other payloads are mounted on the ROV.
The first is a waterproof container for carrying a 16V LIPO battery. Since the
ROV is going to be controlled without a tether, this is a must. The second pay-
load is another waterproof casing, containing the Subsea Master Modem which
enable underwater communication. The resulting ROV, shown in figure 3.2 is the
experimental platform for this work.

1https://www.bluerobotics.com/store/rov/bluerov2/

11

https://www.bluerobotics.com/store/rov/bluerov2/

Chapter 3. Hardware and Software

Figure 3.1: BlueRov2 with Heavy Configuration. Image courtesy: https://www.
bluerobotics.com/store/rov/brov2-heavy-retrofit-r1-rp/

Table 3.1 lists the most important pieces of hardware on the ROV. The eight
thrusters are controlled by the BlueRobotics Basic 30A ESC (electronic speed
controllers). The Pixhawk FCU (see figure 3.3), running ArduSub firmware, receives
input from all the sensors on board to provide control of the vehicle.

Table 3.1: Hardware BlueRov2

Electronic speed controller BlueRobotics Basic 30A ESC
Onboard Computer Raspberry PI 3
Flight Controller Unit Pixhawk4
Subsea Master Modem Master D1 WL-21008
Locator Locator A1 WL-21009
Receiver Receiver D1 WL-21005

The Subsea Master Modem is mounted as an additional payload to provide tether-
less control of the ROV. To be able to use the Subsea Master, three transducers are
mounted on the ROV, a receiver for the Downlink and two locators for the Uplink.
The Onboard Computer (OBC), a Raspberry Pi 3 running Ubuntu Mate (figure
3.4, interfaces with the Subsea Master and runs the software that interfaces with
the Pixhawk FCU.

12

https://www.bluerobotics.com/store/rov/brov2-heavy-retrofit-r1-rp/
https://www.bluerobotics.com/store/rov/brov2-heavy-retrofit-r1-rp/

Chapter 3. Hardware and Software

Figure 3.2: Custom BlueRov2 from BlueRobotics built for wireless control. The bottom
payload contains the Subsea Master. The middle payload contains the battery and the
top payload is the electronic housing where most of the electronics is located. The D1
Receiver needed for the Downlink is mounted on the side of the ROV.

Figure 3.3: The Pixhawk4 Flight Controller Unit. Image courtesy: https://docs.px4.
io/en/flight_controller/pixhawk4.html

13

https://docs.px4.io/en/flight_controller/pixhawk4.html
https://docs.px4.io/en/flight_controller/pixhawk4.html

Chapter 3. Hardware and Software

Figure 3.4: The Raspberry Pi 3 Onboard Computer. Image courtesy: https://www.
raspberrypi.org/products/raspberry-pi-3-model-b/

3.1.2 Input Devices

To be able to control the ROV, an input device must be used for piloting. An
Xbox controller (figure 3.5) was integrated early and is the default device when
controlling the ROV. As a contribution to the SWARMS project, Inventas AS
developed the Intuitive Input Device (IID) which needed to be integrated in this
project. It consists of two platforms with several buttons and knobs having 3D
mouse capabilities. This gives the pilot opportunity to give input in 12 degrees of
freedom. A figure of the IID is showed in figure 3.6.

Figure 3.5: Xbox controller, default input device. Image cour-
tesy: https://www.microsoft.com/accessories/nb-no/products/gaming/
xbox-360-wireless-controller-for-windows/52a-00005

14

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.microsoft.com/accessories/nb-no/products/gaming/xbox-360-wireless-controller-for-windows/52a-00005
https://www.microsoft.com/accessories/nb-no/products/gaming/xbox-360-wireless-controller-for-windows/52a-00005

Chapter 3. Hardware and Software

Figure 3.6: Intuitive Input Device (IID) from Inventas AS. Note that the device consists
of the two platforms on either side of the keyboard, as well as an control box not shown
in the figure. Image courtesy: Inventas AS

3.2 Software

In this section, important software used during in the project is introduced. These
include

• Gazebo: 3D simulator used for Software In The Loop Testing by simulating
the BlueRov2 in an underwater environment.

• Robot Operating System (ROS): A flexible framework for writing robot
software.

• Ardusub: open-source firmware for ROVs and AUVs running on the Pixhawk
FCU.

• Python: Python scripts is used for enabling tether-less control of the ROV.
These are introduced in chapter 5: Implementation.

Note that a list of all important software used in the thesis is collected in in appendix
A.1.

3.2.1 Gazebo

Gazebo is a three dimensional dynamic simulator that accurately and efficiently
simulates robots in complex indoor and outdoor environments. It is easy to integrate
Gazebo with other frameworks such as ROS, which makes it ideal for this project.

Gazebo is used for simulating the BlueRov2 in an underwater environment, pro-
viding a full physics engine. One of the advantages of using this platform is that

15

Chapter 3. Hardware and Software

it enables the possibility to test the ROV without using its hardware, so called
Software In The Loop testing (SITL). Correct pilot input can be tested, as well as
verifying that the correct modes of the ROV is set.

One of the limitations of using Gazebo and SITL is that it cannot verify that the
software works on the actual hardware on the ROV. For this, Hardware In The
Loop (HITL) testing is needed

Figure 3.7 shows the environment when simulating the BlueRov2 in Gazebo.

Figure 3.7: Simulating BlueRov2 in Gazebo

3.2.2 Robot Operating System

ROS is a flexible framework for writing robot software. It contains a large collection
of open-source software libraries. A ROS system contains a number of independent
nodes. The nodes communicate with each other using a publisher / subscriber
messaging model. One big advantage of ROS is that the nodes do not have to be
on the same platform or even the same architecture.

One important ROS package used in this project is MAVROS. It extends the
MAVLink2 protocol for use in a ROS environment. MAVROS interfaces with the
Pixhawk FCU, running ArduSub firmware.

2MAVLink (Micro Air Vehicle Link) is a protocol for communicating with small unmanned
vehicles.

16

Chapter 3. Hardware and Software

An important concept in ROS is “topic”. Topics use the publish/subscribe paradigm
so that nodes can exchange messages. An extensive list of topics can be accessed
through the MAVROS node. Examples are /mavros/global_position/ which can
be used to give the ROV reference coordinates for autonomous control. mavros/hil/
for Hardware In The Loop testing, and mavros/rc/ which can be used for controlling
the servo that tilts the camera. In this thesis, the most important topics include
mavros/state and mavros/rc/override.

The publish / subscribe model used in ROS is a very flexible communication
paradigm, but its many-to-many one-way transport is not suitable for request
/ reply interactions, such as changing control modes. Request / reply is done via a
ROS Service. Setting lights, changing modes and arming/disarming the vehicle are
all done through services.

3.2.3 ArduSub

ArduSub is a fully-featured open-source software for controlling ROVs and AUVs. It
is a part of the ArduPilot project, and was originally derived from the ArduCopter
code. ArduSub includes capabilities such as feedback-stabilization control, depth-
and heading-hold, and autonomous navigation. A list of the different modes used
in the thesis is shown in table 3.2.

Table 3.2: Control modes of the ROV provided by ArduSub

Mode Description

Manual Manual mode passes the pilot inputs directly to the motors, with
no stabilization. ArduSub always boots in Manual mode

Stabilize Stabilize mode is like Manual mode, with heading and attitude
stabilization

Depth hold Depth Hold is like Stabilize mode with the addition of depth sta-
bilization when the pilot throttle input is zero. A depth sensor is
required to use depth hold mode

A great feature with ArduSub is that it provides a platform for Software In The
Loop Testing. It simulates a Pixhawk FCU, enabling integration tests to be done
without the use of hardware. In addition, it is easily interfaced with Gazebo.

17

Chapter 3. Hardware and Software

18

Chapter 4
Theory

This chapter gives an introduction to Software Development Life Cycles (SDLC)
along with several popular SDLC models. Furthre, software testing tools used in
successful SDLC models will be explored. These tools will be used when developing,
integrating and testing the software described in this thesis.

Keywords

• Methodology: A recommended way of doing something. A software develop-
ment methodology will therefore be a recommended way to develop a software.
This refers to different models, i.e Waterfall Model, Expert Programming or
SCRUM. The term methodology is interchangeable with the term method.

• Stage: A SDLC is a series of stages within a methodology followed in the pro-
cess of developing and testing software. A stage is a segment of an SDLC that
consists of certain types of activities. The term stage is often interchangeable
with phase, depending of the actual literature.

19

Chapter 4. Theory

4.1 Software Development Life Cycle

A Software Development Life Cycle is a construction imposed on the development
of a software product [6]. It involves methodologies for designing, building and
maintaining software systems. There exists many SDLC models, such as the Water-
fall Model, Incremental / Iterative Model or SCRUM, each describing approaches
to activities or tasks that take place during the development life cycle.

In the following sections, different SDLC models are explored. This includes the
traditional Waterfall, V-model and Iterative and Incremental Model, and a few
models that use the Agile Methodology. Common for all SDLC model is that the
software development process is divided into phases such as Requirement Analysis,
Design, Coding, Testing, and Maintenance [12]. These activities are carried out in
different ways depending on the actual model. These terms are explained below

• Requirement Analysis: initial stage of the SDLC. The goal of this stage is to
understand the client’s needs and requirements and document them properly.

• Design: The first step to move from the problem domain towards the solution
domain. The goal of this stage is to transform the requirements into structure.

• Coding: The solution provided in the Design stage is converted into code.

• Testing: The most important stage. Testing contributes to the delivery of
high-quality software products [15].

• Maintenance: This stage starts after delivery of the product. Any modifica-
tions due to errors are implemented in this stage.

4.2 Traditional SDLC models

4.2.1 Waterfall model

The Waterfall model is known as one of the traditional SDLC methods [16]. Figure
4.1 show the five different stages in the classical Waterfall model. It is based on the
assumption that each stage is executed a single time in a specific sequence. Hence,
the Waterfall model has a linear sequential flow, top-to-bottom. It emphasises
planning in early stages, and it ensures finding design flaws before they develop.

20

Chapter 4. Theory

Figure 4.1: Waterfall development life cycle. Image courtesy: [7]

Table 4.1 shows the strengths and weaknesses of the Waterfall Model [1]. It is clear
that the simplicity of the model affects the flexibility and it’s ability to handle large
and complex projects. Ibid points out types of project when the Waterfall model
may be used:

• When the quality of the deliverable is more important than cost or schedule.

• When requirements are very well known, clear and fixed.

• Porting an existing product to a new platform.

4.2.2 V-model

Like the Waterfall model, the V-Shaped life cycle [8] is a sequential path of execution
of processes. Each stage must be completed before the next stage begins. Figure
4.2 shows the stages of the life cycle.

Unlike the Waterfall model, testing is much more emphasized in the V-model. The
testing procedures are developed early, before any coding is done, during each of
the stages preceding implementation.

Strengths and weaknesses of the V-model are shown in table 4.2. It shares many of
the same attributes as the Waterfall model. They also share some use cases - the

21

Chapter 4. Theory

Table 4.1: Waterfall model strengths and weaknesses

Strengths Weaknesses

Simple to explain and implement Inflexible
Easy to estimate cost All requirements must be known up-

front
Minimises planning overhead Backing up to solve mistakes is difficult
Works well on mature products High amounts of risk and uncertainty
Provides structure to inexperienced
teams

A non-documentation deliverable is
only produced in the final stage

Define before design, design before
code

Customers may have little opportunity
to preview the systems until it may be
too late

V-model should be used in a small to medium sized project, where the requirements
and development tool are well known.

Table 4.2: V-model strengths and weaknesses

Strengths Weaknesses

Simple to explain and implement Very inflexible, like the Waterfall
model

Each phase has specific deliverables Adjusting scope is expensive and diffi-
cult

Higher chance of success over the Wa-
terfall model due to the development
of test plans early in the life cycle

All requirements must be known up-
front

Provides structure to inexperienced
teams

A non-documentation deliverable is
only produced in the final stage

Works well for small projects where re-
quirements are easily understood

The model does not provide a clear
path for problems found during testing
phases

4.3 Prototyping Model

According to [9], the Prototyping Model places more effort on creating the actual
software, instead of concentrating on documentation through the development pro-
cess. This model requires more user / client involvement and allows them to see

22

Chapter 4. Theory

Figure 4.2: V-model development life cycle. Image courtesy: https://en.wikipedia.org/
wiki/V-Model_(software_development)

and interact with a prototype to provide more complete feedback. This is because
the actual software is released several times. A prototype is a working model that
is a functionally equivalent to a component of the product. Figure 4.3 shows the
development cycle of this model.

Figure 4.3: The Prototyping model. Image courtesy: [18]

Strengths and weaknesses of the Prototype Model are listed in table 4.3. The model
should be used when it is required to have a lot of interaction with the end users
or clients. Web interfaces are best suited for this model [9].

23

https://en.wikipedia.org/wiki/V-Model_(software_development)
https://en.wikipedia.org/wiki/V-Model_(software_development)

Chapter 4. Theory

Table 4.3: Prototype model strengths and weaknesses

Strengths Weaknesses

May improve the quality if require-
ments and specifications

Focusing on a limited prototype can
distract developers from analysing the
complete project

Provides better and more complete
feedback and specifications

Clients may think every prototype is
intended to be thrown away

The client is more involved
Reduced time and cost

4.4 Incremental / Iterative model

[12] describes this model as a combination of elements of the waterfall model
in an iterative fashion. Multiple development cycles takes place and produces
deliverable increments of the software (see figure 4.4). This model constructs a
partial implementation of a total system in each increment, going through the entire
cycle each time. Table 4.4 shows the advantages and disadvantages of this model.

Table 4.4: Incremental / Iterative model strengths and weaknesses

Strengths Weaknesses

Develop high-risk or major functions
first

Requires good planning and design

Each phase has specific deliverables Requires early definition of a complete
and fully functional system to allow for
the definition of increments

Risk is spread across smaller incre-
ments instead of concentrating in one
large development

The model does not allow for iterations
within each increment

Reduces the risk of failure and changes
to the requirements

The incremental / iterative model should be used when the requirements are clearly
defined and understood. It is also beneficial to use this model when the product
needs to go to the market early and when a new technology is being used.

24

Chapter 4. Theory

Figure 4.4: The incremental / iterative SDLC model. Image courtesy: https://en.
wikipedia.org/wiki/Iterative_and_incremental_development

4.5 Agile Development

Unlike conventional SDLC models, Agile Development is a time-based process model
that aims to deliver software products quickly by using light-weight processes, mod-
ular process structures and iterative process actions [3] (see figure 4.5). There exists
several models that follow the agile methodology, including Extreme Programming
(XP), Feature Driven Development (FDD), SCRUM, Kanban and Lean Software
Developent. All methods are unique in their approaches, but they all share a com-
mon vision and core values. These principles are gathered in the “Manifesto for
Agile Software Development”.

4.5.1 Agile Manifesto

The Agile Manifesto has its origin from 2001 in the Wasatch mountain of Utah,
where seventeen software developers representing different SDLC methodologies
met to talk and discuss to find common ground in software development. What
emerged was the Manifesto for Agile Software Development [5] with the following
12 principles [2]:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

25

https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development

Chapter 4. Theory

Figure 4.5: The agile development process. Image courtesy: https://number8.com/
common-mistakes-using-agile-method/

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity–the art of maximizing the amount of work not done–is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

26

https://number8.com/common-mistakes-using-agile-method/
https://number8.com/common-mistakes-using-agile-method/

Chapter 4. Theory

4.5.2 Extreme Programming

According to [4], Extreme Programming turns the conventional software process
sideways. Instead of planning, analyzing and designing far into the future, XP pro-
grammers do all of these activities, in small amounts, throughout the development
(see figure 4.6).

Figure 4.6: a) Waterfall Model. b) Iterative Model. c) Extreme Programming (XP). Image
courtesy: [4].

Below is a summary of some of the major practices in XP

• Small releases: New releases are made often, anywhere from monthly to daily.

• Simple design: The design runs all the tests, communicates everything the
programmers want to communicate, no duplicate code. “Say everything once
and only once”.

• Tests: Unit tests are widely used.

• Refactoring: The design of the system is evolved through transformations of
the existing design.

• Pair programming: All production code is written by two people.

• Continuous integration: New code is integrated with the current code after
no more than a few hours. All tests must pass or the changes are discarded.

Table 4.5 shows the advantages and weaknesses of XP.

27

Chapter 4. Theory

Table 4.5: Extreme Programming strengths and weaknesses

Strengths Weaknesses

Lightweight methods suits small-
medium sized project

Difficult to scale up to large projects

Iterative Pair programming is costly
Emphasis on final product Needs experience

4.5.3 Feature Drive Development

Feature Driven Development (FDD) is a production process which is highly oriented
on resulting out small blocks of client valued functionality (see figure 4.7. This drives
developers to come up with working features once every two weeks typically and it
can track down the project progress with precision. FDD, which is one of a number
of agile development processes, is an iterative and incremental software development
process having the main purpose of delivering tangible working software repeatedly
in a timely manner.

Figure 4.7: The Feature Driven Development method. Image courtesy: http://www.
martinbauer.com/Articles/FDD-and-Project-Management

The model consists of five basic processes [13]:

1. Develop overall model

2. Build feature list

3. Plan by feature

4. Design by feature

28

http://www.martinbauer.com/Articles/FDD-and-Project-Management
http://www.martinbauer.com/Articles/FDD-and-Project-Management

Chapter 4. Theory

5. Build by feature

Advantages and disadvantages is listed in table 4.6

Table 4.6: Feature Driven Development strengths and weaknesses

Strengths Weaknesses

Iterative Errors are often discovered late
Emphasis on quality at all steps Not as powerful on smaller projects
Frequent deliverables No written documentation

4.6 Testing in Software Development Life Cycle

“It is clear that without testing it is not possible to implement an effective product”
[11]. Software testing is a very broad term containing activities along the devel-
opment cycle and beyond, involves many technical and non-technical areas, and is
aimed at different goals. [18] defines software testing as the process of executing a
program or system with the intent of finding errors.

Different tools can be used for testing software during different phases in a software
life cycle. A huge amount of software test tools and methods can be found in
literature and online. For the purpose of this thesis, tools introduced in [14] will
be used. Among the several tools presented in this book, the following will be used

• Unit Testing: Verify that the smallest components of a system functions
properly, i.e pressing a button.

• Integration Testing: The system run tasks that involves more than one com-
ponent to verify that it performs accurately.

• System Testing: Tests that verifies the operation of the entire system.

• Acceptance Testing: Real-world test. Client accepts the product or not.

The testing tools listed above is used extensively in the V-model. To counter the
disadvantages of the V-model, features from the Agile Methodology and Incremental
/ Iterative Model are implemented. Instead of testing after all code is written, small
modules are tested throughout the development using unit tests. Furthermore,
integration tests are carried out frequently to ensure that the modules work as
intended when put together. When it’s time to test system features, system testing

29

Chapter 4. Theory

is completed. Acceptance tests were done during the SWARMs validation-week
prior to the demonstration.

An advantage of this scheme is that it allows for developing and testing small mod-
ules of the system throughout the life cycle. Additionally, it allows for “backtracking”
if some of the tests fails. Figure 4.8 shows the testing scheme. Chapter 6 explains
how these tests were implemented in this project.

Figure 4.8: Testing scheme. Unit and integration testing are done more frequently than
system- and acceptance testing. System testing is done whenever larger features needs
testing, and acceptance testing was done prior to the SWARMs demonstration.

30

Chapter 5
Implementation

This chapter gives an insight of key aspects of the software running on the topside
computer and the subsea Onboard Computer (OBC). Appendix A.1 lists the most
important software packages along with online resources.

Keywords

• Input device: A device providing control commands from a pilot. It refers to
either an Xbox controller or Intuitive Input Device (IID).

• OBC: Onboard Computer. Refers to the Raspberry Pi on board BlueRov2.

• ROS: Robot Operating System. A flexible framework for writing robot soft-
ware.

• Socket: A network socket is an internal endpoint for sending or receiving data
within a node on a computer network.

• UDP: User Datagram Protocol. A minimal message-oriented networking
protocol for connection-less transfer of information.

31

Chapter 5. Implementation

5.1 Overview

Figure 5.1 shows an overview of the software developed to run on the topside and
subsea computer. Software related to the Underwater Modem is not a part of
this. This means that the topside only interfaces with the Topside Master at a
specific IP address and UDP port. Likewise for subsea, it only interfaces with the
Subsea Master mounted on the BlueRov2. The communication between Topside
and Subsea Master will be treated as a ”black box“.

Figure 5.1: Software overview

The software on both the topside and subsea computer is written in Python and can
run on any computer capable of running Python 2.7 or Python 3.0. Additionally, it
is required to have access to an Ethernet port as well as an USB port for the input
device.

32

Chapter 5. Implementation

5.2 Topside software

The purpose of the topside software is to get input from an input device, encode
the control commands and send them as UDP packets to the Topside Master over
Ethernet in a reliable way. Additionally, the UDP data is logged along with a time
stamp to be able to correlate packages which are sent, with received packages on
the OBC. An overview of the topside program flow is shown in figure 5.2.

Figure 5.2: Topside program flow

Several Python packages are used, with struct, argparse, xboxdrv and socket
being the most important.

• struct is used to pack integers to binary numbers. Essential for encoding
control commands from the input device.

• argparse provides a mean to run a Python script with arguments, generates
help messages and issues errors when the user gives the program invalid
arguments. If a user wants to figure out how to run the program, one simply
uses the following command in a terminal window: python topside.py -h .
The following text is printed to the screen:

33

Chapter 5. Implementation

usage: topside.py [-h] [--ip IP] [--port PORT] [--device DEVICE]

Topside Underwater Modem driver for controlling BlueRov2

optional arguments:
-h, --help show this help message and exit
--ip IP IP adress to send UDP packets to.

Default "192.168.2.95" (topside master IP).
Type: [str]

--port PORT Port to send UDP packets to.
Default 5005 (topside master port).
Type: [int]

--device DEVICE Input device, "xbox" or "iid".
Default "xbox". Type [str]

• xboxdrv provides a reliable way of interfacing with an Xbox controller.

• socket enables low-level network interfacing. It is used for sending data as
UDP packets to a specific IP address and port in a network.

5.2.1 Input devices

Figure 5.3 shows the default input device, a wireless Xbox controller and how the
controls are allocated on the device. The axes on the figure refers to nomenclature
used in the ArduSub software. Throttle refers to the heave movement of the vehicle.
Yaw axis controls the heading, forward axis controls the surge and the lateral axis
controls the sway movement. Roll and pitch is not controlled.

Figure 5.4 shows the SWARMS Intuitive Input Device from Inventas AS. Interfacing
with the IID was done by receiving input as UDP packets over Ethernet from its
control box. Below is a list of attributes of each device, compared with each other.

• Usage: As the Xbox controller is widely known and used, the IID takes more
getting used to. The controls on the IID are stiff, which makes it hard for a
user to move the joysticks, without moving the platform.

• Integration: The Xbox controller is plug and play, while the IID needed
custom code to get working.

34

Chapter 5. Implementation

• Options: The IID have more degrees of freedom of control on two 3D joysticks,
as well as more buttons and knobs. It has potential for controlling advanced
vehicles with different payloads.

Figure 5.3: Xbox controller input device

Figure 5.4: SWARMS Intuitive Input Device

5.2.2 Encoding

To be able to control the ROV with a small amount of data, the control commands
needs to be encoded. The Downlink provides a data stream of 4 bytes per second,

35

Chapter 5. Implementation

with a latency between 200 and 500 ms under good conditions. The data is sent
as frames of 2 bytes, therefore all control signals from the input device are packed
into 2 bytes (see figure 5.5).

Figure 5.5: Data frame sent by the Downlink

The forward and lateral commands from the input device are packed into the first
byte of the frame. This is done by representing both of the right joystick axes as 4
bits each. With 4 bits, we can get 24 = 16 different values, in the range

[
0 → 15

]
.

Both of the axes outputs a floating number between
[
−1.0 → 1.0

]
. This gives a

resolution of
1.0−

(
−1.0

)
16 = 0.125 for each axis. The first 4 bits of the first byte (most

significant bits, MSB) are allocated for the forward axis, and the last 4 bits (least
significant bits, LSB) are allocated for the lateral axis (see figure 5.6).

Figure 5.6: Data byte for forward and lateral axis

Code excerpt 5.1 shows how the joystick command is encoded. cmd1 refers to
the forward command, while cmd2 refers to the lateral command. First, a clamp
function makes sure the commands are valid by limiting them to

[
−1.0 → 1.0

]
.

Additionally, it sets the commands to zero if |cmd| < 0.1. Next, the commands are
scaled so that the values are in the range of

[
0 → 15

]
. To pack the commands into

a single byte, the binary left shift operator ≪, and the bitwise OR operator | is
used. Lastly, the command is packed as a binary number using the struct.pack()
function call.

36

Chapter 5. Implementation

145 def encode_joy_cmd(cmd1, cmd2):
146

147 cmd1 = clamp(cmd1, -1.0, 1.0, 0.1)
148 cmd2 = clamp(cmd2, -1.0, 1.0, 0.1)
149

150 msb = int(7.5 * cmd2 + 7.5)
151 lsb = int(7.5 * cmd1 + 7.5)
152

153 cmd = msb << 4 | lsb
154

155 return struct.pack('B', cmd)

Python code excerpt 5.1: Encode forward and lateral joystick command

Next, the throttle and yaw axis of the joysticks needs to be encoded, as well as the
three buttons. Figure 5.7 shows how the command is structured as a single byte.
Note that only two bits are allocated to the the yaw command, leaving the two other
bits for the buttons. This will give the yaw command a range of

[
0 → 3

]
. Doing

so, the yaw command will provide binary control around the yaw axis, without
modulation.

Figure 5.7: Data byte for throttle, yaw and buttons

Code excerpt 5.2 shows the encoding of last byte of the data frame. cmd1 and cmd2
refers to the throttle and yaw command respectively, and the next three arguments
are the button inputs. The clamping of the input commands are done similarly
as the first byte, the only difference being that the yaw command is set to zero if
|cmd| < 0.25. The buttons are encoded in such a way that if no buttons are pressed,
the value is set to 0. If one of the buttons are pressed, the button command will
range from

[
1 → 3

]
, depending on what button is pressed. Note that only three

button inputs can be encoded using two bits. Even though we have a range of[
0 → 3

]
, the last value must be assigned when no buttons are pressed.

37

Chapter 5. Implementation

5.2.3 Transmitting UDP packets

After encoding the pilot inputs, the commands are sent as a two byte UDP packet
over Ethernet using the socket.sendto() function call, see figure 5.8. As the
Downlink is subject to packet loss and has limited bandwidth, some special con-
siderations need to be taken into account, see figure 5.9. Firstly, the transmission
rate of the UDP packets is set to 10 Hz and updating pilot inputs is set to 100 Hz.
Secondly, the the command inputs are subject to a deadband check. This means
that if the absolute value of the pilot input in the joystick axes are less than 0.125,
the commands are set to zero. Lastly, if no buttons are pressed or the joystick axes
is within the deadband, the UDP packets are sent 5 times before stopping. This is
to ensure that the Downlink isn’t overloaded with useless commands.

Figure 5.8: UDP packet to be sent to Topside Master over Ethernet

Figure 5.9: Sending UDP packets to Topside Master

38

Chapter 5. Implementation

5.3 Subsea software

An overview of the subsea program flow is shown in figure 5.10. Its purpose is to is
to receive data from the Subsea Master, decode the messages, and control the ROV
by interfacing with the Pixhawk Flight Controller using MAVROS. In contrary to
the topside software where a single thread is running, the subsea software needs
to be able to handle multiple threads and concurrency. UDP packets are received
from the Subsea Master asynchronously, then logged and decoded at the same time
as interfacing with the Pixhawk FCU. Important python packages include rospy
and asyncore as well as the ROS package MAVROS.

• rospy is a Python library for using ROS. It enables interfacing with the ROS
framework and the MAVROS package.

• MAVROS is a ROS package used for interfacing with the Pixhawk FCU by
extending the MAVLink protocol used for controlling the ROV.

• asyncore provides infrastructure for asynchronously handling socket servers
and clients. It is used for receiving UDP packets.

5.3.1 Receive UDP packets asynchronously

Code excerpt 5.3 show the asynchronous UDP client class. When creating a
AsyncUdpClient object, it creates a socket used for receiving packets. The handle_read()
function is called every time there is something to read. Here, the received data
is handled using the msg_handler() function (see code excerpt 5.4). The message
handler logs the data and checks if the received packet has a frame of two bytes. If
it does, it calls the decode_joy_msg() function and updates the joystick input.

5.3.2 Decoding

Code excerpt 5.5 shows how the received UDP packet is decoded. First, it starts
by unpacking the data using the struct.unpack() function call. data[0] is the
first byte of the frame and corresponds to the x and y-axis of the right joystick.
data[1] is the second byte of the frame and corresponds to the x and y-axis of the
left joystick, as well as the button presses.

39

Chapter 5. Implementation

Figure 5.10: Subsea software overview

Next, the correct bits are extracted using the right shift binary operator ≫ and
the bitwise AND & operator. Lastly, the extracted data is scaled to fit in the[
−1.0 → 1.0

]
range using the scale_int_to_float() function (see code excerpt

5.6).

5.3.3 MAVROS

MAVROS is a ROS package used for interfacing with the Pixhawk FCU in the ROS
framework. One of the advantages of ROS is that it offers thread-safe operations
using publishers and subscribers. Figure 5.11 shows how the MAVROS node in-
teracts with the “wlink” node by sharing topics using the publisher / subscriber

40

Chapter 5. Implementation

model.

Another advantage of ROS is that it packs data into standard data structures, such
as the Joy.msg structure. Any input device can be packed into this structure. After
the data has been decoded, the joystick input is updated, see code excerpt 5.7.

The input is published into the /Joy topic. A publisher is created in the following
way:

joy_pub = rospy.Publisher("/Joy", sensor_msgs.msg.Joy, queue_size=5) .

This enables us to subscribe to this topic whenever a Joy.msg structure is published
using a callback function:

rospy.Subscriber("/Joy", sensor_msgs.msg.Joy, joy_callback) .

The callback function joy_callback() is called every time something is published
to the joy_pub topic. Note that a FIFO queue of size 5 collects up to 5 joystick
messages, to ensure that no received data is lost. The joy_callback() function is
where most of the control of the ROV happens. Here, the joystick input is being
put to use, lights are turned on and off, and mode and gain is set. The different
modes used is listed in chapter 3, table 3.2.

The thrusters of the ROV is controlled by setting the PWM values with the use of
the override_msg structure in MAVROS. These are values between

[
1100 → 1900

]
,

which corresponds to the positive width of a PWM signal in milliseconds. A value
of 1100 is provides full force backwards, 1500 is zero thrust and 1900 is full force
forward. The gain setting will enable the pilot to use 50%, 75% or 100% of the
PWM values

[
1500 ± 300

]
.

Another important callback function is state_callback(). It is called every second
when the topic /mavros/state is published to. While Joy_callback() controls
the ROV, state_callback() handles timeouts, errors and safety. An example of
this is that if data hasn’t been received in 3 seconds, it will disarm the vehicle. This
is very useful during testing when the ROV is being pulled in and out of water.
The lights will turn off to save battery time, if no data has been received from the
Subsea Master the last 30 seconds. The most important safety feature is that the
ROV will automatically move to the surface if no data is received within the last
30 seconds.

Setting lights, arm / disarm, and set the mode of the vehicle is done through ROS
services.

41

Chapter 5. Implementation

5.4 Linux Services

To ensure that the OBC runs all necessary software on start-up, Linux services
are made. A Linux service is an application that runs in the background of the
operating system to carry out essential tasks. Two services are made on the OBC,
one for starting the Python script, subsea.py and one for starting MAVROS. Code
excerpt 5.8 shows the service that starts a shell script, run-wlink, responsible for
running subsea.py on start-up.

42

Chapter 5. Implementation

115 def encode_joy_btn_cmd(cmd1, cmd2, cmd3, cmd4, cmd5):
116

117 cmd1 = clamp(cmd1, -1.0, 1.0, 0.1)
118 cmd2 = clamp(cmd2, -1.0, 1.0, 0.25)
119

120 msb = int(7.5 * cmd2 + 7.5)
121

122 if(cmd1 < -0.25):
123 val = 0
124 elif(cmd1 > 0.25):
125 val = 2
126 else:
127 val = 1
128

129 lsb = val << 2
130

131 btn_cmd = 0
132 if(cmd3 == 1):
133 btn_cmd = 1
134 elif(cmd4 == 1):
135 btn_cmd = 2
136 elif(cmd5 == 1):
137 btn_cmd = 3
138

139 lsb |= btn_cmd
140

141 cmd = msb << 4 | lsb
142

143 return struct.pack('B', cmd)

Python code excerpt 5.2: Encode throttle, yaw and button command

43

Chapter 5. Implementation

307 class AsyncUdpClient(asyncore.dispatcher):
308 def __init__(self, host, port):
309 asyncore.dispatcher.__init__(self)
310 try:
311 self.create_socket(socket.AF_INET, socket.SOCK_DGRAM)
312 self.set_reuse_addr()
313 self.bind((host, port))
314 except:
315 # cleanup asyncore.socket_map before raising
316 self.close()
317 raise
318

319 # This is called every time there is something to read
320 def handle_read(self):
321 data, addr = self.recvfrom(4096)
322 if(msg_handler(data) == True):
323 pass
324 else:
325 rospy.logdebug("Data handler failed\n")
326

327 def handle_close(self):
328 self.close()

Python code excerpt 5.3: Asynchronous UDP Client

271 def msg_handler(data):
272 rospy.logdebug("msg_handler data: {} data length:

{}".format(data, len(data)))↪→

273 log_data(data)
274

275 if(len(data) == 2):
276 joy_data = decode_joy_msg(data)
277 update_joy_input(joy_data)
278 return True
279 else:
280 return False

Python code excerpt 5.4: Message handler

44

Chapter 5. Implementation

233 def decode_joy_msg(data):
234 joy_decoded = {'lx': 0, 'ly': 0, 'rx': 0, 'ry': 0, 'btn': 0}
235

236 rx_ry = struct.unpack('B', data[0])
237 lx_ly_btn = struct.unpack('B', data[1])
238

239 joy_decoded['ry'] = int(rx_ry[0]) >> 4
240 joy_decoded['rx'] = int(rx_ry[0]) & int(0x0F)
241 joy_decoded['ly'] = int(lx_ly_btn[0]) >> 4
242 joy_decoded['lx'] = (int(lx_ly_btn[0]) >> 2) & int(0x03)
243 joy_decoded['btn'] = int(lx_ly_btn[0]) & int(0x03)
244

245 joy_decoded['rx'] = scale_int_to_float(joy_decoded['rx'])
246 joy_decoded['ly'] = scale_int_to_float(joy_decoded['ly'])
247 joy_decoded['ry'] = scale_int_to_float(joy_decoded['ry'])
248 joy_decoded['lx'] = joy_decoded['lx'] - 1.0
249

250 return joy_decoded

Python code excerpt 5.5: Decode control commands

230 def scale_int_to_float(value):
231 return (float(value) - 7.5) / 7.5

Python code excerpt 5.6: Scale integer to floating number

45

Chapter 5. Implementation

258 def update_joy_input(joy_decoded):
259 joy_msg.axes[JOY_LX] = set_joy_deadzone(joy_decoded['lx'])
260 joy_msg.axes[JOY_LY] = set_joy_deadzone(joy_decoded['ly'])
261 joy_msg.axes[JOY_RX] = set_joy_deadzone(joy_decoded['rx'])
262 joy_msg.axes[JOY_RY] = set_joy_deadzone(joy_decoded['ry'])
263

264 for i in range(0,4):
265 joy_msg.buttons[i] = 0
266 joy_msg.buttons[joy_decoded['btn']] = 1
267

268 rospy.logdebug(joy_msg)
269 joy_pub.publish(joy_msg)

Python code excerpt 5.7: Publishing joystick messages in ROS

1 Unit]
2 Description=Water Linked Modem driver
3

4 [Service]
5 ExecStart=/usr/bin/run-wlink
6 Restart=always
7 RestartSec=10
8 Environment="HOME=/home/pi"
9

10 [Install]
11 WantedBy=multi-user.target

Python code excerpt 5.8: Linux service for starting scripts at startup.

46

Chapter 5. Implementation

Figure 5.11: ROS node overview

47

Chapter 5. Implementation

48

Chapter 6
Testing

“The process of operating a system or component under specified con-
ditions, observing or recording the results, and making an evaluation of
some aspect of the system or component”

— Definition of testing [10]

Software testing comes in many forms and shapes. There is a large amount of
tools and methodologies available as stated in chapter 4. This chapter gives a
presentation of how testing tools were used in the duration of the thesis. The
different tools include:

• Unit Testing

• Integration Testing

• System Testing

• Acceptance Testing

6.1 Unit Testing

[10] defines Unit Testing as “Testing of individual hardware or software units or
groups of related units.” To tests modules and methods in topside.py and subsea.py,
two Python packages were used, unittest and nosetests (see Appendix A.1).

49

Chapter 6. Testing

These tools were used throughout the thesis and proved to be useful tools for
finding bugs before integration into a larger system.

Code excerpt 6.1 shows an example of testing the clamp() method. The assertEqual()
function takes the function to be tested and expected return value. After setting
this up, the command nosetests is written in the terminal. nosetests looks for
all test cases in a folder and runs them. If one of the tests is unsuccessful, the
following output is shown in the terminal:

user@hostname ~/\$ nosetests

==
FAIL: test_clamp (test.TestStringMethods)
--
Traceback (most recent call last):

File "test.py", line 8, in test_clamp
self.assertEqual(clamp(0.1, -1.0, 1.0, 0.25), 0.2)

AssertionError: 0 != 0.2
--
Ran 3 tests in 0.102s
FAILED (failures=1)

1 import unittest
2 from topside import clamp
3

4

5 class TestStringMethods(unittest.TestCase):
6

7 def test_clamp(self):
8 self.assertEqual(clamp(0.1, -1.0, 1.0, 0.25), 0.0)
9

10 def test_clamp_max(self):
11 self.assertEqual(clamp(1.1, -1.0, 1.0, 0.25), 1.0)
12

13 def test_clamp_min(self):
14 self.assertEqual(clamp(-1.1, -1.0, 1.0, 0.25), -1.0)

Python code excerpt 6.1: Unit-test example

50

Chapter 6. Testing

6.2 Integration Testing

Integration testing is testing in which software components, hardware components,
or both are combined and tested to evaluate the interaction between them [10]. The
tool used was Software In The Loop Testing with Gazebo and running ArduSub
simulating the Pixhawk FCU. This testing phase revealed several bugs when
integrating the different modules together. This was especially beneficial when
testing ROS and MAVROS related software. Unit tests are unpractical to perform
on these modules due to that the entire control software must run to validate that
it works.

6.3 System Testing

[10] defines System Testing as testing conducted on a complete integrated system
to evaluate the system’s compliance with its specified requirements. Requirements
were made to perform the system testing of the ROV, see table 6.1.

Table 6.1: System Testing requirements

Attribute Description

Pilot joystick input Pilot input is correctly encoded and decoded. The axes
controlled is what the ROV does

Pilot button press The buttons do the intended action. This includes chang-
ing mode, turning on and off lights and setting the gain

Latency Latency between pilot input and ROV movement should
not exceed 1000 ms

Safety features 3 seconds without pilot input disarms the vehicle
30 seconds without pilot input turns off the lights and
returns the ROV to the surface

Robustness The Downlink performs well in highly reflective environ-
ments as well as under optimal conditions.

Data rate 4 bytes per seconds or more
Input device Validate both Xbox controller and IID as input devices

Most of the system tests were done in a water tank located in the office of Water
Linked AS. See figure 6.1. Outdoor testing was done after validating indoor testing,
see figure 6.2. Testing indoors gave the opportunity to test in a highly reflective

51

Chapter 6. Testing

environment. Having a low packet-loss rate indoors is a good indication that there
will be low-packet loss outdoors. One of the restrictions of testing indoors is limited
range. Outdoor testing confirmed that the Downlink worked well up to a range of
100 meters.

Figure 6.1: Testing in indoor water tank.

Figure 6.2: Testing outdoors at Brattørkaia, Trondheim. Note that a rope is attached to
the ROV. This was due to it being the first test done outdoors.

The System Test period lasted for 4 weeks and both the Underwater Modem and
ROV software were tested in parallel. The System Tests unveiled many ways to

52

Chapter 6. Testing

improve listed below.

• Depth mode was beneficial for controlling the ROV. It was first set as stabilize
mode only, but it turned out that the positive buoyancy of the ROV made it
difficult to keep it underwater when stationary.

• Gain was adjusted to improve mobility. Indoor testing made it difficult to
adjust this setting due to the size of the tank. Outdoor testing were necessary
for adjusting the gain parameter.

• The sensitivity of the IID joysticks needed to be scaled down.

• Light strength were adjusted.

The requirements were met during the duration of the System Testing phase. An
excerpt of the logged data is shown in appendix B.2.

6.4 Acceptance Testing

According to [10], Acceptance Testing is defined as a formal testing to determine
whether or not a system satisfies its acceptance criteria and to enable the customer
to determine whether or not to accept the system. The acceptance criteria in this
case is shown in table 6.2. Note that these requirements are for the Downlink only,
the Uplink requirements were handled by Water Linked. The customer refers to
the SWARMs officials, who determines whether or not to accept the system or not.

Table 6.2: Acceptance Testing requirements

Attribute Description

System test requirements All requirements must be met according to table 6.1.
Integration on-site Controlling the ROV with the Xbox controller must

be proved at the test site. Additionally, the IID is to
be controlled from a control room. Communications
and networking are done through the SWARMs net-
work.

53

Chapter 6. Testing

54

Chapter 7
Results and the way forward

7.1 Results

The demonstration in the SWARMs research project at Trondheim Biological Sta-
tion (TBS) 26. June was a success. Along with Water Linked employees, it was
demonstrated that the ROV could be controlled in a safe and robust matter accord-
ing the the acceptance test requirements listed in table 7.1.

Figure 7.1 shows the delay between each received data frame on the OBC during a
period of ≈ 10 minutes. The logging was done during one of the acceptance tests
in the integration week of the SWARMs project. The log clearly shows that data
frames are received every 500 ms most of the time. Delay over 500 ms indicates
packet loss.

The testing tools used in the thesis also proved to be useful. Indoor testing provided
a highly reflective testing environment. Outdoor testing validated the Downlink
up to 100 meters. Several challenges were discovered and resolved along the way,
suggesting that the testing scheme worked for this kind of project.

55

Chapter 7. Results and the way forward

Table 7.1: SWARMs demonstration results

Attribute Description Result

Pilot joystick input Pilot input is correctly encoded and de-
coded

Confirmed

Pilot button press Change mode, turning on and off lights and
set the gain

Confirmed

Safety features 3 seconds without pilot input disarms the
vehicle

Confirmed

ROV returns to the surface after 30 seconds Confirmed
Robustness The Downlink performed well Confirmed
Input device Xbox controller and IID Confirmed
Integration on-site ROV was controlled with an Xbox con-

troller at the test site. IID was controlled
from the control room off-site

Confirmed

Range <= 100 meters 20 meters
Latency <= 1000 ms 200-1000 ms
Data rate >= 4 bytes/s 4 bytes/s

0 50 100 150 200 250 300 350

data frames received

0

500

1000

1500

2000

D
el

ay
 (

m
s)

Delay between received data frames

Figure 7.1: Delay between each received data frame on the Onboard Computer. One data
frame corresponds to 2 bytes. The logging is done in a time period of ≈ 10 minutes

7.2 Conclusion

One of the main objectives of the work described in this thesis was to demon-
strate wireless control of an ROV using Water Linked’s Underwater Modem in the
SWARMs research project. The ROV was custom built for this purpose by adding
to additional thrusters and mounting the Subsea Master payload. Pilot input was
given with an Xbox controller as well as the Intuitive Input Device provided by

56

Chapter 7. Results and the way forward

Inventas AS.

To be able to control the ROV with a low amount of data, the data is encoded on
the topside computer and decoded on the onboard computer.

The OBC runs the ROS package MAVROS to interface with the Pixhawk autopilot.
Several features such as security, mode, gain and lights is implemented to provide
a safe and robust way of controlling the ROV.

Several Software Life Cycle models were explored to find the approach to be used
during the development of the software. A testing scheme was applied to the project
to ensure that the requirements were met during the SWARMS demonstration.

The SWARMs demonstration was a success and the final product met all of the
requirements specified.

7.3 Further work

Define different message types

Today’s implementation only transmits pilot inputs to the ROV. An alternative
method would be to reserve 2-3 bits in the data frame to act as “message type” bits.
Using 3 bits, 23 = 8 different message type could be transmitted. This could include
joystick message, button message, GPS coordinates, start / stop video recording
etc. The message handler on the OBC must be expanded to parse and decode these
messages.

Autonomous missions

Equipping the ROV with Underwater GPS from Water Linked, the position of the
ROV can be seen on a topside computer. This position can be sent back to the
ROV using the Underwater Modem, giving it both global and local coordinates.
Then, MAVROS can be used to facilitate autonomous missions.

57

Chapter 7. Results and the way forward

AUV conversion

Normally, the Underwater GPS has a topside unit with a baseline of 4 receivers,
and the ROV has one locator. Flipping this configuration, having the baseline on
the ROV and the locator at topside, the ROV knows its position underwater. This
is a good step of the way to convert it into an AUV.

ROV satellite

The BlueRov2 can be used as a communication satellite for other underwater
vehicles. Equipping the ROV with a Topside Master could enable communication
between several other vehicles under water, provided they are equipped with Subsea
Master units. It would be preferable to connect a tether to the BlueRov2, such
that all communications can be monitored topside, while the ROV is following the
other vehicles at a distance up to 100 meters. This could increase the range of
autonomous mission significantly, as well as receiving data from the missions in
real-time.

58

References

[1] Alshamrani Adel and Bahattab Abdullah. “A Comparison Between Three
SDLC Models Waterfall Model, Spiral Model, and Incremental/Iterative
Model”. In: IJCSI Int. J. Comput. Sci. Issues 12.1 (2015).

[2] Agile Alliance. https://www.agilealliance.org/agile101/12-principles-
behind-the-agile-manifesto/. [Online; accessed June 2018]. 2018.

[3] “Agile Software Process and its experience”. In: Proc. 20th Int. Conf. Softw.
Eng. (1998).

[4] Kent Beck. “Embracing Change with Extreme Programming”. In: Computer
32.10 (Oct. 1999), pp. 70–77.

[5] Kent Beck et al. Manifesto for Agile Software Development. 2001.

[6] T Bhuvaneswari and S Prabaharan. A Survey on Software Development Life
Cycle Models. Vol. 2. 2013.

[7] Gerald D. Everett and Raymond McLeod Jr. Software Testing. Hoboken,
New Jersey: John Wiley & Sons, Inc., 2007.

[8] Kevin Forsberg and Harold Mooz. “The Relationship of System Engineering
to the Project Cycle”. In: June 1994 (1996).

59

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

[9] Rajendra Ganpatrao Sabale and Ar Dani. “Comparative Study of Prototype
Model For Software Engineering With System Development Life Cycle”. In:
IOSR J. Eng. (2012).

[10] Anne Geraci et al. IEEE Standard Computer Dictionary. A Compilation of
IEEE Standard Computer Glossaries. 1991.

[11] Tanu Jindal. “Importance of Testing in SDLC”. In: International Journal of
Engineering and Applied Computer Science (IJEACS) (2016).

[12] Naresh Kumar, A. S. Zadgaonkar, and Abhinav Shukla. “Evolving a New
Software Development Life Cycle Model SDLC-2013 with Client Satisfaction”.
In: Int. J. Soft Comput. Eng. 3.1 (2013).

[13] Steve R. Palmer and Mac Felsing. A Practical Guide to Feature-Driven
Development. 1st. Pearson Education, 2001.

[14] William E. Perry. Effective Methods for Software Testing. 2006.

[15] Roger S Pressman. Software Engineering A Practitioner’s Approach 7th Ed -
Roger S. Pressman. 2009.

[16] Dr. Winston W. Royce. “Managing the Development of large Software Sys-
tems”. In: Ieee Wescon August (1970).

[17] SWARMs Research Project. http://www.swarms.eu/. [Online; accessed
June 2018]. 2018.

[18] Maneela Tuteja and Gaurav Dubey. “A Research Study on importance of
Testing and Quality Assurance in Software Development Life Cycle (SDLC)
Models”. In: Int. J. Soft Comput. Eng. (2012).

[19] Water Linked AS Homepage. https://waterlinked.com/. [Online; accessed
June 2018]. 2018.

60

http://www.swarms.eu/
https://waterlinked.com/

Appendices

61

A.1 List of software resources

• Ardusub
https://www.ardusub.com/

• ROS
http://www.ros.org/

• Gazebo
http://gazebosim.org/

• bluerov_ros_playground
https://github.com/patrickelectric/bluerov_ros_playground

• MAVROS
http://wiki.ros.org/mavros

• Xboxdrv
https://gitlab.com/xboxdrv/xboxdrv

• Python packages:

– asyncore https://docs.python.org/2/library/asyncore.html

– argparse https://docs.python.org/2/library/argparse.html

– rospy http://wiki.ros.org/rospy

– struct https://docs.python.org/2/library/struct.html

– socket https://docs.python.org/2/library/socket.html

– nosetests https://www.mankier.com/1/nosetests-2.7

– unittest https://docs.python.org/2/library/unittest.html

1

https://www.ardusub.com/
http://www.ros.org/
http://gazebosim.org/
https://github.com/patrickelectric/bluerov_ros_playground
http://wiki.ros.org/mavros
https://gitlab.com/xboxdrv/xboxdrv
https://docs.python.org/2/library/asyncore.html
https://docs.python.org/2/library/argparse.html
http://wiki.ros.org/rospy
https://docs.python.org/2/library/struct.html
https://docs.python.org/2/library/socket.html
https://www.mankier.com/1/nosetests-2.7
https://docs.python.org/2/library/unittest.html

B.2 Subsea data log excerpt

The following list is a log of the data received on the BlueRov2 from the Subsea
Master. It logs the data as hexadecimal numbers and the time difference between
each data frame. This log is made when giving a variable pilot input, without stop.

3

Sheet1

Page 1

Time received: 1528288657
Time diff: 0.5124
Byte #0: 0x7
Byte #1: 0x74

Time received: 1528288657
Time diff: 0.51594
Byte #0: 0x7
Byte #1: 0x74

Time received: 1528288658
Time diff: 0.47263
Byte #0: 0x7
Byte #1: 0x74

Time received: 1528288658
Time diff: 0.4974
Byte #0: 0x7
Byte #1: 0x78

Time received: 1528288659
Time diff: 0.49905
Byte #0: 0x17
Byte #1: 0x78

Time received: 1528288659
Time diff: 0.50271
Byte #0: 0x77
Byte #1: 0x74

Time received: 1528288660
Time diff: 0.49877
Byte #0: 0x77
Byte #1: 0x74

Time received: 1528288660
Time diff: 0.49703
Byte #0: 0x77
Byte #1: 0x74

Time received: 1528288661
Time diff: 0.50267
Byte #0: 0x17
Byte #1: 0x74

Time received: 1528288661
Time diff: 0.49959
Byte #0: 0x6
Byte #1: 0x74

	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	List of Tables
	List of Code Excerpts
	Abbreviations
	Introduction
	Background
	Motivation
	Problem Description
	Thesis outline

	Water Linked Underwater Modem
	Overview
	Downlink
	Uplink

	Hardware and Software
	Hardware
	BlueRov2
	Input Devices

	Software
	Gazebo
	Robot Operating System
	ArduSub

	Theory
	Software Development Life Cycle
	Traditional SDLC models
	Waterfall model
	V-model

	Prototyping Model
	Incremental / Iterative model
	Agile Development
	Agile Manifesto
	Extreme Programming
	Feature Drive Development

	Testing in Software Development Life Cycle

	Implementation
	Overview
	Topside software
	Input devices
	Encoding
	Transmitting UDP packets

	Subsea software
	Receive UDP packets asynchronously
	Decoding
	MAVROS

	Linux Services

	Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	Results and the way forward
	Results
	Conclusion
	Further work

	References
	Appendices
	List of software resources
	Subsea data log excerpt

